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Resumo

O aumento da complexidade dos sistemas tem levado a um aumento na dificuldade da
atividade de projeto. A abordagem padrão para desenvolvimento, baseada em tentativa e erro,
com testes usados em estágios avançados para identificar erros, é custosa e leva a prazos de
entrega imprevisíveis. Além disto, para sistemas críticos, para os quais segurança é um conceito
chave, Verificação e Validação (V&V) com antecedência é reconhecida como uma abordagem
valiosa para promover confiança. Neste contexto, nós identificamos três características impor-
tantes e desejáveis de uma técnica de V&V: (i) uma linguagem de modelagem gráfica; (ii)
raciocínio formal e rigoroso, e (iii) suporte automático para modelagem e raciocínio.

Nós tratamos estes pontos com uma técnica de refinamento para SysML apoiada por
ferramentas. SysML é uma linguagem baseada na UML para o projeto de sistemas. Ela
tem se tornado um padrão de facto na área. Há uma grande disponibilidade de ferramentas
de fornecedores como IBM, Atego, e Sparx Systems. Nosso trabalho se destaca de duas
maneiras: ao fornecer uma semântica para refinamento e considerar uma coleção representativa
de elementos do perfil UML4SysML (blocos, máquina de estados, atividades, e interações)
usados de forma combinada. Nós fornecemos uma estratégia para analisar modelos de projeto
especificados em SysML. Isto facilita a descoberta de problemas mais cedo durante o ciclo de
vida de desenvolvimento de sistemas, reduzindo tempo e custos de produção.

Neste trabalho nós descrevemos nossa semântica a qual é definida usando uma álgebra
de processo rica em estado chamada CML e implementada em uma ferramenta para geração
automática de modelos formais. Nós também mostramos como esta semântica pode ser usada
para análise baseada em refinamento. Nossos estudos de caso são um protocolo de eleição de
líder, o qual é um componente crítico de uma aplicação industrial, e um sinal anão, o qual é um
dispositivo para controlar tráfego em linhas férreas. Nossas contribuições são: um conjunto de
orientações que fornecem significado para os diferentes elementos de modelagem de SysML
usados durante o projeto de sistemas; as semânticas formais individuais para atividades, blocos e
interações de SysML; uma semântica integrada que combina estas semânticas com outra definida
para máquina de estados; e um arcabouço que usa refinamento para raciocínio de sistemas
especificados por coleções de diagramas SysML.

Palavras-chave: Álgebra de processos. CML. CSP. refinamento. automação. SysML. semân-
tica.



Abstract

The increasing complexity of systems has led to increasing difficulty in design. The
standard approach to development, based on trial and error, with testing used at later stages to
identify errors, is costly and leads to unpredictable delivery times. In addition, for critical systems,
for which safety is a major concern, early verification and validation (V&V) is recognised as
a valuable approach to promote dependability. In this context, we identify three important and
desirable features of a V&V technique: (i) a graphical modelling language; (ii) formal and
rigorous reasoning, and (iii) automated support for modelling and reasoning.

We address these points with a refinement technique for SysML supported by tools.
SysML is a UML-based language for systems design; it has itself become a de facto standard in
the area. There is wide availability of tool support from vendors like IBM, Atego, and Sparx
Systems. Our work is distinctive in two ways: a semantics for refinement and for a representative
collection of elements from the UML4SysML profile (blocks, state machines, activities, and
interactions) used in combination. We provide a means to analyse design models specified using
SysML. This facilitates the discovery of problems earlier in the system development lifecycle,
reducing time and costs of production.

In this work we describe our semantics, which is defined using a state-rich process
algebra called CML and implemented in a tool for automatic generation of formal models. We
also show how the semantics can be used for refinement-based analysis and development. Our
case studies are a leadership-election protocol, a critical component of an industrial application,
and a dwarf signal, a device used to control rail traffic. Our contributions are: a set of guidelines
that provide meaning to the different modelling elements of SysML used during the design
of systems; the individual formal semantics for SysML activities, blocks and interactions; an
integrated semantics that combines these semantics with another defined for state machines; and
a framework for reasoning using refinement about systems specified by collections of SysML
diagrams.

Keywords: Process algebra. CML. CSP. refinement. Automation. SysML. Semantics.
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1
Introduction

One of the most critical aspects in system development consists in the difficulty to assess
specification compliant products. Among the factors that influence this issue we can cite the
increasing complexity of engineered systems, the effectiveness of the applied methods and
budget constraints (DEBBABI et al., 2010). The increasing size and complexity of systems have
led to a great difficulty to their description and specification. Features like concurrency and
parallelism demand notations and techniques for reasoning about system properties. In a broader
context, Systems Engineering is related to the design of whole systems through an iterative
process that leads to the development and operation of a system. Overall, system engineering
is an interdisciplinary approach to the development of systems (BOARD, 2006). In this case,
systems are not only software-intensive but can also involve physical components.

In particular, verification and validation (V&V) tasks must evolve accordingly in order to
tackle the increasing size and complexity of systems. The current methodologies based mainly on
testing are not effective enough to critical systems due to the impossibility of assuring correctness.
In addition, the detection of failures in the early stages of development produces several benefits
and a higher return on investment because the maintenance time, effort and costs are decreased.
According to Boehm (BOEHM, 1981), fixing a defect after delivery can be considerably more
expensive than fixing it during the requirements and the design phases. Hence, in order to reduce
risks and costs in systems engineering, activities related to V&V should be performed as early as
possible, thus, increasing the quality and reliability of systems.

In some categories of systems, like critical real-time systems where safety is a major
concern, early V&V is essential to support their expensive and long-term development process.
These activities play a crucial role because of the danger of losing human lives due to system
failures. In this context, besides testing, other approaches using formal techniques should be
applied to increase the level of reliability on such systems. However, few verification approaches
are supported by formal foundations.

Some desired characteristics in the V&V approach are listed below:

� Provide automated mechanisms. Automation optimises the V&V process and avoids
the introduction of errors by human-related activities.
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� Use formal and rigorous reasoning to reduce errors due to ambiguity.

� Use a graphical modelling language to ease the understanding of the system, hiding
an underlying formal model.

Regarding the verification of systems and software, two formal approaches have been
proposed to tackle this challenge, theorem proving (GOUBAULT-LARRECQ; MACKIE, 1997)
and model checking (CLARKE et al., 1999). Theorem proving deals with first-order or higher-
order logic, which allows the verification of infinite state systems. On the other hand, model
checking works with decidable logics and is limited to deal with finite state systems. Hence,
the effectiveness of model checking is reduced when the system exhibits an enormous (or
infinite) number of states. This limitation is well know as the exponential state explosion

problem (CLARKE et al., 2012). Applying model checking to a system with these characteristics
may consume all memory resource of a computer and return no response at all.

Nevertheless, even with this limitation, model checking has proven to be a successful
approach for verifying the behaviour of software and hardware applications (MILLER et al.,
2010). The reason for this resides in the fact that this technique is fully automated. Model
checkers traverse all possible states of a system specification in order to evaluate properties in an
automated manner. If a property is not satisfied, a counterexample is returned, which indicates a
possible flaw in the system. Such flaw can be corrected and the property analysed again, allowing
an iterative process to validate systems.

According to Clarke (CLARKE et al., 1999), model checking means the automatic
verification of satisfiability of the relation M |= p. In other words, does the model M, which is
described as a transition system, satisfy the property p, which is described as a logical formula?
Roscoe (ROSCOE, 1997, 1998) proposes a variation of this statement where the refinement
Sp v Sm, given that Sp and Sm are CSP (HOARE, 1985) specifications and Sp is known to exhibit
the property p, provides an equivalent response to M |= p. However, as both specifications are
CSP processes, what we are checking in fact is if the process Sp, which is defined in a lower level
of abstraction than Sm, has all the behaviours of Sm. This approach is called refinement model

checking. The model checker FDR (Failures-Divergences Refinement) (GIBSON-ROBINSON
et al., 2014) and PAT (SUN et al., 2008), for instance, allow the verification of such refinements
by transforming a CSP specification into labelled transition system (LTS) with the purpose of
refinement checking.

Although this approach has been applied in industry, there is an issue regarding the
notations used by these tools. Usually they require specifications to be written using formal
notation, which is usually based on a text format and is difficult to understand for users not
familiar with formal languages. Therefore, making system engineers adopt a formal notation
in their daily tasks becomes a challenge. System practitioners usually work with graphical
notations because they are easy to understand and communicate to other stakeholders. Among
this category of languages, UML (Unified Modelling Language) (OMG, 2011) has become an
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established standard in both academia and industry for modelling software.
Following the success of UML, a profile for systems engineering, called SysML, has

been defined (OMG, 2010a) and has become a de facto standard in the area. There is wide
availability of basic literature (HOLT; PERRY, 2008; FRIEDENTHAL et al., 2011), and tools
from vendors like IBM (IBM, 2013), Atego (ATEGO, 2013), and Sparx Systems (SYSTEM,
2013) for SysML.

Like UML, SysML has an informal semantics, with several points left loose. Flexibility
of usage for capturing requirements, and for model development and evolution, is prioritised
over a well-defined semantics. In systems engineering, however, there are areas of application
for which rigour is essential, and the danger of misunderstanding models due to different
interpretations of their meaning is not acceptable. Moreover, the use of models in automated
techniques for analysis and verification requires the definition of a semantics of the diagrammatic
notation in terms of desired formal syntax.

In the past years a considerable effort has been spent to fill this gap between graphical
modelling languages and formal languages. This can be achieved by transformations between
models, where a source model defined using a graphical language can be transformed into a
target model related to a formal specification. The advantage of this approach is to reuse the tool
support of the formal notation. Usually, the approaches differ in the modelling language chosen,
the formal domain to represent its semantics, the amount of constructs that can be translated and
the level of automation provided.

The COMPASS project 1 was the pioneer in proposing model-based methods and tools
for the development and analysis of System of Systems (SoS), which is a category of systems
where independent constituent systems cooperate in order to achieve a common goal (JAMSHIDI;
JAMSHIDI, 2009). It was composed by research groups of five universities (Newcastle Uni-
versity, Aarhus University, University of York, Bremen University and Universidade Federal
de Pernambuco) and three companies (Atego, Bang & Olufsen and Insiel) and was funded by
the seventh framework programme (FP7) of the European Union. These groups collaborated to
advance the state of the art for the development and maintenance of SoS. Among its achievements
we can cite the COMPASS Modelling Language (CML), which is a formal language based on a
state-rich process algebra, a tool environment for creating and analysing CML specifications,
tools for deriving CML specifications from SysML models, and a process for analysing SysML
models. Our research was part of the COMPASS project. We have worked in the definition of
the formal semantics of SysML diagrams to allow its automatic derivation from SysML tools
and we have proposed approaches for analysing SysML models.

Our work enables the use of refinement-based analysis and verification to reason about
SysML models. Many have pursued formalisation of both SysML and UML: there are formalisa-
tions of individual diagrams, a few examples of which are (GRAVES; BIJAN, 2011a; RAMOS
et al., 2005; STORRLE, 2004a; ABDELHALIM et al., 2010), and of models that combine

1http://www.compass-research.eu/
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diagrams (DAVIES; CRICHTON, 2003). Typically, the approaches that tackle collections of
diagrams deal with very constrained subsets of the notation of the individual diagrams. We focus
on diagrams that facilitate design, namely the block definition, internal block, state machine,
activity, and sequence diagrams. Our work is distinctive both in its coverage of the available
notation to write each of these diagrams, and in its integrated approach, where the semantics of
all diagrams are integrated into a single formal model. We have chosen not to extend previous
work for several motives: the lack of integration between the SysML model elements we chose,
the semantic domain were considerable distinct from CML, and, even the works that have a
close relationship with CML, like the ones for CSP, do not define their semantics following a
compositional approach like we do.

We define a single formal model that captures data and behavioural aspects of a SysML
model that gives an overall picture of a system using a collection of diagrams. Our semantic
domain (formal modelling language) is CML (WOODCOCK et al., 2012a), a state-rich process
algebra for refinement. We define a semantics for SysML models via mapping into CML.

Our goal is to support reasoning at the level of the diagrammatic notation by using
an underlying model described in CML together with formal method techniques and tooling.
Accordingly, we describe here a semantics that can be used for automatic generation of CML
models from diagrams. It takes the form of a function that maps SysML to CML and is defined
by transformation rules. It is implemented in a model-generation tool based on Atego’s Artisan
Studio SysML tool (ATEGO, 2013).

To enable the construction of meaningful CML models, we define usage guidelines for
SysML. They are important to guarantee a minimal level of concreteness of the SysML model in
order to be able to reason about it. Basically, block diagrams are used to define the system and its
components, internal block diagrams to define the relationship between them, each operation is
defined in a state machine or in an activity diagram, but not both, and sequence diagrams define
scenarios of the system. Our guidelines ensure that we can produce useful CML models that are
very comprehensive and impose few restrictions to the user. We illustrate these guidelines and
the use of refinement using two industrial case studies: the leadership election protocol, which is
used in an industrial multimedia system of systems, and the dwarf signal, which is a hardware
device used to control traffic of trains in railways.

The CML semantics for block, internal block, activity, and sequence diagrams have
been presented in (MIYAZAWA et al., 2013; LIMA et al., 2013, 2014) and they are direct
results of our work. Another contribution is a revised and integrated version of these seman-
tics (LIMA et al., 2015) including the semantics of state machine diagrams, which was defined by
Miyazawa (MIYAZAWA et al., 2013) and is not a contribution of this thesis but is nevertheless
explained here as it is part of the integrated modelling approach proposed. The definition of
these semantics in CML enables their use to analyse properties of the individual diagrams,
like refinement of models, for instance, assuring that the actual version of a state machine is
a refinement of an earlier version, and absence of deadlock, livelock and non-determinism in
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these models. In addition, we propose an analysis methodology considering the integrated model
where traces and general properties of the system can be verified.

Using our CML semantics, we can use refinement to analyse properties of diagrammatic
models. We propose an approach where a system model can be built using block definition and
internal block diagrams to represent the structural part of the system, and state machines and
activity diagrams to model the behavioural aspects. Valid scenarios, including desired properties
of the system can be modelled using sequence diagrams, which we call the validation model.
Finally, we can check if the system model behaves according to the validation model using
refinement checking.

Figure 1.1 illustrates the process of the verification activities of our approach. In step
one, system engineers build SysML models using the Artisan Studio tool. Step 2 corresponds
to the automatic transformation of the SysML models into CML models. The generated CML
models follow the definitions of our semantics. The translation was implemented by Atego and
is not part of this work. The resultant CML models can be either animated or analysed through
refinement checking. Step 3 shows the transformations of the CML model into a concrete version
able to be animated. This step uses a tool implemented in the scope of this thesis. This tool
outputs a new version of the CML model that can be used in the Symphony tool (COLEMAN
et al., 2012) for animation in Step 4. For refinement checking analysis, we need to transform
our CML models into CSP specifications in Step 5, which are analysed using the FDR model
checker in step 6. Despite being a overhead transforming CML to CSP, this is minimised due
to the fact that CSP is one of the baseline languages of CML, and they have similar underlying
semantics both based on the Unifying Theories of Programming (HOARE; HE, 1998).

In summary, our main contributions are:

� Guidelines of usage for construction of meaningful SysML models (by meaningful,
we mean models that can be translated to a formal model in CML);

� State-rich process algebraic semantics for the following SysML diagrams:

� sequence diagram;

� activity diagram;

� block definition diagram;

� internal block diagram;

� An integrated semantics that combines activity, block definition, internal block, state
machine and sequence diagrams;

� An analysis approach for verifying scenarios and properties of SysML models;

� Mechanisation of the process used to transform CML models to allow their animation
in the Symphony tool;
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Figure 1.1: The process of our approach.

Source: Author’s ownership.

� Guidelines for translating CML models into CSP;

� Development of two industrial case studies.

1.1 Structure of the Thesis

Chapter 2 describes the two baseline languages used in the proposed approach. First, the
graphical modelling language SysML is described in terms of its diagrams and its relationships
with its parental language UML. We also discuss the informal semantics of some constructs
presented along the document. It is important to understand the SysML language because models
of this language are the inputs to our strategy. Next, we describe the COMPASS Modelling
Language (CML), the semantic domain used to define SysML models formally. CML is a formal
language that allows the specification of models using state-rich elements and a process algebra.
As the SysML constructs are mapped to CML specifications, it is important to understand the
syntax and semantics of the constructs used in the CML language as well.

Chapter 3 presents how SysML models must be constructed in order to provide mean-
ingful models, which can be represented in CML according to our semantics. The following
chapters detail the isolated semantics of each one of the diagrams of SysML addressed in the
thesis.

Chapter 4 presents the CML semantics provided for block diagrams (block definition
and internal block diagrams), which covers the structural part of SysML models. Chapter 5
describes the CML semantics for SysML state machine and activity diagrams, both covering the
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behavioural part of SysML models. Chapter 6 presents the CML semantics for SysML sequence
diagrams, which are used to build scenarios of the system that are used to validate the model (as
described further in Chapter 8). Although the state machines semantics is not a contribution of
this thesis, it is important to understand its semantics when we discuss in Chapter 7 the integrated
semantics of all diagrams. We present the related work in each chapter in order to make a clearer
relation with our contributions.

Chapter 8 presents some applications of our integrated semantics regarding analysis of
SysML models. It describes the mechanisation of the CML models generation from SysML
models using the Atego’s Artisan Studio tool. Then, it describes how models can be animated,
which can be used to understand the communication between the entities of the SysML model,
and, as another contribution of this thesis, a strategy to analyse systems modelled in SysML
based on scenarios specified in sequence diagrams. This strategy uses the refinement capability
of the generated models to verify if the traces of the sequence diagrams are valid in the traces of
the model resulted from the combination of the other diagrams. This chapter also provides some
validations of our semantics through the exercise of refinements at the SysML level.

Finally, in Chapter 9, we consider what are the benefits of using an integrated semantics
for SysML diagrams and the practical advantages and limitations of using our semantics in
formal-based tools. We also present what still needs to be done as future research.
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2
Background

In this chapter we describe the modelling languages used in the context of this work.
Section 2.1 describes SysML, which is the diagrammatic language used as baseline of our
approach, while Section 2.2 describes the semantic domain used as the formal semantics of
SysML, which is described in terms of the state-rich and process algebraic language, CML.

2.1 SysML

SysML, which is a standard of the Object Management Group (OMG, 2012), is a
modelling notation for systems engineering, defined as a UML 2.0 profile. SysML allows the
representation of systems, hardware, software, information and processes, with the objective of
providing dedicated support for system-level modelling, verification and validation. Like UML,
SysML provides a number of diagrams to support the description of different aspects of a system.
SysML has the following prominent distinctive features that are not present in UML:

� The “classical” software-centric focus present in UML, through class diagrams and
composite structure diagrams, has been moved to the system-level in SysML by the
introduction of block definition diagrams and internal block diagrams (OMG, 2012,
Chapter 8).

� The general UML notion of constraints has been strengthened in SysML through the
introduction of constraint blocks and parametric diagrams (OMG, 2012, Chapter 10).

� A notation for requirements engineering and tracing from model elements to require-
ments (OMG, 2012, Chapter 16).

The Venn diagram shown in Figure 2.1 displays how the two languages, UML2 and
SysML, relate to each other. The intersection between the two circles represents the constructs
from UML reused by SysML, which is called the UML4SysML subset. The part of the SysML
circle that is not part of the UML 2 circle indicates the new modelling constructs of SysML that
are not present in UML, or that replace UML constructs. There is a part of UML that is not
required in SysML, which is marked "UML not required by SysML".
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Figure 2.1: Overview of the relationship between UML 2 and SysML.

Source: (OMG, 2012)

Figure 2.2 shows a representation of the organisation of the SysML diagrams. Basically,
SysML provides nine types of diagrams to model systems. Some of them are completely reused
from UML, like sequence diagram, state machine diagram, use case diagram and package
diagram. Some others were modified to be consistent with SysML extensions. Block definition
diagram and internal block diagram are similar to UML class diagram and composite structure
diagram, respectively. UML activity diagram has also been extended. There are two new types
of diagrams, requirements diagram and parametric diagram. A requirement diagram provides
constructs for text-based requirements, and the relationship between requirements and other
model elements that satisfy or verify them. Parametric diagram describes constraints among the
properties associated with blocks. Its purpose is to integrate behaviour and structure models with
engineering analysis models such as performance and reliability.

The details on the informal syntax and semantics of the diagrams and their constructs
is available in (OMG, 2012). Additionally, other sources of literature (HOLT; PERRY, 2008;
FRIEDENTHAL et al., 2011) describe the language with the support of real word examples
focusing on architectural modelling.

This thesis does not provide semantics for all SysML diagrams. We cover block definition
diagram, internal block diagram, activity diagram and sequence diagram. State machine diagram
is discussed here as part of the integrated approach but its semantics has been provided separately
by partners of the COMPASS project (MIYAZAWA et al., 2013). However, the chosen subset
provides means to describe both structure and behaviour of a system. Despite having nine types
of diagrams, SysML does not require all diagrams to be used during modelling tasks. It depends
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Figure 2.2: SysML diagram taxonomy.

Source: (OMG, 2012).

on what needs to be represented. System designers may only be interested in modelling the
behavioural part of a system, or just the structural part, or both, and for that they may choose the
diagrams to be used according to their expertise or tools that are available for use.

In this section, we shall briefly describe the parts of SysML structural and behavioural
diagrams that are relevant in the context of our semantics of SysML in terms of CML.

2.1.1 Block-definition diagram

A block-definition diagram depicts blocks and their relationships. A block can represent
any abstract or real entity: a piece of hardware, a software, or a physical object, for instance. The
whole system is also represented by a block. Figure 2.3 shows a diagram of our case study: a
distributed system of systems (devices) that automatically elects a leader among them. A possible
scenario of this case study is a house with a television, a cell phone and a home stereo that must
provide a synchronised experience to the costumer. However, to achieve that they must elect
a leader between the three devices that manage the data that allows the synchronism between
them. In this diagram, there are three blocks: SoS represents the complete system (of systems),
Device, three devices, and Bus, one bus.

Blocks can have attributes and operations. Attributes are properties of a block. For
instance, in Figure 2.3, id is an integer attribute of the block Device, and packs is an attribute of
Bus. The attributes pD and pB are ports, which are used for connecting blocks and are further
discussed in the next section.

An operation captures functional behaviour provided by the block. For instance, Device

is able to update its state via the operation updateDeviceInfo(). Operations are typically triggered
by synchronous requests. A signal, on the other hand, does not have a specific behaviour, but may
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Figure 2.3: A block definition diagram.

Source: Author’s ownership.

Figure 2.4: An example of an internal block diagram.

Source: Author’s ownership.

trigger behaviours in state machines and activities. It is used for asynchronous communication
between blocks (or with the environment).

A block can be related to another by an association, which can be over different multiplic-
ities and indicates a potential relationship between instances of the blocks. Blocks can also be
related by composition, indicated by an arrow with a filled diamond at one end. A composition
establishes a whole-part relationship: the block at the diamond end is the whole composite block
and those at the other end are the parts. The main feature of a composition is that a part, that is,
an instance owned by the composition, may belong to at most one block. In our example, SoS is
a composite block; its parts are three instances of a Device and one instance of a Bus.

2.1.2 Internal block diagram

Internal block diagrams are similar to block definition diagrams, but typically show the
internal connections between parts of a block. Figure 2.4 shows the parts of the leadership
election protocol.

In this example, three instances of a Device are connected to one instance of a Bus.
This is defined via the connector between the ports pD and pB, represented by a solid line. In
fact, each connection between each port should be explicit represented in the model, however,
we have grouped all connections in one solid line for simplification. A connector links two
or more instances of a block either directly or via ports, like in the example, to allow them to
communicate. This is in contrast with an association, which specifies that there can be links
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Figure 2.5: A state machine diagram.

Source: Author’s ownership.

between any instances of the associated blocks, rather than that there is a link between particular
instances.

If there is an association between the blocks that define the instances directly linked by a
connector, we say that this connector realises the association, and that the association defines the
type of the connector. Connectors that do not realise an association are not typed.

The ports pD and pB define provided and required interfaces. A provided interface is
depicted as a circle and identifies a port that produces outputs to its client. A required interface
is depicted as a semicircle and identifies a port that takes inputs from its client.

The number in a port defines its arity. For instance, each device has a port pD with arity
one, whereas the port pB of the single instance of the bus has arity 3. This allows the connection
of one bus with three devices.

2.1.3 State-machine diagram

The state-machine diagrams of both UML and SysML are compatible (OMG, 2010b,
pp. 541). A state-machine diagram reacts to events from the environment, which are stored in an
event pool. The order in which events in the pool are processed is unspecified. Figure 2.5 shows
an example of a state machine from our case study.

States can be simple or composite. Simple states do not have substates. For instance, Off

in Figure 2.5 is a simple state, while On is a composite state. Initial states are depicted as filled
circles. Figure 2.5 shows two initial states: the initial state of the entire state-machine diagram
and the initial state of the state On.

A state may have three types of behaviour: entry and exit actions, and do activities.
Entry actions are executed when the state is activated, exit actions are executed when the state
is exited, and do activities are executed when the state finishes activating. Do activities may
either stop by themselves or continue indefinitely until a transition interrupts it and exits the
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state. Figure 2.5 shows the do activities performed by the states Undefined, Follower and Leader.
These activities store in the currentState the value of the new state: currentState+1 modulo the
number (nDevices) of devices.

A transition connects a source to a target state; it may contain a trigger, a guard and a
behaviour. The trigger and guard are separated from the behaviour by a slash (/). Guards are
specified between square brackets. For example, in Figure 2.5, the transition from the state Off to
the state On is triggered by a signal turnOn and it has no guard. On the other hand, the transition
from Undefined to Leader takes place whenever the state Undefined is active, its do activity has
finished, and the guard currentState == id and nLeaders == 0 and petitionAccepted is true (this
means that a device becomes a leader whenever its petition has been accepted and there are no
leaders). The system returns to Undefined whenever more than one leader is elected. Similarly,
the transition from Undefined to Follower takes place whenever Undefined is active, its do activity

has terminated, and the guard currentState == id and nLeaders > 0 and not(petitionAccepted)

evaluates to true. This means that the device becomes a follower whenever there is at least one
leader and it is not itself (because its petition was not accepted). The transition from Follower

to Undefined happens whenever the source state is active, the do activity has terminated and
nLeaders == 0 holds, i.e. it happens whenever there are no leaders. In our semantics, we restrict
behaviours to be any CML action language statement, like the assignment petition := petition

+ 1 displayed in Figure 2.5. Also, operation calls, signals and call to activities can be used
as descriptions of behaviour by using the CML action language. The latter is illustrated in
Figure 2.5 where the activity ActBroadcast is invoked in the behaviours of some transitions. The
syntax of the CML action language is detailed in Chapter 3.

For the purpose of this work we divide transitions between completion and non-completion
transitions. Completion transitions are triggerless transitions that are executed when the internal
behaviour of the state (e.g, “do activities”) terminates. Non-completion transitions are triggered
by events from the event pool and can interrupt the internal events of its source states. For
instance, the transition from Off to On is a non-completion transition because it is triggered by
the event turnOn, while the transition from Follower to Undefined is a completion transition
because it has no trigger, it only requires the do activity from Follower to terminate and the guard
between the states to be true.

A transition between two states, whose trigger and guard (if any) are evaluated to true,
can be executed by exiting the source state, executing the transition behaviour and entering the
target state. In the general case, transitions can cross state boundaries; this requires that not only
the source state is exited by the transition, but some of its ancestors too.

Finally, state machines may contain join, forks, junction and choice states. These states
are used to control the flow through the states. Join and fork states (both represented by solid
bars) gather and split transitions, respectively. A junction state (represented graphically by a
solid black circle) provides a mechanism for choosing which transition (leaving the junction
state) to follow. Transitions leaving junction states cannot have triggers, and the evaluation of the
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Figure 2.6: Example of an activity diagram.

Source: Author’s ownership.

guard is performed prior to the execution of the transition. An alternative is the choice state that
provides a mechanism for choosing the particular transitions to follow, but, unlike junction states,
the decision of which transition to follow is performed during the execution of the transition path.
Therefore, the execution of the behaviours of the transitions in the path can affect the outcome of
the execution of the choice state.

2.1.4 Activity diagram

Activity diagrams are based on classic flow charts. In contrast with the other diagrams,
they are normally used for low-level modelling: detail the behaviour of an operation and describe
workflows or processes.

An activity diagram has three basic elements: activity nodes, edges and regions. An
activity node represents an action, a control or an object. An action node is used to represent
some action. In Figure 2.6, the nodes with names updateDeviceInfo, <<Value Specification

Action>> and updateCurrentState are action nodes. The node named <<Value Specification

Action>> computes the value of an expression (++currentState) mod nDevices that is then sent
to updateCurrentState via the output pin s.

Control nodes manipulate the flow of actions, for example, via decisions, forks and joins.
Figure 2.7 illustrates the possible control nodes. A decision node chooses among its outgoing
edges according to their guards or probabilities. Only one outgoing edge must be chosen. If
more than one guard is true, the order of evaluation is not defined. A merge node brings together
multiple flows without synchronisation. A fork node splits a flow into multiple concurrent
flows. A join node synchronises multiple flows. An initial node starts the flow when the activity
is invoked. An activity may have more than one initial node, then invoking an activity starts
multiple flows. A flow final node destroys all tokens that arrive at it. It has no effect on other
flows in the activity. An activity final node terminates the activity. An activity may have more
than one activity final node. The first activity final node reached stops all flows in the activity.
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Figure 2.7: Control nodes.

Source: (OMG, 2011).

Object nodes represent data used by an activity: inputs and outputs to the activity or to
its nodes. Among the object nodes, the most used ones are parameters pins and datastores. For
example, in Figure 2.6, DeviceID is a parameter object node of the activity and its data is taken
as input by the node updateDeviceInfo via the pin id, which is also an object node. A datastore
is an object node that can repeatedly provide in its outgoing edges the data received until the
activity terminates or another data arrives in the node.

Edges can be of two types: control flow or object flow. A control flow defines when
and in which order the actions run. Control flows are shown as dashed arrows. An object flow
describes how inputs and outputs flow between actions. Object flows are depicted as solid arrows;
in Figure 2.6 the DeviceId object is passed to the action updateDeviceInfo and ((++currentState)

mod nDevices) is sent to updateCurrentState.
Activity diagrams use a token semantics to control the flow of execution. A node can

be executed only when all its inputs have received tokens, and, once it finishes its behaviour,
it provides tokens on its outputs. Some nodes create tokens (for instance, an initial node only
provides tokens on its outputs), while others remove tokens (for instance, a flow final node only
consumes tokens that arrive on it). An activity diagram finishes its execution when there is no
token flowing through it or an activity final node is reached.

2.1.5 Sequence diagram

In UML 2.0, there are four types of diagrams to describe interactions: sequence diagrams,
communication diagrams, interaction overview diagrams, and timing diagrams. Among them,
the sequence diagram is the most commonly used to describe interaction aspects of systems, and
therefore SysML considers only sequence diagrams to describe interactions. According to the
SysML specification (OMG, 2012), communication diagram and interaction overview diagrams
are excluded as they overlap in functionality without adding significant capabilities for modelling
systems. Timing diagrams are not included because of their lack of maturity and suitability for
systems engineering needs.

A sequence diagram describes operational scenarios of a system with an emphasis on
order. This is achieved through the use of lifelines. Each participant of the diagram, typically,
instances of blocks or its parts, possesses a lifeline, so that we can represent a message-exchange
order.

The sequence diagram in Figure 2.8 presents a scenario of the leadership election example
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Figure 2.8: Example of a sequence diagram.

Source: Author’s ownership.

where a user turns on three devices and each of them notifies the bus that the leader is undefined.
The user is depicted as an actor, while the three Devices Dev1, Dev2, Dev3 are instances of block
Device and bus is an instance of block Bus. A lifeline is represented by a dashed vertical line
under each participant.

Participants communicate via messages. For example, Figure 2.8 shows the actor sending
messages to turn on devices. Messages are sent in sequence along a participant lifeline. So, the
first message sent by the actor goes to Dev1, the second to Dev2, and the third to Dev3. However,
messages from different lifelines may happen in any order. For example, the second message
sent by the actor that goes to Dev2 and the first message sent by Dev1 that goes to the Bus may
happen in any order. This mechanism is called weak sequencing. Messages are linked to two
message events, one for sending and another for receiving the current message.

Messages can be of three types: asynchronous (open arrow head), synchronous call
(closed arrowhead), or reply from a synchronous call (dashed arrow). All messages shown in
Figure 2.8 are asynchronous.

Message exchanges can be grouped inside combined fragments that describe operators
like parallel composition, conditional, loops, and so on. Figure 2.8 shows a parallel combined
fragment PAR, which must be composed of two or more operands, separated by horizontal
dashed lines, describing scenarios that can proceed in interleaving. In Figure 2.8, there are three
operands, each sending two messages in sequence. For instance, transmitPack(Undecided,1,2) is
sent before transmitPack(Undecided,1,3). These messages, however, can be interleaved with
those sent in the other operands.

A lifeline can include a state invariant: a constraint on the blocks. If the constraint holds,
any message-exchange order just established is a valid scenario of the system, otherwise, it is
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Figure 2.9: Example of a sequence diagram with interactionUse.

Source: Author’s ownership.

forbidden. State invariants define properties of the system in terms of the attributes of a block.
At the bottom of the lifeline Dev3 in Figure 2.8, there is an invariant Dev3.claim == Undecided,
which verifies that the value of the attribute claim of Dev3 is Undecided after it has been turned
on and all its packages have been transmitted.

A sequence diagram can include an interactionUse element to refer to another sequence
diagram, so that part of its definition is provided by the referred diagram. In this way, a diagram
can be used several times in the definition of others. For example, Figure 2.9 shows another way
of describing the scenario of Figure 2.8 using interactionUse elements that refer to the sequence
diagram transmitPack, which is shown in Figure 2.10.

Messages outside the interactionUse can connect to or come from an interactionUse

via a gate. This is a connection point that relates a message from outside the interactionUse

with a message inside the interactionUse. For instance, the diagram of Figure 2.10 has two
gates, one for each transmitPack() message that comes from outside. These gates connect to the
transmitPack() messages of the diagram in Figure 2.9 that arrive in the interactionUse elements.

Figure 2.10: Example of a sequence diagram with gates.

Source: Author’s ownership.
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2.1.6 Final Remarks on SysML models

A complete SysML model contains several diagrams. Each diagram provides a different
point of view of a system that must complement and be consistent with the others. State machine
and activity diagrams describe behaviours using the attributes and calling the operations of
blocks. A state machine diagram may call an activity. State machine and activity diagrams
may call an operation and send a signal to a block. Finally, a sequence diagram describes a
scenario where exchanged messages between blocks are used to represent either operation calls
or transmission of signals.

2.2 CML

The COMPASS modelling language (CML) (WOODCOCK et al., 2012a) is a formal
specification language that integrates a state based notation (based on VDM++ (FITZGERALD;
LARSEN, 2009)) and a process algebraic notation (based on CSP (HOARE, 1985)), as well
as Dijkstra’s language of guarded commands (DIJKSTRA, 1975) and the refinement calcu-
lus (BACK; WRIGHT, 1998). It supports the specification and analysis of state-rich distributed
specifications.

We introduce CML by means of a specification of a simple clock. For more details, see
the work by Woodcock et. al (WOODCOCK et al., 2012a,b).

A CML specification consists of a number of paragraphs that, at the top level, can
declare types, classes, functions, values (i.e., bindings of expressions to identifiers), channels,
channel sets, and processes. Both classes and processes declare state components, and may
contain paragraphs declaring types, values, functions and operations. A process may additionally
declare any number of actions, and must contain an anonymous main action, which specifies the
behaviour of the process.

Initially, we specify a simple clock whose only observable behaviour is a synchronisation
on a channel tick used to mark the passage of seconds.

channels

tick

As previously mentioned, a class declares a state and a number of operations that
manipulate the state. In particular, a class may declare an initialisation operation identified by
the keyword initial, which acts as a constructor of the class.

Internally, the clock has a state variable s that records the number of seconds that have
elapsed, and has two operations defined: Init() and increment(). The first operation simply
initialises the state with 0, while the second adds one to the state component. The clock state is
captured by the following class declaration.
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class ClockSt = begin

state

public s: nat

initial

public Init()

frame wr s

post s = 0

operations

public increment()

frame wr s

post s = s~ + 1

end

The frame keyword in the declaration of operations specifies the state components that can
be read (rd) and written (wr) by the operation. In the case of the Init operation, the state
component s can be written by Init. The post keyword specifies the post condition of the
operation. In the case of Init, the post condition states that the state component s (after the
operation) is equal to zero. The post condition of the operation increment equates the state
component s, after the operation, to the sum of its initial value (s~) and one.

The class ClockSt is used in the definition of the process that specifies the behaviour of
our clock. Similarly to a class, a process encapsulates a state and may contain operations, but
in addition it contains at least one action (the main action), which specifies the behaviour of a
process.

Our simple clock initialises its state, waits for one time unit, which we take to mean one
second, increments its counter and synchronises on tick. This is specified by the following
process declaration.

process SimpleClock = begin

state c: ClockSt

actions

Ticking = Wait 1; c.increment(); tick -> Skip

@ c.Init(); mu X @ Ticking; X

end

The simple clock is a process that declares a state and a number of actions. The state, in this case,
is formed of a single state component c of type ClockSt. The actions include Ticking and the
action started by @, which is the main action of the process. In this case, SimpleClock simply
initialises its state by calling the operation Init() of the state component c and recursively (mu)
calls the action Ticking. This action waits for one time unit (Wait 1), increments the internal
counter and synchronises on the channel tick.

In our initial specification of the clock the only observable event is the synchronisation
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on tick. It might be interesting to have a clock that takes advantage of its internal counter and
supplies information about how many seconds, minutes, hours and days have elapsed.

We now extend our simple clock to include this additional functionality. First, we declare
four additional channels that communicate a natural number. They are used to query the seconds,
minutes, hours and days that have elapsed.

channels

second, minute, hour, day: nat

The new clock specification is similar to the simple clock; it declares the state of the process
as containing just the component c of type ClockSt, but additionally defines three functions:
get_minute, get_hour and get_day. They take the number of seconds recorded in the state,
and calculate, respectively, the equivalent number of minutes, hours and days.

process Clock = begin

state c: ClockSt

functions

get_minute(s: nat) m: nat

post m = s/60

get_hour(s: nat) h: nat

post h = get_minute(s)/60

get_day(s: nat) d: nat

post d = get_hour(s)/24

The ticking action remains the same as before, but we add a new action, Interface, that provides
the extra functionality.

actions

Ticking = Wait 1; c.increment(); tick -> Skip

Interface = second!(c.s) -> Interface

[] minute!(get_minute(c.s)) -> Interface

[] hour!(get_hour(c.s)) -> Interface

[] day!(get_day(c.s)) -> Interface

This action simply offers an external choice ([]) of communication over the channels second,
minute, hour and day, and recurses. Each communication outputs (indicated by ! after a
channel name) the appropriate value calculated using the functions previously defined.

Now, the main action of the new clock is slightly different. It first initialises the state as
before, but instead of offering Ticking alone, it composes Ticking in parallel with the recursive
action Interface with the option of interrupting (/_\) Interface with a synchronisation on
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tick. The operator A1 [|ns1| cs |ns2|] A2 composes the actions A1 and A2 in parallel based
on a set of events cs on which the two parallel actions synchronise, and two name sets ns1 and
ns2 that partition the state of the process and indicate which state components can be updated by
the left (ns1) and right (ns2) parallel actions. In our example, the action Ticking can update the
state component c and the right parallel action does not update the state. The parallel actions
synchronise on the channel tick.

@ c.Init(); mu X @ (

Ticking [|{c}|{|tick|}|{}|] (Interface /_\ tick -> Skip)

); X

end

While Ticking is waiting, the right hand side of the parallelism can offer any number of
interactions over the channels in Interface. When Ticking finishes waiting, s is incremented,
and the parallelism synchronises on tick. In this case, the action Interface is interrupted and
both sides of the parallelism terminate. At this point, the recursive call (on X) takes place.

When the parallelism starts, both parallel actions take a copy of the state, and when the
parallelism terminates, the state is updated based on the changes performed by the two parallel
actions (on their copies of the state) and the partition of the state. A consequence of this is that
changes to the state performed by Ticking can only be reflected on the behaviour of Interface
when the parallelism terminates, the state is updated and Interface restarts (as part of the
recursive call) with a copy of the updated state.

Now we have a clock that not only signals the passing of time, but can also output the
time. However, we might also want to be able to restart the clock. For this, we define a channel
restart and a new clock RestartableClock.

channels

restart

The definition of the restartable clock is similar to that of the process Clock previously defined.
The process RestartableClock has a new action Cycle, and its main action offers the action
Cycle and the possibility of interrupting it through the channel restart. If the interruption
takes place, the main action recurses and Cycle is called to reset the state.

process RestartableClock = begin

state c: ClockSt

functions

get_minute(s: nat) m: nat

post m = s/60

get_hour(s: nat) h: nat

post h = get_minute(s)/60
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get_day(s: nat) d: nat

post d = get_hour(s)/24

actions

Ticking = Wait 1; c.increment(); tick -> Skip

Interface = second!(c.s) -> Interface

[] minute!(get_minute(c.s)) -> Interface

[] hour!(get_hour(c.s)) -> Interface

[] day!(get_day(c.s)) -> Interface

Cycle = c.Init(); mu X @ (

Ticking [|{c}|{|tick|}|{}|] (Interface /_\ tick -> Skip)

); X

@ mu X @ Cycle /_\ restart -> X

end

We can further extend the functionality of the clock by specifying a multi-clock. A simple way
of defining such a clock is to compose a number of restartable clocks (or any other variety of
clock). This raises the question of how the clocks are composed. For instance, do all clocks
synchronise on tick? Can they be restarted independently? We present below two processes that
model a multi-clock. Both of them assume that the clocks are synchronous, but the first process
allows independent restarting, while the second does not.

First, we define the channels that allow the environment to communicate with specific
clocks. We assume that the clocks in the multi-clock are indexed using natural numbers, and are
similar to those already defined, communicating a natural number (the identifier of the clock)
and the value originally communicated. We prefix the name of the new channels with an i.

channels

isecond, iminute, ihour, iday: nat * nat

irestart: nat

Our first model of a multi-clock is specified by the process NRestartableClocks1.
This is a parametrised process that takes the number n of clocks, and starts n copies of the
process RestartableClock running in parallel and synchronising on tick. The channels in
the RestartableClock process need to be renamed to distinguish one clock from another. We
rename each channel (except tick) to its i version.

process NRestartableClocks1 = n: nat @

[|{|tick|}|] i: {1,...,n} @

RestartableClock[[second <- isecond.i,

minute <- iminute.i,

hour <- ihour.i,

day <- iday.i,
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restart <- irestart.i]]

Our alternative process NRestartableClocks2 is similar, except that the different clocks syn-
chronise on restart as well, and this channel is not renamed. Thus, a synchronisation on
restart restarts all the clocks simultaneously.

process NRestartableClocks2 = n: nat @

[|{|tick, restart|}|] i: {1,...,n} @

RestartableClock[[second <- isecond.i,

minute <- iminute.i,

hour <- ihour.i,

day <- iday.i]]

One might consider that, whilst these definitions are reasonably intuitive, they are not the most
efficient for implementation purposes due to the required synchronisations between the different
clocks. So, one might implement a multi-clock with a single clock that provides all services on
the i channels. To model this design, we simply associate each channel of a restartable clock
with the equivalent i channel, but ranging over all the possible clocks.

process NRestartableClocksImpl = n: nat @

RestartableClock[[second <- isecond.i,

minute <- iminute.i,

hour <- ihour.i,

day <- iday.i | i in set {1,...,n}]]

This process simply renames each channel of RestartableClock (except tick and restart) to
a set of communications on the associated i channel communicating the identifiers of the clocks.

This process raises the question of which of our multi-clock processes is being imple-
mented by NRestartableClocksImpl. These questions can be formulated using refinement,
which is a behaviour-preserving relation between processes. It is a core concept in CML and CSP.
If a CML process P is refined by another process Q, then Q can only engage in interactions that
are possible for P, and can only deadlock or livelock, when P can. Regarding the restartable clock
processes, we can verify if the NRestartableClocksImpl process respects the behaviours of
the NRestartableClocks1 and NRestartableClocks2 process with the following refinement
assertions.

assert NRestartableClocks1 [= NRestartableClocksImpl

assert NRestartableClocks2 [= NRestartableClocksImpl

The first assertion states that the process NRestartableClocksImpl is a refinement of the
process NRestartableClocks1, and the second asserts that the implementation is a refinement
of NRestartableClocks2. These assertions can be checked using a model-checker. The first
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assertion is not valid because the restart events of NRestartableClocksImpl are not part of
the executable alphabet of NRestartableClocks1 (they are renamed to irestart.i), hence,
the model checker returns a counterexample with a trace having such an event. On the other
hand, the second assertion is valid.

More details about the CML notation will be presented as needed. Moreover, the
semantics of CML are provided in technical reports of the COMPASS project (WOODCOCK
et al., 2012b, 2013).

2.3 Final Remarks

The next chapters describe how a SysML semantics can be defined in terms of CML.
However, not all SysML models can be translated to CML because whilst SysML models can
be ambiguous, CML models cannot. Therefore, we must restrict the way SysML models are
designed to allow their representation in terms of well-defined CML specifications. Hence, not
all SysML models can have a sibling CML specification. The next chapter details the restrictions
we impose on the SysML models.
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3
Modelling Patterns

One of the main features of SysML (which is inherited from UML), namely its flexibility,
hinders the task of enriching it with a formal semantics. Certain uses of the notations are not
addressed in the informal semantics, and even explicitly allowed omissions (like operation
definitions) can lead to incomplete SysML models that could not be mapped to meaningful CML
models. To avoid these problems, we propose guidelines of usage for SysML.

These guidelines provide a means to define concrete SysML models in order to enable
the generation of meaningful CML models. They also can be seen as a modelling style to guide
practitioners during the design of systems. In addition, they impose roles for the modelling
elements, for instance, behaviours can only be described by state machines and activities while
sequence diagrams are only used for validation of the model. Therefore, we limit the purpose of
each element in the model. Moreover, some guidelines require a minimum level of information
to be available in the model, hence, models too abstract cannot be tackled by our semantics. That
is why we position our approach in the design phase of systems when such required information
should be available.

In this chapter, we describe the assumptions for defining the semantics of SysML models.
They act upon the SysML models themselves, and establish what is required of a model for a
CML model to be ascribed to it. We also discuss in this chapter the metalanguage we use to
describe our semantic mappings from SysML to CML and we present an overview of how this
semantics is defined. Section 3.1 describes the guidelines and Section 3.2 illustrates them using
examples that are case studies of this thesis. Section 3.3 gives details about the conventions of
the metalanguage used to describe our translation rules, while Section 3.4 presents an overview
of the semantics for SysML models that are presented in chapters 4, 5, 6 and 7.

3.1 Guidelines of usage

We identify here a subset of the SysML notation and describe usage guidelines to allow us
to define a semantics via a translation into CML. Our subset of SysML includes block definition
diagrams, internal block diagrams, state machine diagrams, activity diagrams and sequence
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diagrams. Next, we cite the constructors considered for each diagram.

� Block definition and internal block diagrams: blocks, operations, attributes, signals,
ports, provided and required interfaces, associations, composition and generalisation.

� State machine diagrams: simple and composite states, regions, final states, initial and
junction pseudostates, fork and merge pseudostates, transitions, and completion and
deferred events1.

� Activity diagrams: control nodes (initial, activity final, flow final, decision, merge,
join and fork), action nodes (accept event, send signal, call operation, call behaviour,
value specification, structured feature, read self, opaque), object nodes (parameter,
input and output pins, datastore), control and object flow, and interruptible regions.

� Sequence diagrams: lifelines, messages (synchronous, asynchronous and reply),
message arguments, local attributes of the Interaction, combined fragments (PAR,
STRICT, SEQ, ALT, OPT, BREAK, LOOP, CRITICAL), state invariant, interac-
tionUse and gates.

Our guidelines of usage aim at supporting the definition of interesting cohesive, compre-
hensive, and formal representations of SysML models. The guidelines maximise the definedness

of a SysML model at both the entity definition level and at the instance definition level. In
this respect, they are similar to constraints imposed by most tools to enable automatic code
generation from models.

A SysML model typically provides independent (although expected to be consistent) and
disconnected views of an application (much like a set of classes in an object-oriented program
without a main class that coordinates all other classes). To generate a CML model (or indeed
code), we need a model with an element (typically a block) that represents the application
as a whole. Nevertheless, this block can be described in terms of several other blocks. Our
guidelines for maximal definedness at the entity level, however, still allow for models that provide
independent disconnected views. The guidelines for definedness at the instance level, therefore,
require only that enough information is available in the SysML model to link models provided by
the diagrams. Furthermore, the guidelines include some restrictions that simplify the semantics
and make it more amenable to automated reasoning.

3.1.1 Entity definition guidelines.

Our guidelines for entity definitions are:

1. Operation calls must be treated either by the block’s state machine diagram or by an
activity diagram;

1Although the state machine semantics is not a contribution of this thesis, the guidelines for the design of
translatable state machines are.
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2. In the block definition diagram there must be one block representing the system as a
whole (a root block).

3. The blocks in the model must form a connected graph where the edges are either
generalisation or composition relations;

4. A composite block (the head of the composition relation) must not have attributes,
operations, signals, activities or state machines;

5. Associations in the block definition diagram must match the internal block diagram
typed connectors;

6. Associations must be used in place of aggregation; and

7. Connectors between ports are not typed.

The second guideline guarantees that there is a root block of the model from which the
semantics of the whole model can be defined.

The third guideline guarantees that all other blocks can be reached from a block in
the model. We observe that this is essential to ensure that we have a connected model of the
application, but it is not enough, since it is concerned only with block diagrams.

The fourth guideline requires that a composite block is simply the composition of its
parts. The reason for this restriction is that it is not clear what it means for a composition
of blocks to have an associated behaviour (in the form of a state machine, for instance). We
envisage two possible interpretations: (1) the state machine is a specification of the desired
behaviour of the composition of the parts, or (2) the state machine specifies a behaviour that
is specific to the composite block and must be executed in parallel with the parts of the block.
In the first interpretation, one approach would have the state machine of the composite block
running in parallel with the composition of the parts, and synchronising on all events. In this
case, a deadlock originating in that parallelism would indicate that the parts do not correctly
implement the state machine. If the second interpretation is the intention, it is possible to write a
model that captures this behaviour and follows our guidelines. We need to create a new part and
move all components of the composite block to the new part. In this case, it would be possible to
adequately specify the dependencies between the behaviours in the new part with respect to the
original parts. Whilst operations and signals are not allowed in the composite block, ports are
supported and operations and signals on the ports are allowed. This restriction forces the user to
indicate, through the use of connectors and interfaces, which parts treat which requests received
at the ports of the composite block.

The fifth and sixth guidelines enforce our view that whilst we know that composition is
a relation where a part cannot live without its owner, the distinction between aggregation and
association is not clear at all. We require that associations are used instead of aggregation, and
that associations are matched by connectors at the instance level. The block definition diagram
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shown in Figure 2.3 on page 26 respects these guidelines because the block SoS are related to
blocks Device and Bus through a composition relationship. Our view is motivated by the fact
that composition entails uniqueness in the sense that the same instance cannot be part of two
different blocks, and therefore the semantics of the parent block is directly defined in terms of
the sub-blocks. Moreover, since the instances of the sub-blocks that compose an instance of the
parent block are unique, we do not require any additional information to instantiate them as long
as we can guarantee that they are unique.

Aggregation and association on the other hand allow sharing of block instances, and
without the uniqueness assumption, we require additional information to determine whether
instances are shared and how. Since block definition diagrams cannot refer to particular instances,
any aggregation or association present in the block definition diagram must be further specified
in the internal block diagram to provide this information. For associations, a connector in the
internal block diagram must be typed by an association in the block definition diagram. In the
case of aggregation, the same approach is not possible because connectors cannot be typed by
aggregations. For this reason, our guidelines do not allow the use of aggregation.

Finally, since a connection between ports is specified by the provide and required
interfaces of the connected ports, typing information on the connector is unnecessary.

3.1.2 Instance-level guidelines.

Instance-level guidelines are related to internal block diagrams.

1. Each owner block of a composition relation (for example, block SoS in Figure 2.3)
must specify the connections between its parts through an internal block diagram.

2. All part blocks in a composition whose lower-bound multiplicity is larger than 0 must
appear in the internal block diagram of the owner block in numbers compatible with
their multiplicities.

3. The cardinalities that appear in an internal block diagram must be constants.

4. Ports may only be connected to other ports.

The internal block diagram specifies exactly which instances are present in a particular
realisation of the system, and exactly how they are associated. This is enforced by the first three
guidelines above.

The last guideline is necessary because a connector starting in a part (not a port) must
correspond to an association of the part, which in turn must appear in the block definition
diagram. A port can be connected directly to a block, but the meaning of such a connection is
not defined in SysML. In this case, restriction 4 above is simply a consequence of the entity-level
restriction 5.
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3.1.3 Action language assumptions.

Since the action language of SysML is not defined, we require actions to be expressed
in a subset of CML that can be used to define data operations, enriched with statements for
sending a signal or calling an operation of another block through a port or association, and
for calling an activity. CML reactive behaviour is not allowed in this subset, since the SysML
paradigm does not include channel-based communication to model interactions, like CML.
Instead, attributes, signals and operations define the services provided by an application. SysML
actions are, therefore, data operations that explain how the state embedded in blocks and other
operations can be used to specify the services. We could use any data language to specify such
actions, and we choose the CML data language for convenience. The really important point is
that the language is defined and it can be used in constructors that specify behaviours, like the
action behaviour of a transition in a state machine or in opaque actions in activities.

In the context of state machine diagrams, we extend the subset of CML used as action
language to include the following constructs:

Block operation call without return value Op(p1,...,pn), where Op is the name of the op-
eration

Block operation call with return value v := Op(p1,...,pn), where Op is the name of the
operation

Activity call call Act(p1,...,p2), where Act is the name of the activity

return statement return v

Whilst the syntax of these constructs is similar to the syntax of CML, their semantics is not that
of CML. The return statement is only allowed in transition actions triggered by a call event. This
restriction is necessary because the return statement is part of the definition of an operation and,
as such, must be associated with an operation definition. For state machine diagrams, this is the
case only for actions triggered by an operation call event. It is important to note that we do not
require the knowledge of how the translation functions work in order to specify any CML action
language command.

3.1.4 Simplification assumptions.

The simplification assumption guidelines provide mandatory patterns for modelling
systems whose purpose is to simplify the semantics. They are:

1. Each block must either have one associated state machine diagram or no other
associated diagram specifying its behaviour;

2. Sequence diagrams specify valid and forbidden scenarios of interactions between
blocks;
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3. Operations are always synchronous. Asynchronous operations should be modelled as
signals;

4. Operations modelled by activities and state machines must not call themselves;

5. Operations modelled by activities and state machines must not call each other;

6. Activities must not be recursive (mutually or otherwise);

7. Sequence diagrams must not be recursive (mutually or otherwise);

8. Ports do not have an associated behaviour;

The first guideline establishes that the only valid form of restricting the behaviour of a
block is by means of state machines. Essentially, this forbids the use of activity and sequence
diagrams for the specification of the overall behaviour of a block. State machine diagrams are
particularly well suited for this task, since they support deferred events (useful to model blocking
behaviour) as well as call events (useful to model operations). Moreover, there is a convention
(FRIEDENTHAL et al., 2011) for modelling operations that return values (i.e., the return

keyword) in a state machine, and the semantic definition of state machine diagrams covers such
convention.

The second guideline restricts the possible uses of sequence diagrams to scenario valida-
tion purposes. This use is consistent with various case studies and recommendations (FRIEDEN-
THAL et al., 2011). Although sequence diagrams have been used for other purposes (e.g.,
operation definition), it is our view that the emphasis on interaction between blocks given by
sequence diagrams makes them more suitable to model such scenarios than, for instance, to
model operation definition.

The third guideline forbids the use of asynchronous operations. The reason for this
guideline is that asynchronous operations give rise to some unclarities. It is not clear what is the
intended meaning of an asynchronous operation with return values, and the difference between
asynchronous operations and signals. If an asynchronous operations is required, we suggest the
use of signals.

The next four guidelines restrict the use of recursion in operations defined in state
machines and activities, also in the definition of sequence diagrams. One of the main reasons is
because there is no definition of the semantics for these facilities in UML or SysML. Moreover,
scenarios like this would result in untreatable CML models due to the state space explosion
problem (as we use parallelism to compose the model elements, recursion at this level would
result in a infinity parallel composition). Therefore, we decided to restrict such possibilities in
our semantics. Although recursion is a widely used technique in programming, it is not common
in modelling artefacts, probably because they are used for defining abstraction with a higher
level of detail than those needed in code. We do not recall facing any recursive sequence diagram
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Figure 3.1: An illustration of a dwarf signal.

Source: (FOSTER; WOODCOCK, 2013).

or state machine, however, as SysML and UML also do not restrict these uses, we decided to
explicitly forbid them.

Finally, the eighth guideline restricts the use of ports with behaviour. For simplicity, ports
act just as relays of messages (operation calls and signals). Although we know that sometimes
it is suitable to describe the protocol of communication of a port in terms of a state machine,
we do not allow this possibility of modelling in our semantics. However, such a protocol can
be described in the state machine of the block that owns the port. The modelling pattern for
describing a port with behaviour is one possible extension to our work. There is no tool support
to check the adequacy to our guidelines, however, as it is further discussed in Chapter 8, there is
a tool to translate the SysML models to CML specifications, and in case the guidelines are not
respected, then the corresponding specification is generated with syntactic errors. However, we
plan to implement the guidelines in the future using a constraint language, like OCL (WARMER;
KLEPPE, 2003).

3.2 Examples

In this section we present two case studies that follow our guidelines and that are used
along this document, the dwarf signal and the leadership election problem. We have modelled
the case studies in SysML with the support and validation of the experts that provided them
during the COMPASS project.

3.2.1 Dwarf Signal

Our first example is the model of a dwarf signal, which is a railway signal used at the
side of the track. It has three lamps which are displayed in different configurations to give
instructions to train drivers. An illustration is shown in Figure 3.1. The signal’s three lamps are
named L1-L3, as illustrated, and different configurations of a signal can be written using set
notation. For instance, {L1, L2} means Stop.
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Figure 3.2: The proper states of a dwarf signal.

Source: (FOSTER; WOODCOCK, 2013).

Figure 3.3: The BDD of a dwarf signal.

Source: Author’s ownership.

The signal has a total of four proper states that are the well-defined commands to a driver.
These are enumerated in Figure 3.2. When all lamps are off (indicated by the empty set {}) the
signal is in the Dark state, which is a power saving mode for when the signal is not in use. The
three remaining proper states Stop, Warning and Drive are indicated by a combination of two
lamps and correspond to the positions of an old-style semaphore signal.

Along with the four proper states there are also three transient states which describe the
unstable states when a signal is moving from one proper state to another, since the signal may
only light or extinguish one lamp at a time. These states are {L1}, {L2} and {L3}. Finally there
is the ambiguous state {L1, L2, L3} which a signal should never display as it is meaningless.
This makes a total of 23 = 8 states.

To ensure the safety of this system, four safety properties are given:

� Only one lamp may be changed at once

� All three lamps must never be on concurrently

� A change to or from Dark is allowed only from Stop or to Stop, respectively

We present a simple SysML model that represents the behaviour of a dwarf signal.
Figure 3.3 shows the block DwarfSignal, which is composed of four attributes, desiredState
which corresponds to the state that should be reached by the dwarf signal, and three lamps l1,
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Figure 3.4: The state machine of the DwarfSignal block.

Source: Author’s ownership.

l2 and l3 that are initialised in the Stop configuration. The types LampId and LampType are
enumerations where the former has three values: <L1>, <L2> and <L3>; and the latter has
two values: <ON> and <OFF>. Finally the block has four operations. The shine() operation
returns the set of lamps that are on, the setDesiredState() operation updates the value of attribute
desiredState, the light() operation turns a lamp on and the extinguish() operation turns a lamp
off. This block definition diagram follows our guidelines because it has only one block, which is
the root block of the system.

The behavioural description of this block is modelled in terms of a state machine, which
is depicted in Figure 3.4. It has the four proper states, the intermediate state where only one
lamp may be on and the possible transitions between the states. Each transition deals with a call
event to one of the operations. For example, if the system is in the Stop state, it can only shine
the lamps L1 and L2. In other situations the transitions are triggered according to guards, for
example, from the Dark state the dwarf signal can only change to Stop, then, the set parameter
of the setDesiredState operation can only have the value {<L1>,<L2>}, which means going
to the Stop state.

This state machine also respects our guidelines because it describes the behaviour of
the DwarfSignal block and the operations of the block are treated by the state machine model.
The sequence diagrams describing scenarios and an activity diagram of the Dwarf Signal are
described in Chapter 8 when we discuss how to analyse this model.
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Figure 3.5: Abstract model: block definition diagram

Source: Author’s ownership.

3.2.2 The Leadership Election Problem

This example is a system (of systems) that includes a number of devices running in
parallel and cooperating among themselves. Typically, such a device could be a cell phone, a
MP3 player, a home theatre, a TV, a set of speakers, etc., all running in parallel and sharing
information. The main requirement is that among the active devices there is exactly one leader.
We provide two possible models: an abstract model that has a simpler specification of the desired
behaviour, and a concrete model that has more details related to the implementation level. The
abstract model is specified in Section 3.2.2.1. The concrete model uses a distributed architecture
with no centralised control and is defined in Section 3.2.2.2 (and it is already partly described in
Section 2.1).

