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Resumo

Analise estatistica de dados de tempo de vida é um importante tépico em engenharia,
biomedicina, ciéncias sociais, dentre outras 4reas. Existe uma clara necessidade de se estender
formas das cldssicas distribui¢des para obter distribui¢cdes mais flexiveis com melhores ajustes.
Neste trabalho, estudamos e propomos novas distribui¢des e novas classes de istribui¢des
continuas. NOs apresentamos o trabalho em trés partes independentes. Na primeira, nés
estudamos com alguns detalhes um modelo de tempo de vida da classe dos modelos beta
generalizados proposto por Eugene; Lee; Famoye (2002). A nova distribuigdo é denominada
de beta Nadarajah-Haghighi, a qual pode ser usada para modelar dados de sobrevivéncia.
Sua fungdo de taxa de falha é bastante flexivel podendo ser de diversas formas dependendo
dos seus parametros. O modelo proposto inclui como casos especiais muitas importantes dis-
tribui¢oes discutidas na literatura, tais como as distribui¢cdes exponencial, exponential gener-
alizada (GUPTA; KUNDU, 1999), exponencial extendida (NADARAJAH; HAGHIGHI, 2011) e
a tipo exponencial (LEMONTE, 2013). N6s fornecemos um tratamento matematico abrangente
da nova distribui¢do e obtemos explicitas expressdes para os momentos, fungdes geratriz de
momentos e quantilica, momentos incompletos, estatisticas de ordem e entropias. O método
de maxima verossimilhanca é usado para estimar os parametros do modelo e a matriz de
informacao observada é derivada. N6s ajustamos o modelo proposto para um conjunto de da-
dos reais para provar a empiricamente sua flexibilidade e potencialidade. Na segunda parte,
nds estudamos as propriedades matematicas gerais de um novo gerador de distribuigdes con-
tinuas com trés parametros de forma extras chamada de familia de distribui¢cdes Marshal-
Olkin exponencializada. Nés apresentamos alguns modelos especiais da nova classe e algu-
mas das suas propriedades mateméticas incluindo momentos e func¢do geratriz de momentos.
O método de maxima verossimilhanga é utilizado para estimagao dos parametros do modelo.
Nos ilustramos a utilidade da nova distribuicdo por meio de duas aplica¢des a conjuntos de
dados reais. Na terceira parte, nds propomos outra nova classe distribui¢des baseada na dis-
tribui¢do introduzida por Nadarajah e Haghighi(2011). N6s estudamos algumas propriedades
matematicas dessa nova classe denominada Nadarajah-Haghighi-G (NH-G) familia de dis-
tribui¢des. Alguns modelos especiais sdo apresentados e obtemos explicitas expressdes para a
fungdo quantilia, momentos ordindrios e incompletos, funcao geratriz e estatistica de ordem.
A estimacao dos parametros do modelo é explorada por maxima verossimilhanca e nés ilus-
tramos a flexibilidade da nova familia com duas aplicagdes a dados reais.

Palavras-chave: Distribui¢ao Marshall-Olkin. Distribuigdo beta. Distribui¢do Nadarajah-Haghighi.
Distribui¢des generalizadas. Tempo de vida. Estimagdo por maxima verossimilhanca. Anélise

de sobrevivéncia.



Abstract

Statistical analysis of lifetime data is an important topic in engineering, biomedical, social sci-
ences and others areas. There is a clear need for extended forms of the classical distributions
to obtain more flexible distributions with better fits. In this work, we study and propose new
distributions and new classes of continuous distributions. We present the work in three inde-
pendents parts. In the first one, we study with some details a lifetime model of the beta gen-
erated class proposed by Eugene; Lee; Famoye (2002). The new distribution is called the beta
Nadarajah-Haghighi distribution, which can be used to model survival data. Its failure rate
function is quite flexible and takes several forms depending on its parameters. The proposed
model includes as special models several important distributions discussed in the literature,
such as the exponential, generalized exponential (GUPTA; KUNDU, 1999), extended exponen-
tial NADARAJAH; HAGHIGHI, 2011) and exponential-type (LEMONTE, 2013) distributions.
We provide a comprehensive mathematical treatment of the new distribution and obtain ex-
plicit expressions for the moments, generating and quantile functions, incomplete moments,
order statistics and entropies. The method of maximum likelihood is used for estimating the
model parameters and the observed information matrix is derived. We fit the proposed model
to a real data set to prove empirically its flexibility and potentiality. In the second part, we
study general mathematical properties of a new generator of continuous distributions with
three extra shape parameters called the exponentiated Marshal-Olkin family. We present some
special models of the new class and some of its mathematical properties including moments
and generating function. The method of maximum likelihood is used for estimating the model
parameters. We illustrate the usefulness of the new distributions by means of two applications
to real data sets. In the third part, we propose another new class of distributions based on
the distribution introduced by Nadarajah and Haghighi (2011). We study some mathemati-
cal properties of this new class called Nadarajah-Haghighi-G (NH-G) family of distributions.
Some special models are presented and we obtain explicit expressions for the quantile function,
ordinary and incomplete moments, generating function and order statistics. The estimation of
the model parameters is explored by maximum likelihood and we illustrate the flexibility of
the new family with two applications to real data.

Keywords: Marshall-Olkin distribution. Beta distribution. Nadarajah-Haghighi distribution.

Generalized distribution. Lifetime. Maximum likelihood estimation. Survival analysis.
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Chapter 1

Introduction

There has been an increased interest in developing of new classes of distributions by intro-
ducing one or more additional shape parameter(s) to the baseline distribution. This parame-
ter(s) induction have attracted the statisticians, mathematicians, scientists, engineers, econo-
mists, actuaries, demographers and other applied researchers to find more flexible distribu-
tions to obtain best fits.

There exists many generalized classes of distributions such as exponentiated family (EF)
of distributions (GUPTA; GUPTA; GUPTA, 1998), beta-generated (Beta-G) family (EUGENE;
LEE; FAMOYE, 2002), Kumaraswamy generalized (Kw-G) family (CORDEIRO; DE CASTRO,
2011), exponentiated generalized (Exp-G) family (CORDEIRO; ORTEGA; CUNHA, 2013), gam-
ma generated (GG)family (ZOGRAFOS; BALAKRISHNAN, 2009) and (RISTIC; BALAKRISH-
NAN, 2012) and T-X family (ALZAATREH; LEE; FAMOYE, 2013). These classes or families of
distributions have received a great deal of attention in recent years. Below, we show a brief
review of major new classes of distributions proposed recently.

For example, if G(x) is the cumulative distribution function (cdf) of the baseline model,
then an EF of distributions is defined by taking the ath power of G(x) as

F(x) = G(x)* (1.1)
where a > 0 is a positive real parameter. The density corresponding to (1.1) can be written as

f(x) = ag(x)G(x)""!

where g(x) = dG(x)/dx denotes the probability density function (pdf) of a baseline (or parent)
distribution.

Now, considering G(x) the baseline cdf depending on a certain parameter vector. The Beta-
G family introduced by Eugene; Lee; Famoye (2002) is defined by the cdf and pdf

1

F(x) = O g gy — b
0= gam h ETOT = T (),

and
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respectively, where a > 0 and b > 0 are two additional shape parameters, which control skew-
ness through the relative tail weights, I, (a,b) = By(a,b)/B(a, b) is the incomplete beta function
ratio, By (a,b) = [J t*~1(1—t)"~1dtis the incomplete beta function, B(a,b) = T'(a)T'(b)/T(a + b)
is the beta function and F( )1s the gamma function.

In turn, for a baseline random variable with cdf G(x) and pdf g(x), the Kw-G class of
distributions (CORDEIRO; DE CASTRO, 2011) is denoted by its cdf and pdf as

F(x)=1-[1-G(x))%x>0
and

f(x) = abg(x)G(x)" 1= G(x)"" x>0,
respectively, where a > 0 and b > 0 are two additional shape parameters to the G distribution,
whose role is partly to govern skewness and to vary tail weights.

Other new class of distributions was defined by Cordeiro; Ortega; Cunha (2013) and called
the exponentiated generalized (EG). Let G(x) be a continuous cdf. Then the EG family is given

by
F(x) = {1-[1-Gx)]*},
where « > 0 and B > 0 are two additional shape parameters. They noted that there is no com-

plicated function in contrast with the Beta-G family, which also includes two extra parameters
but involves the beta incomplete function. The pdf of this class has the form

f(x) = apg(x)[1 = G {1 - [1 - G(x))"}F.
For any baseline cumulative distribution function (cdf) G(x), and x € R, Zografos and

Balakrishnan (2009) and Risti¢ and Balakrishnan (2012) defined the GG distribution with pdf
f(x) and cdf F(x) given by

£ = B9 (toglt — Gyt

I'(a)
and
_7(a,—-log[1-G(x)]) 1 /—bg[l—G(X)] 1t
F(x) = T(a) = @) Jo t" e dt,
respectively, for a > 0, where g(x) = dG(x)/dx, T'(a) = [;”t*"!e~'dt denotes the gamma

function, and y(a,z) = foz t7-1e~tdt denotes the mcomplete gamma function. The GG dis-
tribution has the same parameters of the G distribution plus an additional shape parameter
a > 0. Each new GG distribution can be obtained from a specified G distribution.

Recently, Alzaatreh; Lee; Famoye (2013) proposed a new technique to derive families of
distributions by using any pdf as a generator. This new generator was named as T-X family of
distributions and the its cdf is defined as

F(x) = / M e (12)

where G(x) is the cdf of a random variable X, r(t) is a pdf of the random variable T defined
on [4,b] and W[G(x)] is a function of G(x) so that satisfies the following conditions:
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e W[G(x)] € [a,b];

e W[G(x)] is differentiable and monotonically non-decreasing;

e W[G(x)] > aasx — —ooand W[G(x)] — bas x — oo.

Different W[G(x)] will give a new family of distributions and the corresponding pdf asso-

ciated with (1.2) is
) = { JWIGE] PG ().

Finally, others authors proposed recently the Weibull-G class (BOURGUIGNON; SILVA;
CORDEIRO, 2014) and the Exponentiated T-X (E-TX) family (ALZAGHAL; FAMOYE; LEE,
2013) of distributions. In the first case, they used the r(t) corresponding to pdf of the Weibull
distribution and W[G(x)] = G(x)/[1 — G(x)]. On the second situation, was used W[G(x)] =
[—log(1 — F(x))] to obtain the E-TX class of distributions.

This thesis is divided into three parts, composed by three independent papers. So, we de-
cided that, for this thesis, each of the papers fills a distinct chapter. Therefore, each chapter can
be read independently of each other, since each is self-contained. Additionally, we emphasize
that each chapter contains a thorough introduction to the presented matter, so this general in-
troduction only shows, quite briefly, the context of each chapter. A short overview of the three
chapters is presented below.

A lifetime model of the beta generated class is introduced in Chapter 2. The new distribu-
tion is called the beta Nadarajah-Haghighi distribution, which can be used to model survival
data. Its failure rate function is quite flexible and takes several forms depending on its parame-
ters. The proposed model includes as special models several important distributions discussed
in the literature. We provide a comprehensive mathematical treatment of the new distribution
and obtain explicit expressions for the moments, generating and quantile functions, incom-
plete moments, order statistics and entropies. The method of maximum likelihood is used for
estimating the model parameters and the observed information matrix is derived. We fit the
proposed model to a real data set to prove empirically its flexibility and potentiality.

In Chapter 3, we study general mathematical properties of a new generator of continu-
ous distributions with three extra shape parameters called the exponentiated Marshal-Olkin
family. We present some special models of the new class and some of its mathematical proper-
ties including moments and generating function. The method of maximum likelihood is used
for estimating the model parameters. We illustrate the usefulness of the new distributions by
means of two applications to real data sets.

Finally, in Chapter 4, we propose another new class of distributions called Nadarajah-
Haghighi-G (NH-G) family of distributions. Some special models are presented and we obtain
explicit expressions for the quantile function, ordinary and incomplete moments, generating
function and order statistics. The estimation of the model parameters is explored by maximum
likelihood and we illustrate the flexibility of the new family with two applications to real data.
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Chapter 2

The Beta Nadarajah-Haghighi
Distribution

Resumo

Recentemente, hd um grande interesse entre estatisticos e pesquisadores aplicados na cons-
trugdo de distribuigdes flexiveis para se obter melhores modelagens aplicadas a taxas de falha.
Nos estudamos um modelo de tempo de vida da familia beta generalizada, chamada de dis-
tribuicdo beta Nadarajah-Haghighi, a qual pode ser usada para modelar dados de sobrevivén-
cia. No6s sabemos que a funcdo taxa de falha é uma importante quantidade que caracteriza
o fenomeno do tempo de vida. A fungdo taxa de falha do novo modelo pode ser constante,
decrescente, crescente, forma de banheira e banheira invertida dependendo dos parametros.
Nos fornecemos um abrangente tratamento matemaético da nova distribuigao e derivamos ex-
pressdes explicitas para algumas das suas principais quantidades matemdticas. O método de
maxima verossimilhanga é usado para estimacdo dos parametros do modelo e uma simula¢do
de Monte Carlo é apresentada para avaliar as estimativas. N6s ajustamos o modelo proposto a
dois conjuntos de dados reais e provamos empiricamente sua flexibilidade quando comparado
a outras distribui¢des de tempo de vida.

Keywords: Distribuicdo Beta. Momentos. Distribuicdo Nadarajah-Haghighi. Distribuigdes
Generalizadas.

Abstract

Recently, there has been a great interest among statisticians and applied researchers in cons-
tructing flexible distributions for better modeling non-monotone failure rates. We study a
lifetime model of the beta generated family, called the beta Nadarajah-Haghighi distribution,
which can be used to model survival data. The proposed model includes as special models
some important distributions. The hazard rate function is an important quantity characteri-
zing life phenomena. Its hazard function can be constant, decreasing, increasing, upside-down
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bathtub and bathtub-shaped depending on the parameters. We provide a comprehensive
mathematical treatment of the new distribution and derive explicit expressions for some of
its basic mathematical quantities. The method of maximum likelihood is used for estimating
the model parameters and a small Monte Carlo simulation is conducted to evaluate these es-
timates. We fit the proposed model to two real data sets to prove empirically its flexibility as
compared to other lifetime distributions.

Keywords: Beta Distribution, Moment, Nadarajah-Haghighi Distribution, Generalized Distri-
butions.

2.1 Introduction

Extending continuous univariate distributions by introducing a few extra shape parame-
ters is an essential method to better explore the skewness and tail weights and other properties
of the generated distributions. Following the latest trend, applied statisticians are now able to
construct more generalized distributions, which provide better goodness-of-fit measures when
titted to real data rather than by using the classical distributions.

