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Resumo

Neste trabalho, apresentamos inferência e diagnósticos para modelos espaciais. Inicial-

mente, os modelos espaciais lineares Gaussianos são estendidos para os modelos espaciais

lineares eĺıpticos, e desenvolve-se a metodologia de influência local para avaliar a sensibi-

lidade dos estimadores de máxima verossimilhança para pequenas perturbações nos dados

e/ou nos pressupostos do modelo. Posteriormente, considera-se os modelos espaciais li-

neares Gaussianos com repetições. Para estes modelos obteve-se em notação matricial

um fator de correção de Bartlett para a estat́ıstica da razão de verossimilhanças perfi-

ladas. É também realizada inferência para estimar o parâmetro de suavização da classe

de modelos da famı́lia Matérn. Os estimadores de máxima verossimilhança são obtidos,

e uma expressão expĺıcita para a matriz de informação de Fisher é apresentada, mesmo

quando o parâmetro de suavização da classe de modelos da famı́lia Matérn da estrutura

de covariância é estimado. Desenvolve-se técnicas de diagnósticos de influência local e

global para avaliar a influência de observações em modelos espaciais lineares Gaussianos

com repetições. Os conceitos de distância de Cook e alavanca generalizada são revisa-

dos e estendidos para estes modelos. Para influência local são consideradas perturbações

apropriadas na variável resposta e ponderação de casos. Finalmente, é descrita a mod-

elagem para os componentes espaciais dos campos aleatórios Markovianos nos modelos

aditivos generalizados de locação escala e forma. Isto permite modelar qualquer ou todos

os parâmetros da distribuição para a variável resposta utilizando as variáveis explanatórias

e efeitos espaciais. Alguns estudos de simulações são apresentados e as metodologias são

ilustradas com conjuntos de dados reais.

Palavras-chave: Correções de Bartlett. Distribuições eĺıpticas. GAMLSS. Geoestat́ıstica.

Influência global. Influência local. Máxima verossimilhança. Medidas repetidas.



Abstract

In this work, we present inference and diagnostics in spatial models. Firstly, we extend

the Gaussian spatial linear model for the elliptical spatial linear models, and present the

local influence methodology to assess the sensitivity of the maximum likelihood estimators

to small perturbations in the data and/or the spatial linear model assumptions. Secondly,

we consider the Gaussian spatial linear models with repetitions. We obtain in matrix

notation a Bartlett correction factor for the profiled likelihood ratio statistic. We also

present inference approach to estimate the smooth parameter from the Matérn family class

of models. The maximum likelihood estimators are obtained, and an explicit expression

for the Fisher information matrix is also presented, even when the smooth parameter for

Matérn class of covariance structure is estimated. We present local and global influence

diagnostics techniques to assess the influence of observations on Gaussian spatial linear

models with repetitions. We review concepts of Cook’s distance and generalized leverage

and extend it. For local influence we consider two different approach and for both we

consider appropriated perturbation in the response variable and case weight perturbation.

Finally, we describe the modeling and fitting of Markov random field spatial components

within the generalized additive models for locations scale and shape framework. This

allows modeling any or all of the parameters of the distribution for the response variable

using explanatory variables and spatial effects. We present some simulations and real data

sets illustrate the methodology.

Keywords: Bartlett correction. Elliptical distributions. GAMLSS. Geostatistical. Global

influence. Local influence. Maximum likelihood. Repeated measures.
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Chapter 1

Preliminary

1.1 Resumo

Este caṕıtulo apresenta uma introdução e breve revisão bibliográfica sobre inferência

e diagnósticos em modelos espaciais. Apresenta os principais objetivos do trabalho, a

organização do mesmo e os recursos computacionais utilizados.

1.2 Introduction

Spatial statistics are useful in subjects as diverse as climatology, ecology, economics,

environmental and earth sciences, epidemiology, image analysis, agriculture and more.

This field of study is concerning statistical methods that use space and spatial relation-

ships such as distance, area, volume, length, height, orientation, centrality and more.

The most well known branches in spatial statistics are discrete spatial variation, spatial

point processes and geostatistics. Gaetan and Guyon (2010) covers these types of spatial

analysis.

The study of discrete spatial variation, where the variables are defined on discrete

domains, such as regions, regular grids or lattices, are studied by the Markov random field

theory. Extensive theoretical and practical details are provided by Rue and Held (2005).

Another area in spatial statistics is the spatial point process. A spatial point process is a

set of locations, irregularly distributed within a designated region and presumed to have

been generated by some form of stochastic mechanism, (Diggle, 2003).

Geostatistics study a response variable (and potentially explanatory variables) that are

measured at points in space. Important work by Krige (1951) and Matheron (1963) laid

18
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the foundation for the field of geostatistics where some of the first methods for modelling

spatial dependence were proposed, see (Schabenberger and Gotway, 2005) for more details.

The methodology developed there after is referred in the literature as“kriging”. Isaaks and

Srisvastava (1989) says that geostatistics offers a way of describing the spatial continuity

of natural phenomena and provides adaptations of classical regression techniques to take

advantage of this continuity.

For more details about inference methods and applications of these models, see for

example, (Mardia and Marshall, 1984) that described the maximum likelihood method

for fitting the linear model when residuals are correlated and when the covariance among

the residuals is determined by a parametric model containing unknown parameters. Isaaks

and Srisvastava (1989) and Cressie (1993) contents coverage the principles of Geostatis-

tics. Waller and Gotway (2004) provided a text that moves from a basic understanding of

multiple linear regression to an application-oriented introduction to statistical methods

used to analyze spatially referenced health data. Zhang (2004) showed inconsistent esti-

mation and asymptotically equal interpolations in model-based geostatistics. Diagnostic

techniques are discussed in Cerioli and Riani (1999), Militino et al. (2006), Uribe-Opazo

et al. (2012) and Filzmoser et al. (2014). Among references which have taken a variety of

approaches we mention Stein (1999), Journel and Huijbregts (2004), Schabenberger and

Gotway (2005), Webster and Oliver (2007) and Diggle and Ribeiro Jr. (2007).

Problems of identifiability sometimes are present in geostatistical models. Cressie

(1993) presents a practical illustration of non-identifiability of the deterministic and

stochastic components contributing to a data set. Genton and Zhang (2012) showed some

identifiability problems in skew-Gaussian and elliptical spatial linear models. Perrin and

Meiring (1999) discussed identifiability issues for the class of models with gemometrical

anisotropy. In the case of multivariate geostatistical models, Diggle and Ribeiro Jr. (2007)

said that even very simple multivariate constructions quickly lead to models with either

large numbers of parameters and consequent problems of poor identifiability, or poten-

tially severe restrictions on the allowable form of cross-correlation structure. According to

the same authors, replicated observations are needed at each sampling location in order

to identify the required transformation.
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There are some works that dealed with non-Gaussian and/or bayesian geostatistical

models, for instance, a model-based approach to geostatistics for non-Gaussian data based

on generalized linear mixed models has been advanced by Diggle et al. (1998) in a Bayesian

inferential framework, see also (Banerjee et al., 2014; Diggle and Ribeiro Jr., 2007). Mi-

nozzo and Fruttini (2004) proposed an extension of the proportional covariance model

following a hierarchical model-based approach. Zhu et al. (2005) proposed maximum like-

lihood inference using a Monte Carlo EM algorithm for a spatio-temporal framework.

Reich and Fuentes (2007) considered a framework in which they used a stick-breaking

prior in a semiparametric Bayesian context. Other references are Bailey and Krzanowski

(2000) and Christensen and Amemiya (2002).

An alternative to kriging in geostatistics is the smoothing techniques popularized by

Hastie and Tibshirani (1990), and also by the P-spline approach of Eilers and Marx (1996).

The P-spline models were extended to smoothing spatial data, which requires use of tensor

product and row-wise Kronecker product (Eilers (2003); Currie et al. (2006); Eilers and

Marx (2010)). Thin plate regression splines are another candidate since they are invariant

to rotation of the covariate space, Wood (2006).

The generalized additive models for location scale and shape (GAMLSS) introduced

by Rigby and Stasinopoulos (2005) provide spatial modelling facilities and a very general

and flexible system for modelling a response variable. GAMLSS are (semi) parametric

univariate regression models, where all the parameters of the assumed distribution for the

response can be modelled as additive functions of the explanatory variables. The addtive

terms that can be incorporated are for instance, P-splines, cubic splines, simple random

effects and varying coefficient.

GAMLSS has been used in a variety of fields including: actuarial science, biology, bio-

sciences, energy economic, genomics, finance, fisheries, food consumption, growth curves

estimation, marine research, medicine, meteorology, rainfalls, vaccines. Beyerlein et al.

(2008) present GAMLSS to assess increase in childhood body mass index. Fenske et al.

(2008) used GAMLSS in the detection of risk factors for obesity in early childhood with

quantile regression methods for longitudinal data. Verschuren et al. (2010) used GAMLSS

To establish reference values and reference curves for anaerobic performance and agility
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in ambulatory children and adolescents with cerebral palsy.

1.3 Objective and organization

The aim of this work is to present different frameworks and techniques to model spatial

data. The whole thesis is written with independent chapters and each chapter has new

research contribution. The Chapters are related in the sense they talk about spatial mod-

elling and the notation is consistent inside each Chapter. Chapter 2 presents the elliptical

spatial linear models for one single realization, an extension of the Gaussian spatial linear

model and presents the local influence methodology. Chapters 3, 4 and 5 present inference,

local influence diagnostics and global diagnostics, respectively, on Gaussian spatial linear

models with repetitions. These Chapters are related to geostatistical models. Chapter 6

presents the GAMLSS in the scope of Markov random fields.

More specifically, in Chapter 2 we extend the Gaussian spatial linear model to the

elliptical spatial linear models, for the case where we have no repetitions. For this case

we also use the local influence methodology to assess the sensitivity of the maximum

likelihood estimators to small perturbations in the data and/or the spatial linear model

assumptions. In Chapter 3 we present inference techniques in Gaussian spatial linear

models with repetitions. Mainly we present hypothesis test and estimation approach to

estimate the smooth parameter from the Matérn family class of models. The maximum

likelihood estimators are obtained, and an explicit expression for the Fisher information

matrix is also presented, even when the smooth parameter for Matérn class of covariance

structure is estimated. Chapter 4 and 5 present local and global diagnostics techniques,

respectively, to assess the influence of observations on Gaussian spatial linear models with

repetitions. We review concepts of Cook’s distance based on the likelihood and Q-function,

local influence for two different approaches and generalized leverage. Moreover, for local

influence we consider appropriate perturbation in the response variable, in the scale matrix

and case weight perturbation. Chapter 6 describes the modelling and fitting of Markov

random field spatial components within the GAMLSS framework. The methodologies are

illustrated with a real data set, and for some situations we present simulations. In Chapter

7 we present some conclusion remarks and future research. Each Chapter presents own
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Appendices and a general Bibliography is presented in the end.

1.4 Computing plataform

We implemented the obtained results in the R statistical software R Core Team (2015).

For the Monte Carlo simulation presented in Chapter 3 we use Ox matrix programming

language (Cribari-Neto and Zarkos, 2003; Doornik, 2006). For graphical representation of

results, we use the R software. For Chapter 6 we created the new package gamlss.spatial

and the latest version of this software is freely available at http://www.R-project.org.

http://www.R-project.org


Chapter 2

Influence diagnostics in elliptical spatial li-

near models

2.1 Resumo

Neste caṕıtulo, os modelos espaciais lineares Gaussianos foram estendidos para a

famı́lia de distribuições eĺıpticas, a qual foi considerada para estimar os parâmetros que

definem a estrutura de dependência espacial em dados georreferenciados. Além disso, por

meio da metodologia de influência local foi posśıvel avaliar a sensibilidade dos estimadores

de máxima verossimilhança a pequenas perturbações nos dados e/ou nas suposições do

modelo espacial linear. A metodologia foi ilustrada com um conjunto de dados reais. Os

resultados permitiram concluir que a presença de observações at́ıpicas no conjunto de

dados amostrados tem forte influência, alterando a estrutura de dependência espacial.

Também foi inclúıdo um estudo de simulação.

2.2 Introduction

Spatial statistics is a rapidly developing field which involves the quantitative analysis

of spatial data and the statistical modelling of spatial variability and uncertainty. Appli-

cations of spatial statistics can be found not only for environmental disciplines such as

agriculture, geology, soil science, hydrology, ecology, oceanography, forestry, meteorology

and climatology, but also socio-economic disciplines such as human geography, spatial

econometrics, epidemiology and spatial planning. Recent proposals have discussed the use

of Gaussian spatial linear models to study the structure of dependence in spatially ref-

23
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erenced data. For more details about estimation, inference methods and applications of

these models, see, for example, (Cressie, 1993; Isaaks and Srisvastava, 1989; Mardia and

Marshall, 1984; Schabenberger and Gotway, 2005; Waller and Gotway, 2004; Webster and

Oliver, 2007). Diagnostic techniques are discussed in (Cerioli and Riani, 1999; Filzmoser

et al., 2014; Militino et al., 2006; Uribe-Opazo et al., 2012).

Certainly the multivariate normal distribution is useful in many cases, and most of

the statistical inference for continuous variables has been developed under the assumption

of normality. This is particularly the case of multivariate analysis, mixed effects models

and linear regression. However it is well known that the normal distribution is not always

suitable for modelling multivariate continuous data (Lange and Sinsheimer, 1993; Lange

et al., 1989). In this Chapter we extend the model proposed by Mardia and Marshall

(1984), relaxing the assumption of normality. We consider the spatial linear model under

the family of elliptical distributions. This class that contains distributions such as the

normal one, t, power exponential and slash, has received greater interest in the literature

(Cambanis et al., 1981; Fang and Anderson, 1990; Fang et al., 1990; Fang and Zhang,

1990; Gupta and Varga, 1993; Kelker, 1970). The family of elliptical distributions offers a

more flexible framework for modelling continuous spatial data. This class contains many

distributions with heavier tails than the normal one, allowing us to model tails that are

frequently observed in multivariate symmetric data sets.

To assess the effect of small perturbations in the model (or data) on the parameter

estimates, Cook (1986) has proposed an interesting method, named local influence. This

analysis does not involve recomputing the parameter estimates for each case deletion,

so it is often computationally simpler. Several authors have extended the local influence

method to various regression models. Paula (1993) developed local influence on linear

models with restriction in the parameters in the form of linear inequalities. Lesaffre and

Verbeke (1998) extended the local influence methodology to normal linear mixed mo-

dels in repeated-measurement context and under the case-weight perturbation scheme.

Influence diagnostics based on the likelihood displacement have been developed for mul-

tivariate elliptical linear models by Galea et al. (1997) and by Liu (2000). Galea et al.

(2003) presented influence diagnostics in univariate elliptical linear regression models, and
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mentioned that the lack of correlation among the errors in the multivariate elliptical dis-

tribution is not equivalent to independent elliptical errors, as occurs in the normal case.

Galea et al. (2005) studied diagnostics in symmetrical nonlinear models. Osorio et al.

(2007) derived local influence curvatures under various perturbation schemes for elliptical

linear models with longitudinal structure. Ibacache-Pulgar and Paula (2011) applied the

approach of local influence in Student-t partial linear models.

So, in this Chapter we extend the Gaussian spatial model relaxing the assumption of

normality of the observations, considering the family of elliptical distributions, which pro-

vides greater flexibility in modeling tails or extremes that are frequently observed in mul-

tivariate symmetric data sets. Apart from this flexibility, it preserves several well-known

properties of the normal distribution allowing one to derive attractive explicit solution

forms. More specifically, in this paper, we study and develop spatial linear models where

the random errors follow an elliptical distribution, generalizing the previous Gaussian spa-

tial linear models considered in the literature. On the other hand, there are only a few

works in the literature about influence diagnostics in geostatistical analysis (Christensen

et al., 1992a; Diamond and Armstrong, 1984; Warnes, 1986). Recently, Uribe-Opazo et al.

(2012) used diagnostic techniques to assess the sensitivity of the maximum likelihood

estimators, covariance functions and linear predictor to small perturbations in the data

and/or in the Gaussian spatial linear model assumptions and Borssoi et al. (2011) applied

local influence of explanatory variables in the same model.

We also discuss maximum likelihood estimation and some diagnostic tools such as

local influence and generalized leverage. Moreover, we consider the perturbation in the

response variable proposed by Zhu et al. (2007). The Chapter unfolds as follows. Section

2.3 presents the Elliptical spatial linear model. In Section 2.4, the maximum likelihood

estimators are obtained, and an explicit expression for the Fisher information matrix is

also presented. The likelihood ratio test is briefly discussed. Section 2.5 reviews concepts

of local influence and generalized leverage. Furthermore, we discuss the selection of an

appropriate perturbation scheme by using the methodology proposed by Zhu et al. (2007).

Section 2.6 contains an application, with real data, to illustrate the methodology developed

in this paper. A simulation study is also included. Finally, Section 2.7 contains some
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concluding remarks. Calculations are presented in the appendices.

2.3 The Elliptical Spatial Linear Model

We say that the random vector Y, n×1 dimensional has an elliptical distribution with

location parameter µ an n× 1 vector and an n× n scale matrix Σ, if its density is given

by

f(Y;µ,Σ) = |Σ|−1/2g{(Y − µ)>Σ−1(Y − µ)}, Y ∈ Rn, (2.1)

where the function g : R → [0,∞) is such that
∫∞
0
un−1g(u2)du < ∞. The function

g is known as density generator. For a vector Y distributed according to the density

(2.1), we use the notation Y ∼ Eln(µ,Σ; g) or simply Eln(µ,Σ). Kelker (1970) and

Cambanis et al. (1981) have discussed many properties of the elliptical distributions. The

characteristic function is exp(it>µ)ϕ(t>Σt) for some function ϕ, where i =
√
−1. If it

exists, E(Y) = µ and Var(Y) = cgΣ, where cg = −2ϕ(1)(0) is a positive constant.

The random vector Y has the representation Y
d
= µ + RAU , where R is a positive

random variable, U has the uniform distribution on u>u = 1, that is U
d
= PU , for any

orthogonal matrix P; R and U are independent and A is a nonsingular matrix such that

AA> = Σ. The moments of R are related to the characteristic function. For example,

E(R2) = −2nϕ(1)(0), E(R4) = 4n(n + 2)ϕ(2)(0), E(R6) = −8n(n + 2)(n + 4)ϕ(3)(0)

and E(R8) = 16n(n + 2)(n + 4)(n + 6)ϕ(4)(0). If Y has finite fourth moments each

component of Y, zi, has zero skewness and the same kurtosis, 3{(ϕ(2)(0)/[ϕ(1)(0)]2)−1} =

3{(E[(zi − µi)4]/3[var(zi)]
2)− 1} = 3κg, for i = 1, . . . , n, where 3κg is called the kurtosis

parameter of the corresponding elliptical distribution with density generator g.