3.2.2.1 The Abstract SysML model

The abstract model specifies a centralised system that controls any number of devices.
To follow our guidelines, we assume a fixed number of devices: three. The goal of the system is
to maintain itself in a state where, if there are active devices, exactly one of them is identified as
a leader and all others are marked as followers.

The system is modelled by the block LE SoS in Figure 3.5, which has three attributes,
devices, Active and Elected, the operations turn on and turn off, and the signal tick. The
attributes record the devices, those that are Active, and the current Elected leader. The type of
Elected is a set because the system can be in an undesired state where no devices claim to be
the leader; in this case, an election takes place. The type Device has a single component, id,
that records the identifier of a device. The operations of LE SoS take as an argument the device
identifier and model the activation and deactivation of the corresponding device. The signal tick

models the discrete passage of time.
As required by our guidelines, all the operations are defined using the state-machine
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Figure 3.6: Abstract model: state machine diagram

Source: Author’s ownership.

diagram in Figure 3.6. It contains a single state with five transitions: the transition from the initial
state, two represented implicitly inside the state, triggered by turn on and turn off, and two
shown explicitly, both triggered by tick. The turn on and turn off transitions model the activation
and deactivation of devices by adding and removing their identifiers from Active. These actions
are specified using CML assignments.

There are two transitions triggered by the signal tick. The first is executed when there are
active devices, but either there is no leader or the current leader is no longer active. It specifies
by means of a specification statement that Elected must be updated to contain exactly one of
the identifiers of the active devices. The second transition is executed if there is a leader but no
active devices, and specifies that Elected must be emptied. The behavioural part of the explicit
transitions are detailed in terms of CML pre and post-condition behaviours. The terms pre and
post identify pre and post-conditions, respectively, that must be valid for a state declared in the
frame statement. The card function returns the cardinality of a set. The subset function returns a
boolean that yields true if the set on the left-hand side is a subset of the set on the right-hand side
and false otherwise.

3.2.2.2 The Concrete SysML model

The concrete model depicts an implementation view of the system. The block diagram
is that in Figure 2.3 (on page 26), where we have blocks for the devices and a bus for data
transportation. Since there is no centralised control, each device maintains information about all
others to decide which one is the leader. A device communicates with the others in cycles; in
each cycle it receives information from the others and broadcasts its data. At the end of each
cycle a device knows the state of all devices.

In spite of being much more complex than the abstract model, this model can still be
described following our guidelines. The block definition and the internal block diagrams are
depicted in Figures 2.3 and 2.4 (on page 26). Both satisfy the entity-definition and instance-level
guidelines.

Figure 3.7 shows examples of diagrams that violate some entity-definition and instance-
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Figure 3.7: Violation of guidelines of usage.

(a) Example of BDD that violates the guidelines. (b) Example of IBD that violates the guidelines.

Source: Author’s ownership.

level guidelines. The block SoS in Figure 3.8a is the root block of a composition relation,
therefore, it cannot have any operations and attributes (entity-definition guideline 4). In addition,
there is an aggregation relationship between blocks SoS and Bus. Associations must be used
instead of aggregations (entity-definition guideline 6). Figure 3.8b violates all instance-level
guidelines. The block Bus is not part of a composition relation, therefore, it should not appear in
the IBD of block SoS. The multiplicities are not compatible with the BDD, the cardinalities are
not constants, they are described using *, and a port is connected to a block while it should be
connected only to other ports.

Figure 2.5 (on page 27) depicts the state machine for a Device. It shows how a device
decides if it is a leader. Each device has a variable (currentState) to define if it must broadcast
data or receive a package from a specific device. For instance, if the variable currentState

of device 2 has value 1, this device waits for data from the Bus regarding the device 1 or
for a timeout, advances currentState to 2, and broadcasts its own data. When currentState is
3, it waits for a package from device 3, and repeats the whole process. At the end of each
cycle (characterised by currentState == id), each device knows if it should be a leader. The
undecided state is used when a device enters the network or when an election must happen, that
is, there is no leader (for example, when the previous leader is turned off) or there are more than
one leader (for example, when a follower loses communication with other devices and defines
itself as a leader). The entry actions of the blocks Undefined, Leader and Follower are specified
as CML assignments.

Transitions can fire activities. For example, both transitions from Undefined, to Follower

and to Leader, fire the ActBroadcast activity. Figure 3.9 shows the diagram for this activity. It
defines a loop that transmits data for each of the devices. The actions broadcastInitialisation and
broadcastIncrem are opaque: their behaviour is not defined using diagrams. Instead, we use the
CML-based data language following our guidelines.

Finally, we have sequence diagrams that specify scenarios. Figure 2.8 (on page 31)
shows a possible initialisation of the system where three devices are turned on and they send
their data in parallel to the network.
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Figure 3.9: Example of an activity diagram.

Source: Author’s ownership.

For didactic reasons, most of the diagrams presented here are simplified. The complete
model is available in (LIMA, 2014).

3.3 Semantic rules metalanguage

In this section, we outline the metalanguage used in the presentation of the translation
rules from SysML to CML. We decided to define this metalanguage instead of using one existent
transformation language to avoid dependence with any implementation technology. Thus, our
rules could be understood and implemented by anyone interested. For instance, Rule 3.1 takes a
SysML type and outputs a CML type. The font differences emphasise the distinction between
CML and the metalanguage. For instance, the if-then-else statements are part of the metalanguage
and they do not appear in the generated CML models but the bold face nat between quotes
appears in the CML model as the translation of the SysML type Nat. SysML elements are
arguments of the translation functions, for instance, t is a SysML type.

Rule 3.1: t types

t_types(t: Type): CML Type =

if t = Nat then "nat"

elseif t = Nat1 then "nat1"

elseif t = Rat then "rat"

elseif t = Int then "int"

elseif t = Bool then "bool"

elseif t = Real then "real"

elseif t = Char then "char"



3.3. SEMANTIC RULES METALANGUAGE 53

elseif t = String then "seq of char"

elseif t is a block name then "ID"

elseif t = X[n] then "seq of " t_types(X)

elseif t = set of X then "set of " t_types(X)

elseif t is a datatype name then t

elseif t is a valuetype name then t

else "token"

end if

The definition of the translation rules adopts the following conventions:

� Terms of the CML syntax are presented in the CML style, with a blue teletype font,
bold face keywords and text between double quotes;

� The translation notation (metalanguage) is presented in black teletype font and the
keywords are boldfaced (e.g., if, then, for, begin, end);

� Each translation rule takes as arguments SysML constructs in a textual notation and
produces a CML construct;

� The type of SysML constructs (the domain of the semantic function) and the type
of the CML constructs generated by the rule (the image of the semantic function)
are specified in the function signature (e.g., t_types(t:Type): CML Type takes a
SysML type as parameter and defines a CML type);

� Components of SysML constructs are accessed using a “." (e.g., b.name refers to the
name of the SysML block denoted by b). Such components are defined in the SysML
abstract syntax;

� if-then-else and for statements are used with their usual meaning;

� The function name takes a SysML object (e.g., state, transition, etc) and produces
a unique name that identifies that object. When the uniqueness of a name is not
relevant we access the name of the object using the .name notation;

� The function id is defined by Rule 3.2: it produces a sequence containing a single
token composed by the unique name (as a string) of a SysML object. The unique
name is obtained through the application of the function name. The "mk_token" is a
constructor function of a CML token. The CML token type is similar to the string
type.

� We assume that each diagram constructor can be uniquely identified by the field
index, which is accessed using “." (e.g., transition.index for a transition in a
state machine). Such field is important to differentiate two elements inside the same
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diagram, because we may have the case where elements exist with same name or
signature. For the purpose of translations we assume that this field is a natural
number, however, implementers may decide to use any type that fits the requirement
to uniquely identify an element of the same diagram. In this latter case, it is important
to change the channel types where this field is used.

� The function set2seq(s) takes a set s and produces a sequence whose elements are
those of s, placed into the sequence in an arbitrary order;

� Lists whose separators are symbols of the CML syntax are defined by the list con-
structor sep followed by the separator identifier. This constructor can be used in for

commands where the generated elements at each iteration are intercalated with the
separator (see Rule 3.3). Also, this constructor can be used before set definitions
intercalating each element of the set. For example, sep "." {"1","2","3"} is the
list "1.2.3". The list built can be in any order as sets are not ordered.

Rule 3.2: id

id(x: Element): Identifier = "([mk_token(\""name(x)"\")])"

The formalisation of the list constructors is simple and omitted here. We further explain and
illustrate its use as needed. All these operators of the metalanguage are identified by boxed
symbols.

We call each of the equations that define our translation function a translation rule. This
reflects the fact that these definitions can be used as rewrite rules to generate CML models
(automatically).

3.4 Overview of the semantics of SysML models

We propose a denotational semantics for SysML: functions from the constructs of the
SysML metamodel to constructs of the CML abstract syntax. These functions are described
by translation rules that take well-defined elements of SysML and output well-formed CML
components. Table 3.1 lists the main semantic functions and the elements to which they apply.
Since a state machine or activity is defined in the context of a block, the semantic functions for
state machines and activities take a block as a second argument.

The domains of the translation functions are sets of SysML constructs and, as far as
possible, we have adhered to the metamodel of SysML presented in the standards for both UML
2.0 and SysML. We do not adhere to the metamodel in situations where the necessary component
is not directly available. For instance, we assume a block has a component stm which may
contain a reference to the state machine associated with the block.
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Table 3.1: Main semantic functions for SysML models.

Semantic function SysML element
t_model Model

t_simple_block Simple block

t_composite_block_process Composite block

t_port Port

t_type_operation Operation

t_type_signal Signal

t_statemachine State machine and Block

t_activity_diagrams Activity and Block

t_sequencediagram Sequence diagram
Source: Author’s ownership.

As explained in Section 3.1, we consider SysML models that contain a number of
connected blocks and associated behavioural diagrams defined in accordance with our guidelines
of usage. We also assume that the model has one root block. Under these assumptions, the
semantics of a model is defined by the semantics of the root block. The semantics of a model is
given by the t_model translation function in Rule 3.3. Next, we describe this rule and provide
an example to illustrate its application.

Rule 3.3: t model

t_model(m: SysML model): program =

"types

ID = seq of token

DL = bool | <defer>"

for each dt in m.AllDataTypes do

if dt is enumeration then

dt.name" = " for each a in dt.ownedLiteral sep "|" do

"<"a.name">" end for

else

dt.name" :: "

for each a in dt.Attributes do

a.name": "t_types(a.type)

end for

end if

end for

for each op in m.AllOperations do

t_type_operation(op)

end for
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for each s in m.AllSignals do

t_type_signal(s)

end for

if m.AllOperations.size() > 0 then

"OPS = " for each op in m.AllOperations sep "|" do

op.name"_I | "op.name"_O"

end for

else "OPS = compose NullOperation of $id: token end"

end if

if m.AllSignals.size() > 0 then

"S = " for each s in m.AllSignals sep "|" do

s.name

end for

else "S = compose NullSignal of $id: token end"

end if

"MSG = OPS | S"

"E = nat*ID*ID*MSG"

for each i in m.AllInterfaces do

t_interface_types(i)

end for

declare_bag()

declare_aux_functions()

define_stm_channels(m)

for each b in m.AllBlocks do

if b.isSimple

then t_simple_block(b)

else t_composite_block_process(b)

end if

end for

t_sequencediagram(m.AllInteractions)

Rule 3.3 first declares the types ID and DL as a sequence of elements of type token and a union
type composed by the set of booleans and the quote type <defer>. The type DL is necessary for
encoding a state machine, and is the same for all state machines and, therefore, is defined globally.
It encodes the possible outcomes of processing an event, which can be deemed consumed (true),
not consumed (false) or deferred (<defer>). The event is consumed if it can be treated by a
state machine or activity, when it cannot be treated at the point it is declared not consumed, and,
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sometimes, a state machine can defer events to be treated as soon as possible, which is the latter
case. This type and its associated function are used in Chapter 5.

Following these initial types, we declare any datatype defined in the model. In case it is
an enumeration, we simply declare the type with its possible values, otherwise, we declare the
datatype as record type with its attributes and respective types.

Next, for each operation in the model, it applies the rule t_type_operation, which
produces a record type declaration that encodes the operation. Similarly to operations, for each
signal in the model, a record type is defined by the application of a translation rule. Next all the
operation types are gathered in the union type OPS, all the signal types in the type S, and both
types are joined to form the type of all messages MSG.

For all interfaces defined in the model, values for each interface are generated by the rule
t_inteface_types where the operations and signals identifiers of each interface are defined in
sets (see Rule 4.3). Afterwards, function declare_bag (Rule A.1 on Appendix A) is invoked
to define the type bag, which is used for storing operation call requests of a block. Some
auxiliary CML functions like checking if a identifier is a prefix of another are defined in
declare_aux_functions() and channels used internally in the model are defined in function
define_stm_channels(). Both functions are described in Appendix A.

Finally, for each block and sequence diagram in the model, the process that defines them
is declared. The result of applying this rule to the concrete leadership election example discussed
in Section 3.2.2.2, whose diagrams are illustrated in Section 2.1, is shown below.

types

ID = seq of token

DL = bool | <defer>

Status = <Leader> | <Follower> | <Undecided>

public updateDeviceInfo_I ::

$id: token

idDevin: int

petitionIn: int

public updateDeviceInfo_O ::

$id: token

public turnOff ::

$id: token

id: int

public turnOn ::

$id: token

id: int

public tick ::

$id: token

...

OPS = updateDeviceInfo_I | updateDeviceInfo_O | turnOn_I | ...

S = compose NullSignal of $id: token end"

MSG = OPS | S
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...

functions

DL_or(a: DL, b: DL) c: DL

post (is_bool(a) and is_bool(b) => c = a or b)

and (not is_bool(a) or not is_bool(b) => (

((a = true) or (b = true) => (c = true))

and ((not (a = true) and not (b = true)) => c = <defer>)))

...

channels

Device_op: nat*ID*ID*OPS

Device_sig: nat*ID*ID*S

...

process Device = ...

...

process Bus = ...

...

process SoS = ...

...

process sd_LeadershipElection = ...

...

The semantics of the whole model is given by the process SoS, which corresponds to the root
block SoS. Larger definitions and auxiliary declarations covered in the following chapters are
omitted.

The rule t_types shown in the previous section takes simple SysML types (e.g., Int)
and outputs equivalent CML types. A block name used as a type corresponds to the set of
instances of that block; it is translated to the type ID, which identifies instances of blocks. A
type with multiplicity (i.e., X[n]) is translated into a sequence of the CML types associated
with the component type (i.e., X). Finally, any other types are associated with the generic CML
type token, which supports only equality comparison. The remaining rules used in t_model are
defined and explained in the next chapter and in Appendix A.

Table 3.2 summarises the correspondence between elements of a SysML model and
elements of CML. A SysML element that exhibits some form of behaviour, namely, blocks,
ports, activities and state machines, are modelled by CML processes; sequence diagrams are also
represented by a CML process; connectors, which specify communication links, are modelled
by channels; static elements (that is, without intrinsic behaviour), namely operation and signal
signatures, are modelled by record types, and interfaces, which are collections of static elements,
are modelled by sets of tokens. Operation signatures are considered static because they specify
the message that is sent to blocks, not the behaviour of the operation itself, which is specified by
a state machine or activity diagram.
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Table 3.2: SysML-CML correspondence

SysML element CML element

Simple block Process
Composite block Process
Activity Process
State Machine Process
Sequence Diagram Process
Port Process
Connector Channel
Interface Set of tokens
Operation call Record Type
Signal Record Type
Event Communication

Source: Author’s ownership.

3.5 Final remarks

In this chapter, we have presented our SysML guidelines of usage that allow us to
formalise the semantics of SysML models, the conventions adopted in the presentation of the
translation rules, and the rule that is the root of our translation: t_model. Additionally, we have
presented the rule for the translation of types, which is used throughout the next chapters.

The semantics specified by these translation rules and the ones that follow provide a view
of the system where the number of instances of blocks as well as the communication structure is
fixed. In order to support dynamic creation and destruction of blocks, and reconfiguration of the
dynamic structure, we require SysML patterns that support the specification of these behaviours.
To the best of our knowledge, such patterns do not yet exist.

Although the guidelines may restrict the way of modelling systems, we believe they
provide enough mechanism to reduce the impact on expressiveness. In addition, other styles of
modelling can be adjusted to the requirements of our guidelines. The required effort will depend
on how different they are. Also, our guidelines can act as templates for novice designers that
are learning on how to model systems. Moreover, changes can be incorporated in the future
according to specific needs, however, such changes can have impact on the rules, which may be
updated accordingly. We plan to implement them in the future using a constraint language, like
OCL (WARMER; KLEPPE, 2003).
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4
Structural Diagrams

In this chapter, we present the semantics of blocks specified by means of block definition
diagrams and internal block diagrams. The work reported in this chapter was developed in
collaboration with Alvaro Miyazawa, as originally reported in (MIYAZAWA et al., 2013).
Our translation is based on the underlying SysML model as described by the meta-model of
SysML (OMG, 2012). In SysML the diagrams are seen as potentially disjoint views of a
cohesive model. For instance, the same block may appear in two different diagrams, showing
one operation in one diagram, and a different operation on another diagram. The diagrams are
two different views of the same block, each emphasising a different operation. The block in the
underlying model contains both operations.

One of the challenges is to provide a compositional semantic, such that the different
elements can be combined without any dependence on their definitions. To achieve that, we
partition the SysML concepts as much as possible in order to create a compositional way of
defining the model elements through the combination of their different parts. The main CML
constructors used to combine the different model elements are the parallelism operators. In this
strategy, SysML model elements are defined in terms of CML processes or CML actions that are
composed in parallel when needed to be assembled.

We exemplify our semantics for blocks through the example in Section 3.2. In particular,
in this chapter we use the diagrams shown in figures 2.3, 2.4 and 3.5. They clearly respect the
guidelines described in Section 3.1.

Section 4.1 presents an overview of the semantics of blocks, Sections 4.2 and 4.3 present
the translation rules for operations, signals and interfaces. Section 4.4 presents the rules that
define the semantics of ports. Finally, Sections 4.5 and 4.6 define the semantics of simple blocks
and composite blocks.

4.1 Overview

The translation of SysML blocks takes into account a number of other elements: attributes,
signals, operations, interfaces, ports, association, composition, connectors, parts, state machines
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and activities. The semantics of a block is defined in terms of the elements that form the block.
Figure 4.1 illustrates the possible paths of communication with a block. Operations and signals
can be requested, attributes can be read and updated, events related to operation and signals are
stored in the event pool and can be sent for treatment (by a state machine or activity, for instance)
and state machines can invoke activities in order to treat some of these events. A more detailed
version of this figure is explained in Chapter 7 to illustrate the interactions between different
diagrams.

Figure 4.1: Communication channels for blocks.

Source: Author’s ownership.

Simple blocks may contain attributes and operations as well as ports. A port may respect
a number of interfaces, which are provided or required by the block. An interface on the other
hand may contain a number of signals and operations. For example, Figure 2.4 on page 26 shows
the block Device that has a port pD that offers services described in the interface DeviceInterface

and requires other services described in the interface BusInterface. Finally, simple blocks
may have a state machine diagram and a number of activity diagrams, some of which may be
associated with operations.

The semantics of a simple block is given by a process that is constructed using the
processes that model its components. These are put together through parallel composition, and
the alphabets (channel sets) of the processes determine how they communicate. The translation
rule for a simple block declares all the necessary components: types, channels and processes.
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The translation of a simple block produces three processes. The first is a simple model
of the signature of the block (i.e., its operations and attributes) without taking into consideration
generalisation. The second is the so called bare model of the block that combines the encoding of
the signature of the process and the bare model of any parent block. Generalisation is modelled
by interleaving. The third process combines the bare model of the block with its ports and state
machines, if any exist.

Composite blocks may contain other blocks (by composition) and ports. As for simple
blocks, the ports may contain interfaces, which may have operations and signals. Additionally,
the different blocks that form the composite block may be linked by connectors directly or
through ports.

Similarly to the case of simple blocks, the semantics of a composite block is a process
that composes in parallel its constituent elements, that is, its parts and ports. The connectors are
modelled by channels (see Rule 3.3 on page 55), which are used to rename the channels of the
parts and link them. In this case, the translation rule also declares the necessary components
(i.e., types, channels and processes), except for the processes that model the parts, as these have
already been declared by the Rule 3.3.

The process that models the core of a block (its operations and signals) receives signals
and operation calls, and sends operation responses. Every time an operation call occurs, the
simple block process registers all the possible responses because it delegates the decision of which
is the appropriate response to its internal behaviour (or its parts) process, which synchronises
such a response with the simple block process restricting the one that will be made available
to the caller of the operation. The possible responses are recorded in a bag (i.e., a set with
repetition), whose type is declared for each block as a bag of the block operations.

Ports are modelled by processes similar to those that model simple blocks, but since
ports only define communications restricted by required and provided interfaces, they are not
composed of any other processes. Interfaces are simply a form of collecting operations and
signals, and, as such, are modelled as records defined as CML values that provide the appropriate
scope. As explained in Chapter 2, a CML value binds an expression to an identifier. A port
simply relays requests and responses to the appropriate element of the model (i.e, the block state
machine, a part of a composite block or another port). The nature of the interfaces (provided or
required) determine which communications can occur between the port, the block and its parts,
and the external environment.

Figure 4.2 shows the patterns of communication between the external and internal
environments through a port. The port has a provided interface containing the operation Op2 and
the signal S2, and a required interface containing the operation Op1 and the signal S1. The input
of Op2 can only go inwards, and the output can only go outwards. The input of Op1 can only go
outwards, and the output can only go inwards. The signals S1 and S2 can only go, respectively,
outwards and inwards.

Similarly, state machines (specified by state machine diagrams) and activities (specified
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Figure 4.2: Allowed communication patterns for a port.

Source: Author’s ownership.

by activity diagrams) yield processes and are the subject of sections 5.1 and 5.2 in Chapter 5.

4.2 Operations and signals

Each operation in the model produces two record types that encode the input and the
output values of the operation, and each signal produces a single record type. These types are
declared by the translation rules 4.1 and 4.2.

Rule 4.1: t type signal

t_type_signal(s: Signal): record type declaration =

"public "s.name" ::"

"$id: token"

for p: s.params do

p.name ": " t_types(p.types)

end for

The record type associated with a signal is named after the signal. Every signal and
operation record type has an implicit parameter $id of type token, whose value is the exact
name of the signal or the operation. This parameter is used to match the name of an operation or
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a signal of a block (see Rule 4.21). For each parameter of the signal, a record component of the
appropriate type is declared. The result of applying this rule to the abstract leadership election
example on Figure 3.5 (page 49) is as follows.

public tick ::

$id: token

Note that tick in Figure 3.5 has no parameters. Therefore the only parameter generated for this
record type is $id, which is produced by default for all signals.

Rule 4.2: t type operation

t_type_operation(op: Operation): seq of record type declaration =

"public "op.name"_I ::"

"$id: token"

for p: (op.input_params union op.input_output_params) do

p.name " : " t_types(p.type)

end for

"public "op.name"_O ::"

"$id: token"

for p: (op.output_params union op.input_output_params) do

p.name " : " t_types(p.type)

end for

if op.return != nil then

"$ret: " t_types(op.return.type)

end if

An operation in SysML can have three types of parameters: in, out and inout. The first
and second are the input and output parameters. The third are parameters that are used for input
and output. An operation yields two record types, both named after the operation (using name),
but the first suffixed by _I indicating that this type encodes the input parameters of the operation,
and the second suffixed by _O indicating that this type encodes the output parameters. The
definition of the records is similar to that of the records that encode signals, but in the first record
only the input parameters are generated; these include parameters classified as in and inout, that
is, input and input-output parameters. The second record includes all output parameters (those
classified as inout and out) as well as the return value, if the operation has one. The return
parameter is always named $ret. The result of applying this rule to the operation turnOn in the
model of Figure 3.5 is as follows.

public turnOn_I :: $id: token

id: int

public turnOn_O :: $id: token
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The operation turnOn does not have a return parameter. The parameter $id corresponds to the
internal parameter used by our semantics, while the parameter id is the only input parameter of
the operation.

4.3 Interfaces

An interface generates CML values, which can be used along the CML specification. In
rule 4.3, these values declare sets of tokens name(i)"_I", name(i)"_O", name(i)"_OPS" and
name(i)"_S" of all (input and output) operations and signals contained in the interface. The
translation rule for interfaces is shown below.

Rule 4.3: t interface types

t_interface_types(i: Interface): value declaration =

"values"

t_interface_signal_type(i)

t_interface_input_type(i)

t_interface_output_type(i)

name(i)"_OPS = "name(i)"_I union "name(i)"_O"

It declares CML values named after the interface (name(i)). There are four value
declarations: three for operations and one for signals. As operations are described by names
that represent their input values and their output values, similarly, the operations of the interface
are defined using two names, one for the operations input name(i)"_I", and another for the
operations output name(i)"_O". The signals are gathered in a value name(i)"_S". These values
contain only the names used by the operations (input and output) and signals declared in the
interface, just like a signature. These values are used by the processes of ports to restrict the
operations and signals that can be transmited through the ports. If there are no operations or
signals, the appropriate types (I and O, or S) are declared as empty types. Finally, the input and
output operation types are grouped in the name(i)"_OPS" type.

The input and output and the signal types are declared by Rules 4.4, 4.5 and 4.6. The
following rule defines the function that declares the type S of all the signals in the interface.

Rule 4.4: t interface signal type

t_interface_signal_type(i: Interface): seq of values paragraph =

name(i)"_S = {"

sep "," for each s: i.Signals do

"mk_token(\""s.name"\")"

end for

"}"
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The next rule declares the input type of all the operations in the interface.

Rule 4.5: t interface input type

t_interface_input_type(i: Interface): seq of values paragraph =

name(i)"_I = {"

sep "," for each op: i.Operations do

"mk_token(\""op.name"_I\")"

end for

"}"

The next rule similarly declares an output type for all the operations.

Rule 4.6: t interface output type

t_interface_output_type(i: Interface): seq of values paragraph =

name(i)"_O = {"

sep "," for each op: i.Operations do

"mk_token(\""op.name"_O\")"

end for

"}"

Despite not being present in Figure 2.4 on page 26, the interface BusInterface declares a
signal transmitPack. The value associated with it is shown below.

values

BusInterface_S = {mk_token("transmitPack")}

BusInterface_I = {}

BusInterface_O = {}

BusInterface_OPS = BusInterface_I union BusInterface_O

end

4.4 Standard ports

A standard port is a mechanism for communication between blocks without a specific
reference to a block instance. We model a standard port similarly to a simple block, except that
it does not treat the received request: it simply relays it to the appropriate block.

For the purpose of our semantics, we distinguish two sides of a port: the external and the
internal. If the port belongs to a simple block, then the internal side is connected implicitly to
the block itself. If the port belongs to a composite block, it must be explicitly connected to a port
of one of the parts of the block.

The set of provided and required interfaces connected to a port determine the possible
patterns of communication of a port. In the most general case, a port has a set of provided
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interfaces (PI) and a set of required interfaces (RI). For instance, for the port pD in Figure 2.4 on
page 26, we have the following sets:

RI = {BusInterface}

PI = {DeviceInterface}

These sets of interfaces are determined with respect to the external side of the port and are
implicitly mirrored on the internal side. A provided interface is mirrored in a required internal
interface on the same port, and a required interface is mirrored in a provided internal interface
on the same port.

In our CML model, a port gives rise to four channels of communication (two for op-
erations and two for signals) associated with its sides: internal and external. Signals are
asynchronous communications, whereas operations are considered synchronous in our seman-
tics. The patterns of communication on these channels depend on the nature of the requests.
Operations in a provided interface of a port can only be requested on the external operation
channel because the entity that requests is external to the block. On the other hand, operations in
a required interface can only be requested on the internal channel because the request comes
from inside the block.

The types associated with a port are those of its interfaces. They are grouped according
to the type of the interface (provided or required), and whether the type refers to a signal or an
operation. Rule 4.7 declares the CML values for types associated with a port and it is used in the
definition of a port.

Rule 4.7: t port types

t_port_types(p: Port): class declaration =

"values"

name(p)"_P_I = " if p.PI.size() > 0 then sep "union"{name(i)"_I" |

i in set p.PI} else "{}" end if

name(p)"_P_O = " if p.PI.size() > 0 then sep "union"{name(i)"_O" |

i in set p.PI} else "{}" end if

name(p)"_P_S = " if p.PI.size() > 0 then sep "union"{name(i)"_S" |

i in set p.PI} else "{}" end if

name(p)"_R_I = " if p.RI.size() > 0 then sep "union"{name(i)"_I" |

i in set p.RI} else "{}" end if

name(p)"_R_O = " if p.RI.size() > 0 then sep "union"{name(i)"_O" |

i in set p.RI} else "{}" end if

name(p)"_R_S = " if p.RI.size() > 0 then sep "union"{name(i)"_S" |

i in set p.RI} else "{}" end if

The provided operations types (name(p)"_P_I" and name(p)"_P_O") and the provided signals
type (name(p)"_P_S") are built from the operations and the signals of the provided interface
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(e.g, BusInterface_I or BusInterface_O). Similarly, the required operation and signal types
(name(p)"_R_I", name(p)"_R_O" and name(p)"_R_S") are built from the required interfaces.
The set of all operations (both provided and required) is named OPS and the set of all signals is
named S.

The application of t_port_types to port pB is as follows (Figure 2.4 on page 26).

values

pB_P_I = BusInterface_I

pB_P_O = BusInterface_O

pB_P_S = BusInterface_S

pB_R_I = DeviceInterface_I

pB_R_O = DeviceInterface_O

pB_R_S = DeviceInterface_S

The four channels used by a port are declared by the following rule.

Rule 4.8: t port channels

t_port_channels(p: Port): channel declaration =

"channels"

name(p)"_int_sig: nat*ID*ID*S"

name(p)"_ext_sig: nat*ID*ID*S"

name(p)"_int_op: nat*ID*ID*OPS"

name(p)"_ext_op: nat*ID*ID*OPS"

The first two channels, name(p)"_int_sig" and name(p)"_ext_sig", communicate
signals in and out of the port; they communicate a natural number identifying a particular request
(necessary to distinguish requests made by the same block), the identifiers of the source and the
target of the send signal action, and the encoding of the signal as an instance of the appropriate
record type. Similarly for operations, the channels name(p)"_int_op" and name(p)"_ext_op"

communicate a natural number identifying the instance of the operation call, the identifiers of
the source and the target of the call, and the operation call itself, in the form of an input or output
type. Each operation call involves two communications on the channel, the first with an input
value and the second with the output value.

Using as example the same port pB (Figure 2.4 on page 26) the resulting translation of
the application of Rule 4.8 is as follows.

channels

pB_int_sig: nat*ID*ID*S

pB_ext_sig: nat*ID*ID*S

pB_int_op: nat*ID*ID*OPS

pB_ext_op: nat*ID*ID*OPS

The process that models a particular port is declared by the Rule 4.9; it is used in the
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definition of both simple and composite blocks.

Rule 4.9: t port

t_port(p: Port): seq of paragraph=

t_port_types(p)

t_port_channels(p)

"process port_"name(p)

" = $id: ID @ begin"

"@ mu X @ (("

name(p)"_ext_sig?i?o!$id?x:(x.$id in set "name(p)"_P_S) ->"

name(p)"_int_sig.i.$id?y.x -> Skip"

"[]"

name(p)"_int_sig?i?o!$id?x:(x.$id in set "name(p)"_R_S) ->"

name(p)"_ext_sig.i.$id?y.x -> Skip"

"[]"

name(p)"_ext_op?i?o!$id?x:(x.$id in set "name(p)"_P_I) ->"

name(p)"_int_op.i.$id?y.x -> Skip"

"[]"

name(p)"_int_op?i?o!$id?x:(x.$id in set "name(p)"_P_O) ->"

name(p)"_ext_op.i.$id?y.x -> Skip"

"[]"

name(p)"_int_op?i?o!$id?x:(x.$id in set "name(p)"_R_I) ->"

name(p)"_ext_op.i.$id?y.x -> Skip"

"[]"

name(p)"_ext_op?i?o!$id?x:(x.$id in set "name(p)"_R_O) ->"

name(p)"_int_op.i.$id?y.x -> Skip"

"); X)"

"end"

The main action of the process, which is named after the port, defines that it receives
signal events of the provided interfaces on the external channel, and forwards them through the
internal channel. Conversely, signal events of the required interfaces are received only on the
internal channel and forwarded on the external channel.

The relaying of an operation call is slightly more complicated because the relaying of
inputs and outputs is carried out separately. Input records of operation calls of the provided
interface are only received through the external channel and relayed through the internal channel.
Output records of operation calls of the provided interface are received through the internal
channel and forwarded through the external channel. Input and output records of operation calls
of the required interface are received and sent in a complementary way. Inputs are received in
the internal channel (and forwarded on the external channel), and outputs are received in the
external channel (and forwarded on the internal channel).

The application of t_port to port pB is as follows (Figure 2.4 on page 26). We use
ellipsis in the begining to hide the content already displayed in the previous two translation
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function examples.

...

process port_pB = $id: ID @ begin

@ mu X @ ((

pB_ext_sig?i?o!$id?x:(x.$id in set pB_P_S) ->

pB_int_sig.i.$id?y.x -> Skip

[]

pB_int_sig?i?o!$id?x:(x.$id in set pB_R_S) ->

pB_ext_sig.i.$id?y.x -> Skip

[]

pB_ext_op?i?o!$id?x:(x.$id in set pB_P_I) ->

pB_int_op.i.$id?y.x -> Skip

[]

pB_int_op?i?o!$id?x:(x.$id in set pB_P_O) ->

pB_ext_op.i.$id?y.x -> Skip

[]

pB_int_op?i?o!$id?x:(x.$id in set pB_R_I) ->

pB_ext_op.i.$id?y.x -> Skip

[]

pB_ext_op?i?o!$id?x:(x.$id in set pB_R_O) ->

pB_int_op.i.$id?y.x -> Skip

); X)

end

4.5 Simple blocks

The next set of rules applies to simple blocks, that is, blocks that are not composed of
other blocks. Whilst simple blocks cannot be the source of a composition relation, they can be
part of another block (target of a composition relation) and can be associated with other blocks
through generalisation and association. These aspects are dealt with by the translation rule for
composite blocks.

The root translation rule is t_simple_block. It takes a simple SysML block and pro-
duces a number of definitions: types, channels and processes. It produces these definitions
by calling other translation rules, namely, t_block_types, t_block_channels, t_port and
t_port_process.
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Rule 4.10: t simple block

t_simple_block(b: Block): seq of program paragraph =

t_block_types(b)

t_block_channels(b)

for each p in set b.Ports do

t_port(p)

end for

t_block_process(b)

Rule 4.10 simply invokes rule t_block_types to define the types needed for manipulat-
ing the block operation and signals, then it calls rule t_block_channels to define the channels
of the block. Next, for each port of the block, rule t_port is called to define the process of the
port and, finally, rule t_block_process defines the CML process of the block.

In the following subsections, we use blocks Device of Figure 2.3 on page 26 and block
LE SoS of Figure 3.5 on page 49 to present the application of the rules t_block_* of Rule 4.10.

4.5.1 Simple blocks: types

Similarly to the rule for interface, t_block_types declares values for the block’s signals
and operations. The value name(b)"_I" is the union type of the input values of the operations
in the block, the type name(b)"_O" is the union of the output values of the operations in the
block and the type name(b)"_S" is the union of the types associated with the signals in the block.
Finally, Rule 4.11 declares a value name(b)"_OPS" as the union of all the values associated with
the operations in the block, and specifies a bag type and its operation types.

Rule 4.11: t block types

t_block_types(b:Block): value declaration =

"values"

t_block_values(b)

t_block_signal_type(b)

t_block_input_type(b)

t_block_output_type(b)

name(b)"_OPS = "name(b)"_I union "name(b)"_O"

The rule t_block_values declares constant values defined by the block. The next rules
t_block_signal_type, t_block_input_type and t_block_output_type are similar to the
rules for interfaces, except that they take into account the generalisation relation. The full
specification of these rules can be found in Appendix A.

In case the block does not contain operations, the types _I and _O are declared as empty
sets. This assures that it is always possible to recover the values _S, _I and _O from a parent,
even when they are empty at the children.
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The application of t_block_types to the block LE SoS (Figure 3.5 on page 49) is as
follows.

...

values

LE_SoS_S = {mk_token("tick")}

LE_SoS_I = {mk_token("turnOn_I") , mk_token("turnOff_I")}

LE_SoS_O = {mk_token("turnOn_O") , mk_token("turnOff_O")}

LE_SoS_OPS = LE_SoS_I union LE_SoS_O

This translation shows the definitions of the block types of block LE SoS regarding its
operations and signals. These values are sets of tokens that identify the signal records and the
operation records of the block.

4.5.2 Simple blocks: channels

All channels are prefixed with the name of the block followed by the underscore character,
for instance, Device_op and Device_sig, for the block Device. However, for simplification,
when we refer to these channels in a general manner we omit this prefix, therefore, instead of
Device_op we say op. The channels associated with a block are the op channel, the sig channel,
the addevent channel, and getter and setter channels for each attribute of the block. The op and
sig channels are used for communication between the environment and the block (passing the
identifier of the particular request, the source and target of the request as well as operation or
signal requests), while the addevent channel is used to communicate received requests to the
event pool of the block. The names of the getter and the setter channels reflect the names of the
block and its attribute and are used to provide concurrent access to the attributes by the processes
that model the block.

Rule 4.12: t block channels

t_block_channels(b: Block): channel declaration =

"channels"

name(b)"_op: nat*ID*ID*OPS"

name(b)"_sig: nat*ID*ID*S"

name(b)"_addevent: nat*ID*ID*MSG"

for a: b.Attributes do

name(b)"_get_"a.name":ID*ID*"t_types(a.type)

name(b)"_set_"a.name":ID*ID*"t_types(a.type)

end for

The application of t_block_channels to the block Device gives the following declara-
tion.
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Figure 4.3: Processes of a simple block.

Source: Author’s ownership.

channels

Device_op: nat*ID*ID*OPS

Device_sig: nat*ID*ID*S

Device_addevent: nat*ID*ID*MSG

Device_get_id: ID*ID*int

Device_set_id: ID*ID*int

...

4.5.3 Simple blocks: processes

Figure 4.3 shows the processes involved in the definition of a simple block. The bareBlock

process composes in parallel the simpleBlock and the Controller processes. The former describes
the access to attributes and the reception and replies of operation calls and signals, while the
latter stores the events of operation calls and signals to be treated. The bareBlock process is then
composed in parallel with the StateMachine process, which defines the behaviour of the state
machine of the block, the Activities process, which composes in parallel all the activities of the
block, and, finally, the Ports process, which provides the events related to all ports of the block.

Rule 4.13 for blocks uses five other translation rules: t_block_simple_process to
produce the simple model of the block, t_block_bare_process to produce the bare model
of the block, t_activity_diagrams and t_activities_chanset to generate the model of
activity diagrams and the set of external events associated with the block’s activities, and
t_statemachine to generate the model of a state machine.

If a state machine is present, its process ("stm_"name(b.stm)) is combined in parallel
with the bare model of the block ("bare_"name(b)) to form the process named after the block.
If there are any activity diagrams, the process that models them (name(b)"_ads") is composed
in parallel with the block (and the state machine) model. The synchronisation set is determined
by the allowed external communications of the block’s activities. If there are any ports in the
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block, then they are composed in interleaving (processes "port_"name(p) ), which are, in turn,
composed in parallel with the block (as well as activities and state machine). The interaction
patterns between the different processes are determined by the synchronisation sets of their
parallel compositions.

The parallelism between a bare model and the model of a state machine involves the
channels inevent and consumed, the events associated with the channel op where the second
parameter is the identifier of the block, and the fourth parameter is a value of an output operation
type, and the channels for manipulating attributes of the block. The inevent and consumed

channels are used to treat an event in the state machine and communicate that it has been
consumed, respectively. The output op channel is used to allow the state machine to respond
to an operation call. When the request for an operation arrives at the block through an input
operation type, the reply to that operation is given through an output operation type, which in
this case is given by the state machine that is treating the event. The remaining channels of this
alphabet of synchronisation are used by the state machine for accessing any attributes of the
block when needed.

The parallel composition of block and state machine is then composed in parallel with the
processes of activities of the block in function t_block_activity_parallelism (Rule 4.14).
This resultant process is again composed in parallel with the processes related to the ports of
the block by function t_block_ports_parallelism (Rule 4.15). Finally, we hide the access to
attributes and internal calls according to function t_block_hiding_access (Rule 4.16).

Rule 4.13: t block process

t_block_process(b: Block): seq of process declaration =

t_block_simple_process(b)

t_block_bare_process(b)

if b.activities.size() > 0

then t_activity_diagrams(set2seq(b.activities),b)

end if

if b.stm <> NULL then t_statemachine(b.stm) end if

"process "name(b)" = $id: ID @ (

("

if b.activities.size() > 0 then

"(("

else

"("

end if

if b.stm == NULL then

"("

"bare_"name(b)"($id)"

else

"(("
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"bare_"name(b)"($id)"

"[|{|"name(b)"_inevent, "name(b)"_consumed|}"

"union {|"name(b)"_op.n.x.$id.y | n: nat, x: ID,

y: OPS @ y.$id in set "name(b)"_O |}"

for a in set b.AllAttributes do

"union {|"name(b)"_get_"a.name".x.$id |

x: ID @ prefix($id^[mk_token(\"stms\"),

mk_token(\"stm\")],x)|}"

"union {|"name(b)"_set_"a.name".x.$id |

x: ID @ prefix($id^[mk_token(\"stms\"),

mk_token(\"stm\")],x)|}"

end for

"|]"

"stm_"name(b.stm)"($id^[mk_token(\"stms\"),

mk_token(\"stm\")])"

")\\({|"name(b)"_inevent, "name(b)"_consumed|}"

for a in set b.AllAttributes do

"union {|"name(b)"_get_"a.name".x.$id |

x: ID @ prefix($id^[mk_token(\"stms\"),

mk_token(\"stm\")],x)|}"

"union {|"name(b)"_set_"a.name".x.$id |

x: ID @ prefix($id^[mk_token(\"stms\"),

mk_token(\"stm\")],x)|}"

end for

")"

end if

")"

t_block_activity_parallelism(b)

t_block_ports_parallelism(b)

")" t_block_hiding_access(b)

Rule 4.14 defines the parallelism between the block and state machine process with the activity
process of the block. The alphabet of synchronisation of the parallelism between the bare model
plus state machine and the activities process is defined by the function t_activities_chanset,
which is shown in Rule A.4 of Appendix A. It has the channels hasevent and getevent, which
checks if an event is available in the block’s event pool and removes such an event from the
pool, respectively. The channels startActivity_, endActivity_ and interruptActivity_,
which are used for firing a certain activity, communicating its termination and interrupting
it, respectively, are also part of the synchronisation alphabet added by channels that invoke
operations and signals of blocks, and, finally, channels to manipulate block attributes.
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Rule 4.14: t block activity parallelism

t_block_activity_parallelism(b: Block): seq of process declaration =

if b.activities.size() > 0 then

"[|"t_activities_chanset(b.activities,b)"|]"

"("name(b)"_ads($id^[mk_token(\"acts\")]))"

")\\({|"name(b)"_hasevent,"name(b)"_getevent|})"

end if

")"

Rule 4.15 defines the parallelism between the block model (bare model, state machine and
activities) and the ports. The synchronisation set of this parallelism contains all the events
associated with the channel op where the second and third parameters are the identifier of the
block and the identifier of one of the ports (in any order). Since the model of a port does not use
the same channel op as the block, its internal channel int_op is renamed to match the blocks op
channel. As the communications between the block and the process are internal, we hide the
events on the op and sig channels between the block and the ports from the external environment
of the block.

Rule 4.15: t block ports parallelism

t_block_ports_parallelism(b: Block): seq of process declaration =

if b.Ports.size() > 0 and (

exists p in set b.Ports @

p.allProvidedAndRequiredOperations().size() > 0

or p.allProvidedAndRequiredSignals().size() > 0)

then

"[|"

if b.allProvidedAndRequiredOperations().size() > 0

then "{|" name(b)"_op.n.$id.p |"

"n: nat, p in set {"sep ","{"$id^"id(x) | x in set

b.Ports}"}|}"

"union"

"{|"name(b)"_op.n.p.$id |"

"n: nat, p in set {"sep ","{"$id^"id(x) | x in set

b.Ports}"}|}"

end if

if b.allProvidedAndRequiredOperations().size() > 0 and

b.allProvidedAndRequiredSignals().size() > 0

then "union"

end if

if b.allProvidedAndRequiredSignals().size() > 0

then "{|" name(b)"_sig.n.$id.p |"

"n: nat, p in set {"sep ","{"$id^"id(x) | x in set

b.Ports}"}|}"

"union"
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"{|"name(b)"_sig.n.p.$id |"

"n: nat, p in set {"sep ","{"$id^"id(x) | x in set

b.Ports}"}|}"

end if

"|]"

"(" sep "|||" {

"(port_"name(p)"($id^"id(p)"))[["name(p)"_int_op <-

"name(b)"_op]]"

| p in set b.Ports}

")"

")"

if b.allOperations.size() > 0 or b.allSignals.size() > 0 then

"\\ ("

if b.allOperations.size() > 0

then "{|" name(b)"_op.n.$id.p |"

"n: nat, p in set {" sep "," {"$id^"id(x) | x in set

b.Ports}"}|}"

"union"

"{|" name(b)"_op.n.p.$id |"

"n: nat, p in set {" sep "," {"$id^"id(x) | x in set

b.Ports}"}|}"

end if

if b.allOperations.size() > 0 and b.allSignals.size() > 0

then "union"

end if

if b.allSignals.size() > 0

then "{|" name(b)"_sig.n.$id.p | "

"n: nat, p in set {" sep "," {"$id^"id(x) | x in set

b.Ports}"}|}"

"union"

"{|" name(b)"_sig.n.p.$id | "

"n: nat, p in set {" sep "," {"$id^"id(x) | x in set

b.Ports}"}|}"

end if

")"

end if

else ")"

end if

Finally, Rule 4.16 hides the access to attributes, operations and signals hiding the _get_, _set_,
_op and _sig channels, respectively. If the attribute, operation or signal has public visibility
(visibility = #public), then we only hide internal access to the related events, for example,
a state machine updating the value of one attribute. The function prefix($id,x) verifies if
the block identifier ($id) is a prefix of the id x, which means that x is internal to the block (we
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recall that the type ID represents a sequence of tokens that stores the identification of an element
considering its hierarchy). Otherwise, when the attribute is private we hide all events of the
attribute channels.

Rule 4.16: t block hiding access

t_block_hiding_access(b: Block): seq of process declaration =

" \\ ("

for a in set b.AllAttributes sep "union" do

if a.visibility = #public then

"{|"name(b)"_get_"a.name".x.y | x: ID, y: ID @ prefix($id,x)

and prefix($id,y)|}"

"union {|"name(b)"_set_"a.name".x.y | x: ID, y: ID @

prefix($id,x) and prefix($id,y)|}"

else

"{|"name(b)"_get_"a.name"|}"

"union {|"name(b)"_set_"a.name"|}"

end if

end for

for op in set b.operations sep "union" do

if a.visibility = #public then

"{|"name(b)"_op.x.y.z | x: ID, y: ID, z in set "b.name"_I @ "

"prefix($id,x) and prefix($id,y) and z.$id = "op.name"|}"

"union {|"name(b)"_op.x.y.z | x: ID, y: ID, z in set

"b.name"_O @ "

"(prefix($id,x) or prefix($id,y)) and z.$id = "op.name"|}"

else

"{|"name(b)"_op.n.x.y.z | n: nat, x: ID, y: ID, z in set

"b.name"_I @ z.$id = "op.name"|}"

"union {|"name(b)"_op.n.x.y.z | n: nat, x: ID, y: ID, z in

set "b.name"_O @ z.$id = "op.name"|}"

end if

end for

for sig in set b.signals sep "union" do

if a.visibility = #public then

"{|"name(b)"_sig.n.x.y.z | n: nat, x: ID, y: ID, z in set

"b.name"_S @ "

"(prefix($id,x) or prefix($id,y)) and z.$id = "sig.name"|}"

else

"{|"name(b)"_sig.n.x.y.z | n: nat, x: ID, y: ID, z in set

"b.name"_S @ z.$id = "sig.name"|}"

end if

end for

")"

The application of t_block_process to the block Device results in the following speci-
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fication.

process simple_Device = ...

process bare_Device = ...

...

process Device = $id: ID @ (

(((

bare_Device($id)

[|{|Device_inevent, Device_consumed|} union

{|Device_op.n.x.$id.y | n: nat, x: ID,

y: OPS @ y.$id in set Device_O|} union

{|Device_get_id.x.$id | x: ID @

prefix($id^[mk_token("stms"), mk_token("stm")],x|} union

{|Device_set_id.x.$id | x: ID @ prefix($id^[mk_token("stms"),

mk_token("stm")],x|}

|]

stm_Device(id^[mk_token("stms"),mk_token("stm")]))

)\\ ({|Device_inevent, Device_consumed|} ...)

)[|...|] (Device_ads($id^[mk_token("acts")]))

\\ ({|Device_hasevent, Device_getevent|})

) [|...|] (port_pD($id^[mk_token("pD")])

[[pD_int_op <- Device_op]]))

\\ ({|Device_op.n.$id.p | n: nat, p in set

{$id^[mk_token("pD")]} |} union

{|Device_op.n.p.$id | n: nat, p in set

{$id^[mk_token("pD")]} |})...

)))

\\ ({|Device_get_id|} union {|Device_set_id|})

)

Rule 4.17 for simple processes uses three other translation rules: t_block_state pro-
duces the state of the simple process, t_block_state_action produces the action that accesses
the state variables, and t_block_requests_action produces the action that receives requests
to the operations and signals of the block.

Rule 4.17: t block simple process

t_block_simple_process(b: Block): process declaration =

"process simple_"name(b) " = $id: ID @ begin"

t_block_state(b)

"actions"

t_block_state_action(b)

t_block_requests_action(b)

"@"

name(b)"_state"

"[||{"sep ","{a.name| a in set

b.Attributes}"}|{"name(b)"_enabled}||]"
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name(b)"_requests"

"end"

The state access and the operation control actions are combined in interleaving with a
partition of the state that gives control of the components associated with the block’s attributes
to the access action, and the component enabled to the requests action. An example of the
application of Rule 4.17 to block Device is shown as follows.

process simple_Device = $id: ID @ begin

...

actions

...

@ Device_state [{id,pD}||{enabled}] Device_requests

end

Rule 4.18 for bare processes checks whether the block has a parent or not, and, if it does,
composes it in interleaving with the bare process of its parent. The process of the bare block is
the parallel composition of its simple process with the controller process, which corresponds to
the event pool manager of the block. Every request for operation or signal reception is stored
in the controller process to be treated. The simple block communicates events to the controller
through the channel addevent. Details on the controller process are provided in Section 4.5.4.

Rule 4.18: t block bare process

t_block_bare_process(b: Block): process declaration =

t_controller(b)

if b.parent == NULL

then "process bare_"name(b)" = $id: ID @

(simple_"name(b)"($id)[|{|"name(b)"_addevent|}|]

controller_"name(b)"($id))\\{|"name(b)"_addevent|}"

else

"process bare_"name(b)" = $id: ID @"

"((simple_"name(b)"($id)[|{|"name(b)"_addevent|}|]

controller_"name(b)"($id))\\{|"name(b)"_addevent|})"

"|||"

"(bare_"name(b.parent)"($id))"

"[["name(b.parent)"_inevent <- "name(b)"_inevent ,"

name(b.parent)"_hasevent <- "name(b)"_hasevent ,"

name(b.parent)"_getevent <- "name(b)"_getevent ,"

name(b.parent)"_op <- "name(b)"_op ,"

name(b.parent)"_sig <- "name(b)"_sig"

for a in set b.parent.attributes do

","name(b.parent)"_get_"a.name" <- "name(b)"_get_"a.name","

name(b.parent)"_set_"a.name" <- "name(b)"_set_"a.name

end for
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"]]"

end if

If the block does not have a parent, its bare process is solely the simple process composed
in parallel with the controller process, which is the case for the block Device as can be seen in
the application of Rule 4.18 in the following specification.

process bare_Device = $id: ID @ (simple_Device($id)

[|{|Device_addevent|}|] controller_Device($id))

\\{|Device_addevent|}

The state of the simple process is declared by the rule t_block_state. For each attribute
of the block, a state component is declared with the appropriate name and type. Furthermore,
a bag of output types (associated with the operations of the block) is declared to record which
outputs are enabled. This component is initialised with the empty bag. We use a bag in this
context because we need to store more than one occurrence of an event, but we do not need
them to be stored in any particular order because the choice on the event to be treated is non-
deterministic; this is why we use a bag instead of a sequence or set. The proviso in this rule
assures that the default value of an attribute is defined in terms of a CML expression, otherwise
we would generate an error in the specification because the expression could not be evaluated.

Rule 4.19: t block state

t_block_state(b: Block): state declaration =

"state"

for a: b.Attributes do

a.name": "t_types(a.type) if a.default.size() > 0 then " :=

"a.default.get(0) end if

end for

name(b)"_enabled: Bag := empty_bag"

provided

1. if a.default.get(0) exists, it is a CML expression
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This rule is applied to the block Device to declare the state components of the process
simple_Device as follows.

process simple_Device = $id: ID @ begin

state

id: int;

... // other variables

Device_enabled: Bag := empty_bag;

actions

...

@ Device_state [{id,...}||{Device_enabled}] Device_requests

end

The rule t_block_state_action declares a recursive (mu X) action that offers to read
and write the block attributes using the channels get_ and set_. If the visibility of the attribute
is private, then the identifier of the source must be a prefix of the identifier of the block, that is,
only the internal elements of the block can access the attributes.

Rule 4.20: t block state action

t_block_state_action(b: Block) =

name(b)"_state = mu X @ ("

sep "[]" for a: b.Attributes do

if a.visibility = #public then

name(b)"_get_"a.name"?o!$id!"a.name" -> X"

"[]"

name(b)"_set_"a.name"?o!$id?x -> "a.name" := x; X"

else

name(b)"_get_"a.name"?o:(prefix($id,o))!$id!"a.name" -> X"

"[]"

name(b)"_set_"a.name"?o:(prefix($id,o))!$id?x -> "a.name" := x;

X"

end if

end for

")"

This rule contributes to the definitions of the actions of the process simple_Device.

process simple_Device = $id: ID @ begin

state

id: int;

... // other attributes

Device_enabled: Bag := empty_bag;

actions
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Device_state = mu X @ (

Device_get_id?o!$id!id -> X

[]

Device_set_id?o!$id?x -> id := x; X

...

)

...

@ Device_state [{id,...}||{Device_enabled}] Device_requests

end

The values ?o!$id!id in the channel Device_get_id refers to an identifier of the source that is
requesting access to the id attribute (?o), the target identifier that is the block identifier itself (the
parameter !$id of the process) and the communication of the state attribute id (!id), respectively.
The channel Device_set_id works in a similar way. It only differs the last data, which is an
input (?x) for the new value of the attribute id.

Similarly to Rule 4.20, t_block_requests_action declares a recursive action that
waits for a request to start and end an operation on the op channel. If it receives a request to start
an operation, it forwards the request through the addevent channel, adds the returned token id
to the bag enabled and recurses. If the request is to end an operation that is in the bag enabled,
it will remove the item that was added to the bag when the operation was first requested. Finally,
if the request is for a signal, it simply sends the request through the addevent channel.

Rule 4.21: t block requests action

t_block_requests_action(b: Block) =

name(b)"_requests = mu X @ ("

name(b)"_op?n?o!$id?x:(x.$id in set "name(b)"_I) -> ("

if b.Operations.size() > 0 then

sep "[]" for op: b.Operations do

"[x.$id = mk_token(\""op.name"_I\")] & "

name(b)"_addevent!n!o!$id!x -> Skip;"

name(b)"_enabled := bunion("name(b)"_enabled,"

"{mk_token(\""op.name"_O\")\|\->1}); X"

end for

else "Stop"

end if

")"

"[]"

name(b)"_op?n?o!$id?x:(in_bag(x.$id,"name(b)"_enabled)) -> ("

if b.Operations.size() > 0 then

sep "[]" for op: b.Operations do

"[x.$id = mk_token(\""op.name"_O\")]&"

name(b)"_enabled :=
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bdiff("name(b)"_enabled,{x.$id\|\->1}); X"

end for

else "Stop"

end if

")"

"[]"

name(b)"_sig?n?o!$id?x:(x.$id in set "name(b)"_S) -> "

name(b)"_addevent!n!o!$id!x -> X"

")"

In our example, the only process that communicates on the channel addevent is the controller,
which is described in Section 4.5.4. The result of applying this rule to our Device example
completes the definition of the process simple_Device as follows.

process simple_Device = $id: ID @ begin

state

id: int;

... // other attributes

Device_enabled: Bag := empty_bag;

actions

Device_state = mu X @ (

Device_get_id?o!$id!id -> X

[]

Device_set_id?o!$id?x -> id := x; X

...

)

Device_requests = mu X @ (

Device_op?n?o!$id?x:(x.$id in set Device_I) -> (

[x.$id = mk_token("turnOn_I")] &

Device_addevent!n!o!$id!x -> Skip;

Device_enabled := bunion(Device_enabled,{mk_token("turnOn_O")

|->1}); X

[]

[x.$id = mk_token("turnOff_I")] &

Device_addevent!n!o!$id!x -> Skip;

Device_enabled := bunion(Device_enabled,{mk_token("turnOff_O")

|->1}); X

)

[]

Device_op?n?o!$id?x:(in_bag(x,Device_enabled)) -> (

[x.$id = mk_token("turnOn_O")] &

Device_enabled := bdiff(Device_enabled,{x.$id|->1}); X

[]
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[x.$id = mk_token("turnOff_O")] &

Device_enabled := bdiff(Device_enabled,{x.$id|->1}); X

)

[]

Device_sig?n?o!$id?x:(x.$id in set Device_S) ->

Device_addevent!n!o!$id!x -> X

)

@ Device_state [{id,...}||{Device_enabled}] Device_requests

end

This process declares a state formed of the attribute id of the block Device (other at-
tributes are omitted for simplification) and the set of enabled output Device_enabled. The main
action of the process is the interleaving of two actions: Device_state and Device_requests.
The former controls the state and allows communications that read and write to the state variables
(e.g.,id), and the latter controls the receipt of operation and signal requests. In the interleaving,
the state is partitioned between the two actions: the component corresponding to the block’s
attribute is assigned to the first action, and the component Device_enabled to the second action.

The action that controls the operation and signal requests, receives a value of an operation
input type through the channel Device_op or a value of a signal type through the channel
Device_sig. In the first case, it identifies which operation has been called, sends the call through
the channel Device_addevent, and adds the answer to the bag Device_enabled, and recurses.
In the case of a signal value, the action sends the signal through the channel Device_addevent,
and recurses.

4.5.4 Simple blocks: controller process

As previously mentioned, the controller is responsible for managing the event pool and
the queue of deferred events. The controller is modelled by a CML process produced by the
function defined in Rule 4.22. First, it defines the channels used by the controller process to
communicate with other entities. Channels inevent and consumed are used to communicate
with the state machine, and channels hasevent and getevent are used to communicate with
activities.

The process produced by this function uses a type "controller_"name(b)"_E", which
is defined right above the process, as the type that contains the index, source, target and the
message (operation call or signal) of events that arrive in the block. Also, the process has
two state components: events and deferred. The first is a set representing the event pool.
According to the UML/SysML semantics, the order in which the events are treated is not defined,
therefore, we use a set to store events so that the choice on the event is non-deterministic. The
second state component is used to store deferred events from the state machine, which should be
treated according to the order they are deferred, that is why we use a sequence instead. A state
machine can defer events when given an active state and an event to be treated: such an event
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is in the list of deferred events of this active state. In this case, the event is stored in the list of
deferred events to be treated as soon as the state machine is in a state that can consume such an
event.

Rule 4.22: t controller

t_controller(b: Block): process declaration =

"channels"

name(b)"_inevent:ID*E"

name(b)"_consumed: ID*DL"

name(b)"_hasevent: ID*token"

name(b)"_getevent: ID*(E|<NOEVENT>)"

"types"

"controller_"name(b)"_E = nat*ID*ID*MSG inv mk_(-,-,-,m) == m.$id

in set "name(b)"_I union "name(b)"_S"

"process controller_"name(b)" = $id: ID @ begin"

"state"

"events: set of controller_"name(b)"_E := {}"

"deferred: seq of controller_"name(b)"_E := []"

"functions"

"remove: (seq of controller_"name(b)"_E) * nat -> seq of

controller_"name(b)"_E"

"remove(s,i) == s(1,...,i-1)^s(i+1,...,len s)"

"pre i <= (len s)"

"actions"

"TreatDeferredEvents = (dcl i: nat := 1 @ "

"while (i <= len deferred) do"

"let ev = deferred(i) in ("

name(b)"_inevent?o!ev -> ("

name(b)"_consumed!o?b:(is_bool(b)) -> "

"deferred := remove(deferred,i)"

"[]"

name(b)"_consumed.o.<defer> -> i := i+1"

")"

"[] (" name(b)"_addevent?n?o!$id?e ->"

"events := events union {mk_(n,o,$id,e)})"

")"

")"

"@ mu X @ ("

name(b)"_addevent?n?o!$id?e -> (events := events union

{mk_(n,o,$id,e)});X"

"[]"

"[(card events) > 0] & ("

"|~| ev in set events @ ("

name(b)"_inevent?o!ev-> (events := events\{ev}; ("

name(b)"_consumed.o.true -> TreatDeferredEvents; X"
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"[]"

name(b)"_consumed.o.false -> X"

"[]"

name(b)"_consumed.o.<defer> -> deferred := deferred^[ev];X"

"))"

")"

")"

"[]"

name(b)"_hasevent?o?t -> ("

"if (exists e in set events @ e.#4.$id = t)"

"then (|~| e in set {x | x in set events @ x.#4.$id = t} @"

"events := events\{e}; "name(b)"_getevent!o!e -> X)"

"elseif (exists i in set inds deferred @ (deferred(i)).#4.$id =

t) "

"then (|~| i in set {x | x in set inds deferred @

(deferred(x)).#4.$id = t} @"

name(b)"_getevent!o!(deferred(i)) -> deferred :=

remove(deferred,i); X)"

"else "name(b)"_getevent!o!<NOEVENT> -> X"

")"

")"

"end"

The process declares the function remove that takes a sequence and an index i (of the
sequence) and returns a new sequence identical to the input sequence except that the element in
the i-th position is removed. Additionally, an action called TreatDeferredEvents is declared;
this action traverses the list deferred, and sends it to the state machine’s internal process; if the
event is consumed it is removed from the list of deferred events, otherwise nothing changes. The
recursive action inside the while statement guarantees that whenever an event is ready to be sent
to the internal process, the block can also add an event to the the pool of events.