The exponential distribution is perhaps the most widely applied statistical distribution for
problems in reliability and survival analysis. This model was the first lifetime model for which
statistical methods were extensively developed in the lifetime literature. A generalization of
the exponential distribution was recently proposed by Nadarajah and Haghighi (NH) (2011).
Its cumulative distribution function (cdf) is given by

G(x) =1—exp[l—(1+Ax)*], x>0, (2.1)

where A > 0 is the scale parameter and & > 0 is the shape parameter. The probability density
function (pdf) and the hazard rate function (hrf) corresponding to (2.1) are given by

g(x) = a A1+ Ax)* Lexp[l — (1+ Ax)*] (2.2)
and
h(x) = aA(1+Ax)*71,

respectively.

Then, if Y follows the NH distribution, we shall denote by Y ~ NH(a, A). The exponential
distribution is a special case of the NH model when a# = 1. Nadarajah and Haghighi (2011)
pointed out that the its hrf can be monotonically increasing for & > 1, monotonically decrea-
sing for x < 1 and, for « = 1, it becomes constant. They also presented some motivations for
introducing this distribution.

The first motivation is based on the relationship between the pdf in (2.2) and its hrf. The NH
density function can be monotonically decreasing and its hrf can be increasing. The gamma,
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Weibull and exponentiated exponential (EE) distributions do not allow for an increasing fai-
lure function when their corresponding densities are monotonically decreasing. The second
motivation is related with the ability (or the inability) of the NH distribution to model data
that have their mode fixed at zero. The gamma, Weibull and EE distributions are not suitable
for situations of this kind. The third motivation is based on the following mathematical rela-
tionship: if Y is a Weibull random variable with shape parameter « and scale parameter A, then
the density in equation (2.2) is the same as that of the random variable Z = Y — A — 1 truncated
at zero, that is, the NH distribution can be interpreted as a truncated Weibull distribution.

In this paper, we propose a new model called the beta Nadarajah-Haghighi (BNH) distribu-
tion, which contains as sub-models the exponential, generalized exponential (GE) (GUPTA;
KUNDU, 1999), beta exponential (BE) (NADARAJAH; KOTZ, 2006), NH and exponentiated
NH (ENH) (LEMONTE, 2013) distributions. These special cases are given in Table 2.1. Besides
extending these five distributions, the advantage of the new model, in addition to the advan-
tages of the NH distribution, lies in the great flexibility of its pdf and hrf. Thus, the new model
provides a good alternative to many existing life distributions in modeling positive real data
sets. As we will show later, the hrf of the BNH distribution can exhibit the classical four forms
(increasing, decreasing, unimodal and bathtub-shaped) depending on its shape parameters.
We obtain some basic mathematical properties and discuss maximum likelihood estimation of
the model parameters.

The paper is outlined as follows. In Section 2.2, we define the BNH distribution and pro-
vide plots of the density and hazard rate functions. We derive a useful linear representation
in Section 2.3. In Sections 2.4, 2.5 and 2.6, we obtain explicit expressions for the moments,
quantile function and moment generating function (mgf), respectively. Incomplete moments
and mean deviations are determined in Sections 2.7 and 2.8, respectively. In Section 2.9, we
present the Rényi and Shannon entropies. The BNH order statistics are investigated in Section
2.10. Maximum likelihood estimation and a small simulation study are addressed in Sections
2.11 and 2.12. Two empirical applications to real data are illustrated in Section 2.13. Finally,
Section 2.14 offers some concluding remarks.

Table 2.1: Special models of the BNH distribution.

alal|b Reduced Distribution
11]-1- BE distribution (NADARAJAH; KOTZ, 2006)
1]-11 GE distribution (KUNDU; GUPTA, 1998)

- ENH distribution (LEMONTE, 2013)
NH distribution (NADARAJAH; HAGHIGH]I, 2011)

exponential distribution
Source: Author’s elaboration.

1
—_ | = =
—_




19
2.2 The BNH distribution

Several ways of generating new distributions from classic ones were developed recently.
Eugene; Lee; Famoye (2002) proposed the beta family of distributions. They demonstrated
that its density function is a generalization of the density function of the order statistics of a
random sample from a parent G distribution and studied some general properties. This class
of generalized distributions has received considerable attention in recent years. In particular,
taking G(x) to be the density function of the normal distribution, they defined and studied
the beta normal distribution, highlighting its great flexibility in modeling not only symmetric
heavy-tailed distributions, but also skewed and bimodal distributions.

Nadarajah and Gupta (2004), Nadarajah and Kotz (2004 and 2006) , Lee; Famoye; Olu-
molade (2007) and Akinsete; Famoye; Lee (2008) defined the beta Fréchet, beta Gumbel, beta
exponential, beta Weibull and beta Pareto distributions by taking G(x) to be the cdf of the
Fréchet, Gumbel, exponential, Weibull and Pareto distributions, respectively. More recently,
Barreto-Souza; Santos; Cordeiro (2010), Pescim et al. (2010) and Cordeiro and Lemonte (2011)
proposed the beta generalized exponential, beta generalized half-normal and beta Birnbaum-
Saunders distributions, respectively.

The generalization of the NH distribution is motivated by the work of Eugene; Lee; Famoye
(2002). Let G(x) be the baseline cdf depending on a certain parameter vector. In order to have
greater flexibility in modeling observed data, they defined the beta family by the cdf and pdf

_ 1 6 b1,
FO) = 500y /O 711 — )Pt = Iy (a,b), 2.3)

and

respectively, where a2 > 0 and b > 0 are two additional shape parameters, which control skew-
ness through the relative tail weights, I, (a,b) = By(a,b)/B(a, b) is the incomplete beta function
ratio, By(a,b) = [ t*~1(1—t)"~'dt is the incomplete beta function, B(a,b) = I'(a)T'(b) /T (a + b)
is the beta function and T'(-)is the gamma function.

Then, the cdf of the BNH distribution is given by

F(X; 9) = Ilfexp[lf(lJr)\x)“} (a/b)/ x>0, (24)

wherea >0,A>0,a>0,b>0and 0 = (a,A,a,b)".
The corresponding density and hazard rate functions to (2.4) are given by

f(x;:6) = Bé"a’Ab) (14 Ax)™ 11 — exp[l — (1+ Ax)* ]} Hexp[l — (1+ A0} (25)

and
iz 0) — a (14 Ax)* 1 —exp[l — (14 Ax)*]}* Hexp[l — (1 + /\x)”‘]}b‘ .
(x, 9) B(a/ b) - Bl—exp[l—(l-ﬁ-/\x)”‘] (IZ, b) 25)
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A random variable X following (2.4) is denoted by X ~ BNH(#). Simulating the BNH
random variable is relatively simple. Let Y be a random variable distributed according to
the usual beta distribution given by (2.3) with parameters 4 and b. Then, using the inverse

transformation method, the random variable X can be expressed as

X:%{[l—log(l—Y)]%—l}.

Plots of the density and hazard rate functions for selected parameters a and b, including
the special case of the NH distribution, are displayed in Figures 2.1 and 2.2, respectively.

Figure 2.1: Plots of the BNH density function for some parameter values.

0 o — a=1,b=1 w — a=1,b=1
a=15,b=1 a=2,b=1
a=2,b=2 a=17,b=22
2=05,b=05 : 2=05,b=08

——- a=24,b=05 i —-—- a=32,b=12

109
)

(@) a=2.0and A =2.0 (b) « =05and A = 0.5

Source: Author’s elaboration.

Figure 2.2: Plots of the BNH hazard function for some parameter values.

f(x)
[}

(@) a=04and A =09 (b) x =25and A =04

Source: Author’s elaboration.
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We now explore the asymptotics behaviors of the cumulative, density and hazard func-
tions. First, as x — 0, equations (2.4), (2.5) and (2.6) are given by

F(x) ~ LSD;/(\;’C; as x—0,
a ,a—1

f(x) ~ (IXBA()H/);) as x—0,
a ,a—1

h(x) ~ ((XI;\()H’J;) as x — 0.

Second, the asymptotics of equations (2.4), (2.5) and (2.6) as x — oo are given by
exp[—b(A x)*]
bB(a,b)
a A%x% Lexp[— (A x)%]
f(x) ~ B(ﬂ, b)

h(x) ~ba A% x*! as X — oo,

1—F(x) ~ as X — oo,

as X — oo,

2.3 Linear representations

In this section, we provide linear representations for the cdf and pdf of X. For |z| < 1 and
b > 0 a real non-integer number, the generalized binomial expansion holds
g (DT
(1-2) 1=y~ L
g i'T(b—1i)
Let

(—1)IT(a+b)

w; = wi(a,b) = (a+1i)i!'T(a)T(b—1i)

Applying this identity in equation (2.3) gives the linear representation
F(x) = Z wi Hyyi(x),
i=0

where H,(x) = G(x)* denotes the exponentiated-G (exp-G) cumulative distribution and G(x)
is obtained from (2.1). By differentiating the last equation, the BNH pdf can be expressed as a
linear representation

F) =Y wihori(x), @7
i=0

where h,(x) = aG(x)* '¢(x) denotes the exponentiated NH (ENH) density function with
power parameter 2 > 0. The properties of exponentiated distributions have been studied
by many authors in recent years, see Mudholkar and Srivastava (1995) for exponentiated
Weibull, Gupta; Gupta; Gupta (1998) for exponentiated Pareto, Gupta and Kundu (1999) for
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exponentiated exponential, Nadarajah (2005) for exponentiated Gumbel, Lemonte (2013) for
ENH, among several others. Equation (2.7) allows that some mathematical properties such
as ordinary and incomplete moments, generating function and mean deviations of the BNH
distribution can be derived from those quantities of the ENH distribution.

2.4 Moments

Hereafter, let Y, 1; ~ ENH(a + i) denotes the ENH random variable with power parameter
a + i. The sth integer moment of X follows from (2.7) as

Z wl a+z

where the sth moment of Y, ,; can be obtained from

e “’()(z)(““”)k;

(1

+

jkr=0

Then, the sth integer moment of X can be expressed as

E(X) = A~ Y oy @ <;> <a+i_l>k!r(a+b).

1+ 1)1 T(a)T (b — i)

i,j,k,y=0

2.5 Quantile function
The quantile function (qf) of X is given by
Q(u) = F'(u) = A1 —log(1—I;1(a,b))]"/* —~1,0 < u < 1, (2.8)

where I, 1(a,b) is the inverse of the incomplete beta function. The shortcomings of the classi-
cal kurtosis measure are well-known. There are many heavy-tailed distributions for which this
quantity is infinite. So, it becomes uninformative precisely when it needs to be. Indeed, our
motivation to use quantile-based measures stemmed from the non-existence of classical kurto-
sis for many generalized distributions. The Bowley’s skewness is based on quartiles (Kenney
and Keeping, 1962)

Q(3) +Q(3) —2Q(3)
Q(3)-Q(3)

and the Moors’ kurtosis (Moors, 1998) is based on octiles

Q(5) ~Q () +Q(s) ~Q(5)

Q(5) —Q(§)

B =

M =
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Figure 2.3: Plots of the Bowley skewness and Moors kurtosis for some parameter values.
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where Q(-) is obtained from (2.8). Plots of the skewness and kurtosis for some choices of the

parameter b as functions of 4, and for some choices of a as functions of b, for « = 2.0 and

A = 3.0, are displayed in Figure 2.3.

The inverse of the incomplete beta function I, !(a,b) can be expressed as a power series

from the Wolfram website

http://functions.wolfram.com/06.23.06.0004.01

I;Y(a,b) = iqi [aB(a,b) u]'/".

i=1
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Here, g1 = 1 and the other g;’s (for i > 2) can be obtained from the recurrence equation

i—1
= i L 82) i (0 —rlr =)
JrZ "y rqrqu1+1 s r(r—a)+s(a+b—2)(i+1—r—s)]},
r=1s=1

where 6, = 1ifi =2 and ¢;, = 0if i # 2. Using the generalized power series, we can write
Z ,Bk |: u lZ b :| ,

where B1 = 1/[aA], B2 = 1/[2a%7], B3 = (a®> +1)/(6a®A), By = (8a* + 543 + 104> +
1)/[120 &% A], etc. Then,

k
Q) = Y. B (Z [aB(a,b)u W) (2.9)

where A; = g;,1 [aB(a,b)]"/* for i > 0. We use throughout the paper a result of Gradshteyn
and Ryzhik (2007) for a power series raised to a positive integer k (for k > 1)

k
(Z A vl‘> =Y i, (2.10)
=0 i=0

where ¢ = /\’5 and the coefficients ci; (for i = 1,2,...) are obtained from the recurrence

equation
=(iA) " Y [m(k+1) —i] A chim. (2.11)

m=1

Clearly, ci; can be determined from the quantities Ay, ..., A;. Based on equation (2.10), we can

write
Y Br u Y cpiu Z Z Brcg; ul ™/ 2 eru’/ (212)
=1 i=0

where (for I > 1) e; = } 1 i)er, Pk Ck,i and

L={Gk|l=i+kk=1,2---,i=0,1,---}.
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Let W(+) be any integrable function in the positive real line. We can write

/OOO W(x) f(x;0)dx = /01 W (i e u””) du. (2.13)

Equations (2.12) and (2.13) are the main results of this section since we can obtain from them
various BNH mathematical quantities. Established algebraic expansions to determine these
quantities based on equation (2.13) can be more efficient then using numerical integration of
the density (2.5), which can be prone to rounding off errors among others. For the majority
of these quantities we can substitute co in the sum by a moderate number as twenty. In fact,
several of them can follow by using the hight-hand integral for special W(-) functions, which
are usually more simple than if they are based on the left-hand integral.

2.6 Generating Function

Here, we provide a formula for the mgf M(t) = E(e'X) of X. Thus, M(t) is given by

Mx(t) = ["explrQu] du= 3 T [ Q(was

However

(0] n (0] n oo
— Zel ul/a — /e Zel—l-l ul/a — Z Pl u(n+l)/u
=1 1=0 =0

where p,, o = e;" and the coefficients p,,; (fori = 1,2,...) come from the recurrence equation

i

Pni = Z31 Z n + 1 - l] €m+1 Pni—m-

m=1

Finally, we obtain

- pnltn
Mx(t) = —_
x(t) an,lZ:;On!(n—i—l—i—a)

An alternative expression for E(X") follows as

2.7 Incomplete Moments

The nth incomplete moment of X is defined as m,(y) = E(X"|X > y) = fyoo x"f(x)dx. Tt
can be immediately derived from the moments of Y having the ENH distribution. Thus, from
equation (2.7), we can write m,(y) as

S+] k (j+1) (1+l—1 r
mr(y) = ZZ +1k/a+1 ( i >(k>

i,j=0k=0 J

x T <§+1,(j+1)(1+/\y)“> :
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An alternative expression for m,(y) takes the form

1)r+1 i e(b+1)

wo) = EE ()
r (i +1,(b+i)(1 +/\x)“> .