In the case where µ = 0 and Σ = In (identity matrix of dimension n), we obtain the

spherical family of densities.

To model a data set with spatial correlation structure (Mardia and Marshall, 1984),

we consider an Elliptical stochastic process {Y(s), s ∈ D}, where D is a subset of Rh,

the h−dimensional Euclidean space, and Y ∼ Eln(µ,Σ, g). It is supposed that data

Y (s1), . . . , Y (sn) of this process are observed at known sites (locations) si, for i = 1, . . . , n,

where si is an h−dimensional vector of spatial site coordinates, and generated from the
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model,

Y (si) = µ(si) + ε(si),

where both the deterministic term µ(si) and the stochastic term ε(si) may depend on the

spatial location in which Y (si) is observed. We assume that the stochastic errors have

zero mean, E{ε(si)}=0, and that the variation between spatial points is determined by a

covariance function C(si, sj)=cov{ε(si), ε(sj)}.

Suppose that for some known functions of si, x1(si), . . . , xp(si), the mean of the stochas-

tic process is

µ(si) =

p∑
j=1

xj(si)βj,

where β1, . . . , βp are unknown parameters to be estimated. In addition, each family of

covariance functions C(si, sj), is fully specified by a q−dimensional parameter vector

φ = (φ1, . . . , φq)
>. In our case q = 3. We use the following notations: Y (si) = yi,

Y = (y1, . . . , yn)>, xij = xj(si), x>i = (xi1, . . . , xip), X as the n × p matrix with ith

row x>i , β = (β1, . . . , βp)
>, εi = ε(si), and ε = (ε1, . . . , εn)>, with i = 1, . . . , n and

j = 1, . . . , p. Thus, µ(si) = x>i β and then yi = x>i β + εi, i = 1, . . . , n. Equivalently, in

matrix notation, we have the spatial linear model

Y = Xβ + ε. (2.2)

Then, E(ε) = 0 and the scale matrix of ε is Σ = [(σij)], where σij is proportional to

C(si, sj). We assume that Σ is nonsingular and that X has a full rank. We concentrate

on a particular parametric form for the scale matrix given by

Σ = Σ(φ) = φ1In + φ2R, (2.3)

where φ1 can be viewed as a measurement error variance or a nugget effect (the magnitude

of the apparent discontinuity at the origin), φ2 is defined as sill (the value for distances
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beyond the range value), R = R(φ3) = [(rij)], is an n×n symmetric matrix with diagonal

elements rii = 1, rij = φ−12 C(si, sj) if φ2 6= 0, rij = 0 if φ2 = 0 for i 6= j = 1, . . . , n and φ3

is a function of the range of the model. This parametric form occurs for several isotropic

processes, where C(si, sj) is defined via the function C(dij) = φ2rij, with dij = ‖si − sj‖

being the Euclidean distance between the points si and sj. For example, the Matérn is a

covariance function particulary attractive given by

cgC(dij) =


cgφ2

2κ−1Γ(κ)
(dij/φ3)

κKκ (dij/φ3) , dij > 0,

cg(φ1 + φ2), dij = 0,

where once again the parameters are assumed to be non-negative, i.e., φ1 ≥ 0, φ2 ≥ 0

and φ3 ≥ 0 ; Kκ(u) = 1
2

∫∞
0
xκ−1e−

1
2
u(x+x−1)dx is the modified Bessel function of the third

kind of order κ (Gradshteyn and Ryzhik, 2000), where κ > 0 is fixed, and cg is a constant

that depends on g. The Gaussian covariance function is a special case when κ→∞ and

it is given by

cgC(dij) =


cgφ2 exp

[
− (dij/φ3)

2] , dij > 0,

cg(φ1 + φ2), dij = 0.

The exponential covariance is also a special case of Matérn family, it corresponds to κ = 1
2

and can be written more simply as

cgC(dij) =


cgφ2 exp [− (dij/φ3)] , dij > 0,

cg(φ1 + φ2), dij = 0.

Under this specification the variance-covariance matrix of Y is given by Var(Y) = cg{φ1In+

φ2R}. For the normal case, cg = 1. Other examples of covariance function that also yield

the form (2.3) can be viewed at Diggle and Ribeiro Jr. (2007). Although we work in terms

of covariances functions, the variogram, defined by γ(dij) = cg{C(0) − C(dij)}, can be

used.
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2.4 Maximum likelihood estimation (MLE)

Under the hypothesis that in (2.2) the errors have an elliptical distribution, then

Y ∼ Eln(Xβ,Σ, g), has density given by

f(Y,θ) = |Σ|−1/2g{(Y −Xβ)>Σ−1(Y −Xβ)}, Y ∈ Rn, (2.4)

where θ = (β>,φ>)> and φ = (φ1, φ2, φ3)
>. The unknown model parameters, θ, may be

estimated by maximizing the corresponding log-likelihood function given by

L(θ) = −1

2
log |Σ|+ log g(δ), (2.5)

where δ = (Y−Xβ)>Σ−1(Y−Xβ), is known as Mahalanobis distance and Σ is defined

in (2.3).

Assuming that g is continuous and differentiable, we can define the functions

Wg(δ) =
∂ log g(δ)

∂δ
=
g′(δ)

g(δ)
and W

′

g(δ) =
∂Wg(δ)

∂δ
,

that depend on the distribution of the elliptical contour family assumed. Table 2.1 shows

functions g(δ) and Wg(δ) for some elliptical distributions, where c is a normalizing con-

stant.

Table 2.1: Functions g(δ) and Wg(δ) for some elliptical distributions.

Distribution g(δ) Wg(δ) Parameters

Power Exponential (λ)* c exp
(
−δλ/2

)
−1

2
λδλ−1 λ 6= 1/2

Normal c exp (−δ/2) −1
2

Generalized t (ν, γ)* γ−n/2(1 + δ/γ)−(n+ν)/2 −1
2
(ν + n)/(γ + δ) ν, γ > 0

t (ν)* c(1 + δ/ν)−(n+ν)/2 −1
2

(
ν+n
ν+δ

)
ν > 0

*λ, ν and γ are parameters of the respective distributions.

Score functions for the spatial linear models with distribution of the elliptical contour

family are given by

U(β) =
∂L(θ)

∂β
= −2Wg(δ)X

>Σ−1(Y −Xβ) and U(φ) =
∂L(θ)

∂φ
,
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where
∂L(θ)

∂φj
= −1

2
tr

(
Σ−1

∂Σ

∂φj

)
−Wg(δ)(Y − Xβ)>Σ−1

∂Σ

∂φj
Σ−1(Y − Xβ) is the jth

element of U(φ), for j = 1, 2, 3.

Unfortunately, the equation U(φ) = 0 does not lead to an explicit solution for φ. A

common practice is to maximize the concentrated log likelihood obtained as follows. Given

Σ, for any density generating function g, the log-likelihood function (2.5) is maximized

at

β̂ = (X>Σ−1X)−1X>Σ−1Y. (2.6)

By substituting the expression (2.6) into the log-likelihood function, we obtain a concen-

trated log-likelihood

Lc(φ) = −1

2
log |Σ|+ log g(δ̂),

where δ̂ = (Y − Xβ̂)>Σ−1(Y − Xβ̂) and β̂ is given in 2.6. Lc(φ) must be maximized

numerically with respect to φ1, φ2 and φ3.

Given φ̂, the MLE of φ, the MLE of β is

β̂ = (X>Σ̂
−1

X)−1X>Σ̂
−1

Y, (2.7)

where Σ̂ = Σ(φ̂). Asymptotic standard errors can be calculated by inverting either the

observed information matrix or the expected information matrix. For the elliptical distri-

bution, the expected information matrix is given by (Lange et al., 1989; Mitchell, 1989)

K(θ) =

K(β) 0

0 K(φ)

 ,

where

K(β) =
4dg
n

X>Σ−1X
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and K(φ) = [(kij(φ))], with

kij(φ) =
bij
4

(
4fg

n(n+ 2)
− 1

)
+

2fg
n(n+ 2)

tr

(
Σ−1

∂Σ

∂φi
Σ−1

∂Σ

∂φj

)
,

dg = E[Wg(U)2U ], fg = E[Wg(U)2U2], where U = ||Y||2, Y ∼ Eln(0, In, g)

and bij = tr

(
Σ−1

∂Σ

∂φi

)
tr

(
Σ−1

∂Σ

∂φj

)
, for i, j = 1, 2, 3.

For some distributions of the elliptical contour family it is possible to obtain closed

expressions for the expected values dg and fg. For t distribution, dg =
n

4

ν + n

ν + n+ 2
and

fg =
n(n+ 2)

4

ν + n

ν + n+ 2
, and for normal distribution dg =

n

4
and fg =

n(n+ 2)

4
.

The covariance matrix of β̂, [see (2.7)], can be estimated by,

Vβ = [(vij)] = (n/4dg)(X
>Σ̂
−1

X)−1.

Then, a 100(1− α)% confidence interval for βj is given by

β̂j ± z(1−α/2)
√
vjj,

where z(1−α/2) is the 1−α/2 percentage point from a standard normal distribution. Simi-

larly we can construct confidence intervals for φj, for j = 1, 2, 3.

Also, for the Elliptical spatial linear model, we can consider linear hypothesis of the

form H : Cβ = a, where C is a full rank matrix of contrasts, of known order q× p, range

q ≤ p while a is a known vector of order q × 1. To test the hypothesis H we can use the

likelihood ratio test, given by

τE = log
{ |Σ̃|
|Σ̂|

}
+ 2 log

{g(δ̂)

g(δ̃)

}
, (2.8)

where, δ̂ = (Y −Xβ̂)>Σ̂
−1

(Y −Xβ̂) and δ̃ = (Y −Xβ̃)>Σ̃
−1

(Y −Xβ̃), with β̃ and Σ̃

being the MLE of β and Σ, under H. The asymptotic distribution of τE is χ2(q) under

H. For the t spatial linear model the statistics (2.8) takes the form

τt = log
{ |Σ̃|
|Σ̂|

}
+ (n+ ν) log

{ν + δ̃

ν + δ̂

}
,
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and for the normal spatial linear model, τN = log(|Σ̃|/|Σ̂|) + (δ̃ − δ̂).

Finally, an important goal in studies that generate spatial data, is a future measure-

ment prediction at a new location inside the same spatial region known as kriging. Let

Z0 = Z(s0) be a future observation at location s0 ∈ D. The mean of Z0 is x>0 β, where

x>0 = (x01, . . . , x0p) and x0j = xj(s0), for j = 1, . . . , p. The minimum mean square error

predictor [best linear unbiased (Schabenberger and Gotway, 2005)] is

p(s0,θ) = x>0 β + C>0 Σ−1(Y −Xβ),

where, C>0 = (C(d10), . . . , C(dn0)), with di0 = ‖si − s0‖, for i = 1, . . . , n. So, a point

estimator of Z0 is

Ẑ0 = p(s0, θ̂) = x>0 β̂ + Ĉ>0 Σ̂
−1

(Y −Xβ̂).

An alternative expression for Ẑ0 using robust estimators of C0, β and Σ is given in

Atkinson and Riani (2004) and Barnett (2004).

2.5 Influence diagnostics

An important step in spatial data analysis is the examination of possible deviations of

the assumptions of the statistical model, as well as the detection of atypical observations

which have a disproportionate influence on the results of statistical analysis. There are

various techniques to assess the influence of perturbations in a data set and in the model

assumptions.

There are some papers in the literature on diagnostic influences on spatial linear mo-

dels. Diamond and Armstrong (1984) and Warnes (1986) observed the sensitivity of pre-

dictions to perturbations in the covariance function. Christensen et al. (1992a) discussed

case deletion diagnostics for detecting observations that are influential for prediction based

on universal kriging, while Christensen et al. (1993) considered diagnostic with the dele-

tion of points to estimate the parameters of the covariance function by the method of

restricted maximum likelihood. More recently, Cerioli and Riani (1999) and Militino et al.
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(2006) showed that case deletion diagnostics do suffer from masking and suggest robust

procedures based on subsets of data free from outliers. In this direction, Filzmoser et al.

(2014) proposed the Mahalanobis distance to identify multivariate outliers. Borssoi et al.

(2011) and Uribe-Opazo et al. (2012) discussed diagnostic techniques, using local influence

methodology, to evaluate the sensitivity of MLE, the covariance functions and the linear

predictor under small perturbations in the data and/or spatial linear model with normal

distribution.

2.5.1 Local influence

The local influence method suggested by Cook (1986) evaluates the simultaneous effect

of observations on the ML estimator without removing it from the data set.

Let ω be a vector of perturbation r×1 ∈ Ω subset of Rr, and the perturbed statistical

model M = {f(Y,θ,ω) : ω ∈ Ω}, where f(Y,θ,ω) is the density function of Y (2.4)

perturbed by ω and L(θ,ω) = log f(Y,θ,ω) the correspondent log-likelihood function.

Denoting the vector of no perturbation (the null vector) by ω0, we suppose that L(θ,ω0) =

L(θ) given in (2.5).

The influence of the perturbation ω on the ML estimator can be evaluated by the

likelihood displacement given by LD(ω) = 2{L(θ̂)− L(θ̂ω)}, where θ̂ is the ML estima-

tor of θ = (β>,φ>)> in the postulated model, with β = (β1, . . . , βp)
>, φ = (φ1, φ2, φ3)

>

and θ̂ω is the ML estimator of θ in the perturbed model by ω. Cook (1986) proposed to

study the local behavior of LD(ω) around ω0 and shows that the normal curvature Cl of

LD(ω) at ω0 in direction of some unit vector l, is given by Cl = Cl(θ) = 2|l>∆>L−1∆l|,

with ||l|| = 1, where L is the observed information matrix (given in Appendix A), eval-

uated at θ = θ̂ and ∆ is a (p + 3) × r matrix given by ∆ = (∆>β ,∆
>
φ )>, where

∆β = ∂2L(θ,ω)/∂β∂ω> and ∆φ = ∂2L(θ,ω)/∂φ∂ω>, evaluated at θ = θ̂ and at

ω = ω0.

The plot of the elements |lmax| versus i (order of data) can reveal what type of per-

turbation has more influence on LD(ω), in the neighborhood of ω0, (Cook, 1986). Even

considering Ci = 2|fii|, where fii form the main diagonal of the matrix F = ∆>L−1∆,

can be used the index plot of Ci to evaluate the presence of influential observations.
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Since Cl is not invariant under uniform change of scale, Poon and Poon (1999) proposed

the conformal normal curvature Bl = Cl/tr(2F), (Zhu and Lee, 2001). An interesting

property of conformal curvature is that for any direction unit l, it follows that 0 ≤ Bl ≤ 1.

This allows, for example, comparison of curvatures among different elliptical models. We

denote by Bi = 2|fii|/tr(2F) the conformal curvature in the unit direction with i−th

entry 1 and all other entries 0. According to Zhu and Lee (2001), the ith observation

is potentially influential if Bi > B̄ + 2sd(B), where B̄ =
∑n

i=1Bi/n and sd(B) is the

standard deviation of B1, . . . , Bn.

In this paper we consider as perturbation scheme the model shift in mean, i.e. Y =

µ(ω) + ε, with µ(ω) = Xβ + Aω where A, is an n × n matrix that does not depend

on β or on ω. In this case ω0 = 0. Equivalently we can write Yω = Xβ + ε, with

Yω = Y + (−1)Aω, that corresponds to a perturbation scheme of the response vector.

The ∆β and ∆φ matrices for this perturbation scheme are presented in the Appendix

A.2. In Appendix A.3, using the proposal of Zhu et al. (2007), we show that A = Σ1/2

produces an adequate perturbation scheme.

2.5.2 Generalized Leverage

The general concept of a generalized leverage is related to a certain value observed

yi, over the corresponding adjusted value ŷi, see for example (Hoaglin and Welsh, 1978;

Ross, 1987; St. Laurent and Cook, 1992).

Based on the generalized leverage by Wei et al. (1998), which is defined as GL(θ̂) =

∂Ŷ/∂Y> = [(∂ŷi/∂yj)] where Ŷ = µ(θ̂) and θ̂ is an estimator of θ. The element (i, j) of

GL(θ̂), is the instantaneous rate of change in ith predicted values with respect to the jth

value of the response.

Let θ̂ be the maximum likelihood estimator of θ, assuming it exists and it is unique,

and assuming that the log-likelihood function has continuous second derivatives with

respect to θ and Y, and using results from Wei et al. (1998) it can be shown that the

generalized leverage may be expressed as GL(θ) = GL1 +GL2, where

GL1 = X(Lββ − LβφL−1φφLφβ)−1(−LβY ) and

GL2 = X(Lββ − LβφL−1φφLφβ)−1(LβφL
−1
φφLφY ),
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with LβY = −2X>Σ−1{Wg(δ)Σ + 2W
′
g(δ)εε

>}Σ−1 and LφY =
∂2L(θ)

∂φ∂Y>
, with elements

∂2L(θ)

∂φj∂Y>
= −2ε>Σ−1

∂Σ

∂φj
Σ−1{W ′

g(δ)εε
> +Wg(δ)Σ}Σ−1 for j = 1, 2, 3.

Note that if Lβφ ≈ 0 then GL(θ) ≈ XL−1ββ (−LβY ). Furthermore, if we use the Fisher

information matrix K(θ) instead of −L, we have GL(θ) ≈ (n/4dg)X(X>Σ−1X)−1LβY .

For the normal case, dg = n/4, LβY = X>Σ−1 and then GL(θ) ≈ X(X>Σ−1X)−1X>Σ−1,

that coincides with the generalized leverage matrix proposed by Martin (1992).

The diagonal elements of the matrix GL ˆ(θ), i.e., the elements GLii for i = 1, . . . , n, are

used as diagnostics tool of the influence in the vector Ŷ. The ith response is potentially

influential if GLii > ḠL+2sd(GL), where ḠL =
∑n

i=1GLii/n and sd(GL) is the standard

deviation of GL11, . . . , GLnn.