Next, the main action is a recursive action that allows the block to add new events to the
pool, or offers a random event in the event pool events. Three possibilities can be observed
at this point. If the events are successfully consumed, a change in the state may occur, and the
deferred events may become active, therefore the process attempts to communicate them for
treatment. This is accomplished by calling the action TreatDeferredEvents. If the event was
consumed but not successfully (e.g. the event is sent to the state machine but it cannot be treated
or deferred by any active states), no state change has occurred, thus the deferred events cannot
become active. The last case that need to be treated is when the event is deferred by the state
machine. In this case, the event is simply added to the end of the sequence deferred.

Finally, the channel hasevent is offered to activities in order to check if a specific event
is available in the event pool: in case it is, then it is removed from the pool events and returned
to the activity by the channel getevent. The event is also searched in the pool of deferred events,
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and just when it is not available anywhere, the getevent returns the value <NOEVENT>. The
controller for our example is as follows.

channels

Device_inevent:ID*E

Device_consumed:ID*DL

Device_hasevent:ID*token

Device_getevent:ID*(E | <NOEVENT>)

types

controller_Device_E = nat*ID*ID*MSG

inv mk_(-,-,-,m) == m.$id in set Device_I union Device_S

process controller_Device = $id: ID @ begin

state

events: seq of controller_Device_E

deferred: seq of controller_Device_E

functions

remove: (seq of E) * nat -> seq of E

remove(s,i) == s(1,...,i-1)^s(i+1,...,len s)

pre i <= (len s)

actions

TreatDeferredEvents = (dcl i: nat := 1 @

while (i <= len deferred) do

let ev = deferred(i) in (

Device_inevent?o!ev -> (

Device_consumed!o?b:(is_bool(b)) ->

deferred := remove(deferred,i)

[]

Device_consumed.o.<defer> -> i := i+1

)

[]

mu X @ (Device_addevent?n?o!$id?e ->

events := events union {mk_(n,o,$id,e)}; X)

)

@ mu X @ (

Device_addevent?n?o!$id?e -> (events := events union

{mk_(n,o,$id,e)}); X

[]

[(card events) > 0] & (

|~| ev in set events @ (

Device_inevent?o!ev -> (events := events\{ev};(

Device_consumed.o.true -> TreatDeferredEvents;X

[]

Device_consumed.o.false -> X

[]

Device_consumed.o.<defer> -> deferred :=

deferred^[ev];X

))
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)

)

[]

Device_hasevent?o?t -> (

if (exists e in set events @ e.#4.$id = t)

then (|~| e in set {x | x in set events @ x.#4.$id = t} @

events := events\{e}; Device_getevent!o!e -> X)

elseif (exists i in set inds deferred @ (deferred(i)).#4.$id = t)

then (|~| i in set {x | x in set inds deferred @

(deferred(x)).#4.$id = t} @

Device_getevent!o!(deferred(i)) ->

deferred := remove(deferred,i);X)

else Device_getevent!o!<NOEVENT> -> X

)

)

end

The details of how the state machine process and activity process communicates with the
events described in the controller process are discussed in sections 5.1 and 5.2 in Chapter 5.

4.6 Composite blocks

Composite blocks are those that are formed of other blocks through the composition
relation. For example, the model of the leadership election problem on Figure 2.3 on page 26
has a composite block, namely SoS.

Our guidelines require that a composite block does not have behaviours or attributes.
Therefore we must only treat ports in the composite system boundary. Notice that whilst we do
not allow composite blocks with behaviours, it is still possible to add a new part to the composite
block, move all behaviours to the new block, and connect that part to any port or part. So, there
is a simple way to overcome this restriction without any loss of expressiveness.

A composite block is modelled by the alphabetised parallel composition of the processes
of its parts, including the outer ports (i.e., the ports of the composite state). The alphabets are
defined by the connectors from the part and its ports. The process that models a part is that
derived from the block that types the part. The external channels of the ports of the parts must be
renamed to the names of its connectors (see Rule 4.23).
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Rule 4.23: t composite block process

t_composite_block_process(b: Block): process declaration =

for p in set b.Ports

t_port(p)

end for

"process "name(b)" = $id: ID @ "

define_alphabetised_parallel(

({

("("name(p.Type)"($id^"id(p)"))"

if p.Connectors.size() > 0 or p.PortsWithConnectors.size()

> 0

then "[[" t_rename_ext_ports(p) "]]"

end if

,

t_chanset_part(p))

| p in set b.Parts

} union {

("(port_"name(p.topleveldefinition)"(

$id^"id(p.topleveldefinition)"))"

if p.Connectors.size() > 0 or p.PortsWithConnectors.size()

> 0

then "[[" t_rename_int_ports(p.topleveldefinition) "]]"

end if

,

t_chanset_port(p.topleveldefinition))

| p in set b.Ports

})

)

"\\ ("

for sb in set {p.Type | p in set b.Parts} do

if sb.visibility = #private then

"{|"name(sb)"_op,"name(sb)"_sig|}"

for a in set sb.AllAttributes sep "union" do

if a.visibility = #public then

"{|"name(sb)"_get_"a.name".x.y | x: ID, y: ID @ prefix($id,x)

and prefix($id,y)|}"

"union {|"name(sb)"_set_"a.name".x.y | x: ID, y: ID @

prefix($id,x) and prefix($id,y)|}"

end if

end for

end if

end for

")"

where

1. topleveldefinition of a port p is the port of the block of which p

is an instance.
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The parallel action is defined by the rule, define_alphabetised_parallel, that takes a se-
quence of pairs formed of an action name and a channel set name, and recursively constructs
the alphabetised parallelism of all actions (see Rule 4.24). The notation pairs(1) means an
access to the first element of the sequence pairs. The numbers after the dot in pairs(1).1 and
pairs(1).2 are projections on the pair (Name*Chanset), where 1 is an access to the value of
type Name and 2 is an access to the value of type Chanset (channel set).

Rule 4.24: define alphabetised parallel

define_alphabetised_parallel(pairs: seq of (Name*Chanset)): action =

if len pairs = 0 then "Skip"

elseif len pairs = 1 then pairs(1).1

else

"("pairs(1).1

"["pairs(1).2"||" define_union_chansets(tl pairs)"]"

define_alphabetised_parallel(tl pairs)

")"

end if

Since the alphabetised parallelism is a binary operator, we need to compose a number of
alphabetised parallel operators hierarchically. To do so, we calculate the channel set associated
with an alphabetised parallelism. This channel set is the union of the channel sets in the parallel
operator. To calculate the channel set associated with the alphabetised parallelism formed of
a sequence of action names and channel set names, we define a recursive rule that produces
the union of all channel set names in the sequence of pairs of action and channel set names
(Rule 4.25).

Rule 4.25: define union chansets

define_union_chansets(pairs: seq (Name*Chanset)): binary expression =

if len pairs = 0 then"{||}"

elseif len pairs = 1 then pairs(1).2

else pairs(1).2 "union" define_union_chansets(tl pairs)

end if

The translation rule that generates the renaming pairs for a part’s ports is shown by
Rule 4.26; for each port in the part, it obtains the set of connectors associated with the port and
renames the port’s external channel with the channels named after the connectors.

Rule 4.26: t rename ext ports

t_rename_ext_ports(p: Part): seq of renaming pair =

sep "," for each c in p.Connectors do

name(p.Type)"_sig <- "name(c)"_sig,"

name(p.Type)"_op <- "name(c)"_op"
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end for

if p.Connectors.size() > 0 and (exists x in p.Ports |

x.Connectors.size() > 0)

then ","

end if

sep "," for each x in p.PortsWithConnector do

sep "," for each c in x.Connectors do

name(x.topleveldefinition)"_ext_sig <- "name(c)"_sig,"

name(x.topleveldefinition)"_ext_op <- "name(c)"_op"

end for

end for

where

1. topleveldefinition of a port p is the port in the block definition

of which p is an instance.

The pairs generated by this rule when applied to the first instance of Device of our
example in Figure 2.4 is shown below.

pD1_ext_sig <- c_pB[1]_pD1_sig, pD1_ext_op <- c_pB[1]_pD1_op

Since a port may have multiple connectors, the external channel may be renamed multiple
times. This means that a communication on the external channel is substituted by a choice of
communication over the renamed channels. We assume that each connector is uniquely identified,
therefore, there is no possibility of naming conflicts.

The rule for renaming the internal channels of a port is similar, but simpler. It only
considers its own channels, as a port does not contain other ports.

Rule 4.27: t rename int ports

t_rename_int_ports(p: Port): seq of renaming pair =

sep "," for each c in p.Connectors do

name(p)"_int_sig <- " name(c)"_sig,"

name(p)"_int_op <- " name(c)"_op"

end for

For each connector associated with a port, the internal channels int_sig and int_op

are renamed to the channels (operation and signal channels) associated with the connector. For
example, the renaming pairs for the port pD of the first instance of Device in our examples are
as follows.

pD1_int_sig <- c_pB[1]_pD1_sig, pD1_int_op <- c_pB[1]_pD1_op
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The result of applying the Rule 4.23 to the block SoS for resultant model of figures 2.3
and 2.4 is the following process.

process SoS = $id: ID @ (

Device($id^[mk_token("Device1")])[[

pD1_ext_sig <- c_pB[1]_pD1_sig, pD1_ext_op <- c_pB[1]_pD1_op

]]

[ {|...|} || {|...|} ]

(Device($id^[mk_token("Device2")])[[

pD2_ext_sig <- c_pB[2]_pD2_sig, pD2_ext_op <- c_pB[2]_pD2_op

]]

[ {|...|} || {|...|} ]

(Device($id^[mk_token("Device3")])[[

pD3_ext_sig <- c_pB[3]_pD3_sig, pD3_ext_op <- c_pB[3]_pD3_op

]]

[ {|...|} || {|...|} ]

(Bus($id^[mk_token("Bus")])[[

pB[1]_ext_sig <- c_pB[1]_pD1_sig, pB[1]_ext_op <- c_pB[1]_pD1_op,

pB[2]_ext_sig <- c_pB[2]_pD2_sig, pB[2]_ext_op <- c_pB[2]_pD2_op,

pB[3]_ext_sig <- c_pB[3]_pD3_sig, pB[3]_ext_op <- c_pB[3]_pD3_op

]]

))))

Rule 4.28 determines the set of allowed events for a part; it takes a part (that is, an
instance of a block that is part of a composite block), and builds the channel set that defines the
possible interactions of the part with its environment. This set is built based on the connectors of
the part or of its ports. The ends of a connector (c.Ends) may be parts or ports, and to identify
the appropriate channel, we use the name of the block that types the part, or the name of the port.

Rule 4.28: t chanset part

t_chanset_part(p: Part): chanset =

"{|" name(p.Type)"_op.n.($id^"id(p)").y | n: nat, y: ID |}"

"union {|"name(p.Type)"_sig.n.($id^"id(p)").y | n: nat, y: ID |}"

"union {|" name(p.Type)"_op.n.y.($id^"id(p)") | n: nat, y: ID |}"

"union {|"name(p.Type)"_sig.n.y.($id^"id(p)") | n: nat, y: ID |}"

for each c: p.Connectors do

let x in set c.Ends such that x <> p in

"union {|"name(c)"_op.n.($id^"id(p)").($id^"id(x)") | n: nat|}"

"union {|"name(c)"_sig.n.($id^"id(p)").($id^"id(x)") | n: nat|}"

"union {|"name(c)"_op.n.($id^"id(x)").($id^"id(p)") | n: nat|}"

"union {|"name(c)"_sig.n.($id^"id(x)").($id^"id(p)") | n: nat|}"

end for

for each x: p.Ports do

"union " t_chanset_port(x)

end for
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Rule 4.28 takes a part and an identifier, and produces a channel set that specifies the set of events
on which the part can synchronise. This set includes:

� all the events associated with the channels op and sig of the part are in the channel
set. These events allow anyone to communicate with the block;

� for each connector linked to the part, the events associated with the channels op

and sig of the other end of the connector; the second and the third parameters
("$id^"id(p) and "$id^"id(x)) are the identifiers of both ends of the connector.
Note that we include them in both orders (id(p) followed by id(x) and vice-versa);

� for each port of the part, the events associated with the channels op and sig of the
connector are added; these events are restricted to those where the second and the
third parameters are the identifiers of both ends of the connector.

This channel set does not restrict which elements can make requests to the part or its
ports, nor does it restrict which elements can receive responses from the part or its ports. It
does, however, restrict the elements to which the part and its ports can make requests. A similar
restriction exists regarding which elements can respond to the part and its ports. The intersection
of this channel set with the channel set associated with a connected element determines the
allowed communication between both ends.

In our example, the channel set associated with the first part of Device, which has the
identifier $id^[mk_token("Device1")] is shown below.

{|

c_pB[1]_pD1_op.n.($id^[mk_token("Device1")]).($id^[mk_token("Bus")]),

c_pB[1]_pD1_op.n.($id^[mk_token("Bus")]).($id^[mk_token("Device1")]),

c_pB[1]_pD1_sig.n.($id^[mk_token("Device1")]).($id^[mk_token("Bus")]),

c_pB[1]_pD1_sig.n.($id^[mk_token("Bus")]).($id^[mk_token("Device1")])

| n: nat

|}

This channel set essentially allows the part Device1 to communicate on the channels associated
with the connector between ports pD1 and pB[1], where the second and third parameters are the
identifiers of the parts Bus and Device1 in both orders.

Similarly to the channel set of parts, the channel set of ports is calculated by Rule 4.29;
it takes a port, and builds the channel set that defines the possible interactions of the port with its
environment.

Rule 4.29: t chanset port

t_chanset_port(p:Port): chanset =

"{|" name(p.topleveldefinition)"_ext_op.n.(

$id^"id(p.topleveldefinition)").y | n: nat, y: ID |}"
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"union {|"name(p.topleveldefinition)"_ext_sig.n.(

$id^"id(p.topleveldefinition)").y | n: nat, y: ID |}"

"union {|" name(p.topleveldefinition)"_ext_op.n.y.(

$id^"id(p.topleveldefinition)") | n: nat, y: ID |}"

"union {|"name(p.topleveldefinition)"_ext_sig.n.y.(

$id^"id(p.topleveldefinition)") | n: nat, y: ID |}"

for each c: p.Connectors do

let x in set c.Ends such that x <> p in

"union {|"name(c)"_op.n.($id^"id(p.topleveldefinition)").

($id^"id(x.topleveldefinition)") | n: nat|}"

"union {|"name(c)"_sig.n.($id^"id(p.topleveldefinition)").

($id^"id(x.topleveldefinition)") | n: nat|}"

"union {|"name(c)"_op.n.($id^"id(x.topleveldefinition)").

($id^"id(p.topleveldefinition)") | n: nat|}"

"union {|"name(c)"_sig.n.($id^"id(x.topleveldefinition)").

($id^"id(p.topleveldefinition)") | n: nat|}"

end for

where

1. topleveldefinition of a port p is the port of the block of which p

is an instance.

The following extract illustrates the channel set of port pD of the first part of Device

whose identifier is $id^[mk_token("Device1"),mk_token("pD1")]. This port is connected to
the port pB[1] of block Bus and its identifier is $id^[mk_token("Bus"),mk_token("pB[1]")].

{|pD1_ext_op.n.($id^[mk_token("Device1"),mk_token("pD1")]).y |

n: nat, y: ID|} union

pD1_ext_sig.n.($id^[mk_token("Device1"),mk_token("pD1")]).y |

n: nat, y: ID|} union

pD1_ext_op.n.y.($id^[mk_token("Device1"),mk_token("pD1")]) |

n: nat, y: ID|} union

pD1_ext_sig.n.y.($id^[mk_token("Device1"),mk_token("pD1")]) |

n: nat, y: ID|} union

{|c_pB[1]_pD1_op.n.($id^[mk_token("Device1"),mk_token("pD1")]).

($id^[mk_token("Bus"),mk_token("pB[1]")]) | n: nat |} union

{|c_pB[1]_pD1_sig.n.($id^[mk_token("Device1"),mk_token("pD1")]).

($id^[mk_token("Bus"),mk_token("pB[1]")]) | n: nat |} union

{|c_pB[1]_pD1_op.n.($id^[mk_token("Bus"),mk_token("pB[1]")]).

($id^[mk_token("Device1"),mk_token("pD1")]) | n: nat |} union

{|c_pB[1]_pD1_sig.n.($id^[mk_token("Bus"),mk_token("pB[1]")]).

($id^[mk_token("Device1"),mk_token("pD1")]) | n: nat |}
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4.7 Related Work

We have presented a behavioural model of SysML blocks that includes simple and
composite blocks, generalisation, association and composition relations, standard ports and
connectors, interfaces, operations, attributes and signals. To the best of our knowledge, this is the
first formalisation of the semantics of a comprehensive subset of the block notation. In particular,
it is also unknown to us any treatments of SysML blocks that take into account state machine
diagrams and activity diagrams.

Graves proposes a representation of a restricted subset of SysML block diagrams in the
web ontology language (OWL2), a language for knowledge representation based on a description
logic (GRAVES, 2009). Description logics are subsets of first-order logic that possess better
computational properties (e.g., some description logics are decidable and others have efficient
inference procedures). Ding and Tang propose a representation of SysML block diagrams directly
in a description logic (DING; TANG, 2010). In both cases, the semantics only cover simple
blocks, composite blocks and associations.

Graves and Bijan extend the work by (GRAVES, 2009) by encoding SysML diagrams into
a type theory that axiomatises block diagram notions of types, properties and operators (GRAVES;
BIJAN, 2011b). Block definition diagrams and internal block diagrams are covered, but dynamic
aspects of SysML block diagrams are not.

All these works focus on generating a set of axioms that specify a system based on
a SysML diagram, and then using the existing techniques for the underlying logic to check
properties such as consistency. Although Graves and Bijan describe model refinement as theory
refinement (that is, modification of the knowledge base aiming at achieving consistency), it does
not elaborate on the topic, and it is not clear what properties are preserved by this notion of
refinement.

Table 4.1 presents a comparison of the coverage of our formalisation with some of the
available literature. The first row indicates the related works, the first column contains the features
that we cover: simple blocks (SB), composite blocks (CB), standard ports (SP), interfaces (Int),
operations (Op), signals (Sig), properties (Prop), generalisation (Gen), association (Assoc), and
dynamic aspects of block diagrams (Dyn). The symbolX indicates that the feature is covered by
the work on the column, and × indicates it is not.
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Table 4.1: Coverage comparison.

Graves (2009) Ding and Tang (2010) Graves and Bijan (2011b) Our Work
SB X X X X
CB X X X X
SP × × × X
Int × × × X
Op × × X X
Sig × × × X
Prop × × X X
Gen × × X X
Assoc X X X X
Dyn × × × X

Source: Author’s ownership.
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5
Behavioural Diagrams

In this chapter we present the diagrams used to describe the behaviour of blocks. Ac-
cording to our guidelines in Chapter 3, the behaviour of blocks can be described in terms of a
state machine, and activity diagrams can be used to model the dynamics of an operation or some
specific behaviour of the block. The semantics of state machine diagrams are not a contribution
of this thesis, however, as they are part of a whole strategy for defining an integrated SysML
semantics in CML, its semantics is briefly described in Section 5.1 to make our presentation
as self-contained as possible. For more details on the semantics of state machine diagrams
see (MIYAZAWA et al., 2013). Next, Section 5.2 presents the activity diagram semantics in
CML. Despite a sequence diagram also being considered an element to describe behaviour
in SysML, they are used for specific purposes in our approach. Its semantics is presented in
Chapter 6.

5.1 State Machine Diagram

The CML model of a state machine is defined by a single process whose actions model
the elements of the state machine as shown in Figure 5.1. Regarding the channel names, B is the
block that owns the state machine, X is an attribute of a block, p is a port and Y is another block
that is associated with B. Each state, region, final state, transition (starting from a state), join and
fork pseudostate is modelled by a CML action, and all these actions are composed in parallel to
define the overall behaviour of the CML process.

As previously indicated in Section 3.4, the process that models a state machine is defined
by the application of the function t statemachine to the state machine and its block, which
is presented in Rule 5.1.
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Figure 5.1: Overview of the model of state machines.

Source: Author’s ownership.

Rule 5.1: t statemachine

t_statemachine(stm: StateMachine,b:Block): process declaration =

"chansets"

"internal_chanset_"name(stm)" = {|enter,entered,exit,exited,"

"enabled,fire,fired|}"

"union {|"name(b)"_consumed.x | x: ID @ x<>"id(stm)"|}"

"union {|"name(b)"_inevent.x | x: ID @ x<>"id(stm)"|}"

"process stm_"name(stm)" = $id: ID @ begin"

"values"

"topregions={"sep ","{id(r) | r in set stm.immediateregions}"}"

t_element_actions(stm,b)

"actions"

t_machine(stm,b)

"@" t_internal_main_action(stm)

"end"

"chansets"

"chanset_"name(stm)" = {|enter."id(stm)".x | x in set {"sep

","{id(r) | r in set stm.immediateregions}"} |}"

"union {|entered."id(stm)".x | x in set {"sep ","{id(r) | r in

set stm.immediateregions}"}|}"

"union {|fire,fired|}"

"union {|"name(b)"_inevent.x | x in set {"sep ","{id(r) | r in

set stm.immediateregions}"}|}"

"union {|"name(b)"_consumed.x | x in set {"sep ","{id(r) | r in

set stm.immediateregions}"}|}"

This rule defines the process that organises the internal structure of the state machine.
This process is parametrised by an identifier for the instance of the block to which the state
machine belongs. Its behaviour is defined by a recursion that, at each iteration, receives an event
through the channel inevent, communicates it to its active states and regions, and indicates
through consumed the result of processing the event. We remind that the communications through
channels inevent and consumed happen according to synchronisation with the controller process
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of the block, as discussed in Section 4.5.4. Thus, the state machine only reacts in case the
expected events of its active states are available in the event pool of the block. This processing
may lead to actions being executed, transitions being triggered, and states being activated and
deactivated. The model of the execution of actions and the verification of conditions of transitions
may involve communications over the channels get_ (to read the state of the block’s process),
set_ (to modify that state), *_op (to answer and send operation calls) and *_sig (to send signals),
where * stands for any block name.

The CML actions that model elements of the state machine (states, transitions, and so
on) define protocols that specify how they interact with each other. They are defined by rule
t_element_actions. This level of granularity allows us to focus on particular elements when
analysing the CML model, and to trace back any issues to the original SysML model. For
instance, the six states of state machine for the dwarf signal shown in Figure 3.4 on page 48 have
their CML actions defined by the function t_element_actions. If an error occurs in the Stop

state, then the event is marked by the name of the corresponding action of this state allowing the
traceability to the state in the SysML model.

The actions that model the elements of the state machine are coordinated by a machine

action, which is defined by the invoking Rule 5.2. It defines the iterative behaviour described
above; it initialises the state machine and controls the processing of events. In the initialisation,
machine requests the actions that model the top regions of the state machine to carry out the
behaviour corresponding to entering the regions. This leads to a request for substates to be
entered, and so on, until all regions of an active state are active, and exactly one substate of each
active region is active.

Rule 5.2: t machine

t_machine(stm: StateMachine,b:Block): action declaration =

"machine_"name(stm)" ="

"(||| r in set topregions @ [{}] enter!"id(stm)"!r -> "

"entered!"id(stm)"!r -> Skip);"

"mu X @ ("name(b)"_inevent!"id(stm)"?e ->"

"(dcl aux: bool @ aux := false;"

"("

"(||| r in set topregions @ [{}]"

name(b)"_inevent!r!e ->"

name(b)"_consumed!r?y -> Skip)"

"[|{}|{|"name(b)"_consumed|}|{aux}|]"

"(for all i in set topregions do"

name(b)"_consumed?x?y -> "

"aux:=DL_or(aux,y)"

")"

");"name(b)"_consumed!"id(stm)"!aux -> Skip"

"); fire -> fired -> X"

")"



5.2. ACTIVITY DIAGRAM 101

The processing of events is defined by a loop in which, at each iteration, the machine

action accepts an event from the block (process) synchronising on channel inevent, sends it to
the top-region actions, sends the result back to the block process on channel consumed, executes
the actions for the transitions and waits for the transition actions to finish executing, before
recursing. The response to the block is stored in the auxiliary variable aux: if the event can
be treated, it yields true, otherwise, it yields false and the event is discarded. If it cannot be
treated but the state can defer such an event, then aux yields <defer> and the event is stored
in the sequence of deferred events of the controller process, as described in Section 4.5.4. The
interactions between the actions that model states and regions are similar.

After the acknowledgement of an event, a transition from the current state may be fired.
The action compartment of a transition may describe several types of behaviour. For instance,
invoking operations, sending signals, manipulating attributes of the block, and even invoking an
activity of the block. All of these behaviours must follow the CML action language as described
in Section 3.1.

For instance, consider the state machine of Figure 2.5 on page 27 for block Device of the
leadership election problem. When the block is in the state Off and it receives a turnOn event,
the block process synchronises on the Device_inevent channel with the state machine process
communicating this event. As there is only one region and the event can be consumed at the
current state, the state machine process communicates the value true on the Device_consumed

event and the fire event synchronises with the CML action of the transition enabling it to
execute the action compartment, which in this case is the assignment petition := petition-1. Next,
the machine and the transition actions, which are both of the state machine process, synchronise
on the fired channel enabling the machine action to recurse to wait for the next event of the
block process. More details on the integration of state machines and other diagrams are provided
in Chapter 7.

5.2 Activity Diagram

In this section, we formalise the translation of activity diagrams and illustrate it with a
few examples. Section 5.2.1 gives an overview of the translation of activity diagrams. As the
examples presented in Chapter 3 do not illustrate all translation rules we propose, some other
examples are introduced in Section 5.2.2. The translation rules are presented in Section 5.2.3.
Finally, we discuss related work in Section 5.3.

5.2.1 Overview

Figure 5.2 depicts how an activity process is structured. Each activity diagram is
described by the Main Process, whose behaviour is specified as the parallel composition of the
(internal) behaviour (Internal Process) of the activity itself with other processes for activities
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Figure 5.2: Overview of the representation of activities in CML.

Source: Author’s ownership.

that may be used inside this activity as call behaviour actions (CBA Process). If there is no
call behaviour action, then the main process is simply the internal process. A call behaviour
action is an action node in the activity diagram that invokes the behaviour of another activity,
hence, to use such behaviour we compose the main activity process in parallel with other activity
processes that are used in call behaviour actions.

In the internal process of an activity, we have a CML action for each node of the diagram
(action, object, control). Due to the token semantics of activity diagrams, there is also a CML
action Token Manager for managing tokens; this is the action that models the control of ending
an activity according to available tokens. All CML actions are composed in parallel to define the
behaviour of the activity process.

The main action of the internal process is recursive. Each iteration runs one execution
of the activity via a sequence of three actions. The first, Start Activity, synchronises on the
startActivity_A1 channel, where A1 is the name of the activity. This channel starts the activity
flow and can possibly take any value as input when needed. For instance, the state machine
Leadership Election of Figure 2.5 (page 27) calls the activity ActBroadcast via the action call
ActBroadcast passing the claim of the Device as argument. In the CML model, the state
machine and the activity processes synchronise on the channel startActivity_ActBroadcast.
The Start Activity action is followed by the parallel composition of the CML actions for all nodes
of the diagram along with the Token Manager. The third action, End Activity, communicates via
the endActivity_A1 that the activity has finished along with any output values it may have. For
instance, when the activity ActBroadcast ends its flow, it synchronises with the process for the
state machine LeadershipElection on endActivity_ActBroadcast.

Control and object flows are established via synchronisations. Actions that model nodes
have channels for this purpose, so that the alphabetised parallelism of these actions enforce
the order of execution of nodes depicted in the diagram. We provide a CML representation for
object nodes, control nodes, and several actions including call operation, send signal, accept
event, opaque, value specification, call behaviour, read self, and read structural feature. These
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representations are presented in Section 5.2.3.

5.2.2 Examples

We depict two examples of activity diagrams, where they describe operations of a
producer-consumer problem. They illustrate the operations add and rem, which correspond to
adding and removing an item to/from the block Buffer, respectively.

The first diagram displayed in Figure 5.3 represents the Add activity. It has all kinds of
activity nodes: action, control and object nodes. Its behaviour starts at the initial node and the
activity parameter node item, which is of the type Item. A decision node checks if the size of
the buffer b, which is a sequence of items, is less than five (the size of the Buffer). If so, another
item can be added, otherwise the activity ends. When it is less than five, an opaque action is
fired and it receives as input (through an input pin) the item to be added. An opaque action is a
node whose behaviour is described in terms of another language (e.g. a programming language).
In our case, we assume that the content of opaque actions is described in terms of the CML
action language (the same that is used in the action compartment of state machine transitions).
As the content of the opaque action is a CML code, it is executed when the action is ready to be
performed (i.e, once all input tokens have been provided to the action). Such code just adds to
the buffer the element received as parameter. After this action is performed, the control edge
leaving this action leads to an activity final node, which ends the diagram execution.

Figure 5.3: Activity Diagram: Adding an element to the Buffer

Source: Author’s ownership.

The Rem activity diagram removes an item from the buffer and returns it as output.
Figure 5.4 shows the behaviour of such an activity. It has no inputs, and after the initial node,
a decision node checks if there is at least one element to be removed, otherwise it ends the
activity. In case it has elements, a call operation action is fired, which should deal with the task
of removing an element of the buffer and returning it as output. This call operation action returns
an output, which is put in its output pin. Next, this data is made available as output of the activity
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by means of the activity parameter node Rem of the type Item. The edge leaving the action
represents an object flow that transports the data to the activity parameter node.

Figure 5.4: Activity Diagram: Removing an element of the Buffer

Source: Author’s ownership.

Finally, we illustrate the usage of call behaviour actions by using two diagrams showing
scenarios of an emergency call system. Figure 5.5 shows the process to treat an emergence
call. First, it verifies the information of the call (see the checkData call operation action),
then, if the data is valid the call is broadcasted. The act of broadcasting is defined by another
activity, which is depicted in Figure 5.6, thus, the TreatEmergencyCall activity calls the activity
BroadcastCall using a Call Behaviour action. Eventually, the call is registered and the activity
finishes.

Figure 5.5: Activity Diagram: Treat Emergency Call

Source: Author’s ownership.

Figure 5.6 shows the activity that is invoked by the Call Behaviour action. It broadcasts
the call by sending three signals in parallel (sendPolice, sendAmbulance and sendFire) before
updating the information of the call and sending it as an output parameter. In each one of the send
signal actions we omit the target pin, which defines to whom the signal must be sent, because we
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can infer it from the name of the signal. However, each one must have a target pin indicating the
destination block of the signal.

Figure 5.6: Activity Diagram: Broadcasting a Call

Source: Author’s ownership.

We use these examples to illustrate how the translation functions generate the respective
CML code.

5.2.3 Formal semantics

In this section we present some of the translation rules for activity diagrams. We first
present the translation rule for activity diagrams of a block (Section 5.2.3.1), then we focus on
the translation of a single activity (Section 5.2.3.2). We define the rule for the internal activity
diagram in Section 5.2.3.3. The main action that composes all elements involved in a activity
diagram is presented in Section 5.2.3.4. The remaining rules for activities are available in the
Section A.1 of the Appendix A.

5.2.3.1 Block Activity Diagrams

The first translation function, which is defined in Rule 5.3, is t_activity_diagrams.
This is the root function for activity diagrams. The parameters of this function provide a sequence
of activity diagrams and a block to which these activities belong, resulting in a sequence of
program paragraphs. This function introduces channels related to control flow, and a process.

The channel control is used to deal with the flow of the control tokens in an activity
diagram. The execution of an action or control node linked to a control flow is only allowed
with the availability of the control token. The type of the channel control is nat. We assume
that each control edge is given a unique identifier of type nat. So, through control we define
which action node can be executed. The channel endDiagram communicates that a diagram has
finished its execution either because it has reached a final activity node or because there is no
active token in the diagram. The channel interrupted is used to indicate that an interrupting
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edge of an interruptible region has been traversed. An interruption is related to a diagram, a block
instance, and an interruptible region index. As activity diagrams use a token semantics, we use
two channels to keep the amount of active tokens running inside a diagram. The channel update
changes the number of active tokens and the channel clear sets the amount of active tokens to
zero. Both are indexed by the ID of the activity node that communicates the event. We assume
that this ID is a CML token that uniquely identifies a node in the context of an activity diagram.
The channels inc and dec are used to control the possibility of interruption of a diagram as
explained in Rule A.15. The channel wait is used to block a node while it waits for termination
of the diagram.

By calling the function t_ad_channels(ad, block) for every activity diagram of the
sequence ads, more channels are introduced to deal with communication that occurs among
diagrams and inside diagrams. All these channels are internal to an activity diagram process
and they will be hidden by using the channel sets _Hidden prefixed by the name of the diagram.
Also, the iterative call to function t_activity_diagram provides a translation of every activity
diagram in ads.

The name of the process that the function t_activity_diagrams introduces is defined
by the name of the block instance received as argument (name(block)) appended with _ads.
The process definition is given by the interleaving of all activity diagram processes of that block.

Rule 5.3: t activity diagrams

t_activity_diagrams(ads: seq of Activity, block: Block): seq of program

paragraph =

"channels

control: nat

endDiagram: ID

interrupted: ID*ID*nat

update: ID*int

inc, dec, clear: ID

wait"

for ad in ads do

t_ad_channels(ad, block)

end for

"chansets"

for ad in ads do

name(ad)"_Hidden = {|control, endDiagram, interrupted, update,

clear, wait, inc, dec"

if ad.edges(ObjectFlow.Type).size > 0 then

", "

end if
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for ObjEdge in seq ad.edges(ObjectFlow.Type) sep "," do

"obj_"name(ad)"_"ObjEdge.index

end for

if ad.Nodes(Pin.Type) > 0 then

","

end if

for action in seq ad.Nodes(Action.Type) do

for inPin in seq action.inputPins sep "," do

"in_"name(ad)"_"name(action)"_"inPin.edge.index

end for

for outPin in seq action.outputPins sep "," do

"out_"name(ad)"_"name(action)"_"outPin.edge.index

end for

end for

"|}"

for ad in ads do

t_activity_diagram(ad, block)

end for

"process "name(block)"_ads = val $id: ID @" sep "|||"

{"ad"_name(ad)"($id^[mk_token(\""name(ad)"\")])" | ad in seq ads}

The respective CML code generated by this rule for the Add and Rem activity diagrams
described earlier is displayed in the following extract.

channels

control: nat

endDiagram: ID

interrupted: ID*ID*nat

update: ID*nat

inc, dec, clear: ID

wait

...

chansets

Add_Hidden = ...

Rem_Hidden = ...

process ad_Add = ...

process ad_Rem = ...

process Buffer_ads = val $id: ID @

ad_Add($id^[mk_token("Add")]) ||| ad_Rem($id^[mk_token("Rem")])

In this extract, there are two processes (ad_Add and ad_Rem) for the activities Add and
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Rem. The process Buffer_ads combines these two processes in parallel. The channels deal
with control flow, indication of finalisation of a specific diagram, end of a flow, and indication
that an interrupting edge has been traversed.

The function t_ad_channels (Rule 5.4) introduces channels for a specific activity ad

of a Block instance block. An activity may be interrupted by communicating the channel
interruptActivity. To start an activity, we must provide values for its input parameter nodes
in the channel startActivity. The parameters of this channel are the ID followed by the types
of the activity parameter nodes that do not have incoming edges, but have outgoing edges. In
other words, they are used for the input of an activity. After an activity finishes, it provides values
in the channel endActivity whose type is defined in a similar way to that of startActivity.
On the other hand, parameter nodes related to endActivity have no outgoing edge, but have at
least one incoming edge. Notice that the channel names startActivity, interruptActivity
and endActivity are appended by an underscore ( ) followed by the activity name.

Similarly to an activity, a call behaviour action has channels for providing input values
and for obtaining output values. The channel named startActivity_CBA_ is appended to the
diagram name given by name(ad); its type is given by the diagram identifier, the Call Behaviour
Action identifier (natural), and the types of the input activity parameter nodes. The channel
endActivity_CBA_ is similar to startActivity_CBA_, except that it gets values that result
from a Call Behaviour Action execution.

Every object edge of an object flow is a channel whose name is obj_ followed by the
activity name(ad), and an edge index through which the object flows. The type of this channel
is the type of the object flow source.

We introduce channels for the input and the output pins of each action node. Commu-
nication through an input pin uses a channel named in_ followed by the activity name, the
action name and the input pin index. The type is given by the input pin type. Similarly, for
communication through an output pin, we define channels named out_ followed by the same
pattern as for input pins.

Rule 5.4: t ad channels

t_ad_channels(ad: Activity, block: Block): seq of channel =

"interruptActivity_"name(ad)": ID"

"startActivity_"name(ad)": ID"

if (card {param | param in seq ad.Nodes(ActivityParameterNodes.Type)

and param.IncomingEdges.size() == 0 and

param.OutgoingEdges.size() > 0} > 0) then

"*"

end if

sep "*" {t_types(param) | param in seq

ad.Nodes(ActivityParameterNodes.Type) and
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param.IncomingEdges.size() == 0 and param.OutgoingEdges.size() >

0}

"endActivity_"name(ad)": ID"

if (card {t_types(param) | param in seq

ad.Nodes(ActivityParameterNodes.Type) and

param.OutgoingEdges.size() == 0 and param.IncomingEdges.size() >

0} > 0 then

"*"

end if

sep "*" {t_types(param) | param in seq

ad.Nodes(ActivityParameterNodes.Type) and

param.OutgoingEdges.size() == 0 and param.IncomingEdges.size() >

0}

for cba in seq ad.Nodes(CallBehaviour.Type) do

"startActivity_CBA_"name(ad)": ID*nat"

if (cba.IncomingEdges(Object.Type).size > 0) then

"*"

end if

sep "*" { t_types(edge) | edge in cba.IncomingEdges(Object.Type) }

"endActivity_CBA_"name(ad)": ID*nat"

if cba.OutgoingEdges(Object.Type).size > 0 then

"*"

end if

sep "*" { t_types(edge) | edge in cba.OutgoingEdges(Object.Type) }

end for

for edge in seq ad.ActivityEdges do

if edge instanceof ObjectFlow then

"obj_"name(ad)"_"edge.index": " t_types(edge.source)

end if

end for

for action in seq ad.Nodes(Action.Type) do

for inPin in seq action.inputPins do

"in_"name(ad)"_"name(action)"_"inPin.index":" t_types(inPin)

end for

for outPin in seq action.outputPins do

"out_"name(ad)"_"name(action)"_"outPin.index":" t_types(outPin)

end for

end for

The respective CML code generated by Rule 5.4 regarding the additional channels of the
Add and Rem activity diagrams is displayed in the following extract (we assume that the IDs of
the diagrams are their own names):
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channels

...

interruptActivity_Add: ID

startActivity_Add: ID*Item

endActivity_Add: ID

obj_Add_1: Item

in_Add_OpaqueAction1_1: Item

interruptActivity_Rem: ID

startActivity_Rem: ID

endActivity_Rem: ID*Item

obj_Rem_1: Item

out_Rem_rem_1: Item

...

In the next section, we introduce the function to translate a single activity diagram.

5.2.3.2 Single Activity Diagram

The function t_activity_diagram (Rule 5.5) defines the structure of an activity shown
in Figure 5.2 in Section 5.2.1. It gives as results two process definitions. The first process
is produced by t_ad_internal_process and is related to the nodes and edges of an activity
diagram. The second process is named ad_ followed by the name of the activity diagram. It is
parametrised by a block identifier. The process definition is given by a generalised parallelism of
two processes: the one introduced by t_ad_internal_process and the other for Call Behaviour
actions. The diagram that requests an execution of a Call Behaviour action must synchronise in
the channel that allows the Call Behaviour action to start its execution. After this, the action that
was called synchronises with the diagram in a channel to indicate that it has finished. In this way,
the diagram process gets control back. The function t_ad_cba_parallel is used to define the
parallelism of an activity with call behaviour actions. This rule is defined in the Appendix A.1.

Rule 5.5: t activity diagram

t_activity_diagram(ad: Activity, block: Block): seq of program paragraph =

t_ad_internal_process(ad, block)

"process ad_"name(ad)" = val $id: ID @"

"ad_internal_"name(ad)"($id)"

t_ad_cba_parallel(ad, block)

5.2.3.3 Internal Activity Diagram

Rule 5.6 translates the nodes and edges of an activity. The function t_ad_internal_process
takes as arguments an activity and a block. The function introduces a process with name
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ad_internal_ appended with the activity name. It receives the block instance as parameter
and has as state the attribute nTokens that keeps the number of active tokens inside an activity
diagram. Finally, the function t_ad_actions determines the actions used by this process.

Rule 5.6: t ad internal process

t_ad_internal_process(ad: Activity, block: Block): seq of process =

"process ad_internal_"name(ad)" ="

if block != null then

"val $id: ID"

end if

"@ begin

state

nTokens: nat := 0"

t_ad_actions(ad, block)

"end"

The next extract shows the application of Rule 5.6 regarding the Add activity diagram.
The translations of the other diagrams are similar.

...

process ad_internal_Add = val $id: ID @ begin

state

nTokens: nat := 0

actions

...

end

...

The function t_ad_actions (Rule 5.7) receives as arguments an activity and a block
instance. The translation of activity actions is performed by the translation of actions of an
activity diagram that belong to a block and by introducing a CML main action. Notice that the
function t_ad_actions just introduces CML actions, as indicated by the use of the reserved
word actions.

Rule 5.7: t ad actions

t_ad_actions(ad: Activity, block: Block): seq of action =

"actions"

if block != null

t_block_actions(ad, block)

end if

t_main_ad_action(ad,block)

To introduce CML actions that correspond to actions of an activity diagram, we call the
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function t_block_actions (Rule 5.8) that receives an activity and a block instance as arguments.
This function calls other functions to translate activity nodes. The function t_start_activity

introduces a CML action that defines how an activity diagram starts its execution. The CML
action END_DIAGRAM is used by every CML action related to an activity node to synchronise
the termination of the diagram. It communicates via the channel endDiagram that this diagram
has finished and then behaves as Skip. We use the function t_interruptible_regions to
introduce models of interruptible regions. For each node in an activity diagram we select an
adequate function based on the node type. There are separate functions for action nodes, control
nodes, and object nodes. The action Nodes is defined as the alphabetised parallelism of all actions
that correspond to the nodes of an activity diagram. If the activity has parameter nodes, then we
define value-result parameters (vres) for the CML action Nodes so that when such a parameter is
updated by one CML action, the other actions can use this updated value. According to the type of
the node a different function is called to recover the synchronisation alphabet of the node (channel
set): t_channels_action_node for actions, t_channels_control_node for control nodes and
t_channels_object_node for object nodes. These functions return all channels used by each
node in their translations. For example, a control node that has two edges, one incoming and
one outgoing edge both from control flow with indexes 1 and 2, respectively, has the following
channel set as alphabet: {|control.1, control.2|}. The functions t_token_manager is
called to introduce CML actions that establish the termination rules for an activity diagram
according to its active tokens. The function t_interrupt_activity_manager controls the
availability of the diagram to be interrupted by the external environment. Most of the rules
related to the functions called inside Rule 5.8 are presented in Appendix A.1.

Rule 5.8: t block actions

t_block_actions(ad: Activity, block: Block): seq of action =

t_start_activity(ad,block)

"END_DIAGRAM = endDiagram."id(ad)" -> Skip"

t_interruptible_regions(ad,block)

for node in seq ad.Nodes do

switch(node.Type)

case Action.Type: t_action_node(node, ad, block,

node.inInterruptibleRegion)

case ControlNode.Type: t_control_node(node, ad, block,

node.inInterruptibleRegion)

case ObjectNode.Type: t_object_node(node, ad, block,

node.inInterruptibleRegion)

end switch

end for

"Nodes = "
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if (card {param in seq ad.Nodes(ActivityParameterNodes.Type)} > 0) then

"vres " sep ", vres " { name(param)": "t_types(param) | param in

seq ad.Nodes(ActivityParameterNodes.Type) } "@"

end if

define_alphabetised_parallel({

for node in seq ad.Nodes sep ","

switch(node.Type)

case Action.Type:

(name(node)"_"node.index,

t_channels_action_node(node,ad,block,

node.inInterruptibleRegions))

case ControlNode.Type:

("CNode_"node.index,

t_channels_control_node(node,ad,block,

node.inInterruptibleRegions))

case ObjectNode.Type:

if (node.type == ActivityParameterNode.Type) then

("ObjNode_"node.index"("name(node)")" ,

t_channels_object_node(node,ad,block,

node.inInterruptibleRegions))

else

("ObjNode_"node.index,

t_channels_object_node(node,ad,block,

node.inInterruptibleRegions))

end if

end switch

end for

})

t_token_manager(ad,block)

t_interrupt_activity_manager(ad,block)

The next extract shows the application of Rules 5.7 and 5.8 to Add. We assume that the
indices for the opaque action, initial node, decision node, the two activity final nodes, the input
pin and the input activity parameter node are, respectively, 1, 1, 2, 3, 4, 1 and 2. This information
comes from the underlying SysML model.

process ad_internal_Add = val $id: ID @ begin

...

actions

START_ACTIVITY = ...

END_DIAGRAM = endDiagram.[mk_token("Add")] -> Skip

OPAQUEACTION_1 = ...

CNode_1 = ...
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CNode_2 = ...

CNode_3 = ...

CNode_4 = ...

ObjNode_1 = ...

ObjNode_2 = ...

Nodes = (OPAQUEACTION_1 [ {|...|} || {|...|} ]

(CNode_1 [ {|...|} || {|...|} ]

(CNode_2 [ {|...|} || {|...|} ]

(CNode_3 [ {|...|} || {|...|} ]

(CNode_4 [ {|...|} || {|...|} ]

(ObjNode_1 [ {|...|} || {|...|} ] ObjNode_2 ))))))

TOKEN_MANAGER = ...

INT_ACT_MANAGER = ...

...

end

5.2.3.4 Main Action

The function t_main_action (Rule 5.9) introduces the main CML action for an activity.
It receives an activity and a block instance as arguments. The main action is recursive and it is
composed of a block declaration (for variables) and an action. The first variable ($source) is
used to store the entity ID that called the activity in the START_ACTIVITY action. Then, its value is
used in the endActivity channel that represents the return of the activity to the caller. The other
variables have the same name as the activity parameter nodes that are used to hold activity input
or output values. The types of these variables are defined as the types of the parameter nodes.
These variables are assigned default values defined by the function default(t_types(param)).

The action begins with START_ACTIVITY, which represents the beginning of the diagram
and has as start event the channel startActivity_. This action is sequentially composed by
a generalised parallelism of actions Nodes and TOKEN_MANAGER, and interruptible regions (if
they exist in the diagram). The Nodes action synchronises with the TOKEN_MANAGER action on
the channels used to change the number of active tokens (update and clear), to block a CML
action (wait), and to terminate the diagram (endDiagram). The InterruptibleRegions action
has another function to get the channel set of synchronisation (t_chanset_int_regions(ad)),
which returns the channels used in the interruptible region actions.

This parallelism runs until the diagram finishes its execution. Then, the main action
communicates over the channel named endActivity_, appended with the diagram name. The
output data of this channel is defined by the names of the activity parameter nodes that have no
outgoing edges, just incoming edges (output parameter nodes), that is, the return values of the
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activity. After the endActivity is communicated, the main action recurses. The main action
can be interrupted by an external source communicating over the interruptActivity channel.
However, due to its parallelism with the INT_ACT_MANAGER, it is only available according to the
behaviour defined in this latter action. Notice that we use the hiding operation \\ to hide internal
channels in set [name(ad)]_Hidden, so that they are not visible outside the main action.

Rule 5.9: t main ad action

t_main_ad_action(ad: Activity, block: Block): action =

"@

mu X @ ( (dcl $source: ID " { ", "name(param)": "t_types(param) |

param in seq ad.Nodes(ActivityParameterNodes.Type) } "@"

" (

(START_ACTIVITY($source" {", "name(param)| param in seq

ad.Nodes(ActivityParameterNodes.Type) and

param.OutgoingEdges.size > 0 } ")"

";((Nodes"

if (card {param in seq ad.Nodes(ActivityParameterNodes.Type)} > 0)

then

"(" sep "," { name(param)| param in seq

ad.Nodes(ActivityParameterNodes.Type) } ")"

end if

" [|{|update, clear, wait, endDiagram|}|]TOKEN_MANAGER)"

if ad.InterruptibleRegions.size > 0 then

"[|"t_chanset_int_regions(ad, block)"|] InterruptibleRegions);"

else

");"

end if

"endActivity_"name(ad)"!$source" {"!"name(param) | param in seq

ad.Nodes(ActivityParameterNodes.Type) and

param.OutgoingEdges.size() == 0 and param.IncomingEdges.size()

> 0 }

" -> Skip));X /_\ interruptActivity_"name(ad)"?x:(prefix($id,x)) ->

X)"

"[|{|inc,dec|} union {|interruptActivity_"name(ad)".x | x: ID @

prefix($id,x) |}|] INT_ACT_MANAGER) \\ "name(ad)"_Hidden"

Finally, the next extract details the application of Rule 5.9, which represents the main
action of the activity diagram. Here we depict the two main actions of each one of the activity
diagrams Add and Rem. Notice that the Add diagram has an input activity parameter node, and
then a local variable is created (item, same as the name of the node) to store the input data. The
Rem diagram returns an item, which is represented by the local variable of the same name of the
node, as can be seen in the output activity parameter node from Figure 5.4 on page 104.
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...

process ad_internal_Add = val $id: ID @ begin

chansets

...

actions

...

@

mu X @ ( (dcl $source: ID, item: Item := null @ (

(START_ACTIVITY($source,item);((Nodes(item)

[|{|update,clear,wait,endDiagram|}|]

TOKEN_MANAGER));endActivity_Add!$source -> Skip));X /_\

interruptActivity_Add -> X)

[| {|inc,dec|} union {|interruptActivity_Add.x | x:ID @

prefix($id,x)|} |] INT_ACT_MANAGER) \\ Add_Hidden

end

...

process ad_internal_Rem = val $id: ID @ begin

actions

...

@

mu X @ ( (dcl $source: ID, Rem: Item := null @ (

(START_ACTIVITY($source);((Nodes(Rem)

[|{|update,clear,wait,endDiagram|}|]

TOKEN_MANAGER));endActivity_Rem!$source!Rem -> Skip));X /_\

interruptActivity_Rem -> X)

[| {|inc,dec|} union {|interruptActivity_Rem.x | x:ID @

prefix($id,x)|} |] INT_ACT_MANAGER) \\ Rem_Hidden

end

...

We recall that the termination of activities is controlled by the action TOKEN_MANAGER,
which is detailed in Section A.1.5 of Appendix A. For instance, once a final node is reached, it
clears all the tokens that are controlled by the TOKEN_MANAGER and this enables the termination
of the diagram.

The presented set of rules provide mechanisms to represent meaningful activities in CML.
A vast number of constructs is accepted in order to allow very expressive SysML models. Next
we detail some similar works that provide formal semantics to UML/SysML activities.

5.3 Related work

Xu et al. (XU et al., 2008, 2009) formalise UML activity diagrams and define a set of
mapping rules from the formal model for activity diagrams into CSP (HOARE, 1985). They
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introduce a formal meta-model for activity diagrams. This meta-model is given by a tuple of
elements that represent the different nodes of an activity diagram, a set of directed edges, and
the flow relationship between them. Translation functions are defined for each of the constructs,
however, the strategy is not compositional; the activity nodes are not translated independently.
Our semantics does not have this limitation as each node is translated independently of the others.
Some of their mappings differ from ours. For instance, in their work a decision node is mapped
into a guarded event. In our translation, we use Dijkstra’s guarded commands for the translation
of a decision node. The reason is that if two or more guards are true, the edge to be traversed is
non-deterministically chosen. They deal strictly with control flow. There are no mapping rules
for pins. Also, they do not deal with send signal or accept signal actions. They deal with the
beginning of the execution of an activity diagram as an internal choice between initial nodes,
but they do not take into account call behaviour action without incoming edges. They do not
treat different kinds of action, for instance, call operation, call behaviour, and value specification.
Other features of activity diagrams, like accept event action, are translated into CSP.

Table 5.1: Coverage comparison

Xu et al. Abdelhalim et al. Bisztray et al. Our Work
CBA × × × X
IRg X X × X
COA × × × X
OpA × × × X
AEv × X × X
SSA × X × X
VSA × X × X
IN X X X X
FF X X X X
DN X X X X
MN X X X X
FN X X X X
JN X X X X
AFN X X X X
ObjN × X × X
CtrF X X X X
ObjF × × × X
APN × X × X

Source: Author’s ownership.

Abdelhalim et al. (ABDELHALIM et al., 2010) propose the use of a subset of fUML
(Foundational Subset for Executable UML) that is mapped into CSP (HOARE, 1985). Their
focus is on the analysis of dynamic behaviours. As control flow has been addressed by (XU
et al., 2008, 2009); they concentrate on mapping Send Signal action, Accept Event action and
signals (ABDELHALIM et al., 2010). They deal with decision node as an internal choice.
Also, they map expansion regions into CSP processes. They deal with signals by means of an
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asynchronous buffer, whereas in our translation we use a one-place synchronised buffer that
could receive data from an asynchronous buffer. Their communication model allows storing of
signals.

Bisztray et al. (BISZTRAY et al., 2007) define translation rules that relate edges in an
activity diagram to a process in CSP (HOARE, 1985). They do not deal with object nodes or
object flow, just with the translation of control flow. They translate a join node separately from
the fork node. In other words, they have distinct translation rules for these control nodes. A
consequence is that a synchronisation event appears only in the process that reaches the join
node, but not in the parallel operator that is introduced in the fork node. Also, the translation of
the join node results in processes that are not similar: only one will behave as the process after
the join, all the others will terminate in Skip. In our case, we treat each node separately and the
nodes synchronise according to the links between them. We do not have to worry about how
several flows created from a fork node will terminate in nodes that consume tokens (join, flow
final, activity final and output parameter nodes).

Table 5.1 presents a comparison of the coverage of our formalisation with related work.
The left column contains the features we formalised. TheX indicates that the feature is covered
by related work (column), whereas × indicates it is not. We cover the following features: Call
Behaviour Action (CBA), Interruptible Region (IRg), Call Operation Action (COA), Opaque
Action (OpA), Accept Event Action (AEv ), Send Signal Action (SSA), Value Specification
Action (VSA), Initial Node (IN), Flow Final Node (FF), Decision Node (DN), Merge Node (MN),
Fork Node (FN), Join Node (JN), Activity Final Node (AFN), Object Node (ObjN), Control
Flow (CtrF), Object Flow (ObjF), and Activity Parameter Node (APN).
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6
Sequence Diagram

In this chapter we present the CML semantics for sequence diagrams. This kind of
diagram is used for describing scenarios of the system in terms of block instances and the
messages exchanged between them. It has a distinct characteristic of representing interactions
between blocks.

This chapter is organised as follows. Section 6.1 gives an overview of the translation of
sequence diagrams. Our rules for sequence diagrams are presented in Section 6.2. Related work
is presented in Section 6.3.

6.1 Overview

A sequence diagram is defined in terms of a CML process. Figure 6.1 shows how the
semantics of sequence diagrams is captured by CML elements. Each lifeline is represented
by a CML action defined by the sequential composition of other CML actions that represent
fragments that happen in the lifeline: message occurrences, combined fragments, state invariants
and interactionUse elements.

The CML process that models a sequence diagram is parametrised by the identifiers (of
type ID) of the block instances that either are used in a lifeline or send messages through gates.
This makes the model of the diagram as generic as the diagram itself, which is valid for any
instances of the block types used in the diagram.

Each message exchange is represented in CML by two communications, one correspond-
ing to the point where the message is sent and another to the point where it is received. The
channels used are mOP and mSIG. They are similar to op and sig presented in Chapter 4 except
that they carry one extra information on the channel regarding the event type of the message,
which can be s for a sending event, or r for a receiving event. Another difference is the meaning
of the index of the message. While in the op and sig channels they are used for differing
messages with the same signature, for the mOP and mSIG channels, this value is used to uniquely
identify each message inside the sequence diagram. This difference is irrelevant when relating
the events because it is used for maintaining internal consistency of the models. That is why
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Figure 6.1: Semantic representation of sequence diagrams in CML.

Source: Author’s ownership.

these values are hidden in the complete model, as discussed in Chapter 8.
However, changing the message exchanging mechanism has impacted the definition of

the semantics in comparison with the other diagrams. One of them requires an internal entity
to control the flow of messages between the lifelines because we now differentiate the sending
and receiving of messages. Also, the asynchronous nature of the sending and receiving of the
messages requires an intermediate component to model the environment through which the
messages flow. This component is modelled as a CML action called MessagesBuffer.

The MessagesBuffer action coordinates the message exchanging between lifelines by
relaying messages from one lifeline to another. For each message there is a CML action that
synchronises on a sending event of the sender then communicates the receiving event with
the receiver. The behaviour of the MessagesBuffer is the interleaving of all these message
communications.

In the case of a synchronous message, the sending communication is followed by the reply
communication, so that the sender stays blocked until the reply is received. For asynchronous
messages, the sender is ready to proceed after the sending communication.

The main action of the sequence diagram CML process composes in parallel the lifeline
actions together with the MessagesBuffer action.

Next, we detail the translation rules for sequence diagrams.
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6.2 Formal semantics

Concerning the translation rules, Rule 6.1 is the root function that translate all sequence
diagrams. The function t_sequencediagram defines the translation of a set of sequence dia-
grams. First it defines the internal control channels used by the sequence diagram processes and
the channel set used to hide these channels from external entities processes. Other channel sets
are defined for the synchronisation channels of each lifeline. These channel sets are composed
by the events used inside the lifeline actions. Next, the process for each sequence diagram is
defined in terms of two other functions.

Rule 6.1: t sequencediagram

t_sequencediagram(sds: set of Interaction): seq of program paragraph =

"channels

join, break, interrupt: nat

strict: nat.nat

beginCR, endCR: nat

startRef, endRef: nat

beginInteraction, endInteraction: ID

inv, block: ID

gate_ev: ID.ID.MSG"

"chansets

Hidden = {|join, break, invalid_trace, endInteraction,

strict, beginCR, endCR|}"

for sd in sds do

for lf in seq sd.Lifelines do

name(sd)"_cs_"t_lifeline_name(lf)" =

"lf_channels(lf.InteractionFragments, lf)

end for

name(sd)"_Events = " sep "union" {name(sd)"_cs_"t_lifeline_name(lf)

| lf in seq sd.Lifelines}

end for

let generated = {} within

for sd in sds do

t_create_sd_process(sd,generated)

end for

end let

If the diagram has interactionUse elements, we need to generate the interactions that
are referred by them. For that, we use generated inside the function t_create_sd_process to
store which interactions have been generated to avoid the generation of duplicated processes.
Any sequence diagram referred by an interactionUse element is translated first. It is important to
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note that there can be no mutual dependencies, via interactionUse elements, in the construction
of sequence diagrams. This possibility is not explicitly ruled out in SysML, but it is in our
guidelines as discussed in Chapter 3.

Similarly to activities, a sequence diagram is translated in terms of a internal process and
a main process that composes in parallel its internal process with the other processes related to
sequence diagrams referred by interactionUse elements. The function t_create_sd_process is
defined in the Appendix A. It defines the processes for all sequence diagrams invoking function
t_simple_sd, which is also defined in Appendix A. The latter defines the process for the
internal representation of a sequence diagram. Along the definition of this process function
t_sd_actions is invoked to provide the CML actions of a sequence diagram as presented next.

Rule 6.2 presents the actions that are defined in the internal representation of a sequence
diagram. We define CML actions for each lifeline in t_lf_interaction_fragments. The Loop
combined fragment requires repetition, which is translated to CML in terms of recursion. Thus,
we have to define the CML action that recurses separately in the function t_loop_actions.
The break and the critical combined fragments also require the definition of auxiliary actions,
which are defined by functions t_critical_actions and the BREAK action. The latter simply
waits for break events to fire the interruption of the enclosing operand of the break fragment
communication the interrupt event, and when the interaction terminates then this action
also terminates because they synchronise on the endInteraction event. Finally, functions
t_messages_buffer and t_main_action specify an auxiliary action to control message events
and the main action of the sequence diagram process, respectively.

Rule 6.2: t sd actions

t_sd_actions(sd: Interaction): seq of program paragraph =

"actions"

for lf in seq sd.Lifelines do

"lf_"t_lifeline_name(lf)" =

"t_lf_interaction_fragments(lf.InteractionFragments, lf)

if lf.hasLoopFragments() then

t_loop_actions(lf.getLoopCombinedFragments, lf)

end if

end for

if sd.hasCriticalFragments() then

t_critical_actions(sd.getCriticalCombinedFragments, sd)

end if

if sd.hasBreakCombinedFragment() then

"BREAK = (break?i -> interrupt!i -> BREAK)

[] (endInteraction.sd_id -> Skip)"

end if

t_messages_buffer(sd)
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t_main_action(sd)

We use the example shown in Figure 6.1 to illustrate the Rule 6.2. This diagram has
two lifelines x of block A and y of block B, hence, we define CML actions for each lifeline. As
it does not have break, loop nor critical combined fragments, their respective auxiliary CML
actions are not generated in this process. As illustrated in Figure 6.1, we define a CML action
for the MessagesBuffer. All these actions are used in the main action, which is added after the
@ character. We omit the generated CML for this action now because it is detailed further in
Rule 6.9.