X

2.8 Mean Deviations

The deviations from the mean and the median are usually used as measures of spread in
a population. Let 4 = E(X) and M be the median of the BNH distribution, respectively. The
mean deviations about the mean and about the median of X can be calculated as

=E(|lx—u|) =2uF(p) —2my(p) and & = E(|Jx — M|) = p —2m1(M)

respectively, F(u) follows (2.4) and m1(q) = [J t f(t)dt. The function (q) can be expressed
as

o 1 )1+1 ]e(b-H) a—1 1
ZZ(:)]Z:/\Bab b+1)1/“+1( i )(J)
+1>—F<i+1,(b+i)(1+)tx)“>]

x[l"

Based on the mean deviations, we can construct Lorenz and Bonferroni curves, which are

R |—. o

important in several areas such as economics, reliability, demography and actuary. For a given
probability 7, the Bonferroni and Lorenz curves are defined by B(rr) = my(q)/(mp) and
L(rt) = my1(q)/u, respectively, where g = F~!(7r) = Q(7) can be obtained from (2.8).

2.9 Rényi entropy and Shannon entropy

An entropy is a measure of variation or uncertainty of a random variable X. Two popular
entropy measures are the Rényi (RENYI, 1961) and Shannon (SHANNON, 1951) entropies.
The Rényi entropy of a random variable with pdf f(x) is defined as

te(n) = g tog ([~ 1)

for vy > 0and vy # 1. The Shannon entropy of a random variable X is defined by E { — log [f(X)]}.

Itis a special case of the Rényi entropy when 7y 1 1. For the BNH model direct calculation yields

E{—1log[f(X)]} = —log(aA) +1og[B(a,b)] + (1 —a)E{log[1+ AX]}
— DE{1-(1+AX)*}+(1—a)E {1og [1 - el—(HAX)“} } .
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First, we define and compute

A(all az;«, )\, b) = / (1 + )\x)al eb[l—(l—l—/\x)"‘} |:1 . el_(1+/\x)a:| az dx.
0

Using the binomial expansion, we have

Alay, az;a,A,b) =

2>

o (a2 —1+“2+1) r(j+1)
—1)" Y ) e
P () et
Proposition:

Let X be a random variable with pdf (2.5). Then,
oA JA(a+t—1,a—1;a,A,b)

E{log[1+AX]} =

B(a,b) ot o
E{l—(14+AX)") = 1— - A@a—1,a—1,;a,4,b)
- B(a’b) 4 77 7 7
and
- 1*(1+)\X){X — 0()\ aA(lX—l,ﬂ—f—t—l;Dé,)\,b)
E {log [1—e I} = 5ap ot L
The simplest formula for the Shannon entropy of X is given by
E{-log[f(X)]} = —log(aA)+log[B(a,b)]
oA dA(a+t—1,a—1;a,A,D)
+ =050 T Y
aA
— bl1-— m AQa—1,a— 1,,oc,)\,b)]
oA dA(a—T1,a+t—1;a,A,D)
+ 0= T Y

After some algebraic developments, we obtain an alternative expression for Ig(-y)

Ir(y) = 1’_Y710g(0c?\)—1_7

+ 1i710g L i(_l)i<v(ai—1)> ((7—1)'(1_ D)(F(Hl)

=0 j b+ i)/t

log [B(a,b)]

2.10 Order Statistics

Let Xj, ..., X, be a random sample of size n from BNH(a, b, a, A). Then, the pdf and cdf of
the ith order statistic, say X;.,, are given by

fnl) = g 0 - F@)
B M;;(_l)%n;i)f(xﬂ:i*m1(x), (2.14)
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and
X
Fn(®) = [ funltt
= ! D" (=i i
~ Bln—i+1) m; M ( . )F (x), (2.15)
. 00 1+m
where F'*"(x) = | ¥ b, G(x)" . Using (2.10) and (2.11), equations (2.14) and (2.15) can be
i & q
written as |
1 = ; Ty % r—1
fl:”(x)_B(ln—H—l) Z::;; mti ( )G (x),
and |
= 1 v (_1)mci+m,r r
Fnl) = g iy L o g O )

sy 1 S (D) iy [T
E(X5,) = 13<;'>22~./0 Fe(1) G (D)dt

X

BB L ()0 ()t

011 012 0

2.11 Estimation

Here, we determine the maximum likelihood estimates (MLEs) of the model parameters of
the new family from complete samples only. Let x, ..., x, be observed values from the BNH
distribution with parameters a,b,« and A. Let © = (4, b, «, A)T be the parameter vector. The
total log-likelihood function for ® is given by

= ((0) =nlog(aA) —nlog[B(a,b)] + (1 —

X Zn;logl—t (a—l)Zlog(l—etf)+bZn;ti,

i=1 i=1 i=1

) (2.16)

where t; =1 — (1 + Ax;)~.

Numerical maximization of (2.16) can be performed by using the RS method (RIGBY; STASINOPOU-
LOS, 2005), which is available in the gamlss package of the R, SAS (Proc NLMixed) or the Ox
program, sub-routine MaxBFGS (DOORNIK,2009) or by solving the nonlinear likelihood equa-
tions obtained by differentiating (2.16).
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The components of the score function U, (®) = (9¢,,/0a,d¢,,/db,d¢,, /o, L, /IA) are

u, = % = —nip(a) + np(a+b) + flog(l —eli),
i=1

u, = g—i = —ny(b) +nyp(a+b)+ i ti,
i=1

1 ¢ 1. &
e ==z Llog(=t) = (1= D) ) g

and

n 1 n tl(/\) n tl()‘)eti n ()\)
uA:ﬁ:X_(l_E).Zl—ti+(1_“)Z1—etiH’i;ti ,

i=1

where tl('x) = —(14 Ax;)*log[1 + Ax;] and tzm = —ax;(1+ Ax;)*" L. Setting these equations to
zero, U, = U, = U, = U, = 0, and solving them simultaneously yields the MLE O of O.

For interval estimation on the model parameters, we require the observed information
matrix [,(0) whose elements U,; = 0%(/0rds (for r,s = a,b,a,A) can be obtained from the
authors upon request. Under standard regularity conditions, we can approximate the distri-
bution of v/7(® — ©®) by the multivariate normal N, (0,K(#)~!) distribution, where K(§) =
limy,—yeo 11 Jn(0) is the unit information matrix and r is the number of parameters of the new
distribution.

We can compute the maximum values of the unrestricted and restricted log-likelihoods
to construct likelihood ratio (LR) statistics for testing some sub-models of the BNH distri-
bution. For example, we may use LR statistics to check if the fit using the BNH distribu-
tion is statistically “superior” to the fits using the ENH, NH, E, GE, BE distributions for a
given data set. In any case, considering the partition @ = (®],®1)7, tests of hypotheses of
the type Hp : O = ®§0) versus Hy : ©; # ®§0) can be performed using the LR statistic
w = 2{{(©®) — £(O)}, where © and © are the estimates of ® under H4 and Hy, respectively.
Under the null hypothesis Hy, w LN X%, where g is the dimension of the vector ®@; of interest.
The LR test rejects Hy if w > ¢,, where ¢, denotes the upper 1007% point of the )(5 distri-
bution. Often with lifetime data and reliability studies, one encounters censoring. A very
simple random censoring mechanism very often realistic is one in which each individual i is
assumed to have a lifetime X; and a censoring time C;, where X; and C; are independent ran-
dom variables. Suppose that the data consist of n independent observations x; = min(X;, C;)
and ¢; = I(X; < ;) is such that 6; = 1 if X; is a time to event and ¢§; = 0 if it is right censored
fori=1,...,n. The censored likelihood L(®) for the model parameters is

n
L(®) « [ [f(xi;a,b,a,A)]% [S(xi;a,b,a,A)]F %, (2.17)
i=1
where S(x;a,b,a,A) = 1 — F(x;a,b,a,A) is the survival function obtained from (2.4) and

f(x;a,b,a,A) is given by (2.5). We maximize the log-likelihood (2.17) in the same way as de-
scribed before.
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2.12 Simulation

In this section, we conduct Monte Carlo simulation studies to assess on the finite sample
behavior of the MLEs of &, A, a and b. All results were obtained from 5000 Monte Carlo replica-
tions and the simulations were carried out the R programming language. In each replication, a
random sample of size n is drawn from the BNH(«, A, 4, b) distribution and the BFGS method
has been used by the authors for maximizing the total log-likelihood function /(6). The BNH
random number generation was performed using the inversion method. The true parameter
values used in the data generating processes are « = 1.5,A = 2,2 = 0.5 and b = 2.5. The Table
2.2 reports the empirical means, bias the mean squared errors (MSE) of the corresponding es-
timators for sample sizes n = 25,50, 100,200 and 400. From these figures in this table, we note
that, as the sample size increases, the empirical biases and mean squared errors decrease in all
the cases analyzed, as expected.

Table 2.2: Empirical means, bias and mean squared errors

n Parameter Mean Bias MSE
25 o 2,1882 0,6882 1,7969
A 2,4169 04169 0,8079
a 0,5192 0,0192 0,0201
b 2,1575 -0,3425 11,6367
50 o 1,8886 0,3886  0,8238
A 2,2029 0,2029 0,3293
a 0,5116 0,0116 0,0089
b 2,2749 -0,2251 0,8922
100 o 1,7211  0,2211 0,4281
A 2,1077  0,1077  0,1942
a 0,5056 0,0056 0,004
b 2,3704 -0,1296 0,5281
200 o 1,6029 0,1029 0,1628
A 2,0396 0,0396 0,074
a 0,5040 0,004 0,0018
b 2,4378 -0,0622 0,2087
400 o 1,5676  0,0676  0,1229
A 2,0329 0,0329 0,0614
a 0,5020 0,002 0,0009

b 24656 -0,0344 0,1636

Source: Author’s elaboration.

213 Applications

In this section, we present two applications of the new distribution for two real data sets
to illustrate its potentiality. We compared the fits of the BNH distribution with some of its
special cases and other models such as beta Weibull (BW) (FAMOYE; LEE; OLUMOLADE,
2008), exponetiated Weibull (EW) (MUDHOLKAR; SRIVASTAVA; FREIMER, 1995), Weibull
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(W), generalized exponential (GE) (GUPTA; KUNDU, 1999) and exponential (E) distributions
given by:

e BW: f(x) = Bf;‘;)xc_lexp[—b(/\x)c]{l —exp[—(Ax)°]}*

e EW: f(x) = car(Ax) Lexp[—(Ax)]{1 — exp[—(Ax)]}*~L;
e W: f(x) = cA®x* Lexp[—(Ax)°];

e GE: f(x) = adlexp[—Ax](1 — exp[—Ax])*~L;

e E: f(x) = Aexp[—Ax].

First, we consider an uncensored data set corresponding to the remission times (in months)
of a random sample of 128 bladder cancer patients reported in Lee and Wang (2003). The
second data set represents the survival times of 121 patients with breast cancer obtained from
a large hospital in a period from 1929 to 1938 (LEE, 1992). The required numerical evaluations
are carried out using the AdequacyModel package of the R software. Table 2.3 provides some

descriptive measures for the two data sets.

Table 2.3: Descriptives statistics

Statistics Real data sets
Data Set1 Data Set 2
Mean 9.3656 46.3289
Median 6.3950 40.0000
Variance 110.4250  1244.4644
Skewness 3.2866 1.0432
Kurtosis 18.4831 3.4021
Minimum 0.0800 0.3000
Maximum 79.0500 154.0000

Source: (LEE; WANG, 2003) and (LEE, 1992)

The MLEs of the model parameters for the fitted distributions and the Cramér-von Mises
(W*) and Arderson-Darling (A*) statistics are given in Tables 2.4. These test statistics are
described by Chen and Balakrishnan (1995). They are used to verify which distribution fits
better to the data. In general, the smaller the values of W* and A*, the better the fit.

We note that the BNH model fits the first data set better than the others models according to
these statistics A* and W*. On the other hand, the second data set is better fitted by the BNH
and Weibull distributions according to these statistics. Therefore, for both data sets, the BNH
distribution can be chosen as the best distribution. Plots of the estimated pdf and cdf of the
BNH, ENH, NH and GE models fitted are given in Figure 2.4



Table 2.4: MLEs (standard errors in parentheses) and A* and W* statistics.

Data Set Distribution Estimates A* W
1(n=128) | BNH (&, A, a, b) 0.1643 0.0649 1.5848 21.6176 0.2022  0.0302
(0.3236  0.05939 0.2859  56.0143)
BW («, B, a,b) 2.7346 0.9074 0.6662 0.3219 0.2882  0.0436
(1.599 1.5103 0.2450 0.4363)
ENH(x, A, ¢) 0.6372 0.3444 1.6885 0.2779  0.0421
(0.1173 0.1752  0.3646)
EW (a,B,¢) 2.7964 0.2989 0.6544 0.2884  0.0437
(1.2631 0.1687  0.1346)
NH (a, A) 0.9226 0.1217 0.6138  0.1017
(0.1514  0.0344)
W (a, B) 0.1046 1.0478 0.7864 0.1314
(0.0093  0.0675)
GE (A, 0) 0.1212 1.2179 0.6741  0.1122
(0.0135  0.1488)
E(A) 0.1068 0.7159  0.1192
(0.0094)
2(n=121) | BNH (&, A, a,b) 1.4783 0.0090 1.3645 1.7799 0.3985 0.0537
(1.1933  0.00580  0.4293 3.3848)
BW («, B, a,b) 0.8184 2.0818 1.4783 0.0104 0.4418 0.05887
(0.3705  2.2577  0.4305  0.0077)
ENH(x, A, ¢) 1.6630 0.0119 1.2657 0.4251  0.0567
(0.5787 0.0062  0.1877)
EW (a, B, ¢) 0.8131 0.0174 1.4761 0.4491  0.0599
(0.3345  0.0045 0.3820)
NH («, A) 2.5705 0.0061 0.5443  0.0748
(07452 0.0021)
W (a, B) 0.0199 1.3053 0.4013  0.0536
(0.0014  0.0934)
GE (A, 0) 0.0278 1.5179 0.4288  0.0615
(0.0029  0.1927)
E(A) 0.0216 0.4146  0.0585
(0.0019)

Source: Author’s elaboration.
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Figure 2.4: Plots of the estimated pdf and cdf of the BNH, ENH and GE models.
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2.14 Concluding remarks

Continuous univariate distributions have been extensively used over the past decades for
modeling data in several fields such as environmental and medical sciences, engineering, de-
mography, biological studies, actuarial, economics, finance and insurance. However, in many
applied areas such as lifetime analysis, finance and insurance, there is a clear need for ex-
tended forms of these distributions. In this paper, we propose a new distribution called the
beta Nadarajah-Haghighi (BNH) distribution, which generalizes the Nadarajah-Haghighi dis-
tribution. Further, the proposed distribution includes as special models other well-known dis-
tributions in the statistical literature. We study some of its mathematical and statistical proper-
ties. We provide explicit expressions for the moments, incomplet moments, mean deviations,
Rényi and Shannon entropies. The new model provide a good alternative to many existing life
distributions in modeling positive real data sets. The hazard rate function of the BNH model
can be constant, decreasing, increasing, upside-down bathtub and bathtub-shaped. The model
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parameters are estimated by maximum likelihood and the expected information matrix is de-

rived. The usefulness of the new model is illustrated in two applications to real data using
goodness-of-fit tests. Both applications have shown that the new model is superior to other
fitted models. Therefore, the BNH distribution is an alternative model to the beta Weibull,
exponentiated Weibull, Weibull, generalized exponential, extended exponential distributions
and exponentiated Nadarajah-Haghighi distributions. We hope that the proposed model may
be interesting for a wider range of statistical applications.
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Chapter 3

Exponentiated Marshall-Olkin Family
of Distributions

Resumo

Nos estudamos propriedades matematicas gerais de uma nova classe de distribui¢des con-
tinuas com trés parametros de forma adicionais chamada de exponentiated Marshal-Olkin familia
de distribui¢des. Além disso, apresentamos alguns modelos especiais da nova classe e inves-
tigamos a forma e expressd es explicitas para os momentos ordindrios e incompletos, funcdao
quantilica e geratriz de momentos, probability weighted moments, curvas de Bonferroni e Lon-
renz, entropias de Shannon e Renyi e estatisticas de ordem. Adicionalmente, nés exploramos
a estimagdo dos pardmetros do modelo por méxima verossimilhanga e provamos empirica-

mente a potencialidade da nova familia com a aplicagao a dois conjuntos de dados reais.