2.6 Application

In this Section the methodology developed in this paper is illustrated using observa-

tions from 93 wells in a single aquifer near Saratoga Valley, Wyoming. The water heights,

y, are in meters above mean sea level, and the size of the aquifer is about 1300 square kilo-

meters. The x1 and x2 coordinates are in kilometers. The first goal is to obtain a predicted

surface map for the response. The data set appears in Jones (1989). As in Christensen et al.

(1992a), for the normal spatial linear models, we use the Gaussian covariance function

which is given by

C(dij) =


φ2 exp

[
− (dij/φ3)

2] , dij > 0,

φ1 + φ2, dij = 0,

with φ1, φ2 and φ3 non-negative. We use the model y = µ+ ε, where µ = β0 +β1x1 +β2x2.

To illustrate the methodology, we use the t distribution. This basically for two reasons.

First, within the class of elliptical distributions undoubtedly the t distribution is one of

the most used, with applications in literature of several areas, see for instance (Lange and

Sinsheimer, 1993; Lange et al., 1989). Second, in this case the degrees of freedom for the

t spatial linear model cannot be selected using the likelihood function, as proposed by
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Lange et al. (1989), and we think that is interesting to discuss this point. In effect, as

noted by Zellner (1976), for the case of the usual t−linear regression model, (see Appendix

A.5), the likelihood function of the t model is an increasing function of ν, and then can

not be used to select the degree of freedom of the t distribution. In this paper we used,

initially, cross-validation to select the degree of freedom of the t spatial linear model. In

effect, the cross-validation is defined by

CV = CV (ν) =
1

n

n∑
i=1

{y(si)− ŷ(i)(si)
1− hii

}2

,

where ŷ(i)(si) = x>i β̂(i), with x>i the ith row of the matrix X, is the prediction in the

location si without considering this observation, (yi,x
>
i ), β̂(i) is the ML estimator of β

without considering the ith observation, and hii is the ith diagonal element of the projec-

tion matrix H = X(X>Σ̂
−1

X)−1X>Σ̂
−1
, for i = 1, . . . , n. To simplify the calculations we

can use the approximation β̂(i) ≈ β̂ +K−1(β̂)U(i)(β̂), where

K(β̂) =
( ν + n

ν + n+ 2

)
X>Σ̂

−1
X

and

U(i)(β̂) =
(ν + n− 1

ν + δ(i)

)
X>(i)Σ̂

−1
(Y(i) −X(i)β̂), (2.9)

where δ(i) = (Y(i)−X(i)β̂)>Σ̂
−1

(Y(i)−X(i)β̂), with X(i), (n−1)×p, the matrix X without

the ith row, x>i , and Y(i), (n − 1) × 1 denotes the vector Y without the response yi, for

i = 1, . . . , n. Note that in (2.9) the matrix Σ̂
−1

is of order (n− 1)× (n− 1).

Alternatively, Kano et al. (1993) within the class of elliptical distributions, proposed

to use the trace of the asymptotic covariance matrix of an estimated mean as a criterion

in selecting a better model. Let µ̂ = Xβ̂. From the results of Section 3, it follows that

the trace of the asymptotic covariance matrix of µ̂ is given by,

Tr = Tr(ν) =
{ν + n+ 2

ν + n

}
tr{(X>X)(X>Σ̂

−1
X)−1}.
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Table 2.2: Criteria CV and Tr for some values of ν for Jones’ data.

ν CV Tr
3 961.102 2123.977
4 960.857 2114.881
5 952.036 1839.644
10 953.252 1860.548
20 956.735 1945.884
40 958.222 1951.239
80 960.224 1955.717
160 962.515 1960.754
200 963.234 1962.506
∞ 1220.443 1975.651

Figure 2.1: Plots of CV (ν) (a) and Tr(ν) (b) versus ν for the Jones’ data.
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Table 2.2 shows the CV and Tr criteria for some values of ν and Fig. 2.1 shows the

graphs corresponding for the Jones’ data. We can see that both criteria suggest that a

suitable value for ν is 5. According to these criteria the t5 spatial linear model presents a

better fit. Thus, we use the model to illustrate the methodology developed in this paper.

For comparative purposes we also fit the normal spatial linear model. Table 2.3 presents

the MLEs for the parameters under the normal and t5 spatial linear models. The standard

errors were estimated using the expected information matrix.

Table 2.3 shows the marked differences between the values of the estimators, especially

φ̂1, φ̂2 and φ̂3 between the two models. Also the standard errors under the t5 model are

smaller when compared to the ones obtained under the normal model, except for φ̂1 and

φ̂2. One hypothesis of interest in this case is H : β1 = β2 = 0. Using the results of Section 3,
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Table 2.3: MLEs and asymptotic standard errors (in parentheses) estimates under normal and t5 distri-
butions for the Jones’ data.

Distribution β̂0 β̂1 β̂2 φ̂1 φ̂2 φ̂3

normal
2248.2280 -0.6881 -3.0336 25.7923 950.4528 7.7435
(30.9242) (1.2133) (0.4974) (5.3874) (320.2882) (0.7143)

t5
2222.5280 -0.3403 -2.9237 7.4101 651.1403 0.0020
(15.0299) (0.6758) (0.2186) (7.9408) (432.2509) (0.0002)

we have the values of the likelihood ratio test (p-value) are given by τN = 19.068 (< 0.001)

and τt = 130.568 (< 0.0001), for the normal and t5 spatial models, respectively. In both

models, the coordinates (x1, x2) are significant.

Fig. 2.2 shows two index plots of Bi for the normal and t5 models. As expected the

MLEs are more sensitive under the normal model. We can see that, although we highlight

some points, possible outliers are not detected, at least clearly, under the t5 spatial linear

model.

Figure 2.2: Index plots of Bi for the normal (a) and t5 (b) for perturbation scheme the model shift in
mean for Jones’ data.
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Fig. 2.3 shows the leverage plots. We note that the predicted values ŷi are more stable

to changes in yi, for i = 1, . . . , n, under the t5 spatial linear model. Table 2.4 presents the

MLEs for the parameters under the normal and t5 spatial linear models for the Jones’

data without observation #1. Interestingly, this observation only produces some changes

in φ̂2 and in the respective standard error, in both spatial models, with less effect under

the t5 model. The analysis without #1 incrases the value of φ̂2, which leads to a model
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that consider even more the spatial correlation between the observations.

Figure 2.3: Generalized leverage plots for the normal (a) and t5 (b) models for Jones’ data.
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Table 2.4: Case deletion: MLEs and standard errors (in parentheses) estimates under normal and t5
spatial linear models, fitted to Jones’ data without observation #1.

Distribution β̂0 β̂1 β̂2 φ̂1 φ̂2 φ̂3

normal
2247.1563 -0.2185 -3.3351 24.9241 1053.0808 8.0731

(32.7975) (1.2980) (0.5488) (5.1528) (365.2411) (0.7401)

t5
2222.6580 -0.3574 -2.9144 7.9756 710.1933 0.0020

(15.6539) (0.7039) (0.2276) (8.6383) (471.3820) (0.0002)

Figure 2.4: Thematic maps for the normal (a) and t5 (b) models for Jones’ data.
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In the Fig. 2.4 thematic maps of the spatial variability built by universal kriging are

presented, for normal and t5 spatial linear models. Both maps show an increasing trend of

the response variable on the north-south direction, which is consistent with the hypothesis

test, where the coordinates (x, y) are significant.

Finally we conducted a small simulation study. To analyze the performance of the

criterion CV and Tr, based on the above example, we generate 500 data sets considering

n = 93 for each case, of the t5 spatial linear models, with Gaussian covariance function.

The parameters were β0 = 2126, β1 = −0.3400, β2 = −2.9200, φ1 = 7, φ2 = 650,

φ3 = 0.002. For each data set we estimate the parameters and calculate CV and Tr for

ν = 5 and for ν =∞, normal model. For the 500 simulated data set we count how many

times were chosen the t5 and normal models. The results are presented in Table 2.5, where

we can see the effectiveness of CV in this case. The Tr criterion presents, in this situation,

a 67% of effectiveness.

Table 2.5: N0 of times was chosen the normal and t5 models using the criteria CV and Tr in 500 simulated
data set. In parentheses percentage.

Model CV Tr

normal spatial 1 (0.2) 163 (32.6)

t5 spatial 499 (99.8) 337 (67.4)

Of course it is necessary to make a deeper simulation study, considering different

scenarios, to evaluate the performance of the criteria CV and Tr in the selection of ν in

a t spatial linear model.

2.7 Conclusion

It is well known that the normal distribution is not always suitable for modelling

multivariate continuous data. In this paper we extended the Gaussian spatial linear model

relaxing the assumption of normality of observations. We considered the spatial linear

model under the family of elliptical distributions, which offers a more flexible framework

for modeling tails or extremes that are frequently observed in multivariate symmetric

data sets. Moreover, it preserves several well-known properties of the normal distribution
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allowing one to derive attractive explicit solution forms.

In the Elliptical spatial linear model we discussed maximum likelihood estimation and

some diagnostic tools such as local influence and generalized leverage. Explicit expressions

for the Fisher information matrix and for the Delta matrix were presented. The likelihood

ratio test for linear hypothesis, was also discussed.

To illustrate the methodology developed in the paper, we used the t spatial linear mo-

del. Because the likelihood function of the t spatial linear model is an increasing function

of the degree of freedom, we used cross-validation to select the degree of freedom. The

trace of the asymptotic covariance matrix of the ML estimator of the vector mean also

was used to fixed the degree of freedom. A small simulation study, showed that cross-

validation performed better than the trace of the asymptotic covariance matrix. However,

it is necessary to make a deeper simulation study, considering different scenarios, to eval-

uate the performance of these criterion in the selection of the degree of freedom in a t

spatial linear model. This topic will be addressed in a subsequent study.



Appendix A

A.1 The observed information matrix for elliptical spatial linear

models

The log-likelihood function is given by

L(θ) = −1

2
log |Σ|+ log g(δ),

where δ = (Y −Xβ)>Σ−1(Y −Xβ).

The second derivatives matrix, is given by

L(θ) = L =

Lββ Lβφ

Lφβ Lφφ

 ,

where Lββ =
∂2L(θ)

∂β∂β>
= 2X>Σ−1{Wg(δ)Σ + 2W

′
g(δ)εε

>}Σ−1X, Lβφ =
∂2L(θ)

∂β∂φ>
, with

∂2L(θ)

∂β∂φj
= 2X>Σ−1

{
W
′
g(δ)εε

>Σ
∂Σ

∂φj
+Wg(δ)

∂Σ

∂φj

}
Σ−1ε, as its jth column, for j = 1, 2, 3;

Lφβ = L>βφ and Lφφ =
∂2L(θ)

∂φ∂φ>
, with elements

∂2L(θ)

∂φi∂φj
=

1

2
tr
{

Σ−1
(
∂Σ

∂φi
Σ−1

∂Σ

∂φj
− ∂2Σ

∂φi∂φj

)}
+ ε>Σ−1

{
W
′
g(δ)

(
∂Σ

∂φi
Σ−1εε>Σ−1

∂Σ

∂φj

)
+ Wg(δ)

(
∂Σ

∂φi
Σ−1

∂Σ

∂φj
− ∂2Σ

∂φi∂φj
+
∂Σ

∂φj
Σ−1

∂Σ

∂φi

)}
Σ−1ε,
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for i, j = 1, 2, 3. The derivatives of first and second-order of the scale matrix Σ, (2.3), with

respect to φj, for j = 1, 2, 3; for some covariance functions are presented in Uribe-Opazo

et al. (2012).

A.2 ∆ matrix for perturbation scheme of the mean for elliptical

spatial linear models

In this case we have that L(θ,ω) is given by

L(θ,ω) = −1

2
log |Σ|+ log g(δω), (A.1)

where δω = {Y − µ(ω)}>Σ−1{Y − µ(ω)} = ε>ωΣ−1εω, εω = Y − µ(ω) and µ(ω) =

Xβ + Aω. Then

∂L(θ,ω)

∂ω>
= −2Wg(δω){Y − µ(ω)}>Σ−1A. (A.2)

Differentiating (A.2) with respect to β, see (Nel, 1980),

∂2L(θ,ω)

∂β∂ω>
= 2X>Σ−1{Wg(δω)Σ + 2W

′

g(δω)εωε
>
ω }Σ−1A. (A.3)

The derivative with respect to φj is given by,

∂2L(θ,ω)

∂φj∂ω>
= −2ε>ω

{
Wg(δω)(Σ−1

∂A

∂φj
−DjA)−W ′

g(δω)ε>ωDjεωΣ
−1A

}
, (A.4)

for j = 1, 2, 3 and Dj = Σ−1∂Σ/∂φjΣ
−1. Evaluating (A.3) and (A.4) at ω = ω0 we

obtain the ∆ = (∆>β ,∆
>
φ )> matrix.

A.3 The Fisher information matrix G(ω) for elliptical spatial

linear models

To select an adequate matrix A we can use the methodology proposed by Zhu et al.

(2007). In effect, the score function for ω in the perturbed log-likelihood function (A.1)
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is given by

U(ω) =
∂L(θ,ω)

∂ω
= −2Wg(δω)A>Σ−1{Y − µ(ω)}.

Following Zhu et al. (2007) let G(ω), the Fisher information matrix with respect to

the perturbation vector ω. That is, G(ω) = Eω{U(ω)U>(ω)}, where Eω denotes the

expectation with respect to f(Y,θ,ω). A perturbation ω is appropriate if it satisfies

G(ω0) = cIn, where c > 0. In our case we have

G(ω) = c(ω)A>Σ−1A.

That is, G(ω0) = cA>Σ−1A with c = c(ω0) a positive constant, see Appendix C. Notice

that usually A>Σ−1A 6= In. However if A = Σ1/2, then G(ω0) = cIn and so µ(ω) = Xβ+

Σ1/2ω is a perturbation scheme appropriate. The derivatives ∂Σ1/2/∂φj for j = 1, 2, 3,

are given in Appendix A.4.

A.4 Derivative of the square root Σ1/2

Corresponding to any matrix Σ n × n symmetric and nonnegative definite, there is

a matrix symmetric nonnegative definite Σ1/2 = W, such that Σ = Σ1/2Σ1/2 = W2.

Furthermore, W is unique and can be expressed by

W = PA1/2P>,

where A1/2 = diag(
√
α1, . . . ,

√
αn), with α1, . . . , αn the eigenvalues of Σ and P is a matrix

n × n orthogonal (PP> = In) such that PΣP> = A, with A = diag(α1, . . . , αn). So,

derivatives of Σ with respect to φj is given by

∂Σ

∂φj
= W

∂W

∂φj
+
∂W

∂φj
W, for j = 1, 2, 3. (A.5)

This equation can be written as Σ̇j = WẆj + ẆjW, where Σ̇j =
∂Σ

∂φj
and

∂W

∂φj
= Ẇj,

which has been extensively studied in the literature, see for instance (Jameson, 1968).
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Note that Σ̇j, W and Ẇj are symmetric matrices. Let Jj = P>Σ̇jP and Q = [(qrs)]

symmetric matrices n × n, with qrs = (
√
αr +

√
αs)
−1, for r, s = 1, . . . , n. Then, the

solution to equation (A.5) is given by

∂W

∂φj
=
∂Σ1/2

∂φj
= P(Jj �Q)P>,

where � denotes the Hadamard product for j = 1, 2, 3.

A.5 The likelihood function of the t model is an increasing func-

tion of ν

As noted by Zellner (1976), for the case of the usual linear regression model, “the

necessary conditions on β, Σ = φ1I and ν for a maximum of the likelihood function cannot

be satisfied for ν ≥ 1”. In our case, the likelihood function is an increasing function of ν.

For illustration, we consider the bivariate case, t2(0, I, ν) with density function given by,

f(Y, ν, δ) =
Γ((ν + 2)/2)

Γ(ν/2)(νπ)
{1 + δ/ν}−(ν+2)/2,

with δ = Y>Y. Clearly, from Fig. A.1, the likelihood function is an increasing function

of ν and also of δ.

Figure A.1: Likelihood function versus ν and δ.
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Chapter 3

Inference on Gaussian spatial linear models

with repetitions

3.1 Resumo

Este caṕıtulo apresenta os testes da razão de verossimilhanças usual e corrigido (via

Bartlett) para os parâmetros de locação nos modelos espaciais lineares com repetições,

e sua respectiva versão corrigida. Apresenta-se o enfoque de inferência para o parâmetro

de suavização da famı́lia Matérn de modelos. Os estimadores de máxima verossimilhança

são obtidos, e uma forma expĺıcita da matriz de informação de Fisher é apresentada.

Simulações de Monte Carlo e aplicações a dados reais são apresentadas para ilustrar a

metodologia.

3.2 Introduction

Geostatistical data are data collected at known locations in space, from a process that

has a value at every location in a certain (1, 2 or 3-D) domain. These data are modelled as

the sum of a constant (or varying trend) and a spatially correlated residual. The geostatis-

tics began in South Africa and reached maturity at the Ecoles des Mines at Fontainebleau

near Paris. One of the earliest papers in this field developed the basis equations for optimal

linear interpolation in a spatially correlated field, by Krige (1951). Then Matheron (1962,

1963, 1965, 1970) published books and used the term krigeage (in French), Krigagem (in

Portuguese) or kriging (in English), which is the geostatistical prediction, finding the best

linear unbiased prediction (the expected value) with its prediction error for a variable at

46
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a location, given observations and a model for their spatial variation. Given a model for

the trend, and under some stationarity assumptions, geostatistical modelling involves the

estimation of the spatial correlation.

The observations that can be observed may not be taken in regular grid. The spatial

variability can be studied by modeling the parametric form of the covariance matrix. Com-

mon models assume a certain shape for the local process, i.e., they assume predetermined

behavior. Thus, Stein (1999) and Minasny and McBratney (2005) promoted the use of

the Matérn class of models (Matérn, 1960) which has great flexibility for modeling the

spatial dependence structure, and it can model many local spatial process. This class has

also been presented in Handcock and Wallis (1994), Diggle (2003) and Diggle and Ribeiro

Jr. (2007). Gneiting et al. (2010) introduced a flexible parametric family of matrix-valued

covariance functions for multivariate spatial random fields, where each constituent compo-

nent is a Matérn process. Ripley (1987), Mardia and Watkins (1989), Diggle et al. (1998)

and Zhang (2002) reported difficulties in likelihood estimation of covariogram parameters.