...

process sd_internal_example = val sd_id: ID, xA_id: ID, yB_id: ID @

begin

actions

lf_xA = ...

lf_yB = ...

MessagesBuffer = ...

@ ...

end

...

Next, we detail the translation of a lifeline.

6.2.1 Lifeline

A lifeline represents the execution of a sequence of events of the block it represents. The
elements that appear along the lifeline vertical axis are the interaction fragments. Figure 6.2
illustrates a lifeline and its interaction fragments (X1, X2, ..., Xn). Interaction fragments can be
message occurrences, combined fragments, interaction use and state invariants. These elements
must occur in a top-down order along the vertical axis, however, this order can be diverted by the
use of combined fragments like break.

Rule 6.3 shows how we represent a lifeline in CML. We sequentially compose each one
of the possible occurrences in a lifeline. The interaction fragment related to the occurrence
is translated by invoking the corresponding translation function: t_message for a message
occurrence, t_combined_fragment for combined fragments, t_state_invariant for state
invariants and t_interaction_use for interaction use elements. If we have break combined
fragments among the sequence of interaction fragments translated, then we have to add the
possibility of interruption, which is translated using the interruption operator of CML /_\ and
the event interrupt.
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Figure 6.2: Illustration of a lifeline.

...
...

X1

X2

Xn

...

Source: Author’s ownership.

Rule 6.3: t lf interaction fragments

t_lf_interaction_fragments(ifs: seq of InteractionFragment, lf:

Lifeline): action =

"("

for intf in seq ifs sep ";" do

"("

switch(intf.Type)

case MessageType: t_message(intf)

case CombinedFragmentType: t_combined_fragment(intf, lf)

case StateInvariantType: t_state_invariant(intf, lf)

case InteractionUseType: t_interaction_use(intf)

end switch

")"

end for

")"

for intf in seq ifs do

if intf.Type == CombinedFragmentType and intf.cfType == BREAK.Type

then

"/_\ interrupt."intf.index" -> Skip"

end if

end for

The next extract shows an example of the CML actions for the lifelines shown in
Figure 6.1. Both have two main occurrences: the synchronous message m1 and the alternative
combined fragment. The latter is divided in two operands with other message occurrences.
Therefore, the corresponding CML action is divided in two groups one for each occurrence.
Each group is enclosed by parentheses and they are sequentially composed. We use ellipses to
represent the content of each occurrence because they are detailed in other rules.

...

lf_xA = ((...);(...))
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lf_yB = ((...);(...))

...

6.2.2 Messages

We provide the semantics for synchronous and asynchronous messages. Synchronous
messages are operation calls and they are composed of two events: the call to the operation and
the reply to the call. They are modelled exactly as described in Section 4.2 of Chapter 4 with the
addition of the event type of the message (sending or receiving event). Thus, events with names
suffixed by _I corresponds to the input of the operation call while events with names suffixed
by _O represent the output of the call, in other words, the reply to the call. For simplicity, we
consider that all operation calls have reply messages as they are synchronous.

Rule 6.4 shows the semantics for synchronous calls. If the message occurrence is
a sending event, then we call function t_statecopy to retrieve all attributes of the block
because they can be used as arguments of the message. Next, we generate the sending event
mOP.s with similar values as described for operation events in Chapter 4. Each message in the
interaction is indexed by a natural number (mos.Message.index). We use the auxiliary function
t_idMessageEnd to provide the proper identifier value given the message end be either a lifeline
or a gate. The latter case may happen when a message crosses an interactionUse element. In this
case, the referred diagram has messages starting at the borders of the diagram and these points
are called gates. For instance, the messages transmitPack() of the sequence diagram shown in
Figure 2.10 on page 32 have gates as one of their message ends.

The sending event is followed by the receiving event mOP.r with a similar event structure.
The receiving event is fired by another lifeline that replies to the call, hence, this lifeline receives
the parameter out, which is the reply to the call. When the message occurrence is the receiving
event, then the receiving lifeline just synchronises on the receiving event of the operation.
Differently from the sender lifeline, the receiving lifeline can exchange messages before replying
to the synchronous call. Note that this is the receiving event of the first part of a synchronous call,
therefore, we use mOP.r. The reply call also has two events, one for sending the reply, which is
shown in Rule 6.5, and another for receiving, which we presented as the second event in the if
compartment of Rule 6.4.

Figure 6.3 illustrates a synchronous message from lifeline of a block A to lifeline of block
B. Rule 6.4 covers the message ends 1, 2 and 3. While Rule 6.5 details the event at message end
4.
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Figure 6.3: Illustration of a synchronous message.

Source: Author’s ownership.

Rule 6.4: t synch call

t_synch_call(sd: Interaction,mos: MessageOccurrenceSpecification, sender,

receiver: MessageEnd): action =

if mos.isSendEvent() then

t_statecopy(receiver.represents, mos.Message)

name(receiver.represents)"_mOP.s."mos.Message.index"."

t_idMessageEnd(sender,sd)"."t_idMessageEnd(receiver,sd)"!

mk_"mos.Message.signature"_I(

mk_token(\""mos.Message.signature"_I\")"

sep "," mos.Message.Arguments") ->

"name(receiver.represents)"_mOP.r?n."

t_idMessageEnd(sender,sd)"."t_idMessageEnd(receiver,sd)"?out:(

out.$id in set "name(receiver.represents)"_O and out.$id = mk_token(

\""mos.Message.signature"_O\"))) -> Skip"

else

name(receiver.Lifeline.represents)"_mOP.r?n."

t_idMessageEnd(sender,sd)"."t_idMessageEnd(receiver,sd)"?oper:(

oper.$id in set "name(receiver.Lifeline.represents)"_I and

oper.$id = mk_token(\""mos.Message.signature"_I\") -> Skip"

end if

Rule 6.5 shows the event of sending the reply event from the receiver lifeline. This event
uses the mID variable declared and assigned in Rule 6.4.

Rule 6.5: t reply call

t_reply_call(sd: Interaction,mos: MessageOccurrenceSpecification, sender,

receiver: Lifeline): action =

if mos.isSendEvent() then

t_statecopy(receiver.represents, mos.Message)

name(receiver.represents)"_mOP.s."mos.Message.index"."

t_idMessageEnd(sender,sd)"."t_idMessageEnd(receiver,sd)"!

mk_"mos.Message.signature"_O("

mk_token(\""mos.Message.signature"_O\")"sep ","
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mos.Message.Arguments") -> Skip)"

end if

The following extract shows the CML content of the synchronous message m1 depicted
in Figure 6.1. Firstly, the lifeline lf_xA declares the event of sending message m1. Before
declaring the event, it invokes function t_statecopy in order to get the values of attributes of
block x. In this case, there is only one attribute (i). Next, it defines the event of sending message
m1 to other lifeline B_mOP.s.1.xA_id.yB_id!mk_m1_I(mk_token("m1_I")), where s is the
mark for a sending event, 1 is the index of the message, xA_id is the identifier of the source
block, yB_id is the identifier of the target block, and mk_m1_I creates a record type for the first
event of a synchronous call m1 (_I). This event is followed by the receiving of the reply event
B_mOP.r?n.xA_id.yB_id?out, where out is a record type whose field $id is part of the reply
events of block B (B_O) and its content is m1_O. After these events, the lifeline has a combined
fragment whose content is omitted for now ((...)).

The CML action of the second lifeline lf_yB has the complementary behaviour regarding
message m1. Its first events is the receiving (.r) of the synchronous call (m1_I) and its second
event is the sending (.s) of the reply (m1_O). We also omit the content of the combined fragment
for now.

...

lf_xA = ((

(dcl x_i: int @ (A_get_i.xA_id^[mk_token("m1")].xA_id?x -> x_i := x);

B_mOP.s.1.xA_id.yB_id!mk_m1_I(mk_token("m1_I")) ->

B_mOP.r?n.xA_id.yB_id?out: (out.$id in set B_O and

out.$id = mk_token("m1_O")) ) -> Skip);(...))

lf_yB = ((

B_mOP.r?n.xA_id.yB_id?oper: (oper.$id in set B_I and

oper.$id = mk_token("m1_I")) -> Skip;

Skip;B_mOP.s.2.xA_id.yB_id!mk_m1_O(mk_token("m1_O")) -> Skip);

(...))

...

Regarding asynchronous calls, they are modelled in CML in terms of signals. We use the
corresponding signal event as described in Section 4.2. As explained earlier, while the sender
lifeline is blocked waiting for the reply event for operation calls, it is ready to proceed to the
next event of the lifeline after sending a signal.

Figure 6.4 shows an example of an asynchronous message. Events for sending and
receiving an asynchronous message are detailed in Rule 6.6. The events are similar to the
synchronous message. The channel used is mSIG, and the record types of the message are
appended with _S.
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Figure 6.4: Illustration of an asynchronous message.

Source: Author’s ownership.

Rule 6.6: t asynch call

t_asynch_call(sd: Interaction,mos: MessageOccurrenceSpecification,

sender, receiver: Lifeline): action =

if mos.isSendEvent() then

t_statecopy(receiver.represents, mos.Message)

name(receiver.represents)"_mSIG.s."mos.Message.index"."

t_idMessageEnd(sender,sd)"."t_idMessageEnd(receiver,sd)"!mk_"

mos.Message.signature"_S(mk_token(\""mos.Message.signature"_S\")"

sep "," mos.Message.Arguments") ) -> Skip"

else

name(receiver.represents)"_mSIG.r?n."t_idMessageEnd(sender,sd)"."

t_idMessageEnd(receiver,sd)"?signal: (signal.$id in set "

name(receiver.represents)"_S and signal.$id = mk_token(

\""mos.Message.signature"_S\")) -> Skip"

end if

The following extract shows the CML code of asynchronous message m2 shown in
Figure 6.1 for both lifelines. Similarly to the operation, it first recovers the values of attributes,
and then it communicates the sending event of the signal. The differences when compared to
the events of the operation m1 are: the name of the channel B_mSIG, the index of the message
(3), and the record type used (mk_m2_S(mk_token("m2_S"))), which corresponds to the signal
event m2. Regarding the receiving event, now the channel only communicates events whose
record types identifiers are in the set of signals of block B (B_S) and that match the name m2_S.

...

lf_xA = (...

(dcl x_i: int @ (A_get_i.xA_id^[mk_token("m1")].xA_id?x ->

x_i := x);

B_mSIG.s.3.xA_id.yB_id!mk_m2_S(mk_token("m2_S")) -> Skip)

...)

lf_yB = (...

B_mSIG.r?n.xA_id.yB_id?signal: (signal.$id in set B_S and

signal.$id = mk_token("m2_S")) -> Skip

...)
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...

6.2.3 Combined fragments

Since UML 2, the flow of messages in a sequence diagram can be described using
operators (called combined fragments) in order to express more complex traces of messages.
Combined fragments can alter the interpretation of the flow according to the operator used. We
provide the semantics of the following combined fragments: parallelism (PAR), alternatives
(ALT), option (OPT), strict order (STRICT), loops (LOOP), break of flow (BREAK), and critical
region (CRITICAL). To illustrate their semantics, we show the representation of the alternatives
combined fragment. The remaining operators are discussed in the Appendix A.

Figure 6.5 shows a generic alternative combined fragment for a lifeline. Although
combined fragments usually span over several lifelines, we translate each lifeline separately in
terms of its occurrences, as shown in Rule 6.3. In this example, the operands of the fragment are
X1, X2, ..., Xn and Xelse. Each operand can have message events and other fragments inside.
The guards of the operands are C1, C2, ..., Cn, respectively. If none of these guards yields true,
then the Xelse operand should be performed. The else guard is optional in this type of fragment.
If none of the operands has a guard that evaluates to true, none of the operands are executed and
the remainder of the enclosing fragment is executed.

Figure 6.5: Illustration of an alternative combined fragment for a lifeline.

Source: Author’s ownership.

For operators that require the evaluation of guards (ALT, LOOP, OPT, BREAK), before
the evaluation of the guard, each CML action of a lifeline involved in the fragment gets the value
of attributes of the blocks involved in the diagram using function t_statecopy (Rule A.6), which
uses the get_ channels as described in Chapter 4. Also, they synchronise on these channels to
make all of them get the same state at the same time. Otherwise, they could get these values in
different times, which could result in an inconsistent evaluation because the values could change
during this time lapse.
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Rule 6.7 shows the translation functions for alternatives. They are translated as a nested
if-then-else statement where each operand is an if statement. When the constraint is true, the
operand is executed. When more than one constraint is true, the first one is executed. When
the operands have no guards, a non-deterministic choice is performed in order to decide which
operand should be executed.

Rule 6.7: t alt combined fragment

t_alt_combined_fragment(alt: CombinedFragment, lf: Lifeline): action =

if alt.OperandsHaveGuards then

for operand in seq alt.Operands do)

t_statecopyConstraint(operand.Constraint, alt)

end for

for operand in seq alt.Operands sep "else" do

if operand.InteractionConstraint != "else" then

"if "operand.InteractionConstraint.specification" then"

t_lf_interaction_fragments(

operand.InteractionFragmentsFromLifeline(lf), lf)

else

t_lf_interaction_fragments(

operand.InteractionFragmentsFromLifeline(lf), lf)

end if")"

end for

else

"(" sep "|~|" {t_lf_interaction_fragments(

op.InteractionFragmentsFromLifeline(lf), lf)

|op in seq alt.Operands}")"

end if

The following extract shows the CML generated from the alternative combined fragment
displayed in Figure 6.1. Both lifelines get the same value of the attribute in order to evaluate the
constraint of the combined fragment. We guarantee that they acquire the same value because they
also synchronise on this event. Then, if the constraint yields true, then the behaviour referred for
message m2 in each lifeline (as shown in the previous extract) should be performed, otherwise,
the content for message m3 is executed.

...

lf_xA = (...

(dcl x_i: int @ (A_get_i.xA_id^[mk_token("m1")].xA_id?x -> x_i := x);

(if x_i <= 10 then

(B_mSIG.s.3.xA_id.yB_id!mk_m2_S(mk_token("m2_S")) -> Skip)

else

(A_mSIG.r?n.yB_id.xA_id?signal: (signal.$id in set A_S and

signal.$id = mk_token("m3_S")) -> Skip)

))
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)

lf_yB = (...

(dcl x_i: int @ (A_get_i.xA_id^[mk_token("m1")].xA_id?x -> x_i := x);

(if x_i <= 10 then

(B_mSIG.r?n.xA_id.yB_id?signal: (signal.$id in set B_S and

signal.$id = mk_token("m2_S")) -> Skip)

else

((Skip;A_mSIG.s.4.yB_id.xA_id!mk_m3_S(mk_token("m3_S")) -> Skip))

))

)

...

6.2.4 State invariant

Besides combined fragments, we also defined rules for state invariants, which are con-
straints evaluated along a lifeline that determines if the trace should be valid or not. These
mechanisms can be used to verify properties of the system along a scenario. Figure 6.6 illustrates
a state invariant along a lifeline. Unlike combined fragments, state invariants are linked to one
lifeline. The semantics of this construct states that when the flow of events arrives in the state
invariant, its constraint is evaluated. In case it yields false, the current trace should be considered
invalid, otherwise, nothing happens.

Figure 6.6: Illustration of a state invariant.

Source: Author’s ownership.

Rule 6.8 details the translation of state invariants. As a constraint needs to be evaluated,
the t_statecopy function is invoked to collect the values of the attributes used in the constraint.
If the constraint of a state invariant yields false, a synchronisation on the extra channel inv,
which is used specifically in our semantics for sequence diagrams, marks an invalid scenario.
This notion of marking a scenario that is not valid is important for validation purposes. Traces
with such an event cannot be refined as it is an specific event of this type of diagram and does
not exist in the traces of the system model. More details regarding this verification strategy and
examples of application of this constructor are detailed in Chapter 8.
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Rule 6.8: t state invariant

t_state_invariant(si: InteractionFragment, lf: Lifeline): action =

t_statecopy(lf.represents, si)

"if "si.InteractionConstraint.specification" then

Skip)"

"else

inv.sd_id -> Skip)

6.2.5 Main action

Once all lifelines have been translated, they are composed in parallel in the main action
of the sequence diagram. Rule 6.9 describes the content of the main action of a sequence diagram
process. A sequence diagram starts with the communication of the event beginInteraction.
Next, the flow of events is represented by a parallelism of the actions of the lifelines and
the composition of this parallelism with the MesssagesBuffer action, which simulates the
environment that the messages are transmitted. This action acts as a relay that receives a sending
message event from a sender lifeline (.s) and communicates the corresponding receiving event
to the receiver lifeline (.r). Other parallelism may exist according to the existence of break and
critical combined fragments. BREAK and CRITICAL are auxiliary actions that may control the
flow of messages according to the rules of their respective fragments. The former may interrupt
the trace of a sequence diagram, while the latter may restrict parallel flows along a sequence
diagram.

Rule 6.9: t main action

t_main_action(sd: Interaction): action =

"@"

"((( beginInteraction.sd_id -> (("define_alphabetised_parallel(

{(t_lifeline_name(s), name(sd)"_cs_"t_lifeline_name(s))|

s in set sd.Lifelines})

");;endInteraction.sd_id -> Skip [|{|endInteraction.sd_id"

sep "," {name(block)"_mOP, "name(block)"_mSIG" |

block is lf.represents, lf in seq sd.Lifelines}

" |}|] MessagesBuffer))"

if sd.existsBreakCombinedFragment() then

"[|{|break, interrupt, block, endInteraction|}| ] BREAK"

end if

")"

if sd.existsCriticalFragments() then

"[|"name(sd)"_Events|] CRITICAL"

end if

")\\ Hidden"
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The next extract show the main action of the CML process for the sequence diagram
displayed in Figure 6.1. It first communicates the event beginInteraction to signalise the begin-
ning of the interaction. Next, it composes in alphabetised parallelism both lifelines. The alphabets
of the lifelines xA and yB are detailed in the channel sets example_cs_xA and example_cs_yB,
respectively. This parallelism is composed in parallel with the MessagesBuffer action, which
controls the message exchanging between the lifelines. It simply synchronises with the lifelines
on sending events and then communicates the respective receiving event for each message
in the interaction. Finally, once the flow of events terminates, this action communicates the
endInteraction event to represent the termination of the interaction. This process hides the
channels that are used for internal control of the sequence diagram semantics. These channels
are listed in the channel set Hidden.

...

process sd_internal_example = val sd_id: ID, xA_id: ID, yB_id: ID @

begin

actions

lf_xA = ...

lf_yB = ...

MessagesBuffer = ...

@ ((( beginInteraction.sd_id ->

((lf_xA [{|example_cs_xA|} || {|example_cs_yB|}] lf_yB )

[|{| B_mOP,B_mSIG,A_mOP,A_mSIG |}|]

MessagesBuffer);endInteraction.sd_id -> Skip))) \\ Hidden

end

...

The rules for the remaining constructors of our semantics for sequence diagrams are
presented in Appendix A.2. Next we present other formal semantic definitions for sequence
diagrams and we compare them in terms of the number of constructs provided.

6.3 Related work

There are numerous works providing semantics for sequence diagrams; most of them are
related to UML instead of SysML. As they have the same semantics, the work done for UML fits
well for SysML sequence diagrams. Usually there are two kinds of approaches: (i) the definition
of a semantic model to formalise diagrams (LI et al., 2004; SHEN et al., 2008), and (ii) the
translation to an existing formalism such as Z, B, CSP, and Petri-Nets (EICHNER et al., 2005;
RASCH; WEHRHEIM, 2005; DAN; DANNING, 2010). The main advantage of the latter is
the existing tool support used to apply reasoning on the translations. Few related works allow
the check of the consistency among diagrams. This is extremely relevant to us as one of our
objectives is to provide such consistency verification across the various SysML diagrams.
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Storrle presents an exhaustive work on formalising sequence diagrams using trace
semantics (STORRLE, 2004b). Many constructs used in UML 2, including combined fragments,
are covered. Storrle’s semantics allows one to reason about refinement, concurrency and time
restrictions. Some basic features are not covered such as Gates and arguments. Haugen et al.
present another work that covers some of the Sequence Diagram elements we are interested
in (HAUGEN et al., 2005). They also propose an approach based on a trace semantics in which
refinement is used as a foundation for compositional analysis, verification and testing. Lund
gives an operational semantics for the Haugen’s denotational semantics (LUND, 2007). In both
semantics, loop with constraints and the BREAK fragment are not covered.

Although the approaches by Storrle and by Haugen et al. do not use a semantic model
similar to CML, they are inspiring works as they provide some important discussions over
complete and partial traces, global versus local view, and so on.

Dan and Danning (DAN; DANNING, 2010) present an approach to semantic mapping
specified using the language QVT (OMG, 2005) relations to CSP (HOARE, 1985). Their
approach uses a notation similar to CML, so we could benefit from some of the ideas of their
work. However, very few constructs of UML 2 are covered.

Cavarra and Bowles proposed a technique using Object Constraint Language (OCL)
templates to express liveness properties in UML sequence diagrams (CAVARRA; BOWLES,
2005). They give examples showing that certain liveness properties cannot be expressed with
assert or negate. Abstract state machines are used to enrich the sequence diagram in order to
express such properties.

Cengarle et al. gives an operational semantics for sequence diagrams (CENGARLE
et al., 2005). The authors define a semantic of negative fragments. Rules are given for each of
the operators specifying whether a trace positively or negatively satisfies a fragment with that
operator. The authors point out that with the basic interpretation of negative fragments it is easy
to construct overspecified Interactions, i.e., an Interaction that can be positively and negatively
satisfied from the same trace.

Knapp and Wuttke provide an operational semantics based on automaton (KNAPP;
WUTTKE, 2007), while Eichener et al. use multivalued nets, which are a specific kind of Petri
nets that allow parametrisation of messages and interactions (EICHNER et al., 2005). However,
the latter does not provide enough information about the formalisation of some constructs. The
intuitions are only described textually.

Shen et al. propose a formalisation using template semantics for UML 2 Sequence
Diagrams (SHEN et al., 2008). The approach gives an operational semantics for which the basic
computation model is hierarchical transition systems (HTS).

Most of these works differ regarding three main aspects: the number of constructions
they cover, the semantics of constructions whose official meaning is vaguely defined, and
the semantic domain used to formalise the semantics. The interesting aspect to notice is that
when defining a semantics for sequence diagrams, some semantic decisions must be taken in
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Table 6.1: Coverage comparison

IU GD PA ST AL OP LP BK CR SI As Gt
Storrle X × X X X X X X X × X ×
Haugen et al. X X X X X X X × × X X X
Cavarra and Bowles × X X X X × × × × X X ×
Dan and Danning × X × X X X X × × × X ×
Cengarle × × X X X X X × × × X ×
Knapp and Wuttke × X X X X X X × × X X ×
Eichner et al. X X X X X X X X X X X X
Shen et al. X X X × X X X X X × X ×
Our work X X X X X X X X X X X X

Source: Author’s ownership.

order to allow its use. Micskei and Waeselynck have provided an excellent survey on these
semantic choices (MICSKEI; WAESELYNCK, 2011). We developed our work according to
their classification and categorisation of semantic meanings for sequence diagrams. Whenever
the meaning of an operator is vaguely defined, we have chosen one that is more convenient for
modelling and for checking diagram consistency. For instance, the choice on synchronisation
before evaluating guards of combined fragments in order to avoid inconsistency, and the unique
identification of the messages.

Table 6.1 presents a comparison (partially based on (MICSKEI; WAESELYNCK, 2011))
of the coverage of our formalisation with some of available literature. The left most column
contains the features that we cover: interactionUse (IU), Guards (GD), the CombinedFragments
for parallel (PA), strict sequencing (ST), alternatives (AL), option (OP), loop (LP), break (BK),
critical region (CR). Moreover, other elements like state invariant (SI), asynchronous message
(As) and gates (Gt) are compared for coverage. TheX indicates that the feature is covered by
the work on the column, and × indicates it is not.

As far as we know none of these works aim to perform consistency verification among
structural and behavioural diagrams.

As for the other diagrams, we propose a set of rules covering a large number of constructs
in order to provide to users a language expressive enough for creating their models. The remaining
rules for sequence diagrams are presented in Section A.2 of Appendix A.
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7
Model Integration

Whilst a SysML model can be visualised via diagrams, its actual representation is a set
of interconnected elements that respect the metamodel specified in by the OMG (OMG, 2012,
2011). For instance, a block definition diagram is not stored explicitly in the SysML model; it is
just a means of declaring the blocks that form the model. Furthermore, different diagrams may
contribute to the same model element. For example, if a block definition diagram introduces a
block B with a property n, and an internal block diagram adds a port p to the block B, in the
model, B contains both the property n and the port p.

Accordingly, a SysML model that follows our guidelines is, essentially, a collection
of blocks, state machines, activities and interactions (visualised by sequence diagrams). The
parts of composite blocks are structured using connectors, simple blocks have state machines
specifying their behaviours, operations are specified either by the block’s state machine or by an
associated activity, and activities and state machines use CML data operations.

Typically, a model contains several simple and composite blocks as components, and the
system as a whole is modelled by a block. Since the CML construct used to represent systems
and their components is a process, then blocks, state machines, activities and ports are modelled
as CML processes.

The services defined by a SysML model are the operations, signals and public attributes
of its blocks. These are all represented in CML by channels that model the system communication
with the environment.

In this section, we present our approach to define the CML model that corresponds to a
SysML model integrating several elements as described above. We first address in Section 7.1
the case of a system defined just by one simple block; we call such basic models non-hierarchical.
The abstract model of the leadership election protocol is an example of a non-hierarchical model.
Models containing several simple blocks can be handled by translating each block (and its
associated diagrams) in isolation. Next, we explain how our approach extends to consider the
integration of diagrams in hierarchical models, which include composite (as well as simple)
blocks. The modelling approach in this case builds on that for non-hierarchical models. Finally, in
Section 7.3, we discuss the models related to sequence diagrams, and how they define properties



7.1. NON-HIERARCHICAL MODELS 137

Figure 7.1: The integration points of the semantics of a single block.

Source: Author’s ownership.

of the overall model of a system.

7.1 Non-hierarchical models

Figure 7.1 gives an overview of the CML models that we use to capture the semantics
of SysML models containing a single simple block. They are defined by a composition of
interacting processes, each of which models the individual elements of the SysML model.

Figure 7.1 depicts these processes as nodes. The required cooperation between them is
depicted as lines. The complete model is defined by the parallel composition of the processes,
which synchronise on the channels indicated in Figure 7.1 as the labels of the lines. This
modelling strategy allows diagrams to be modelled and analysed independently.

The services of a SysML block are characterised by its operations, signals, and attributes.
The interface of these services are represented in CML by channels, which in turn define the
interface of the process that models the block. In the previous chapters we presented channels
that represent operation calls, signal transmissions, and get and set operations that allow access
to attributes. We also introduced other channels that support the evaluation by state machines
and activities of a SysML event, which can be related to an operation call or a signal reception.

A state machine accepts requests to process operations and signals of its block. So, the
interface of the CML process of a state machine includes two types of channels: a channel
that accepts a request to react to events corresponding to an operation call or a signal reception



7.1. NON-HIERARCHICAL MODELS 138

and another to provide responses regarding the realisation of the event. For instance, in the
CML model of the example displayed in Figure 2.5 (on page 27), the communications between
the Device block and its state machine happen through the channels Device_inevent and
Device_consumed. In general, as shown in Figure 7.1, a channel B_inevent is used by the
block process B to send an event to be processed by the state machine, and B_consumed is used
by the state-machine process to indicate the result of evaluating such an event.

Additionally, in order to handle these SysML events, the state machine may access the
block’s attributes. This interaction between a block B and a state machine S1 is represented
by the channels B_get_A and B_set_A shown in Figure 7.1. They allow the state machine
to read from and write to the attribute A of B. For example, in Figure 2.5 (on page 27) the
Device state machine accesses the block’s attributes in the action petition:=petition-1. In the
corresponding CML process, these attribute accesses are carried out through the channels
Device_get_petition and Device_set_petition.

A state machine can also call operations and send signals to its block. This is achieved
via the channels B_op and B_sig shown in Figure 7.1 for communication between B and S1. In
general, these channels can be used by the environment to request the services of a block. Such
services can also be requested by other blocks, state machines, or activities.

We observe that the channels detailed so far are in the interface of both the block and the
state machine processes. This ensures that when they are composed in parallel, the block process
can send events to be treated by the state machine process and, similarly, the state machine can
request services of the block.

The interface of a CML process that models an activity contains channels that can be
used to start the execution of the activity, interrupt it, signal its termination, call other activities,
wait for another activity termination, access block operations, signals and attributes, and check
the occurrence of an event in a block. For instance, the state machine LeadershipElection in
Figure 2.5 (on page 27) calls the activity ActBroadcast with Leader as a parameter. This is
modelled by communications on the channels startActivity_ActBroadcast, for initialisation,
interruptActivity_ActBroadcast, for interruption, and endActivity_ActBroadcast, for
termination.

Activities can also interact with a block to access its attributes, send signals, and call
operations. In CML, these interactions take place using the same channels used by state machines
as described above. As shown in Figure 7.1, the process for an activity A1 interacts with a block
B via the channels B_hasevent and B_getevent to search and obtain events from the block. We
remind that these events are used by the activity to verify the availability of a certain event in the
event pool of the block and to consume an event of the pool, respectively. The channels B_op
and B_sig access operations and signals of the block, B_get_A and B_set_A access an attribute
A, and startActivity_A1 and endActivity_A1 allow the block to call the activity and wait
for its termination. Additionally, an activity may call another activity A2 through the channels
startActivity_A2, endActivity_A2 as defined in Chapter 5 by using the call behaviour action
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constructor. Another possibility is the activity A1 starting the activity A2 and the block B starting
A2 too. This is feasible because the block B and activity A1 manipulate different instances of the
process for activity A2.

The interface of a port p1 has channels that allow sending and receiving operation calls
and signals. These channels are divided in two sets, which we call internal interface and external
interface. The channels in the internal interface are used to interact with the block that contains
the port as well as with its parts, state machines and activities. The names of the channels in
the internal interface are of the form p1_int_op and p1_int_sig as shown in Figure 7.1. The
external interface allows other blocks to interact with the port via their own ports. It contains
channels named p1_ext_op and p1_ext_sig, which are omitted in Figure 7.1, and further
illustrated in Figure 7.2.

Note that, in the interface of a block B, the names of the channels used to model events
corresponding to operation calls and signals are of the form B_op and B_sig. In the case of a
port, they are p1_int_op and p1_int_sig. We use different names because a port can restrict
the operations and signals that a block may accept or require. For instance, in Figure 2.4 (on
page 26) the port pD communicates only calls to operations and signals described in the interfaces
DeviceInterface and BusInterface. So, the CML process that models pD only includes events
that correspond to these calls.

On the other hand, in the composition of processes for a port and its block, events
corresponding to the same operation calls or the same signals need to be identified. For this
purpose, we use CML renaming, which allows the renaming of the channels used in a pro-
cess or action. For instance, the action c?x -> Skip waits for a value on the channel c and
terminates, while the renamed action (c?x -> Skip)[[c <- a, c <- c]] is equivalent to
(a?x -> Skip [] c?x -> Skip), that is, it waits for a value on either the channel c or a

before terminating. The renaming applied to ports of simple blocks is described in Section 4.5
in Chapter 4. This operator is used to rename the channels p1_int_op and p1_int_sig to
B_op and B_sig to restrict the possible communications through these channels whenever p1

is realising a subset of all SysML interfaces. This mechanism allows the block and the port
processes to interact. Figure 2.3 (on page 26) illustrates that a Device block has a pD port. Hence,
the port channels pD_int_op and pD_int_sig are renamed to Device_op and Device_sig re-
stricting the events that should be transmitted through the port pD, which corresponds only to
the operations and signals described in the DeviceInterface and BusInterface.

The interaction between two ports is also modelled using renaming, but in this case the
channels in the external interfaces of the ports are renamed to new channels that model the
connector between the ports. This is discussed in the next section.

Finally, the interaction between a port p1, state machines, and activities take place
through the channels p1_int_op, p1_int_sig and B_op, where B is the block that contains the
port p1. The first two channels are used for the state machines and activities to call operations
and send signals via the port, and the third channel is used to indicate the completion of an
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operation call.
Some of the presented channels are just for internal communication, that is, they are

not relevant for the external environment of a block. For example, a block should not access
the state machine or the activities of another block directly. The hiding operator of CML is
used to make these channels internal. We write A \\ {|e|} to make e not visible externally
from A. In Figure 7.1, the channels B_inevent and B_consumed, related to state-machines,
the channels B_hasevent, B_getevent, startActivity_A1, interruptActivity_A1, and
endActivity_A1, related to the activity A1, the similar channels for the activity A2, and the
channels p1_int_op and p1_int_sig, related to the port p1, are hidden from the environment
of B. Finally, any channels B_get and B_set related to private attributes of B are also hidden,
as are the communications on B_get and B_set channels that are related to public attributes,
but whose source and target are elements of the diagram themselves. These communications
correspond to internal uses (via accesses and assignments) of the attributes of a block, rather
than external observations described, for example, in a sequence diagram.

Conversely, the services of a block are offered by the remaining channels, which corre-
spond to signals, operations, attributes with public visibility, and the external interface of ports.
In the example of Figure 3.5 (on page 49), they are LE_SoS_get_Active, LE_SoS_set_Active,
LE_SoS_get_Elected, LE_SoS_set_Elected, LE_SoS_op, and LE_SoS_sig. In general, for
a block B like the one in Figure 7.1, the services are provided by the channels B_op, B_sig,
p1_ext_op, p1_ext_sig, and, for attributes of B that have public visibility, we can use the
channels B_get_A and B_set_A, where A is the name of the attribute.

These channels communicate at least three pieces of control data relevant to the inter-
actions. Two of them are the identifiers of the sender and the receiver of the interaction. As
described earlier, they have the type ID. For instance, in the leadership election example, we
have three instances of the Device block interacting with one instance of a Bus block, as depicted
in Figure 2.4 (on page 2.4), and each of the devices can send transmitPack signals to the bus.
Each channel Bus_sig that communicates the transmitPack signal carries the information of
which device sent the signal and the target of the message, which is the instance of the block
Bus.

This control information is important for several reasons. It is used to ensure the correct
communication between the CML processes for block instances, which run in parallel and
synchronise on these channels. Additionally, with the control information in the communications,
the traces of the CML processes represent accurately communications between the different block
instances of a system. Finally, it is used to ensure that the reply of an operation call is returned to
the specific block process that requested it. The same call can be sent by different elements of
behaviour (state machine or activity) in a block. For example, the block B from Figure 7.1 can call
an operation of another block through its state machine S1 or through its activity A1. The event
corresponding to the return of this operation call must be sent exactly to the element of behaviour
that requested it to allow it to continue. This is achieved in CML by treating an identifier as a
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sequence of tokens that describes the position in the SysML model hierarchy of the element that
originated the call. Thus, when the state machine S1 process makes the call, the identifier of the
sender is [mk_token("B"),mk_token("stm")], where B is the token representing an instance of
the block B and stm represents the state machine of B. Alternatively, when the call comes from the
activity process A1, the identifier is [mk_token("B"),mk_token("acts"),mk_token("A1")],
where acts means that it comes from an activity and A1 is the activity that originated the call.
We do not need to specify a specific identifier for the state machine because the simplification
guideline 1 on page 44 requires that each block has at most one state machine.

A third piece of control data is needed when the same interaction occurs concurrently
inside the same element of behaviour: for instance, two calls to the same operation of the same
target, each originating from two different parallel regions (r1 and r2) of a state machine S1. In
order to differentiate the calls, each channel communicates a unique index of the call represented
by a natural number. Therefore, the communication corresponding to the call from r1 has a
natural number index, while for the call from r2 we use a different index. These indices avoid that
the reply to the call from r1 is delivered to the r2 action and vice-versa. This third piece of control
data is not relevant for the environment of the block process that represents the entire system. The
index of an interaction must be part of an internal protocol to ensure the correct communication
between processes and actions. The top-level block that represents the system, therefore, exposes
a different version of the channels without this index. This is achieved through the use of the
renaming operator of CML. For instance, the LE SOS (Figure 3.5 on page 49) block process has
its operations renamed by LE_SOS[[LE_SOS_op.m <- LE_SOS_OP | m: nat]] to define the
system model. The communications LE_SOS_op.m, where m is a natural number representing the
index that identifies the communication context, are renamed to LE_SOS_OP, which is a version
of LE_SOS_op without the index. The same strategy is applied to signal channels.

7.2 Hierarchical models

We now address blocks that are structured in hierarchies. Figure 7.2 depicts the CML
processes that model such blocks, and their ports, activities and state machines. In this figure,
processes are represented by solid boxes, and the sets of channels that allow them to interact are
included in dashed boxes associated with arrows connecting the relevant processes.

In Figure 7.2, the block B is simple (and its CML model has the structure illustrated in
Figure 7.1), A is composite and contains a block C as a part, and S, which is the root block of the
model, is also composite and contains both A and B. The SysML model to which it belongs is,
therefore, hierarchical. The block C may also have a state machine and activities, but C can only
communicate with B through the interface of block A. Although it is not shown in this example,
our semantics caters for models with hierarchies of any depth; for example, C could have other
blocks as its parts.

As indicated in the previous section, a block such as Device in Figure 2.3 (on page 26)
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Figure 7.2: Overview of the communication between the models of multiple blocks.

Source: Author’s ownership.

interacts with the block Bus through operations, signals and attributes. These interactions
are presented in the CML model by communications on the channels Bus_op and Bus_sig,
Bus_get_packs and Bus_set_packs. The first is used to call the operations of the Bus, the
second to send signals to Bus, and the third and fourth channels are used to read and write values
to the attribute packs of Bus.

In general, as shown in Figure 7.2, processes for blocks can communicate through
channels A_op, A_sig, A_get_X, A_set_X, p_ext_op and p_ext_sig, where A is the name of
the block, X is the name of an attribute of A, and p is the name of a port of A. As explained in the
previous section, for simple blocks, the channels p_int_op and p_int_sig corresponding to a
port p are renamed to model communication between the block and its port.

In the case of a composite block, a port is used for communication with its sub-blocks
rather than with state machines or activities as described in Section 4.6. We recall that our
guidelines require that composite blocks do not have state machines and activities. So, in this
case, the channels r_ext_op and p2_int_op used by the processes for the ports r and p2 in
Figure 7.2 are renamed to c_r_p2_op, and similarly the r_ext_sig and p2_int_sig channels
are renamed to c_r_p2_sig. By using this strategy, the block process A can relay a message
received by the port process p2 by sending it to the port process r and vice-versa.

The same happens between blocks A and B. When they communicate with each other
using ports p2 and p1, the channels p2_ext_op and p1_ext_op are renamed to c_p2_p1_op, and
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channels p2_ext_sig and p1_ext_sig are renamed to c_p2_p1_sig. In this case, the renaming
is performed by the block S that owns A and B.

Finally, the renaming applied to operation and signal channels to hide the control data
used to identify internal calls is applied to the root block of the model. However, for composite
blocks, this renaming is applied for every channel in the hierarchy of the root block process that
is part of the interface of the system. Therefore, for the model of Figure 7.2, it is defined as
S[[A_op.m <- A_OP, B_op.m <- B_OP,... | m: nat]].

7.3 Scenarios

According to our guidelines described in Section 3, sequence diagrams are used to
validate the system.

Since a SysML model is a composition of several elements, to maintain consistency in
an integrated view is not an easy task. In addition, finding undesired behaviours is error-prone
due to the lack of tools that check consistency between these elements. To address this issue,
our guidelines cater for analysis of the SysML model against scenarios described by sequence
diagrams. By using the CML models of both the SysML system model and of a sequence
diagram, we can compare the traces specified by the sequence diagram against those of the
system model through refinement.

To perform this verification, we must relate the messages depicted in sequence diagrams
to the services of the SysML system model. As said before, these services are the operations
and signals of the blocks, which are represented in CML by communications on channels B_OP
and B_SIG, where B is a block of the model. Similarly, a sequence diagram defines scenarios
in terms of the messages exchanged by the blocks, which correspond to operation calls and
signals. Hence, we can relate the events of sequence diagrams to the services of the SysML
system model.

The messages of a sequence diagram are modelled in CML by communications similar
to those used in the CML specification of a SysML system model. They are represented by
the channels B_mOP and B_mSIG, which need to be renamed to B_OP and B_SIG by following
the same strategy presented earlier for the system model. An additional channel inv is used to
identify invalid traces of scenarios defined by a sequence diagram. This channel is present in the
interface of the CML model of a sequence diagram, but not in that of the CML system model.

The channels used to represent messages communicate the identifiers of the source and
the target of the messages, an index to identify a message in the diagram, and an extra tag to
differentiate the communication corresponding to the point where the message is sent (tag s)
from that corresponding to the point where it is received (tag r). The definition of the CML
process for a sequence diagram, like that for a system model, uses renaming to eliminate the
index and the tag. Since indices and tags are used for internal control, with different purposes
in the models, they are not relevant when we compare these models. In this case, we have two
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events that must become one, because both the sending and receiving event is represented by
a single event in the system model. For that we choose the receiving event as the one that is
renamed, while the sending event is hidden in the CML model of the sequence diagram. For
example, the CML process for the sequence diagram in Figure 2.8 (on page 31) is defined by
renaming as sd_LeadershipElection[[Bus_mSIG.m.r <- Bus_SIG | m: nat ]], where m

is a natural number used to represent the index of a message in the diagram. One possible
concern is the introduction of divergence when we hide this event. A divergence happens when a
process enters in a infinite sequence of hidden events. However, in this case, there are always
two consecutive events where one of them is always visible, that is, the hidden event could not
recurse or enter in an infinity sequence of hidden events because it is always followed by a visible
event.

This strategy allows the CML specification of both the system model and the sequence
diagram model to use the same representation for operation calls and signals, and, thus, be
compared. If a trace from a sequence diagram is not in the set of traces of the system model,
then, either we have a flaw in the system model as it cannot perform a scenario that should be
valid, or the sequence diagram has not been written properly. The refinement-based analysis
strategy for comparison is further discussed in Chapter 8.

This section has provided an integrated view of how the CML model of the different
elements (blocks, activities, state machines and interactions) of the SysML model relate to each
other. This uses the individual semantics provided for each element discussed in chapters 4, 5
and 6.

7.4 Related Work

In this section we discuss approaches that propose integrated semantics with two or more
model elements that can interact aiming one common goal.

Breu et al. have proposed a formal language called System Model to specify object-
oriented systems in the style of UML (BREU et al., 1997). A System Model specification has a
pre-defined mathematical structure comprising object identifiers, message passing, behaviour,
communication histories, states, and so on. A UML diagram is modelled as a projection of a
System Model, which is regarded as a complete and unified model of the entire system. Class
diagrams, state-machine diagrams and sequence diagrams can be translated to a System Model.
On the other hand, although the semantics of these diagrams is defined in a single formalism, the
verification of the consistency among the diagrams and the development of tools has not been
reported.

The project Precise UML (pUML) started the development of a precise semantic model
for UML diagrams. Lano and Evans have proposed a systematic development process using
UML and a mix of syntactic checks and formal verification for consistency, enhancements and
refinements among class diagrams, state machine, sequence, and collaboration diagrams (LANO;
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EVANS, 1999). Modelling and verification are carried out by hand, using first-order set theory.
No general translation strategy like the one presented here has been developed.

Kuske et al. have proposed an integrated semantics for UML class, object, and state-
machine diagrams using graph transformation (KUSKE et al., 2002). A state machine is modelled
as a transformation of an object diagram. The integrated semantics allows us to visualise the
evolution of a particular object diagram with respect to the state machine. This is, however,
the only consistency check supported. A consistency check similar to ours, based on sequence
diagrams, is proposed as future work.

Baresi et al. propose a formal semantics based on a metric temporal logic for UML
class and object diagrams, state machine diagram, sequence diagrams and interaction overview
diagrams (BARESI et al., 2012). The formal models are used to analyse satisfiability of the
model and to check properties of the system. Sequence diagrams are not used to describe valid or
invalid scenarios. They represent behaviours of the system and they are composed in interaction
overview diagrams. The semantic domain used is considerable different from ours, for instance,
every object must have an associated clock and the events are linked to tick events of this clock.
Moreover, the semantics of sequence diagrams does not seem to follow the OMG standard
specification (OMG, 2011) based on traces because some events may happen at the same time.
Another difference from our work is that, while our focus is SysML, their focus is on UML
diagrams.

Rasch and Wehrheim (RASCH; WEHRHEIM, 2003) have presented an extended UML
class diagram in which the body of a method, its pre and postconditions, and the initialisation
of an attribute are specified in Object-Z (SMITH, 2000). An integrated semantics in CSP is
proposed for these extended diagrams and a subset of state-machine diagrams. Five notions of
consistency are used: at least one trace does not deadlock (satisfiability); the model is deadlock
free (basic consistency); every method is called at least once (executability); and every method
becomes enabled infinitely often (availability). We do not consider all these checks, but they
can be done in CML. Additionally, our approach does not extend the SysML diagrams, and so
hides the formalism from modellers. In particular, bodies of methods are specified by activity
diagrams and state machines.

Davies and Crichton have also proposed a formal semantics in CSP for UML class,
object, state machine, sequence and collaboration diagrams (DAVIES; CRICHTON, 2003). Both
inter and intra-object concurrency are addressed. Inter-object concurrency allows objects to run
in parallel, while intra-object concurrency allows concurrent calls of operations of a single object.
The semantics is used to verify both refinements and the consistency between sequence and the
remaining diagrams. The translation from UML to CSP has been illustrated via examples. No
general transformation rules are introduced.

A semantics for SysML is proposed by Hamilton et al. in terms of axioms of the
Universal Systems Language 001AXES (HAMILTON et al., 2007). This language is based on
a set of axioms and rules for applying function mappings and type mappings. Three primitive
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structures specify a mapping via sequential and parallel composition, and choice. Hamilton et al.

have provided examples of how to model block, internal block, parametric and activity diagrams.
No formal verification is proposed in this work; the focus is on the benefits of using a formal
semantics to prevent the introduction of bugs.

Graves and Bijan have proposed a semantics for SysML block and internal block diagrams
using a knowledge-based model for UML class diagrams (GRAVES; BIJAN, 2011b; GRAVES,
2012, 2011). Both diagrams are formally specified using the logic ALCQI (BERARDI et al.,
2005); this encoding is proved to capture the part-decomposition relation correctly as a tree-like
structure. No other diagrams of SysML have been formalised in this work.

Café et al. (CAFÉ et al., 2013) have proposed a semantics for SysML block, internal
block, and state machine diagrams as a SystemC-AMS (VACHOUX et al., 2003) program, an
extension of SystemC (PANDA, 2001) for heterogeneous systems. Their main contribution is an
interpretation of SysML diagrams for systems that mix continuous and discrete signals. Once
the SysML diagrams are translated to SystemC-AMS, they can be simulated on standard tools.
No formal verification is employed in that work.

Broy et al. propose one of the first foundational semantics for a subset of UML2, which
is called the system model (BROY et al., 2006, 2007a,b). It is defined in terms of state machines
that describe the behaviour of objects and their data structures. The system model is formalised
using mathematical theories instead of existing formalisms. It is claimed that the semantics of
any UML model can be represented in terms of the system model. Classes, actions and activities
are mapped to the system model representation. Although the approach is significant in providing
a unambiguous UML semantics, it lacks automatic support for analysing the models.

The fUML standard (OMG, 2013) provides a precise semantic for UML classes, activities
and actions, and an extension to fUML is being developed to cover composite structures (OMG,
2014). It has an executable semantics described in pseudo Java-code, formally defined using
PSL (Process Specification Language) (GRÜNINGER; MENZEL, 2003), an axiomatic founda-
tional language. Despite providing a reliable semantics for a subset of UML, fUML lacks tools
for formal reasoning. Some works have proposed transformations to other formal languages to
enable analysis (ABDELHALIM et al., 2012; LAURENT et al., 2014), and fUML provides a
basis for validation of these transformations. Besides the constructs covered by fUML, our work
considers state machines and interactions.

Table 7.1 summarises the works described above. The columns bdd, obj, coll, ibd, stm,
act, sd and par refer to block-definition or class, object, collaboration, internal block or composite
structure, state machine, activity, sequence and parametric diagrams. A tickX indicates that the
corresponding diagram is formalised by the work of the authors named. Parametric diagrams are
not available in UML, while object and collaboration diagrams are not used in SysML, so their
coverage is not applicable (N/A) in some works. The purposes of the formalisations are classified
as Spec (specification), Cons (consistency), Ref (refinement), Well-Form (well-formedness), and
Sim (simulation).
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Table 7.1: Summary of related works.

Diagram
bdd obj iod coll ibd stm act sd par Formalism Purpose

Breu et al. X X X N/A System Model Spec

Lano and Evans X X X N/A Set Theory Cons, Ref

Kuske et al. X X X N/A Graph Theory Cons

Baresi et al. X X X X X N/A Graph Theory Cons

Rasch and Wehrheim X X N/A CSP Cons

Davies and Crichton X X X X X N/A CSP Cons, Ref

Hamilton et al. X N/A N/A N/A X X X 001AXES Spec

Graves X N/A N/A N/A X Description Logic Well-Form

Café et al. X N/A N/A N/A X X SystemC-AMS Sim

Broy et al. X X N/A Set Theory Well-Form

fUML + PSCS X X X PSL Well-Form

Our work X N/A N/A N/A X X X X CML Cons, Ref

Source: Author’s ownership.

Our work is distinctive in its definition of an integrated semantics for a substantial
subset of SysML. We have a comprehensive result in terms of both the amount of diagrams
covered (five diagrams — tied with Davies and Crichton (DAVIES; CRICHTON, 2003) and
Baresi et al. (BARESI et al., 2012)) and the amount of constructors covered per diagram. Our
semantics cover 10 block-definition diagram constructs, 12 state-machine constructs, 21 activity-
diagram constructs, and 17 sequence-diagram constructs. Only (LILIUS; PALTOR, 1999; MENG
et al., 2004; EICHNER et al., 2005) cover as many constructs as we do per diagram and none, to
our knowledge, covers more constructs than we do. Moreover, our semantics is mechanised, that
is, it is implemented in a tool in order to generate CML specifications from the SysML model
automatically, and can be used as part of a tool set for reasoning about SysML models.
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8
Model Analysis and Validation of the seman-
tics

This chapter describes applications of our semantics and some validations to assess its
soundness. One of the benefits of describing a semantics in terms of a language based on a
process algebra like CML is that we can apply the techniques for analysing specifications that
are available for these languages, as analysis of deadlock-freedom, absence of non-determinism,
and refinement of specifications. Such techniques can be applied to any of the specifications
generated from the SysML models once a refinement notion is provided.

In order to perform an analysis, we need to derive formal specifications from the SysML
models according to our semantics. Executing this task without tool support, besides being
extremely time and effort consuming, is error-prone. To overcome this issue, most of the
translation process has been mechanised. The automatic derivation of CML specifications
from activities, blocks and state machines is implemented as a plug-in for the Atego’s Artisan
Studio (ATEGO, 2013) in the context of the COMPASS project. Thus, if designers create SysML
models according to our guidelines of usage (see Section 3.1), they can automatically generate
the corresponding CML specifications. From these specifications several methods can be applied
to improve the Verification and Validation (V&V) process. We did not implement the plug-in,
but we delivered the rules to the Atego team to implement them and we had regular meetings to
discuss any issues that arose during this implementation.

As an example of an application for refinement, during the development of a SysML
model, such a model changes to capture different levels of abstraction in which the system is
described, and thus it is important to guarantee that an up-to-date version of the model captures
the same behaviour of the previous version, that is, that the traces of the current model conforms
to the same traces of the older model. This validation can be assessed through the use of
refinement because a specification P is refined by another specification Q with respect to traces
(PvT Q), if, and only if, the set of traces of Q are inside the set of traces of P. Assuming that Q

is the specification of the current version of the SysML model (given that the newly introduced
behaviours are hidden) and P is the specification of the older version of the SysML model,
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we could define a refinement notion using our semantics based on the refinement at the CML
level. Note that this analysis can be performed at several levels of granularity, for instance, by
considering the whole SysML model or just parts of the model, that is, a portion described by a
specific diagram. Considering the latter, we could verify, for instance, that an activity or a state
machine evolved as expected. In addition, due to the compositionality feature of our semantics,
the refinement of a specific model element, like an activity or a state machine, would imply in a
refinement of the whole model as well.

We can also check consistency between different diagrams used to describe the model.
As a diagram interacts through synchronisation on specific channels, we can check if these
communications are valid in all diagrams involved, in other words, we can check consistency of
information used in different diagrams.

These applications of refinement are a byproduct of using a process algebra as the
semantic domain for describing SysML models. Nevertheless, the benefits are not restricted
to this kind of analysis. Another mechanism that can be applied to support the validation of
the models is animation. By animating the CML specification, users can perceive what events
are available at a given time and emulate them. This simple mechanism can help designers to
identify the undesirable absence or availability of events.

In addition to the previous validation mechanisms, we propose a methodology based on
model checking techniques to analyse the properties and the behaviour of the system. We verify
if the traces of a system modelled using blocks, activities and state machines are consistent with
the traces described by interactions designed in terms of sequence diagrams. Properties can be
verified by the use of the state invariant construct presented in Chapter 2.

Therefore, this chapter discusses these applications with the support of the leadership
election and dwarf signal examples presented in Chapter 3. Section 8.1 discusses how CML
specifications can be automatic derived from SysML models. Once the CML specification is
provided, some pre-processing on the model is necessary in order to allow animation and model
checking of the model. This process is presented in Appendix B. We show how models can be
animated in Section 8.2. Section 8.3 details our approach for analysing SysML models using
refinement. Section 8.4 presents some validations we have performed to show the consistency
of our semantics. Section 8.5 discusses the work related to analysis of UML/SysML models.
Finally, in Section 8.6 we summarise the discussions and contributions of this chapter.

8.1 Mechanisation of the Translation Process

To enable automatic generation of CML models, we have supported the development of a
model-to-text transformation plug-in for Atego’s Artisan Studio. This tool produces code written
in various languages using the Automatic Code Synchronizer (ACS) 1, which is a real-time
synchroniser that keeps a model and its generated code consistent all the time.

1See http://www.atego.com/products/acs/
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The CML generator has been developed using ACS to implement the SysML to CML
transformation rules defined in (MIYAZAWA et al., 2013). When the CML generator is added
as a plug-in, the CML model generation algorithm is offered to users alongside those for other
languages. ACS can also generate code on demand. ACS uses a selected ACS generation scheme
to generate code. ACS generation schemes are implemented using the TDK (Transformation
Development Kit). Artisan Studio provides the capability to change the code generation algo-
rithms and add new ones using the TDK. The TDK, like ACS itself, acts on a model to produce
a generator. The implementation consists of a model of the SysML to CML transformation
rules which the TDK then translates into a CML generator. The CML generator can be installed
subsequently to Artisan Studio’s own installation, after which the CML code generation is
offered to users alongside those for other languages.

The CML generator implements all rules for block, state machine, and activity diagrams.
This has allowed the CML tools to be used to validate the generated CML models. In addition to
syntactic analysis and type checking, some important modelling issues have been identified. For
instance, the encoding of interfaces as subsets of operations and signals had to be modified to
cope with finiteness constraints imposed on sets (as opposed to types) by CML.

Other category of problems that has been addressed is related to gaps between the
semantics of the different diagrams, which became apparent during the implementation of the
rules and the validation of the models generated by them. For example, the event management
processes (controller_B processes), which were part of the models of state machines, have
become part of the models of blocks. The semantics of state machines was initially developed in
isolation, and, whilst the integration of the models for state machines and blocks did not reveal
any issues with the management of events, the incorporation of activities uncovered issues in
the interaction of blocks, state machines and activities via events. It has been necessary for the
controller process to become part of the parallelism that defines a block process to allow an
activity process to search for particular events in a block’s pool of events.

Figures 8.1, 8.2, 8.3, 8.4 show the steps to generate the corresponding CML specification
of a SysML model. Figure 8.1 shows the ACS tool bar, which has the buttons related to
the generation process. After selecting the package containing the SysML model chosen for
generation, the user must click in the “play” button in the ACS tool bar highlighted in Figure 8.2.
The tool opens a window, which is shown in Figure 8.3, where the user must inform the location
of the DLL file corresponding to the CML generator, indicate the target folder where the CML
specification must be generated and press the “Launch” button.

Afterwards, given that the SysML model respect our guidelines, the tool outputs in the
chosen folder the CML files related to the specifications of the SysML model. The status of the
generation process is detailed in the window on the left corner displayed in Figure 8.4.

Once we have the CML models, we need to adjust the specifications in order to perform
animation and model checking. The steps for both are documented in procedures that are
presented in Appendix B.



8.1. MECHANISATION OF THE TRANSLATION PROCESS 151

Figure 8.1: Artisan Studio: ACS tool bar.

Source: Author’s ownership.

Figure 8.2: Artisan Studio: Button for loading the CML generator.

Source: Author’s ownership.
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Figure 8.3: Artisan Studio: Configuring the generator DLL.

Source: Author’s ownership.

Figure 8.4: Artisan Studio: Status of the generation process.

Source: Author’s ownership.

8.2 Consistency Checking and Animation in Symphony

Here we describe how consistency checking and animation can be performed using the
Symphony tool (COLEMAN et al., 2012). Symphony is an integrated development environment
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for CML. It has several tools for editing and executing CML specifications, including an editor
and an animator.

One application of using Symphony is to check the consistency in the SysML model
by checking errors on the corresponding CML model. Such a feature is considerably useful
although most of the UML/SysML modelling tools do not provide such check. It comprises
the checking of consistency between the different model elements (blocks, activities and state
machines) used to describe the system. An example of lack of consistency is to use an operation
in a transition of a state machine that is not defined in the corresponding block or using such
an operation with a different protocol (e.g., different number of parameters). This is an easy
mistake to make but a difficult problem to perceive when not supported by tools.

Some of these issues can be directly detected by syntactic errors that appears on the
corresponding CML specification. For instance, in the case of using an operation with a different
number of parameters, the Symphony’s CML editor shows an error in the line where the event is
communicated in the state machine because it does not conform with values of the corresponding
channel declaration. Another example is invoking an activity that is not defined. Similarly, a
syntactic error would be shown in Symphony. Therefore, problems related to undefinedness or
incompatibility of messages between the different diagrams and model elements can be detected
with the use of Symphony.

Animation can be used to exercise scenarios of the model. Although the user does not
have to understand the details of the semantics, the user must comprehend the events syntax
(operation calls and signals) of the CML model. As described in the previous chapter, the
syntax is [block name/connector]_op.[sourceID].[targetID].[operation protocol]

and [block name/connector]_sig.[sourceID].[targetID].[signal protocol] for op-
eration calls and signals, respectively, where [block name/connector] is the name of the
block or connector that links ports of blocks, [sourceID] is the identification of the source
block, [targetID] is the identification of the target block, [operation protocol] is the sig-
nature of the call with the operation name and its parameters and [signal protocol] is the
signature of the signal with its name and parameters.

By animating the model, a system engineer can perceive that certain scenarios are
possible or do not depend on the availability of the events. Although it is a simple mechanism
for assessing the model, most of the UML/SysML design tools do not support such a feature.
Figure 8.5 shows the animation of a CML model of the dwarf signal example. A list with the
current possible events is displayed on the CML Event Options window on the right-hand side.
When the user selects (one click with the mouse left button) one of these events the CML action
from where these event is made available is highlighted on the CML specification on the window
shown on the left-hand side.

Figure 8.6 shows what happens when an event is selected for execution (double click
with the mouse left button). The tool asks for values for each argument of the event on the
console window on the bottom of the tool. The user must provide values in the declaration order
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Figure 8.5: Animation in Symphony: selecting an event.

Source: Author’s ownership.

Figure 8.6: Animation in Symphony: executing a valid event.

Source: Author’s ownership.
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defined in the corresponding channel of the event. By the time of the writing, the Symphony
animator does not provide support for the renaming operator, therefore, in this example we are
animating the system model internally, that is, the same syntax for events described previously
with the addition of a natural number before the source identification.

In this example the selected event is an operation call (channel _op), hence, the first argu-
ment according to the type of the channel is a natural number, where we provide the value 1. The
second argument is the identification of the source, [mk_token("ENV")], which is a sequence
with one token called "ENV" representing the environment. The third argument is the target iden-
tification. However, according to the definition of a block’s request CML action in Rule 4.21 in
Chapter 4, such an event is parametrised by the identification of the block ($id) that is receiving
the call. Thus, we do not need to provide a value for this argument. The fourth argument is the
operation call signature. Here, we provide the value (mk_shine_I(mk_token("shine_I")))
for a request of the shine operation call. After providing the last argument, the tool executes the
event and process any internal event until reaching the next possible set of input events which
are displayed on the CML Event Options window again.

Figure 8.7: Animation in Symphony: executing an invalid event.

Source: Author’s ownership.

Figure 8.7 illustrates the attempt to animate an event that leads to a deadlock. In this case,
we are trying to animate a response (mk_shine_O(mk_token("shine_O"),{<L1>,<L2>})) to
an operation call (messages of type _O) given that a request to that operation call has not been
performed. After executing the event no other event is displayed on the CML Event Option
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window because the communication of such an event led to a deadlock.
This simple scenario shows how system engineers could use Symphony for exercising

the flows of events of a SysML model according to the corresponding events in the CML
specification. However, when there are several scenarios to be exercised, animating one by one
is not a feasible task. Therefore, in the next section we provide a methodology for analysing
scenarios and their properties using model checking.