Keywords: Distribui¢des Generalizadas, maxima verossimilhanga, momentos, estatistica de or-
dem, Marshal-Olkin.

Abstract

We study general mathematical properties of a new class of continuous distributions with
three extra shape parameters called the exponentiated Marshal-Olkin family of distributions.
Further, we present some special models of the new class and investigate the shapes and de-
rive explicit expressions for the ordinary and incomplete moments, quantile and generating
functions, probability weighted moments, Bonferroni and Lorenz curves, Shannon and Rényi
entropies and order statistics. Further, we discuss the estimation of the model parameters by
maximum likelihood and prove empirically the potentiality of the family by means of two ap-

plications to real data.

Keywords: Generalized exponential geometric distribution, Generated family, Maximum like-
lihood, Moment, Order statistic.
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3.1 Introduction

In the past few years, several ways of generating new distributions from classic ones were
developed and discussed. Jones (2004) studied a family of distributions that arises naturally
from the distribution of the order statistics. The beta-generated family introduced by Eugene;
Lee; Famoye (2002) was further studied by Jones (2004). Zografos and Balakrishnan (2009)
proposed the gamma-generated family of distributions. Later, Cordeiro and de Castro (2011)
defined the Kumaraswamy family. Recently, Alzaatreh; Lee; Famoye (2013) proposed a new
technique to derive wider families by using any probability density function (pdf) as a gener-
ator. This generator called the T-X family of distributions has cumulative distribution function
(cdf) defined by

F(x) = / ML 3.1)

where G(x) is the cdf of a random variable X, r(t) is the pdf of a random variable T defined
on [a,b] and W[G(x)] is a function of G(x), which satisfies the following conditions:

e W[G(x)] € [a,1];
e W[G(x)] is differentiable and monotonically non-decreasing;

e W[G(x)] - aasx — —ooand W[G(x)] — bas x — oo.

Following Alzaatreh; Lee; Famoye (2013) and replacing r(¢) by the generalized exponential-
geometric (GEG) density function (SILVA; BARRETO-SOUZA; CORDEIRO, 2010), where T €
[0,00), and using W[G(x)] = —log [1 — G(x)], we define the cdf of a new wider family by

. —log[1-G(x;€)] a/\(l — p)e—)tt[l _ e—At]a—l B 1_ [1 . G(x; E)]/\ «
F(x) = /O - pe i dt = {1—p[1—G(x;§)]A} , (32)

where G(x; £) is the baseline cdf depending on a parameter vector € anda > 0,A > Oand p < 1

are three additional shape parameters. For each baseline G, the exponentiated Marshall-Olkin-
G ("EMO-G” for short) distribution is defined by the cdf (3.2). The EMO family includes as
special cases the exponentiated generalized class of distributions (CORDEIRO; ORTEGA; CUNHA,,
2013), the proportional and reversed hazard rate models, the Marshall-Olkin family and other
sub-families. Some special models are listed in Table 3.1, where G(x) = G(x;&).

This paper is organized as follows. In Section 3.2, we define the new family of distributions
and provide a physical interpretation. Five of its special distributions are discussed in Section
3.3. In Section 3.4, the shape of the density and hazard rate functions are described analytically.
Two useful linear mixtures are provided in Section 3.5. In Section 3.6, we derive a power
series for the quantile function (qf). In Section 3.7, we provide two general formulae for the

moments. The incomplete moments are investigated in Section 3.8. In Section 3.9, we derive
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Table 3.1: Some special models.

a A G(x) Reduced distribution

- - 0 G(x) Exponentiated Generalized Class (CORDEIRO et al., 2013)

1 - - G(x) Marshal-Olkin family of distributions (MARSHALL; OLKIN, 2007)
1 - 0 G(x) Proportional hazard rate model (GUPTA; GUPTA, 2007)

-1 0 G(x) Proportional reversed hazard rate model (GUPTA; GUPTA, 2007)

1 1 0 G(x) G(x)

1 - - 1—e* Exponential - Geometric distribution (ADAMIDIS; LOUKAS, 1998)

T I Generalized Exponential - Geometric distribution (SILVA et al., 2010)
1 - - 1—e " Weibull-Geometric distribution (BARRETO-SOUZA et al., 2011)
- - - 1—e P Exponentiated Weibull-Geometric distribution (MAHMOUDI, 2012)

Source: Author’s elaboration.

the moment generating function (mgf). In Sections 3.10 we determine the mean deviations.
In Section 3.11, we present general expressions for the Rényi and Shannon entropies. Section
3.12 deals with the order statistics and their moments. Estimation of the model parameters by
maximum likelihood is performed in Section 3.13. Applications to two real data sets illustrate
the performance of the EMO family in Section 3.14. The paper is concluded in Section 3.15.

3.2 The new family

The density function corresponding to (3.2) is given by

a (1-[1 -G
{1-p[l - G(xeOM

where g(x; &) is the baseline pdf. This density function will be most tractable when the func-

f(x) = aA(1-p)g(x;&) [1-G(x8)]

(3.3)

tions G(x) and g(x) have simple analytic expressions. Hereafter, a random variable X with
density function (3.3) is denoted by X ~ EMO-G(p, a, A, €). Henceforth, we can omit some-
times the dependence on the baseline vector € of parameters and write simply G(x) = G(x;§),
f(x) = f(xr' a, A, ﬁ/ E)/ etc.

A physical interpretation of the EMO-G distribution can be given as follows. Consider a
system formed by « independent components having the Marshall-Olkin cdf given by

-G
HO = T e

Suppose the system fails if all of the &« components fail and let X denote the lifetime of the
entire system. Then, the cdf of X is

1-[1-Gx o }“

F(x) = H(x)" = {1 —pl1—G(x;€)]*
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The hazard rate function (hrf) of X becomes

_ aA(-p)gm - GmO ! {1-[1-Gxe
1P -G — (1- - GmEP Y} {1 - pll - G(x &)}

The EMO family of distributions is easily simulated by inverting (3.2): if u has a uniform

h(x) . (34)

U(0,1) distribution, the solution of the nonlinear equation

1—ul/a /A
_ -1
X=G 1—<1—pu1/“> (3.5)

follows the density function (3.3).

3.3 Special EMO distributions

For p = 0, we obtain, as a special case of (3.3), the exponentiated generalized class (CORDEIRO;
ORTEGA; CUNHA, 2013) of distributions , which provides greater flexibility of its tails and
can be applied in many areas of engineering and biology. Here, we present some special cases
of the EMO family since it extends several useful distributions in the literature. For all cases
listed below, p € (0,1), « > 0 and A > 0. These cases are defined by taking G(x) and g(x) to
be the cdf and pdf of a specified distribution. The general form of the pdf of the special EMO
distributions can be expressed as:

o fi-n- G(x)])‘}a_l
f1-pn-c@}"

f(x) = 4(61,62,...,61)g(x) [1 = G(x)]

where g(61, 6, .. .,0y) is defined as a function of m parameters of the special EMO distribution.
We list some special EMO distributions in Table 3.2, where the letters N, Fr, Ga, B, and Gu stand
for the normal, Fréchet, gamma, beta and Gumbel baselines, respectively.

For the EMON distribution, the parameter ¢ has the same dispersion property as in the
normal density. For the EMOB distribution, the beta distribution corresponds to the limiting
case: p — Oand « = A = 1. For the EMOFr distribution, we have the classical Fréchet
distribution when p = 0 and « = A = 1. The Kumaraswamy beta (KwB) and Kumaraswamy-
gamma (KwGa) distributions can be obtained from the EMOB and EMOGa models when p —
0. Plots of these EMOG density functions are displayed in Figures 3.1 to 3.5.



Table 3.2: Special EMO distributions

39

Distribution q() G(x) g(x)
EMON(p, &, A, p,02) "‘A(la— P) p (XUV> ® (w)
EMOEr(p,a, A\, 8,0) | aA(1—p)B exp{— (‘;)ﬁ} o-ﬁx—ﬁ—lexP{_ (‘;)5}
EMOGa(p, «,A,a,b) W V(F”( :)") r?z‘;) a1 b
evonpman) | P | g [ttt | et
EMOGu(p,a,A, i, o) %'_P) exp{—exp {_ (XUP‘)H exp{_exp [_( (—Tﬂ)] (x;m

Source: Author’s elaboration.

3.4 Asymptotic and Shapes

Proposition 1. Let a = inf{x| G(x) > 0}. The asymptotics of equations (3.2), (3.3) and (3.4) when

x — a are given by

F(x) ~ [AG(x))",
flx) ~aA* g(x) G(x)*,
h(x) ~aA* g(x) G(x)* L.

Proposition 2. The asymptotics of equations (3.2), (3.3) and (3.4) when x — oo are given by

1—F(x) ~aG(x)",

f(x) ~aAg(x) G,
Ag(x)
h(x) ~ Gl

The shapes of the density and hazard rate functions can be described analytically. The
critical points of the EMO-G density function are the roots of the equation

g'(x) B 8(X) o — Gl
() + (1 )‘)71—(;(@ Ag(x)[1 — G(x)]
11—«

pla+1)

A

1-1=-Gx)*  1-pll-Gx)

+

b

(3.6)
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Figure 3.1: Plots of the EMON pdf and EMON hrf for some parameter values.
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Source: Author’s elaboration.

Figure 3.2: Plots of the EMOFr pdf and EMOFr hrf for some parameter values.

15
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Source: Author’s elaboration.

There may be more than one root to (3.6). Let A(x) = d?f(x)/dx?. We have

_ 8" (x)g(x) — g'(x)? g ()1 = G(x)] +g*(x)
Alx) = +(1-A) =GP +A(a—1)
1-G(x)M! [1-G(x))*?

l [1 o G(x)]Z)LfZ
{5 S~ - E W g - O G@W}Z}
1= G

, [1-G(x))*?

- D {0 g — (- U
[1- G(x)2 }

{1-pll-G? )

—pAg*(x)
(3.7)

If x = xp is a root of (3.7) then it corresponds to a local maximum if A(x) > 0 for all x < x
and A(x) < 0 for all x > xp. It corresponds to a local minimum if A(x) < 0 for all x < xp and
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Figure 3.3: Plots of the EMOGa pdf and EMOGa hrf for some parameter values.
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Figure 3.4: Plots of the EMOB pdf and EMOB hrf for some parameter values.
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Source: Author’s elaboration.

Figure 3.5: Plots of the EMOGu pdf for some parameter values.
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Source: Author’s elaboration.
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A(x) > 0 forall x > xo. It gives a point of inflexion if either A(x) > 0 for all x # xp or A(x) <0
for all x # xg.
The critical points of the hazard rate function (hrf) of X are obtained from the equation

O O C\g@I-GEP o e)1-GE
s T (1= Mriem HAMe = DI =gam Aplpu o

 padg(x)[1-G(x)* T {1-[1-G(x )]A}‘ng -G {1 pli-GP )
(—pI—GI —{1-[1-G}" =0. (3.8)

There may be more than one root to (3.8). Let T(x) = d?log[h(x)]/dx?. If x = xq is a root of

(3.8) then it refers to a local maximum if 7(x) > 0 for all x < xp and 7(x) < 0 for all x > xo. It
corresponds to a local minimum if 7(x) < 0 for all x < xp and T(x) > 0 for all x > x. It gives
an inflexion point if either 7(x) > 0 for all x # xp or T(x) < 0 for all x # xo.

3.5 Linear mixtures

We can demonstrate that the cdf (3.2) of X admits the expansion

x) = i b Hi(x; €), (3.9)

k=0

where b, = Z Wi j ks

i,j=0
i — o (i+j)/\ i
Wijk = ZUi/]‘,k(OC,)\/ P) = (_1) Ik ( i ) (]) ( k ) P

and Hi(x; &) = G(x; €)¥ denotes the exponentiated-G (“exp-G”) cdf with power parameter k.
The density function of X can be expressed as an infinite linear mixture of exp-G density

functions

x) =Y brir b (66), (3.10)

where (for k > 0) hyy1(x;€) = (k+ 1) g(x; €) G(x; €)* denotes the density function of the ran-
dom variable Yy 1 ~ exp-G(k 4 1). Equation (3.10) reveals that the EMO-G density function is
a linear mixture of exp-G density functions. Thus, some of its mathematical properties can be
derived directly from those properties of the exp-G distribution. For example, the ordinary and
incomplete moments and moment generating function (mgf) of X can be obtained from those
quantities of the exp-G distribution. Some structural properties of the exp-G distributions are
well-defined by Mudholkar and Hutson (1996), Gupta and Kundu (2001) and Nadarajah and
Kotz (2006), among others.