Zhang (2004) has used properties of equivalence of probability measures to show that not

all parameters in a spatial generalized linear mixed model are consistently estimated, but

one quantity can be estimated consistently by maximum likelihood (ML) methods un-

der asymptotics fixed-domain. Kaufman and Shaby (2013) show that asymptotic results

for a Gaussian process over a fixed domain with Matérn covariance function, previously

proven only in the case of a fixed range parameter, can be extended to the case of jointly

estimating the range and the variance process.

Repeated measures of data have been widely analyzed in many fields, such as biology

and medicine, but we can find only a few works which study repeated measures in the

geostatistics field. In this case, the observations are taken from different experimental

units, which is different geographical locations, where each variable is observed more than

once. Considering independent realizations of the process, it is easily to present hypothesis

test to verify, for instance, the explanatory variables that should be or should not be part

of the model.

Often the number of observations is small, so it is important to use inference strategies

that incorporate small sample corrections. The likelihood ratio test, quite often displays
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distortions when the sample size is small, because its null distribution is poorly approxi-

mated by the limiting χ2 distribution, from which critical values are obtained. A strategy

to improve the approximation of the test statistics approximations by the chi-squared dis-

tribution, is to alter these statistic by a correction factor. For the likelihood ratio statistic

(LR), Bartlett (1937) proposed a correction factor to be multiplied by the statistic in such

a way that your corrected version (LR∗) presents null distribution χ2
q with an error of or-

der n−2. More details about Bartlett correction, see (Cribari-Neto and Cordeiro, 1996)

and Cordeiro and Cribari-Neto (2014).

The Bartlett correction factor used to modify the likelihood ratio test statistic bring its

null distribution closer to its limiting counterpart. When the investigated model involves

perturbation parameters, it is common to base the inference on the profile likelihood.

Ferrari and Uribe-Opazo (2001) obtained a Bartlett correction factor for the LR statistic

in the symmetric linear models class, and Cordeiro (2004) extended this results to the

symmetric non-linear model class. Ferrari et al. (2004, 2005) and Cysneiros and Ferrari

(2006) showed that the combined use of modified profile likelihood and Bartlett correc-

tion can deliver accurate and reliable inference in small samples. Cordeiro et al. (2006)

presented Bartlett adjustments for overdispersed generalized linear models. Savalli et al.

(2006) discussed the problem of testing variance components in elliptical linear mixed mo-

dels. Melo et al. (2009) developed modified versions of the likelihood ratio test for fixed

effects inference in mixed linear models. Cysneiros et al. (2010) obtained a correction fac-

tor Bartlett-type for the score statistic in heteroskedastic symmetric non-linear models.

However, it seems that there is no work in the literature about Bartlett correction for

geoestatistical models.

Our main goal is on hypothesis test for Gaussian spatial linear models (GSLM) with

repetitions considering the Matérn class of geostatistics models and to present the infer-

ence approach to estimate the smooth parameter from the Matérn family class of models.

We present the likelihood ratio statistic and its corrected version by using Bartlett cor-

rected factor. The Chapter unfolds as follows. Section 3.3 presents the Gaussian spatial

linear model. Section 3.4 discuss techniques for the parameters estimation. In Section 3.5

the Matérn class of covariance functions models is described and the inference for the
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smoothness parameter is discussed. Furthermore we present hypothesis testing for the β

parameter vector, and the respectively corrected test, using Bartlett correction, in Sec-

tion 3.7.3. In Section 3.8 we show the Monte Carlo simulations results. Section 3.9 has

applications to two real data sets. Finally, Section 3.10 contains some concluding remarks.

Calculations are presented in the appendices.

3.3 Gaussian spatial linear model

For a spatial process, we consider is a stochastic process {Yi(s), s ∈ S ⊂ IR2} (bi-

dimensional Euclidean space), usually though not necessarily in IR2, and i = 1 means one

single realization of the process. Let

µ(s) = E[Y1(s)],

denote the mean value at location s. We also assume that the variance of Yi(s) exists for

all s ∈ S. The process Y1 is said to be Gaussian if, for any k ≥ 1 and locations s1, . . . , sn,

the vector (Y1(s1), . . . , Y1(sn)) has a multivariate normal distribution.

The treatment so far has been based on the assumption that inference must be based

on a single realization of the random field Yi (i = 1). As mentioned by Smith (2001),

we can expect to get better estimates if there are multiple repetitions of the process.

Let Y = Y(s) = vec(Y1(s), ...,Yr(s)) be an nr × 1 random vector of r independently

stochastic process of n elements each, that belong to the family of Gaussian distributions

and depend on the position s ∈ S ⊂ IR2. The “vec” operator transforms a matrix into a

vector by stacking the columns of the matrix one underneath the other. It is assumed the

i-th stochastic process Yi(s) = vec(Yi(s1), ..., Yi(sn)), s ∈ S ⊂ IR2, represents the n × 1

vector , for i = 1, . . . , r. Considering the matrix notation, µi(s) = X(s)β, the model can

be expressed as

Yi(s) = X(s)β + εi(s), (3.1)

for i = 1, . . . , r, where β = (β1, . . . , βp)
> is a p × 1 vector of unknown parameters,

X(s) = X is an tn×pmatrix with vth row x>v , where xvj = xj(sv) with x>v = (xv1, . . . , xvp),



GAUSSIAN SPATIAL LINEAR MODEL 50

for v = 1, . . . , n. The design matrix X is the same for all r repetitions, s ∈ S ⊂ IR2, and εi

is the stochastic error.

Let Σi = [Ci(su, sv)] be the n × n covariance matrix of Yi(s) for i-th repetition,

i = 1, . . . , r. The matrix Σi is non-singular, symmetric and positive defined, associated to

the vector Yi(s), where for the stationary and isotropic process, the elements Ci(su, sv)

depend on the Euclidean distance between points su and sv. If a stationary spatial random

process has the property that the dependence between any two observations depends only

on the distance between their locations, duv = ||su − sv||, irrespective of the direction,

then the process is said to be isotropic. Otherwise it is said to be anisotropic. Isotropic

process are convenient to deal with because there are a widely used parametric forms for

Ci(duv) = Ci(su, sv).

In the same approach of Smith (2001), we shall assume a homogeneous process. We

consider the same covariance structure for each repetition, i.e., the covariance matrix

Σi = Σ = [C(su, sv)], has a structure which depends on the vector of parameters φ =

(φ1, φ2, φ3)
> or φ = (φ1, φ2, φ3, φ4)

>, depending on the form of the covariance structure

(see Section 3.5 for more details). The covariance matrix is given by

Σi = Σ = φ1In + φ2R, (3.2)

for i = 1, . . . , r, where, φ1 ≥ 0 is the parameter named as nugget effect; φ2 ≥ 0 is

named as sill ; R = R(φ3, φ4) = [(ruv)] or R = R(φ3) = [(ruv)] is an n × n symmetric

matrix, which is function of φ3 > 0, and sometimes also function of φ4 > 0, with diagonal

elements ruu = 1, (u = 1, . . . , n); ruv = φ−12 C(su, sv) for φ2 6= 0, and ruv = 0 for φ2 = 0,

u 6= v = 1, . . . , n, where ruv depends on the Euclidean distance duv = ||su − sv|| between

points su and sv; φ3 is a function of the model range (a), φ4 when exists is known as the

smoothness parameter, and In is an n× n identity matrix.

We assume that µ(s) is constant which we may, without loss of generality, take to be

0, and then define

var[Y1(su)−Y1(sv)] = 2γ(||su − sv||).
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The function γ(·) is called the semivariance, and it makes sense only if the variance

between observations depends on su and sv only through their difference su − sv. If the

process is stationary then

γ(duv) = C(0)− C(duv).

Statistical methods for second-order stationary processes can be considered in terms of

covariances or in terms of variograms. Statisticians prefer the first way, geostatisticians

the second. We concentrate on the covariance.

According to Stein (1999), for a space-time process observed at a fixed set of spatial

locations at sufficiently distant points in time, it may be reasonable to assume that obser-

vations from different times are independent realizations of a random field. Goodal and

Mardia (1994) says we can remove the effect of time from the data and then we can view

the data as independent repeated measurements in space.

Another characteristic of the model is that it can be expressed as a linear mixed model

by

Yi(s) = µ(s) + bi(s) + τi(s)

where, the deterministic term µ(s) is an n × 1 vector, the means of the process Yi(s),

bi(s) + τi(s) = εi(s) and bi ∼ Nn(0, φ2R) and τi ∼ Nn(0, φ1I) are independents, for

i = 1, . . . , n.

3.4 Parameters estimation

The unknown parameters to be estimated are the β’s and φ’s. Stein (1999) demon-

strated with simulated data that the method of moments is poor at describing the smooth

process. It is straightforward in principle to write down the exact likelihood function and

hence maximize it numerically with respect to the unknown parameters in the case we

assume that we are sampling from a Gaussian process. According to Smith (2001), de-

spite of disadvantages such as non-robustness when there are outliers in the data, or the

possible multimodality of the likelihood surface, these are not reasons to abandon maxi-
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mum likelihood (ML) estimation. And, we can expect to get better estimates if there are

multiple repetitions of Yi. The maximum likelihood procedure in this case is only slightly

different from that in the single-realisation case.

Common practice is first to calculate the empirical variogram by the method of mo-

ments (Matheron, 1965), and then fit the model to the empirical variogram by (weighted)

nonlinear least squares.

To resume, the weighted least squares (WLS) applied to the sample variogram gives a

simple and convenient method for obtaining initial estimates of variogram parameters. Our

wider conclusion is that the variogram should be used as a graphical method of exploratory

data analysis, rather than as a vehicle for formal parameter estimation (Diggle and Ribeiro

Jr., 2007). We suggest, for example, the use of robust semivariogram proposed in Genton

(1998). Diggle and Ribeiro Jr. (2007) also pointed out that an unbiased set of estimating

equations could be obtained from an iteratively weighted least squares algorithm, as used

in generalized linear modelling (McCullagh and Nelder, 1989).

It can be used, for instance, the algorithms Newton-Raphson or score Fisher (Little

and Rubin (1987)). In practice it should be combined such approaches with additional al-

gorithms to avoid repeated inversion of large unstructured matrices (Mardia and Marshall

(1984); Zimmerman (1989)). For example, Zimmerman (1989) devised a computational

acceleration for the Gaussian covariance structure over a regular parallelogram lattice.

Diggle et al. (1998); Mardia and Watkins (1989); Warnes and Ripley (1987) and Zhang

(2002) reported difficulties in likelihood estimation of covariogram parameters. Zimmer-

man and Zimmerman (1991) numerically compare ordinary least square (OLS), WLS,

restricted maximum likelihood (REML) and ML for linear and exponential variograms.

They find that, for Gaussian observations, ML is only slightly better that ordinary least

square and WLS. REML, which often has the best bias properties, was found to have a

comparable bias to ML. This is due to the low dimension of the mean parameter vector

considered. We concentrate on maximum likelihood estimation to be presented in next

Section.

There are some packages availables in the free software R Core Team (2015) that

can be used for geostatistical models. For instance, the package sp (Pebesma and Bivand,
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2005) presents classes and methods for spatial data in general, more specifically the classes

document where the spatial location information resides, for 2D or 3D data, and utility

functions are provided, e.g. for plotting data as maps, spatial selection, as well as methods

for retrieving coordinates, for subsetting, and more. The package geoR (Ribeiro Jr and

Diggle, 2001) for geostatistical analysis includes traditional, likelihood-based and Bayesian

methods, the package geoRgml is an extension to the package geoR, and has functions

for inference in generalised linear spatial models. The gstat (Pebesma, 2004) package is

for spatial and spatio-temporal geostatistical modelling, prediction and simulation. The

package fields (Nychka et al., 2014) and many more have tools to analyze spatial data.

More availabe packages for spatial data can be found in the CRAN task view.

3.4.1 Maximum likelihood

The maximum likelihood (ML) method estimates parameters of the model directly

from the data, on the assumption that it is a multivariate normal distribution. Let

Y = vec(Y>1 (s), ...,Y>r (s)) be and nr × 1 random vector of r independent and identi-

cal distributed vectors. The log-likelihood for the Gaussian spatial linear model for each

repetition is of the form

li(θ) = −n
2

log(2π)− 1

2
log |Σ| − 1

2
(Yi −Xβ)>Σ−1(Yi −Xβ).

The log-likelihood for the Gaussian spatial linear model for the r multiple repetitions

is given by

L(θ) =
r∑
i=1

li(θ),

ie,

L(θ) = −rn
2

log(2π)− r

2
log |Σ| − 1

2

r∑
i=1

(Yi −Xβ)>Σ−1(Yi −Xβ). (3.3)
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The score functions are given by:

U(β) =
∂L(θ)

∂β
=

r∑
i=1

X>Σ−1εi,

U(φ) =
∂L(θ)

∂φ
= −r

2

∂ vec>(Σ)

∂φ
vec(Σ−1)

+
1

2

r∑
i=1

∂ vec>(Σ)

∂φ
vec(Σ−1εiε

>
i Σ−1),

where εi = (Yi −Xβ). From the solution of the score function of β,

U(β) =
∂L(θ)

∂β
= 0,

the maximum likelihood estimator β is given by:

β̂ = (X>Σ−1X)−1X>Σ−1Ȳ, (3.4)

where Ȳ = (Ȳ1, . . . , Ȳn)>, with Ȳv =
1

r

r∑
i=1

Yi(sv), v = 1, . . . , n.

Since we can use the GLSLM with repetitions as a linear mixed model we can follow

what was mentioned by Borssoi (2014), that Demidenko (2004) and Wang and Heckman

(2009) discussed the parameter identifiability for the linear mixed models. In particular,

Wang and Heckman (2009) showed that there is no problem since we have that var[εi] =

φ1In. But one deficiency can be the sensitivity of the maximum likelihood estimates to

atypical observations. For that we present the study of diagnostic techniques in next

Chapters.

Unfortunately, the score equation for φ does not lead to a closed-form solution for

φ. Thus, a common practice is to maximize the profile log-likelihood, obtained by sub-

stituting the solution to the score equation for β [Equation (3.4)] into the log-likelihood

in Equation (3.3). Then, the profile log-likelihood depends only on φ, and ignoring the

constant − rn
2

log(2π) we have

L∗(φ) ∝ −r
2

log |Σ| − 1

2

r∑
i=1

[
(Yi −X(X>Σ−1X)−1X>Σ−1Ȳ)∗>Σ−1

(Yi −X(X>Σ−1X)−1X>Σ−1Ȳ)
]
.

(3.5)
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Zhang and Zimmerman (2005) compare ML estimation under increasing domain and infill

asymptotics in the Matérn family of covariances. They find that finite sample behavior

agrees more with the infill asymptotic inferences than with the increasing domain asymp-

totics. For example, the maximum likelihood estimates of covariance parameters are typ-

ically consistent and asymptotically normal when fitted by a correct model (Mardia and

Marshall, 1984). In contrast, not all covariance parameters can be estimated consistently

under the fixed domain asymptotic framework, even for the simple exponential covariance

model in one dimension with no consideration of explanatory variables (Chen et al., 2000;

Ying, 1991). The readers are refereed to Stein (1999) for more details regarding fixed

domain asymptotics. Some discussion concerning which asymptotic framework is more

appropriate can also be found in Zhang and Zimmerman (2005).

Ying (1991) presents asymptotic properties of a maximum likelihood estimator with

data from a Gaussian process. Chang et al. (2014) studied the asymptotic properties of

generalized information criterion (GIC) for geostatistical model selection regardless of

whether the covariance model is correct or wrong, and establish conditions under which

GIC is consistent and asymptotically loss efficient.

3.5 Matérn family of covariance function

According to Minasny and McBratney (2005) and Stein (1999) promoted the use of

the Matérn class of models, which the name comes after the Swedish forestry statistician,

Bertil Matérn (Matérn, 1960). And as we mentioned, the Matérn is a covariance function

particulary attractive given by

C(duv) =


φ2

2φ4−1Γ(φ4)
(duv/φ3)

φ4 Kφ4 (duv/φ3) , duv > 0,

φ1 + φ2, duv = 0,

(3.6)

where the parameters are assumed to be non-negative, i.e., φj ≥ 0, for j = 1, 2, 3, 4;

Kφ4(u) = 1
2

∫∞
0
xφ4−1e−

1
2
u(x+x−1)dx is the modified Bessel function of the third kind of

order φ4; see (Gradshteyn and Ryzhik, 2000). This covariance function is particularly

attractive because its behavior can change according to φ4 value. For instance, φ4 = 0.5
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gives the exponential covariance structure, Whittle’s elementary covariance is obtained

with φ4 = 1, and in the limit as φ4 approaches to infinity, with φ3 approaching to 0 in

such way that 2φ
1/2
4 φ3 remains constant, it approaches the Gaussian covariance function.

For a finite value of the φ3 parameter (which is a function of the range parameter), the

Matérn function represents several bounded models. In many works the notation for the

smoothness parameter is κ or ν for Matérn class, but here we use φ4, for simplicity of

notation, since it is a parameter part of the covariance structure which can be estimated

or considered as fixed. For more details about Matérn class of models, (Haskard et al.,

2007; Minasny and McBratney, 2005; Stein, 1999).

A process having the Matérn covariogram (3.6) is [φ4] − 1 times mean square differ-

entiable, where [φ4] is the largest integer less than or equal to φ4. According to Zhang

(2004), other classes of covariograms do not have such a parameter to yield a preferred

mean square differentiability. The practical importance is that the Matérn class of covari-

ance models allows data to determine the smoothness (Sherman, 2011).

Table 3.1 presents few special cases of the Matérn class of models.

Table 3.1: Special cases of the Matérn covariance function.

smooth parameter covariance function model

φ4 = 1/2 C(duv) = φ2 exp(−duv/φ3) exponential

φ4 = 1 C(duv) = φ2(duv/φ3)Kφ4(duv/φ3) Whittle

φ4 →∞ C(duv) = φ2 exp(−(duv/φ3)
2) Gaussian

If φ3 is large, it approximates the power function when φ4 > 0, and a log function or

de Wijs function (de Wijs, 1951, 1953) when φ4 → 0. Figure 3.1 shows some covariance

models and the Matérn covariogram with varying smoothness parameter φ4 and constant

range and sill.
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Figure 3.1: Matérn model with φ1 = 0, φ2 = 1, φ3 = 150 and different φ4 values.

0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d

C
(d

)

φ4 : 0.5
φ4 : 0.7
φ4 : 1
φ4 : 1.5
φ4 : 2
φ4 : 2.5

(a)

Source: From the author.