8.3 Analysing SysML models

Here we use the refinement notions of CML to validate a SysML model. In particular,
we focus on the use of model checking of the corresponding CML models. However, the
models generated by our strategy can be considerably complex to analyse in reasonable time,
and, by the time of writing, the CML model checker (MOTA et al., 2015) could not handle the
models we were developing. Despite being extremely innovative due to the use of satisfiability
modulo theories in order to support data with infinite domains, it is not mature enough to handle
large models with a high degree of parallelism. Therefore, we decided to use the FDR3 model
checker (GIBSON-ROBINSON et al., 2014), which is a model checker for CSP, one of the base
languages of CML.

As described in Appendix B, we translate the CML specifications to CSP and perform
several optimisations to allow the use of the FDR model checker, which is a considerably
mature refinement checker for CSP specifications. This translation is not automated; it is
described in terms of procedures that should be performed to the different elements of the CML
specification generated from the SysML model in order to generate the corresponding CSP
specification. Moreover, this translation is based on the mappings from Circus (WOODCOCK;
CAVALCANTI, 2002) to CSP, which are duly proved (OLIVEIRA et al., 2014). Circus is another
baseline language of CML and it has the process algebra concepts of CSP and the state features
of the language Z (ISO, 2002). Due to the size of the models in terms of state, we needed a tool
to verify properties in reasonable time. This factor, allied with the close relationship between
CML and CSP, led us to choose the FDR model checker.

In this approach we use refinement checking to verify that the system can execute
according to scenarios described by a sequence diagram. Using traces refinement, we can verify
that the traces of a sequence diagram are in the set of traces of a SysML model defined by a
collection of state machines, blocks and activities. So the scenarios defined by the sequence
diagram are valid for the system.

More formally, if M is the CSP system model and SD is the CSP model of the sequence
diagram, then M vT SD asserts that the traces of SD are traces of M. This approach may seem
strange for classical refinement checking practitioners because they usually have the process with
the property at the left-hand side of the refinement. However, this approach fits our needs because
we are checking traces containment between the two specifications, that is, the traces of M include
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Figure 8.8: Sequence diagram examples.

(a) Valid scenario (b) Forbidden scenario
(c) Forbidden scenario

with state (d) Forbidden state

Source: Author’s ownership.

the traces of SD. The CSP trace semantics is adequate for analysis based on sequence diagrams
because, in this case, we are interested only on the services of the system. We recall that these
correspond to operation calls, signals, and access to attributes of blocks. Divergences (livelocks)
are not relevant for properties defined by sequence diagrams.

To illustrate the types of analysis we can do, we use the scenarios of our case stud-
ies, the leadership election and dwarf signal. Firstly, see the first two sequence diagrams in
Figure 8.8 describing scenarios of the abstract leadership election model discussed in Sec-
tion 3.2.2. Recall that, in this example, the system model is composed of a block (LE SoS)
and a state machine that describes the behaviour of the block. Diagram 8.9a shows a valid
scenario, where the devices 1 and 2 are turned on and the control event tick happens; we ignore
the state invariant card(s.Elected = 1) for now. Diagram 8.9b describes a forbidden scenario: the
second message is a turn off operation call for device 2, which has not been turned on. For
Diagram 8.9a, the model checker does not return any counterexample, so the traces of the first
sequence diagram model are valid. In the case of Diagram 8.9b, a counterexample shows a
trace of the sequence diagram model that is not a trace of the system model, which is the trace
<[A].[B].turnOn.1,[A].[B].turnOff.2>, where [A] is the identifier of the lifeline
for Actor, and [B] of the lifeline for LE SoS. This confirms that the scenario of Diagram 8.9b
is not valid for the system.

Besides describing traces of communications, sequence diagrams are also capable of
verifying properties of blocks by using the state invariant constructor, which is described in
Section 2.1.5. With this constructor, a constraint can be assessed at a certain point of a block’s
lifeline. This constraint can be understood as a property that should be valid at a certain point
of the scenario. Hence, besides checking the validity of traces, we can also verify properties
described in state invariants. The corresponding semantics in CML of state invariants is briefly
discussed in Section 6.1. We recall that if the state invariant yields false then an event inv is
added to the trace that marks it as invalid. Nothing happens otherwise.

We note, however, that when we use state invariants like in Diagrams 8.9a, 8.9c, and
8.9d, the refinement M vT SD may not hold even when the sequence diagram does specify a
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valid scenario of the system. This happens because some of the traces of SD may include a
synchronisation on the extra channel inv that is not used in M. This is perhaps surprising, but as
SD does not have a record of the state of M, and SD takes the value of the state (through get

channels) to evaluate the invariant, its traces cover all possible values that a state can have. On
the other hand, the definition of M typically restricts the possible values of a state in a given
scenario via the definition of the data operations and their behaviour.

For instance, in the Diagram 8.9a the state invariant defines a property of the attribute
Elected. Hence, the CSP process SD for the sequence diagram takes an input on the channel
LE_SOS_get_Elected to evaluate the state invariant. Since this input is not constrained, there
are traces of SD for all values that Elected can take in this communication, including those for
which the constraint does hold: the empty set and sets with more than one element. Such traces
include a synchronisation on inv, which is never present in a trace of the CML process M for the
leadership election protocol model. In addition, in M, the value that can be output on the channel
LE_SOS_get_Elected after the operations turnOn in the sequence diagram, is restricted. So,
traces for other communications on LE_SOS_get_Elected are not included in M. In summary,
there are several traces of SD that are not traces of M, even though the sequence diagram presents
a valid scenario of the model.

Consequently, to perform an accurate verification involving sequence diagrams with state
invariants, we use another strategy performed in two steps. We note that the process M ‖

Σ\{inv}
SD,

which composes M in parallel with SD, synchronising on all their common channels (Σ\{inv} is
the set-theoretic difference between the alphabet of the model and the inv event), captures the
behaviour of the sequence diagram when it uses state information provided by the system model
captured by M. The set Σ contains all the communications used in our CSP models. The traces of
M ‖

Σ\{inv}
SD are the traces of SD whose communications are also allowed by M. Consequently, the

traces mentioned above, recording spurious values for the state components not allowed by M,
are no longer included. On the other hand, traces may be eliminated due to deadlocks that arise
when a trace of SD is not allowed by M. This may happen because the communications of the
sequence diagram are not allowed by M. In this case, M ‖

Σ\{inv}
SD is a traces refinement of M, even

though the sequence diagram does not give a valid scenario of the system.
As an example, we consider Diagram 8.9c, which is a variation of Diagram 8.9b with

an added state invariant. The sequence of messages defined by 8.9c is not valid for the reasons
already discussed about Diagram 8.9b. In spite of that, the process M ‖

Σ\{inv}
SD is a traces

refinement of M. The parallelism M ‖
Σ\{inv}

SD deadlocks after the communication corresponding

to the first message turnOn(1). At this point, the sequence-diagram process SD is ready only
for the second message turnOff(2), but such a communication is not available in the process M
for the system model at this point. The traces of the parallelism are only the empty trace and
the singleton trace with the communication for turnOn(1). Both of these are traces of M, and so
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M ‖
Σ\{inv}

SD is a trace refinement of M, although the scenario is not valid.

Therefore, our analysis strategy based on sequence diagrams with state invariants has
two steps that are shown in the activity diagram of Figure 8.10. First, we verify the validity
of the scenario in the sequence diagram, ignoring all state invariants. If a counterexample is
returned, the practitioner must use this information to correct the model. Otherwise, we verify
the properties defined in state invariants. Again, if a counterexample is returned, corrections
should be made in the model and the process restarts. Otherwise, the scenario and the properties
are valid in the system model.

Figure 8.10: Work flow of the analysis of properties.

Source: Author’s ownership.

Formally, in the first step, we check the refinement MvT SD \ {|inv,∗ get ∗|}, where
only traces of SD without communications related to state invariants appear. We use * get * to
refer to all get channels, which are used in SD only to access attributes for the evaluation of
state invariants. If the refinement holds, then we check MvT (M ‖

Σ\{inv}
SD) as suggested above.

When using this strategy and executing the two steps, we find no counterexamples for
Diagram 8.9a. As already explained, Diagram 8.9c describes a forbidden scenario with a state
invariant. In this case, only the first step is necessary because, as the scenario is not valid,
the refinement fails. The same counterexample presented above as part of the analysis based
on Diagram 8.9b is relevant here. Diagram 8.9d, on the other hand, describes a forbidden
scenario, where after two devices are turned on and the tick event takes place, the number of
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elected leaders is two: only one leader must exist when there are active devices after a tick

event. According to our refinement checking strategy, the refinement in the first step holds, but
a counterexample for the refinement in the second step is the trace <[A].[B].turnOn.1,
[A].[B].turnOff.2,inv>, where inv indicates that card(s.Elected = 2) is violated. Of
course this property is not desired for this system because after a tick event just one leader should
be chosen among the active devices. We use this incorrect scenario to illustrate how the model
checker proceeds when a property is not valid.

Regarding the leadership election case studies we discovered two flaws in the model
using this verification approach. The first flaw corresponds to the absence of an event to represent
the time passing. In the first version of the model, there was no tick event to represent the
time. Therefore, the two transitions that are fired by tick on the state machine of the abstract
leadership election (Figure 3.6 on page 50) did not have the tick trigger event; they only had
guards. That leads to an ambiguous scenario where once the guards were true, the transitions
could be performed or not. Hence, the model checker returned counterexamples where even after
turning devices 1 and 2 on, the number of leaders was still zero. To fix that we had to explicitly
add the tick event to represent the passage of enough time for the system to realise that it had a
leader.

The second flaw is related to the visibility of modifiers of the block’s attributes. In the
first versions of the abstract leadership election, the visibility of the attributes were erroneously
public. When we use public attributes on state invariants there is a possibility of other entities
changing their values before the evaluation of the constraint. For instance, in Figure 8.9a, the
Elected attribute of block LE SoS was set to {} before the evaluation of the state invariant
because it had a public visibility. In order to correct this, the visibilities of the attributes are now
private.

We have also applied this verification strategy to the dwarf signal example. In this
example we exercised two versions of the SysML model, one composed of a block and a state
machine, and another version composed of a block, a state machine and an activity. The former
corresponds to the diagrams presented in Section 3.2.1. For the latter, the behaviour of the shine
operation, which simply returns a set of lamps that are on, is being described in terms of an
activity. The state machine shown in Figure 3.4 was modified as well to invoke the activity
instead of deciding which set should be returned in the changing state. Therefore, instead of
having six internal transitions in the changing state for the shine operation, in this new version
only one transition is needed because it calls the corresponding activity. We recall that we have
modelled the case studies and they were validated by the experts that have participated in the
COMPASS project.



8.3. ANALYSING SYSML MODELS 161

Figure 8.11: The ActShine activity.

Source: Author’s ownership.

Figure 8.11 shows the activity for the shine operation. It simply reads the values of the
lamps through the Read Structural Feature actions and decides what the resultant set is according
to these values in an opaque action. In order to validate these models we used the sequence
diagrams that are displayed in Figure 8.12. The diagram displayed in Figure 8.13a describes
a valid scenario where the lamps change from state stop ({L1,L2}) to warning ({L1,L3}).
Figure 8.13b shows another valid scenario where the lamps change from stop ({L1,L2}) to dark

({}) and then returns from dark to stop. The last diagram shown in Figure 8.13c illustrates an
invalid scenario because in order to go from stop to warning the signal turns the three lamps on,
before extinguishing L2.

A flaw was detected in the first version of the dwarf signal state machine model when we
tried to exercise the diagram shown in Figure 8.13b because the changing state did not have the
last two internal transitions to treat light events (see Figure 3.4 on page 48). Thus, once the signal
went dark it could not go back to the stop state because no light event could be treated. After
inserting these two internal transitions the model checker did not provided any counterexample.
The other sequence diagrams worked as expected. No counterexample is presented for the
first sequence diagram and the counterexample <[A].[B].shine,return {L1,L2},

[A].[B].setDesiredState.{L1,L3},[A].[B].light.L3> is presented for the
last sequence diagram because the three lamps cannot be concurrently on, where [A] is the
identifier of the lifeline for Actor, and [B] of the lifeline for DwarfSignal. These results are valid
for both versions of the model with the activity ActShine and the earlier version without it.

These examples illustrate how these verifications can be helpful in the development of
safe and correct SysML models. When system engineers design complex systems with several
possibilities of flows and concurrent events, the discovery of flaws are considerably difficult for
manual verification. For example, in the dwarf signal case study we had lots of transitions to
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Figure 8.12: Sequence diagram examples of the Dwarf Signal system.

(a) Valid scenario 1 (b) Valid scenario 2 (c) Forbidden scenario

Source: Author’s ownership.

analyse in the state machine and some of them were missing. Therefore, we believe that such a
strategy could help the development of complex systems in terms of detecting flaws during the
design stage and to avoid their propagation in later stages of development or when systems are
already deployed.

8.3.1 Analysis scalability

Although we have defined a analysis strategy for SysML models, an important concern
still remains, which is how our analysis scale according to the size of the models. Early case
studies have shown that the time and computational effort grow exponentially. Hence, we have
searched for strategies that could improve the performance of the model checking.

We have studied how the FDR model checker works in order to discover ways of
executing the refinement checking more efficiently. When a refinement assertion like Sv I (the
specification process S is refined by the implementation process I) is provided, the tool first
tries to compile the specification and implementation, which means creating a labelled transition
system (LTS) of the models and each of their sub-processes. Some optimisations are performed
and then the tool tries to expand the LTS of the implementation process and verify if it has a
sibling in the specification. Of course the level of compared information varies according to
the semantic model used in the refinement, which can be traces, failures or failures-divergences.
A refinement in the failures model checks if the traces of S contains the traces of I (traces
refinement) and if the failures of S contains the failures of I, where a failure is a pair (s,X) such
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that s is a trace and X is a set of refused events after s. A refinement in the failures-divergences
model extends the failures model in order to verify if the divergences(I) ⊆ divergences(S),
where divergences(P) is the set of traces after which P can diverge. We say a process P diverges
when it behaves like an infinite sequence of hidden events known as τ actions (ROSCOE, 2010).

The point here is that even if processes in the specification are not exercised by the
implementation, the tool needs to compile them before the comparison of the LTSs. Therefore, the
compilation time may require considerable effort of the analysis even if parts of this compilation
are not necessarily relevant for the final result. Thus, when we have a large model in the
specification and a small model in the implementation the refinement may take too long to
conclude due to the size of the specification. In general, this is exactly what happens in
our analyses given that the specification represents the whole model of the system and the
implementation just exercises some scenarios of such a system.

Therefore, one possible way for improving performance of the refinement checking is
transferring the complexity to the implementation (right-hand side of the refinement relation),
rather than having a large specification. In addition, the failures-divergences model has a better
performance than the others. Hence, we have defined a new refinement statement that captures
these ideas, which is shown in Figure 8.14.

Figure 8.14: Refinement statement with optimisations for FDR.
end→ DIVvFD ((M ‖

Σ\{inv,end}
SD ;end→ SKIP) θ{end} DIV) \ {Σ\{inv,end}}

Source: Author’s ownership.

In this statement we have a failures-divergences refinement. On the left-hand side we
have a process that communicates the event end and then behaves like DIV, which is the most
simple divergence process. On the right-hand side we have the model of the system M in a
synchronous parallelism with the model of the sequence diagram SD followed by the end event.
This process can be interrupted once an end event occurs because we use the exception operator
of CSP (θX ) (ROSCOE, 2010). The semantics of P θX Q defines that when any event of X occurs
in the process P such a process is halted and it starts to behave like the process Q.

In order to allow the refinement to happen we hide all events minus {inv,end}. If an inv

event occurs, then the state invariant has been falsified and the refinement is not valid because
such an event is not on the alphabet of end→ DIV. If the traces of SD are not compatible with
the traces of M, then a deadlock occurs and the event end and the divergence will never occur.
In this case, a counterexample is returned showing that the event end is not present in the trace.
Hence, this strategy only requires one refinement checking instead of two like the previous one.
However, the drawback of this approach is that the events of the counterexample are not visible
because we need to hide them all at the end of the process on the right-hand side, otherwise the
refinement would not hold. Although it is possible to observe which are the hidden events, as
several internal control events are also hidden, it may require considerable effort. We believe
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Table 8.1: Specifications of the computer used in the evaluation.

Processor Intel Xeon CPU E5-1650 3.50GHz (12 cores;15Mb Cache)
RAM 32 GB DDR4 2133MHz
Storage 512 GB SSD
Operation System Windows 8.1 Pro

Source: Author’s ownership.

that it is possible to have some tool support in order to make this treatment in the future.
We have exercised this strategy on all examples we had performed before with the

previous approach, and it provided the same results as expected in considerably less time. Next
we developed a scalability evaluation to compare the two approaches. We use the leadership
election model varying the number of devices used in the model. The scenario exercised is the
one illustrated in Figure 8.9a on page 157. Each refinement checking was executed in the same
circumstances and in the same computer whose configuration is detailed in Table 8.1.

The evaluation consists in executing the scenario displayed in Figure 8.9a increasing
the number of devices beginning with three devices. We take the average time of 5 executions
for each number of devices with a given strategy. We defined a time limit of 24 hours for each
analysis. When this limit is exceeded then we stop the analysis for that given strategy. Table 8.2
details the average time according to the number of devices for each strategy, where ST1 is our
original strategy (performed in two steps), while ST2 is the approach detailed in this section. We
can note that both strategies grow exponentially. The reason is that the model is a fully connected
graph: for each inserted device, the possibilities of events grow exponentially according to
the number of possible identifiers that may invoke operations and signals and according to the
values of the channels of operations turnOn and turnOff. Moreover, the number of possibilities
of leaders when a tick event happens also increases. Therefore, in general, the models will
have an exponential feature. Nevertheless, models with a low number of identifiers and less
possibilities of values in the channels may scale better. In any case, one can notice that ST2
provides considerably better results than ST1. For three devices the improvement is around 95%,
for two 98% and for three 99%. While ST1 took more than twenty-four hours for six devices,
ST2 finished in 89.96 seconds and it could also finish the analysis for up to eight devices in less
than twenty-four hours. However, for nine devices our machine was not able to conclude the
analysis in less than twenty-four hours. Considering the execution of ST2 for eight devices, FDR
evaluated 293.275.785 processes.

Hence, we can conclude that ST2 reduces significantly the time of the analysis. However,
the counterexample information is more difficult to read. Despite this improvement, the nature of
SysML models allied to the several elements involved in our semantics can make the complexity
of the corresponding formal models to grow exponentially. There are some strategies that can be
applied in order to minimise the scalability issue:

� Data abstraction (LAZIC; NOWAK, 2003; FARIAS et al., 2004): these strategies
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Table 8.2: Results of the scalability evaluation.

# of devices ST1 average time (sec) ST2 average time (sec)
3 12.44 0.66
4 115.25 1.92
5 1473.52 11.6
6 > 24 hours 89.96
7 - 848.92
8 - 83430.93
9 - > 24 hours

Source: Author’s ownership.

aim to compact the state space of the model by using techniques like local analysis,
data independence, finding equivalence classes, partial order reduction among others.
The overall idea is to reduce the possible values of data types using the only ones
that are relevant for the analysis. Nevertheless, most promising approaches still need
user expertise for a complete and adequate usage.

� Refinement calculus (MIYAZAWA; CAVALCANTI, 2014): Although our semantics
cover several aspects of the SysML abstract syntax and be defined in a compositional
manner, the corresponding formal models are too complex. This complexity can be
minimised by the use of refinement rules that provides calculations to simplify the
model. For instance, by eliminating flows that will never be executed or transforming
parallelisms in sequence compositions when possible.

� Analysis based on communicating patterns (ROSCOE, 1998): these strategies aim to
identify specific patterns in which the process interact because we can infer several
simplifications to the analysis. Some of the verifications do not need to be performed
because they are already proved given that the model respect the premise of the
communicating pattern. Another approach is to lift the communicating pattern to the
SysML level instead of verifying on the corresponding CSP specification avoiding
the manipulation of the formal notation.

We believe that this strategies can play an important role for minimising the scalability
problem and they are possible avenues of research for future work.

8.4 Validation of the Semantics

The translation from SysML to CML that we present in this work is itself a semantics
we propose for SysML. A possible proof of correctness of this translation would require us
to consider an independent semantics for SysML and CML, as well as a link between these
semantics. The reasoning would entail to prove that, for an arbitrary SysML model, its translation
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Figure 8.15: Example of refinement for inserting a private operation.

Source: Author’s ownership.

generates a CML process whose semantics are linked to the source SysML model. As already
mentioned, CML has a formal denotational semantics (WOODCOCK et al., 2013), and subsets of
SysML also have formal semantics, including the foundational semantics for UML (fUML (OMG,
2013)). Nevertheless, a formal proof of our translation is out of the scope of the current work.

Nevertheless, in this section we present some initiatives performed to validate our
semantics for SysML. These validations are presented in the form of refinement rules in the
literature of UML/SysML that we verify using our SysML semantics. In this way, we could
verify the consistency of some aspects of our semantics by performing semantic preserving
transformations in SysML and verifying that their corresponding CML also preserve semantics.
Basically, we take examples of SysML refinements available in the literature, then we build the
two SysML models of the refinement, next we translate them to CML, translate them to CSP and
finally we verify if the refinement is also valid using the FDR3 model checker. These validations
are similar to sanity tests in order to provide evidences that our rules are sound. We recall
that besides these validations, the rules were assessed by modelling experts that implemented
them in the Artisan Studio tool. Several issues have already been identified and fixed along this
implementation process; this also supports our confidence in the soundness of the rules.

Now we present some examples of refinement rules in the SysML level and then we
describe how they are also valid according to our semantics. The refinements presented are the
insertion of a private operation, the insertion of a private attribute and the decomposition of a
block into a more structured one defined in terms of internal blocks.

8.4.1 Inserting a private operation

This refinement refers to the act of introducing local auxiliary behaviours in the model
of a block as defined by Miyazawa and Cavalcanti (MIYAZAWA; CAVALCANTI, 2014). It
takes a block and an operation, and introduces one operation in the block as a private operation.
The resulting block has the same semantics as the original because the new operation is only
available internally. Figure 8.15 illustrates an example of this refinement. Given a block B with
two operations op1() and op2(), when we insert a new private operation op() the resulting block
is a refinement of the original one. Whilst this refinement might seem useless, other operations
can take advantage of the availability of the private operation to replace behaviours by calls to it.



8.4. VALIDATION OF THE SEMANTICS 167

Figure 8.16: Example of refinement for inserting a private attribute.

Source: Author’s ownership.

This refinement holds according to our semantics. The newly introduced operation can
only be used internally, that is, by the block internal elements like state machine and activities,
and its use has to be justified by other rules, as previously discussed. Other blocks cannot invoke
this operation because its operating events (B_op) are hidden by the block process according
to Rule 4.16. Therefore the refinement is also valid in our semantics. We have translated this
example to CML and CSP, and then we have verified the refinement using the FDR3 (GIBSON-
ROBINSON et al., 2014) model checker. The corresponding CSP specification is available in
Appendix C.

8.4.2 Inserting a private attribute

This second refinement is similar to the previous one because it deals with the introduction
of another element with private visibility, however, this time it is an attribute of a block. To
illustrate this scenario, in Figure 8.16 we take the resulting block of the previous refinement
and add a private attribute att. The new block is a refinement of the previous one for the same
reason the refinement of Section 8.4.1 works: the events that manipulate the attribute (_get_ and
_set_) are hidden from external elements as also detailed in Rule 4.16.

This type of refinement is considerably used because in general we need to encapsulate the
internal structure of blocks to avoid unsafe accesses. We have also translated this example to CML
and CSP in order to verify the refinement using the FDR3 model checker. The corresponding
CSP specification is available in Appendix C.

8.4.3 Decomposition of a block

Another important task during system development is the decomposition of large units
into smaller units. It involves breaking a block into other blocks in order to reduce the complexity
of a system. This idea is similar to the extract class pattern (FOWLER, 1999) where classes
are derived from another class that is too complex. It is a natural activity during the stepwise
development of systems. We illustrate this decomposition performing a stepwise refinement
of a ManagementDepartment block, which is a part of a System block. We assume that
ManagementDepartment has three complex operations: manageClient(), manageLoan() and
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Figure 8.17: Example of refinement for decomposing a block (part 1).

Source: Author’s ownership.

manageAccount() and we want to restructure them in such a way that they are defined in terms of
three other blocks, one for each operation. Firstly, we deal with the complexity related to clients
by creating a block ClientManager that is a part of the System block as shown in Figure 8.17.
The idea is that the ManagementDepartment block delegates any manageClient() calls to the
ClientManager block, assuming that the latter has all the details to deal with clients.

We could consider the ManagementDepartment block being restructured in terms of
three internal parts instead of having a System block being the owner part of the composition.
However, for simplicity, we present the model this way to cope with our guidelines. The
ManagementDepartment block must have some behaviour to delegate calls and, according to
our entity guideline number 4 in Section 3.1.1 on page 41, the owner block of a composition
cannot have an associated behaviour.

Figure 8.18 shows the block diagrams of the right-hand side of the refinement. Fig-
ure 8.19a shows the block-definition diagram of the system where the blocks ManagementDe-

partment and ClientManager are parts of the System block. The internal-block diagram just
connects the two parts of the composition as displayed in Figure 8.19b.

The state machine of the ManagementDepartment block is considerably simple. It has
only one state with an implicit transition where when a manageClient() operation happens the
action simply invokes the operation with the same name of the ClientManager block. Thus, the
refinement shown in Figure 8.17 is also valid according to our semantics, because the System

block accepts calls to manageClient() of the ManagementDepartment block due to its public
visibility and it just passes the call to be treated by the ClientManager block, which has the
operation call event hidden due to the private visibility of the part ClientManager.

The next step is to decompose the complexity of managing loans. This is performed
similarly according to the refinement shown in Figure 8.20. We create a block LoanManager that
is part of the System block to deal with the management of loans. Again, in order to cope with
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Figure 8.18: Block diagrams of the ManagementDepartment system v1.

(a) BDD of the ManagementDepartment system.
(b) IBD of the ManagementDepartment

system.

Source: Author’s ownership.

Figure 8.20: Example of refinement for decomposing a block (part 2).

Source: Author’s ownership.

our guidelines, the new block is added as a part of the composition presented in Figure 8.19a and
the ManagementDepartment part is connected to the LoanManager part in the internal-block
diagram. Finally, the state machine also has to be updated in order to relay the calls.

The last step of the decomposition is to deal with the management of accounts. Similarly,
we create a new block AccountManager to deal with this activity and the refinement is shown in
Figure 8.21. The model has to be updated as already done for ClientManager and LoanManager.
The final result is displayed in figures 8.22 and 8.23.

This final refinement also holds in our semantics for the same reason previously explained;
the calls to manageClient(), manageLoan() and manageAccount of the block Management-

Department are public, hence, visible in the traces. However, they are internally passed to the
blocks ClientManager, LoanManager and AccountManager, respectively.

Again, we have translated the SysML models to CML and CSP, and performed the
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Figure 8.21: Example of refinement for decomposing a block (part 3).

Source: Author’s ownership.

Figure 8.22: Final BDD of the ManagementDepartment system.

Source: Author’s ownership.

Figure 8.23: Final IBD of the ManagementDepartment system.

Source: Author’s ownership.
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refinement analysis using the FDR3 (GIBSON-ROBINSON et al., 2014) model checker in order
to validate our semantics. The resulting CSP specifications from the translations are available in
Appendix C.

8.5 Related Work

Lano and Evans have proposed a systematic development process using UML and a
mix of syntactic checks and formal verification for consistency, enhancements and refinements
among class diagrams, state machine, sequence, and collaboration diagrams (LANO; EVANS,
1999). Modelling and verification are carried out by hand, using first-order set theory. No general
translation strategy like the one presented here has been developed.

Davies and Crichton have also proposed a formal semantics in CSP for UML class,
object, state-chart, sequence and collaboration diagrams (DAVIES; CRICHTON, 2003). The
semantics is used to verify both refinements and the consistency between sequence and the
remaining diagrams. The translation from UML to CSP has been illustrated via examples. No
general transformation rules are introduced.

Baresi et al. proposes a formal semantics based on a metric temporal logic for UML
class and object diagrams, state machine diagram, sequence diagrams and interaction overview
diagrams (BARESI et al., 2012). The formal models are used to analyse satisfiability of the
model and to check properties of the system. Sequence diagrams are not used to describe valid
our invalid scenarios and the focus of this work is in defining a framework for the cited subset of
UML diagrams.

Makartetskiy and Sisto show efforts towards integrating embedded systems modelling
with verification measures (MAKARTETSKIY; SISTO, 2011). They have proposed an approach
to analyse the refinement of SysML requirements defined in terms of state machines. The
underlying formalism is CSP and the tool used was the PAT model checker (SUN et al., 2008).
However, the transformations are not completely automated and they work in higher level of
abstraction than we do. Our strategy work at the design phase of the system development, while
this work only tackles requirements.

Chouali and Hammad have proposed an approach that combines component SysML
models and interface automata in order to verify formally their interoperability (CHOUALI;
HAMMAD, 2011). They use block definition and internal block to define the components of
the system, and sequence diagram to specify protocols between the components. They translate
the SysML model to interface automata in order to verify interoperability in component-based
systems.

Knorreck et al. present TEPE, a graphical TEmporal Property Expression language based
on SysML parametric diagrams (KNORRECK et al., 2011). Properties are built upon logical
and temporal relations between block attributes and signals. The approach translates the SysML
model to automata to serve as input for UPPAAL (BENGTSSON et al., 1995) model checker for



8.6. FINAL REMARKS 172

formal verification.
Abdelhalim et al. provide a strategy for a systems modelling approach based on UML and

fUML (OMG, 2013) together (ABDELHALIM et al., 2011, 2013). It uses UML state diagrams
for modelling system object behaviour abstractly, then refining each state diagram by adding
the implementation decisions in a form of a fUML activity diagram. They have introduced a
framework based on CSP that uses FDR (FDR: USER MANUAL AND TUTORIAL, VERSION
2.28, 1999) for checking behavioural consistency between each UML state diagram and its
corresponding fUML activity diagram. The structural part of the system is not covered by this
work.

8.6 Final Remarks

We have presented the validation and applications of our semantics to analyse SysML
models. The validations were performed according to model refinements available in the literature
and the experience of the implementers of the CML generation plugin in Artisan Studio. Also,
the analyses of SysML models come in hand when system engineers have to verify if their
models are consistent. Most of our semantics is implemented in the Artisan Studio tool, so that
practitioners can create their models and generate the corresponding CML automatically. Once
the CML specifications are available, the users can animate the model or manually translate the
CML to CSP to use refinement checking in order to validate its traces.

Due to the compositional and general way our semantics is defined, we need to make the
models more concrete to allow animation in the Symphony tool. As previously mentioned, the
Appendix B describes how to derive a CSP model from a CML specification in order to apply
the refinement checking approach we propose in Section 8.3. Some of the procedures require
restricting the sizes of sets and sequences of the model. They are defined to reduce the state space,
and thus, make the analysis feasible. However, models with considerable large state spaces may
impact the feasibility of the approach. In situations like this, the model checker eventually aborts
due to the lack of memory resources. To assess this concern, we have performed a scalability
analysis, as described in Section 8.3.1, to provide an estimate about the size of the models we can
handle. Another aspect regards restricting the size of one of these sets or sequences in a wrong
way. For instance, procedure 5e on Appendix B defines that we should restrict the size of the
parameter enabled according to the maximum size of concurrent request a block may receive.
If this limit is not set correctly, then the result of the refinement analysis is not guaranteed to
be right. For example, some scenarios can be returned as counterexample by the fact that this
element could not store any more requests because it reached the wrong limit that was set.

The result of our analysis comes in terms of counterexamples in the format of the events
defined in CSP. Therefore, the user must at least know the meaning of such events in order
to identify in the SysML model what should be corrected. However, we plan to improve this
outcome in the future by transforming the trace counterexample in a sequence diagram. This
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would help practitioners in understanding the erroneous trace by visualising a graphical language
they are used to instead of reading a CSP trace.

Nevertheless, we have shown that our approaches to formal verification may help prac-
titioners in finding errors in their design models. We have found problems in the two SysML
models from our industry partners, the leadership election problem and the dwarf signal. Even
simple SysML models may have flaws that are difficult to detect by reading each one of the
diagrams. Therefore, we see this line of work as a promising technique to be used for the
verification of system design models described in SysML.
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9
Conclusion

We have presented a formal semantics for a comprehensive subset of SysML through a
mapping into CML. Starting from the CML semantics for individual elements, we have adapted
and evolved the semantics for an integrated view of a SysML model provided by the relationships
between elements in a typical SysML design. Our work is extensive with respect to the coverage
of both elements and constructions of diagrams, even when the diagrams are considered in
isolation.

To allow a coherent formal interpretation of a SysML model, we have proposed guidelines
that assign design roles to be played by each of the elements in an integrated model. The structural
model and the behaviour of its internal components are captured by blocks, state machines and
activities. Desired interactions that the model must (or must not) allow are specified by sequence
diagrams. Although the semantics of state machines is not a contribution of this thesis, its
integration with other model elements and the guidelines of usage that allow the integration are.

In addition to generality and integration, the following concerns have guided the design
of our models.

� Abstraction. The models are given at a level of abstraction that makes them suitable
for a variety of analysis techniques, including model checking and theorem proving.
Not all generated models are executable, but we have shown how the limit of the
number of blocks and their operations can produce an executable version of the
model.

� Compositionality. Parts of the CML models can be analysed independently, and
problems found can be traced back to elements of the SysML model. Besides
being used in an integrated context, each model has its own characteristics, and they
can be analysed independently. For example, a designer can use the FDR model
checker to analyse the model of an activity, checking for deadlock freedom or if it is
non-deterministic.

� Independence from particular tools. We provide a denotational semantics for the
SysML models in terms of translation functions that receive as input elements of the
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abstract syntax of SysML and generate the corresponding CML. The models define a
theory of refinement and programming for SysML. We have explored this feature by
considering refinement notions and laws for SysML models. One implementation
of our semantics has been performed by Atego in its Artisan Studio modelling tool;
however, other tools can also implement the same semantics in order to generate the
corresponding CML models.

The main purpose of our formal semantics is to serve as a sound basis for a comprehensive
reasoning strategy for SysML models based on refinement.

We take advantage of the wide range of CML constructions and operators, concerning
both state and control behaviour, as well as its refinement theory (WOODCOCK et al., 2013).
The SysML semantics is presented as a set of compositional translation rules whose automation
contributes both for validation and applicability of our work.

With the mapping of SysML into CML, it is possible to check whether traces defined by
sequence diagrams are valid or not in the obtained model. This can be automatically achieved,
via refinement checking, using the CML model checker being developed, or by translating the
CML model into an input notation for other tools. So far, we have translated CML into CSP
and used the refinement checker FDR. Another form of validation that we have discussed is
animation using the CML simulator in the Symphony tool, which exercises the SysML model by
executing the communications of the CML model. The CML tool environment is considerably
fresh but promising. With the development of the Symphony tool we expect that the model
checking analysis and other kinds of analyses will be done directly in Symphony with no need to
provide intermediary translations, like the one to CSP.

The entire approach has been illustrated using the industrial case studies leadership-
election and dwarf signal. The semantic mapping has been exemplified for some constructions
of the model, and both animation and scenario validation have been carried out.

Some limitations of our work are discussed as follows:

� Loss of traceability between SysML and CML elements: One of the challenges
of our approach is to achieve complete traceability between CML elements, at the
semantic level, and SysML constructions of the source diagrammatic model. This
has been addressed by defining the translation rules in a compositional manner and
documenting the generated CML to facilitate traceability. However, this limitation
persists when we optimise the generated CML in order to perform model checking
because the traceability information is lost.

� Maintanability of our translation rules: Again, compositionality is helpful. Our
rules are organised into groups according to the SysML elements they address, so
changes are contained to the groups concerned with the elements affected. A more
sophisticated mechanism of maintenance is best considered in the context of Artisan
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Studio because the dependencies between the rules can be explicitly viewed by the
implementers. For instance, if some rule is removed or has its signature modified, the
other rules that depend on the updated rule are marked with possible syntax errors.

� Validation of our semantics: The validation of our semantics was performed by
the refinement scenarios we have exercised as described in Section 8.4 and by the
Atego’s modelling specialists who have implemented the translation rules in the
Artisan Studio tool. We have used a version control system and a bugtracking tool to
support the implementation of the rules. When these specialists found inconsistencies
or errors in the rules, they would open an issue for us to resolve. This process
has helped us to improve the quality of the translation rules. However, it does not
guarantee the correctness of our semantics. Addressing semantic correctness is rather
difficult because the official semantics of SysML is descriptive. Nevertheless, the
OMG has spent some effort in defining a foundational semantics for UML (OMG,
2013), which is formally defined using first-order mathematical logic language called
PSL (GRÜNINGER; MENZEL, 2003). Thus, we could relate our semantics in
CML to PSL in order to prove the soundness of our semantics according to the
OMG standards. However, by the time of the writing, OMG had only provided
the semantics for classes, activities and composite structures. The semantics of
state machines and interactions could still not be proved. Moreover, we perform
transformations in the model to animate it (define finite sets and sequences) and to
perform model checking (CML to CSP) and we do not prove that they preserve the
properties of the previous model. Regarding the former, the intuition is that we just
gather all possible values of the types internally defined for our semantic in finite sets
and sequences by traversing the model. Hence, it would respect the previous model,
however, we cannot guarantee any preservation for the user-defined types because
their values are manually provided by the user. Regarding the CML to CSP, we have
reused several results from the mappings provided by Oliveira et al. (OLIVEIRA
et al., 2014) from Circus (WOODCOCK; CAVALCANTI, 2002) to CSP.

� Expressiveness of our guidelines of usage: Although one of our contributions are
the guidelines of usage, which provide a manner for creating models, this may also
limit the expressiveness of SysML. System engineers may use other modelling styles
rather than the one we are proposing. However, we believe that some of these models
can be transformed in other versions that comply with our guidelines. One kind of
practitioners who have the greatest benefit of adhering to our guidelines are the novice
ones because they usually need to learn or define a modelling style to start creating
their models. Another advantage of adhering to our guidelines is to keep uniformity
and standardisation of the different models that are constructed. For instance, our
guidelines can be used for standardising the models of a company.
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� Analysis of complex models: As we use model checking analysis we inherit the
same limitation of this strategy regarding the state-space explosion problem. How-
ever, we note that models with more entities and relationships do not necessarily
mean a larger model to be analysed. In fact, in some cases, having more models and
relationships could restrict the state space even further, which reduces the computa-
tional effort in the analysis. For example, a block with several operations but with no
relationships that invoke them makes the model checker to expand all possible invo-
cations of these operations. When we define blocks that access these operations, we
restrict the set of invocations according to those defined by the relationship. Indeed,
our problem is with models that do not impose limits to its state space. Therefore,
in order to deal with this drawback we plan to assess the use of data abstraction
techniques (LAZIC; NOWAK, 2003; FARIAS et al., 2004). Although we already
propose some data abstraction mechanisms in Chapter 8, we plan to investigate other
approaches that could improve the performance of our analysis.

9.1 Future Research

There are some interesting opportunities for further research that will contribute to the
proposed approach.

Regarding our guidelines of usage of SysML, to facilitate their communication to prac-
titioners and their implementation in other tools, it can be beneficial to formalise them using
OCL (WARMER; KLEPPE, 2003), for example. In addition, practitioners can also benefit
from a method to construct SysML models that satisfy our guidelines; this can complement an
automated support to check that an existing model follows the guidelines.

A more theoretical line for future work is the use of the precise semantics defined by
fUML to establish the consistency between fUML and our CML semantics, for the constructs
covered by fUML. Besides its denotational semantics (WOODCOCK et al., 2012b), CML has
an operational semantics (BRYANS et al., 2014), used in its animator and model checker, and an
algebraic semantics, used in its theorem prover and refinement editor. Exploring the relationship
between PSL and CML, in the context of the Unifying Theories of Programming (HOARE; HE,
1998), which are used to give a denotational semantics for CML, is a promising way forward.

The generated CML models are not suitable for human readers. Whereas this is not
relevant for our goal of reasoning purely at the SysML level, readability can be useful in other
contexts. Further modularisation of the CML model to separate the semantics of the SysML
protocols from the CML models of features of particular elements can improve readability. This,
most likely, however, requires the use of higher-order actions, a feature not currently available in
CML.

One of our major objectives is to develop a comprehensive framework to allow reasoning
purely at the SysML diagrammatic level, with the CML models and analyses totally hidden
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from the developer. We plan to develop other case studies to explore the semantic mapping
and the reasoning strategy described here. We also aim to investigate further data abstraction
techniques that could be applied in our approach in order to allow the analysis of even more
complex systems in terms of the number of states.

As discussed, we have implemented the transformations required for simulation using
the CML animator and we have supported the implementation of our translation rules in the
Artisan Studio tool. Other opportunities for automation include the support for refinement in
general, especially at the SysML diagrammatic level, and for optimising model checking in FDR
and other tools.

Moreover, we aim to expand the coverage of our approach. We plan to provide semantics
for other SysML features, including new concepts, like the parametric diagram, and other
exclusive characteristics of SysML. In addition, we plan to implement our translation functions
in other modelling tools considering new model elements that we may provide semantics for
(like the parametric diagram) and the sequence diagram semantics, which was not implemented
in Artisan Studio.

Finally, extension of SysML to include CML concepts for refinement, and of CML to
include SysML concepts, like asynchronous communication and shared variables, are interesting
avenues for further work. What we have now, however, is a comprehensive and formal account
for the refinement of SysML, as it is currently available and supported in commercial tools.
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A
Translation rules

Rule A.1 declares the type Bag, which is used to store the operation calls that have been
received by a block. This type is used by block processes as described in Chapter 4 (rules 4.20
and 4.21). The type Bag models a bag (i.e, an unordered collection of objects where repetition is
allowed) of tokens, which is used in our semantics to store names of operations. Additionally,
three functions are declared: in_bag, bunion and bdiff. These functions are the bag equivalent
of set membership, union and difference respectively.

Rule A.1: declare bag

declare_bag(): seq of class paragraph =

"types"

"public Bag = map token to nat"

"values"

"public empty_bag = {>}"

"functions"

"public in_bag: token * Bag -> bool"

"in_bag(o,b) == "

"exists n in set dom(b) @ b(n) > 0 and o = n"

"public bunion: Bag * Bag -> Bag"

"bunion(m1,m2) == "

"{x |-> y | x in set (dom m1 inter dom m2),"

"y: nat @ y = m1(x)+m2(x)}"

"munion"

"{x |-> y | x in set dom m1, y: nat @"

"x not in set dom m2 and y = m1(x)}"

"munion"

"{x |-> y | x in set dom m2, y: nat @"

"x not in set dom m1 and y = m2(x)}"

"public bdiff: Bag * Bag -> Bag"

"bdiff(m1,m2) == "

"{x |-> y | x in set (dom m1 inter dom m2),

y: nat
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@ y = if m1(x)-m2(x) > 0

then m1(x)-m2(x)

else 0}"

"munion"

"{x |-> y | x in set dom m1, y: nat @"

"x not in set dom m2 and y = m1(x)}"

Rule A.2 defines some of the channels used in the model. For each connector used in
the model, a channel named after it is defined as communicating a natural number, to identifiers
and a message. The following defined channels are used for internal control in the state machine
semantics. All these channels are internal to the model.

Rule A.2: define stm channels

define_stm_channels(m: SysML model): program =

"channels"

for each c in m.AllConnectors do

name(c)"_op: nat*ID*ID*OPS"

name(c)"_sig: nat*ID*ID*S"

end for

"instate, setstate: ID*ID*bool"

"enter,entered,exit,exited,cancel,final_state: ID*ID"

"enabled: ID*bool"

"completion: ID"

"fire,fired"

Rule A.3 defines auxiliary functions used along the model. The DL_or function imple-
ments a logic operation OR for the type DL considering it has a third value <defer>. Function
prefix verifies if a given element identifier is a prefix of the second identifier. It is used to
check if a given element is in the hierarchy of another (e.g., a block is part of another block, a
transition is part of a state machine, etc). The function drop_two removes the last two tokens in
the sequence that identifies an element.

Rule A.3: declare aux functions

declare_aux_functions(): program =

"functions

DL_or(a: DL, b: DL) c: DL

post (is_bool(a) and is_bool(b) => c = a or b)

and (not is_bool(a) or not is_bool(b) => (

((a = true) or (b = true) => (c = true))

and ((not (a = true) and not (b = true))

=> c = <defer>)

))
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prefix: ID*ID->bool

prefix(p, q) == len p <= len q and (forall i in set inds p @ p(i) =

q(i))

drop_two(x: ID) c: ID

pre len x >= 2

post c = reverse(tl(tl(reverse(x))))"

Rule A.4 defines a channel set with the alphabet of communication between the activities
of a block and their owner block.

Rule A.4: t activities chanset

t_activities_chanset(ads: seq of Activity, block: Block): chanset

expression =

"{|" name(block)"_hasevent, "name(block)"_getevent |}"

for ad in seq ads do

" union {| startActivity_"name(ad)", endActivity_"name(ad)",

interruptActivity_"name(ad) "|}"

for action in seq ad.Nodes(Action.Type) do

if action.Type == CallOperation.Type then

" union {|

"name(action.target.type)"_op.m.($id^[mk_token(\"acts\")]^

[mk_token(\""name(ad)"\")]^

[mk_token(\""name(action)"\")]) | m: nat |}"

else if action.Type == SendSignal.Type then

" union {|

"name(action.target.Type)"_sig.m.($id^[mk_token(\"acts\")]^

[mk_token(\""name(ad)"\")]^

[mk_token(\""name(action)"\")]) | m:nat |}"

end if

end for

end for

for a in set block.AllAttributes do

" union {|"name(b)"_get_"a.name".x.$id | x: ID @

prefix($id^[mk_token(\"acts\")],x)|}"

" union {|"name(b)"_set_"a.name".x.$id | x: ID @

prefix($id^[mk_token(\"acts\")],x)|}"

end for

Rule A.5 translates a statement written in the action language (described in Chapter 3) to
CML.

Rule A.5: t action
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t_action(a: Action, b: Block, n: Name, trs: seq of Trigger): action =

if a = sep "?" as then sep "?"{t_action(a,b,n,trs) | a in set as}

else t_statecopy(b,n) ";"

rename_parameters(t_simple_action(a,b,n,trs),trs) ";"

t_stateupdate(b,n) ")"

end if

where

1. ? stands for any constructor of a CML statement (e.g., ;)

Rule A.6 is an auxiliary function used to retrieve the current values of the attributes of a
block.

Rule A.6: t statecopy

t_statecopy(b:Block, n: Name): action =

if b.Attributes.size() = 0 then "(Skip"

else "(dcl " sep "," {a.name":" t_types(a.type) | a in set

b.Attributes} "@"

t_readstate(b.Attributes,b,n)

end if

Rule A.7 is used by Rule A.6 to read the current values of the attributes of a block.

Rule A.7: t readstate

t_readstate(as: set of Attribute, b:Block, n: Name): action =

if as.size() = 0 then "Skip"

else if as = {a} then

"("name(b)"_get_"a.name".($id^[mk_token(\""n"\")]).

(reverse(tl(tl(reverse($id)))))?x -> "a.name" := x)"

else let a in set as in

"(("name(b)"_get_"a.name".($id^[mk_token(\""n"\")]).

(reverse(tl(tl(reverse($id)))))?x -> "a.name" := x)"

"[||{"a.name"} | {"sep "," {x.name | x in set as\{a}}"} ||]"

t_readstate(as\{a},b,n) ")"

end if

Rule A.8 applies a rename in the parameters used in an action statement in order to use
the CML event notation for recovering the message of the event. The notation e.#4 describes
an access to the fourth argument of an event, which corresponds to the message (operation call
or signal) received by the block. This event follows has the type E as defined in Rule 3.3 (on
page 55) in Chapter 3.
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Rule A.8: rename parameters

rename_parameters(a: Action, trs: seq of Trigger): action =

let old_names = sep "," dunion{t:elements trs @ parameters(t.event)}

new_names = sep "," {n: dunion{t:elements trs @

parameters(t.event)} @ "(e.#4."n")"}

in

a[new_names/old_names]

Rule A.9 defines the translations to CML of the possible action language statements
defined by our guidelines in Chapter 3.

Rule A.9: t simple action

t_simple_action(a: Action,b: Block, n: Name, trs: seq of Trigger): action

=

if a = (Op(ps)) then

if Op is an operation of the SysML model then

name(b)"_op?w.($id^[mk_token(\""n"\")]).

(reverse(tl(tl(reverse($id)))))."

"mk_"Op.name"_I(mk_token(\""Op.name"_I\")" if ps <> "" then

"," ps end if " ) -> "

name(b)"_op.w.($id^[mk_token(\""n"\")]).

(reverse(tl(tl(reverse($id)))))?"

"x:(x.$id = mk_token(\""Op.name"_O\")) -> Skip"

else -- Op is an activity of the SysML model

"startActivity_"name(Op)".($id^[mk_token(\""n"\")])"for i in set

inds(ps) do "."ps(i) end for" -> "

"endActivity_"name(Op)".($id^[mk_token(\""n"\")])"for p in set

Op.OutputParameters do "?"p end for " -> Skip"

end if

else if a = (v := Op(ps)) then

if Op is an operation of the SysML model then

name(b)"_op?w.($id^[mk_token(\""n"\")]).

(reverse(tl(tl(reverse($id)))))."

"mk_"Op.name"_I(mk_token(\""Op.name"_I\")" if ps <> "" then

"," ps end if " ) -> "

name(b)"_op.w.($id^[mk_token(\""n"\")]).

(reverse(tl(tl(reverse($id)))))?"

"x:(x.$id = mk_token(\""Op.name"_O\"))-> "v":=(x._ret)"

else -- Op is an activity of the SysML model (there is an

assumption that Op has a single output

"startActivity_"name(Op)".($id^[mk_token(\""n"\")])"for i in set

inds(ps) do "."ps(i) end for" -> "

"endActivity_"name(Op)".($id^[mk_token(\""n"\")])?x -> "v":=x"

end if

else if a = (return v) and len(trs) = 1 and trs(1) is Operation then
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name(b)"_op.(e.#1).(e.#2).(e.#3).mk_"trs(1).name"_O("

"mk_token(\""trs(1).name"_O\"),"v")-> Skip"

else if a = (return) and len(trs) = 1 and trs(1) is Operation then

name(b)"_op.(e.#1).(e.#2).(e.#3).mk_"trs(1).name"_O("

"mk_token(\""trs(1).name"_O\"))-> Skip"

else if a = ([e]&S) and e is an Expression and S is a Statement then

"[" e "] &" t_simple_action(S,b,n,trs)

else a

end if

where

1. Op is the name of an operation

2. ps is a comma separated sequence of expressions

3. v is variable name

4. e is an expression

5. S is an action

6. Op.OutputParameters is the sequence of output parameters of an

activity Op

Rule A.10 updates the values of attributes of a block.

Rule A.10: t stateupdate

t_stateupdate(as: set of Attributes; b: Block; n: Name): action =

if as.size() = 0

then "Skip"

else "(" sep "|||" {name(b)"_set_"a.name".($id^[mk_token(\""n"\")]).

(reverse(tl(tl(reverse($id)))))!"a.name" -> Skip" | a in set as}

")"

end if

Rule A.11 defines the function that communicates events from a set of events received as
argument indefinitely.

Rule A.11: t RUN

RUN(S: set of channel): action paragraph =

"mu X @ " sep "[]" {ev "-> X" | ev in set S}
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A.1 Rules for Activity

In this this section we present the remaining rules used for the definition of a semantics
for SysML activities.

A.1.1 Call Behaviour Action Parallelism

We use the function t_ad_cba_parallel (described in Rule A.12), if there is at least
one Call Behaviour action in a diagram, to introduce channels for synchronisation between the di-
agram model and call behaviour actions models. They run in parallel without synchronising. The
function t_ad_cba_parallel has an activity identification and a block instance as arguments.

The channels whose names begin with startActivity_CBA_ are used for synchronisa-
tion between a diagram model and a Call Behaviour action (CBA) model, so that the CBA model
can start its execution. The channel name is composed by the activity name given by name(ad),
the block id $id, and the Call Behaviour action index. The channels whose names begin with
endActivity_CBA_ are used for synchronisation between a CBA action model and a diagram
model, indicating the end of a CBA execution. Every CBA action model has these two channels.

Rule A.12: t ad cba parallel

t_ad_cba_parallel(ad: Activity, block: Block): program paragraph =

if ad.Nodes(CallBehaviour.Type).size > 0

"[|{|" sep "," { "startActivity_CBA_"name(ad)".$id."cba.index",

endActivity_CBA_"name(ad)".$id."cba.index | cba in seq

ad.Nodes(CallBehaviour.Type) } "|}|]"

"(" sep "|||" { "(ad_"name(cba_ad)"($id))

[[ startActivity_"name(cba_ad)".$id <-

startActivity_CBA_"name(ad)".$id."cba.index","

"endActivity_"name(cba_ad)".$id <-

endActivity_CBA_"name(ad)".$id."cba.index" ]]"

| cba in seq ad.Nodes(CallBehaviour.Type), cba_ad ==

cba.behaviour.activity}")"

end if

The CML actions for the Call Behaviour actions are executed in interleaving. The
channel name that begins with startActivity_ of each action is renamed so that it gets the
same name as used in the set of synchronising events. A similar renaming is done with respect to
channels with names starting with endActivity_.

Next, we illustrate in the following extract the application of rules 5.5 and A.12 by
showing the generated CML code for the TreatEmergencyCall and BroadcastCall activity
diagrams (figures 5.5 and 5.6 on pages 104 and 105, respectively). Note that as the latter does
not have call behaviour actions it is reduced to their internal CML process.
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channels

...

process ad_internal_BroadcastCall = ...

process ad_BroadcastCall = val $id: ID @ ad_internal_BroadcastCall($id)

process ad_internal_TreatEmergencyCall = ...

process ad_TreatEmergencyCall = val $id: ID @

ad_internal_TreatEmergencyCall($id)

[|{|startActivity_CBA_TreatEmergencyCall.$id.2,

endActivity_CBA_TreatEmergencyCall.$id.2|}|]

((ad_BroadcastCall($id))[[startActivity_BroadcastCall.$id <-

startActivity_CBA_TreatEmergencyCall.$id.2,

endActivity_BroadcastCall.$id <-

endActivity_CBA_TreatEmergencyCall.$id.2]]

)

In this extract, first, we have the definition of the process for the internal representation
of activity BroadcastCall (ad_internal_BroadcastCall). This process is used in the defi-
nition of the main process for this activity (ad_BroadcastCall). The activity BroadcastCall
does not have any Call Behaviour action, then, its main process is the same as the internal
process. On the other hand, the definition of the main process for the activity TreatEmer-
gencyCall (ad_TreatEmergencyCall) is the parallel composition of its internal representation
(ad_internal_TreatEmergencyCall) and the process of the Call Behaviour action used in this
activity, which refers to activity BroadcastCall process previously defined. We rename the
events to start and end the activity BroadcastCall according to the events of the Call Behaviour
action. In this case, it is parametrised by the ID of the enclosing activity ($id) and the index of
the Call Behaviour action, which in this case is 2.

A.1.2 Start Activity

The CML action START_ACTIVITY is defined by Rule A.13. It offers to the environment
an event for synchronisation. To start the execution of an activity diagram, it is necessary to
synchronise on a channel named startActivity_ with a suffix composed by the activity name
name(ad). This channel synchronises with an entity that invokes the activity, which can be
for example the block instance or the block state machine. That is why it declares a value-
result parameter (vres) to store the source that invoked the diagram in order to respond to this
same entity once the diagram finishes. The environment must provide values for each activity
parameter. The channel parameter names are the same as the activity parameter names. Notice
that only activity parameters with no incoming edges are used; this ensures that they are used
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for input. For instance, the activity of Figure 5.5 (on page 104) has an input parameter (call)
because such a parameter has only outgoing edges. On the other hand, the parameter of the
activity displayed in Figure 8.11 (on page 161) has only incoming edges, hence, it is not used in
the channel startActivity_ After communicating the input values, such values are assigned
to local variables whose purpose is to store the input data. We use the CML construct atomic
in order to make all assignments one single command. This data is used by the object nodes
defined in Rule A.37. The definition of these variables is detailed in Rule 5.9. The names of
these variables are the same names as the input activity parameter nodes. This happens to allow
a sequential composition, which is detailed in Rule 5.9 where the START_ACTIVITY CML action
is used.

Rule A.13: t start activity

t_start_activity(ad: Activity, block: Block): seq of action =

"START_ACTIVITY = "

"vres $source: ID" {", vres "name(param)": "t_types(param) |

param in seq ad.Nodes(ActivityParameterNodes.Type) and

param.IncomingEdges.size() == 0 } " @ "

"startActivity_" name(ad)"?$s"

if (card {param | param in seq

ad.Nodes(ActivityParameterNodes.Type) and

param.IncomingEdges.size() == 0 } > 0) then

"?"

end if

sep "?" {"x_"name(param) | param in seq

ad.Nodes(ActivityParameterNodes.Type) and

param.IncomingEdges.size() == 0 }

" -> " if card {param | param in seq

ad.Nodes(ActivityParameterNodes.Type) and

param.IncomingEdges.size() == 0 } > 0 then

"atomic($source := $s;" sep ";" {name(param)" :=

x_"name(param) | param in seq

ad.Nodes(ActivityParameterNodes.Type) and

param.IncomingEdges.size() == 0 }");"

else

"($source := $s);"

end if

" Skip "

The next extract shows the application of Rule A.13 to activity Add shown in Figure 5.3
on page 103. When we have only one CML action in the interleaving parallelism (|||), it can
be reduced to this action, that is why we only have (item := x_item -> Skip) instead of the
parallelism.

process ad_internal_Add = val Buffer_id: ID @ begin
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chansets

...

actions

START_ACTIVITY = vres $source: ID, vres item: Item @

startActivity_Add?$s?x_item -> atomic($source := $s;item := x_item);Skip

...

end

A.1.3 Interruptible Regions

An interruptible region allows a subset of the actions to be interrupted by the destruction
of their tokens; the other actions outside the interruptible region remain executing. A mechanism
called interrupting edge indicates when an interruptible region is to be interrupted: a token is ac-
cepted by the interrupting edge. We use the function t_interruptible_regions (Rule A.14) to
translate interruptible regions. A CML action whose name begins with InterruptibleRegion_

and whose suffix is the interruptible region index is introduced for every interruptible region
of an activity diagram of a block instance. The CML action is recursive (defined using the
µ construct). When an interrupting edge is to be traversed, the actions inside an interrupt-
ible region must finish execution. This is modelled by the external choice of all interrupting
edges that leave the region. The synchronisation should be accomplished via one of the events
defined by control.[edge.index] or by those channels named obj_. Then, an event over
a channel interrupted is available to the environment, defining an interrupting edge of an
interruptible region. This channel is specific to the model of a diagram, a block instance ($id),
and an interruptible region (intRegion.index). After synchronisation, the CML action behaves
as Skip. The external choice is sequentially composed with the recursive call X, indicating that
the region that was interrupted is now available to start execution again.

The CML action InterruptibleRegions is defined by the parallelism of all CML
actions introduced for interruptible regions. As these regions execute asynchronously, they are
interleaved.

Rule A.14: t interruptible regions

t_interruptible_regions(ad: Activity, block: Block): seq of action =

for intRegion in seq ad.group and

intRegion.isInterruptibleActivityRegion() do

"InterruptibleRegion_"intRegion.index" = mu X @ (("

for edge in seq intRegion.interruptingEdge sep "[]" do

if edge.isControl() then

"control."edge.index

else

"obj_"name(ad)"_"edge.index"?x"

end if
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"-> interrupted."id(ad)".$id."intRegion.index" -> Skip"

end for

");X)"

end for

"InterruptibleRegions = Skip"

for intRegion in seq ad.group and

intRegion.isInterruptibleActivityRegion() do

" ||| InterruptibleRegion_"intRegion.index

end for

A.1.4 Interrupt Activity Manager

Rule A.15 is responsible for controlling when an external entity (e.g., a state machine)
interrupts an activity. This behaviour is not defined by the OMG, but is provided by our
semantics in safe situations. When a call operation or a call behaviour is invoked, we must
wait the termination of the action in order to allow the interruption of the activity, otherwise
this interruption would lead to an erroneous state because the entity waiting for a return event
of an operation would never be synchronised. We use a variable i to control when such
interruption is possible. Every time one of the cited actions starts to execute its main behaviour,
the variable is incremented. Once the execution finishes, the variable is decremented (see
rules A.21 and A.26). Hence, while the value of the variable is zero, the activity may be
interrupted. The INT_ACT_MANAGER action is used inside the main action (Rule 5.9).

Rule A.15: t interrupt activity manager

t_interrupt_activity_manager(ad: Activity, block: Block): seq of action =

"INT_ACT_MANAGER = (dcl i: nat := 0 @ (mu X @ (

inc?o -> i := i + 1;X

[]

dec?o -> i := i - 1;X

[]

[i = 0] & interruptActivity_"name(ad)"?x:

(prefix($id,x)) -> Skip)))"

A.1.5 Token Manager

The function t_token_manager (Rule A.16) introduces the CML action TOKEN_MANAGER,
which models the protocol that controls the termination of the diagram according to its active
tokens. TOKEN_MANAGER is a recursive action that has an initialisation (first update event), and
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then performs three behaviours. One of them changes the number of active tokens by receiving a
communication through the update channel. Some nodes can increase or decrease the number
of active tokens. Initial nodes, fork nodes and action nodes that have more outgoing edges than
incoming edges are examples of nodes that increase the number of active nodes. On the other
hand, flow final nodes, join nodes and action nodes are examples of nodes that decrease the
number of active nodes. They communicate with TOKEN_MANAGER through the update channel.
When an active flow reaches an activity final node all remaining flows must terminate. This is
performed by the clear event. When the number of active tokens is zero, then the activity must
terminate. Firing the endDiagram event interrupts all elements of the diagram as can be seen
further in the translations of the nodes.