The formulae derived throughout the paper can be easily handled in most symbolic com-
putation software plataforms such as Maple, Mathematica and Matlab. These platforms have
currently the ability to deal with analytic expressions of formidable size and complexity. Esta-
blished explicit expressions to calculate statistical measures can be more efficient than compu-
ting them directly by numerical integration. The infinity limit in these sums can be substituted
by a large positive integer such as 20 or 30 for most practical purposes.
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3.6 Quantile power series

We obtain explicit expressions for the moments and generating function of the EMO family
using a power series for the qf x = Q(u) = F!(u) of X by expanding (3.5). If the G ¢f, say
Qg (u), does not have a closed-form expression, this function can usually be expressed as a

power series
u) =Y a, (3.11)
i=0

where the coefficients a;’s are suitably chosen real numbers depending on the parameters of the
parent distribution. For several important distributions such as the normal, Student t, gamma
and beta distributions, Qg (1) does not have explicit expressions but it can be expanded as in
equation (3.11).

We use throughout the paper a result of Gradshteyn (2000) for a power series raised to a
positive integer n (for n > 1)

oo X n oo i
= Z au ] = Z Cpi ', (3.12)
i=0 i=0
where the coefficients ¢, ; (fori = 1,2,...) are easily determined from the recurrence equation,
with ¢, 0 = ag,
i = (iap) -1 Z (n+1) —ilamcyim- (3.13)
Clearly, c,, ; can be easily evaluated numerically from c,, . . ., ¢, ;—1 and then from the quan-

tities ag, ..., a;.
Next, we derive an expansion for the argument of Qg (-) in equation (3.5)

(1 o ul/uc)l/A

A=1= g g

Using the the generalized binomial expansion four times since u € (0,1), we can write

A= By () () ()G

Then, the qf of X can be expressed from (3.5) as

m=0

QW)zQG<i5mﬂ), (3.14)
where

1= Y mo(=1) s+ p
o —A"
Zr,s,t:O(_ )r+s+t+m < r )

A~ 1
r
1
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By combining (3.11) and (3.14), we have

Q(u) = iai (i 5mum> ,
i=0

m=0
and then using (3.12) and (3.13),
Q(u) =Y enu™, (3.15)
m=0

wheree,, = Y. a;diy, dipg = 56 and, form > 1,

m
dig = (o)™ Y [n(i+1) —m)6udim_p
n=1
Equation (3.15) is the main result of this section. It allows to obtain various mathematical
quantities for the EMO-G family as can be seen in the next sections. Note that

Qu)" = <i emum> = Z frmu™, (3.16)
m=0 m=0

where f, ,, is obtained from the e,,’s using (3.13).

The effects of the shape parameters on the skewness and kurtosis can be determined from
quantile measures. The shortcomings of the classical kurtosis measure are well-known. The
Bowley skewness (KENNEY; KEEPING, 1962) is one of the earliest skewness measures de-
fined by the average of the quartiles minus the median divided by half the interquartile range,
namely
Q(3) +Q(5) —2Q(3)

Qi) -
Since only the middle two quartiles are considered and the outer two quartiles are ignored,
this adds robustness to the measure. The Moors kurtosis (MOORS, 1998) is based on octiles

Q(5) —Q(s) +Q(5) —Q(5)
Q(5) -Q(§)
These measures are less sensitive to outliers and they exist even for distributions without

moments. In Figures 3.6 and 3.7, we plot the measures B and M for the EMOFr and EMON
distributions (discussed in Section 3.3), respectively. These plots reveal how both measures B

B =

M=

and M vary on the shape parameters.
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Figure 3.6: Skewness (a) and Kurtosis (b) of the EMOFr distribution.
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Figure 3.7: Skewness (a) and Kurtosis (b) of the EMON distribution.
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3.7 Moments

Hereafter, we shall assume that G is the cdf of a random variable Z and that F is the cdf
of a random variable X having density function (3.3). The rth ordinary moment of X can be
obtained from the (7, k)th Probability Weighted Moment (PWM) of Z defined by

0 = E[Z7 G(2)"] = / " 2 G(2) g(2)dz. (3.17)
In fact, we have
E(X") =) (k+1) bes1 T (3.18)

k=0
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Thus, the moments of any EMO-G distribution can be expressed as an infinite linear combi-
nation of the PWMs of G. A second formula for 7, can be based on the parent qf Qg (u) =
G !(u). Setting G(x) = u, we obtain

Tk = /01 Qc(u)" ukdu, (3.19)

where the integral follows from (3.16) as

Ty ! r _ = fr,m
E(X)—/O Q(u) du_m;omﬂ' (3.20)

The PWMs for some well-known distributions will be determined in the following sections
using alternatively equations (3.17) and (3.19).

The central moments (y5) and cumulants (x;) of X can be obtained from equations (3.18)
and (3.20) as

s e s—1 -1
ps =y (=1) ( ) WM, Ks=He— ), (._ 1)19'#2_]-,

j=0 ] j=1 J
where k1 = p}. The skewness and kurtosis measures can be calculated from the ordinary
moments using well-known relationships. The pth descending factorial moment of X is

/ (p) L /
iy =EXP]=EX(X-1)x - x(X—p+1)] = IES(p,k)uk,

where s(r, k) = (k!)~1[d*x(") /dx¥] ¢ is the Stirling number of the first kind. So, we can obtain
the factorial moments from the ordinary moments given before.

3.8 Incomplete moments

The nth incomplete moment of X is defined as m,(y) = [ x" f(x)dx. For empirical pur-
poses, the shape of many distributions can be usefully described by the incomplete moments.
Here, we propose two methods to determine the incomplete moments of the new family. First,

we can express 1, () as

[ele]

G(y:€)
miy) = Y (+ Db [ Qo) utdu (3:21)
k=0
The integral in (3.21) can be evaluated at least numerically for most baseline distributions.
A second method for the incomplete moments of X follows from (3.21) using equations
(3.12) and (3.13). We obtain

= (k + 1) bi41 Crom

my(y) = Z

. e \ymtk+1
PO T G(y; )"+, (3.22)

Equations (3.21) and (3.22) are the main results of this section.
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3.9 Generating function

Here, we provide three formulae for the mgf M(s) = E(e°¥) of X. A first formula for M(s)
comes from equation (3.10) as

M(s) = Z brr1 Miy1(s), (3.23)
k=0

where M1 (s) is the generating function of the exp-G(k + 1) distribution. Hence, M(s) can be
determined from an infinite linear combination of the exp-G generating functions.
A second formula for M(s) can be derived from equation (3.10) as

[ee]

M(s) = ) (k+1) beyr px(s), (3.24)
k=0
where
1
0i(s) = /O exp [s Qc (u)] ukdu. (3.25)

We can derive the mgfs of several EMO distributions directly from equations (3.24) and
(3.25). For example, the mgfs of the exponentiated Marshall-Olkin exponential (EMOE) (such
that As < 1) and EMO-standard logistic (for s < 1) distributions are given by

M(s) =Y (k+1)bey1 Blk+1,1—As) and M(s) =Y (k+1)b1 B(s+k+1,1—5),
k=0 k=0
respectively.

3.10 Mean deviations

The mean deviations about the mean (§; = E(|X — y}|)) and about the median (5, =
E(|X — M])) of X can be expressed as

61 =2uy F (py) —2mq (p}) and & =y —2my (M), (3.26)

respectively, F(y}) is easily evaluated from equation (3.2),

1— 2_1/,% 1/A
M= 1—-(——m———+
Qo [ <1 —px 21/a>
is the median of X, y} = E(X) comes from (3.18) and m; (y) is the first incomplete moment of
X determined from (3.22) with r = 1.

Next, we provide three alternative ways to compute é; and J,. A general equation for 17 (z)
is given by (3.21). A second general formula for m;(z) can be obtained from (3.10) as

mi(z) =Y b Jes(2), (3.27)
k=0
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where

Jenrlz) = [ xha(odx, (3.28)

—00

Equation (3.28) is the basic quantity to compute the mean deviations for the exp-G distribu-
tions. A simple application of (3.27) and (3.28) can be conducted to the exponentiated Marshall-
Olkin Weibull (EMOW) distribution. The exponentiated Weibull density function (for x > 0)
with power parameter k 4 1, shape parameter c and scale parameter f is given by

I (x) = ¢ (k+1) B2 exp {—(Bx)°} [1 —exp {—(Bx)°}]",

and then
Jen(z) = clk+1)p io<—1y (5) [ e =tr () e
The last integral reduces to the incomplete gamma function
Jin(a) = ek + 0 B0 (5) 7 (e 1,0+ 162,

r=0

where y(a,x) = [§ w' e “dw.
A third general formula for m1(z) can be derived by setting u = G(x) in (3.10)

mi(z) = ) (k+1) by Ti(2), (3.29)
k=0
where Ti(z) is given by
G(z)
Tk(2) :/0 Qe (u) u*du. (3.30)

Applications of these equations are straightforward to obtain Bonferroni and Lorenz curves.
These curves are defined (for a given probability ) by B(7r) = my(q)/(my}) and L() =
m1(q)/uy, respectively, where ¢ = F~1(7r) = Q(7r) comes from the gf of X for a given proba-
bility 7t.

3.11 Entropies

An entropy is a measure of variation or uncertainty of a random variable X. Two popular
entropy measures are the Rényi (1961) and Shannon (1951). The Rényi entropy of a random

variable with pdf f(x) is defined as
Ir(c) = ! 1 /Oof(x)cdx
R - 1_¢ og 0 s
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forc > 0and ¢ # 1. The Shannon entropy of a random variable X is defined by E {—log [f(X)]}.
It is the special case of the Rényi entropy when ¢ 1 1. Direct calculation yields

E{-log[f(X)]} = —loglar(1—p)]—E{log[g(X;&)]}
— (A=1)E{log[l1 - G(x;€)]}
— (a—1)E [1og {1 - G(x;&)]AH
+(a+DE@g@—pu—GQfﬂ@y
After some algebraic manipulations, we obtain:

Proposition 3. Let X be a random variable having density (3.3). Then,

o (=)t <—06 - 1) <tx - ])
_a(l—p) ! J
E{log[l- G(X))} = =" ¥ (i+j+1p

i,j=0

£ {11 Gt} -
R

i+j+1

)

(3.31)

and

E [log {1 p[1 - G(x;¢)1'}] =

i (=T | (t—a—1
a(l—P)iJiO( ’ JP< ]12—][%—2 i )

.

The simplest formula for the entropy of X is given by
E{~log[f(X)]} = —log[aA(1 —p)] — E {log[g(X; )]}

+a(1—p/)\(1—)&) i (—1)i+j+1pz‘<—txi— 1> (a;l)

=, (i+j+ 1)
I e SR AN WA
+a(l—a)(1-p) i,ji:() o < : 1'2]'[-52( j ) t—O]
it (Y [ (t—a—1
+Ma+00;ﬁ§2<])ﬂp(ji2£ig : >ﬁJ.

After some algebraic developments, we obtain an alternative expression for Iz (c)

c 1 = ..
Ir(c) = - log[aA(1—p)] + T log [Z wii (7, A, z,])] ,
i,j=0
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where

e ) (c(aj— )

v Aif) = [ g()7 G0t gy,

and

3.12 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Sup-
pose that Xj, X», ..., X, is a random sample from the EMO-G distribution. Let X;., be the ith
order statistic. From equations (3.9) and (3.10), the pdf of X;., can be written as

fnl Z ( ] > [Zbr+1rG ] [Zb Gx m]jwl

r=0

where K = n!/[(i — 1)! (n — i)!]. Using (3.12) and (3.13), we can write

-1

[Z b G(x)* =Y ek G(x)Y,
k=0 k=0

j+i—1
where e 19 = b{) " and

k
-1
€iti-1k = kbo E ] + l b €jti—1k—m-

m=1

Hence,

fin( Z di b1 (x), (3.32)

k=0

where d = KYi7§ o 0 b1 €i 1 -

Equation (3. 32) is the main result of this section. It reveals that the pdf of the EMO-G order
statistics is a linear combination of exp-G densities. So, several mathematical quantities of
the EMO-G order statistics such as ordinary, incomplete and factorial moments, mgf, mean
deviations and several others can be obtained from those quantities of the exp-G distribution.

3.13 Estimation

Several approaches for parameter estimation were proposed in the literature but the maxi-
mum likelihood method is the most commonly employed. The maximum likelihood estima-
tors (MLEs) enjoy desirable properties and can be used when constructing confidence intervals
for the model parameters. The normal approximation for these estimators in large samples can
be easily handled either analytically or numerically. So, we consider the estimation of the un-
known parameters for this family from complete samples only by maximum likelihood. Here,
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we determine the MLEs of the parameters of the new family of distributions from complete
samples only.

Let x1,...,x, be the observed values from the EMOG distribution with parameters p,a, A
and & Let0 = (p,a, A & )T be the r x 1 parameter vector. The total log-likelihood function for
g is given by

l, = (,(®)=nloga+nlogA+nlog(l—p +Zlog (x;;€

n

+ (A—l)ilog[l—G(xz, (a—1)Y lo {1— 1—G(xi;€)]A}
i= i=1

— (@+1)Ylo { G(xi;ﬁ)])‘}. (3.33)

i=1
The maximized log-likelihood can be either directly by using the NLMIXED procedure
in SAS or the sub-routine MaxBFGS in the Ox program (DOORNIK, 2009) or by solving the
nonlinear likelihood equations obtained by differentiating (3.33). The components of the score

function

U (0) = (20, /0p, 3y /e, 3Ly /N, 30y /IE)

are given by

o4, n [1—G(xi;£)])‘ n
_n 1 — ,
dp (a ),2221—19[1—G(x1-;£)]A 1-p
oL, n

ﬂngr.Zlog{l_[l_ (x;; ¢ } Zlog{l— G(xi}E)]/\}/

Y =1 ;€)]" log [1 — is
o % +) log[1—G(x;;8)] — (« —1) ) ! G(lxig[i]_lc;%g;é)]ci(x ¢

and

— G(x; €)M !
—I—A(zx—l)i; 5"_5[)1[1_ G(x(,fg)g])A] — pMa+1)
g'¢ xuﬁ [1—G(x; €)M !
. Z —p1—-Gx; ) 7

where h(¢) (-) means the derivative of the function & with respect to ¢. For interval estimation of
the model parameters, we can derive the observed information matrix Jn(0), whose elements
can be obtained from the authors upon request. Let 0 be the MLE of 6. Under standard regula-
rity conditions (COX; HINKLEY, 1974), we can approximate the distribution of v/7( — 6) by
the multivariate normal N, (0, K(6) 1), where K(6) = limy_co n71],,(0) is the unit information

matrix and r is the number of parameters of the new distribution.
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Often with lifetime data and reliability studies, one encounters censoring. In a very rea-

listic random censoring mechanism, each individual i is assumed to have a lifetime X; and a

censoring time C;, where X; and C; are independent random variables. Suppose that the data

consist of n independent observations x; = min(X;, C;) and 6; = I(X; < C;) is such that §; =1

if X; is a time to event and 6; = 0 if it is right censored fori = 1, ..., n. The censored likelihood
L(0) for the model parameters is

1) o« TTLFCxp.a A € im0, A €)'

where f(x;p,a, A, &) is given by (3.3) and S(x;p,a, A, €) is the survival function evaluated
from (3.2).