Matérn (1960) has shown more precisely that if a random field allows a variogram that

is everywhere continuous except at the origin, then this random field is the sum of two

uncorrelated random fields, one associated with a pure nugget effect and the other with an

everywhere continuous variogram. Zhang’s results demonstrate that, in a Matérn model

with parameters φ2 and φ3 being φ4 = 0.5, the ratio φ2/φ3 is much more stably estimated

than either φ2 or φ3 themselves. Stein (1999) strongly recommended to use the Matérn

model by calculating and plot likelihood functions for unknown parameters of models for

covariance structures.

For the case of the Matérn class of covariance function (or other with more than three

parameters), we suggest to use the idea presented in Minasny and McBratney (2005) for

one single realization, which assume φ4 as fixed to find which φ4 gives the maximum value

for the profile log-likelihood, and then use it as a initial value and estimate it. We use the

same idea, but now for a model with repetitions as we present in Section 3.9. Stein (1999)

said that although he does not advocate treating φ4 = 0.5 as fixed, to keep in mind that

is the same of using the exponential model.

In the case that we consider the parameter φ4 as fixed, we have to choose which value,

between a range of values, gives the best fit. As an alternative to select φ4, we consider

the cross validation criterion similar to the one presented in De Bastiani et al. (2015),
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defined by

CV = CV (φ4) =
1

nr

r∑
i=1

n∑
j=1

{yi(sj)− ŷi(j)(sj)
1− hjj

}2

, (3.7)

where ŷi(j)(sj) = x>j β̂(j), with x>j the ith row of the matrix X, is the prediction in

the location sj without considering this observation, (yj,x
>
j ), β̂(j) is the ML estimator

of β without considering the jth observation, and hjj is the jth diagonal element of

the projection matrix H = X(X>Σ̂
−1

X)−1X>Σ̂
−1
, for j = 1, . . . , n. To simplify the

calculations we can use the approximation β̂(j) ≈ β̂ + K−1(β̂)U(j)(β̂), where

K(β̂) = rX>Σ̂
−1

X and

U(j)(β̂) =
r∑
i=1

X>(j)Σ̂
−1

(Yi(j) −X(j)β̂), (3.8)

with X(j), (n− 1)× p, the matrix X without the jth row, x>j , y Yi(j), (n− 1)× 1 denotes

the vector Yi without the response yi(sj), for j = 1, . . . , n and i = 1 . . . , r. Note that in

(3.8) the matrix Σ̂
−1

is of order (n− 1)× (n− 1).

Minasny and McBratney (2005) say that the smoothness parameter, φ4, from Matérn

model should be determined from the spatial data.

3.5.1 Inference for φ4 parameter

To estimate this parameter we used the profile likelihood method for ML. To summa-

rize the main steps of the algorithm are:

1. Choose a set of values for φ4, for instance (0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0).

2. For each value of φ4, maximize the log-likelihood over (φ1, φ2, φ3).

3. Plot the log-likelihood values as a functions of φ4, and find the value of κ that has

the log-likelihood maximum value (LMV).

4. Calculate the CV (Equation 3.7) and find the value of φ4 that minimize CV.
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5. Choose the values of (φ1, φ2, φ3, φ4) where the log-likelihood is maximum and con-

sidered as a inicial choice for the next step.

6. Maximize the log-likelihood over all parameters (φ1, φ2, φ3, φ4).

The derivatives of the Matérn model with respect to φ4 parameter are given in Ap-

pendix B.3.

3.6 Asymptotic standard error estimation

The observed information matrix I(θ) for the GLSM with multiple replications is

I(θ) = −L(θ), evaluated in θ = θ̂, where L(θ) = ∂2L/∂θ∂θ> = L̈(θ). Furthermore,

we notice that the I(θ), which is evaluated in θ = θ̂, has the same equations as the

expected information matrix given below. The derivatives of first and second-order of

the scale matrix Σ, with respect to φj, for j = 1, 2, 3 and j = 4 for some models; for

some covariance functions are presented in Uribe-Opazo et al. (2012). And some useful

constructions are given in Appendices A.4, B.1, and B.3.

Asymptotic standard errors can be calculated by inverting either the observed infor-

mation matrix or the expected information matrix. The expected information matrix,

E[−∂2L(θ)/∂θ∂θ>] = E[(∂L(θ)/∂θ) (∂L(θ)/∂θ>)] = E(UθU
>
θ ), is given by, (Lange

et al., 1989; Mitchell, 1989; Waller and Gotway, 2004))

F(θ) = F = E[UU>] =

E(UβU
>
β ) E(UβU

>
φ )

E(UφU
>
β ) E(UφU

>
φ )

 =

Fββ Fβφ

Fφβ Fφφ

 ,

where U is the score function and

Fββ = rX>Σ−1X,

Fβφ = 0,

Fφβ = 0,

Fφφ =
r

2

∂ vec>(Σ)

∂φ
Σ−1 ⊗Σ−1

∂ vec(Σ)

∂φ>
.

See Appendix B.2 for the details. We used F−1ββ and F−1φφ to estimate the dispersion matrices
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for the maximum likelihood estimators β̂ and φ̂, respectively.

3.7 Hypothesis testing for the β parameter vector

The greater the number of perturbation parameter, less is the quality of asymptotic

approximations. To overcome such problems, some modifications for the log-likelihood

were proposed, as the one proposed by Barndorff-Nielsen (1983, 1994); Cox and Reid

(1987); McCullagh and Tibishirani (1990) and Stern (1997), which are described in Pace

and Savan (1997).

We can see our model defined in (3.1) as a particular case of the model given in

Equation (1) of Melo et al. (2009) to be able to use some of their results. Next Chapter

gives more details about this particular case. So L(θ) is the total log-likelihood as defined

in (3.3), given Y = (Y>1 (s), ...,Y>r (s))>, which depends on the parameters vector θ =

(β>,φ>)>, with p+m components [m is the length of φ]. The parameters vector β of p

components can be partitioned β = (β>1 ,β
>
2 )> where, β>1 = (β1, . . . ,βq)

> is the interest

vector with dimension q and β>2 = (βq+1, . . . ,βp)
> and the perturbations parameter

vector with dimension (p− q). Consequently we have X = [X1 X2], where X1 is an n× q

matrix formed by the first q columns of X and X2 and n× (p− q) matrix formed by the

(p− q) columns of X.

3.7.1 Parameters orthogonalization

Let β1 be the parameter of interest, similarly to Zucker et al. (2000) and Melo et al.

(2009) we transform the vector θ = (β>1 ,β
>
2 ,φ

>)> in ϑ = (β>1 , ξ
>,φ>)> with ξ =

β2 + (X>2 Σ−1X2)
−1X>2 Σ−1X1β1.

Using this transformation presented, we have that β>1 and ν = (ξ>,φ>)> are orthog-

onal, since

E

[
∂2L(ϑ)

∂β1∂ξ
>

]
= 0 and E

[
∂2L(ϑ)

∂β1∂φ
>

]
= 0.

We have Xβ = X1β1 + X2β2, which after the orthogonalization it can be written as

Xβ = X∗1β1 + X2ξ,
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where X∗1 = X1 −X2(X
>
2 Σ−1X2)

−1X>2 Σ−1X1. Thus the log-likelihood can be written as

L(ϑ) = − rn
2

log(2π)− r
2
log|Σ|

−1
2

r∑
i=1

(Yi −X∗1β1 −X2ξ)>Σ−1(Yi −X∗1β1 −X2ξ).

Let H0 : β1 = β0
1 be the hypothesis of interest versus the alternative hypothesis

H1 : β1 6= β0
1, where β0

1 is a fixed vector of dimension q(≤ p), where, ϑ̂ = (β̂
>
1 , ξ̂

>
, φ̂
>

)> is

the unrestricted ML estimator for ϑ, and denote with a tilde the restricted ML estimator.

So, ϑ̃ = (β
(0)>
1 , ξ̃

>
, φ̃
>

)> is the restricted ML estimator of ϑ, where ξ̃ and φ̃ are the

restricted ML estimators of ξ and φ under H0.

3.7.2 Likelihood ratio statistic

The likelihood ratio statistic (LR) to test H0 : β1 = β0
1 versus H1 : β1 6= β0

1, where

β0
1 is a fixed vector of dimension q(≤ p), is defined by

LR = 2(L(ϑ̂)− L(ϑ̃))

where L(ϑ̂) is given by

L(ϑ̂) = − rn
2

log(2π)− r
2
log|Σ̂|

−1
2

r∑
i=1

(Yi −X∗1β̂1 −X2ξ̂)>Σ−1(Yi −X∗1β̂1 −X2ξ̂).

and L(ϑ̃) is given by

L(ϑ̃) = − rn
2

log(2π)− r
2
log|Σ̃|

−1
2

r∑
i=1

(Yi −X∗1β
(0)
1 −X2ξ̃)>Σ−1(Yi −X∗1β

(0)
1 −X2ξ̃).

Thus, the likelihood ratio statistic has the form:

LR =
r

2
log

(
Σ̂

Σ̃

)
+

1

2

r∑
i=1

(δ̃i − δ̂i),

where, δ̃i = (Yi − X∗1β
(0)
1 − X2ξ̃)>Σ̃

−1
(Yi − X∗1β

(0)
1 − X2ξ̃), is evaluated in ϑ̃, and

δ̂i = (Yi −X∗1β̂1 −X2ξ̂)>Σ̂
−1

(Yi −X∗1β̂1 −X2ξ̂), is evaluated in ϑ̂.
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The log-likelihood given in (3.5) is a profile likelihood, which can be written considering

the partition of the parameters vector β how we presented in Section 3.7. Thus we can

define the profile log-likelihood by

Lp(β1) = L(β1, ξ̂
∗
, φ̂
∗
), (3.9)

where ξ̂
∗

and φ̂
∗

are the maximum likelihood estimates considering β1 as fixed.

For the hypothesis test under H0 : β1 = β
(0)
1 versus H1 : β1 6= β

(0)
1 , with β

(0)
1 as fixed,

the likelihood ratio statistic based on (3.9) is the same as the one based on the non profile

log-likelihood given in (3.5), (Ferrari et al., 2005), i.e,

LR = 2(L(β̂1, ξ̂, φ̂)− L(β
(0)
1 , ξ̃, φ̃)) = 2(Lp(β̂1)− Lp(β

(0)
1 )).

Asymptotically and under the null hypothesis, the LR statistic is distributed as a

chi-squared random variable, with degrees of freedom equal to (p− q).

3.7.3 Improved likelihood ratio tests - Bartlett correction

For small sample size the first order approximation in general may be not satisfactory.

Looking for improving this approximation, Bartlett (1937) proposed a new statistics which

consist of the multiplication of the LR statistics by a constant (1 +C/q)−1, obtaining the

corrected version of the LR statistics, LR∗, given by

LR∗ =
LR

1 + C/q
,

where C is a constant of order n−1, O(n−1), chosen such that, under the null hypothesis

E[LR∗] = q +O(n−3/2).

In regular problems and under the null hypothesis, LR∗ has a chi-squared distribution,

χ2
q less than an error n−2, see (Barndorff-Nielsen and Hall, 1988). Thus, while P (LR >

xα) = α + O(n−1), P (LR∗ > xα) = α + O(n−2), where xα is the quantile (1 − α) of the

distribution χ2
q. In other words, the error of approximation by χ2

q for the null distribution
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of LR is of order n−1, while the error of this approximation for the distribution of LR∗ is

reduced to order n−2.

Several methods to obtain the Bartlett correction factor are presented in the literature,

among them is the one presented in Lawley (1956) that consider, for regular problems, to

obtain a general formula for the constant C in terms of the cumulants and your derivatives

of the log-likelihood. Then, the Bartlett correction factor for the GSLM with repetitions

is obtained. For simplicity, here we only give the expression for C when β
(0)
1 = 0.

C = tr

(
1

r
D−1

(
−1

2
M +

1

4
P− 1

2
(ς + ν)τ>

))
,

where D, M and P are m×m matrices given by

D =
1

2
tr

(
∂Σ−1

∂φj

∂Σ

∂φk

)
,

M = tr

[(
X∗>1 Σ−1X∗1

)−1(
X∗>1

∂2Σ−1

∂φj∂φk
X∗1 + 2Ẋ∗>1k

∂Σ−1

∂φj
X∗1

)]
,

P = tr

[(
Ẋ∗>1

∂Σ−1

∂φj
X∗1

)(
X∗>1 Σ−1X∗1

)−1(
Ẋ∗>1

∂Σ−1

∂φk
X∗1

)(
X∗>1 Σ−1X∗1

)−1]
,

and ς, ν and τ are (m)-vector whose jth elements are

tr
(
D−1Aj

)
tr

[(
X>2 Σ−1X2

)−1(
X>2

∂Σ−1

∂φj
X2

)]
tr

[(
X∗>1 Σ−1X∗1

)−1(
X∗>1

∂Σ−1

∂φj
X∗1

)]
,

and

Aj =
1

2
tr

(
∂Σ−1

∂φl

∂2Σ

∂φjφk

)
− 1

2
tr

(
∂Σ−1

∂φk

∂2Σ

∂φjφl

)
− 1

2
tr

(
∂Σ−1

∂φj

∂2Σ

∂φkφl

)
.

Appendix B.4 shows the details.
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3.8 Monte Carlo Simulations

In general, Monte Carlo methods are all methods that examinate the properties of a

probability distribution, by generating a sample from the distribution and then studying

the statistical properties in this sample.

Let R be rejection area. To estimate the P [error type I] for small values of r by the

Monte Carlo simulation the main steps are:

1- Generate N independent sample according the null hypothesis,

(Y
(k)
1 , . . . ,Y(k)

r ),

for k = 1, . . . , N and each Yi is a random vector of lenght n,

2- calculate the statistic,

T (k) = T (Y
(k)
1 , . . . ,Y(k)

r ),

for k = 1, . . . , N ,

3- determine the percentage of samples of H0 that are rejected (wrongly), that is

P [error type I] = P [T ∈ R] ≈ 1

N

N∑
k=1

1T (k)∈R.

All simulations were performed using the Ox matrix programming language (Doornik,

2006). We consider 10000 Monte Carlo replications, n = 25 the sample size in a regular

grid of 5× 5 units.

3.8.1 Simulation 1

We present the results of Monte Carlo simulation experiments in which we evaluate the

finite sample performances of the likelihood ratio test and its Bartlett-corrected version.

The simulations were based on the following linear model Yi = β0 + β1x1 + ε, for

i = 1, . . . , 5. The values of x1 were obtained as random draws from the standard uniform

distribution U(0, 1), and ε ∼ Nn(0,Σ), with Σ = φ1In + φ2R(φ3) considering the expo-

nential geostatistical model. We test H0 : β1 = 0 against H1 : β1 6= 0. The parameters
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values are β0 = 0.5, β1 = 0.5, φ1 = 3.0, we varied φ2 = 0.5 and φ2 = 3.0, and φ3 = 3.0

treated as fixed in a sample grid of 5× 5. All tests were carried out at the following nom-

inal levels: α = 1%, α = 5% and α = 10%. The results are presented in Table 3.2. Note

that, apart from the first situation, all the statistics present the rejection rates above the

nominal level, but the corrected version of the likelihood statistic presents slightly better

results.

Table 3.2: Null rejection rates of the tests of H0 : β1 = 0. For r = 5 repetitions of the exponential
geostatistical model with q = 1 in an regular grid with n = 25.

φ2 α(%) LR LR∗

0.5 1.00 1.40 0.94

0.5 5.00 11.49 8.89

0.5 10.00 23.17 19.72

3.0 1.00 2.66 1.89

3.0 5.00 12.11 10.28

3.0 10.00 21.24 19.08

Table 3.3 presents the mean and variance of the χ2
1, LR and LR∗ statistics. The results

showed that the LR∗ statistics present mean and variance closest to the mean and variance

of the χ2
1 then the mean and variance of LR, but still they exceed the values of the χ2

1

statistics.

Table 3.3: Mean and variance of the χ2
1, LR and LR∗. For r = 5 repetitions of the exponential geostatistical

model in a regular grid with n = 25.

φ2 Mean χ2
1 Var χ2

1 Mean LR Var LR Mean LR∗ Var LR∗

0.5 1.00 2.00 1.8739 19.009 1.7131 16.476

3.0 1.00 2.00 1.6310 7.3866 1.5142 6.7151

3.8.2 Simulation 2

This simulation is similar to the first one, but now we increased the number of parame-

ters to be tested. The simulation were based on the linear model Yi = β0+β1x1+β2x2+ε,

for i = 1, . . . , 5. The values of x1 were obtained as random draws from the standard

uniform distribution U(0, 1), x2 is and indicator function and ε ∼ Nn(0,Σ), with Σ =
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φ1In+φ2R(φ3) considering the exponential geostatistical model. We test H0 : β1 = β2 = 0

against H1 : β1 6= 0 andβ2 6= 0. The parameters values are β0 = 0.5, β1 = 0.5, φ1 = 3.0, we

varied φ2 = 0.5 and φ2 = 3.0, and φ3 = 3.0 treated as fixed in a sample grid of 5× 5. All

tests were carried out at the following nominal levels: α = 1%, α = 5% and α = 10%. The

null rejection rates of the test under evaluation is displayed in Table 3.4. Note that all the

statistics present the rejection rates above the nominal level. As expected, the corrected

version of the likelihood ratio statistic shows null rejection rates closer to the nominal

level compared to the no corrected version.

Table 3.4: Null rejection rates of the tests of H0 : β1 = β2 = 0. For r = 5 repetitions of the exponential
geostatistical model with q = 2 in an regular grid with n = 25.

φ2 α(%) LR LR∗

0.5 1.00 2.00 1.82

0.5 5.00 7.47 6.80

0.5 10.00 14.08 13.21

3.0 1.00 28.91 26.35

3.0 5.00 16.1 13.96

3.0 10.00 28.91 26.35

The mean and variance of the χ2
2, LR and LR∗ statistics are presented in Table 3.5.

The results showed that the LR∗ statistics present mean and variance closer to the mean

and variance of the χ2
2 compared the mean and variance of LR. On the other hand the

values exceed the one of the χ2
2 statistics, specially the variance of LR and LR∗ statistics.

Table 3.5: Mean and variance of the χ2
2, LR and LR∗. For r = 5 repetitions of the exponential geostatistical

model in an regular grid with n = 25.