Rule A.16: t token manager

t_token_manager(ad: Activity, block: Block): seq of action =

"TOKEN_MANAGER = update?o?x -> nTokens := x; mu X @ (

update?o?x -> nTokens := nTokens + x;X

[]

clear?o -> nTokens := 0; endDiagram."id(ad)" -> Skip

[]

[nTokens = 0] & endDiagram."id(ad)" -> Skip)"

The next extract shows the application of Rule A.16 for activity Add.

...

process ad_internal_Add = val Buffer_id: ID @ begin

chansets

...

actions

...

TOKEN_MANAGER = update?o?x -> nTokens := x; mu X @ (

update?o?x -> nTokens := nTokens + x;X

[]

clear?o -> nTokens := 0; endDiagram.Add -> Skip

[]

[nTokens = 0] & endDiagram.Add -> Skip)

...

end

...

The action TOKEN_MANAGER models the token semantics of activity diagrams. However,
its relationship with the nodes is what determines the termination mechanism as described in the
next sections where we describe action, control and object nodes.
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A.1.6 Action Nodes

The function t_action_node (Rule A.17) translates an action node. It receives as
arguments the action node to be translated, the activity diagram to which the action belongs, a
block instance from which we translate the diagram, and the interruptible regions that enclose
the node. This function introduces a CML action with a name composed by the SysML action
name appended with the action node index.

In SysML, every action execution finishes when the executing diagram finishes execution.
If the action is part of an interruptible region, its execution halts when the interrupting edge
accepts a token, but the node is restarted and waits for tokens on its inputs once again. Notice that
it is possible to have nested interruptible regions, so that when an interruptible region finishes
its execution, actions of any nested interruptible region must also halt execution. The boolean
variable end_guard indicates when an action can have its execution finished or halted. This
variable is used as the guard of an action: if it is true, then the action after the guard is enabled.
So, for every action, the function t_action_node declares end_guard, a boolean variable, with
true as initial value. In order to avoid undesirable situations, this variable is falsified if the
action is a Call Operation or Call Behaviour action. Therefore, we do not allow the interruption
of Call Operation and Call Behaviour actions during their executions. Once the behaviour is
completed, then the variable is set true, allowing the interruption once again.

The CML action for a SysML action is recursive. If there are any input or output pins
from an action, we declare variables to hold the values communicated by input pins or values
that are going to be used in output pins. The variable identifiers are defined by the names of the
input and the output pins. The types of these variables are defined by the types of the input and
the output pins.

If there are incoming edges to an action (control and object), we translate them by using
the function t_action_incoming_edges (see Rule A.19) applied to the action and the diagram.
When there is no incoming edge and the number of outgoing edges is greater than zero, then
the action generates active tokens, which is performed by the update event. Then, the function
t_action_types(action,ad,block,regions) (see Rule A.18) is called to translate the action
according to its type. Next, we check if the number of arrows leaving the action is different
from the number of the incoming ones, in case the latter is grater than zero. If it is true, then
we must update the number of active tokens (#outgoingEdges minus #incomingEdges). If the
number of outgoing edges is greater than zero, all the previous CML actions are sequentially
composed with another CML action related to the outgoing edges. This is defined in function
t_action_outgoing_edges (see Rule A.20. Notice that the variables initially declared are
visible through the whole action.

A SysML action can stop its execution due to two situations: (1) an interrupting edge
has accepted a token (and the action is part of the interrupting region) or (2) execution of the
activity has finished. If the action belongs to at least one interruptible region, then we insert



A.1. RULES FOR ACTIVITY 200

an interruption in a guarded action. The guard is the boolean variable end_guard that, if true,
enables an external choice over the indices of interruptible regions of an activity, using the
channel interrupted. If an interrupting edge accepts a token, an event synchronises with one
of the channels available for external choice, then we have a recursive call.

Independently of the existence of interruptible regions, SysML actions finish when an
executing activity to which the actions belong finishes. The action termination mechanism is
defined by /_\ end_guard & END_DIAGRAM that takes control only when the guard end_guard

value is true, then it behaves as END_DIAGRAM (defined in Rule 5.8 on page 112 of Chapter 5).
The END_DIAGRAM behaviour synchronises on the endDiagram event, which can only be fired
according to the TOKEN_MANAGER action described in Section A.1.5.

Rule A.17: t action node

t_action_node(action: ActivityNode, ad: Activity, block: Block, regions:

seq of InterruptibleActivityRegion): action =

name(action)"_"action.index" = (dcl end_guard: bool := true @ ( mu X @

("

"("

if action.input.size() > 0 or action.output.size() > 0

"(dcl " sep "," {name(obj)": "t_types(obj) | obj in seq

concat(action.input, action.output)}

"@ ("

end if

if action.IncomingEdges.size > 0 then

t_action_incoming_edges(action,ad)

else if action.OutgoingEdges.size > 0 then

"(update."id(action)"!"action.OutgoingEdges.size" -> Skip);"

end if

"("t_action_types(action,ad,block,regions)");"

if action.IncomingEdges.size > 0 and action.OutgoingEdges.size !=

action.IncomingEdges.size then

"update."id(action)"!("action.OutgoingEdges.size -

action.IncomingEdges.size") -> "

end if

if action.OutgoingEdges.size > 0 then

t_action_outgoing_edges(action,ad)

end if

if action.IncomingEdges.size == 0 then

"wait -> X "

else

"X "

end if

if action.input.size() > 0 or action.output.size() > 0

")))"

else

")"
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end if

if regions.size() > 0 then

"/_\ [end_guard] & ([]i in set {"{intRegion.index | intRegion in

seq regions}"} @ (interrupted."id(ad)".$id.i -> X))"

end if

")) /_\ [end_guard] & END_DIAGRAM)"

A.1.7 Action Types

The function t_action_types (Rule A.18) receives as arguments an action node, the
activity diagram to which the node belongs, a block instance, and the diagram interruptible
regions. Based on the type of the activity node, this function selects an adequate function for
translation. The following types of actions can be translated: call operation, opaque, accept
event, send signal, value specification, call behaviour, read self and read structural feature.

Rule A.18: t action types

t_action_types(action: ActivityNode, ad: Activity, block: Block, regions:

seq of InterruptibleActivityRegion): action =

switch(action.Type)

case CallOperation.Type: t_call_operation_action(action,ad,block)

case Opaque.Type: t_opaque_action(action,ad,block)

case AcceptEvent.Type:

t_accept_event_action(action,ad,block,regions)

case SendSignal.Type: t_send_signal_action(action,ad,block)

case ValueSpecification.Type:

t_value_specification_action(action,ad,block)

case CallBehaviour.Type: t_call_behaviour_action(action,ad,block)

case ReadSelf.Type: t_read_self_action(action,ad,block)

case ReadStructuralFeature.Type:

t_read_structural_feature_action(action,ad,block)

end switch

A.1.8 Action Incoming Edges

An action only starts its execution if all data it needs and the control tokens are available.
This is specified as an interleaving of control edges and data input as displayed in Rule A.19.
This function is used as part of the function t_action_node (Rule A.17). Concerning control,
there is an interleaving involving the control channel, each one synchronising on the incoming
control edge index. After synchronisation, the action behaves as Skip. The interleaving of the
input data is accomplished on input pin channels (starting with in). The input parameter names
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(which are preceded by a question mark) of these channels begin with in appended with the
edge index. After receiving a value over a channel whose name starts with in, such value is
assigned to the variable that has already been introduced by the function t_action_node. After
both control and object inputs finishes, the CML action for the activity node continues.

Rule A.19: t action incoming edges

t_action_incoming_edges(action: ActivityNode, ad: Activity): action =

"( " sep "|||" {"control."inEdge.index" -> Skip" | inEdge in seq

action.IncomingEdges(Control.Type)}

if action.input.size > 0 then

" ||| " sep "|||"

{"in_"name(ad)"_"name(action)"_"inObj.index"?in"name(inObj)" ->

"name(inObj) " := in"name(inObj) | inObj in seq action.input }

end if

");"

A.1.9 Action Outgoing Edges

The function t_action_outgoing_edges (Rule A.20) defines how a SysML action
that has not been interrupted passes the control to other activity nodes with data output. The
resultant action from this function is used as part of function t_action_node (Rule A.17). The
function t_action_outgoing_edges receives as arguments an action node and an activity. This
function introduces an interleaving of control edges and another for dealing with output. First, it
attempts to synchronize over the channel control with the outgoing edge indices as parameters.
After synchronization, the CML action behaves as Skip. The output of values is accomplished
by using output pin channels whose names start with out. This channel communicates the value
of variable name(outObj), the outgoing edge name.

Rule A.20: t action outgoing edges

t_action_outgoing_edges(action: ActivityNode, ad: Activity): action =

"( " sep "|||" {"control."outEdge.index" -> Skip "| outEdge in seq

action.OutgoingEdges(Control.Type)}

if action.output.size > 0 then

" ||| " sep "|||"

{"out_"name(ad)"_"name(action)"_"outObj.index"!"name(outObj)"

-> Skip" | outObj in seq action.output }

end if

");"
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A.1.10 Call Operation action

A Call Operation action is an operation call to a target (typically a block). The function
t_call_operation_action (Rule A.21) receives as arguments an activity node (action) of an
activity diagram (ad) of a block instance (block). Depending on the target block of the call,
the operation can be an operation call to a block associated with the owner block (target is not
null), or be an internal call to the block that owns the activity (the target is null). For instance,
the activity Rem displayed in Figure 5.4 (page 104) has a call operation action called rem. As
there is no input pin named target, which would be the target of the call, we assume that such
an operation call is internal to the block that owns this activity. In case of having a target to the
call, this action attempts to synchronize with a block operation over a channel with a name that
begins with the name of the target block, given by name(action.target.type), followed by
an operation identifier. The channel expects an operation call identifier (m_id); it outputs the
sender block name $id (the owner block) appended with the action name, and the receiver block
name.

The last parameter is related to the operation record type as presented in Section 4.2
of Chapter 4. We use mk_, which is the value constructor operator of CML, to create a value
according to the input record type of the operation (suffixed with _I). Notice that the data source
is given by input pin names. After calling an operation of another block, we assign end_guard the
value false and we communicate inc, indicating that the executing action cannot be interrupted.
We wait the return from the operation call on a channel with a name that begins with the type
of the target block name (name(action.target.type)). The channel event has an operation
identifier, the sender block identifier, and the receiver block identifier. The sender and the receiver
block identifiers are always the same. The input parameter oper receives a value of the output
record type of the operation (oper.$id is the name of the operation and we check if it is the set
of operations of the target block and if it has the name of the operation we are interested in). The
output parameters and the return of the operation are assigned to output pins. Only after calling
and returning from an operation, we establish that the executing action can be interrupted, and
communicate dec and assign true to end_guard. Finally, the action behaves as Skip.

Similarly, when the operation call is internal, the target block identifier is replaced by the
identifier of the owner block itself. The function drop_two($id) removes the two last names of
the ID sequence because at this point the attribute $id is the identifier of the block appended
with two names: the activity flag mk_token("acts") (included by Rule 4.13), and the name of
the current activity mk_token([name(ad)]) (included by Rule 5.3). At this point we are only
interested in the identification of the block to send the internal call, therefore we remove these
two names using function drop_two($id)

Rule A.21: t call operation action

t_call_operation_action(action: ActivityNode, ad: Activity, block:

Block):action =
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if (action.target != null) then

name(action.target.type)"_op?m_id!

($id^[mk_token(\""name(action)"\")])!"name(action.target)"!

mk_"action.operation.name"_I(mk_token(\""action.operation.name"_I\")"

if size(action.input - action.target) > 0 then

","

end if

sep "," {name(inPin) | inPin in seq action.input and inPin !=

action.target}

") -> inc."id(action)" -> end_guard := false;"

name(action.target.type)"_op?m_id!

($id^[mk_token(\""name(action)"\")])!"name(action.target)"?oper:

(oper.$id in set "name(action.target.type)"_O and

oper.$id = mk_token(\""action.operation.name"_O\")) -> "

if action.operation.return != null then

"(" sep "|||" {"("name(outPin)" := oper.ret)" | outPin in seq

action.output and

ret in seq action.operation.OutputParameters}");"

end if

" dec."id(action)" -> (end_guard := true)"

else

name(block)"_op?m_id!($id^[mk_token(\""name(action)"\")])!

(drop_two($id))!mk_"action.operation.name"_I(

mk_token(\""action.operation.name"_I\")"

if size(action.input - action.target) > 0 then

","

end if

sep "," {name(inPin) | inPin in seq action.input and inPin !=

action.target}

") -> inc."id(action)" -> end_guard := false;"

name(block)"_op?m_id!($id^[mk_token(\""name(action)"\")])!

(drop_two($id))?oper: (oper.$id in set "name(block)"_O and

oper.$id = mk_token(\""action.operation.name"_O\")) -> "

if action.operation.return != null then

"(" sep "|||" {"("name(outPin)" := oper.ret)" | outPin in seq

action.output and

ret in seq action.operation.OutputParameters}");"

end if

" dec."id(action)" -> (end_guard := true)"

end if

The next extract shows the application of Rules A.17- A.21 for the Call Operation action
of the Rem activity (Figure 5.4 on page 104). We assume that the id of the action is rem1.

...

process ad_internal_Rem = val $id: ID @ begin
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actions

...

Rem_1 = dcl end_guard: bool := true @ ( mu X @ ((

dcl rem:Item @ (

(control.3 -> Skip);

(Buffer_op?m_id!($id^[mk_token("Rem")])!(drop_two($id))!

mk_rem_I(mk_token("rem_I")) -> inc.[mk_token("Rem")] ->

end_guard := false;

Buffer_op?mi_id!($id^[mk_token("Rem")])!(drop_two($id))?oper:

(oper.$id in set Buffer_O and oper.$id = mk_token("rem_O")) ->

(rem := oper.ret); dec.[mk_token("Rem")] -> (end_guard := true));

(out_Rem_rem_1!rem -> Skip));X)) /_\ end_guard & END_DIAGRAM)

...

end

...

In this extract, we have an example of an internal operation call because the target pin of
the call operation action is not used. The only pin of the action is rem, which stores the output
of the operation call. We establish that after data is available for calling an operation and the
operation is called, it is not possible to interrupt the action rem_1. This is established by the
assignment of false to end_guard. After the operation returns a value, the action rem_1 can be
interrupted. After this, the action attempts to output the result of the operation on the channel that
begins with out_. For simplification, we assume that the result of operations are only accessible
by output parameters, hence, ret is an output parameter of the operation called and its value is
assigned to the corresponding output pin (rem).

A.1.11 Opaque action

The function t_opaque_action (Rule A.22) defines the translation for SysML opaque
actions. The CML action for a SysML opaque action is defined by the translation of SysML
action body (action.body), which is written using the CML action language. Therefore, we
simply translate the action language code according to function t_action, which is shown in
Rule A.5.

Rule A.22: t opaque action

t_opaque_action(action: ActivityNode, ad: Activity, block: Block):action =

t_action(action.body,block, name(action), [])

The next extract shows the application of Rules A.17- A.22 for the Opaque action of the
Add activity (Figure 5.3 on page 103). The translation of an assignment is defined in several
steps. First, we define an auxiliary variable for the attributes used in the expression (in this case
b), then we get the current value of the attribute (_get_) and assign it to the variable created,
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next we execute the assignment to the auxiliary variable, and finally, we update the attribute with
its new value (_set_). We assume that the id of this action is OpaqueAction.

...

process ad_internal_Add = val $id: ID @ begin

actions

...

OPAQUEACTION_1 = dcl end_guard: bool := true @ ( mu X @ ((

dcl x: Item; @ (

(control.2 -> Skip ||| in_Add_OpaqueAction_1?inx -> x := inx);

(dcl b: seq of Item @

Buffer_get_b.([mk_token("OpaqueAction")]).(drop_two($id))?$b ->

b := $b; b := b ^ [x];

Buffer_set_b.([mk_token("OpaqueAction")]).(drop_two($id))!b -> Skip);

(control.4 -> Skip)); update.opaque1!-1 -> X)

) /_\ end_guard & END_DIAGRAM)

...

end

...

A.1.12 Send Signal action

By using the function t_send_signal_action (Rule A.23) we can translate an activity
node (action) that is a SysML Send Signal action of an activity diagram (ad) from a block
instance. The CML action is defined by a communication and then the action behaves as Skip.
The communication occurs over a channel with a name that begins with the name of the target
block, followed by the indication that we are dealing with a signal (_sig). We expect a signal
call identifier as input and we output the sender block identifier $id and the target identifier.
Finally, we construct the signal record type, passing any parameters needed.

Rule A.23: t send signal action

t_send_signal_action(action: ActivityNode, ad: Activity, block:

Block):action =

name(action.target.Type)"_sig?m_id!($id^[mk_token(\""name(action)"\")])

!"name(action.target)"!mk_"action.signal.name"(

mk_token(\""action.signal.name"\")"

if size(action.input - action.target) > 0 then

","

end if

sep "," {name(inPin) | inPin in seq action.input and inPin !=

action.target}") -> Skip"

In Figure 5.6 (on page 5.6), there are three send signal actions. The following extract
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shows the CML generated from application of Rule A.23 to the sendPolice Send Signal action.
As explained before, the diagram omits the existence of a target pin that defines to whom the
signal is sent, hence, we assume that there is such a pin and it is named target. Note that as the
sending a signal is asynchronous, we do not need to worry about avoiding the interruption of its
behaviour, hence, the end_guard variable does not change.

...

process ad_internal_BroadcastCall = val $id: ID @ begin

actions

...

BroadcastCall_1 = dcl end_guard: bool := true @ ( mu X @ ((

dcl c1: EmergencyCall, target: ID @ (

(control.2 ||| in_BroadcastCall_sendPolice_1?inc1 -> (c1 := inc1) |||

in_BroadcastCall_sendPolice_2?intarget -> (target := intarget) );

(Police_sig?m_id!($id^[mk_token("BroadcastCall")])!target!

mk_sendPolice(mk_token("sendPolice"),c1) -> Skip);

(control.3 -> Skip)); update.opaque1!-1 -> X)

) /_\ end_guard & END_DIAGRAM)

...

end

...

A.1.13 Value Specification action

A Value Specification action is an action that evaluates a value specification (OMG,
2011). For instance, the activity shown in Figure 2.6 on page 29 has a Value Specification action
that evaluates the expression (++currentState) mod nDevices and outputs its value in the s
output pin. Function t_value_specification_action translates an activity node (action) of
an activity diagram (ad) that is related to a block instance (block). The activity node, a value
specification action, is defined as the evaluation of the value expression and its assignment to a
variable with name given by name(action.result), an output pin.

Rule A.24: t value specification action

t_value_specification_action(action: ActivityNode, ad: Activity, block:

Block):action =

name(action.result)" := "action.value

A.1.14 Accept Event action

AcceptEventAction is an action that waits for the occurrence of an event meeting specified
condition (OMG, 2011). The function t_accept_event_action (Rule A.25) receives the
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following as arguments: an activity node (action), which is an accept event action, an activity
diagram (ad), a block instance (block), and a sequence of interruptible regions (regions). This
function returns a CML action. An Accept Event action with no incoming edges located in an
interruptible region only starts its execution when the interruptible region starts. If there are
interruptible regions and an accept event actionhas no incoming edge, we introduce an external
choice of the incoming edges to the interruptible regions. These edges have source outside
the region. These edges can be related to a control flow or an object flow. These are defined
by channels control or a channel with name beginning with obj_. After synchronisation, the
action behaves as Skip. Only after termination of the external choice, the Accept Event action is
enabled to treat an event of the block. This is established by checking if the corresponding event
is available in the event pool (hasevent channel) and removing it from the pool (getevent). In
case there is no event, the action recurses, otherwise, the parameters of the event are put in the
output pin variables.

Rule A.25: t accept event action

t_accept_event_action(action: ActivityNode, ad: Activity, block: Block,

regions: seq of InterruptibleActivityRegion): action =

if regions.size() > 0 and action.IncomingEdges.size == 0 then

"("

for region in seq regions sep "[]" do

for edge in seq region.edges do

if notContains(edge.source,region) then

if edge.isControl() then

"control."edge.index" -> Skip"

else

"obj_"name(ad)"_"edge.index"?x_"edge.index" -> Skip"

end if

end if

end for

end for

");"

end if

"mu X @ ("name(block)"_hasevent!($id^[mk_token(\""name(action)"\")])!

mk_token(\""action.trigger.event.name"\") ->"

name(block)"_getevent!($id^[mk_token(\""name(action)"\")])?e -> ("

"if (e = <NOEVENT>) then

X

else"

if action.result != null then

"("

sep "|||" {"("name(outPin)" := e.#4."ret")" | outPin in seq

action.output and ret in seq action.trigger.event.Parameters}

")"

else
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"Skip"

end if

"))"

A.1.15 Call Behaviour action

A Call Behaviour action invokes a behaviour of the model (OMG, 2011). In our semantics,
we only consider this behaviour to be described as another activity, hence, this action represents
the invocation of another activity. For instance, see the Call Behaviour action BroadcastCall
in the activity TreatEmergencyCall shown in Figure 5.5 on page 104. The function stated in
Rule A.26 receives as arguments an activity node (cba), which is a call behaviour action, an
activity (ad), and a block instance (block). The CML action synchronizes over a channel whose
name begins with
startActivity_CBA_, appended with the diagram name. This channel synchronizes with an
event of a specific block identifier (given by $id, which is the owner of the activity) and the
node index under translation. This channel may communicate values from the input pins of
the action. Then, we assign false to the variable end_guard and communicate the inc event,
stating that action cannot be interrupted. Afterwards, the action expects an event to synchronize
over the channel with a name that begins with endActivity_CBA_, appended with the diagram
name. This channel synchronizes with an event of a specific block identifier (given by $id,
which is the owner of the activity) and Call Behaviour action index (in the diagram). This
may receive value from the output parameters of the activity invoked by the Call Behaviour
Action. These values are assigned to the output pin variables. Finally, we assign true to
variable end_guard and communicate dec event, stating that the action can be interrupted. Note
that the startActivity_CBA and endActivity_CBA events are renamed by Rule A.12 in order
to fire the execution of the activity referred by the Call Behaviour action.

Rule A.26: t call behaviour action

t_call_behaviour_action(cba: ActivityNode, ad: Activity, block: Block):

action =

"startActivity_CBA_"name(ad)".$id."cba.index if cba.input.size > 0 then

"!" sep "!" { name(obj) |

obj in seq cba.input }

end if

"-> inc."id(cba)" -> (end_guard := false);"

"endActivity_CBA_"name(ad)".$id."cba.index if cba.output.size > 0 then

"?" sep "?" { "x_"name(obj)

| obj in seq cba.output }

end if
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" -> "

if cba.output.size > 0 then

"( " sep "|||" {"("name(outPin)" := x_"name(outPin)")" | outPin in

seq cba.output}"); "

end if

"dec."id(cba)" -> (end_guard := true)"

The following extract shows the CML action for the call behaviour action depicted in
Figure 5.5 on page 104.

...

process ad_internal_TreatEmergencyCall = val $id: ID @ begin

actions

...

TreatEmergencyCall_2 = dcl end_guard: bool := true @ ( mu X @ ((

dcl c3: EmergencyCall, c4: EmergencyCall @ (

(in_TreatEmergencyCall_BroadcastCall_3?inc3 -> (c3 := inc3));

(startActiity_CBA_TreatEmergencyCall.$id.3!c3 ->

inc.([mk_token("BroadcastCall")]) -> (end_guard := false);

endActivity_CBA_TreatEmergencyCall.$id.3?x_c4 ->

(c4 := x_c4); dec.([mk_token("BroadcastCall")]) ->

(end_guard := true));

(out_TreatEmergencyCall_BroadcastCall_3!c4 -> Skip));X))

/_\ end_guard & END_DIAGRAM)

...

end

...

A.1.16 Read Self action

Read Self action is an action that outputs the host block of an action (OMG, 2011). The
function for Read Self action stated in Rule A.27 is very simple as it only puts in the output pin
variable the identifier of the block, and which is passed as parameter of the CML process.

Rule A.27: t read self action

t_read_self_action(action: ActivityNode, ad: Activity, block: Block):

action =

name(action.result)" := (drop_two($id))"
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A.1.17 Read Structural Feature action

Read Structural Feature action is a structural feature action that outputs the values of a
structural feature (e.g., values and properties) of a block (OMG, 2011). For instance, the activity
ActShine shown in Figure 8.11 on page 161 has three Read Structural Feature actions that output
the values for properties l1, l2 and l3, respectively. The function stated in Rule A.28 recover the
value of the structural feature of a given block according to the structural feature desired. Once
the communication returns such value, it is assigned to the variable of the output pin.

Rule A.28: t read structural feature action

t_read_structural_feature_action(action: ActivityNode, ad: Activity,

block: Block): action =

name(block)"_get_"action.structuralFeature.name".($id^"id(action)").

(drop_two($id))?x -> "name(action.result)" := x"

The next extract details the CML action for one of the read structural feature actions
shown in Figure 8.11 on page 161 for reading the property l1 of the block DwarfSignal.

...

process ad_internal_ActShine = val $id: ID @ begin

actions

...

Readl1_1 = dcl end_guard: bool := true @ ( mu X @ ((

dcl lamp1: LampType @ (

(control.1);

(DwarfSignal_get_l1.($id^[mk_token("Readl1")]).drop_two($id)?x ->

lamp1 := x);

(out_ActShine_Readl1_1!lamp1 -> Skip));X)

) /_\ end_guard & END_DIAGRAM)

...

end

...

A.1.18 Control Nodes

The function t_control_node (Rule A.29) defines the translation of control nodes. The
translation of each control node introduces a CML action with a name that begins with CNode_

followed by the node index (ctr.index). Based on the type of the control node, we call the
appropriate function. A control node can have one of the following types: initial, flow final,
activity final, decision, merge, fork, and join. A control action is interrupted if it is inside an
interruptible region and the interrupting edge accepts a token. The environment can choose one
of the events over a channel with name interrupted appended with the diagram identifier, the
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block identifier, and an interruptible region index i. If an interrupting edge accepts a token, the
environment synchronises over one of these channels, finishing the control action execution.
Then, the action behaves as the control node action again. When a diagram finishes, all executing
actions finish by an interruption on the action END_DIAGRAM.

Rule A.29: t control node

t_control_node(ctr: ActivityNode, ad: Activity, block: Block, regions:

seq of InterruptibleActivityRegion): action =

"CNode_"ctr.index" = (("

switch(ctr.Type)

case Initial.Type: t_initial_node(ctr,ad,block)

case FlowFinal.Type: t_flow_final_node(ctr,ad,block)

case ActivityFinal.Type: t_activity_final_node(ctr,ad,block)

case Decision.Type: t_decision_node(ctr,ad,block)

case Merge.Type: t_merge_node(ctr,ad,block)

case Fork.Type: t_fork_node(ctr,ad,block)

case Join.Type: t_join_node(ctr,ad,block)

end switch

")"

if regions.size() > 0 then

"/_\ ([]i in set {"{intRegion.index | intRegion in seq regions}"} @

(interrupted."id(ad)".$id.i -> CNode_"ctr.index"))"

end if

") /_\ END_DIAGRAM"

A.1.19 Initial Node

The function t_initial_node (Rule A.30) defines how to translate initial nodes (ctr) of
an activity diagram (ad) of a block instance (block). Before firing all outgoing edges, the number
of active tokens is updated to the number of edges leaving the node (ctr.OutgoingEdges.size).
The function introduces interleaved actions that communicate control!x, where x is the index
of an outgoing edge of an initial node. The wait event blocks the node to avoid it firing the
outgoing edges again. The node can only be released by the termination of the diagram.

Rule A.30: t initial node

t_initial_node(ctr: ActivityNode, ad: Activity, block: Block): action =

"update."id(ctr)"!"ctr.OutgoingEdges.size" -> (||| x in set {" sep ","

{x.index | x in seq ctr.OutgoingEdges}"} @ [{}] control!x ->

Skip);wait -> Skip"

The next extract shows the application of Rules A.29 and A.30 to the InitialNode of the
Add activity (Figure 5.3 on page 103). Since it only has one outgoing edge, the set that defines



A.1. RULES FOR ACTIVITY 213

the interleaving in Rule A.30 only has one element, which is the index of the control edge (the
number 1 in this case). We assume that the id of this node is cnode1.

...

process ad_internal_Add = val $id: ID @ begin

actions

...

CNode_1 = (update.([mk_token("cnode1")])!1 ->

(||| x in set {1} @ control!x -> Skip);

wait -> Skip) /_\ END_DIAGRAM

...

end

...

A.1.20 Flow Final Node

The function t_flow_final_node (Rule A.31) receives as argument a control node
(ctr), an activity (ad), and a block instance defined by the parameter block. This function
introduces an external choice of actions related to every incoming edge that arrives in the flow
final node. In the case of a control flow, the channel control is used for synchronisation, next it
decreases the number of active tokens and then it behaves as the action that models the control
node introduced by the Rule A.29 (CNode_ appended with the control node index). For object
flows, a channel with name starting with obj_, which is appended with the diagram unique
identifier given by id(ad) and the edge index, expects a value on parameter _[edge.index].
Next, it decreases the number of active tokens and then it behaves as the control node the same
way as previously described.

Rule A.31: t flow final node

t_flow_final_node(ctr: ActivityNode, ad: Activity, block: Block): action =

for edge in seq ctr.IncomingEdges sep "[]" do

if edge.Type == Control.Type then

"control."edge.index" -> update."id(ctr)"!(-1) ->

CNode_"ctr.index

else

"obj_"name(ad)"_"edge.index"?x_"edge.index" ->

update."id(ctr)"!(-1) -> CNode_"ctr.index

end if

end for
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A.1.21 Activity Final Node

The function t_activity_final_node (Rule A.32) receives as argument a control node
(ctr), an activity (ad), and a block instance defined by the parameter block. This function
follows the same idea of Rule A.31 for FlowFinal nodes; however, instead of decreasing the
number of active tokens, it sets this number to zero through the communication of the clear

event. This enables the termination of the diagram.

Rule A.32: t activity final node

t_activity_final_node(ctr: ActivityNode, ad: Activity, block: Block):

action =

for edge in seq ctr.IncomingEdges sep "[]" do

if edge.Type == Control.Type then

"control."edge.index" -> clear."id(ctr)" -> wait -> Skip"

else

"obj_"name(ad)"_"edge.index"?x_"edge.index" -> clear."id(ctr)"

-> wait -> Skip"

end if

end for

The Add activity has two activity final nodes (Figure 5.3 on page 103). The next extract
shows the corresponding CML to these nodes.

...

process ad_internal_Add = val $id: ID @ begin

actions

...

CNode_3 = (control!3 -> clear.([mk_token("cnode3")]) -> wait ->

Skip) /_\ END_DIAGRAM

CNode_4 = (control!4 -> clear.([mk_token("cnode4")]) -> wait ->

Skip) /_\ END_DIAGRAM

...

end

...

A.1.22 Decision Node

The function t_decision_node (Rule A.33) translates a decision node. If the incoming
edge is concerned with control, then the action expects synchronisation over the channel control
with the control incoming edge index as parameter. Notice that this rule uses the auxiliary rule
t\_statecopy(block, ctr) (Rule A.6) that creates a local copy of the block instance state.
This is needed because the constraint of the Decision node may be defined in terms of attributes
of the block, thus, we create a local copy of their current values. A non-deterministic if statement
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is introduced with the guards of the outgoing edges from the decision node. This is followed by
an event over the channel control with the decision node outgoing edge index. In the case of an
object flow, the same non-deterministic if statement is used, however, the functions declares a
variable $var to store the content flowing through the edge. When a guard is satisfied, the object
received via the incoming edge is communicated using the variable $var through the object flow
channel (starting with obj_).

Rule A.33: t decision node

t_decision_node(ctr: ActivityNode, ad: Activity, block: Block): action =

if ctr.IncomingEdge.Type == Control.Type then

"control."ctr.IncomingEdge.index" -> "

t_statecopy(block, name(ctr))

"; if " for outEdge in ctr.OutgoingEdges sep "|" do

if outEdge.guard == "else" then

"not (" sep "or" {x.guard | x in ctr.OutgoingEdges and x

!= outEdge}") -> control."outEdge.index" ->

CNode_"ctr.index

else

outEdge.guard" -> control."outEdge.index" ->

CNode_"ctr.index

end if

end for

"end"

else

"dcl $var: "t_types(ctrIncomingEdge.source.Type)" @ "

"(obj_"name(ad)"_"ctr.IncomingEdge.index"?x_"ctr.IncomingEdge.index

" -> ($var := x_"ctr.IncomingEdge.index")"

t_statecopy(block, ctr)

"; if " for outEdge in ctr.OutgoingEdges sep "|" do

if outEdge.guard == "else" then

"not (" sep "or" {x.guard | x in ctr.OutgoingEdges and x

!= outEdge}") ->

obj_"name(ad)"_"outEdge.index"!x_"ctr.IncomingEdge.index)"

-> CNode_"ctr.index

else

outEdge.guard" -> obj_"name(ad)"_"outEdge.index"!$var ->

CNode_"ctr.index

end if

end for

"end)"

end if

")"

The next extract shows the application of Rules A.29 and A.33 to the DecisionNode of
the Add activity diagram displayed in Figure 5.3.
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...

process ad_internal_Add = val Buffer_id: ID @ begin

actions

...

CNode_2 = (control.1 -> dcl b: seq of Item @ (

Buffer.get_b.CNode2.Buffer_id?$b -> (b := $b);

if #b >= 5 -> control.3 -> CNode_2

| #b < 5 -> control.2 -> CNode_2

end

)) /_\ END_DIAGRAM

...

end

...

A.1.23 Merge Node

A merge node is translated by the function t_merge_node, which is defined by Rule A.34.
It receives as arguments an activity node (ctr), which is a merge node, an activity (ad), and block
instance (block). The incoming edges of a merge node are either all made of object flows or all
made of control flows. If the outgoing edge of a merge node is a control flow (Control.Type),
then the merge node synchronises with one of the incoming control edges from the set of indexes
given by {x.index | x in ctr.IncomingEdges}. Then the action communicates over the
control channel the outgoing edge index. Finally, the action behaves again as the (merge)
control node. In the case of an object flow, the action offers to the environment the possibility
of communication over channels with name starting with obj_ for each incoming edge. The
whole channel name is defined by the concatenation of obj_ with id(ad)_, and the incoming
edge index (inEdge.index). The input parameter is called x. After communication of a value
recorded in x, such value is given as output over a channel whose name starts with obj_ appended
with the with id(ad)_, and the outgoing edge index (ctr.OutgoingEdge.index). After the
output, the action behaves again as the merge control node action just introduced.

Rule A.34: t merge node

t_merge_node(ctr: ActivityNode, ad: Activity, block: Block): action =

if ctr.OutgoingEdge.Type == Control.Type then

"control?i: (i in set {"{x.index | x in ctr.IncomingEdges}"})->

control."ctr.OutgoingEdge.index" -> CNode_"ctr.index

else

for inEdge in seq ctr.IncomingEdges sep "[]" do

"obj_"name(ad)"_"inEdge.index"?x ->

obj_"name(ad)"_"ctr.OutgoingEdge.index"!x -> CNode_"ctr.index

end for
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end if

A.1.24 Fork Node

A fork node has just one incoming edge that is an object flow or a control flow. The
function t_fork_node (Rule A.35) introduces an action for a fork node. In the case of an
incoming control flow, the channel control is used for synchronization with the channel that
represents the incoming edge index. Next, we increase the number of active tokens using channel
update, and then the control token is available for all target actions of the outgoing edges from
the fork node. At the end, the CML action behaves like Skip . In the case of an object flow, the
(fork) action synchronises with the object incoming edge through channel obj_, appended with
the incoming edge index, receiving an object in the parameter x. After this, the actions behave
like an interleaving to communicate the object x through each channel obj_ (appended with the
outgoing edge index outEdge.index) . After the object is consumed by each outgoing edge, the
(fork) action starts again. The sequential composition guarantees that only after finishing the
execution of the interleaving related to control or object flow, the whole action behaves again as
itself .

Rule A.35: t fork node

t_fork_node(ctr: ActivityNode, ad: Activity, block: Block): action =

if ctr.IncomingEdge.Type == Control.Type then

"control."ctr.IncomingEdge.index" ->

update."id(ctr)"!"ctr.OutgoingEdges.size-1" ->"

"(|||i in set {"{x.index | x in ctr.OutgoingEdges}"} @ [{}]

control!i -> Skip);CNode_"ctr.index

else

"obj_"name(ad)"_"ctr.IncomingEdge.index"?x ->

update."id(ctr)"!"ctr.OutgoingEdges.size-1" -> ("

for outEdge in seq ctr.OutgoingEdges sep "|||" do

"obj_"name(ad)"_"outEdge.index"!x -> Skip"

end for

"); CNode_"ctr.index

end if

A.1.25 Join Node

The function t_join_node (Rule A.36) receives as arguments an activity node (ctr),
which is the join node, an activity diagram (ad), and a block instance (block). For each object
incoming edge of a join node, we declare a variable with name beginning with edge_ and
appended with the edge index. The type of each variable is the same as the type of the edge
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source in SysML. For each incoming edge related to control flow, we introduce an action prefixed
with the control channel synchronising on the edge index. Then the action behaves as Skip. If
the incoming edge is related to an object flow, we introduce an action that begins with an event
over a channel whose name begins with obj_ appended with the incoming edge index and that
expects a value on a parameter with name x_ followed by the edge index. Then the object is
assigned to one of the variables declared in the beginning of the action. We distinguish variables
according to the edge index.

After all CML events related to (control and object) incoming edges, we check if there
is any object flow into the join node; notice that the communication is sequentially composed
with the remaining of the join action. If there is an object flow, we decrease the number of active
tokens (channel update) and we use channel obj_ to communicate an object. If there are only
control incoming nodes to the join node, we decrease the number of active tokens (channel
update) and we synchronise with the control outgoing edge index over the channel control.
After this communication happens in both cases, the action behaves as itself. In the case of the
outgoing edge being a control flow, then all incoming edges are control flow as well. This is
translated to a simpler version of what was previously described, as the function synchronises all
incoming flows in interleaving, decreases the number of active tokens and communicates the
control outgoing edge event before reinitialising the action.

Rule A.36: t join node

t_join_node(ctr: ActivityNode, ad: Activity, block: Block): action =

if ctr.OutgoingEdge.Type == Object.Type then

"(dcl" for edge in seq ctr.IncomingEdge(Object.Type) sep "," do

"edge_"edge.index": "t_types(edge.source)

end for

"@ (("

let objIndex = -1 in

for inEdge in seq ctr.IncomingEdges sep "|||" do

if inEdge.Type == Control.Type then

"control."inEdge.index" -> Skip"

else

objIndex = inEdge.index

"obj_"name(ad)"_"inEdge.index"?x_"inEdge.index" ->

edge_"inEdge.index" := x_"inEdge.index";Skip"

end if

end for

");"

if objIndex != -1 then

"update."id(ctr)"!("1-ctr.IncomingEdges.size") ->

obj_"name(ad)"_"ctr.OutgoingEdge.index"!edge_"objIndex"))

-> CNode_"ctr.index

else

"update."id(ctr)"!("1-ctr.IncomingEdges.size") ->
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control!"ctr.OutgoingEdge.index")) -> CNode_"ctr.index

end if

end let

else

"( "

for inEdge in seq ctr.IncomingEdges sep "|||" do

"control."inEdge.index" -> Skip"

end for

");update."id(ctr)"!("1-ctr.IncomingEdges.size") ->

control!"ctr.OutgoingEdge.index" -> CNode_"ctr.index

end if

A.1.26 Object Nodes

The function t_object_node (Rule A.37) translates an object node into CML. It receives
an object node, an activity, and a block as arguments. The function simply calls the appropriate
function according to the type of the object node, which can be an input pin, an output pin, a
parameter or a data store. Each of the related functions are described next.

Rule A.37: t object node

t_object_node(obj: ActivityNode, ad: Activity, block: Block, regions: seq

of InterruptibleActivityRegion): action =

switch(obj)

case InputPin:

t_input_pin(obj, ad, block, regions)

case OutputPin:

t_output_pin(obj, ad, block, regions)

case ActivityParameterNode:

t_parameter_node(obj, ad, block, regions)

case DataStore:

t_data_store(obj,ad,block, regions)

end switch

A.1.27 Input Pin

Rule A.38 defines the semantics for input pins. It declares a CML action ObjNode_

suffixed by the object node index. Input pins may receive data from incoming edges and each
of these data is appended to the elements variable. If there are data inside elements, we send
them to the action to which the pin is connected. After providing a data to the action we remove
it from the pin. The CML action is a recursion consisting of an external choice. The first choice
deals with the flow arriving in the pin. It checks if the pin has an infinite upper bound because in
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this case it can infinitely add elements to the pin. Otherwise, it can only receive a data if the pin
has not reached its limit. It receives a data through an object channel and add it to the elements

variable. The second choice represents the transfer of data from the pin to the action. Hence,
it can only be performed if elements is not empty. The input data channel (starting with in,
which is used by SysML actions in Rule A.19) is communicated removing the head of element.
Similarly to other elements already presented, this action can be interrupted if it is inside an
interruptible region, and it is terminated by END_DIAGRAM.

Rule A.38: t input pin

t_input_pin(obj: ActivityNode, ad: Activity, block: Block, regions: seq

of InterruptibleActivityRegion): action =

"ObjNode_"obj.index" = (dcl elements: seq of "t_types(obj.Type)" @"

"(mu X @ (("

"( "for edge in seq obj.IncomingEdges sep "[]" do

if obj.upperBound != ’*’ then

"[len elements < "obj.upperBound"] & "

end if

"obj_"name(ad)"_"edge.index"?x_"edge.index" -> elements :=

elements^[x_"edge.index"]; X"

end for

")"

"[]"

"([len elements > 0] &

in_"name(ad)"_"name(obj.OwnerNode)"_"obj.index"!(hd elements) ->

elements := (tl elements); X)"

")"

if regions.size() > 0 then

"/_\ ([]i in set {"{intRegion.index | intRegion in seq regions}"} @

interrupted."id(ad)".$id.i -> X)"

end if

"))) /_\ END_DIAGRAM"

A.1.28 Activity Parameter

Rule A.39 shows the function t_parameter_node that translates parameter nodes of
activities. It has a value-result parameter, which is passed by Rule 5.8 (page 5.8). This parameter
represents the data stored in the node. If the node has no outgoing edge and at least one incoming
edge, then it is an output parameter node. This node receives some data from object flow edges
(obj channels), which is assigned to the parameter value, so it can be used outside of the scope
of this action in Rule 5.9 (page 5.9) as the output of the activity. Finally, the number of active
tokens is decreased by one. On the other hand, if it is an input parameter node, it means that it
has no incoming edges and at least one outgoing edge. For this type of parameter, the number
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of active tokens is increased by the number of object edges flowing out of it. Next, each object
edge transmits the data inside the node, which is stored in the parameter. The wait event is used
to block the node because, after sending the data through the object flow edges, this node cannot
do anything else besides waiting for termination.

Rule A.39: t parameter node

t_parameter_node(obj: ActivityNode, ad: Activity, block: Block, regions:

seq of InterruptibleActivityRegion): action =

"ObjNode_"obj.index" = vres " name(obj) ": " t_types(obj) " @"

"(mu X @ (("

if obj.OutgoingEdges.size == 0 and obj.IncomingEdges > 0 then

for edge in seq obj.IncomingEdges sep "[]" do

"obj_"name(ad)"_"edge.index"?x_"obj.index" -> "name(obj)"

:= x_"obj.index"; update."id(obj)"!(-1) -> X)"

end for

else if obj.OutgoingEdges.size > 0 and obj.IncomingEdges.size ==

0 then

"update."id(obj)"!"obj.OutgoingEdges.size" -> ("

for edge in seq obj.OutgoingEdges sep "|||" do

"obj_"name(ad)"_"edge.index"!"name(obj)" -> wait ->

Skip))"

end for

end if

if regions.size() > 0 then

"/_\ ([]i in set {"{intRegion.index | intRegion in seq regions}"} @

interrupted."id(ad)".$id.i -> X)"

end if

")) /_\ END_DIAGRAM"

The next extract shows the application of object node rules (rules A.37-A.39) to the input
pin of the OpaqueAction (ObjNode_1) and the input activity parameter node of the Add activity
(ObjNode_2) (Figure 5.3 on page 103).

...

process ad_internal_Add = val $id: ID @ begin

actions

...

ObjNode_1 = (dcl elements: seq of Item @( mu X @ ((

([len elements < 1] & obj_Add_1?x_1 ->

elements := elements^[x_1]; X)

[]

([len elements > 0] &

in_Add_OpaqueAction_1!(hd elements) ->

elements := (tl elements); X))

))) /_\ END_DIAGRAM
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ObjNode_2 = vres item: Item @( mu X @ ((

update.([mk_token("ObjNode2")])!1 -> (obj_Add_1!item ->

wait -> Skip))

)) /_\ END_DIAGRAM

...

end

...

The CML action ObjNode_1 corresponds to the input pin x of the Opaque action shown
in the Add activity. As there is no explicit upper bound, we assume that it can only hold one
element of type Item at a time. When it is empty, it synchronises on channel obj_Add_1 to
receive an object data and adds such data to the sequence elements. When there is one element
in the sequence, it synchronises on channel in_Add_OpaqueAction_1, which passes the data
to the action node. The CML action ObjNode_2 is related to the input parameter node item
of type Item. It receives as argument the input data received by channel startActivity_
shown in Rule 5.8 (page 112). As an input parameter node, it increases the number of current
tokens (update) according to the number of outgoing edges. Then, it synchronises on channel
obj_Add_1 communicating the data received as argument. Finally, it stays blocked on channel
wait until the activity terminates.

A.1.29 Output Pin

Rule A.40 defines the semantics for output pins. Output pins receive some data from the
action that they are connected, and then they add such data to the variable that keep the state
of the pin (elements). While there are some data in elements, the output pin communicates
each of them through one of the outgoing edges of the pin. Its CML representation is similar to
input pins, however, it first receives data from the output data channel (starting with out, which
is used by SysML actions in Rule A.20) to store some data in the pin. Once there is at least one
data in elements, it can transmit it through the object edge that flows out of the pin (channel
obj_) before removing it from the pin.

Rule A.40: t output pin

t_output_pin(obj: ActivityNode, ad: Activity, block: Block, regions: seq

of InterruptibleActivityRegion): action =

"ObjNode_"obj.index" = (dcl elements: seq of "t_types(obj.Type)" @ "

"(mu X @ (("

"("

if obj.upperBound != ’*’ then

"[len elements < "obj.upperBound"] &"

end if

"out_"name(ad)"_"name(obj.OwnerNode)"_"obj.index"?x_"obj.index" ->

elements := elements^[x_"obj.index"]; X"
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")"

"[]"

"("

for edge in seq obj.OutgoingEdges sep "[]" do

"([len elements > 0] & obj_"name(ad)"_"edge.index"!(hd elements)

-> elements := (tl elements); X)"

end for

")"

")"

if regions.size() > 0 then

"/_\ ([]i in set {"{intRegion.index | intRegion in seq regions}"} @

interrupted."id(ad)".$id.i -> X)"

end if

"))) /_\ END_DIAGRAM"

A.1.30 Data Store

The function t_data_store (Rule A.41) shows how a data store node is translated. It
has three types of behaviour. It may receive some data from incoming edges and put it in the
head of the sequence that keeps the state of the node. If there is some data already in the head of
the sequence, it is replaced by the new data. The other two cases reflect the edges leaving the
node. There are two situations in this case. If the node was empty and a data just arrived, the
next communication leaving the node does not generate a new token. However, after this first
data leaves the node, the next communications through the outgoing edges generate a new token,
because the data store keeps sending, in fact, a copy of it, which represents a new active token in
the diagram.

Rule A.41: t data store

t_data_store(obj: ActivityNode, ad: Activity, block: Block, regions: seq

of InterruptibleActivityRegion): action =

"ObjNode_"obj.index" = (dcl elements: seq of "t_types(obj.Type)" @"

"(mu X @ (("

"(" for edge in seq obj.IncomingEdges sep "[]" do

"(obj_"name(ad)"_"edge.index"?x_"obj.index" -> elements :=

[x_"obj.index"];X)"

end for

")"

"[]"

"(" for edge in seq obj.OutgoingEdges sep "[]" do

"([len elements = 1] & obj_"name(ad)"_"edge.index"!(hd elements) ->

elements := elements^[(hd elements)]; X)"

end for

")"
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"[]"

"( "for edge in seq obj.OutgoingEdges sep "[]" do

"([len elements = 2] & obj_"name(ad)"_"edge.index"!(hd elements) ->

update."id(obj)"!1 -> X)"

end for

")"

")"

if regions.size() > 0 then

"/_\ ([]i in set {"{intRegion.index | intRegion in seq regions}"} @

interrupted."id(ad)".$id.i -> X)"

end if

"))) /_\ END_DIAGRAM"

A.1.31 Channel sets

The following rules depict how to define the channel sets used for communication
between the different elements. Rule A.42 shows how to build a channel set according to the
type of the activity action node.

Rule A.42: t channels action node

t_channels_action_node(action: ActivityNode, ad: Activity, block: Block,

regions: seq of InterruptibleActivityRegion): chanset =

"{|"

for edge in (seq ctr.IncomingEdges or seq ctr.OutgoingEdges) sep "," do

if edge.type == Control.Type then

"control."edge.index

else

"obj_"name(ad)"_"edge.index

end if

end for

for inPin in seq action.input do

",in_"name(ad)"_"name(action)"_"inPin.index

end for

for outPin in seq action.output do

",out_"name(ad)"_"name(action)"_"outPin.index

end for

",update."id(action)

switch(action)

case CallOperation.Type:

"|} union {| "name(action.target.type)"_op.m.($id^[mk_token(\""

name(action)"\")]).target.op | m: nat, target: ID,

op: OPS @ op.$id in set ("name(action.target.type)"_I union "

name(action.target.type)"_O) and op.$id in set

{mk_token(\""action.operation.name"_I\"),
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mk_token(\""action.operation.name"_O\")} |} union

{| inc."id(action)",dec."id(action)",wait"

case AcceptEvent.Type:

t_accept_event_action(action,ad,block,regions)

if regions.size() > 0 and action.IncomingEdges.size == 0 then

for region in seq regions do

for edge in seq region.edges do

if notContains(edge.source,region) then

if edge.isControl() then

",control."edge.index

else

",obj_"name(ad)"_"edge.index

end if

end if

end for

end for

", "name(block)"_hasevent.($id^[mk_token(

\""name(action)"\")]).mk_token(\""action.trigger.event.name

"\"), "name(block)"_getevent.($id^[mk_token(

\""name(action)"\")]),wait"

end if

case SendSignal.Type: t_send_signal_action(action,ad,block)

"|} union {| "name(action.target.Type)"_sig.m.($id^[mk_token(

\""name(action)"\")]).target.signal | m:nat, target: ID,

signal: S @ signal.$id in set "name(action.target.type)"_S and

signal.$id = mk_token("\"action.signal.name\"") |} union {|wait"

case CallBehaviour.Type: t_call_behaviour_action(action,ad,block)

",startActivity_CBA_"name(ad)".$id."action.index",

endActivity_CBA_"name(ad)".$id."action.index",inc."id(action)",

dec."id(action)",wait"

case ReadStructuralFeature.Type:

t_read_structural_feature_action(action,ad,block)

","name(block)"_get_"action.structuralFeature.name".

($id^"id(action)").(drop_two($id)), wait"

end switch

if regions.size() > 0 then

for intRegion in seq regions do

",interrupted."id(ad)".$id."intRegion.index

end for

end if

", endDiagram."id(ad)" |}"

Rule A.43 shows how to build a channel set according to the type of the activity control
node.

Rule A.43: t channels control node
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t_channels_control_node(ctr: ActivityNode, ad: Activity, block: Block,

regions: seq of InterruptibleActivityRegion): chanset =

"{|"

switch(ctr)

case InitialNode:

if (ctr.OutgoingEdges.size > 0) then

"wait,update."id(ctr)

for edge in seq ctr.OutgoingEdges.size do

",control."edge.index

end for

case FlowFinalNode:

"update."id(ctr)","

for edge in seq ctr.IncomingEdges sep "," do

if edge.Type == Control.Type then

"control."edge.index

else

"obj_"name(ad)"_"edge.index

end if

end for

case ActivityFinalNode:

"wait,clear."id(ctr)","

for edge in seq ctr.IncomingEdges sep "," do

if edge.Type == Control.Type then

"control."edge.index

else

"obj_"name(ad)"_"edge.index

end if

end for

case DecisionNode:

for edge in (seq ctr.IncomingEdges or seq ctr.OutgoingEdges) sep

"," do

if edge.type == Control.Type then

"control."edge.index

else

"obj_"name(ad)"_"edge.index

end if

end for

t_readstate_chanset_constraints(block,name(ctr),ctr.Constraints)

case MergeNode:

for edge in (seq ctr.IncomingEdges or seq ctr.OutgoingEdges) sep

"," do

if edge.type == Control.Type then

"control."edge.index

else

"obj_"name(ad)"_"edge.index

end if
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end for

case ForkNode:

"update."id(ctr)","

for edge in (seq ctr.IncomingEdges or seq ctr.OutgoingEdges) sep

"," do

if edge.Type == Control.Type then

"control."edge.index

else

"obj_"name(ad)"_"edge.index

end if

end for

case JoinNode:

"update."id(ctr)","

for edge in (seq ctr.IncomingEdges or seq ctr.OutgoingEdges) sep

"," do

if edge.Type == Control.Type then

"control."edge.index

else

"obj_"name(ad)"_"edge.index

end if

end for

end switch

if regions.size() > 0 then

for intRegion in seq regions do

",interrupted."id(ad)".$id."intRegion.index

end for

end if

",endDiagram."id(ad)"|}"

Rule A.44 shows how to build a channel set according to the type of the activity object
node.

Rule A.44: t channels object node

t_channels_object_node(obj: ActivityNode, ad: Activity, block: Block,

regions: seq of InterruptibleActivityRegion): chanset =

"{|"

switch(obj)

case InputPin:

if obj.IncomingEdges.size > 0 then

for edge in seq obj.IncomingEdges sep "," do

"obj_"name(ad)"_"edge.index

end for

",in_"name(ad)"_"name(obj.OwnerNode)"_"obj.index

end if

case OutputPin:

if obj.OutgoingEdges.size > 0 then
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for edge in seq obj.OutgoingEdges sep "," do

"obj_"name(ad)"_"edge.index

end for

",out_"name(ad)"_"name(obj.OwnerNode)"_"obj.index

end if

case ActivityParameterNode:

if (obj.IncomingEdges.size > 0 or obj.OutgoingEdges.size > 0)

then

for edge in (seq obj.IncomingEdges or seq obj.OutgoingEdges)

sep "," do

"obj_"name(ad)"_"edge.index

end for

",update."id(obj)

end if

case DataStore:

if (obj.IncomingEdges.size > 0 or obj.OutgoingEdges.size > 0)

then

for edge in (seq obj.IncomingEdges or seq obj.OutgoingEdges)

sep "," do

"obj_"name(ad)"_"edge.index

end for

",update."id(obj)

end if

end switch

if regions.size() > 0 then

for intRegion in seq regions do

",interrupted."id(ad)".$id."intRegion.index

end for

end if

",endDiagram."id(ad)"|}"

Rule A.45 shows how to build a channel set used by interruptible regions.

Rule A.45: t chanset int regions

t_chanset_int_regions(ad: Activity, block: Block): action =

"{|"

for intRegion in seq ad.group and

intRegion.isInterruptibleActivityRegion() sep "," do

for edge in seq intRegion.interruptingEdge sep "," do

if edge.isControl() then

"control."edge.index

else

"obj_"name(ad)"_"edge.index

end if

end for

",interrupted."id(ad)".$id."intRegion.index
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end for

",endDiagram."id(ad)"|}"

A.2 Rules for Sequence diagram

Rule A.46 creates the CML processes for sequence diagrams. Firstly, it checks if the
diagram refers to any other diagram (interactionUse elements) in order to translate the referred
diagrams first. Otherwise, it generates the process for the sequence diagram by invoking the
function t_simple_sd.

Rule A.46: t create sd process

t_create_sd_process(sd: Interaction, generated: set of names): seq of

program paragraph =

for iu in seq sd.InteractionUse do

if iu.Interaction.hasInteractionUse() then

t_create_sd_process(iu.Interaction,generated)

else

if not member(iu.Interaction.name,generated)

t_simple_sd(iu.Interaction)

generated = generated union iu.Interaction.name

end if

end if

end for

if not member(sd.name,generated) then

t_simple_sd(sd)

generated = generated union sd.name

end if

Rule A.47 defines the internal process and the main process of sequence diagram. The
internal process (sd_internal_) defines the the flow of events of the sequence digram. The main
process (sd_) composes the internal process in parallel with any other processes of sequence
diagrams referred inside the current diagram.

Rule A.47: t simple sd

t_simple_sd(sd: Interaction): seq of program paragraph =

"process sd_internal_"name(sd)" = val sd_id: ID,"

sep "," {t_lifeline_name(lf)"_id: ID" | lf in seq sd.Lifelines}

let paramList = {} in

for m in seq sd.Messages do

for p in seq m.Arguments do

if p.isInteractionParameter() and not exists(p.name,

paramList) then
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", " p.name": " t_types(p.type)

paramList = paramList union p.name

end if

end for

end for

end let

" @ begin"

t_sd_actions(sd)

"end"

"process sd_"name(sd)" = val sd_id: ID,"

sep "," {t_lifeline_name(lf)"_id: ID" | lf in lf in seq sd.Lifelines}

let paramList = {} in

for m in seq sd.Messages do

for p in seq m.Arguments do

if p.isInteractionParameter() and not exists(p.name,

paramList) then

", " p.name": " t_types(p.type)

paramList = paramList union p.name

end if

end for

end for

end let

"@ sd_internal_"name(sd)"(sd_id,"

sep "," {t_lifeline_name(lf)"_id" | lf in lf in seq sd.Lifelines}

let paramList = {} in

for m in seq sd.Messages do

for p in seq m.Arguments do

if p.isInteractionParameter() and not exists(p.name,

paramList) then

", " p.name

paramList = paramList union p.name

end if

end for

end for

end let

")"

t_sd_iu_parallel(sd)

Rule A.48 completes the parallelism defined for the main process of a sequence diagram
shown in the end of Rule A.47. It defines the right-hand side of the parallelism where the
processes of the sequence diagrams referred inside the main diagram are interleaved.

Rule A.48: t sd iu parallel

t_sd_iu_parallel(sd: Interaction): seq of process paragraph =

if sd.hasInteractionUse then
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"[|{|" sep "," { "startRef."iu.index", endRef"iu.index

| iu in seq sd.InteractionUse }

sep ","

{"gate_ev."t_idMessageEnd(x,sd)"."t_idMessageEnd(y,iu_sd) |

iu in seq sd.InteractionUse, x in seq iu.ActualGates,

y in iu.formalGates, iu_sd == iu.interaction, x.matches(y)

}

|}|]"

"(" sep "|||" {

"(sd_"name(iu_sd)"(sd_id^[mk_token(\""name(iu_sd)"\")],

sep "," {t_lifeline_name(lf)"_id" | lf in seq sd.Lifelines,

lf_iu in seq iu_sd.Lifelines, lf == lf_iu}

))

[[ beginInteraction.sd_id^[mk_token(\""name(iu_sd)"\")] <-

startRef."iu.index","

"endInteraction.sd_id^[mk_token(\""name(iu_sd)"\")] <-

endRef."iu.index"]]"

| iu in seq sd.InteractionUse, iu_sd ==

iu.interaction}")"

end if

Rule A.49 generates an identifier according to the type of the message end, which can be
a gate or lifeline.

Rule A.49: t idMessageEnd

t_idMessageEnd(me: MessageEnd,sd: Interaction): action =

if me.Type == Gate.Type then

"([mk_token(\""name(sd)"\"), mk_token(\""gate_"me.index"\")])"

else

t_lifeline_name(me.Lifeline)"_id"

Rule A.50 generates an name for the lifeline whether the block of the lifeline has an
instance identifier or not.

Rule A.50: t lifeline name

t_lifeline_name(lf: Lifeline): action =

if lf.represents.selector == null then

name(lf.represents)

else

name(lf.represents.selector)"_"name(lf.represents)

end if

Rule A.51 defines the action for the messages buffer, which simulates the environments
where the messages are exchanged.
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Rule A.51: t messages buffer

t_messages_buffer(sd: Interaction): action =

for m in seq sd.Messages do

if m is an Operation then

m.name" = mu X @ (

"name(m.receiver.represents)"_mOP.s."m.index"."

t_idMessageEnd(m.sender,sd)"."t_idMessageEnd(m.receiver,sd)"

-> "

name(m.receiver.represents)"_mOP.r."m.index"."

t_idMessageEnd(sender,sd)"."t_idMessageEnd(receiver,sd) " ->

X)"

else

m.name" = mu X @ (

"name(m.receiver.represents)"_mSIG.s."m.index"."

t_idMessageEnd(m.sender,sd)"."t_idMessageEnd(m.receiver,sd)"

-> "

name(m.receiver.represents)"_mOP.r."m.index"."

t_idMessageEnd(sender,sd)"."t_idMessageEnd(receiver,sd) " ->

X)"

end for

"MessagesBuffer = (" sep " ||| " {m.name | m in seq sd.Messages} ")

/_\ endInteraction.sd_id -> Skip"

A.2.1 Combined fragments

Rule A.52 is invoked by Rule 6.3 (on page 124) when a combined fragment is translated.
It simply calls the appropriate translation function according to the type of the combined
fragment.