3.14 Applications

In this section, we use a real data set, collected by Prater (1956) and analyzed by Atkinson
(1985), referent to stress among women in Townsville, Queensland, Australia (Data Set 1) and
the proportion of crude oil converted to gasoline after distillation and fractionation (Data Set 2).
This application aims of the illustrate the potentiality of the EMO family. All the computations
were done using the R software (R Development Core Team, 2012). For this application, were
consider the following distributions: EMOB (a,b,p,A,a), Kw-WP(a,b,c,A,f) (Kwmaraswamy
Weibull Poisson distribution) proposed by Ramos et al.(2015), beta beta-BB(«,,a,b), Kw-Beta
(«,B,a,b), Exp-NH(a,A,B) proposed by Lemonte(2013), Exp-W(A k,a) MUDHOLKAR; SRIVAS-
TAVA; FREIMER, 1995), Weibull(A k), Chen(A,pB), flexible Weibull distribution-FW(«,p) (BEB-
BINGTON; LAIL ZITIKIS, 2007) and Gamma(«,). A descriptive analysis of the data is pre-
sented in Table 3.3. The densities of these distributions are given by

. _ Aabefex 1—em (B )L exp A {1—[1—e BV ]2} _(Bx)‘] |
o Kw-WP: f(x) = (eAfl){lf[1*6_(&()’:]”}]7[7 ’

a—1(1_y)B-1 a=1f1_ b-1
BB: f(x) = T b Al

Kw-B: () = 20X (= e e},

Exp-NH: f(x) = aAB(1 + Ax)* Lexp[l — (1 + Ax)*]{1 —exp[1 — (1 + Ax)¥]}F~L;

Exp-W: f(x) = kaA(Ax) T exp[—(Ax)¥]{1 — exp[— (Ax)F]}*~;

W: f(x) = kAR x¥Texp[—(Ax)¥];

Chen: f(x) = A xﬁfle)\(lfeXﬁ)erﬁ’,

FW: f(x) = (DC + £ ) e —P/¥ exp[—e v —B/x];

2

fly) = X le P
Gamma: f(x) = T
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Table 3.3: Descriptive statistics.

Real data sets

Statistics

Data Set1 Data Set2
Mean 0.2642 0.1966
Median 0.2500 0.1780
Mode 0.2500 0.1500
Variance 0.0376 0.0115
Skewness 0.9712 0.3867
Kurtosis 0.8272 -0.6561
Maximum 0.8500 0.4570
Minimum 0.0100 0.0280
n 166 32

Source: Author’s elaboration.

It is possible to obtain qualitative information about the hrf by means of plot analysis when
we have the data are censored or uncensored. We emphasize that the data sets here are uncen-
sored. For this type of data, the total time in test (TTT) plot proposed by Aarset (1987) may
be used. Let T be a random variable with non-negative values that represents the survival time.

The TTT curve is constructed by plotting the statistic G(r/n) [E Tin+ (n+71)T n] (E T;

i=1
versus r/n (r = 1,...,n), where the values T;, are the order statistics of the sample, for

i = 1,...,n. The plots can be easily obtained using the TTT function of the AdequacyModel
package from the R software. More details about this package are available from help(TTT).
The TTT plots for the dataset in this application are shown in Figure 3.8. For both plots, the
TTT curve is concave, which, according to Aarset (1987), provides evidence that a monotonic
increasing hrf is adequate.

The Figure 3.9 displays the fitted densities to the current data obtained in a nonparametric
manner using the gaussian kernel density estimation, defined as follows. Let Xj,..., X, be a
random vector of random variables independent and identically distributed where each vari-
able follows an unknown distribution, denoted by f. The kernel density estimator is given by
the following expression

n

fh(x):iZKh(X—xi):nlh;K<x;xi>, (3.34)

i=1

(o]

where K(-) is the symmetrical kernel function and / x)dx = 1. Furthermore, 1 > 0 is

—00

known in literature as bandwith, which is a smoothing parameter. It is possible to find in
literature numerous kernel function, as the normal standard distribution, for example. Silver-
man (1986) demonstrated that for the K standard normal, a reasonable bandwith is given by
h = 3/(465/3n) =~ 1.066 /3/n, where ¢ is defined by the standard deviation of the sample.

)
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Figure 3.8: The TTT plot for: (a) Data Set 1 (b) Data Set 2.
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Figure 3.9: Gaussian kernel density estimation for: (a) Data Set 1 (b) Data Set 2.
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The plots displayed in Figure 3.10 indicates that the EMOB distribution provides the best

tit compared with the other fitted distributions. We note the good adequacy of the fitted EMOB
distribution in Figure 3.11. In this application, we use the package AdequacyModel. This pack-

Figure 3.10: Estimates of the pdf for: (a) Data Set 1 (b) Data Set 2.
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Figure 3.11: Estimated K-M survival (K-M estimates) compared with the EMOB survival estimates for: (a) Data Set 1 (b) Data Set
2. The confidence intervals are 95%.
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age is intended to provide a computational support to work with probability distributions,
mainly distributions aimed to survival analysis. This package was used to calculate some
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fitness statistics adjustment such as AIC (Akaike Information Criterion), CAIC (Consistent
Akaikes Information Criterion), BIC (Bayesian Information Criterion), HQIC (Hannan-Quinn
information criterion), KS (Test of Kolmogorov-Smirnov), A* (statistic of Anderson-Darling)
and W* (statistic of Cramér-von Mises), which are described by Chen (1995), based on the re-
sults presented by Stephens (1986). When we want to test if one random sample, denoted by
X1, X2, ..., X, with empirical distribuction function F,(x), comes a especial distribution, we use
these statistics. The Cramér-von Mises (IW*) and Anderson-Darling (A*) statistics are given by
the following expressions:

) 75 2.2
w*:w2<1+0n5> and A*:A2<1+On5+nS).

respectively. In these expressions, we have that F,(x) is the empirical distribution function,
F(x;0,) is the postulated distribution function evaluated at the MLE of 6, i.e. §,. Lower values
of W* and A* provide evidence that F(x;8,) generates the sample. More details about these
statistics are given by Chen (1995). The goodness.fit function is used to calculate these statis-
tics. More details can be obtained using the command help(goodness.fit). The Table 3.4
shows the goodness-of-fit statistics (rouding to the fourth decimal place) for the datased used
in this application. The results showed that the EMOB (a,b,p,A,«) distribution presented better
results for the KS, A* and W™ statistics when compared with the other distributions used in
this application.

In this study, the MLEs in Table 3.5 were obtained by global search heuristic method called
Particle Swarm optmization - PSO proposed by Eberhart (1995). One of the advantages of
using the PSO method in addition to being a robust optimization method is no need to provide
initial guesses. However, this is a computationally intensive method. The Appendix 3.16
shows the function pso Implemented in language R. At the end of the code there is a small
example of how to use the function for minimize an objective function. The obtaining of the
errors of maximum likelihood estimates can be reached by the method bootstrap. By being
computationally intensive, due to the use of the PSO method, the errors were not obtained.

3.15 Concluding remarks

We derive general mathematical properties of a new generator of continuous distributions
with three extra shape parameters. We present some special models of the new EMO family
of distributions. We investigate the shapes and derive explicit expressions for the ordinary
and incomplete moments, quantile and generating functions, probability weighted moments,
Bonferroni and Lorenz curves, Shannon and Rényi entropies and order statistics, which hold
for any baseline model. The estimation of the model parameters is approached by the method
of maximum likelihood and were obtained by global search heuristic method called Particle
Swarm Optmization-PSO. Ultimately, we fit some EMO-G distributions to two real data sets
to demonstrate the potentiality of this family. We hope this generalization may attract wider
applications in statistics.
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Table 3.4: Goodness-of-fit statistics for the data: (I) stress among women in Townsville, Queensland, Australia (II) proportion of

crude oil converted to gasoline after distillation and fractionation.

Data Set Distribution A* W+
EMOB (a,b,p,A,x)  0.1554 0.0786
Kw-WP(a,b,c,A,) 0.4974 0.1305
BB(«,f,a,b) 0.5676  9.7582
Kw-B(«,$,a,b) 0.2750 0.1103

I Exp-NH(a,A, ) 0.2534 0.1153
Exp-W(A,k) 0.2206  0.1044
Weibull(A, k) 0.3296  0.1136
Chen(A,B) 0.2594 0.1073
FW(a,B) 1.3931 0.3885
Gamma(a, ) 0.4347 0.1986
EMOB (a,b,p,\,0)  0.0348  0.0983
Kw-WP(a,b,c,A,) 0.0489 0.0993
BB(«,f,a,b) 0.2473  0.9840
Kw-B(«,$,a,b) 0.0381  0.0840

II Exp-NH(«,A,B) 0.0407  0.0888
Exp-W(A,k) -0.0416 0.0931
Weibull(A, k) 0.0413  0.0875
Chen(A,B) 0.0396  0.0836
FW(a,B) 0.0430 0.1130
Gamma(a,) 0.0518 0.1143

Source: Author’s elaboration.



Table 3.5: MLEs for: (I) Data Set 1 (II) Data Set 2.

Data Set Distribution Maximum Likelihood Estimates - MLE

EMOB (a,b,p,A,«) 02454 0.7793 -19.8703 3.4036 1.4276
Kw-WP(a,b,c,A,B) 123010 20.1431  0.1647 24.6569 2.3195
BB(«,8,a,b) 0.0874  1.6288  9.0398 3.5456
Kw-B(«,B,a,b) 1.4193 0.5955  0.7365 4.4900

I Exp-NH(a,A,B) 22323 1.3448  1.0907
Exp-W(A,k) 0.5651 2.5433  1.8076
Weibull(A, k) 0.2826  1.2659
Chen(A,B) 34689  1.1160
FW(w,B) 2.0968  0.0400
Gamma(a, ) 0.2897  0.9014
EMOB (a,b,p,A,0) 4.6421 10.7513 -1.2077 1.9915 0.3989
Kw-WP(a,b,c,A,B) 152365 8.3171 0.2446 249571  10.5076
BB(«,f,a,b) 5.9557  2.2541 0.4675 3.296
Kw-B(«,B,a,b) 02179 23679  9.2614 10.127

II Exp-NH(«,A,B) 3.8235  1.2805  2.0247
Exp-W(A,k) 1.0344 4.6087  1.9107
Weibull(A, k) 0.222 1.9526
Chen(A,B) 16.5625 1.8923
FW(«,B) 3.9236  0.1688
Gamma(a, ) 0.0997  2.0642

Source: Author’s elaboration.
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3.16 Code inR language for PSO method

$pso <- function(func,S=150,1lim_inf,lim_sup,e=0.0001,data=NULL,N=100) {

b_lo = min(lim_inf)
b_up = max(lim_sup)
integer_max = .Machine integer.max

if (length(lim_sup) !=length(lim_inf)){

stop("The,vectorslim_inf,and,lim_sup must have the same dimension.")

}
dimension = length(lim_sup)
swarm_xi = swarm_pi = swarm_vi = matrix (NA,nrow=S,ncol=dimension)

# The best posttion of the particles.

g = runif(n=dimension,min=1im_inf,max=1im_sup)

# Objective function calculated in g.

f_g = func(par=as.vector(g),x=as.vector (data))
if (NaN%in¥%f_g==TRUE || Inf%in%abs (f_g)==TRUE){
while (NaN%in%f_g==TRUE || Inf%in%abs (f_g)==TRUE){
g = runif (n=dimension,min=1lim_inf ,max=1im_sup)

f_g = func(par=g,x=as.vector(data))

# Here begins initialization of the algorithm.

x_i = mapply(runif ,n=S,min=1lim_inf ,max=1lim_sup)

# Initializing the best position of particularities 7 to wnitial position.

swarm_pi = swarm_xi = x_i

f_pi = apply(X=x_i,MARGIN=1,FUN=func,x=as.vector (data))

is.integer0 <- function(x){

is.integer (x) && length(x)==0L

if (NaN%in%f_pi==TRUE || Inf%in’%abs(f_pi)){
while (NaN%in%f_pi==TRUE || Inf%in%abs(f_pi)){

id_inf_fpi = which(abs(f_pi)==Inf)

if (is.integerO(id_inf_f£fpi) !=TRUE){
f_pilid_inf_fpi] = integer_max

}

id_nan_fpi = which(f_pi==Nal)

if (is.integer0(id_nan_£fpi) !=TRUE){
x_i[id_nan_fpi,] = mapply(runif ,n=length(id_nan_£fpi) ,min=1lim_inf,
max=lim_sup)
swarm_pi = swarm_xi = x_i

f_pi = apply(X=x_i,MARGIN=1,FUN=func,x=as.vector (data))
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minimo_fpi = min(f_pi)

if (minimo_fpi < f_g) g = x_ilwhich.min(f_pi),]

# Initializing the speeds of the particles.

swarm_vi = mapply(runif ,n=S,min=-abs(rep(abs(b_up-b_lo),dimension)),

max=abs (rep (abs (b_up-b_1lo) ,dimension)))

# Here ends the initialization of the algorithm

omega = 0.5
phi_p = 0.5
phi_g = 0.5
m=1

vector_f_g <- vector ()

while (is.na(var(vector_f_g)) || m<50 ||
var (vector_f_g[length(vector_f_g):(length(vector_f_g)-10)]1)>e){
# r_p and r_g are randomized numbers in (0.1).
r_p = runif (n=dimension ,min=0,max=1)

r_g = runif (n=dimension ,min=0,max=1)
# Updating the wvector speed.
swarm_vi = omega*swarm_vi+phi_p*r_p*(swarm_pi—swarm_xi)+

phi_g*r_g* (g-swarm_xi)