φ2 Mean χ2
2 Varχ2

2 Mean LR Var LR Mean LR∗ Var LR∗

0.5 2.00 4.00 1.5940 18.897 1.5361 17.917

3.0 2.00 4.00 2.1248 4.6723 1.9869 4.1811



APPLICATION 67

3.9 Application

The data set were collected in a grid of 7.20×7.20 m in an experimental area with 1.33

ha at Eloy Gomes Researh Center at Cooperativa Central Agropecuária de Desenvolvi-

mento Tecnológico e Econômico Ltda (COODETEC), in Cascavel city at Paraná State

- Brazil, with Oxisol soil. It were collected soybean productivity data and four chemical

contents during April in the years 1998 (Y1) or year 1, 1999 (Y2) year 2, 2000 (Y3) year 3,

2001 (Y4) year 4 and 2002 (Y5) year 5 with 253 observations each. To explain the expec-

tation value of the productivity, it were considered as explanatory variables in the model

these chemical contents of soil: phosphorus (P)[mg dm−3], potassium (K)[cmolc dm−3],

calcium (Ca)[cmolc dm−3] and magnesium (Mg)[cmolc dm−3].

Table 3.6 presents a descriptive analysis of productivity dataset. The smallest value

for the mean of the productivity is for Prod 2002 (Y5). This year has the biggest variance

coefficient (var. coef.) and beyond that, in general the lower values as shown in Figures

3.2 and 3.3. The observations were taken at the same site for each repetition and Figure

3.2(a) show how the data are spread in the area. Figures 3.2(b), 3.2(c), 3.2(d), 3.2(e) and

3.2(f) are the scatterplot for each repetition. The values of the productivity have been

decreasing along the years. Figure 3.3 show the usual boxplots for the productivity, where

only the observations taken in the harvest year 2002 do not have outliers.

Table 3.6: Descriptive analysis of productivity dataset.

Prod Min. 1st Quartil Median Mean 3rd Quartil Max. var. coef.

1998 1.190 2.420 2.740 2.755 3.050 4.140 0.18

1999 0.690 1.960 2.190 2.154 2.390 3.610 0.18

2000 1.260 2.930 3.150 3.106 3.330 3.980 0.12

2001 1.310 2.520 2.720 2.644 2.880 3.340 0.14

2002 0.190 0.770 1.220 1.283 1.820 2.340 0.44
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Figure 3.2: (a) Plot of how the data is spread in the area; each point has five repetitions, (b), (c), (d), (e)
and (f) scatterplot for each repetition, for years 1998, 1999, 2000, 2001 and 2002, respectively.
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Source: From the author.

Figure 3.3: Boxplot for soybean productivity in the years 1998 (Y1), 1999 (Y2), 2000 (Y3), 2001 (Y4) and
2002 (Y5).
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In other to choose the variance covariance structure that best describe the spatial
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dependence of the soybean productivity, we used cross validation (CV), the log-likelihood

maximum value (LMV) and the trace of the asymptotic covariance matrix of an estimated

mean (Tr) criteria presented in Table 4.1 and in Figure 4.2 of Chapter 4. Based on this

criteria we selected the Gaussian covariance structure to model the spatial variability.

In Table 3.7 are presented the results to test the fixed effects, considering the Gaussian

covariance structure. We observe that in all situations the null hypothesis is rejected when

considering 10% of significant level, and the only hypothesis that is not rejected when

considering 5% and 1% of significant is the first one, β1 = 0.

Table 3.7: Profile Likelihood ratio test and Bartlett correction version with the respectives p-values, for
the soybean productivity data set.

H0 LR LR-p-value LR∗ LR∗-p-value

β1 = 0 2.248747 0.0864 2.213197 0.0887

β2 = 0 22.65191 0.0000 22.28766 0.0000

β3 = 0 12.35896 0.0002 12.04922 0.0003

β4 = 0 17.10885 0.0000 16.80962 0.0000

β1 = 0 and β2 = 0 24.10884 0.0000 23.44502 0.0000

β3 = 0 and β4 = 0 23.35274 0.0000 22.30249 0.0000

β1 = 0 and β3 = 0 16.57818 0.0001 15.97536 0.0000

β1 = 0 and β4 = 0 16.57818 0.0001 16.10108 0.0000

β2 = 0 and β3 = 0 31.26882 0.0000 30.14944 0.0000

β2 = 0 and β4 = 0 36.73298 0.0000 35.68228 0.0000

β2 = 0; β3 = 0 and β4 = 0 42.5386 0.0000 40.33767 0.0000

β1 = 0; β3 = 0 and β4 = 0 27.86659 0.0000 26.41378 0.0000

β1 = 0; β2 = 0 and β4 = 0 39.56427 0.0000 38.15563 0.0000

β1 = 0; β2 = 0 and β3 = 0 33.53977 0.0000 32.10161 0.0000

β1 = 0; β2 = 0; β3 = 0 and β4 = 0 45.02532 0.0000 42.55362 0.0000

Based on the likelihood ratio test and its respective Bartlett corrected version, we

considered all the explanatory variables in the analysis.

Table 3.8 shows the parameters estimates considering the Gaussian covariance func-
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tion, and the respective asymptotic standard errors (se) in parenthesis. We note that P

and Mg has an inverse proportional relationship with the mean of the productivity, that is,

after a determined value as we increase the contents of P and Mg, the mean of productiv-

ity decrease. The opposite happen with K and Ca. For the Gaussian covariance structure,

the range of the model is given by
√

3φ3, so we conclude that under this scenario, the

range of spatial dependence is approximately 0.0705 m.

Table 3.8: Parameters estimates for Coodetec data considering the Gaussian covariance function, the
asymptotic standard errors (in parenthesis) and the p-values.

Intercept P K Ca Mg nugget sill f(range)

β̂0 β̂1 β̂2 β̂3 β̂4 φ̂1 φ̂2 φ̂3

2.4013 -0.0017 0.3270 0.0118 -0.0592 0.1927 0.0579 0.0407

(0.1020) (0.0109) (0.1746) (0.0392) (0.0515) (0.0178) (0.0219) (0.0098)

3.10 Conclusions

We performed likelihood-based testing inference on the parameters of a spatial linear

model. We had written the model as a random effect model, so is the same to say that

we addressed the issue to test the fixed effects parameters of mixed linear models when

the sample contains a small number of observations. We allow to test joint restrictions on

one or more fixed effects parameters.

For the spatial linear model the covariance matrix of the random effects is not neces-

sarily linear when deriving the Bartlett correction to the profile likelihood ratio test. We

obtained the likelihood ratio statistic and the corrected version by using Bartlett corrected

factor.

The standard likelihood ratio test is liberal, as evidenced by our Monte Carlo re-

sults. The simulation study clearly show that the proposed tests slightly outperform the

standard likelihood ratio test. It needs a deeper study to obtain more results.

We also present some useful derivatives for the selection and estimation procedure

of the covariance matrix that define the spatial dependence structure, considering the

Matérn family of geostatistical models.
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B.1 Covariance matrix derivatives

Let us consider the covariance matrix Σ = φ1I + φ2R given in 3.2 , where φ =

(φ1, . . . , φq)
> are unknown parameters, I is an n × n identity matrix and R is defined

according the chosen geostatistical model (Uribe-Opazo et al., 2012). Without loss of

generality, for q = 3 we have

vec>(Σ) = vec>(φ1I + φ2R) = φ1 vec>(I) + φ2 vec>(R),

consequently,

∂ vec>(Σ)

∂φ
=

∂φ1 vec>(I)

∂φ
+
∂φ2 vec>(R)

∂φ
, (B.1)

where the “vec” operator transforms a matrix into a vector by stacking the columns of the

matrix one underneath the other. The first part of the Equation (B.1) is given by

∂φ1 vec>(I)

∂φ
=


∂φ1 vec>(I)

∂φ1

∂φ1 vec>(I)

∂φ2

∂φ1 vec>(I)

∂φ3

 =


vec>(I)

0

0



71
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and the second part of the Equation (B.1) is given by

∂φ2 vec>(R)

∂φ
=


∂φ2 vec>(R)

∂φ1

∂φ2 vec>(R)

∂φ2

∂φ2 vec>(R)

∂φ3

 =


0

vec>
(
∂R

∂φ2

)
φ2 vec>

(
∂R

∂φ3

)
 .

Thus, the solution for Equation (B.1) is an 3× n2 matrix given by

∂ vec>(Σ)

∂φ
=


vec>(I)

vec>(R)

φ2 vec>
(
∂R

∂φ3

)
 .

B.2 Expected information matrix

Asymptotic standard errors can be calculated by inverting either the observed infor-

mation matrix or the expected information matrix. The expected information matrix is

given by

F(θ) = F =

E(UβU
>
β ) E(UβU

>
φ )

E(UφU
>
β ) E(UφU

>
φ )

 =

Fββ Fβφ

Fφβ Fφφ

 ,

where Uβ = U(β) and Uφ = U(φ) are the score functions for β and φ, respectively.

Let define Zi = Σ−1/2(Yi −Xβ), where Yi ∼ Nn(Xβ,Σ) then Zi ∼ Nn(0, I), where

0 is an n× p null matrix and I is an n× n identity matrix. Thus,

UβU
>
β =

r∑
i=1

X>Σ−1/2YiY
>
i Σ−1/2X,

UβU
>
φ = −1

2

r∑
i=1

X>Σ−1/2Yi vec>(Σ−1)
∂ vec(Σ)

∂φ>

+
1

2

r∑
i=1

X>Σ−1/2Yi vec>(Σ−1/2YiY
>
i Σ−1/2)

∂ vec(Σ)

∂φ>
,

UφU
>
φ = T1 + T2 + T3 + T4,
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where,

T1 =
r

4

∂ vec>(Σ)

∂φ
vec(Σ−1) vec>(Σ−1)

∂ vec(Σ)

∂φ>
,

T2 = −1

4

r∑
i=1

∂ vec>(Σ)

∂φ
vec(Σ−1) vec>(Σ−1/2YiY

>
i Σ−1/2)

∂ vec(Σ)

∂φ>
,

T3 = −1

4

r∑
i=1

∂ vec>(Σ)

∂φ
vec(Σ−1/2YiY

>
i Σ−1/2) vec>(Σ−1)

∂ vec(Σ)

∂φ>
,

T4 =
1

4

r∑
i=1

∂ vec>(Σ)

∂φ
vec(Σ−1/2YiY

>
i Σ−1/2) vec>(Σ−1/2YiY

>
i Σ−1/2)

∂ vec(Σ)

∂φ>
,

which implies that Fββ = rX>Σ−1X, Fβφ = 0, Fφβ = 0, and

Fφφ = E[T1] + E[T2] + E[T3] + E[T4]

= −r
4

∂ vec>(Σ)

∂φ
vec(Σ−1) vec>(Σ−1)

∂ vec(Σ)

∂φ>

+
1

4

r∑
i=1

∂ vec>(Σ)

∂φ

[
(Σ−1 ⊗Σ−1) + (Σ−1/2 ⊗Σ−1/2)Kn(Σ−1/2 ⊗Σ−1/2)

+ vec(Σ−1) vec>(Σ−1)
]∂ vec(Σ)

∂φ>

=
r

2

∂ vec>(Σ)

∂φ
(Σ−1 ⊗Σ−1)

∂ vec(Σ)

∂φ>
,

where ⊗ denote the kronecker product and Kn is the commutation matrix.

B.3 Derivative for smoothness parameter of Matérn class of mo-

dels

For the Matérn class of covariance structure there is an extra parameter, known as

smooth parameter, that give more flexibility for this class. To get the asymptotic standard

error of such parameter we need the first derivative of the log-likelihood in respect of it.

For that, we used results presented on Menćıa and Sentana (2005) and Harkard (2007),

based on Abramowitz and Stegun (1965) as we present in the following.

The modified Bessel function of the third kind with order φ4, which we denote as

Kφ4(.), is closely related to the modified Bessel function of the first kind Iφ4(.), as

Kφ4

(
d

φ3

)
=
π

2

I−φ4(
d
φ3

)− Iφ4( d
φ3

)

sin(πφ4)
. (B.2)
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Menćıa and Sentana (2005) present some comments according to their experience in

relation to the stability of the modified Bessel functions derivative. For example, for φ4 > 0

and (d/φ3) > 12, the derivative of (B.2) with respect to φ4 gives a better approximation

than the direct derivative of Kφ4(
d
φ3

), which is in fact very unstable.

To evaluate the derivative with respect to φ4 at φ4 6= 0,±1,±2, . . ., use

∂Kφ4

(
d
φ3

)
∂φ4

=
1

2
π csc(φ4π)

∂I−φ4
(
d
φ3

)
∂φ4

−
∂Iφ4

(
d
φ3

)
∂φ4

− π cot(φ4π)Kφ4

(
d

φ3

)
,

where

∂Iφ4

(
d
φ3

)
∂φ4

= Iφ4

(
d

φ3

)
ln

(
1

2

d

φ3

)
−
(

1

2

d

φ3

)φ4 ∞∑
k=0

ψ(φ4 + k + 1)[1
4
( d
φ3

)2]k

Γ(φ4 + k + 1)k!
,

and

∂I−φ4

(
d
φ3

)
∂φ4

= −I−φ4
(
d

φ3

)
ln

(
1

2

d

φ3

)
+

(
1

2

d

φ3

)−φ4 ∞∑
k=0

ψ(−φ4 + k + 1)[1
4
( d
φ3

)2]k

Γ(−φ4 + k + 1)k!
,

where ψ is the digamma function, ψ = d
dx
{ln Γ(x)} = Γ′(x)Γ(x) and

I−φ4(
d

φ3

) =
2

π
sin(φ4π)Kφ4(

d

φ3

) + Iφ4(
d

φ3

).

For evaluating at integer values of φ4,

∂Kφ4

(
d
φ3

)
∂φ4

∣∣∣
φ4=m

=
m!(1

2
d
φ3

)−m

2

m−1∑
k=0

(1
2
d
φ3

)kKk(
d
φ3

)

(m− k)k!
,

for m = 1, 2, 3 . . ..

Continuing to find ∂(R)/∂φ4 for Matérn model we have that

∂
(
d
φ3

)φ4
∂φ4

=

(
d

φ3

)φ4
ln

(
d

φ3

)
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and

∂
[
2φ4−1Γ(φ4)

]−1
∂φ4

= −[2φ4−1Γ(φ4)]
−1[ln(2) + ψ(φ4)],

using Γ′(φ4) = ψ(φ4)Γ(φ4).

Then, using the product rule and the results above we have for Matérn covariance

structure that

∂rij
∂φ4

=
(dij/φ3)

φ4

2φ4−1Γ(φ4)

[
Kφ4(

dij
φ3

)
(

log
(
dij
φ3

)
− log(2)− ψ(φ4)

)
+
∂Kφ4(

dij
φ3

)

∂φ4

]
,

B.4 Factor for Bartlett correction

The factor for Bartlett correction factor is obtained for the Gaussian spatial linear

models with multiple repetitions. The vector of parameters is ϑ = (β>1 , ξ
>,φ>)>, where

ϑr is the rth element of ϑ. We adopt the the tensor notation for the log-likelihood cumu-

lants: λrs = E(∂2L(ϑ)/∂ϑr∂ϑs), λrst = E(∂3L(ϑ)/∂ϑr∂ϑs∂ϑt), . . ., and the following for

the derivatives of cumulants: (λrs)t = ∂λrs/∂ϑt, (λrs)tu = ∂2λrs/∂ϑt∂ϑu, . . .. The Fisher’s

information matrix has elements −λrs, where −λrs is the element of its inverse. Addition-

aly τ rs = λraλsbσab, where (σab) is the inverse of the matrix λab of dimension q × q. We

use indices a, b, c, d in reference to the components of β1, indices f, g for the components

of ξ, and indices j, k, l, o for the elements of φ.

Lawley’s (1956) formula for the Bartlett correction factor, C, is given by

C =
∑
β1,ξ,φ

(lrstu − lrstuvw)−
∑
ξ,φ

(lrstu − lrstuvw),

with

λrstu = λrsλtu
[

1

4
λrstu − (λrst)u − (λrt)su

]
,
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and

λrstuvw =λrsλtuλvw
{
λrtv

(
1

6
λsuw − (λsw)u

)
+

(
1

4
λsvw − (λsw)v

)
+(λrt)v(λsw)u + (λrt)u(λsw)v} .

The following notation and results will be used to obtain C.

zi = Yi −X∗1β1 −X2ξ,

∂X∗1
∂β1

= 0,

∂X∗1
∂ξ

= 0,

∂X∗1
∂φj

= Ẋ∗1j = −X2(X
>
2 Σ−1X2)

−1X>2
∂Σ−1

∂φj
X∗1,

Ẋ∗1j
∂φk

= Ẍ∗1jk = 2X2(X
>
2 Σ−1X2)

−1X>2
∂Σ−1

∂φk
X2(X

>
2 Σ−1X2)

−1X>2
∂Σ−1

∂φj
X∗1

−X2(X
>
2 Σ−1X2)

−1X>2
∂2Σ−1

∂φj∂φk
X∗1,

Ẋ∗>1j Σ−1X∗1 = 0,

X>2 Σ−1X∗1 = 0,

Ẋ∗>1k
∂Σ−1

∂φl
Ẋ∗1j = 0,

The first-order derivatives of the log-likelihood function in Equation (3.9) are

∂L(ϑ)

∂β1

=
r∑
i=1

X∗>1 Σ−1zi,

∂L(ϑ)

∂ξ
=

r∑
i=1

X>2 Σ−1zi,

∂L(ϑ)

∂φj
= −r

2
tr

(
Σ−1

∂Σ

∂φj

)
+

r∑
i=1

β>1 Ẋ∗>1j Σ−1zi −
1

2

r∑
i=1

z>i
∂Σ−1

∂φj
zi.

Note that when r is not a subindex, it is the number of repetitions. The second-order
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derivatives are

∂2L(ϑ)

∂β1∂β1

= −rX∗>1 Σ−1X∗1,

∂2L(ϑ)

∂β1∂ξ
= 0,

∂2L(ϑ)

∂β1∂φj
=

r∑
i=1

Ẋ∗>1j Σ−1zi +−
r∑
i=1

X∗>1
∂Σ−1

∂φj
zi,

∂2L(ϑ)

∂ξ1∂ξ1
= −rX>2 Σ−1X2,

∂2L(ϑ)

∂ξ1∂φj
=

r∑
i=1

X>2
∂Σ−1

∂φj
(Yi −X2ξ),

∂2L(ϑ)

∂φj∂φk
= −r

2
tr

(
∂Σ−1

∂φk

∂Σ

∂φj

)
− r

2
tr

(
Σ−1

∂Σ2

∂φj∂φk

)
+

r∑
i=1

β>1 Ẍ∗>1jkΣ
−1zi

+
r∑
i=1

β>1 Ẋ∗>1j
∂Σ−1

∂φk
zi −

r∑
i=1

β>1 Ẋ∗>1j Σ−1Ẋ∗1kβ1 +
r∑
i=1

β>1 Ẋ∗>1k
∂Σ−1

∂φj
zi

− 1

2

r∑
i=1

z>i
∂Σ2

∂φj∂φk
zi.