Rule A.52: t combined frament

t_combined_fragment(cf: CombinedFragment, lf: Lifeline): action =

switch(cf.cfType)

case PAR.Type: t_par_combined_fragment(cf, lf)

case STRICT.Type: t_strict_combined_fragment(cf, lf)

case ALT.Type: t_alt_combined_fragment(cf, lf)

case OPT.Type: t_opt_combined_fragment(cf, lf)

case BREAK.Type: t_break_combined_fragment(cf, lf)

case LOOP.Type: t_loop_combined_fragment(cf, lf)

case CRITICAL.Type: t_critical_combined_fragment(cf, lf)

end switch
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A.2.1.1 PAR

Rule A.53 defines the translation function for the parallelism operator. It is represented by
the interleaving of the content of the operands. For example, Figure 2.8 (on page 31) depicts the
parallel combined fragment with three operands. Each operand has two asynchronous messages
exchanged between two blocks. The only lifeline present in more than one operand is the lifeline
bus. Thus, its corresponding CML action has the interleaving of three flows, each one having
two events related to the reception of messages (transmitPack) from lifelines Dev1, Dev2 and
Dev3. The other lifelines only participate in one operand each. Hence, they only have the two
sequential sending message events.

Rule A.53: t par combined fragment

t_par_combined_fragment(par: CombinedFragment, lf: Lifeline): action =

"(" sep "|||"

{t_lf_interaction_fragments(op.InteractionFragmentsFromLifeline(lf),

lf) | op in seq par.Operands}");join."par.index" -> Skip"

A.2.1.2 STRICT

The strict order operator requires that the operands should be executed in the specific
top-down order depicted in the fragment (i.e., if event e1 is above event e2 in different lifelines,
then e1 happens before e2). Rule A.54 defines the translation function for this operator. Its
semantics is provided by adding an internal control channel (strict) between the operands of
a lifeline action. This channel communicate two natural numbers. The first (strict.index)
represents the identifier of the this combined fragment and the second controls the order of
execution of the operands (op.index). All lifeline actions involved in this combined fragment
synchronise on this channel, which guarantees that the operands are executed in the specified
order.

Rule A.54: t strict combined fragment

t_strict_combined_fragment(strict: CombinedFragment, lf: Lifeline):

action =

sep ";"

{t_lf_interaction_fragments(op.InteractionFragmentsFromLifeline(lf),

lf)";strict."strict.index"."op.index" -> Skip" | op in seq

strict.Operands}

A.2.1.3 OPT

Rule A.55 shows the translation function for the option fragment. Likewise the ALT
fragment (shown on page 130), it is also translated as if-then-else statement, where the operand
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is executed if the constraint is true, otherwise, nothing happens.

Rule A.55: t opt combined fragment

t_opt_combined_fragment(opt: CombinedFragment, lf: Lifeline): action =

t_statecopyConstraint(opt.Operand.Constraint, opt)

"if "opt.Operand.InteractionConstraint.specification" then"

t_lf_interaction_fragments(

opt.Operand.InteractionFragmentsFromLifeline(lf), lf)

"else

Skip)"

A.2.1.4 BREAK

Rule A.56 shows the translation function for the BREAK combined fragment. This
fragment determines that, if the guard is evaluated to true, then the operand is executed and
all remaining messages outside the break are ignored and are never executed. This semantic is
defined in terms of an interruption that will halt the flow after the break when the constraint is
evaluated to true.

Rule A.56: t break combined fragment

t_break_combined_fragment(brk: CombinedFragment, lf: Lifeline): action =

t_statecopyConstraint(brk.Operand.Constraint, brk)

"if "brk.Operand.InteractionConstraint.specification" then"

t_lf_interaction_fragments(

brk.Operand.InteractionFragmentsFromLifeline(lf), lf)

"; break."brk.index" -> block -> Skip"

"else

Skip

)"

A.2.1.5 CRITICAL

Rule A.57 shows the translation function for the critical combined fragment. It is
translated by the addition of two control events, one representing the initialisation of the critical
region (beginCR) and another representing the termination of the critical region(endCR). These
events synchronise with an auxiliary action (CRITICAL), which is defined by Rule A.58 that
controls all events of the sequence diagram. It simply interleaves all CML actions for critical
regions and it is invoked by Rule 6.2 (page 122). A CML action for a critical region executes the
RUN function (Rule A.11) for all events of the diagram minus the events of the critical region.
When any the lifelines enter the critical regtion, this action is interrupted and it starts to behave
as RUN function again, however, only communicating the events of the critical region. When the
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critical region finishes, then this action is interrupted again and it recurses.
Therefore, once the critical region is reached, this auxiliary action only synchronises the

events inside the critical region, thus any other flow outside of the region halts. When the events
of the critical region terminates, the auxiliary action returns to synchronise on all events of the
diagram.

Rule A.57: t critical combined fragment

t_critical_combined_fragment(crt: CombinedFragment, lf: Lifeline): action

=

"beginCR."crt.index" -> Skip;"

t_lf_interaction_fragments(

crt.Operand.InteractionFragmentsFromLifeline(lf), lf)

";endCR."crt.index" -> Skip"

Rule A.58: t critical actions

t_critical_actions(crts: seq of CombinedFragment, sd: Interaction):

action =

for crt in seq crts do

"CR_"crt.index" = "RUN(ev(sd)\ev(crt))" /_\ beginCR."crt.index" ->

"RUN(ev(crt)) "/_\ endCR."crt.index" -> CR_"crt.index

end for

"CRITICAL = " sep "|||" {"CR_"crt.index | ctr in seq ctrs}

A.2.1.6 LOOP

Finally, Rule A.59 defines the translation function for the loop operator. It simply invokes
the correspondent loop CML action defined by Rule A.60, which is called inside the Rule 6.2
(page 122). It also depends on the number of parameters of the loop. In case of two parameters,
then it has a minimum and a maximum number of iterations and a constraint, in case of one
parameter, then it has a maximum number of iterations a constraint, otherwise it only has a
constraint. The loop action is defined as a recursive CML action controlled by maximum and
minimum number of iterations and the constraint of the loop, which is evaluated at the beginning
of each iteration, similar to a while statement.

Rule A.59: t loop combined fragment

t_loop_combined_fragment(loop: CombinedFragment, lf: Lifeline): action =

switch (loop.numberOfParameters)

case 2:

lf.Name"_LOOP_"loop.index"(1,"loop.firstParameter",

"loop.secondParameter")"

case 1:
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lf.Name"_LOOP_"loop.index"(1,"loop.firstParameter")"

case 0:

lf.Name"_LOOP_"loop.index

end switch

for intf in seq loop.InteractionFragments do

if intf.Type == CombinedFragmentType and intf.cfType == BREAK.Type

then

"/_\ interrupt."intf.index" -> Skip"

end if

end for

Rule A.60: t loop actions

t_loop_actions(loops: seq of CombinedFragment, lf: Lifeline): action =

for loop in seq loops do

switch (loop.numberOfParameters)

case 2:

lf.name"_LOOP_"loop.index" = dcl counter, min, max: nat @ ("

if loop.hasInteractionConstraint() then

t_statecopyConstraint(loop.InteractionConstraint, loop)

end if

"if (counter < min) or (counter >= min and counter <= max"

if loop.InteractionConstraint != null then

"and " loop.InteractionConstraint.specification") then"

else

") then"

end if

t_lf_interaction_fragments(

loop.Operand.InteractionFragments, lf)

";"lf.name"_LOOP_"loop.index"(counter+1, min, max))"

"else

Skip)"

case 1:

lf.name"_LOOP_"loop.index" = dcl counter, m: nat @ ("

if loop.hasInteractionConstraint() then

t_statecopyConstraint(loop.InteractionConstraint, loop)

end if

"if (counter <= m"

if loop.InteractionConstraint != null then

"and " loop.InteractionConstraint.specification") then"

else

") then"

end if

t_lf_interaction_fragments(

loop.Operand.InteractionFragments, lf)

";"lf.name"_LOOP_"loop.index"(counter+1, m))"
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"else

Skip)"

case 0:

lf.name"_LOOP_"loop.index" = "

if loop.InteractionConstraint != null then

t_statecopyConstraint(loop.InteractionConstraint, loop)

"if ("loop.InteractionConstraint.specification") then"

end if

t_lf_interaction_fragments(

loop.Operand.InteractionFragments, lf)

";"lf.name"_LOOP_"loop.index

"else

Skip"

end switch

if loop.hasInteractionConstraint() then

")"

end if

end for

A.2.2 InteractionUse

A sequence diagram also can call another sequence diagram that is already defined. The
interactionUse constructor allows the modularisation of sequence diagrams. Figure 2.9 (on
page 32) details this situation where the diagram depicted refers to another sequence diagram
that is illustrated in Figure 2.10 (on page 32). When this constructor is used, the sequence
diagram CML process is the parallel composition of the internal representation of the sequence
diagram and the process of the diagram that is referred (rules A.47 and A.48). These two
processes synchronise on two events, one for starting the referenced diagram and another for
communicating its termination as detailed by Rule A.61. However, these events are renamed
to others that signalise the beginning and the termination of a sequence diagram, as shown in
Rule A.48. This renaming together with the parallelism between the process of the sequence
diagrams allow a sequence diagram to invoke another.

Rule A.61: t interaction use

t_interaction_use(iu: InteractionFragment): action =

"startRef."iu.index" -> endRef."iu.index" -> Skip"
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B
Pre-processing of the CML models

The CML models generated by the Artisan Studio tool need to be made finite in order to
be animated or to be analysed by a model checker. Animation is performed using the Symphony
tool (COLEMAN et al., 2012), which is a integrated environment for specifying and analysing
CML specifications. These adjustments are mainly due to the impossibility of these techniques to
handle types with infinite values, like sets and sequences. The necessary changes for animation
are simple and partially automated. For model checking, in addition to the changes required
for animating the model, some other adjustments to use the corresponding syntax of CSP, and
other performance optimisations are needed. Translation to CSP is needed because the CML
model checker was not completely operational by the time of writing, hence, we use the FDR
tool (GIBSON-ROBINSON et al., 2014), which is a CSP refinement checker, to perform our
analyses. In what follows, refinement checker and model checker are used interchangeably.
Optimisations are used to reduce the size of state space to be traversed, and to make the analysis
feasible, otherwise, for some cases, the amount of time and computational resources required
would be impracticable.

B.1 Procedures

Figure B.1 illustrates the needed steps to allow animation or model checking on the
specification derived from the SysML model. We developed a tool to support the pre-processing
steps for animation. The remaining steps related to model checking are not mechanised yet. The
steps of Figure B.1 are detailed as follows.

B.1.1 Procedures for Animation

1. Define finite subsets for the infinite types. Both Animator and Model Checker cannot
reason on types that have infinite values. Regarding animation, channel communica-
tion of values related to infinite types can be resolved because it waits for the user
input and it only performs validation if the input provided is of that specific type.
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Figure B.1: Procedures for pre-processing the CML model.

Source: Author’s ownership.

However, if there are communications of sequences or sets restricted by compre-
hensions, the animator cannot evaluate the predicates of comprehensions of infinite
values. For instance, the communication sum?x, wheresum is a channel that waits
for a sequence of natural numbers x, can be animated because the user must pro-
vide the sequence. However, suppose that this communication is restricted by a
synchronous parallelism where the alphabet of synchronisation is defined by the fol-
lowing set comprehension {|sum.x | x: seq of nat @ len x < 6|}.
In this case the animator cannot reason on all sequences of natural numbers to evalu-
ate the constraint len x < 6. The finite subsets must be defined according to the
following procedures:

1a Define finite subsets for infinite user-defined types
1b Define finite subsets for the internal types:
1(b)i Define a finite subset for the type ID
1(b)ii Define a finite subset for the type OPS
1(b)iii Define a finite subset for the type S

(a) Define finite subsets for infinite user-defined types. In step 1 any user
defined type with infinite values, including sets and sequences of types,
must have its finite set of values defined. For instance, consider the
following type definition,
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types

LampId = <L1>|<L2>|<L3>

public light_I ::

$id: token

l: set of nat

the type LampId is already finite. However, the type set of nat

is infinite. Therefore, a finite set for these type must be defined. For
instance, the following set {{1,2,3},{1,2},{2,3},{1,3},{1},
{2},{3},{}} is an example of a finite set for set of nat.

(b) Define finite subsets for the internal types.

i. Define a finite subset for the type ID. The type ID corresponds
to each sequence of tokens used to identify diagrams and their
constructs. Each one of the diagrams must be traversed and each
ID used to identify any entity must be inserted in the subset of
type ID. This subset must be defined as follows:

A. search the root process of the model

B. identify any value of ID used in this process and add
it to the finite subset of type ID

C. traverse any process of the hierarchy and execute (b).

ii. Define a finite subset for the type OPS. This subset is required
for animation because it is a composite type used to group
operations. The procedure for the operations is the following:

A. Define a set for each record type of operation as a set
comprehension where the field $id corresponds to a
token to record the exact name of the operation record
type and any attribute must have a finite type. For
example,

public light_I ::

$id: token

l: set of nat

public light_O ::

$id: token

becomes the sets

fLight_I = {mk_light_I(mk_token(

"light_I"),att1)

| att1 in set fsetofnat}
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fLight_O = {mk_light_O(mk_token(

"light_O"))}

where fsetofnat is a finite set provided by the user
for a respective infinite type set of nat.

B. Define a finite set for all operations as the union of all
finite sets previously defined for each operation record
type.

fOPS = fLight_I union fLight_O ...

iii. Define a finite subset for the type S. Similarly to what is done
to operations, this subset is required for animation because it is a
composite type used to group signals. The same procedure used
for operations in the previous step can be applied to the type S.

2. Replace any occurrence of these types used in set comprehensions. Now that the sets
are defined, all occurrences of these types in set comprehensions must be replaced by
the corresponding finite set. As explained earlier, as set comprehensions define restric-
tion on possible values that can be used, when sets or sequences with infinite values
are used in this constructs the Animator cannot reason on all possibilities. Considering
the previous example {|sum.x | x: seq of nat @ len x < 6|}, we re-
place the infinite type seq of nat by its corresponding defined set fseqofnat,
thus, the updated set comprehension is {|sum.x | x in fseqofnat @ len

x < 6|}.

Both steps 1 and 2 are mechanised by a tool that was developed to automatically define
the internal sets for types ID, OPS and S and replace any occurrence of these types in set
comprehensions. Moreover, the sets for user-defined types can be informed by the user in order
to make it replace their occurrences by finite sets in the CML model.

B.1.2 Procedures for Model Checking

0. Do steps 1 and 2 as shown above

1. Define the sets and types used in the CML model. In this step, the sets defined in the
step 2 of the Animation must be defined in CSP as except for the sets of steps 1(b)ii
and 1(b)iii regarding the OPS and S types. These types are defined as subtypes in
CSP that use sets already defined. Other sets are defined as well in order to improve
the performance of the model checking analysis. The procedure for the definition of
these sets is detailed as follows:
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1a Define in CSP the same sets defined in the step 2 of the animation phase.
1b Define the set sysnat
1c Define the set actint
1d Define the set actnat
1e Define the set sdnat
1f Define a CSP datatype token
1g Define a subtype OPS
1h Define a subtype S
1i Define a datatype MSG
1j Define the types Bag and DL.
1k Define tuples for CML record types and datatypes for CML enumerations.
1l Define the type E.
1m Declare operation and signal sets of blocks.

(a) Define in CSP the same sets defined in the step 2 of the animation phase;

(b) Define the set sysnat. The sysnat subset is used in operation call and
signal to uniquely identify concurrent events with the same source and
target. In order to avoid that the response from one call to be returned
to the other, this natural number identifies each one of these concurrent
events. For instance, if two operations or signals with the same target
instances are fired from two concurrent regions of a state machine, the
only way to differentiate the calls is uniquely identifying them. Although
such a scenario is considerably rare, the user must provide enough natural
numbers to identify the maximum number of concurrent events. If such
a scenario does not exist in the CML model only one natural number is
enough. The standard procedure for the definition of this set is detailed
below:

i. for each state machine, search if any event (operation or signal)
occurs concurrently to another event with same signature, same
source and same target and count the number of concurrent
events.

ii. for each activity diagram, search if any event (operation or
signal) occurs concurrently to another event with same signature,
same source and same target and count the number of concurrent
events.

iii. define a set sysnat that must have a range of natural numbers
from 1 to the highest number found in (i) and (ii).

(c) Define the set actint. This subset must provide a finite range of integer
numbers to increment and decrement the number of active tokens inside
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an activity diagram as described previously in Chapter 5. This set must
contain the numbers communicated by the update channel in the activity
diagram process.

(d) Define the set actnat. This subset must provide a finite range of natural
numbers to indexes, where each one is a control edge used in activity dia-
grams. This set must contain the numbers communicated by the control
channel in the activity diagram process that has the maximum number of
control edges.

(e) Define the set sdnat. This subset must provide natural numbers to
identify each one of the messages in a sequence diagram. Therefore, the
amount of natural numbers needed in this set is equal to the quantity of
messages depicted in the sequence diagram. For example, if the sequence
diagram has 8 messages, the subset of sdnat is {1..8}

(f) Define a CSP datatype token that has all names used for operations and
signals. The values of this datatype are used in the definitions detailed
in 1g and 1h below.
Example:
CML

public light_I ::

$id: token

l: set of LampId

public light_O ::

$id: token

public tick ::

$id: token

CSP

datatype token = light_I | light_O | tick

(g) Define a subtype OPS. For each operation record type, define a value in
OPS following the standard [oper name](.[param type])*.
Example:
CML

public light_I ::

$id: token

l: set of LampId

public light_O ::

$id: token
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CSP

subtype OPS = light_I.isetoflampid | light_O

(h) Define a subtype S. For each data type for signals define a value in S

following the standard [signal name](.[parameter type])*.
Example:
CML

public tick ::

$id: token

CSP

subtype S = tick

(i) Define a datatype MSG. This datatype is used to group all events related to
operations and signals. It must have all values of S and OPS.

(j) Define the types Bag and DL. The type Bag is used to store the calls that
arrive in a block. We use bags in our implementation because we need
to differentiate the calls but their order is not relevant. The DL type is an
extension to the boolean type in order to consider the DEFER value, which
is used for events that are deferred by the state machine.

datatype DL = TRUE | FALSE | DEFER

nametype Bag = Seq(Token)

empty_bag = <>

(k) Define nametype tuples for CML record types and datatypes for CML
enumerations. Any CML record type must be specified as nametype tuples
and any enumeration types as datatypes in CSP.

(l) Define the type E. This type is used to represent events inside a block. It
must be defined as a nametype tuple following the syntax
nametype E = (sysnat,ID,ID,MSG), where sysnat is the in-
dex of the event, the first ID is the sender, the second ID is the receiver
and MSG is the event to be treated.

(m) Declare operation and signal sets of blocks. For each set of input operation,
output operation and signal values of a block define its corresponding set
in CSP using the same values declared in the CML model. These sets are
used to verify that a certain operation or signal is in the block’s interface.
Example:
CML
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Dwarf_I = {mk_token("light_I"),

mk_token("foo_I"),...}

Dwarf_O = {mk_token("light_O"),

mk_token("foo_O"),...}

Dwarf_S = {mk_token("tick"),...}

CSP

Dwarf_I = {light_I,foo_I...}

Dwarf_O = {light_O,foo_O...}

Dwarf_S = {tick, ...}

2. Define the functions used in the CML model. We define auxiliary functions to
manipulate the data structures we use in our semantics. These functions also need to
be defined in the CSP model.

(a) Define the functions prefix and drop_two, which are used to manip-
ulate the ID type, as detailed below.

prefix(x,y) = if #x > #y then false

else checkPrefix(x,y)

checkPrefix(x,y) = (if head(x) != head(y) then

false

else if tail(x) == <>

then true

else checkPrefix(tail(x), tail(y)))

reverse(<>) = <>

reverse(<x>^s) = reverse(s)^<x>

drop_two(x) = reverse(tail(tail(reverse(x))))

(b) Define the functions to manipulate the types Bag and DL as detailed below.

in_bag(t,<>) = false

in_bag(t,<x>^l) = if t == x then true else

in_bag(t,l)

bunion(b1,b2) = b1^b2
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bdiff(b1,<>) = b1

bdiff(b1,<x>^l) = bdiff(bdiff_aux(b1,x),l)

bdiff_aux(<>,x) = <>

bdiff_aux(<y>^l,x) = if x == y then l

else <y>^bdiff_aux(l,x)

OR(a,b) = if (a == TRUE) or (b == TRUE) then

TRUE

else FALSE

AND(a,b) = if (a == TRUE) and (b == TRUE) then

TRUE

else FALSE

DL_OR(a,b) = if (a == TRUE or a == FALSE) and

(b == TRUE or b == FALSE)

then OR(a,b)

else (

if (a == TRUE or b == TRUE)

then TRUE else DEFER

)

3. Define pattern matching functions to access values of composite types. Unlike CML,
there is not a straightforward way in CSP of accessing fields of types following
the syntax nametype.field. Hence, some pattern matching functions must be
defined to access these fields for the types declared. The following procedure details
what pattern matching functions must be created.

3a Define functions for recovering the names of operations and signals.
3b Define functions for recovering the parameters of operations and signals.
3c Define functions for recovering the output types.
3d Define functions for manipulating the values of the type E.

(a) Define functions for recovering the names of operations and signals. For
each value of OPS and S define functions get_name that returns the
token representing the name of the message.
Example:

get_name(light_I._) = light_I



B.1. PROCEDURES 247

get_name(light_O) = light_O

get_name(tick) = tick

(b) Define functions for recovering the parameters of operations and signals.
For each value of OPS and S that has parameters, define functions of the
type get_paramX that returns the Xth parameter of the type.
Example:

get_param1(light_I.u) = u

get_param2(foo_I._.u) = u

(c) Define functions for recovering the output types. For each value of OPS
of type input ( I), define functions of the type get_out that return the
corresponding output type.
Example:

get_out(light_I._) = light_O

get_out(foo_I._._) = foo_O

(d) Define functions for manipulating values of the type E. Define the follow-
ing functions to access fields of a value of type E:

get_event((_,_,_,e))=e

get_n((n,_,_,_))=n

get_id1((_,id,_,_))=id

get_id2((_,_,id,_))=id

4. Define the channels used in the CML model. The channels of the CML model must be
defined in CSP respecting the correspondence between the types previously defined.
In addition, some channels must use the types defined in 1b-1e. The procedures for
those types are:

(a) Replace type nat by sysnat in the definition of the channels X_addevent,
X_op and X_sig, where X is the name of a block.

(b) Replace type int by actint in the definition of the channel update,
which is used in activity diagram processes.

(c) Replace type nat by actnat in the definition of the channel control,
which is used in activity diagram processes.

(d) Replace type nat by sdnat in the definition of the channels X_mOP and
X_mSIG, which is used in sequence diagram processes, where X is the
name of a block.
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5. For each CML process define a corresponding CSP process. For each block, state
machine, activities and sequence diagram, translate their related processes according
to the following guidelines:

(a) Specify the CSP process in terms of the main action of the CML process.
The specification of the CSP process must be equal to the definition of
the main CML action. When the CML process is not defined in terms of
actions, then the CSP process must reflect the same specification of the
CML process. Regarding the parameters and state variables of the CML
process, if they are not modified along the process, they can be defined as
parameters of the corresponding CSP process. In case any state variable or
parameter of the process is modified along the CML process, the auxiliary
memory introduced in 5c must be used.
Example:
CML

process simple_Dwarf = $id: ID @ begin

state

l1: LIGHT := ON

l2: LIGHT := ON

l3: LIGHT := OFF

ps: set of LampId := {}

Dwarf_enabled: Bag := empty_bag

actions

...

@

Dwarf_state

[||{l1,l2,l3,ps}|{Dwarf_enabled}||]

Dwarf_requests

CSP

simple_Dwarf(p_id) =

Dwarf_state(p_id,ON,ON,OFF,{})

|||

Dwarf_requests(p_id,empty_bag)

(b) Define CSP processes for the remaining CML actions. Each CML action
of a CML process must be translated into a CSP process. The processes
of these actions may be used by the process defined in the previous step
or by the processes of other actions. If a parameter of the CML process
is used inside the action, the CSP process must have it declared as a
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parameter of itself. The parameter should be passed where the action is
invoked. For instance, see the parameter $id in CML that corresponds
to the parameter p_id in CSP for the extract below. Moreover, some
state variables are only used inside a specific action, hence, instead of
defining it as a parameter of the process, it can be defined as a parameter of
that specific action. See the Dwarf_enabled parameter in the example
below.
CML

process simple_Dwarf = $id: ID @ begin...

state

Dwarf_enabled: Bag := empty_bag

actions

Dwarf_requests = mu X @ (

Dwarf_op?n?o!$id?x:(in_bag(x.$id,Dwarf_enabled))

->( ...

@

Dwarf_requests ...

CSP

Dwarf_requests(p_id,Dwarf_enabled) =

Dwarf_op?n?o!p_id?x:{x|x<-O,in_bag(get_id(x),

Dwarf_enabled)} -> (

...

simple_Dwarf(p_id) = Dwarf_requests(p_id,

empty_bag) ...

(c) Define memory processes for CML actions that declare variables. Some
CML actions may have a declaration of state, which is not possible in CSP.
To overcome this, we define a memory process that has the variables as
parameters and provides channels to access the values of the parameters
and to change their contents. This memory process must be composed in
parallel with the respective processes that access and modify the declared
variables.
Example:
CML
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RSFA_2 = (...(dcl lamp: LIGHT @ (

(control.1 -> Skip); (DW_get_l1!id^<ad>!id?lamp1

-> (lamp := lamp1));

(out_ActShine_RSFA_5!lamp -> Skip)

/_\ end_guard & END_DIAGRAM

CSP

MEM_RSFA_2(lamp) = get_lamp!lamp ->

MEM_RSFA_2(lamp) [] set_lamp?x -> MEM_RSFA_2(x)

RSFA_2(id) =(... (control.1 -> Skip);

(DW_get_l1!id^<ad>!id?lamp1 ->

(lamp := lamp1));(out_ActShine_RSFA_5!lamp ->

Skip)...)

[|{| get_lamp,set_lamp |}|]

MEM_RSFA_2) /\ end_guard & END_DIAGRAM

(d) Replace the access to composite types according to step 3. As detailed
earlier in step 3, the mechanisms to access values of composite data
in CSP is different from the ones in CML. Hence, this step consists of
updating the places where these accesses happen in the CML model for
the syntax of CSP. Moreover, the native functions used to manipulate sets
and sequences must be updated as well. Table B.1 describes some of the
mappings between CSP and CML to manipulate sequences and sets. For
more details see (SCATTERGOOD; ARMSTRONG, 2011).

Table B.1: Mapping between CML and CSP functions for manipulating sequences and sets.

CML CSP Description
x in set S member(x,S) Set membership
S union T union(S,T) Set union
S \T diff(S,T) Set difference
card S card(S) Set cardinality
[s]^[q] <s>^<q> Sequence concatenation
len s #s or length(s) length of a sequence
hd s head(s) head of a sequence
tl s tail(s) tail of a sequence

Source: Author’s ownership.

Below we have an example of the updated CSP specification regarding the
access to composite values and the mapping of a set membership function
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from CML to CSP.

Example:
CML

Dwarf_sig?n?o!b_id?x:(x.$id in set Dwarf_S)

CSP

Dwarf_sig?n?o!b_id?x:{x|x<-S,member(

get_name(x),Dwarf_S)}

(e) Restrict the size of sets and sequences. This is one of the optimisations that
should be made in order to allow the model checker traverse a finite state
space. Some of the processes have sequences and sets parameters that can
increase infinitely. To avoid that, any sequence or set that can increase
indefinitely must have their limits set in order to allow model checking.
The way we describe how to reason about these limits does not follow a
formal approach. However, in the future we aim to propose a strategy that
uses data abstraction techniques (FARIAS et al., 2004; LAZIC; NOWAK,
2003). Below we describe some of treatments that should be applied in
variables defined and used internally by our semantics.

� Restrict the size of the enabled sequence parameter of block’s
requests CSP process (X_requests, where X is the name
of the block) according to the maximum size of concurrent
requests that a block may receive. The enabled variable stores
the operation calls that should be treated by the blocks. Once
an operation call is treated, it is removed from this sequence.
In order to define the maximum size of concurrent requests to
operations of a block, the designer must investigate the scenarios
where a block can concurrently receive operation calls and verify
the scenario with the highest number of concurrent operation
calls. This number must be the size limit of this sequence. If such
a concurrent scenario does not exist, the size of the sequence
must be limited to at most one element.

� Restrict the size of the set parameter events of the block’s
controller CSP process (controller_X, where X is the name
of the block) according to the maximum size of the block’s
event pool. The events set is responsible to store events to be
treated by the block’s controller. Differently from the enabled,
events stores values of the type E, which can be related to
operation calls and signals.
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� Restrict the size of the deferred sequence parameter of the
block’s controller CSP process (controller_X, where X is
the name of the block) according to the maximum size of the
deferred events pool of the block’s state machine.

(f) Restrict the set of IDs in alphabetised parallel compositions. Replace the
set of IDs used in channel sets of the alphabetised parallelism between
processes in order to make them reflect the exact possible communications
between blocks, state machines, activities and sequence diagrams.

(g) Define a CSP process that represents an integrated model. The system
model that corresponds to blocks, state machines and activities must be
defined in terms of the CSP process of the top-level block in the hierarchy
of the system renaming all channels of operations and signals to their
correspondent ones without the first sysnat value.
Example:

Model = Dwarf(<id_Dwarf>)[[Dwarf_op.n <-

Dwarf_OP, Dwarf_sig.n <- Dwarf_OP | n: sysnat]]

Following the steps described so far, we believe that model checking is possible for
models whose sizes are similar to the ones described in Section 8.3.1 of Chapter 8 using the
resultant CSP specification derived from the application of these procedures.
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C
Semantic Validation Models

Here we present the CSP specifications used to validate our semantics as described in
Section 8.4 of Chapter 8.

C.1 CSP model of the refinement for inserting a private op-
eration

The first listing corresponds to the CSP specification for the private operation introduction
refinement described in Section 8.4.1.

1 ID = {<bb >}

2 d a t a t y p e t o k e n = bb

3 d a t a t y p e DL = TRUE | FALSE | DEFER

4 OR( a , b ) = i f ( a == TRUE) or ( b == TRUE) t h e n TRUE e l s e FALSE

5 AND( a , b ) = i f ( a == TRUE) and ( b == TRUE) t h e n TRUE e l s e FALSE

6 DL_OR( a , b ) = i f ( a == TRUE or a == FALSE) and ( b == TRUE or b ==

FALSE)

7 t h e n OR( a , b )

8 e l s e (

9 i f ( a == TRUE or b == TRUE)

10 t h e n TRUE

11 e l s e DEFER

12 )

13 MyInt = {0 ,1 ,2}

14 MyNat = {0}

15 S e t I n t = S e t ( MyInt ) −−{{0} ,{1} ,{2} ,{0 ,1} ,{1 ,2} ,{0 ,2} ,{0 ,1 ,2} ,{}}−−
S e t ( MyInt )

16

17 d a t a t y p e MSG = op1_I | op1_O | op2_I | op2_O | op_I | op_O |

NOEVENT
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18 nametype E = ( MyNat , ID , ID ,MSG)

19

20 d a t a t y p e Token = o p e r 1 _ I | oper1_O | o p e r 2 _ I | oper2_O | o p e r _ I |

21 oper_O | n o e v e n t

22

23 g e t _ i d ( op1_I ) = o p e r 1 _ I

24 g e t _ i d ( op1_O ) = oper1_O

25 g e t _ i d ( op2_I ) = o p e r 2 _ I

26 g e t _ i d ( op2_O ) = oper2_O

27 g e t _ i d ( op_I ) = o p e r _ I

28 g e t _ i d ( op_O ) = oper_O

29 g e t _ i d (NOEVENT) = n o e v e n t

30

31 g e t _ o u t ( op1_I ) = oper1_O

32 g e t _ o u t ( op2_I ) = oper2_O

33 g e t _ o u t ( op_I ) = oper_O

34

35 g e t _ e v e n t ( ( _ , _ , _ , e ) ) =e

36 g e t _ n ( ( n , _ , _ , _ ) ) =n

37 g e t _ i d 1 ( ( _ , id , _ , _ ) ) = i d

38 g e t _ i d 2 ( ( _ , _ , id , _ ) ) = i d

39

40 s u b t y p e S = NOEVENT

41 s u b t y p e OPS = op1_I | op1_O | op2_I | op2_O | op_I | op_O

42 s u b t y p e I = op1_I | op2_I | op_I

43 s u b t y p e O = op1_O | op2_O | op_O

44 nametype Bag = Seq ( Token )

45 empty_bag = <>

46 in _ba g ( t , < >) = f a l s e

47 in _ba g ( t , < x>^ l ) = i f t == x t h e n t r u e e l s e i n _b ag ( t , l )

48 bun ion ( b1 , b2 ) = b1 ^ b2

49 b d i f f ( b1 , < >) = b1

50 b d i f f ( b1 , < x>^ l ) = b d i f f ( b d i f f _ a u x ( b1 , x ) , l )

51 b d i f f _ a u x ( < > , x ) = <>

52 b d i f f _ a u x ( <y>^ l , x ) = i f x == y t h e n l e l s e <y>^ b d i f f _ a u x ( l , x )

53 p r e f i x ( x , y ) = i f #x > #y t h e n f a l s e

54 e l s e c h e c k P r e f i x ( x , y )

55

56 c h e c k P r e f i x ( x , y ) = ( i f head ( x ) != head ( y ) t h e n f a l s e

57 e l s e i f t a i l ( x ) == <>

58 t h e n t r u e
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59 e l s e c h e c k P r e f i x ( t a i l ( x ) , t a i l ( y ) ) )

60

61 r e v e r s e ( < >) = <>

62 r e v e r s e ( <x>^ s ) = r e v e r s e ( s ) ^<x>

63

64 drop_two ( x ) = r e v e r s e ( t a i l ( t a i l ( r e v e r s e ( x ) ) ) )

65

66 B_I = { ope r1_I , o p e r 2 _ I }

67 B_O = { oper1_O , oper2_O }

68

69 Bref_S = {}

70 B r e f _ I = { ope r1_I , ope r2_ I , o p e r _ I }

71 Bref_O = { oper1_O , oper2_O , oper_O }

72

73 c h a n n e l B_op : MyNat . ID . ID . OPS

74 c h a n n e l B_OP : ID . ID . OPS

75 c h a n n e l B_addevent : MyNat . ID . ID .MSG

76 c h a n n e l B r e f _ a d d e v e n t : MyNat . ID . ID .MSG

77 B _ s t a t e ( i d ) = SKIP −− no s t a t e

78 B r e f _ s t a t e ( i d ) = SKIP −− no s t a t e

79 B _ r e q u e s t s ( p_id , e n a b l e d ) =

80 B_op? n ? o ! p_ id ? x : { x | x<−I , member ( g e t _ i d ( x ) , B_I ) } −> (

81 B_addevent ! n ! o ! p_ id ! x −> i f # e n a b l e d > 2 t h e n

82 SKIP e l s e B _ r e q u e s t s ( p_id , bun ion ( enab led , < g e t _ o u t (

x ) >) )

83 )

84 [ ]

85 B_op? n ? o ! p_ id ? x : { x | x<−O, i n_b ag ( g e t _ i d ( x ) , e n a b l e d ) } −> (

86 B _ r e q u e s t s ( p_id , b d i f f ( enab led , < g e t _ i d ( x ) >) )

87 )

88 B r e f _ r e q u e s t s ( p_id , e n a b l e d ) =

89 B_op? n ? o ! p_ id ? x : { x | x<−I , member ( g e t _ i d ( x ) , B r e f _ I ) } −> (

90 B r e f _ a d d e v e n t ! n ! o ! p_ id ! x −> i f # e n a b l e d > 2 t h e n

SKIP

91 e l s e B r e f _ r e q u e s t s ( p_id , bun ion ( enab led , < g e t _ o u t ( x )

>) )

92 )

93 [ ]

94 B_op? n ? o ! p_ id ? x : { x | x<−O, i n_b ag ( g e t _ i d ( x ) , e n a b l e d ) } −> (

95 B r e f _ r e q u e s t s ( p_id , b d i f f ( enab led , < g e t _ i d ( x ) >) )

96 )
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97

98 simple_B ( p_ id ) = B _ s t a t e ( p_ id ) | | | B _ r e q u e s t s ( p_id , < >)

99

100 s i m p l e _ B r e f ( p_ id ) = B r e f _ s t a t e ( p_ id ) | | | B r e f _ r e q u e s t s ( p_id , < >)

101

102 −− C o n t r o l l e r and S t a t e Machine

103 −−d a t a t y p e NEWE = E | NOEVENT

104 c h a n n e l B _ i n e v e n t : ID . E

105 c h a n n e l B_consumed : ID . DL

106 c h a n n e l B_haseven t : ID . Token

107 c h a n n e l B _ g e t e v e n t : ID . E

108

109

110 c h a n n e l B r e f _ i n e v e n t : ID . E

111 c h a n n e l Bref_consumed : ID . DL

112 c h a n n e l B r e f _ h a s e v e n t : ID . Token

113 c h a n n e l B r e f _ g e t e v e n t : ID . E

114

115 remove ( b , y ) = ( i f ( n u l l ( b ) ) t h e n

116 <>

117 e l s e i f ( head ( b ) == y ) t h e n

118 t a i l ( b )

119 e l s e
120 <head ( b ) >^ remove ( t a i l ( b ) , y )

121 )

122

123

124

125 c o n t r o l l e r _ B ( id , e v e n t s , d e f f e r e d ) = i f c a r d ( e v e n t s ) > 1 or # d e f f e r e d

> 0 t h e n

126 SKIP

127 e l s e
128

129

130 ( ( B_addevent ? n ? o ! i d ? e −> c o n t r o l l e r _ B ( id , un ion ( e v e n t s , { ( n , o

, id , e ) } ) , d e f f e r e d ) −− Event A r r i v a l

131

132 []−− S t a t e Machine w i t h o u t D e f e r r e d Ev en t s

133 −− t r e a t m e n t b e c a u s e t h e r e i s no e v e n t o f t h i s

type
134 ( c a r d ( e v e n t s ) > 0) & (
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135 | ~ | ev : e v e n t s @ (

136 B _ i n e v e n t ? o ! ev−> (

137 B_consumed . o . TRUE −> c o n t r o l l e r _ B ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d )

138 [ ]

139 B_consumed . o . FALSE −> c o n t r o l l e r _ B ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d )

140 [ ]

141 B_consumed . o . DEFER −> c o n t r o l l e r _ B ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d ^<ev >)

142 )

143 )

144 )

145 )

146

147 )

148

149 c o n t r o l l e r _ B r e f ( id , e v e n t s , d e f f e r e d ) = i f c a r d ( e v e n t s ) > 1 or #

d e f f e r e d > 0 t h e n

150 SKIP

151 e l s e
152

153

154 ( ( B r e f _ a d d e v e n t ? n ? o ! i d ? e −> c o n t r o l l e r _ B r e f ( id , un ion ( e v e n t s

, { ( n , o , id , e ) } ) , d e f f e r e d ) −− Event A r r i v a l

155

156 []−− S t a t e Machine

157 ( c a r d ( e v e n t s ) > 0) & (

158 | ~ | ev : e v e n t s @ (

159 B r e f _ i n e v e n t ? o ! ev−> (

160 Bref_consumed . o . TRUE −> c o n t r o l l e r _ B r e f ( id , d i f f
( e v e n t s , { ev } ) , d e f f e r e d )−−Add

T r e a t D e f e r r e d E v e n t s l a t e r

161 [ ]

162 Bref_consumed . o . FALSE −> c o n t r o l l e r _ B r e f ( id ,

d i f f ( e v e n t s , { ev } ) , d e f f e r e d )

163 [ ]

164 Bref_consumed . o . DEFER −> c o n t r o l l e r _ B r e f ( id ,

d i f f ( e v e n t s , { ev } ) , d e f f e r e d ^<ev >)

165 )

166 )
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167 )

168 )

169

170 )

171

172 bare_B ( i d ) = ( s imple_B ( i d ) [ | { | B_addevent | } | ] c o n t r o l l e r _ B ( id

,{} , < >) ) \ { | B_addevent | }

173

174 b a r e _ B r e f ( i d ) = ( s i m p l e _ B r e f ( i d ) [ | { | B r e f _ a d d e v e n t | } | ]

c o n t r o l l e r _ B r e f ( id ,{} , < >) ) \ { | B r e f _ a d d e v e n t | }

175

176

177

178

179 block_B ( i d ) = ( bare_B ( i d ) ) \ { | B_ ineven t , B_consumed | }

180

181 b l o c k _ B r e f ( i d ) = ( b a r e _ B r e f ( i d ) ) \ { | B r e f _ i n e v e n t , Bref_consumed ,

B_op . n . x . y . z | n : MyNat , x : ID , y : ID , z : { op_I , op_O } | }

182

183 c h a n n e l l oop

184

185 Loop = loop −> Loop

186

187 a s s e r t block_B ( <bb >) ; Loop \ { | l oop | } [ T= b l o c k _ B r e f ( < bb >) ; Loop \ { |

l oop | }

C.2 CSP model of the refinement for inserting a private at-
tribute

The second listing corresponds to the CSP specification for the private attribute introduc-
tion refinement described in Section 8.4.2.

1 ID = {<bb >}

2 d a t a t y p e t o k e n = bb

3 d a t a t y p e DL = TRUE | FALSE | DEFER

4 OR( a , b ) = i f ( a == TRUE) or ( b == TRUE) t h e n TRUE e l s e FALSE

5 AND( a , b ) = i f ( a == TRUE) and ( b == TRUE) t h e n TRUE e l s e FALSE

6 DL_OR( a , b ) = i f ( a == TRUE or a == FALSE) and ( b == TRUE or b ==

FALSE)

7 t h e n OR( a , b )
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8 e l s e (

9 i f ( a == TRUE or b == TRUE)

10 t h e n TRUE

11 e l s e DEFER

12 )

13 MyInt = {0 ,1 ,2}

14 MyNat = {0}

15 S e t I n t = S e t ( MyInt ) −−{{0} ,{1} ,{2} ,{0 ,1} ,{1 ,2} ,{0 ,2} ,{0 ,1 ,2} ,{}}−−
S e t ( MyInt )

16

17 d a t a t y p e MSG = op1_I | op1_O | op2_I | op2_O | NOEVENT

18 nametype E = ( MyNat , ID , ID ,MSG)

19 d a t a t y p e Token = o p e r 1 _ I | oper1_O | o p e r 2 _ I | oper2_O | n o e v e n t

20

21 g e t _ i d ( op1_I ) = o p e r 1 _ I

22 g e t _ i d ( op1_O ) = oper1_O

23 g e t _ i d ( op2_I ) = o p e r 2 _ I

24 g e t _ i d ( op2_O ) = oper2_O

25 g e t _ i d (NOEVENT) = n o e v e n t

26 g e t _ o u t ( op1_I ) = oper1_O

27 g e t _ o u t ( op2_I ) = oper2_O

28 g e t _ e v e n t ( ( _ , _ , _ , e ) ) =e

29 g e t _ n ( ( n , _ , _ , _ ) ) =n

30 g e t _ i d 1 ( ( _ , id , _ , _ ) ) = i d

31 g e t _ i d 2 ( ( _ , _ , id , _ ) ) = i d

32

33 s u b t y p e S = NOEVENT

34 s u b t y p e OPS = op1_I | op1_O | op2_I | op2_O

35 s u b t y p e I = op1_I | op2_I

36 s u b t y p e O = op1_O | op2_O

37 nametype Bag = Seq ( Token )

38 empty_bag = <>

39 in _ba g ( t , < >) = f a l s e

40 in _ba g ( t , < x>^ l ) = i f t == x t h e n t r u e e l s e i n _b ag ( t , l )

41 bun ion ( b1 , b2 ) = b1 ^ b2

42 b d i f f ( b1 , < >) = b1

43 b d i f f ( b1 , < x>^ l ) = b d i f f ( b d i f f _ a u x ( b1 , x ) , l )

44 b d i f f _ a u x ( < > , x ) = <>

45 b d i f f _ a u x ( <y>^ l , x ) = i f x == y t h e n l e l s e <y>^ b d i f f _ a u x ( l , x )

46 p r e f i x ( x , y ) = i f #x > #y t h e n f a l s e

47 e l s e c h e c k P r e f i x ( x , y )
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48

49 c h e c k P r e f i x ( x , y ) = ( i f head ( x ) != head ( y ) t h e n f a l s e

50 e l s e i f t a i l ( x ) == <>

51 t h e n t r u e

52 e l s e c h e c k P r e f i x ( t a i l ( x ) , t a i l ( y ) ) )

53

54 r e v e r s e ( < >) = <>

55 r e v e r s e ( <x>^ s ) = r e v e r s e ( s ) ^<x>

56

57 drop_two ( x ) = r e v e r s e ( t a i l ( t a i l ( r e v e r s e ( x ) ) ) )

58

59 B_I = { ope r1_I , o p e r 2 _ I }

60 B_O = { oper1_O , oper2_O }

61 Bref_S = {}

62 B r e f _ I = { ope r1_I , o p e r 2 _ I }

63 Bref_O = { oper1_O , oper2_O }

64

65 c h a n n e l B_op : MyNat . ID . ID . OPS

66 c h a n n e l B_OP : ID . ID . OPS

67 c h a n n e l B_addevent : MyNat . ID . ID .MSG

68 c h a n n e l B r e f _ a d d e v e n t : MyNat . ID . ID .MSG

69 c h a n n e l B r e f _ g e t _ a t t : ID . ID . MyInt

70 c h a n n e l B r e f _ s e t _ a t t : ID . ID . MyInt

71

72 B _ s t a t e ( i d ) = SKIP

73 B r e f _ s t a t e ( id , a t t ) = B r e f _ g e t _ a t t ? o : {x | x <−ID , p r e f i x ( id , x ) } ! i d !

a t t −> B r e f _ s t a t e ( id , a t t )

74 [ ]

75 B r e f _ s e t _ a t t ? o : {x | x <−ID , p r e f i x ( id , x ) } ! i d ?

x −> B r e f _ s t a t e ( id , x )

76

77 B _ r e q u e s t s ( p_id , e n a b l e d ) =

78 B_op? n ? o ! p_ id ? x : { x | x<−I , member ( g e t _ i d ( x ) , B_I ) } −> (

79 B_addevent ! n ! o ! p_ id ! x −> i f # e n a b l e d > 2 t h e n SKIP

e l s e B _ r e q u e s t s ( p_id , bun ion ( enab led , < g e t _ o u t ( x )

>) )

80 )

81 [ ]

82 B_op? n ? o ! p_ id ? x : { x | x<−O, i n_b ag ( g e t _ i d ( x ) , e n a b l e d ) } −> (

83 B _ r e q u e s t s ( p_id , b d i f f ( enab led , < g e t _ i d ( x ) >) )

84 )
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85

86 B r e f _ r e q u e s t s ( p_id , e n a b l e d ) =

87 B_op? n ? o ! p_ id ? x : { x | x<−I , member ( g e t _ i d ( x ) , B r e f _ I ) } −> (

88 B r e f _ a d d e v e n t ! n ! o ! p_ id ! x −> i f # e n a b l e d > 2 t h e n

SKIP e l s e B r e f _ r e q u e s t s ( p_id , bun ion ( enab led , <

g e t _ o u t ( x ) >) )

89 )

90 [ ]

91 B_op? n ? o ! p_ id ? x : { x | x<−O, i n_b ag ( g e t _ i d ( x ) , e n a b l e d ) } −> (

92 B r e f _ r e q u e s t s ( p_id , b d i f f ( enab led , < g e t _ i d ( x ) >) )

93 )

94

95 simple_B ( p_ id ) = B _ s t a t e ( p_ id ) | | | B _ r e q u e s t s ( p_id , < >)

96

97 s i m p l e _ B r e f ( p_ id ) = B r e f _ s t a t e ( p_id , 0 ) | | | B r e f _ r e q u e s t s ( p_id , < >)

98

99

100 −− C o n t r o l l e r and S t a t e Machine

101 c h a n n e l B _ i n e v e n t : ID . E

102 c h a n n e l B_consumed : ID . DL

103 c h a n n e l B_haseven t : ID . Token

104 c h a n n e l B _ g e t e v e n t : ID . E

105

106

107 c h a n n e l B r e f _ i n e v e n t : ID . E

108 c h a n n e l Bref_consumed : ID . DL

109 c h a n n e l B r e f _ h a s e v e n t : ID . Token

110 c h a n n e l B r e f _ g e t e v e n t : ID . E

111

112 remove ( b , y ) = ( i f ( n u l l ( b ) ) t h e n

113 <>

114 e l s e i f ( head ( b ) == y ) t h e n

115 t a i l ( b )

116 e l s e
117 <head ( b ) >^ remove ( t a i l ( b ) , y )

118 )

119

120 c o n t r o l l e r _ B ( id , e v e n t s , d e f f e r e d ) =

121 i f c a r d ( e v e n t s ) > 1 or # d e f f e r e d > 0 t h e n

122 SKIP

123 e l s e
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124 ( ( B_addevent ? n ? o ! i d ? e −>

125 c o n t r o l l e r _ B ( id , un ion ( e v e n t s , { ( n , o , id , e ) } ) , d e f f e r e d ) −−
Event A r r i v a l

126

127 []−− S t a t e Machine w i t h o u t D e f e r r e d Ev en t s

128 −− t r e a t m e n t b e c a u s e t h e r e i s no e v e n t o f t h i s

type
129 ( c a r d ( e v e n t s ) > 0) & (

130 | ~ | ev : e v e n t s @ (

131 B _ i n e v e n t ? o ! ev−> (

132 B_consumed . o . TRUE −>

133 c o n t r o l l e r _ B ( id , d i f f ( e v e n t s , { ev } ) , d e f f e r e d )

134 [ ]

135 B_consumed . o . FALSE −>

136 c o n t r o l l e r _ B ( id , d i f f ( e v e n t s , { ev } ) , d e f f e r e d )

137 [ ]

138 B_consumed . o . DEFER −>

139 c o n t r o l l e r _ B ( id , d i f f ( e v e n t s , { ev } ) , d e f f e r e d ^<ev

>)

140 )

141 )

142 )

143 )

144

145 )

146

147 c o n t r o l l e r _ B r e f ( id , e v e n t s , d e f f e r e d ) =

148 i f c a r d ( e v e n t s ) > 1 or # d e f f e r e d > 0 t h e n

149 SKIP

150 e l s e
151 ( ( B r e f _ a d d e v e n t ? n ? o ! i d ? e −>

152 c o n t r o l l e r _ B r e f ( id , un ion ( e v e n t s , { ( n , o , id , e ) } ) , d e f f e r e d ) −−
Event A r r i v a l

153

154 []−− S t a t e Machine w i t h o u t D e f e r r e d Ev en t s

155 −− t r e a t m e n t b e c a u s e t h e r e i s no e v e n t o f t h i s

type
156 ( c a r d ( e v e n t s ) > 0) & (

157 | ~ | ev : e v e n t s @ (

158 B r e f _ i n e v e n t ? o ! ev−> (

159 Bref_consumed . o . TRUE −>
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160 c o n t r o l l e r _ B r e f ( id , d i f f ( e v e n t s , { ev } ) , d e f f e r e d )

161 [ ]

162 Bref_consumed . o . FALSE −>

163 c o n t r o l l e r _ B r e f ( id , d i f f ( e v e n t s , { ev } ) , d e f f e r e d )

164 [ ]

165 Bref_consumed . o . DEFER −>

166 c o n t r o l l e r _ B r e f ( id , d i f f ( e v e n t s , { ev } ) , d e f f e r e d ^<

ev >)

167 )

168 )

169 )

170 )

171

172 )

173

174 bare_B ( i d ) = ( s imple_B ( i d ) [ | { | B_addevent | } | ] c o n t r o l l e r _ B ( id

,{} , < >) ) \ { | B_addevent | }

175

176 b a r e _ B r e f ( i d ) = ( s i m p l e _ B r e f ( i d ) [ | { | B r e f _ a d d e v e n t | } | ]

c o n t r o l l e r _ B r e f ( id ,{} , < >) ) \ { | B r e f _ a d d e v e n t | }

177

178 block_B ( i d ) = ( bare_B ( i d ) ) \ { | B_ ineven t , B_consumed | }

179

180 b l o c k _ B r e f ( i d ) = ( b a r e _ B r e f ( i d ) ) \ { | B r e f _ i n e v e n t , Bref_consumed ,

B r e f _ g e t _ a t t , B r e f _ s e t _ a t t | }

181

182 c h a n n e l l oop

183

184 Loop = loop −> Loop

185

186 a s s e r t block_B ( <bb >) ; Loop \ { | l oop | } [ T= b l o c k _ B r e f ( < bb >) ; Loop \ { |

l oop | }

C.3 CSP model of the refinement for the decomposition of a
block

We show three listings one for each part of the decomposition of the block Management-

Department described in Section 8.4.3.
The first listing corresponds to the CSP specification for the first part of the decomposition
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of block ManagementDepartment.

1 ID = {<bb > , <bb , stm >}

2

3

4 d a t a t y p e t o k e n = bb | stm

5

6

7

8 d a t a t y p e DL = TRUE | FALSE | DEFER

9

10 OR( a , b ) = i f ( a == TRUE) or ( b == TRUE) t h e n TRUE e l s e FALSE

11

12 AND( a , b ) = i f ( a == TRUE) and ( b == TRUE) t h e n TRUE e l s e FALSE

13

14 DL_OR( a , b ) = i f ( a == TRUE or a == FALSE) and ( b == TRUE or b ==

FALSE)

15 t h e n OR( a , b )

16 e l s e (

17 i f ( a == TRUE or b == TRUE)

18 t h e n TRUE

19 e l s e DEFER

20 )

21

22 MyInt = {0 ,1 ,2}

23 MyNat = {0}

24

25 S e t I n t = S e t ( MyInt ) −−{{0} ,{1} ,{2} ,{0 ,1} ,{1 ,2} ,{0 ,2} ,{0 ,1 ,2} ,{}}−−
S e t ( MyInt )

26

27 d a t a t y p e MSG = mc_I | mc_O | ml_I | ml_O | ma_I | ma_O | NOEVENT

28 nametype E = ( MyNat , ID , ID ,MSG)

29

30 d a t a t y p e Token = m a n a g e C l i e n t _ I | manageCl ient_O | manageLoan_I |

manageLoan_O | manageAccount_I | manageAccount_O | n o e v e n t

31

32 g e t _ i d ( mc_I ) = m a n a g e C l i e n t _ I

33 g e t _ i d (mc_O) = manageCl ient_O

34 g e t _ i d ( ml_I ) = manageLoan_I

35 g e t _ i d ( ml_O ) = manageLoan_O

36 g e t _ i d ( ma_I ) = manageAccount_I

37 g e t _ i d (ma_O) = manageAccount_O
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38

39

40 g e t _ i d (NOEVENT) = n o e v e n t

41

42 g e t _ o u t ( mc_I ) = manageCl ient_O

43 g e t _ o u t ( ml_I ) = manageLoan_O

44 g e t _ o u t ( ma_I ) = manageAccount_O

45

46

47

48 g e t _ e v e n t ( ( _ , _ , _ , e ) ) =e

49 g e t _ n ( ( n , _ , _ , _ ) ) =n

50 g e t _ i d 1 ( ( _ , id , _ , _ ) ) = i d

51 g e t _ i d 2 ( ( _ , _ , id , _ ) ) = i d

52

53 −−s u b t y p e S = i n i t

54 s u b t y p e S = NOEVENT

55

56 s u b t y p e OPS = mc_I | mc_O | ml_I | ml_O | ma_I | ma_O

57

58

59 s u b t y p e I = mc_I | ml_I | ma_I

60

61 s u b t y p e O = mc_O | ml_O | ma_O

62

63

64 nametype Bag = Seq ( Token )

65 empty_bag = <>

66 in _ba g ( t , < >) = f a l s e

67 in _ba g ( t , < x>^ l ) = i f t == x t h e n t r u e e l s e i n _b ag ( t , l )

68 bun ion ( b1 , b2 ) = b1 ^ b2

69 b d i f f ( b1 , < >) = b1

70 b d i f f ( b1 , < x>^ l ) = b d i f f ( b d i f f _ a u x ( b1 , x ) , l )

71 b d i f f _ a u x ( < > , x ) = <>

72 b d i f f _ a u x ( <y>^ l , x ) = i f x == y t h e n l e l s e <y>^ b d i f f _ a u x ( l , x )

73

74 p r e f i x ( x , y ) = i f #x > #y t h e n f a l s e

75 e l s e c h e c k P r e f i x ( x , y )

76

77 c h e c k P r e f i x ( x , y ) = ( i f head ( x ) != head ( y ) t h e n f a l s e

78 e l s e i f t a i l ( x ) == <> and t a i l ( y ) != <>
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79 t h e n t r u e

80 e l s e i f t a i l ( x ) == <> and t a i l ( y ) == <>

81 t h e n f a l s e

82 e l s e c h e c k P r e f i x ( t a i l ( x ) , t a i l ( y ) ) )

83

84 r e v e r s e ( < >) = <>

85 r e v e r s e ( <x>^ s ) = r e v e r s e ( s ) ^<x>

86

87 drop_two ( x ) = r e v e r s e ( t a i l ( t a i l ( r e v e r s e ( x ) ) ) )

88

89 ManagementDepar tment_I = { m a na g e Cl i e n t _ I , manageLoan_I ,

manageAccount_I }

90 ManagementDepartment_O = { manageClient_O , manageLoan_O ,

manageAccount_O }

91

92 C l i e n t M a n a g e r _ I = { m a n a g e C l i e n t _ I }

93 Cl ien tManager_O = { manageCl ient_O }

94

95

96 c h a n n e l ManagementDepartment_op : MyNat . ID . ID . OPS

97 c h a n n e l ManagementDepartment_OP : ID . ID . OPS

98

99 c h a n n e l C l i en tManage r_op : MyNat . ID . ID . OPS

100 c h a n n e l Cl ientManager_OP : ID . ID . OPS

101 c h a n n e l ManagementDepar tment_addevent : MyNat . ID . ID .MSG

102 c h a n n e l C l i e n t M a n a g e r _ a d d e v e n t : MyNat . ID . ID .MSG

103

104

105 Managemen tDepa r tmen t_s t a t e ( i d ) = SKIP

106 C l i e n t M a n a g e r _ s t a t e ( i d ) = SKIP

107

108

109 Managemen tDepa r tmen t_ reques t s ( p_id , e n a b l e d ) =

110 ManagementDepartment_op ? n ? o ! p_ id ? x : { x | x<−I , member ( g e t _ i d ( x )

, ManagementDepar tment_I ) } −> (

111 ManagementDepar tment_addevent ! n ! o ! p_ id ! x −> i f #

e n a b l e d > 2 t h e n SKIP e l s e
Managemen tDepa r tmen t_ reques t s ( p_id , bun ion (

enab led , < g e t _ o u t ( x ) >) )

112 )

113 [ ]
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114 ManagementDepartment_op ? n ? o ! p_ id ? x : { x | x<−O, i n_b ag ( g e t _ i d ( x )

, e n a b l e d ) } −> (

115 Managemen tDepa r tmen t_ reques t s ( p_id , b d i f f ( enab led , <

g e t _ i d ( x ) >) )

116 )

117

118

119 C l i e n t M a n a g e r _ r e q u e s t s ( p_id , e n a b l e d ) =

120 Cl i en tManage r_op ? n ? o ! p_ id ? x : { x | x<−I , member ( g e t _ i d ( x ) ,

C l i e n t M a n a g e r _ I ) } −> (

121 C l i e n t M a n a g e r _ a d d e v e n t ! n ! o ! p_ id ! x −> i f # e n a b l e d >

2 t h e n

122 SKIP e l s e C l i e n t M a n a g e r _ r e q u e s t s ( p_id , bun ion (

enab led , < g e t _ o u t ( x ) >) )

123 )

124 [ ]

125 Cl i en tManage r_op ? n ? o ! p_ id ? x : { x | x<−O, i n_b ag ( g e t _ i d ( x ) ,

e n a b l e d ) } −> (

126 C l i e n t M a n a g e r _ r e q u e s t s ( p_id , b d i f f ( enab led , < g e t _ i d (

x ) >) )

127 )

128

129

130 s imple_ManagementDepar tment ( p_ id ) = Managemen tDepa r tmen t_s t a t e ( p_ id

) | | | Managemen tDepa r tmen t_ reques t s ( p_id , < >)

131

132 s i m p l e _ C l i e n t M a n a g e r ( p_ id ) = C l i e n t M a n a g e r _ s t a t e ( p_ id ) | | |

C l i e n t M a n a g e r _ r e q u e s t s ( p_id , < >)

133

134 −− C o n t r o l l e r and S t a t e Machine

135 −−d a t a t y p e NEWE = E | NOEVENT

136 c h a n n e l ManagementDepar tmen t_ ineven t : ID . E

137 c h a n n e l ManagementDepartment_consumed : ID . DL

138 c h a n n e l ManagementDepar tment_haseven t : ID . Token

139 c h a n n e l ManagementDepar tmen t_ge teven t : ID . E

140

141

142 c h a n n e l C l i e n t M a n a g e r _ i n e v e n t : ID . E

143 c h a n n e l Cl ien tManager_consumed : ID . DL

144 c h a n n e l C l i e n t M a n a g e r _ h a s e v e n t : ID . Token

145 c h a n n e l C l i e n t M a n a g e r _ g e t e v e n t : ID . E
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146

147 remove ( b , y ) = ( i f ( n u l l ( b ) ) t h e n

148 <>

149 e l s e i f ( head ( b ) == y ) t h e n

150 t a i l ( b )

151 e l s e
152 <head ( b ) >^ remove ( t a i l ( b ) , y )

153 )

154

155

156

157 c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id , e v e n t s , d e f f e r e d ) = i f c a r d (

e v e n t s ) > 1 or # d e f f e r e d > 0 t h e n

158 SKIP

159 e l s e
160

161

162 ( ( ManagementDepar tment_addevent ? n ? o ! i d ? e −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id , un ion ( e v e n t s , { ( n , o , id

, e ) } ) , d e f f e r e d ) −− Event A r r i v a l

163

164 []−− S t a t e Machine

165 ( c a r d ( e v e n t s ) > 0) & (

166 | ~ | ev : e v e n t s @ (

167 ManagementDepar tmen t_ ineven t ? o ! ev−> (

168 ManagementDepartment_consumed . o . TRUE −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d )−−Add

T r e a t D e f e r r e d E v e n t s l a t e r

169 [ ]

170 ManagementDepartment_consumed . o . FALSE −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d )

171 [ ]

172 ManagementDepartment_consumed . o . DEFER −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d ^<ev >)

173 )

174 )

175 )

176 )
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177

178 )

179

180 c o n t r o l l e r _ C l i e n t M a n a g e r ( id , e v e n t s , d e f f e r e d ) = i f c a r d ( e v e n t s ) > 1

or # d e f f e r e d > 0 t h e n

181 SKIP

182 e l s e
183

184

185 ( ( C l i e n t M a n a g e r _ a d d e v e n t ? n ? o ! i d ? e −>

c o n t r o l l e r _ C l i e n t M a n a g e r ( id , un ion ( e v e n t s , { ( n , o , id , e ) } ) ,

d e f f e r e d ) −− Event A r r i v a l

186

187 []−− S t a t e Machine

188 ( c a r d ( e v e n t s ) > 0) & (

189 | ~ | ev : e v e n t s @ (

190 C l i e n t M a n a g e r _ i n e v e n t ? o ! ev−> (

191 Cl ien tManager_consumed . o . TRUE −>

c o n t r o l l e r _ C l i e n t M a n a g e r ( id , d i f f ( e v e n t s , { ev

} ) , d e f f e r e d )−−Add T r e a t D e f e r r e d E v e n t s l a t e r

192 [ ]

193 Cl ien tManager_consumed . o . FALSE −>

c o n t r o l l e r _ C l i e n t M a n a g e r ( id , d i f f ( e v e n t s , { ev

} ) , d e f f e r e d )

194 [ ]

195 Cl ien tManager_consumed . o . DEFER −>

c o n t r o l l e r _ C l i e n t M a n a g e r ( id , d i f f ( e v e n t s , { ev

} ) , d e f f e r e d ^<ev >)

196 )

197 )

198 )

199 )

200

201 )

202

203 bare_ManagementDepar tment ( i d ) = ( s imple_ManagementDepar tment ( i d )

[ | { | ManagementDepar tment_addevent | } | ]

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id ,{} , < >) ) \ { |

ManagementDepar tment_addevent | }

204

205 b a r e _ C l i e n t M a n a g e r ( i d ) = ( s i m p l e _ C l i e n t M a n a g e r ( i d ) [ | { |
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C l i e n t M a n a g e r _ a d d e v e n t | } | ] c o n t r o l l e r _ C l i e n t M a n a g e r ( id ,{} , < >) ) \

{ | C l i e n t M a n a g e r _ a d d e v e n t | }

206

207 stm_ManagementDepartment ( i d ) = S t a t e ( i d )

208

209 S t a t e ( i d ) = ManagementDepar tmen t_ ineven t ! i d ^<stm >? e −> (

210 ( g e t _ i d ( g e t _ e v e n t ( e ) ) == m a n a g e C l i e n t _ I &

ManagementDepartment_consumed ! i d ^<stm >!TRUE −>

211 Cl i en tManage r_op . g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d ! mc_I −>

Cl i en tManage r_op . g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d !mc_O −>

212 ManagementDepartment_op ! g e t _ n ( e ) ! g e t _ i d 1 ( e ) ! i d !mc_O −> S t a t e (

i d ) )

213 [ ]

214 ( ( n o t ( g e t _ i d ( g e t _ e v e n t ( e ) ) == m a n a g e C l i e n t _ I ) ) &

ManagementDepartment_consumed ! i d ^<stm >!FALSE −> S t a t e ( i d ) )

215 )

216

217

218 block_ManagementDepar tment ( i d ) = ( bare_ManagementDepar tment ( i d ) )

219 \ un ion ( { | ManagementDepar tment_ ineven t ,

220 ManagementDepartment_consumed | } , { | ManagementDepartment_op . n

. x . y . z | n : MyNat , x : ID , y : ID ,

221 z : MSG, member ( g e t _ i d ( z ) , un ion ( ManagementDepartment_I ,

ManagementDepartment_O ) ) ,

222 p r e f i x ( id , x ) o r p r e f i x ( id , y ) | } )

223

224 block_ManagementDepar tmentRef ( i d ) = ( bare_ManagementDepar tment ( i d )

225 [ { | ManagementDepar tment_ ineven t ,

ManagementDepartment_consumed ,

226 ManagementDepartment_op | } | |

227 { | ManagementDepar tment_ ineven t ,

ManagementDepartment_consumed ,

228 Cl ien tManager_op , ManagementDepartment_op . n . x . i d .w | n :

MyNat , x : ID ,

229 w: {mc_O } | } ]

230 stm_ManagementDepartment ( i d ) ) \ un ion ( { |

ManagementDepar tment_ ineven t ,

231 ManagementDepartment_consumed | } , { | ManagementDepartment_op . n

. x . y . z | n : MyNat , x : ID , y : ID ,

232 z : MSG, member ( g e t _ i d ( z ) , un ion ( ManagementDepartment_I ,

ManagementDepartment_O ) ) ,
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233 p r e f i x ( id , x ) o r p r e f i x ( id , y ) | } )

234

235 b l o c k _ C l i e n t M a n a g e r ( i d ) = ( b a r e _ C l i e n t M a n a g e r ( i d ) ) \ { |

C l i e n t M a n a g e r _ i n e v e n t , Cl ien tManager_consumed | }

236

237 b lock_Sys tem ( i d ) = block_ManagementDepar tment ( i d )

238

239 b lock_Sys temRef ( i d ) =

240 ( block_ManagementDepar tmentRef ( i d )

241

242 [ | { | C l i en tManage r_op | } | ]

243

244 ( b l o c k _ C l i e n t M a n a g e r ( i d ) )

245 )

246 \ { | C l i en tManage r_op | }

247

248 c h a n n e l l oop

249

250 Loop = loop −> Loop

251

252

253 TEST = block_Sys temRef ( <bb >)

254

255

256 a s s e r t b lock_Sys tem ( <bb >) ; Loop \ { | l oop | } [ T=

257 ( b lock_Sys temRef ( <bb >) ; Loop )

The second listing corresponds to the CSP specification for the second part of the
decomposition of block ManagementDepartment.