# Updating the position of each particle.

swarm_xi = swarm_xit+swarm_vi

myoptim = function(...) tryCatch(optim(...), error = function(e) NA)

f_xi = apply(X=swarm_xi,MARGIN=1,FUN=func,x=as.vector (data))

f_pi = apply(X=swarm_pi,MARGIN=1,FUN=func,x=as.vector (data))

f_g = func(par=g,x=as.vector (data))

if (NaN%in%f_xi==TRUE || NaN%in%f_pi==TRUE){
while (NaN%in%f_xi==TRUE){

id_comb = c(which(is.na(f_xi)==TRUE) ,which(is.na(f_pi)==TRUE))

if (is.integer0(id_comb) !=TRUE){
new_xi = mapply(runif ,n=length(id_comb) ,min=1im_inf,
max=lim_sup)
swarm_pi[id_comb,]=swarm_xi[id_comb,] = new_xi
if (length(id_comb) >1){

if _xi[id_comb] = apply(X=swarm_xi[id_comb,],MARGIN=1,

FUN=func ,x=as.vector (data))
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f_pilid_comb] = apply(X=swarm_pilid_comb,],MARGIN=1,FUN=func,
x=as.vector (data))
}else{

f_xilid_comb] = func(par=new_xi,x=as.vector (data))

if (Inf%in’%abs (f_xi)==TRUE){
f_xil[which(is.infinite(f_xi))]=integer _max

}

if (Inf%in%abs (f _pi)==TRUE) {

f_pilwhich(is.infinite(f_pi))]=integer_max

# There are wvalues below the lower limit of restrictions?
id_test_inf=

which (apply (swarm_xi<t(matrix(rep(lim_inf,S),dimension,S)) ,1,sum) >=1)
id_test_sup=

which(apply (swarm_xi>t(matrix(rep(lim_sup,S) ,dimension,S)) ,1,sum) >=1)

if (is.integerO0(id_test_inf) !=TRUE){
swarm_pi[id_test_inf,] = swarm_xi[id_test_inf,] =
mapply (runif ,n=length(id_test_inf),

min=lim_inf ,max=1im_sup)

if (is.integer0(id_test_sup) !=TRUE){

swarm_pi[id_test_sup,] = swarm_xi[id_test_sup,]
mapply (runif ,n=length(id_test_sup),

min=lim_inf ,max=1im_sup)

if(is.integerO(which ((f_xi<=f_pi)==TRUE))){
swarm_pi[which ((f_xi<=f_pi)),] = swarm_pil[which((f_xi<=f_pi)),]

if (f_xil[which.min(f_xi)] <= f_pilwhich.min(f_pi)]1){
swarm_pi[which.min(f_pi),] = swarm_xi[which.min(f_xi),]
if (f_pilwhich.min(f_pi)] < f_g) g = swarm_pi[which.min(f_pi),]
} # Here ends the block <f.

vector_f_g[m] = f_g

m = m+1
if (m>N) {
break
}

} # Here ends the block while.



f_x = apply(X=swarm_xi,MARGIN=1,FUN=func,x=as.vector (data))
list (par_pso=g,f_pso=vector_f_g)

} # Here ends the function.

# Exzample of using the PSO function. We are looking to minimize easom
# function <n that -10<=z1<=10 and -10<=z2<=10.
easom <- function(par,x){
x1
x2 par [2]
-cos(x1l)*cos(x2)*exp(-((x1l-pi)~2 + (x2-pi)~2))

par [1]

}

set.seed (0)

# Using the PSO function

# S5 refers to the number of particles considered.
pso(func=easom,S5=350,1lim_inf=c(-10,-10) ,1im_sup=c(10,10))
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Chapter 4

A New Family of Distributions for
Survival Analysis

Resumo

Analise estatistica de dados de tempo de vida é um importante tépico em engenharia, biomedi-
cina, ciéncias sociais e outros e hd uma necessidade de estender as formas das cldssicas dis-
tribui¢des. A distribuigdo Nadarajah-Haghighi é uma generalizacdo da distribui¢do exponen-
cial como alternativa as distribui¢des gama e Weibull. Baseada nessa distribui¢do, nés propo-
mos uma nova classe estendida denominada NH-G familia de distribui¢des e estudamos algu-
mas propriedades matematicas. Alguns modelos especiais da nova familia sdo apresentados.
As propriedades encontradas valem para qualquer distribui¢do nesta nova familia. Adicional-
mente, obtemos explicitas expressdes para a fungdo quantilica, momentos ordindrios e incom-
pletos, funcdo geratriz de momentos e estatisticas de ordem. Nés exploramos a estimagdo dos
pardmetros do modelo por maxima verossimilhanca e ilustramos a potencialidade da nova
familia estendida com duas aplica¢des a dados reais uma simulagdo de Monte Carlo é apre-

sentada para avaliar as estimativas.

Keywords: Distribuigdes Generalizadas, méxima verossimilhan¢a, momentos, simulacdo de
Monte Carlo, distribui¢do Nadarajah-Haghighi .

Abstract

Statistical analysis of lifetime data is an important topic in reliability engineering, biomedical,
social sciences and others and there is a need for extended forms of the classical distributions.
The Nadarajah-Haghighi distribution is a generalization of the exponential distribution as an
alternative to the gamma and Weibull distributions. Based on this distribution, we propose
a new wider Nadarajah-Haghighi-G family of distributions and we study some mathemati-
cal properties. Some special models in the new family are discussed. The properties derived
hold to any distribution in this family. Further, We obtain general explicit expressions for the
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quantile function, ordinary and incomplete moments, generating function and order statistics.
We discuss the estimation of the model parameters by maximum likelihood and illustrate the
potentiality of the extended family with two applications to real data and a small Monte Carlo
simulation is conducted to evaluate these estimates.

Keywords: Generalized distribution, lifetime, generating function, hazard function, moment,
maximum likelihood estimation, Monte Carlo simulation, Nadarajah-Haghighi distribution.

4.1 Introduction

In many applied areas like lifetime analysis, finance, actuary and biology there is a need
for extended forms of the classical distributions. A new generalization of the exponential dis-
tribution as an alternative to the gamma and Weibull distributions was recently proposed by
Nadarajah and Haghighi (2011). The cumulative function is given by

G(x) =1—exp[l—(1+Ax)*], x>0, 4.1)

where A and & > 0. The probability density function (pdf) and the hazard rate function (hrf)
corresponding to (4.1) are given by

g(x) = a A1+ Ax)* Lexp[l — (1+ Ax)*] 4.2)
and
h(x) = aA(1+Ax)*71,

respectively. New distributions were developed based on new techniques by adding para-
meters to existing distributions for building classes of more flexible distributions to model
real data. For example, a new family of distributions, denoted by exponentiated family, is
rather simple and is constructed by raising the cumulative function to an arbitrary power pos-
itive. The properties of exponentiated distributions have been studied by many authors in
recent years, see Mudholkar and Srivastava (1995) for exponentiated Weibull, Gupta; Gupta;
Gupta (1998) for exponentiated Pareto, Gupta and Kundu (1999) for exponentiated exponen-
tial, Nadarajah (2005) for exponentiated Gumbel, Lemonte (2013) for exponentiated Nadarajah-
Haghighi, among several others. Furthermore, several ways of generating new distributions
from classic ones were developed and discussed in the past few years. For example, Jones
(2004) studied a family of distributions that arises naturally from the distribution of the order
statistics, the beta-generated family was proposed by Eugene; Lee; Famoye (2002), Zografos
and Balakrishnan (2009) introduced the gamma-generated family of distributions, Cordeiro
and de Castro (2011) introduced the so-called family of Kumaraswamy generalized distribu-
tions and Bourguignon; Silva; Cordeiro (2014) developed the Weibull-G family of distributions.
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Recently, Alzaatreh; Lee; Famoye (2013) proposed a new technique to derive families of dis-
tributions by using any pdf as a generator. This new generator was named as T-X family of
distributions and the its cdf is defined as

F(v) = / MeWT bat (4.3)

where G(x) is the cdf of a random variable X, r(t) is a pdf of the random variable T defined
on [4,b] and W[G(x)] is a function of G(x) so that satisfies the following conditions:

o W[G(x)] € [a,b];
e W[G(x)] is differentiable and monotonically non-decreasing;

e W[G(x)] - aasx — —ooand W[G(x)] — bas x — co.

Different W[G(x)] will give a new family of distributions. For example, we can define
W[G(x)] as —log[l — G(x)], G(x)/[1 — G(x)] or —log[G(x)], when the support of T is [0, co].
Based on this paper, by using W[G(x)] = —log[1 — G(x)] we propose a class of distributions
called the new Nadarajah-Haghighi-G (“NH-G” for short) family, where for each baseline dis-
tribution G we have a different distribution F. The main aim of this paper is to study a new
family of distributions, with the hope it yields a better fit in certain practical situations. Addi-
tionally, we provide a comprehensive account of the mathematical properties of the proposed
family of distributions.

This paper is organized as follows. In Section 4.2, we define the NH-G family of distribu-
tions. Section 4.3 provides some special distributions obtained by the NH generator. In Section
4.4, some general mathematical properties of the family are discussed. The formulas derived
are manageable by using modern computer resources with analytic and numerical capabili-
ties. In Section 4.5, the estimation of the model parameters is performed by the method of
maximum likelihood. In Section 4.6, two illustrative applications based on real data are in-
vestigated and and a small simulation study are addressed in Sections 4.7. Finally, concluding
remarks are presented in Section 4.8.

4.2 The new family

Consider a continuous distribution G(x) with density ¢(x). Based in equation (4.3), let
a = 0and W[G(x)] = —log[1 — G(x)]. By using 7(t) = a A(1+ At)* Lexp[l — (1 + At)¥] (for
t > 0), given by equation 4.2, we define the cdf of the NH-G family as

~ logl1-(G(x)] »
F(x) = / a A1+ A Fexp[l — (14 At)¥]dt
Jo

= 1—exp{l—[1—Alog[l—G(x)]]*}, x>0 aA>0. (4.4)
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The family pdf reduces to

£l — “Ag){1— Alogl1 ~ G(x)]}*~ exp{1 — [1 ~ Mog[1 — G(x)]}*}
1—G(x)
Hereafter, a random variable X with pdf (4.5) is denoted by X ~ NH-G(a, A, §), where £ is the
parameter vector of G(x).
The NH-G family of distribution can be simulated from (4.4). Then, if U has a uniform
U(0,1) distribution, the solution of the nonlinear equation

X = g1 {1 ~exp [1 —[1- log/;\(l — u)]mx] } @)

has the NH-G(«, A, &) distribution.

(4.5)

4.3 Examples of the NH-G family

In this section, we provide some examples of the NH-G distributions. The special cases
are defined by taking G(x) and g(x) to be the cdf and pdf of the known distributions. These
sub-models generalize several important existing distributions in the literature.

4.3.1 NH-Fréchet Distribution

As the first example, take the the parent distribution as standard Fréchet with pdf and cdf
given by g(x) = 60 exp[—(£)°]/x°™ and G(x) = exp[—(%)?], respectively, for x,0,6 > 0.
Then, the NH-Fréchet (NH-F) cdf becomes

F(x)=1—exp {1 . {1 ~Alog [1 —exp {— (i)éma}

The corresponding pdf is

aAdode= (3 x=(0+1) {1 — Alog[l — e~ (931 exp{1—[1—Alog[l — e~ (D)%}
4.3.2 NH-Burr XII Distribution

As second example, let us consider the parent Burr XII distribution with pdf and cdf given
by ¢(x) = cks™x*" 1+ (x/s5)°] % 1,5,k,c > 0and G(x) = 1 — [1 + (x/s)°] ¥, respectively.
Then, for x > 0, the NH-Burr XII (NH-BXII) distribution has cdf and pdf given by

F(x) = 1 - exp{1 - [1 - Alog[(1+ (x/s)) M]*}.
and

f(x) = arcks ™ x 1+ (x/5)°] " H1 — Alog[(1+ (x/5)°) ¥ }* Lexp{1 —[1— Alog[(1+ (x/s)°)¥]]*},

respectively. Note that when ¢ = 1 and k = 1, we obtain as a special case the NH-Lomax
(NH-L) distribution.
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4.3.3 NH-Gompertz Distribution

The third example considers the Gompertz distribution. This distribution is a generaliza-
tion of the exponential model and its distribution, with parameters § > 0 and v > 0, has the
cdf and pdf given by g(x) = gere 1"V and G(x)=1- e v (e D), respectively.

For x > 0, the NH-Gompertz (NH-Go) distribution has cdf expressed by

F(x):l—exp{l— [1+A9<ei:_1)r},

and pdf determined by

f(x) = arfe™ [1 + )W:_l)rl exp {1 - [1 + )»O(e”:—l)r}

4.3.4 NH-Normal Distribution

The last example refers to the normal distribution. The NH-Normal (NH-N) distribution
is obtained by taking G(-) and g(+) to be the cdf and pdf of the normal N(u;¢?) distribution.
Then, the NH-N distribution has cdf given by

F(x) =1—exp {1 —[1—-Alog[(1—-®[(x —p)/0]]]"}.

The corresponding pdf is

fay = 2 () {1 -Aog [1 - (34)] }agxexyp){l 12051 (_”)H}

For y = 0 and ¢ = 1, we obtain the standard NH-N distribution. Figure 4.1 illustrates possible

shapes of the density functions for some NH-G distributions.

4.4 Mathematical Properties

Although of the fact that the NH-G cdf and pdf have mathematical functions that are
widely available in modern statistical packages such as Maple and Mathematica, here we pro-
vide some mathematical properties of X.

4.4.1 A mixture representation

Frequently analytical and numerical derivations take advantage of power series for the pdf.
By using the power series for the exponential function and the generalized binomial expansion
we obtain the NH-G density function can be expressed as an infinite linear combination of
exponentiated-G (exp-G for short) density functions. Then, the pdf of X can be expressed as

f(X) = i Wiy N g1 (X;S)r 4.7)

m=0
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Figure 4.1: Plots of the density function for some parameter values. (a) NH-F(a; A;1.5;0.1), (b) NH-BXII(«; A; 3.5;10;0.5), (c) NH-
Go(a; A;0.1;5.5) and (d) NH-N(a; A;0.7;0.2) density functions.
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where

, (48)

etx)t]“( 3{“*’” (l — 1) (oc(i+ 1) 1) ( > n Z <k+] + 1)
(m+1)i! m Ji

po(c) =c/2,p1(c) = c(B8c+5)/24, p2(c) = c (c®> +5¢c+6)/48,p3(c) = c (15¢> + 150c? + 485¢ +
502) /5760, etc, and h,, = m g(x)G(x)" ! is the exp-G density function with power parameter

SN

HMg

m.
Note that if we use W[G(x)] = —1log[G(x)] or W[G(x)] = G(x)/[1 — G(x)] in Equation
(4.4), we obtain the same mixture, but with distincts coefficients w,, given by

o — i emmﬂ(n:wm (a(iﬂ) 1> [( >+ ZP <]+:1+ 1)

ij=0 ]

and

= (a(i+1) =1\ eaMTH(=1)T(j +m+2)
Z ( ) mlil(j+m+1)T(G+2)’

respectively.