The third-order derivatives are

∂3L(ϑ)

∂β1∂β
>
1 ∂β

= 0,

∂3L(ϑ)

∂β1∂β
>
1 ∂ξ

= 0,

∂3L(ϑ)

∂β1∂β
>
1 ∂φj

= −rX∗>1
∂Σ−1

∂φj
X∗1,

∂3L(ϑ)

∂β1∂ξ
>∂ξ

= 0,

∂3L(ϑ)

∂β1∂ξ
>∂φj

= 0,

∂3L(ϑ)

∂β1∂φj∂φk
=

r∑
i=1

(
Ẍ∗1jkΣ

−1 + Ẋ∗1j
∂Σ−1

∂φk
+ Ẋ∗1k

∂Σ−1

∂φj
+ X∗>1

∂2Σ−1

∂φj∂φk

)
zi,

∂3L(ϑ)

∂ξ1∂ξ>∂φj
= −rX>2

∂Σ−1

∂φj
X2,

∂3L(ϑ)

∂ξ1∂φj∂φk
=

r∑
i=1

X>2
∂2Σ−1

∂φj∂φk
(Yi −X2ξ),

∂3L(ϑ)

∂φj∂φk∂φl
= −r

2
tr

(
∂2Σ−1

∂φk∂φl

∂Σ

∂φj

)
− r

2
tr

(
∂Σ

∂φk

∂2Σ−1

∂φj∂φl

)
− r

2
tr

(
∂Σ

∂φl

∂2Σ−1

∂φj∂φk

)
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− r

2
tr

(
Σ−1

∂3Σ−1

∂φj∂φk∂φl

)
+

r∑
i=1

β>1

(
∂Ẍ∗1jk
∂φl

Σ−1 + Ẍ∗1jk
∂Σ−1

∂φl
+

Ẍ∗1jl
∂Σ−1

∂φk
+ X∗>1j

∂2Σ−1

∂φk∂φl
+ Ẍ∗1kl

∂Σ−1

∂φj
+ X∗>1k

∂2Σ−1

∂φj∂φl
+ X∗>1l

∂2Σ−1

∂φj∂φk

)
zi

− 1

2

r∑
i=1

∂3Σ−1

∂φj∂φkφl
.

The third-order derivatives not shown above are equal to 0. Finally, the fourth-order

derivatives are

∂4L(ϑ)

∂β1∂β
>
1 ∂φj∂φk

= −2rẊ∗>1k
∂Σ−1

∂φj
X∗1 − rX∗>1

∂2Σ−1

∂φj∂φk
X∗1,

∂4L(ϑ)

∂β1∂β
>
1 ∂ξ∂ξ

> = 0,

∂4L(ϑ)

∂β1∂β
>
1 ∂ξ∂φj

= 0.

Taking expected values of second, third and fourth derivatives, we obtain

Λβ1β1 = E

(
∂2L(ϑ)

∂β1β1

)
= −rX∗>1 Σ−1X∗1,

and in similar way we have

Λβ1ξ = 0,

Λβ1φj = 0,

Λξξ = −rX>2 Σ−1X2,

Λξφj = rX>2
∂Σ−1

∂φj
X∗1β1,

Λβ1β1φj = −rX∗>1
∂Σ−1

∂φj
X∗1,

Λβ1φjφk = 0,

Λξξφj = −rX>2
∂Σ−1

∂φj
X2,

Λξφjφk = rX>2
∂2Σ−1

∂φj∂φk
X∗1β1,
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Λβ1β1ξξ = 0,

Λβ1β1ξφk = 0,

Λβ1β1φjφk = −2rẊ∗>1k
∂Σ−1

∂φj
X∗1 − rX∗>1

∂2Σ−1

∂φj∂φk
X∗1,

λjk = −r
2

tr

(
∂Σ−1

∂φj

∂Σ

∂φk

)
− rβ1Ẋ

∗>
1j Σ−1Ẋ∗1kβ1,

λljk = −2r tr

(
∂Σ−1

∂φl

∂Σ

∂φk
Σ−1

∂Σ

∂φj

)
+
r

2
tr

(
∂Σ−1

∂φj

∂2Σ−1

∂φl∂φk

)
+
r

2
tr

(
∂Σ−1

∂φk

∂2Σ−1

∂φl∂φj

)
+
r

2
tr

(
∂Σ−1

∂φl

∂2Σ−1

∂φj∂φk

)
.

The expected Fisher’s information matrix out of minus is given by


Λββ 0 0

0 Λξξ Λξφ

0 Λ>ξφ Λφφ

 .

Using inverse matrix rule from Rao (1973), the matrices formed out of minus Fisher’s

information matrix inverse are: Λββ = Λ−1ββ , Λφφ = (Λφφ − Λ>ξφΛ−1ξξ Λξφ)−1, Λξξ = Λ−1ξξ +

Λ−1ξξ ΛξφΛφφΛ>ξφΛ−1ξξ and Λξφ = −Λ−1ξξ ΛξφΛφφ>, where the jth column of Λξφ is Λξφj and the

(j, k)th element of Λφφ is λjk. The derivatives of cumulants are

(Λβ1β1)j = −rX∗>1
∂Σ−1

∂φj
X∗1,

(Λβ1β1)jk = −2rẊ∗>1k
∂Σ−1

∂φj
X∗1β1 − rX∗>1

∂2Σ−1

∂φj∂φk
X∗1,

(Λξξ)j = −rX>2
∂Σ−1

∂φj
X2,

(Λξφj)k = rX>2
∂2Σ−1

∂φj∂φk
X∗1β1 + rX>2

∂Σ−1

∂φj
Ẋ∗1kβ1,

(λjl)k = −r tr

(
∂Σ−1

∂φl

∂Σ

∂φj
Σ−1

∂Σ

∂φk

)
+
r

2
tr

(
∂Σ−1

∂φl

∂2Σ

∂φj∂φk

)
+
r

2
tr

(
∂Σ−1

∂φj

∂2Σ

∂φk∂φl

)
.

From the orthogonality between β1 and (ξ>,φ>)> that λaf = λaj = (λaf )jb = λjfa =

λjfab = 0. And also it is possible to show that labcd = labfg = labjf = lfgab = 0 and that
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Λabjk = (Λabj)k = Λjkab. After tiresome algebraic manipulations, the Bartlett correction

factor reduces to

C =
∑[

−1

2
λabλjkλabjk +

1

4
λabλcdλjkλabjλcdk −

1

2
λabλjkλloλabj(λlok − 2(λlo)k)

+λabλfkλjlλabj

(
2(λfk)l −

3

2
λfkl

)
− 1

2
λabλfgλjkλabjλfgk

]
.

And in matrix notation it is given by

C = tr

{
Λφφ

[
−1

2
M +

1

4
P−

(
1

2
ς − δ +

1

2
ν

)
τ>
]}

,

where ς, δand νarem-vectors whose j-th elements are, respectively, tr
(
ΛφφAj

)
, tr
(

Λξφ>Bj

)
and tr

[
−Λξξ

(
X>2

∂Σ−1

∂φj
X2

)]
.

The matrix Bj contains the m column vectors

(
1

2
X>2

∂2Σ−1

∂φj∂φk
X∗1 + 2X>2

∂Σ−1

∂φj
Ẋ∗1k

)
β1.

This results are similar to the ones obtained by Melo et al. (2009).



Chapter 4

Local influence on Gaussian spatial linear mo-

dels with repetitions

4.1 Resumo

Neste caṕıtulo, são apresentadas técnicas de diagnósticos de influência local em mo-

delos espaciais lineares Gaussianos com repetições. Conceitos de influência local sob dois

enfoques diferentes e alavanca generalizada são revisados. Além disso, foi desenvolvido

medidas de diagnóstico sob esquemas de perturbação apropriados para a resposta e pon-

deração de casos. Uma aplicação a dados reais ilustra a metodologia desenvolvida neste

caṕıtulo.

4.2 Introduction

Geostatistical began in South Africa and reached maturity at the Ecoles des Mines at

Fontainebleau near Paris. Geostatistical data are data collected at known sites in space,

from a process that has a value at every site in a certain domain. The data are modelled

as the sum of a constant or varying trend and a spatially correlated residual. Given a

model for the trend, and under some stationarity assumptions, geostatistical modelling

involves the estimation of the spatial correlation, Pebesma (2004).

Recent proposals have discussed Gaussian spatial linear models (GSLM) to study the

structure of dependence in spatially referenced data. For more details about estimation,

inference methods and applications of these models, see, for example, (Cressie, 1993;

Isaaks and Srisvastava, 1989; Mardia and Marshall, 1984; Schabenberger and Gotway,

81
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2005; Waller and Gotway, 2004; Webster and Oliver, 2007).

To assess the effect of small perturbations in the model (or data) on the parameter

estimates, Cook (1986) proposed an interesting method, named local influence. This anal-

ysis does not involve recomputing the parameter estimates for each case deletion, so it is

often computationally simpler. Influence diagnostics based on the likelihood displacement

have been developed for multivariate elliptical linear models by Galea et al. (1997) and Liu

(2000). Cadigan and Farell (2002) considered local influence diagnostics for a statistical

model that is fully parametric, and where estimation involves a fit function that is second

order differentiable with respect to the parameters. Zhu et al. (2007) constructed influence

measures by assessing local influence of perturbations to a statistical model. Chen and

Zhu (2009) proposed a perturbation selection method for selecting an appropriate pertur-

bation with desirable properties then, developed a second-order local influence measure

on the basis of the selected perturbation, in the context of general latent variable models.

Vasconcellos and Zea Fernandez (2009) presented influence analysis with homogeneous

linear restrictions. Giménez and Galea (2013) applied the approach of Zhu et al. (2007)

in functional heteroskedasticity measurement error models.

There are only a few works in the literature about influence diagnostics in geostatistical

analysis, see (Christensen et al., 1992a; Diamond and Armstrong, 1984; Warnes, 1986). For

the situation we have no repetition, Uribe-Opazo et al. (2012) used diagnostic techniques

to assess the sensitivity of the maximum likelihood estimators, covariance functions and

linear predictor to small perturbations in the data and/or in the Gaussian spatial linear

model assumptions. Assumpção et al. (2014) presented the generalized leverage to evaluate

the influence of a vector on its own predicted value for different approaches for t-Student

spatial linear models. De Bastiani et al. (2015) presented local influence on elliptical spatial

linear models under the appropriated perturbation scheme. Garcia-Papani et al. (2016)

presented diagnostics tools for the Birbaum-Saunders distribution within the geostatistical

framework.

Waternaux et al. (1989) suggested several practical procedures to detect outliers for

the repeated measurements model based on the global influence approach. Lesaffre and

Verbeke (1998) extended the local influence methodology to normal linear mixed models
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in repeated-measurement context and under the case-weight perturbation scheme.

Smith (2001) presented the model of multiple repetitions of a spatial process and

parameter estimation process. The observations are taken from different experimental

units, which is different geographical site for our case, where each variable are observed

more than once.

In this work we propose the study of repeated measures in the geostatistical field. We

focus on the GSLM with repetitions and we present diagnostic studies. We discuss max-

imum likelihood estimation and diagnostic tools such as local influence and generalized

leverage. Moreover, we consider appropriated perturbation scheme in the response vari-

able and case weight perturbation, proposed by Zhu et al. (2007). The Chapter unfolds

as follows. Section 4.3 presents the GSLM with repetitions. In Section 4.4, the maximum

likelihood estimators are obtained and in Section 4.5 we present a procedure to select the

covariance structure model. In Section 4.6 an explicit expression for the Fisher informa-

tion matrix is presented. Section 4.7 reviews concepts of local influence for two different

approaches and generalized leverage. We discuss the selection of an appropriate pertur-

bation scheme by using the methodology proposed by Zhu et al. (2007) and present the

results for the GSLM with repetitions. Section 4.8 contains an application with real data

to illustrate the methodology developed in this paper. Finally, Section 4.9 contains some

concluding remarks. Calculations are presented in the appendices.

4.3 Gaussian spatial linear model with repetitions

Let Y = Y(s) = vec(Y1(s), ...,Yr(s)) be an nr× 1 random vector of r independently

stochastic process of n elements each, that belong to the family of Gaussian distributions

and depend on the sites sj ∈ S ⊂ IR2 for j = 1, . . . , n, where s = (s1, . . . , sn)>. The “vec”

operator transforms a matrix into a vector by stacking the columns of the matrix one un-

derneath the other. It is assumed the i-th stochastic process Yi(s) = vec(Yi(s1), ..., Yi(sn)),

represents the n × 1 vector, for i = 1, . . . , r, which can be expressed as a linear mixed

model by

Yi(s) = µi(s) + bi(s) + τi(s)
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where, the deterministic term µi(s) is an n×1 vector, the means of the process Yi(s), bi(s)

and τi(s) are independents and together form the stochastic error, i.e. bi(s)+τi(s) = εi(s)

is an n × 1 vector of a stationary process with zero mean vector, E[εi(s)] = 0, and

covariance Σi. The mean vector µi(s) can be written as a spatial linear model by

µi(s) = X(s)β,

where, β = (β1, . . . , βp)
> is a p×1 vector of unknown parameters, X = X(s) = [xj1(s) . . .

xjp(s)] is an n×p matrix of p explanatory variables, for j = 1, . . . , n, i.e, the design matrix

X is the same for all r repetitions.

Goodal and Mardia (1994) argue that we can remove the effect of time from the data

and then we can view the data as independent repeated measurements in space. According

Stein (1999), for a space-time process observed at a fixed set of spatial sites at sufficiently

distant points in time, it may be reasonable to assume that observations from different

times are independent realizations of a random field.

As in Smith (2001), the GSLM for the i-th independent stochastic process, assuming

a homogeneous process, can be written in matrix form by

Yi(s) = Xβ + εi(s). (4.1)

for i = 1, . . . , r. The covariance matrix Σi = Σ = [C(su, sv)] is an n×n covariance matrix

of Yi(s) for the i-th repetition, i = 1, . . . , r. The matrix Σ is non-singular, symmetric and

positive defined, associated to the vector Yi(s), where for the stationary and isotropic

process, the elements C(su, sv) depend on the Euclidean distance duv = ||su−sv|| between

points su and sv.

So, from what was previously written we have that Y ∼ Nnr(1r ⊗Xβ, Ir ⊗Σ), with

probability density function (pdf) given by

f(Y,θ) =
∏r

i=1 f(Yi,θ)

=
∏r

i=1(2π)−n/2|Σ|−1/2exp
[
−1

2
(Yi −Xβ)>Σ−1(Yi −Xβ)

]
,

(4.2)
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where ⊗ denote the kronecker product and (Yi −Xβ)>Σ−1(Yi −Xβ) = δi is the Maha-

lanobis distance.

The covariance matrix Σ has a structure which depends on parameters φ = (φ1, . . . , φq)
>

as given in Equation (4.3) (Mardia and Marshall, 1984; Uribe-Opazo et al., 2012):

Σ = φ1In + φ2R, (4.3)

where, φ1 ≥ 0 is the parameter known as nugget effect; φ2 ≥ 0 is known for sill ; R =

R(φ3, φ4) = [(ruv)] or R = R(φ3) = [(ruv)] is an n×n symmetric matrix, which is function

of φ3 > 0, and sometimes also function of φ4 > 0, with diagonal elements ruu = 1, (u =

1, . . . , n); ruv = φ−12 C(su, sv) for φ2 6= 0, and ruv = 0 for φ2 = 0, u 6= v = 1, . . . , n, where

ruv depends on the Euclidean distance duv = ||su − sv|| between points su and sv; φ3 is a

function of the model range (a), φ4 when exists is known as the smoothness parameter,

and In is an n× n identity matrix.

The Matérn (Matérn, 1960; Minasny and McBratney, 2005; Stein, 1999) is a covariance

function particularly attractive given by

C(duv) =


φ2

2φ4−1Γ(φ4)
(duv/φ3)

φ4 Kφ4 (duv/φ3) , duv > 0,

φ1 + φ2, duv = 0,

where the parameters are assumed to be non-negative, i.e., φq ≥ 0, for q = 1, 2, 3, 4;

Kφ4(u) = 1
2

∫∞
0
xφ4−1e−

1
2
u(x+x−1)dx is the modified Bessel function of the third kind of

order φ4; see (Gradshteyn and Ryzhik, 2000). This covariance function is particularly

attractive because its behavior can change according φ4 value. For instance, φ4 = 0.5

gives the exponential covariance structure, Whittle’s elementary covariance (φ4 = 1), and

in the limit as φ4 approaches to infinity, with φ3 approaching to 0 in such way that 2φ
1/2
4 φ3

remains constant, it approaches the Gaussian covariance function. For a finite value of the

φ3 parameter (which is function of the range parameter), the Matérn function represents

several bounded models. In many works the notation for the smoothness parameter is κ

or ν for Matérn class, but for simplicity of notation we use φ4, since it is a parameter part
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of the covariance structure which can be estimated or considered as fixed.

4.4 Maximum likelihood estimation

According to Smith (2001), despite of disadvantages such as non-robustness when there

are outliers in the data, or the possible multimodality of the likelihood surface, they are

not reason to abandon maximum likelihood (ML) estimation. Of course, we can expect

to get better estimates if there are repetitions of Yi. The maximum likelihood procedure

in this case is only slightly different from that in the single case.

The log-likelihood for the GLSM for the r independent repetitions is given by

L(θ) =
r∑
i=1

Li(θ),

where,

Li(θ) = −n
2

log(2π)− 1

2
log |Σ| − 1

2
(Yi −Xβ)>Σ−1(Yi −Xβ). (4.4)

The score functions are given by

U(β) =
∂L(θ)

∂β
=

r∑
i=1

X>Σ−1εi,

U(φ) =
∂L(θ)

∂φ
= −r

2

∂ vec>(Σ)

∂φ
vec(Σ−1) +

1

2

r∑
i=1

∂ vec>(Σ)

∂φ
vec(Σ−1εiε

>
i Σ−1),

where εi = Yi −Xβ. From the solution of the score function of β, U(β) = ∂L(θ)
∂β

= 0,

the maximum likelihood estimator β is given by

β̂ = (X>Σ−1X)−1X>Σ−1Ȳ, (4.5)

where Ȳ = (Ȳ1, . . . , Ȳn)>, with Ȳj =
1

r

r∑
i=1

Yi(sj), j = 1, . . . , n.