1 ID = {<bb > , <bb , stm >}

2

3

4 d a t a t y p e t o k e n = bb | stm

5

6

7

8 d a t a t y p e DL = TRUE | FALSE | DEFER

9

10 OR( a , b ) = i f ( a == TRUE) or ( b == TRUE) t h e n TRUE e l s e FALSE

11

12 AND( a , b ) = i f ( a == TRUE) and ( b == TRUE) t h e n TRUE e l s e FALSE
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13

14 DL_OR( a , b ) = i f ( a == TRUE or a == FALSE) and ( b == TRUE or b ==

FALSE)

15 t h e n OR( a , b )

16 e l s e (

17 i f ( a == TRUE or b == TRUE)

18 t h e n TRUE

19 e l s e DEFER

20 )

21

22 MyInt = {0 ,1 ,2}

23 MyNat = {0}

24

25 S e t I n t = S e t ( MyInt ) −−{{0} ,{1} ,{2} ,{0 ,1} ,{1 ,2} ,{0 ,2} ,{0 ,1 ,2} ,{}}−−
S e t ( MyInt )

26

27 d a t a t y p e MSG = mc_I | mc_O | ml_I | ml_O | ma_I | ma_O | NOEVENT

28 nametype E = ( MyNat , ID , ID ,MSG)

29

30 d a t a t y p e Token = m a n a g e C l i e n t _ I | manageCl ient_O | manageLoan_I |

manageLoan_O | manageAccount_I | manageAccount_O | n o e v e n t

31

32 g e t _ i d ( mc_I ) = m a n a g e C l i e n t _ I

33 g e t _ i d (mc_O) = manageCl ient_O

34 g e t _ i d ( ml_I ) = manageLoan_I

35 g e t _ i d ( ml_O ) = manageLoan_O

36 g e t _ i d ( ma_I ) = manageAccount_I

37 g e t _ i d (ma_O) = manageAccount_O

38

39

40 g e t _ i d (NOEVENT) = n o e v e n t

41

42 g e t _ o u t ( mc_I ) = manageCl ient_O

43 g e t _ o u t ( ml_I ) = manageLoan_O

44 g e t _ o u t ( ma_I ) = manageAccount_O

45

46

47

48 g e t _ e v e n t ( ( _ , _ , _ , e ) ) =e

49 g e t _ n ( ( n , _ , _ , _ ) ) =n

50 g e t _ i d 1 ( ( _ , id , _ , _ ) ) = i d
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51 g e t _ i d 2 ( ( _ , _ , id , _ ) ) = i d

52

53 −−s u b t y p e S = i n i t

54 s u b t y p e S = NOEVENT

55

56 s u b t y p e OPS = mc_I | mc_O | ml_I | ml_O | ma_I | ma_O

57

58

59 s u b t y p e I = mc_I | ml_I | ma_I

60

61 s u b t y p e O = mc_O | ml_O | ma_O

62

63

64 nametype Bag = Seq ( Token )

65 empty_bag = <>

66 in _ba g ( t , < >) = f a l s e

67 in _ba g ( t , < x>^ l ) = i f t == x t h e n t r u e e l s e i n _b ag ( t , l )

68 bun ion ( b1 , b2 ) = b1 ^ b2

69 b d i f f ( b1 , < >) = b1

70 b d i f f ( b1 , < x>^ l ) = b d i f f ( b d i f f _ a u x ( b1 , x ) , l )

71 b d i f f _ a u x ( < > , x ) = <>

72 b d i f f _ a u x ( <y>^ l , x ) = i f x == y t h e n l e l s e <y>^ b d i f f _ a u x ( l , x )

73

74 p r e f i x ( x , y ) = i f #x > #y t h e n f a l s e

75 e l s e c h e c k P r e f i x ( x , y )

76

77 c h e c k P r e f i x ( x , y ) = ( i f head ( x ) != head ( y ) t h e n f a l s e

78 e l s e i f t a i l ( x ) == <> and t a i l ( y ) != <>

79 t h e n t r u e

80 e l s e i f t a i l ( x ) == <> and t a i l ( y ) == <>

81 t h e n f a l s e

82 e l s e c h e c k P r e f i x ( t a i l ( x ) , t a i l ( y ) ) )

83

84 r e v e r s e ( < >) = <>

85 r e v e r s e ( <x>^ s ) = r e v e r s e ( s ) ^<x>

86

87 drop_two ( x ) = r e v e r s e ( t a i l ( t a i l ( r e v e r s e ( x ) ) ) )

88

89 ManagementDepar tment_I = { m a na g e Cl i e n t _ I , manageLoan_I ,

manageAccount_I }

90 ManagementDepartment_O = { manageClient_O , manageLoan_O ,



C.3. CSP MODEL OF THE REFINEMENT FOR THE DECOMPOSITION OF A BLOCK274

manageAccount_O }

91

92 C l i e n t M a n a g e r _ I = { m a n a g e C l i e n t _ I }

93 Cl ien tManager_O = { manageCl ient_O }

94

95 LoanManager_I = { manageLoan_I }

96 LoanManager_O = {manageLoan_O}

97

98

99

100 c h a n n e l ManagementDepartment_op : MyNat . ID . ID . OPS

101 c h a n n e l ManagementDepartment_OP : ID . ID . OPS

102

103 c h a n n e l C l i en tManage r_op : MyNat . ID . ID . OPS

104 c h a n n e l Cl ientManager_OP : ID . ID . OPS

105

106 c h a n n e l LoanManager_op : MyNat . ID . ID . OPS

107 c h a n n e l LoanManager_OP : ID . ID . OPS

108

109 c h a n n e l ManagementDepar tment_addevent : MyNat . ID . ID .MSG

110 c h a n n e l C l i e n t M a n a g e r _ a d d e v e n t : MyNat . ID . ID .MSG

111 c h a n n e l LoanManager_addevent : MyNat . ID . ID .MSG

112 c h a n n e l ManagementDepar tmentRef_addevent : MyNat . ID . ID .MSG

113

114

115 Managemen tDepa r tmen t_s t a t e ( i d ) = SKIP

116 C l i e n t M a n a g e r _ s t a t e ( i d ) = SKIP

117 Lo an Man ag e r _s t a t e ( i d ) = SKIP

118 Managemen tDepa r tmen tRef_s t a t e ( i d ) = SKIP

119

120 Managemen tDepa r tmen t_ reques t s ( p_id , e n a b l e d ) =

121 ManagementDepartment_op ? n ? o ! p_ id ? x : { x | x<−I , member ( g e t _ i d ( x )

, ManagementDepar tment_I ) } −> (

122 ManagementDepar tment_addevent ! n ! o ! p_ id ! x −> i f #

e n a b l e d > 2 t h e n SKIP e l s e
Managemen tDepa r tmen t_ reques t s ( p_id , bun ion (

enab led , < g e t _ o u t ( x ) >) )

123 )

124 [ ]

125 ManagementDepartment_op ? n ? o ! p_ id ? x : { x | x<−O, i n_b ag ( g e t _ i d ( x )

, e n a b l e d ) } −> (
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126 Managemen tDepa r tmen t_ reques t s ( p_id , b d i f f ( enab led , <

g e t _ i d ( x ) >) )

127 )

128

129 Managemen tDepa r tmen tRef_ reques t s ( p_id , e n a b l e d ) =

130 ManagementDepartment_op ? n ? o ! p_ id ? x : { x | x<−I , member ( g e t _ i d ( x )

, ManagementDepar tment_I ) } −> (

131 ManagementDepar tmentRef_addevent ! n ! o ! p_ id ! x −> i f #

e n a b l e d > 2 t h e n SKIP e l s e
Managemen tDepa r tmen tRef_ reques t s ( p_id , bun ion (

enab led , < g e t _ o u t ( x ) >) )

132 )

133 [ ]

134 ManagementDepartment_op ? n ? o ! p_ id ? x : { x | x<−O, i n_b ag ( g e t _ i d ( x )

, e n a b l e d ) } −> (

135 Managemen tDepa r tmen tRef_ reques t s ( p_id , b d i f f ( enab led

, < g e t _ i d ( x ) >) )

136 )

137

138 C l i e n t M a n a g e r _ r e q u e s t s ( p_id , e n a b l e d ) =

139 Cl i en tManage r_op ? n ? o ! p_ id ? x : { x | x<−I , member ( g e t _ i d ( x ) ,

C l i e n t M a n a g e r _ I ) } −> (

140 C l i e n t M a n a g e r _ a d d e v e n t ! n ! o ! p_ id ! x −>

141 i f # e n a b l e d > 2 t h e n SKIP e l s e
142 C l i e n t M a n a g e r _ r e q u e s t s ( p_id , bun ion ( enab led , <

g e t _ o u t ( x ) >) )

143 )

144 [ ]

145 Cl i en tManage r_op ? n ? o ! p_ id ? x : { x | x<−O, i n_b ag ( g e t _ i d ( x ) ,

e n a b l e d ) } −> (

146 C l i e n t M a n a g e r _ r e q u e s t s ( p_id , b d i f f ( enab led , < g e t _ i d (

x ) >) )

147 )

148

149 LoanManage r_ reques t s ( p_id , e n a b l e d ) =

150 LoanManager_op ? n ? o ! p_ id ? x : { x | x<−I , member ( g e t _ i d ( x ) ,

LoanManager_I ) } −> (

151 LoanManager_addevent ! n ! o ! p_ id ! x −>

152 i f # e n a b l e d > 2 t h e n SKIP e l s e
153 LoanManage r_ reques t s ( p_id , bun ion ( enab led , < g e t _ o u t (

x ) >) )
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154 )

155 [ ]

156 LoanManager_op ? n ? o ! p_ id ? x : { x | x<−O, i n_b ag ( g e t _ i d ( x ) , e n a b l e d )

} −> (

157 LoanManage r_ reques t s ( p_id , b d i f f ( enab led , < g e t _ i d ( x )

>) )

158 )

159

160 s imple_ManagementDepar tment ( p_ id ) = Managemen tDepa r tmen t_s t a t e ( p_ id

) | | | Managemen tDepa r tmen t_ reques t s ( p_id , < >)

161

162 s i m p l e _ C l i e n t M a n a g e r ( p_ id ) = C l i e n t M a n a g e r _ s t a t e ( p_ id ) | | |

C l i e n t M a n a g e r _ r e q u e s t s ( p_id , < >)

163

164 simple_LoanManager ( p_ id ) = Lo an Ma nag e r _s t a t e ( p_ id ) | | |

LoanManage r_ reques t s ( p_id , < >)

165

166 s imple_ManagementDepar tmentRef ( p_ id ) =

Managemen tDepa r tmen tRe f_s t a t e ( p_ id ) | | |

Managemen tDepa r tmen tRef_ reques t s ( p_id , < >)

167

168

169 −− C o n t r o l l e r and S t a t e Machine

170 −−d a t a t y p e NEWE = E | NOEVENT

171 c h a n n e l ManagementDepar tmen t_ ineven t : ID . E

172 c h a n n e l ManagementDepartment_consumed : ID . DL

173 c h a n n e l ManagementDepar tment_haseven t : ID . Token

174 c h a n n e l ManagementDepar tmen t_ge teven t : ID . E

175

176

177 c h a n n e l C l i e n t M a n a g e r _ i n e v e n t : ID . E

178 c h a n n e l Cl ien tManager_consumed : ID . DL

179 c h a n n e l C l i e n t M a n a g e r _ h a s e v e n t : ID . Token

180 c h a n n e l C l i e n t M a n a g e r _ g e t e v e n t : ID . E

181

182 c h a n n e l LoanManager_ ineven t : ID . E

183 c h a n n e l LoanManager_consumed : ID . DL

184 c h a n n e l LoanManager_haseven t : ID . Token

185 c h a n n e l LoanManager_ge teven t : ID . E

186

187 c h a n n e l ManagementDepar tmen tRef_ ineven t : ID . E
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188 c h a n n e l ManagementDepartmentRef_consumed : ID . DL

189 c h a n n e l ManagementDepar tmentRef_haseven t : ID . Token

190 c h a n n e l ManagementDepar tmen tRef_ge teven t : ID . E

191

192 remove ( b , y ) = ( i f ( n u l l ( b ) ) t h e n

193 <>

194 e l s e i f ( head ( b ) == y ) t h e n

195 t a i l ( b )

196 e l s e
197 <head ( b ) >^ remove ( t a i l ( b ) , y )

198 )

199

200

201

202 c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id , e v e n t s , d e f f e r e d ) = i f c a r d (

e v e n t s ) > 1 or # d e f f e r e d > 0 t h e n

203 SKIP

204 e l s e
205

206

207 ( ( ManagementDepar tment_addevent ? n ? o ! i d ? e −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id , un ion ( e v e n t s , { ( n , o , id

, e ) } ) , d e f f e r e d ) −− Event A r r i v a l

208

209 []−− S t a t e Machine

210 ( c a r d ( e v e n t s ) > 0) & (

211 | ~ | ev : e v e n t s @ (

212 ManagementDepar tmen t_ ineven t ? o ! ev−> (

213 ManagementDepartment_consumed . o . TRUE −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d )−−Add

T r e a t D e f e r r e d E v e n t s l a t e r

214 [ ]

215 ManagementDepartment_consumed . o . FALSE −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d )

216 [ ]

217 ManagementDepartment_consumed . o . DEFER −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d ^<ev >)

218 )
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219 )

220 )

221 )

222

223 )

224

225 c o n t r o l l e r _ C l i e n t M a n a g e r ( id , e v e n t s , d e f f e r e d ) = i f c a r d ( e v e n t s ) > 1

or # d e f f e r e d > 0 t h e n

226 SKIP

227 e l s e
228

229

230 ( ( C l i e n t M a n a g e r _ a d d e v e n t ? n ? o ! i d ? e −>

c o n t r o l l e r _ C l i e n t M a n a g e r ( id , un ion ( e v e n t s , { ( n , o , id , e ) } ) ,

d e f f e r e d ) −− Event A r r i v a l

231

232 []−− S t a t e Machine

233 ( c a r d ( e v e n t s ) > 0) & (

234 | ~ | ev : e v e n t s @ (

235 C l i e n t M a n a g e r _ i n e v e n t ? o ! ev−> (

236 Cl ien tManager_consumed . o . TRUE −>

c o n t r o l l e r _ C l i e n t M a n a g e r ( id , d i f f ( e v e n t s , { ev

} ) , d e f f e r e d )−−Add T r e a t D e f e r r e d E v e n t s l a t e r

237 [ ]

238 Cl ien tManager_consumed . o . FALSE −>

c o n t r o l l e r _ C l i e n t M a n a g e r ( id , d i f f ( e v e n t s , { ev

} ) , d e f f e r e d )

239 [ ]

240 Cl ien tManager_consumed . o . DEFER −>

c o n t r o l l e r _ C l i e n t M a n a g e r ( id , d i f f ( e v e n t s , { ev

} ) , d e f f e r e d ^<ev >)

241 )

242 )

243 )

244 )

245

246 )

247

248 c o n t r o l l e r _ L o a n M a n a g e r ( id , e v e n t s , d e f f e r e d ) = i f c a r d ( e v e n t s ) > 1 or

# d e f f e r e d > 0 t h e n

249 SKIP
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250 e l s e
251

252

253 ( ( LoanManager_addevent ? n ? o ! i d ? e −> c o n t r o l l e r _ L o a n M a n a g e r (

id , un ion ( e v e n t s , { ( n , o , id , e ) } ) , d e f f e r e d ) −− Event A r r i v a l

254

255 []−− S t a t e Machine

256 ( c a r d ( e v e n t s ) > 0) & (

257 | ~ | ev : e v e n t s @ (

258 LoanManager_ ineven t ? o ! ev−> (

259 LoanManager_consumed . o . TRUE −>

c o n t r o l l e r _ L o a n M a n a g e r ( id , d i f f ( e v e n t s , { ev } ) ,

d e f f e r e d )−−Add T r e a t D e f e r r e d E v e n t s l a t e r

260 [ ]

261 LoanManager_consumed . o . FALSE −>

c o n t r o l l e r _ L o a n M a n a g e r ( id , d i f f ( e v e n t s , { ev } ) ,

d e f f e r e d )

262 [ ]

263 LoanManager_consumed . o . DEFER −>

c o n t r o l l e r _ L o a n M a n a g e r ( id , d i f f ( e v e n t s , { ev } ) ,

d e f f e r e d ^<ev >)

264 )

265 )

266 )

267 )

268

269 )

270

271

272 c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t R e f ( id , e v e n t s , d e f f e r e d ) = i f c a r d (

e v e n t s ) > 1 or # d e f f e r e d > 0 t h e n

273 SKIP

274 e l s e
275

276

277 ( ( ManagementDepar tmentRef_addevent ? n ? o ! i d ? e −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t R e f ( id , un ion ( e v e n t s , { ( n , o

, id , e ) } ) , d e f f e r e d ) −− Event A r r i v a l

278

279 []−− S t a t e Machine

280 ( c a r d ( e v e n t s ) > 0) & (
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281 | ~ | ev : e v e n t s @ (

282 ManagementDepar tmen tRef_ ineven t ? o ! ev−> (

283 ManagementDepartmentRef_consumed . o . TRUE −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t R e f ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d )−−Add

T r e a t D e f e r r e d E v e n t s l a t e r

284 [ ]

285 ManagementDepartmentRef_consumed . o . FALSE −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t R e f ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d )

286 [ ]

287 ManagementDepartmentRef_consumed . o . DEFER −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t R e f ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d ^<ev >)

288 )

289 )

290 )

291 )

292

293 )

294

295 bare_ManagementDepar tment ( i d ) = ( s imple_ManagementDepar tment ( i d )

[ | { | ManagementDepar tment_addevent | } | ]

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id ,{} , < >) ) \ { |

ManagementDepar tment_addevent | }

296

297 b a r e _ C l i e n t M a n a g e r ( i d ) = ( s i m p l e _ C l i e n t M a n a g e r ( i d ) [ | { |

C l i e n t M a n a g e r _ a d d e v e n t | } | ] c o n t r o l l e r _ C l i e n t M a n a g e r ( id ,{} , < >) ) \

{ | C l i e n t M a n a g e r _ a d d e v e n t | }

298

299 bare_LoanManager ( i d ) = ( s imple_LoanManager ( i d ) [ | { |

LoanManager_addevent | } | ] c o n t r o l l e r _ L o a n M a n a g e r ( id ,{} , < >) ) \ { |

LoanManager_addevent | }

300

301 bare_ManagementDepar tmentRef ( i d ) = ( s imple_ManagementDepar tmentRef (

i d ) [ | { | ManagementDepar tmentRef_addevent | } | ]

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t R e f ( id ,{} , < >) ) \ { |

ManagementDepar tmentRef_addevent | }

302

303 stm_ManagementDepartment ( i d ) = S t a t e 1 ( i d )

304
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305 S t a t e 1 ( i d ) = ManagementDepar tmen t_ ineven t ! i d ^<stm >? e −> (

306 ( g e t _ i d ( g e t _ e v e n t ( e ) ) == m a n a g e C l i e n t _ I &

ManagementDepartment_consumed ! i d ^<stm >!TRUE −>

307 Cl i en tManage r_op . g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d ! mc_I −>

Cl i en tManage r_op . g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d !mc_O −>

308 ManagementDepartment_op ! g e t _ n ( e ) ! g e t _ i d 1 ( e ) ! i d !mc_O −> S t a t e 1 (

i d ) )

309 [ ]

310 ( ( n o t ( g e t _ i d ( g e t _ e v e n t ( e ) ) == m a n a g e C l i e n t _ I ) ) &

ManagementDepartmentRef_consumed ! i d ^<stm >!FALSE −> S t a t e 1 ( i d

) )

311 )

312

313

314

315 stm_ManagementDepar tmentRef ( i d ) = S t a t e 2 ( i d )

316

317 S t a t e 2 ( i d ) = ManagementDepar tmen tRef_ ineven t ! i d ^<stm >? e −> (

318 ( g e t _ i d ( g e t _ e v e n t ( e ) ) == m a n a g e C l i e n t _ I &

ManagementDepartmentRef_consumed ! i d ^<stm >!TRUE −>

319 Cl i en tManage r_op . g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d ! mc_I −>

Cl i en tManage r_op . g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d !mc_O −>

320 ManagementDepartment_op ! g e t _ n ( e ) ! g e t _ i d 1 ( e ) ! i d !mc_O −> S t a t e 2 (

i d ) )

321 [ ]

322 ( g e t _ i d ( g e t _ e v e n t ( e ) ) == manageLoan_I &

ManagementDepartmentRef_consumed ! i d ^<stm >!TRUE −>

323 LoanManager_op . g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d ! ml_I −> LoanManager_op .

g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d ! ml_O −>

324 ManagementDepartment_op ! g e t _ n ( e ) ! g e t _ i d 1 ( e ) ! i d ! ml_O −> S t a t e 2 (

i d ) )

325 [ ]

326 ( ( n o t ( g e t _ i d ( g e t _ e v e n t ( e ) ) == m a n a g e C l i e n t _ I ) o r

327 n o t ( g e t _ i d ( g e t _ e v e n t ( e ) ) == manageLoan_I ) )

328 & ManagementDepartmentRef_consumed ! i d ^<stm >!FALSE −> S t a t e 2 ( i d )

)

329 )

330

331

332 block_ManagementDepar tment ( i d ) = ( bare_ManagementDepar tment ( i d )

333 [ { | ManagementDepar tment_ ineven t ,
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ManagementDepartment_consumed ,

334 ManagementDepartment_op | } | |

335 { | ManagementDepar tment_ ineven t ,

ManagementDepartment_consumed ,

336 Cl ien tManager_op , ManagementDepartment_op . n . x . i d .w | n :

MyNat , x : ID ,

337 w: {mc_O } | } ]

338 stm_ManagementDepartment ( i d )

339 ) \ un ion ( { | ManagementDepar tment_ ineven t ,

340 ManagementDepartment_consumed | } , { | ManagementDepartment_op . n

. x . y . z | n : MyNat , x : ID , y : ID ,

341 z : MSG, member ( g e t _ i d ( z ) , un ion ( ManagementDepartment_I ,

ManagementDepartment_O ) ) ,

342 p r e f i x ( id , x ) o r p r e f i x ( id , y ) | } )

343

344 block_ManagementDepar tmentRef ( i d ) = ( bare_ManagementDepar tmentRef (

i d )

345 [ { | ManagementDepar tmentRef_ ineven t ,

ManagementDepartmentRef_consumed ,

346 ManagementDepartment_op | } | |

347 { | ManagementDepar tmentRef_ ineven t ,

ManagementDepartmentRef_consumed ,

348 Cl ien tManager_op , LoanManager_op ,

349 ManagementDepartment_op . n . x . i d .w | n : MyNat , x : ID ,w: {mc_O ,

ml_O , ma_O } | } ]

350 stm_ManagementDepar tmentRef ( i d )

351 ) \ un ion ( { | ManagementDepar tment_ ineven t ,

352 ManagementDepartment_consumed | } , { | ManagementDepartment_op . n

. x . y . z | n : MyNat , x : ID , y : ID ,

353 z : MSG, member ( g e t _ i d ( z ) , un ion ( ManagementDepartment_I ,

ManagementDepartment_O ) ) ,

354 p r e f i x ( id , x ) o r p r e f i x ( id , y ) | } )

355

356 b l o c k _ C l i e n t M a n a g e r ( i d ) = ( b a r e _ C l i e n t M a n a g e r ( i d ) ) \ { |

C l i e n t M a n a g e r _ i n e v e n t , Cl ien tManager_consumed | }

357

358 block_LoanManager ( i d ) = ( bare_LoanManager ( i d ) ) \ { |

LoanManager_ inevent , LoanManager_consumed | }

359

360 b lock_Sys tem ( i d ) = ( block_ManagementDepar tment ( i d )

361
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362 [ { | ManagementDepartment_op , C l i en tManage r_op | } | |

363 { | C l i en tManage r_op | } ]

364

365 ( b l o c k _ C l i e n t M a n a g e r ( i d ) )

366 )

367 \ { | C l i en tManage r_op | }

368

369

370

371 b lock_Sys temRef ( i d ) =

372 ( block_ManagementDepar tmentRef ( i d )

373

374 [ { | ManagementDepartment_op ,

375 Cl ien tManager_op , LoanManager_op | } | |

376 { | Cl i en tManager_op , LoanManager_op | } ]

377

378 ( b l o c k _ C l i e n t M a n a g e r ( i d ) [ { | C l i en tManage r_op | } | |

379 { | LoanManager_op | } ] (

380 block_LoanManager ( i d ) ) )

381 )

382 \ { | C l ien tManager_op , LoanManager_op | }

383

384 c h a n n e l l oop

385

386 Loop = loop −> Loop

387

388

389 TEST = block_Sys temRef ( <bb >)

390

391

392 a s s e r t b lock_Sys tem ( <bb >) ; Loop \ { | l oop | } [ T=

393 ( b lock_Sys temRef ( <bb >) ; Loop )

Finally, the last listing corresponds to the third part of the decomposition of block
ManagementDepartment.

1 ID = {<bb > , <bb , stm >}

2

3

4 d a t a t y p e t o k e n = bb | stm

5

6



C.3. CSP MODEL OF THE REFINEMENT FOR THE DECOMPOSITION OF A BLOCK284

7

8 d a t a t y p e DL = TRUE | FALSE | DEFER

9

10 OR( a , b ) = i f ( a == TRUE) or ( b == TRUE) t h e n TRUE e l s e FALSE

11

12 AND( a , b ) = i f ( a == TRUE) and ( b == TRUE) t h e n TRUE e l s e FALSE

13

14 DL_OR( a , b ) = i f ( a == TRUE or a == FALSE) and ( b == TRUE or b ==

FALSE)

15 t h e n OR( a , b )

16 e l s e (

17 i f ( a == TRUE or b == TRUE)

18 t h e n TRUE

19 e l s e DEFER

20 )

21

22 MyInt = {0 ,1 ,2}

23 MyNat = {0}

24

25 S e t I n t = S e t ( MyInt ) −−{{0} ,{1} ,{2} ,{0 ,1} ,{1 ,2} ,{0 ,2} ,{0 ,1 ,2} ,{}}−−
S e t ( MyInt )

26

27 d a t a t y p e MSG = mc_I | mc_O | ml_I | ml_O | ma_I | ma_O | NOEVENT

28 nametype E = ( MyNat , ID , ID ,MSG)

29

30 d a t a t y p e Token = m a n a g e C l i e n t _ I | manageCl ient_O | manageLoan_I |

manageLoan_O | manageAccount_I | manageAccount_O | n o e v e n t

31

32 g e t _ i d ( mc_I ) = m a n a g e C l i e n t _ I

33 g e t _ i d (mc_O) = manageCl ient_O

34 g e t _ i d ( ml_I ) = manageLoan_I

35 g e t _ i d ( ml_O ) = manageLoan_O

36 g e t _ i d ( ma_I ) = manageAccount_I

37 g e t _ i d (ma_O) = manageAccount_O

38

39

40 g e t _ i d (NOEVENT) = n o e v e n t

41

42 g e t _ o u t ( mc_I ) = manageCl ient_O

43 g e t _ o u t ( ml_I ) = manageLoan_O

44 g e t _ o u t ( ma_I ) = manageAccount_O
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45

46

47

48 g e t _ e v e n t ( ( _ , _ , _ , e ) ) =e

49 g e t _ n ( ( n , _ , _ , _ ) ) =n

50 g e t _ i d 1 ( ( _ , id , _ , _ ) ) = i d

51 g e t _ i d 2 ( ( _ , _ , id , _ ) ) = i d

52

53 −−s u b t y p e S = i n i t

54 s u b t y p e S = NOEVENT

55

56 s u b t y p e OPS = mc_I | mc_O | ml_I | ml_O | ma_I | ma_O

57

58

59 s u b t y p e I = mc_I | ml_I | ma_I

60

61 s u b t y p e O = mc_O | ml_O | ma_O

62

63

64 nametype Bag = Seq ( Token )

65 empty_bag = <>

66 in _ba g ( t , < >) = f a l s e

67 in _ba g ( t , < x>^ l ) = i f t == x t h e n t r u e e l s e i n _b ag ( t , l )

68 bun ion ( b1 , b2 ) = b1 ^ b2

69 b d i f f ( b1 , < >) = b1

70 b d i f f ( b1 , < x>^ l ) = b d i f f ( b d i f f _ a u x ( b1 , x ) , l )

71 b d i f f _ a u x ( < > , x ) = <>

72 b d i f f _ a u x ( <y>^ l , x ) = i f x == y t h e n l e l s e <y>^ b d i f f _ a u x ( l , x )

73

74 p r e f i x ( x , y ) = i f #x > #y t h e n f a l s e

75 e l s e c h e c k P r e f i x ( x , y )

76

77 c h e c k P r e f i x ( x , y ) = ( i f head ( x ) != head ( y ) t h e n f a l s e

78 e l s e i f t a i l ( x ) == <> and t a i l ( y ) != <>

79 t h e n t r u e

80 e l s e i f t a i l ( x ) == <> and t a i l ( y ) == <>

81 t h e n f a l s e

82 e l s e c h e c k P r e f i x ( t a i l ( x ) , t a i l ( y ) ) )

83

84 r e v e r s e ( < >) = <>

85 r e v e r s e ( <x>^ s ) = r e v e r s e ( s ) ^<x>
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86

87 drop_two ( x ) = r e v e r s e ( t a i l ( t a i l ( r e v e r s e ( x ) ) ) )

88

89 ManagementDepar tment_I = { m a na g e Cl i e n t _ I , manageLoan_I ,

manageAccount_I }

90 ManagementDepartment_O = { manageClient_O , manageLoan_O ,

manageAccount_O }

91

92 C l i e n t M a n a g e r _ I = { m a n a g e C l i e n t _ I }

93 Cl ien tManager_O = { manageCl ient_O }

94

95 LoanManager_I = { manageLoan_I }

96 LoanManager_O = {manageLoan_O}

97

98 AccountManager_I = { manageAccount_I }

99 AccountManager_O = { manageAccount_O }

100

101

102 c h a n n e l ManagementDepartment_op : MyNat . ID . ID . OPS

103 c h a n n e l ManagementDepartment_OP : ID . ID . OPS

104

105 c h a n n e l C l i en tManage r_op : MyNat . ID . ID . OPS

106 c h a n n e l Cl ientManager_OP : ID . ID . OPS

107

108 c h a n n e l LoanManager_op : MyNat . ID . ID . OPS

109 c h a n n e l LoanManager_OP : ID . ID . OPS

110

111 c h a n n e l AccountManager_op : MyNat . ID . ID . OPS

112 c h a n n e l AccountManager_OP : ID . ID . OPS

113

114 c h a n n e l ManagementDepar tment_addevent : MyNat . ID . ID .MSG

115 c h a n n e l C l i e n t M a n a g e r _ a d d e v e n t : MyNat . ID . ID .MSG

116 c h a n n e l LoanManager_addevent : MyNat . ID . ID .MSG

117 c h a n n e l AccountManager_addeven t : MyNat . ID . ID .MSG

118 c h a n n e l ManagementDepar tmentRef_addevent : MyNat . ID . ID .MSG

119

120

121 Managemen tDepa r tmen t_s t a t e ( i d ) = SKIP

122 C l i e n t M a n a g e r _ s t a t e ( i d ) = SKIP

123 Lo an Man ag e r _s t a t e ( i d ) = SKIP

124 A c c o u n t M a n a g e r _ s t a t e ( i d ) = SKIP
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125 Managemen tDepa r tmen tRef_s t a t e ( i d ) = SKIP

126

127 Managemen tDepa r tmen t_ reques t s ( p_id , e n a b l e d ) =

128 ManagementDepartment_op ? n ? o ! p_ id ? x : { x | x<−I , member ( g e t _ i d ( x )

, ManagementDepar tment_I ) } −> (

129 ManagementDepar tment_addevent ! n ! o ! p_ id ! x −> i f #

e n a b l e d > 2 t h e n SKIP e l s e
Managemen tDepa r tmen t_ reques t s ( p_id , bun ion (

enab led , < g e t _ o u t ( x ) >) )

130 )

131 [ ]

132 ManagementDepartment_op ? n ? o ! p_ id ? x : { x | x<−O, i n_b ag ( g e t _ i d ( x )

, e n a b l e d ) } −> (

133 Managemen tDepa r tmen t_ reques t s ( p_id , b d i f f ( enab led , <

g e t _ i d ( x ) >) )

134 )

135

136 Managemen tDepa r tmen tRef_ reques t s ( p_id , e n a b l e d ) =

137 ManagementDepartment_op ? n ? o ! p_ id ? x : { x | x<−I , member ( g e t _ i d ( x )

, ManagementDepar tment_I ) } −> (

138 ManagementDepar tmentRef_addevent ! n ! o ! p_ id ! x −> i f #

e n a b l e d > 2 t h e n SKIP e l s e
Managemen tDepa r tmen tRef_ reques t s ( p_id , bun ion (

enab led , < g e t _ o u t ( x ) >) )

139 )

140 [ ]

141 ManagementDepartment_op ? n ? o ! p_ id ? x : { x | x<−O, i n_b ag ( g e t _ i d ( x )

, e n a b l e d ) } −> (

142 Managemen tDepa r tmen tRef_ reques t s ( p_id , b d i f f ( enab led

, < g e t _ i d ( x ) >) )

143 )

144

145 C l i e n t M a n a g e r _ r e q u e s t s ( p_id , e n a b l e d ) =

146 Cl i en tManage r_op ? n ? o ! p_ id ? x : { x | x<−I , member ( g e t _ i d ( x ) ,

C l i e n t M a n a g e r _ I ) } −> (

147 C l i e n t M a n a g e r _ a d d e v e n t ! n ! o ! p_ id ! x −>

148 i f # e n a b l e d > 2 t h e n SKIP e l s e
149 C l i e n t M a n a g e r _ r e q u e s t s ( p_id , bun ion ( enab led , <

g e t _ o u t ( x ) >) )

150 )

151 [ ]
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152 Cl i en tManage r_op ? n ? o ! p_ id ? x : { x | x<−O, i n_b ag ( g e t _ i d ( x ) ,

e n a b l e d ) } −> (

153 C l i e n t M a n a g e r _ r e q u e s t s ( p_id , b d i f f ( enab led , < g e t _ i d (

x ) >) )

154 )

155

156 LoanManage r_ reques t s ( p_id , e n a b l e d ) =

157 LoanManager_op ? n ? o ! p_ id ? x : { x | x<−I , member ( g e t _ i d ( x ) ,

LoanManager_I ) } −> (

158 LoanManager_addevent ! n ! o ! p_ id ! x −>

159 i f # e n a b l e d > 2 t h e n SKIP e l s e
160 LoanManage r_ reques t s ( p_id , bun ion ( enab led , < g e t _ o u t (

x ) >) )

161 )

162 [ ]

163 LoanManager_op ? n ? o ! p_ id ? x : { x | x<−O, i n_b ag ( g e t _ i d ( x ) , e n a b l e d )

} −> (

164 LoanManage r_ reques t s ( p_id , b d i f f ( enab led , < g e t _ i d ( x )

>) )

165 )

166

167 A c c o u n t M a n a g e r _ r e q u e s t s ( p_id , e n a b l e d ) =

168 AccountManager_op ? n ? o ! p_ id ? x : { x | x<−I , member ( g e t _ i d ( x ) ,

AccountManager_I ) } −> (

169 AccountManager_addeven t ! n ! o ! p_ id ! x −>

170 i f # e n a b l e d > 2 t h e n SKIP e l s e
171 A c c o u n t M a n a g e r _ r e q u e s t s ( p_id , bun ion ( enab led , <

g e t _ o u t ( x ) >) )

172 )

173 [ ]

174 AccountManager_op ? n ? o ! p_ id ? x : { x | x<−O, i n_b ag ( g e t _ i d ( x ) ,

e n a b l e d ) } −> (

175 A c c o u n t M a n a g e r _ r e q u e s t s ( p_id , b d i f f ( enab led , < g e t _ i d

( x ) >) )

176 )

177

178 s imple_ManagementDepar tment ( p_ id ) = Managemen tDepa r tmen t_s t a t e ( p_ id

) | | | Managemen tDepa r tmen t_ reques t s ( p_id , < >)

179

180 s i m p l e _ C l i e n t M a n a g e r ( p_ id ) = C l i e n t M a n a g e r _ s t a t e ( p_ id ) | | |

C l i e n t M a n a g e r _ r e q u e s t s ( p_id , < >)
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181

182 simple_LoanManager ( p_ id ) = Lo an Ma nag e r _s t a t e ( p_ id ) | | |

LoanManage r_ reques t s ( p_id , < >)

183

184 s imple_AccountManager ( p_ id ) = A c c o u n t M a n a g e r _ s t a t e ( p_ id ) | | |

A c c o u n t M a n a g e r _ r e q u e s t s ( p_id , < >)

185

186 s imple_ManagementDepar tmentRef ( p_ id ) =

Managemen tDepa r tmen tRe f_s t a t e ( p_ id ) | | |

Managemen tDepa r tmen tRef_ reques t s ( p_id , < >)

187

188

189 −− C o n t r o l l e r and S t a t e Machine

190 −−d a t a t y p e NEWE = E | NOEVENT

191 c h a n n e l ManagementDepar tmen t_ ineven t : ID . E

192 c h a n n e l ManagementDepartment_consumed : ID . DL

193 c h a n n e l ManagementDepar tment_haseven t : ID . Token

194 c h a n n e l ManagementDepar tmen t_ge teven t : ID . E

195

196

197 c h a n n e l C l i e n t M a n a g e r _ i n e v e n t : ID . E

198 c h a n n e l Cl ien tManager_consumed : ID . DL

199 c h a n n e l C l i e n t M a n a g e r _ h a s e v e n t : ID . Token

200 c h a n n e l C l i e n t M a n a g e r _ g e t e v e n t : ID . E

201

202 c h a n n e l LoanManager_ ineven t : ID . E

203 c h a n n e l LoanManager_consumed : ID . DL

204 c h a n n e l LoanManager_haseven t : ID . Token

205 c h a n n e l LoanManager_ge teven t : ID . E

206

207 c h a n n e l Accoun tManage r_ ineven t : ID . E

208 c h a n n e l AccountManager_consumed : ID . DL

209 c h a n n e l Accoun tManager_haseven t : ID . Token

210 c h a n n e l Accoun tManage r_ge t even t : ID . E

211

212 c h a n n e l ManagementDepar tmen tRef_ ineven t : ID . E

213 c h a n n e l ManagementDepartmentRef_consumed : ID . DL

214 c h a n n e l ManagementDepar tmentRef_haseven t : ID . Token

215 c h a n n e l ManagementDepar tmen tRef_ge teven t : ID . E

216

217 remove ( b , y ) = ( i f ( n u l l ( b ) ) t h e n
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218 <>

219 e l s e i f ( head ( b ) == y ) t h e n

220 t a i l ( b )

221 e l s e
222 <head ( b ) >^ remove ( t a i l ( b ) , y )

223 )

224

225

226

227 c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id , e v e n t s , d e f f e r e d ) = i f c a r d (

e v e n t s ) > 1 or # d e f f e r e d > 0 t h e n

228 SKIP

229 e l s e
230

231

232 ( ( ManagementDepar tment_addevent ? n ? o ! i d ? e −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id , un ion ( e v e n t s , { ( n , o , id

, e ) } ) , d e f f e r e d ) −− Event A r r i v a l

233

234 []−− S t a t e Machine

235 ( c a r d ( e v e n t s ) > 0) & (

236 | ~ | ev : e v e n t s @ (

237 ManagementDepar tmen t_ ineven t ? o ! ev−> (

238 ManagementDepartment_consumed . o . TRUE −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d )−−Add

T r e a t D e f e r r e d E v e n t s l a t e r

239 [ ]

240 ManagementDepartment_consumed . o . FALSE −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d )

241 [ ]

242 ManagementDepartment_consumed . o . DEFER −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d ^<ev >)

243 )

244 )

245 )

246 )

247

248 )
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249

250 c o n t r o l l e r _ C l i e n t M a n a g e r ( id , e v e n t s , d e f f e r e d ) = i f c a r d ( e v e n t s ) > 1

or # d e f f e r e d > 0 t h e n

251 SKIP

252 e l s e
253

254

255 ( ( C l i e n t M a n a g e r _ a d d e v e n t ? n ? o ! i d ? e −>

c o n t r o l l e r _ C l i e n t M a n a g e r ( id , un ion ( e v e n t s , { ( n , o , id , e ) } ) ,

d e f f e r e d ) −− Event A r r i v a l

256

257 []−− S t a t e Machine

258 ( c a r d ( e v e n t s ) > 0) & (

259 | ~ | ev : e v e n t s @ (

260 C l i e n t M a n a g e r _ i n e v e n t ? o ! ev−> (

261 Cl ien tManager_consumed . o . TRUE −>

c o n t r o l l e r _ C l i e n t M a n a g e r ( id , d i f f ( e v e n t s , { ev

} ) , d e f f e r e d )−−Add T r e a t D e f e r r e d E v e n t s l a t e r

262 [ ]

263 Cl ien tManager_consumed . o . FALSE −>

c o n t r o l l e r _ C l i e n t M a n a g e r ( id , d i f f ( e v e n t s , { ev

} ) , d e f f e r e d )

264 [ ]

265 Cl ien tManager_consumed . o . DEFER −>

c o n t r o l l e r _ C l i e n t M a n a g e r ( id , d i f f ( e v e n t s , { ev

} ) , d e f f e r e d ^<ev >)

266 )

267 )

268 )

269 )

270

271 )

272

273 c o n t r o l l e r _ L o a n M a n a g e r ( id , e v e n t s , d e f f e r e d ) = i f c a r d ( e v e n t s ) > 1 or

# d e f f e r e d > 0 t h e n

274 SKIP

275 e l s e
276

277

278 ( ( LoanManager_addevent ? n ? o ! i d ? e −> c o n t r o l l e r _ L o a n M a n a g e r (

id , un ion ( e v e n t s , { ( n , o , id , e ) } ) , d e f f e r e d ) −− Event A r r i v a l
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279

280 []−− S t a t e Machine

281 ( c a r d ( e v e n t s ) > 0) & (

282 | ~ | ev : e v e n t s @ (

283 LoanManager_ ineven t ? o ! ev−> (

284 LoanManager_consumed . o . TRUE −>

c o n t r o l l e r _ L o a n M a n a g e r ( id , d i f f ( e v e n t s , { ev } ) ,

d e f f e r e d )−−Add T r e a t D e f e r r e d E v e n t s l a t e r

285 [ ]

286 LoanManager_consumed . o . FALSE −>

c o n t r o l l e r _ L o a n M a n a g e r ( id , d i f f ( e v e n t s , { ev } ) ,

d e f f e r e d )

287 [ ]

288 LoanManager_consumed . o . DEFER −>

c o n t r o l l e r _ L o a n M a n a g e r ( id , d i f f ( e v e n t s , { ev } ) ,

d e f f e r e d ^<ev >)

289 )

290 )

291 )

292 )

293

294 )

295

296 c o n t r o l l e r _ A c c o u n t M a n a g e r ( id , e v e n t s , d e f f e r e d ) = i f c a r d ( e v e n t s ) > 1

or # d e f f e r e d > 0 t h e n

297 SKIP

298 e l s e
299

300

301 ( ( AccountManager_addeven t ? n ? o ! i d ? e −>

c o n t r o l l e r _ A c c o u n t M a n a g e r ( id , un ion ( e v e n t s , { ( n , o , id , e ) } ) ,

d e f f e r e d ) −− Event A r r i v a l

302

303 []−− S t a t e Machine

304 ( c a r d ( e v e n t s ) > 0) & (

305 | ~ | ev : e v e n t s @ (

306 Accoun tManage r_ ineven t ? o ! ev−> (

307 AccountManager_consumed . o . TRUE −>

c o n t r o l l e r _ A c c o u n t M a n a g e r ( id , d i f f ( e v e n t s , { ev

} ) , d e f f e r e d )−−Add T r e a t D e f e r r e d E v e n t s l a t e r

308 [ ]
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309 AccountManager_consumed . o . FALSE −>

c o n t r o l l e r _ A c c o u n t M a n a g e r ( id , d i f f ( e v e n t s , { ev

} ) , d e f f e r e d )

310 [ ]

311 AccountManager_consumed . o . DEFER −>

c o n t r o l l e r _ A c c o u n t M a n a g e r ( id , d i f f ( e v e n t s , { ev

} ) , d e f f e r e d ^<ev >)

312 )

313 )

314 )

315 )

316

317 )

318

319 c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t R e f ( id , e v e n t s , d e f f e r e d ) = i f c a r d (

e v e n t s ) > 1 or # d e f f e r e d > 0 t h e n

320 SKIP

321 e l s e
322

323

324 ( ( ManagementDepar tmentRef_addevent ? n ? o ! i d ? e −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t R e f ( id , un ion ( e v e n t s , { ( n , o

, id , e ) } ) , d e f f e r e d ) −− Event A r r i v a l

325

326 []−− S t a t e Machine

327 ( c a r d ( e v e n t s ) > 0) & (

328 | ~ | ev : e v e n t s @ (

329 ManagementDepar tmen tRef_ ineven t ? o ! ev−> (

330 ManagementDepartmentRef_consumed . o . TRUE −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t R e f ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d )−−Add

T r e a t D e f e r r e d E v e n t s l a t e r

331 [ ]

332 ManagementDepartmentRef_consumed . o . FALSE −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t R e f ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d )

333 [ ]

334 ManagementDepartmentRef_consumed . o . DEFER −>

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t R e f ( id , d i f f (

e v e n t s , { ev } ) , d e f f e r e d ^<ev >)

335 )
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336 )

337 )

338 )

339

340 )

341

342 bare_ManagementDepar tment ( i d ) = ( s imple_ManagementDepar tment ( i d )

[ | { | ManagementDepar tment_addevent | } | ]

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t ( id ,{} , < >) ) \ { |

ManagementDepar tment_addevent | }

343

344 b a r e _ C l i e n t M a n a g e r ( i d ) = ( s i m p l e _ C l i e n t M a n a g e r ( i d ) [ | { |

C l i e n t M a n a g e r _ a d d e v e n t | } | ] c o n t r o l l e r _ C l i e n t M a n a g e r ( id ,{} , < >) ) \

{ | C l i e n t M a n a g e r _ a d d e v e n t | }

345

346 bare_LoanManager ( i d ) = ( s imple_LoanManager ( i d ) [ | { |

LoanManager_addevent | } | ] c o n t r o l l e r _ L o a n M a n a g e r ( id ,{} , < >) ) \ { |

LoanManager_addevent | }

347

348 bare_AccountManager ( i d ) = ( s imple_AccountManager ( i d ) [ | { |

AccountManager_addeven t | } | ] c o n t r o l l e r _ A c c o u n t M a n a g e r ( id ,{} , < >) )

\ { | AccountManager_addeven t | }

349

350 bare_ManagementDepar tmentRef ( i d ) = ( s imple_ManagementDepar tmentRef (

i d ) [ | { | ManagementDepar tmentRef_addevent | } | ]

c o n t r o l l e r _ M a n a g e m e n t D e p a r t m e n t R e f ( id ,{} , < >) ) \ { |

ManagementDepar tmentRef_addevent | }

351

352

353 stm_ManagementDepartment ( i d ) = S t a t e 2 ( i d )

354

355 S t a t e 2 ( i d ) = ManagementDepar tmen t_ ineven t ! i d ^<stm >? e −> (

356 ( g e t _ i d ( g e t _ e v e n t ( e ) ) == m a n a g e C l i e n t _ I &

ManagementDepartment_consumed ! i d ^<stm >!TRUE −>

357 Cl i en tManage r_op . g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d ! mc_I −>

Cl i en tManage r_op . g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d !mc_O −>

358 ManagementDepartment_op ! g e t _ n ( e ) ! g e t _ i d 1 ( e ) ! i d !mc_O −> S t a t e 2 (

i d ) )

359 [ ]

360 ( g e t _ i d ( g e t _ e v e n t ( e ) ) == manageLoan_I &

ManagementDepartment_consumed ! i d ^<stm >!TRUE −>
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361 LoanManager_op . g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d ! ml_I −> LoanManager_op .

g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d ! ml_O −>

362 ManagementDepartment_op ! g e t _ n ( e ) ! g e t _ i d 1 ( e ) ! i d ! ml_O −> S t a t e 2 (

i d ) )

363 [ ]

364 ( ( n o t ( g e t _ i d ( g e t _ e v e n t ( e ) ) == m a n a g e C l i e n t _ I ) o r

365 n o t ( g e t _ i d ( g e t _ e v e n t ( e ) ) == manageLoan_I ) )

366 & ManagementDepartment_consumed ! i d ^<stm >!FALSE −> S t a t e 2 ( i d ) )

367 )

368

369

370

371

372 stm_ManagementDepar tmentRef ( i d ) = S t a t e ( i d )

373

374 S t a t e ( i d ) = ManagementDepar tmen tRef_ ineven t ! i d ^<stm >? e −> (

375 ( g e t _ i d ( g e t _ e v e n t ( e ) ) == m a n a g e C l i e n t _ I &

ManagementDepartmentRef_consumed ! i d ^<stm >!TRUE −>

376 Cl i en tManage r_op . g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d ! mc_I −>

Cl i en tManage r_op . g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d !mc_O −>

377 ManagementDepartment_op ! g e t _ n ( e ) ! g e t _ i d 1 ( e ) ! i d !mc_O −> S t a t e (

i d ) )

378 [ ]

379 ( g e t _ i d ( g e t _ e v e n t ( e ) ) == manageLoan_I &

ManagementDepartmentRef_consumed ! i d ^<stm >!TRUE −>

380 LoanManager_op . g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d ! ml_I −> LoanManager_op .

g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d ! ml_O −>

381 ManagementDepartment_op ! g e t _ n ( e ) ! g e t _ i d 1 ( e ) ! i d ! ml_O −> S t a t e ( i d

) )

382 [ ]

383 ( g e t _ i d ( g e t _ e v e n t ( e ) ) == manageAccount_I &

ManagementDepartmentRef_consumed ! i d ^<stm >!TRUE −>

384 AccountManager_op . g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d ! ma_I −>

AccountManager_op . g e t _ n ( e ) . g e t _ i d 1 ( e ) . i d !ma_O −>

385 ManagementDepartment_op ! g e t _ n ( e ) ! g e t _ i d 1 ( e ) ! i d !ma_O −> S t a t e ( i d

) )

386 [ ]

387 ( ( n o t ( g e t _ i d ( g e t _ e v e n t ( e ) ) == m a n a g e C l i e n t _ I ) o r n o t ( g e t _ i d (

g e t _ e v e n t ( e ) ) == manageLoan_I )

388 or n o t ( g e t _ i d ( g e t _ e v e n t ( e ) ) == manageAccount_I ) ) &

ManagementDepartmentRef_consumed ! i d ^<stm >!FALSE −> S t a t e ( i d )
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)

389 )

390

391

392 block_ManagementDepar tment ( i d ) = ( bare_ManagementDepar tment ( i d )

393 [ { | ManagementDepar tment_ ineven t ,

ManagementDepartment_consumed ,

394 ManagementDepartment_op | } | |

395 { | ManagementDepar tment_ ineven t ,

ManagementDepartment_consumed ,

396 Cl ien tManager_op , LoanManager_op ,

397 ManagementDepartment_op . n . x . i d .w | n : MyNat , x : ID ,w: {mc_O ,

ml_O } | } ]

398 stm_ManagementDepartment ( i d )

399 ) \ un ion ( { | ManagementDepar tment_ ineven t ,

400 ManagementDepartment_consumed | } , { | ManagementDepartment_op . n

. x . y . z | n : MyNat , x : ID , y : ID ,

401 z : MSG, member ( g e t _ i d ( z ) , un ion ( ManagementDepartment_I ,

ManagementDepartment_O ) ) ,

402 p r e f i x ( id , x ) o r p r e f i x ( id , y ) | } )

403

404 block_ManagementDepar tmentRef ( i d ) = ( bare_ManagementDepar tmentRef (

i d )

405 [ { | ManagementDepar tmentRef_ ineven t ,

ManagementDepartmentRef_consumed ,

406 ManagementDepartment_op | } | |

407 { | ManagementDepar tmentRef_ ineven t ,

ManagementDepartmentRef_consumed ,

408 Cl ien tManager_op , LoanManager_op , AccountManager_op ,

409 ManagementDepartment_op . n . x . i d .w | n : MyNat , x : ID ,w: {mc_O ,

ml_O , ma_O } | } ]

410 stm_ManagementDepar tmentRef ( i d ) ) \ un ion ( { |

ManagementDepar tment_ ineven t ,

411 ManagementDepartment_consumed | } , { | ManagementDepartment_op . n

. x . y . z | n : MyNat , x : ID , y : ID ,

412 z : MSG, member ( g e t _ i d ( z ) , un ion ( ManagementDepartment_I ,

ManagementDepartment_O ) ) ,

413 p r e f i x ( id , x ) o r p r e f i x ( id , y ) | } )

414

415 b l o c k _ C l i e n t M a n a g e r ( i d ) = ( b a r e _ C l i e n t M a n a g e r ( i d ) ) \ { |

C l i e n t M a n a g e r _ i n e v e n t , Cl ien tManager_consumed | }
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416

417 block_LoanManager ( i d ) = ( bare_LoanManager ( i d ) ) \ { |

LoanManager_ inevent , LoanManager_consumed | }

418

419 block_AccountManager ( i d ) = ( bare_AccountManager ( i d ) ) \ { |

Accoun tManager_ ineven t , AccountManager_consumed | }

420

421 b lock_Sys tem ( i d ) = ( block_ManagementDepar tment ( i d )

422

423 [ { | ManagementDepartment_op , Cl ien tManager_op , LoanManager_op

| } | |

424 { | Cl i en tManager_op , LoanManager_op | } ]

425

426 ( b l o c k _ C l i e n t M a n a g e r ( i d ) [ { | C l i en tManage r_op | } | |

427 { | LoanManager_op | } ] ( block_LoanManager ( i d ) ) )

428 )

429 \ { | C l ien tManager_op , LoanManager_op | }

430

431

432

433 b lock_Sys temRef ( i d ) =

434 ( block_ManagementDepar tmentRef ( i d )

435

436 [ { | ManagementDepartment_op ,

437 Cl ien tManager_op , LoanManager_op , AccountManager_op | } | |

438 { | Cl i en tManager_op , LoanManager_op , AccountManager_op | } ]

439

440 ( b l o c k _ C l i e n t M a n a g e r ( i d ) [ { | C l i en tManage r_op | } | |

441 { | LoanManager_op , AccountManager_op | } ] (

442 block_LoanManager ( i d ) [ { | LoanManager_op | } | |

443 { | AccountManager_op | } ] b lock_AccountManager ( i d ) ) )

444 )

445 \ { | C l ien tManager_op , LoanManager_op , AccountManager_op | }

446

447 c h a n n e l l oop

448

449 Loop = loop −> Loop

450

451

452 TEST = block_Sys temRef ( <bb >)

453
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454

455 a s s e r t b lock_Sys tem ( <bb >) ; Loop \ { | l oop | } [ T=

456 ( b lock_Sys temRef ( <bb >) ; Loop )
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