4.4.2 Moments

Let Y;, be a random variable having the exp-G density function /,,(x). The formula for the
nth moment of X can be obtained from (4.7) and the monotone convergence theorem as

E(X") = Y wn E(Y ). «9)
m=0
Nadarajah and Kotz (2006) determined closed-form expressions for moments of several expo-
nentiated distributions that can be used to produce the NH-G moments.
An alternative formula for E(X") follows from (4.9) in terms of Qg(u) = G~!(u) as

E(X") = Y (m+1)wn Tum,
m=0
where Ty = [;° x"G(x)"g(x)dx = fol Qg (u)"u™du is the (n; m)th Probability Weighted Mo-
ment (PWM) of Y. The PWM for some distributions such as normal, beta, gamma and others
were obtained by Cordeiro and Nadarajah (2011b), which can be used to determine the NH-G
moments.

4.4.3 Incomplete Moments

For empirical purposes, the shapes of many distributions can be usefully described by what
we call the incomplete moment, namely m,(y) = [Y_ x" f(x)dx, which plays an important role

for measuring inequality, for example, mean dev1at10ns and income quantiles and Lorenz and
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Bonferroni curves. Here, we provide two alternative ways to compute the nth incomplete
moment. First, it follows from Equation (4.7) and the monotone convergence theorem by

=Y w1 (y), (4.10)
m=0
where J,,41(y f y XNy 41 (x)dx. Then, the sth incomplete moment of X depend only on the

sth incomplete moment of the exp-G distribution.
A second general formula for m;(y) can be derived by setting u = G(x) in Equation (4.7)

[ee]

Z m+ 1wy, Tn(y), (4.11)

where Ty, (y) = fOG(y) Qc(u)*u™du. In a similar way, the incomplete moments of the NH-G
distribution can be computed from Equation (4.11). Equations (4.10) and (4.11) are the main
results of this section.

4.4.4 Generating Function

Let Mx(t) = E(e'X) be the mgf of X. Then, using (4.7) and the monotone convergence theo-

rem we can write
2 W My ( (4.12)

where M,,+1(t) is the mgf of Y;,. Hence, Mx(t) can be determined from the generating function
of the exp-G distribution.
Alternatively, we can compute Mx () from (4.12) as

[ee]

Mx(t) = Y (m+ 1wy p(t,m), (4.13)

m=0

where

1

p(t,m) = /j; e G(x)" g(x)dx = ./0 exp [tQg(u)|u"du.

Equations 4.12 and 4.13 are the main results of this section.

4.4.5 Order Statistics

Order statistics are among the most fundamental tools in non-parametric statistics and
inference. They enter in the problems of estimation and hypothesis tests in a variety of ways.
Therefore, we now discuss some properties of the order statistics for the proposed class of
distributions. The pdf f.,(x) of the ith order statistic for a random sample Xj, Xy, -+, Xn
from the NH-G distribution is given by

fin(x) = Kf(x)F7 1 (x)[1 = F(x)]"" (4.14)
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where K = n!/[(i — 1)! (n — i)!]. Then,

fin(x Z < j '>f(x)13i+j1(x), (4.15)

Integrating the mixture (4.7) and using the monotone convergence theorem, the cdf of X
can be expressed as

x) = i mem+1(x)l (4.16)
m=0

where H,,11(x) = G(x)™"! is the exp-G cdf with power parameter m + 1. The pdf of X;,, can
be expressed from (4.7) and (4.16) as

n—i i+j—1
fi:n(x) =K Z(_ < ) [E wr 7+1 ] [Z Wiy G m+1] . 417)

j=0
Using the power series raised to a positive integer, we can write

i+j—1

[Z Wi, G(x)m+1 — Z fi—&-j—l,m G(x)i+j+m—1’
m=0 m=0

where fi 1 10 = w0+ ~and (form > 1)

m
firjo1m = (mwy) -1 Y lp(i+7) —mlwp fisi—1m—p
p=1
Hence,
n—i oo
fi:n(x) = Z Cjrm hi+j+r+m(x>/ (4.18)
j=0r,m=0
where
(-1)/n! (r+1) wr fisj—1,m

G = G (=i — ) G+ j+r+m)

Equation (4.18) is the main result of this section. It reveals that the pdf of the NH-G or-
der statistics can be expressed as a triple linear combination of exp-G density functions. So,
several mathematical quantities of X;., (order statistics like ordinary, incomplete and factorial
moments, mgf, mean deviations, among others) can be obtained from those quantities of exp-G
distributions.

4,5 Maximum Likelihood Estimation

Here, we determine the maximum likelihood estimates (MLEs) of the parameters of the
new family of distributions from complete samples only. Let xy,-- -, x, be observed values
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from the NH-G distribution with parameters &, A and §. Let ® = (x;1;€)" be the p x 1
parameter vector. The total log-likelihood function for © is given by

(@) = n+nlog(a)+nlog(A)+ ilog[g(xi;ﬁ)] — ilog[l — G(x;6)]

n
+ (a—1)) log{1l—Alog[l —G(x;;€)]} — 2{1 — Alog[l — G(x;€)]}*. (4.19)
i=1
The log-likelihood function can be maximized either directly by using the 0x program (sub-
routine MaxBFGS) (DOORNIK, 2007) or the SAS (PROC NLMIXED) or by solving the nonlinear
likelihood equations obtained by differentiating (4.19). The components of the score function
Uy(0) = (Uy = 94, /90, Uy = 3L, /0N, Ue = L, /0€) T are

u, = Z + ilog{l — Alog[l — G(x;;€)]}
i=1

o o n log[l — G(x;;€)]
Uy = 37— (=1 1; 1—Alog[l — G(x;;€)]

+ f{l — Alog[1 — G(x;;€)]}* og[1 — G(x;;€)],

i=1
u& _ i.xu —|—A¢x—1 Z{l xllg)[]‘ (x )

~Mogll— G <3c1,s>]}
B 4 {1—/\10g[1— Gxi; )1} 'G(xi8) | & xl,
06/\1:21 1- G(xlr 5) Z] xl/ 5)

where ¢(x;;€) = 9g(x;;€)/0& and G(x;; &) = 9G(x;;€) /&y, fork =1,-- -, p.
Note that for interval estimation on the model parameters, we require the observed infor-
mation matrix

uuux uzx/\ | ung

U,, U uy,
(@) = — | W U L the ]

Uego Ugr | Uge

whose elements can be computed numerically in softwares such as MAPLE (GARVAN, 2002),
MATLAB (SIGMON; DAVIS, 2002) and MATHEMATICA (WOLFRAM, 2003). These symbolic soft-
ware have currently the ability to deal with analytic expressions of formidable size and com-
plexity. Let 0 be the MLE of . Under standard conditions (COX; HINKLEY, 1974) that are
fulfilled for the proposed model whenever the parameters are in the interior of the param-
eter space, we can approximate the distribution of /7( — 0) by the multivariate normal
N, (0,K(0)7"), where K(0) = limy—,« J»(6) is the unit information matrix and p is the number
of parameters of the new distribution.
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4.6 Application

In this section, we illustrate the applicability of the NH-G distributions by considering two
different datasets used by different researchers. The first set consists of 63 observations of the
strengths of 1.5cm glass fibres, originally obtained by workers at the UK National Physical
Laboratory. Unfortunately, the units of measurement are not given in the paper. The data
are: 0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39,
1.42,1.48, 1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55,1.58, 1.59, 1.60, 1.61, 1.61,
1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67,1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76,
1.77,1.78, 1.81, 1.82, 1.84, 1.84, 1.89,2.00, 2.01, 2.24. These data have also been analyzed by
Smith and Naylor (1987). For these data, we fit the NH-Gompertz distribution. Its fit is also
compared with the widely known beta Weibull (BW) (FAMOYE; LEE; OLUMOLADE, 2005),
Kumaraswamy Weibull (KW) (CORDEIRO; EDWIN; NADARAJAH, 2010) and beta Gompertz
(BGo) (JAFARI; TAHMASEBI; ALIZADEH, 2014) models with corresponding densities:

o BW: f(x) = gigpxTe M 1 —en W

o KW: f(x) = abc/\xc—le—(/\x)c{l _ [1 _ e—(/\x)c]a}b—l;

=b (grx _ _ x
e BGo: f(x) = %[(1 e (€ 71)]11—1.

The second data set consists of 100 observations of breaking stress of carbon fibres (in Gba)
given by Nichols and Padgett (2006). The data are: 3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87,
147, 3.11, 4.42, 2.40, 3.15, 2.67,3.31, 2.81, 0.98, 5.56, 5.08, 0.39, 1.57, 3.19, 4.90, 2.93, 2.85, 2.77,
2.76,1.73,2.48, 3.68, 1.08, 3.22, 3.75, 3.22, 2.56, 2.17, 491, 1.59, 1.18, 2.48, 2.03, 1.69, 2.43, 3.39,
3.56, 2.83, 3.68, 2.00, 3.51, 0.85, 1.61, 3.28, 2.95, 2.81, 3.15, 1.92, 1.84, 1.22, 2.17, 1.61, 2.12, 3.09,
2.97,4.20,2.35,1.41,1.59, 1.12, 1.69, 2.79, 1.89, 1.87, 3.39, 3.33, 2.55, 3.68, 3.19, 1.71, 1.25, 4.70,
2.88, 296, 2.55, 2.59,297,1.57,2.17, 4.38, 2.03, 2.82, 2.53, 3.31, 2.38, 1.36, 0.81, 1.17, 1.84, 1.80,
2.05, 3.65. For these data, we fit the NH-Fr distribution defined in the section 4.3 and compare
it with the beta Fréchet (BFr) (NADARAJAH; GUPTA, 2004), Kumaraswamy Fréchet (KFr)
(MEAD; ABD-ELTAWAB, 2014) and Fréchet models with corresponding densities:

a\B a\B
e BFr: f(x) = Blzsi)x—ﬁ—le*”(}) 1 _e*(;) o1,

[

e KFr: f(x) = abBabx—P—le (1) [1 — e~a(1)" )1,
o Fr: f(x) = ﬁaﬁx*ﬁfle_(%)ﬁ'

The required numerical evaluations are carried out using the AdequacyModel package of
the R software. The MLEs of the model parameters for the fitted distributions and the Cramér-
von Mises (W*) and Arderson-Darling (A*) statistics are given in Tables 4.1. These test statistics
are described by Chen and Balakrishnan (1995). They are used to verify which distribution fits
better to the data. In general, the smaller the values of W* and A*, the better the fit. These
statistics indicate that the NH-Go and NH-Fr distributions are the best models to the first and
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second data sets, respectively. More information is provided by a visual comparison of the
histogram of the data and the fitted densities. The plots of the fitted density functions are
displayed in Figures 4.2 and 4.3. These plots indicate that the new distribution provides a
good fit to these data and is a very competitive model.

Table 4.1: MLEs (standard errors in parentheses) and A* and W* statistics.

Data Set Distribution Estimates A* W+

1n=63) | NH-Go(w,A,0,7) | 06553 0.0028 3.0742  4.1341 | 0.8811 0.1561
(0.2042  0.0006 2.1757  0.6901)
BW(a, b,c, \) 0.7711 1.9773 6.5542 0.5304 1.1975 0.2170
(0.2915  2.2727 1.5996 0.0974)
KW(a,b,c, M) 0.9983 1.8454 5.5443 0.5487 | 1.3570 0.2472
(0.4651 1.6403  1.8130  0.0754)
BGo(a,b,6, ) 4.4042 6.8651 0.0860 1.4513 1.4565 0.2655
(2.7398  6.1621 0.0734 0.6700)
1(n=100) NH-Fr(a, A, a, b) 8.6952 0.7845 0.7876 8.2523 | 0.6393 0.1173
(4.5775 0.5761 0.1965 5.4522)
BFr(w, B,a,b) 9.9856 0.9804 0.5146  13.6431 | 1.2690 0.2364
(2.3854 0.1827 0.2893  5.2818)
KFr(«, B, a,b) 0.5395 0.8604 10.3147 11.9438 | 1.5448 0.2867
(0.2177  0.1176 3.5310 5.5298)
Fr(«, B) 1.8941 1.7660 43032 0.7548
(0.1141  0.1118)

Source: Author’s elaboration.

4.7 Simulation

In this section, we conduct Monte Carlo simulation studies to assess on the finite sample
behavior of the MLEs of the NH-exponentiated exponential (NH-EE) distribution with param-
eters, o, A, B and . Its pdf is given by

_ aABse (1 —e )P lexp{l — [1 — Alog[l — (1 — e 9¥)F]]*}
IO = i A P Alogll — (1 e P

All results were obtained from 5000 Monte Carlo replications and the simulations were car-

ried out the R programming language. In each replication, a random sample of size n is drawn
from the NH-EE(«, A, a, b) distribution and the BFGS method has been used by the authors for
maximizing the total log-likelihood function I(#). The NH-EE random number generation was
performed using the inversion method. The true parameter values used in the data generat-
ing processes are « = 1.5,A = 2,4 = 0.5 and b = 2.5. The Table 4.2 reports the empirical
means, bias the mean squared errors (MSE) of the corresponding estimators for sample sizes
n = 25,50,100,200 and 400. From these figures in this table, we note that, as the sample size
increases, the empirical biases and mean squared errors decrease in all the cases analyzed, as
expected.
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Table 4.2: Empirical means, bias and mean squared errors

n Parameter Mean Bias MSE

25 1% 17336  0.2336  0.4686
A 2.0916 0.0916 0.0452
a 0.5719 0.0719 0.0953
b 29086 0.4086 0.9877
50 o 1.6311 0.1311 0.2613
A 2.0475 0.0475 0.0217
a 0.5439 0.0439 0.0530
b 27287 0.2287 0.5294
100 o 1.5545 0.0545 0.1380
A 2.0261 0.0261 0.0084
a 0.5332 0.0332  0.0295
b 2.6437 0.1437 0.2532
200 o 1.5445 0.0445 0.0837
A 2.0134 0.0134 0.0048
a 0.5137 0.0137 0.0146
b 2.5678 0.0678 0.1168
400 o 1.5106  0.0106 0.0385
A 2.0070 0.0070 0.0015
a 0.5113 0.0113 0.0073

b 2.5420 0.0420 0.0523

Source: Author’s elaboration.

4.8 Concluding Remarks

We propose another new class of distributions based on the distribution introduced by
Nadarajah and Haghighi (2011). We derive general mathematical properties of a new wider
NH-G family of distributions.This generator can extend several widely known distributions.
The NH-G density function can be expressed as a mixture of exponentiated-G density func-
tions. This mixture representation is important to derive several structural properties of this
family in full generality. Some of them are provided such as the ordinary and incomplete mo-
ments, quantile function and order statistics. For each baseline distribution G, our results can
be easily adapted to obtain its main structural properties. The estimation of the model parame-
ters is approached by the method of maximum likelihood and we fit some NH-G distributions
to two real data sets to demonstrate the potentiality of this family. We hope this generalization
may attract wider applications in statistics.
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