Since we can see the GSLM with repetitions as a linear mixed model we can follow what

Demidenko (2004) and Wang and Heckman (2009) said about parameter identifiability

problems for the linear mixed models. In particular, Wang and Heckman (2009) showed

that there is no problem since we have that Var[εi] = φ1In. But one deficiency can be
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the sensibility of the maximum likelihood estimates for atypical observations. For that we

present the study of diagnostic techniques in Section 4.7.

Unfortunately, the score equations for φ do not lead to a closed-form solution for

φ. Thus, a common practice is to maximize the concentrated log-likelihood, obtained

substituting the solution to the score equation for β [Equation (4.5)] into the log-likelihood

in Equation (4.4). The concentrated log-likelihood then depends only on φ, and ignoring

the constant −rn
2

log(2π) it is given by

L∗(φ) ∝ −r
2

log |Σ| − 1

2

r∑
i=1

(Yi −X(X>Σ−1X)−1X>Σ−1Ȳ)>Σ−1

×(Yi −X(X>Σ−1X)−1X>Σ−1Ȳ).

The package geoR (Ribeiro Jr and Diggle, 2001) from software R has already implemented

procedures for the parameters estimation. The ML estimates of covariance parameters are

typically consistent and asymptotically normal when fitted by a correct model (Mardia

and Marshall, 1984). The readers are refereed to Stein (1999) for more details regarding

fixed domain asymptotics. Some discussion concerning which asymptotic framework is

more appropriate can also be found in Zhang and Zimmerman (2005).

4.5 Covariance Structure Selection

For the case of the Matérn class of covariance function (or other with more than three

parameters), we suggest to use the idea presented in Minasny and McBratney (2005) for

one single realization, which assume φ4 as fixed to find which φ4 gives the maximum value

for the profile log-likelihood, and then use it as a initial value and estimate it. We use the

same idea, but now for a model with multiple repetitions. Stein (1999) says that although

he do not advocate treating φ4 = 0.5 as fixed, it is important to keep in mind that is the

same of using the exponential model.

In the case that we consider the parameter φ4 as fixed, we have to choose which

value, between a range of values, gives the best fit. Despite of the maximum value of the

log-likelihood, we consider the cross validation criterion similar to the one presented in
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(De Bastiani et al., 2015), defined by

CV = CV (φ4) =
1

nr

r∑
i=1

n∑
j=1

{yi(sj)− ŷi(j)(sj)
1− hjj

}2

,

where ŷi(j)(sj) = x>j β̂(j), with x>j the i-th row of the matrix X, is the prediction in the site

sj without considering this observation, (yj,x
>
j ), β̂(j) is the ML estimator of β without

considering the j-th observation, and hjj is the j-th diagonal element of the projection

matrix H = X(X>Σ̂
−1

X)−1X>Σ̂
−1
, for j = 1, . . . , n, see Section 4.7.4. To simplify the

calculations we can use the approximation β̂(j) ≈ β̂ + K−1(β̂)U(j)(β̂), where

K(β̂) = rX>Σ̂
−1

X and

U(j)(β̂) =
r∑
i=1

X>(j)Σ̂
−1

(Yi(j) −X(j)β̂), (4.6)

with X(j), (n − 1) × p, the matrix X without the j-th row, x>j , and Yi(j), (n − 1) × 1

denotes the vector Yi without the response yi(sj), for j = 1, . . . , n and i = 1 . . . , r. Note

that in (4.6) the matrix Σ̂
−1

is of order (n− 1)× (n− 1).

Alternatively, another criterion is to use the trace of the asymptotic covariance matrix

of an estimated mean as a criterion in selecting a better model (Kano et al., 1993). Let

µ̂ = Xβ̂. From the results of Section 4.6, it follows that the trace of the asymptotic

covariance matrix of µ is given by,

tr(φ4) = (1/r) tr[(X>X)(X>Σ̂
−1

X)−1].

4.6 Asymptotic standard error estimation

The observed information matrix, say I(θ), is I(θ) = −L(θ), evaluated in θ = θ̂,

where L(θ) = ∂2L(θ)/∂θ∂θ>. Furthermore, we notice that the I(θ), which is evaluated

in θ = θ̂, has the same equations as the expected information matrix given below. The
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derivatives of first and second-order of the scale matrix Σ, with respect to φq, for some

covariance functions are presented in Uribe-Opazo et al. (2012). Some useful constructions

are given in Appendix B.1.

Asymptotic standard errors can be calculated by inverting either the observed infor-

mation matrix or the expected information matrix. The expected information matrix,

F(θ), is given by, (Waller and Gotway, 2004)

F(θ) = F =

E(UβU
>
β ) E(UβU

>
φ )

E(UφU
>
β ) E(UφU

>
φ )

 =

Fββ Fβφ

Fφβ Fφφ

 ,

where Fββ = rX>Σ−1X, Fβφ = 0, Fφβ = 0 and Fφφ =
r

2

∂ vec>(Σ)

∂φ
(Σ−1⊗Σ−1)

∂ vec(Σ)

∂φ>
.

See Appendix B.2 for the details. We used F−1ββ and F−1φφ to estimate the dispersion

matrices for the maximum likelihood estimators β̂ and φ̂, respectively.

4.7 Local Influence

Detecting influential observations is an important step in the analysis of a data set.

There are different approaches to assess the influence of perturbations in a data set and

in the model given the estimated parameters. Cook (1977) gave a starting point to the

development of case-deletion diagnostics for a broad class of statistical models, that is

to asses the effect of an observation by completely removing it. Cook (1986) presented

the local influence approach, that is, a weight ωi is given for each case and the effect

on the parameter estimation is measured by perturbing around these weights. Choosing

weights equal zero or one corresponds to the global case-deletion approach. In general,

perturbation measures do not depend on the data directly, but rather on its structure via

the model.

Lesaffre and Verbeke (1998) extended the local influence methodology to normal linear

mixed models in repeated-measurement context and under the case-weight perturbation

scheme. Cerioli and Riani (1999), Militino et al. (2006) showed that case deletion diag-

nostics do suffer from masking and suggest robust procedures based on subsets of data

free from outliers. Borssoi et al. (2011) and Uribe-Opazo et al. (2012) discussed diagnos-
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tic techniques, using local influence methodology, to evaluate the sensitivity of maximum

likelihood estimators, the covariance functions and the linear predictor under small per-

turbations in the data and/or spatial linear model with normal distribution.

The method of local influence was introduced by Cook (1986) as a general tool for

assessing the influence of local departures from the assumptions underlying the statis-

tical models. A perturbation scheme is introduced into the postulated model through a

perturbation vector ω = (ω1, . . . , ωk)
> (ω ∈ Ω ⊂ IRk), generating the perturbed model

M = {f(Y,θ,ω) : ω ∈ Ω}, where f(Y,θ,ω) is the pdf of Y given in (4.2), perturbed by

ω and L(θ|ω) = log f(Y,θ,ω) is the corresponding loglikelihood function. Then, an in-

fluence measure is constructed using the basic geometric idea of curvature of the likelihood

displacement given by

LD(ω) = 2[L(θ̂)− L(θ̂ω)],

where θ̂ is the ML estimator of θ = (β>,φ>)> in the postulated model, with β =

(β1, . . . , βp)
>, φ = (φ1, . . . , φq)

> and θ̂ω is the ML estimator of θ in the perturbed model

M.

Cook (1986) proposed to study the local behavior of LD(ω) around ω0 and shows

that the normal curvature Cl of LD(ω) at ω0 in the direction of some unit vector l, is

given by Cl = Cl(θ) = 2|l>∆>L−1∆l|, with ||l|| = 1, where −L = −L(θ) is the observed

information matrix (given in Section 3.6), evaluated at θ = θ̂ and ∆ = (∆>β ,∆
>
φ )>,

where ∆β = ∂2L(θ|ω)/∂β∂ω> and ∆φ = ∂2L(θ|ω)/∂φ∂ω>, evaluated at θ = θ̂ and

at ω = ω0, where L(θ|ω) is the perturbed log-likelihood and ω0 is the non perturbation

vector.

Zhu et al. (2007) developed a rigorous differential-geometrical framework of a per-

turbation model. First and second-order influence measures based on the observed data

likelihood function of the related statistical model are proposed in order to assess the

local influence of small perturbations on any statistics of interest and the important issue

about the selection of and appropriate perturbation vector is also addressed. Essentially,

to verify if the perturbation scheme is appropriated, Zhu et al. (2007) proposed to use the
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Fisher information matrix of ω in the model M considering the vector θ as fixed. Below

we briefly describe the methodology.

Let G(ω) be the Fisher information matrix with respect to the perturbation vector

ω. That is, G(ω) = Eω[U(ω)U>(ω)], where Eω denotes the expectation with respect to

f(Y,θ,ω), and U(ω) the perturbed score function. A perturbation ω is appropriate if it

satisfies G(ω0) = cIn, where c > 0. According to Zhu et al. (2007), see also (Giménez and

Galea, 2013), this condition determines orthogonality between the different components

of ω, ensures the amounts of perturbation introduced by the components of ω are uni-

form and avoids redundant components of ω. In Sections 4.7.2 and 4.7.3 we present the

appropriate perturbation for case weight perturbation and perturbation of the response

variable.

The plot of the elements |lmax| versus i (order of data) can reveal what type of per-

turbation has more influence on LD(ω), in the neighborhood of ω0, Cook (1986). Even

considering Ci = 2|jii|, where jii are the elements of the main diagonal of the matrix

J = ∆>L−1∆, can be used the index plot of Ci to evaluate the presence of influential

observations.

Since Cl is not invariant under uniform change of scale, Poon and Poon (1999) proposed

the conformal normal curvature Bl = Cl/ tr(2J), see (Zhu and Lee, 2001). An interesting

property of conformal curvature is that for any direction unit l, it follows that 0 ≤ Bl ≤ 1.

We denote by Bi = 2|jii|/ tr(2J) the conformal curvature in the unit direction with i-th

entry 1 and all other entries 0. According to Zhu and Lee (2001), the i-th observation

is potentially influential if Bi > B̄ + 2sd(B), where B̄ =
∑n

i=1Bi/n and sd(B) is the

standard deviation of B1, . . . , Bn.

4.7.1 Influence measures based on the likelihood function

Since the log-likelihood is used in the estimation process for inference and we are using

it as a criterion to select the covariance matrix structure that best describe the spatial

dependence, it is of concern to analyze the sensitivity of this statistic to a particular

perturbation scheme. More details can be seen in (Billor and Loynes, 1993; Cadigan and

Farell, 2002; Tsai, 1986; Zhu et al., 2007). In fact, following Cadigan and Farell (2002)
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notation, let g(θ̂) be the objective function. We are interested in evaluate the influence of

the perturbed objective function gω = gω(θ̂ω). The first order influence of a perturbation

scheme ω is measured through the slope in the direction d given by, (Cadigan and Farell,

2002), S(d) = d>ġ0, where

ġ0 =
∂gω(θ̂)

∂ω

∣∣∣
ω=ω0

−∆>L−1
∂g(θ)

∂θ

∣∣∣
θ=ˆθ

The maximum slope smax =
√
ġ>0 ġ0 and the corresponding direction vector dmax =

ġ0/smax, evaluated at θ = θ̂ and ω = ω0, are useful to detect local influence.

4.7.2 Case weight perturbation

The case weights perturbation scheme is often the basis of the study of influence. A

perturbed log-likelihood function, allowing different weights for each repetition can be

defined as

L(θ|ω) =
r∑
i=1

ωiLi(θ),

and Li(θ) is the contribution of the i-th repetition of the log-likelihood and ω = (ω1, . . . , ωr)
>

is the vector of perturbation which is assumed to belong to an open subset Ω of IRr, with

0 ≤ ωi ≤ 1. For this case we have that ω0 = (1, . . . , 1)> is the non-perturbed vector, such

that L(θ|ω0) = L(θ) and f(Y,θ,ω0) = f(Y,θ) for all θ.

The density of the perturbed model is given by

f(Y,θ,ω) =
r∏
i=1

(2π)−n/2|ω−1i Σ|−1/2exp
[
−ωi

2
(Yi −Xβ)>Σ−1(Yi −Xβ)

]
.

Then, the i-th contribution of the perturbed log-likelihood is given by

Li(θ|ωi) = −n
2

log(2π)− 1

2
log |Σω−1i | −

ωi
2

(Yi −Xβ)>Σ−1(Yi −Xβ)

= −n
2

log(2π)− 1

2
log |Σ|+ n

2
logωi −

1

2
ωi(Yi −Xβ)>Σ−1(Yi −Xβ).

As showed by Zhu et al. (2007), for the case weight pertubation scheme, in general G(ω) =

diag{V arω[L1(θ), . . . ,Lr(θ)]} is of the form G(ω0) = cIr when we have the same number
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of observation for each repetition. In our case we have that

Varω0 [Li(θ)] = Varω0

[
−n

2
− 1

2
log |Σ| − 1

2
(Yi −Xβ)>Σ−1(Yi −Xβ)

]
=

1

4
V arω0

[
(Yi −Xβ)>Σ−1(Yi −Xβ)

]
=
n

2
,

because (Yi −Xβ)>Σ−1(Yi −Xβ) has χ2
(n) distribution.

The model given in (4.1) is assumed to be homoscedastic, that is, the covariance matrix

of the random errors is assumed to be the same, Σ. If we consider the perturbation ω−1i Σ,

for i = 1, . . . , r, we can analyze the sensitivity of the log-likelihood estimates under a

possibility of heteroskedasticity in the model. The log-likelihood function of the perturbed

model and the metric matrix G(ω0) take the same form as for case weights perturbation.

Thus, the perturbation of the covariance matrix is an appropriate too.

Based on the likelihood displacement

Considering the appropriated perturbation scheme, for the likelihood displacement

methodology ∆ = (∆>β ,∆
>
φ )>, where ∆β = (∆>1β, . . . ,∆

>
rβ)> with dimension p × r and

∆φ = (∆>1φ, . . . ,∆
>
rφ) with dimension 3× r, where

∆β =
∂2L(θ|ω)

∂β∂ω>
and ∆φ =

∂2L(θ|ω)

∂φ∂ω>
,

with elements

∆iβ =
∂2Li(θ|ω)

∂β∂ωi
= X>Σ̂

−1
εi and

∆iφ =
∂2Li(θ|ω)

∂φ∂ωi
=

1

2

∂ vec>(Σ̂)

∂φ
vec
(
Σ̂
−1
ε̂iε̂
>
i Σ̂
−1)

,

where ε̂i = (Yi −Xβ̂), evaluated at ω = ω0 and θ = θ̂, for i = 1, . . . , n.

Based on the likelihood function

Let g(θ̂) = L(θ̂) be the objective function and gω(θ̂ω) =
r∑
i=1

ωiLi(θ̂ω) be the per-

turbed objective function. In this case,
∂gω(θ̂)

∂ω

∣∣∣
ω=ω0

=
[
L1(θ̂), . . . ,Lr(θ̂)

]>
= ġ0, then

dmax = ġ0/
√
ġ>0 ġ0. Notice that ġ>0 ġ0 =

∑r
i=1 L2

i (θ̂) such that the i-th component of dmax
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in absolut value is |dimax| = |Li(θ̂)|/
√∑r

k=1 L2
k(θ̂), for i = 1, ..., r. As a result, |dimax|

can be interpreted as a measure of the relative importance of the i-th contribution to the

total likelihood, which in turn is very simple to calculate.

4.7.3 Perturbation on the response variable

Let us consider as a perturbation scheme the model shift in mean, i.e. Yi = µ(ωi)+εi,

with µ(ωi) = Xβ + Aωi where A, n × n, is a matrix that does not depend on β or on

ωi, for i = 1, . . . , r. In this case ω0 = 0. Equivalently we can write Yiω = Xβ + εi, with

Yiω = Yi + (−1)Aωi, that corresponds to a perturbation scheme of the response vector.

In this case we have that L(θ|ω) =
r∑
i=1

Li(θ|ω) where Li(θ|ω) is given by

Li(θ|ω) = −n
2

log(2π)− 1

2
log |Σ| − 1

2
δiω, (4.7)

where δiω = [Yi − µ(ωi)]
>Σ−1[Yi − µ(ωi)].

To select an adequate matrix A we can use the methodology proposed by Zhu et al.

(2007). In effect, the i-th score function for ω in the perturbed log-likelihood function

(4.7) is given by

Ui(ω) =
∂Li(θ|ωi)

∂ωi
= A>Σ−1[Yi − µ(ωi)],

for i = 1, . . . , r. Let G(ω) = Eω[U(ω)U>(ω)] = diag[g11(ω1), . . . ,grr(ωr)] be the Fisher

information matrix with respect to the perturbation vector ω. That is, gii(ωi) = Eωi
[Ui(ωi)U

>
i (ωi)].

A perturbation ωi is appropriate if it satisfies gii(ω0) = cIn, where c > 0, for i = 1, . . . , r.

In our case we have gii(ωi0) = cA>Σ−1A, with c = 1. Notice that usually A>Σ−1A 6= In.

However if A = Σ1/2, then gii(ω0) = cIn and so µ(ωi) = Xβ + Σ1/2ωi is a perturbation

scheme appropriate for i = 1, . . . , r, as shown in De Bastiani et al. (2015) and Borssoi

(2014).

Based on the likelihood displacement

Considering the appropriated perturbation scheme, for the likelihood displacement

methodology, where ∆β = (∆>1β, . . . ,∆
>
rβ) is an p×nr matrix, with ∆iβ an p×n matrix,
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and ∆φ = (∆>iφ, . . . ,∆
>
iφ) is an 3× nr matrix, with ∆iφ an 3× n matrix. We obtain

∆iβ =
∂2Li(θ|ω)

∂β∂ω>i
= −X>Σ̂

−1/2
and

∆iφ =
∂2Li(θ|ω)

∂φ∂ω>i
= −

r∑
i=1

∂ vec>(Σ)

∂φ
vec(Σ−1 ⊗Σ−1/2) vec(εi ⊗ 1>)

with elements

∆
iφj

=
∂2Li(θ|ω)

∂φj∂ω
>
i

= ε̂>i

(
Σ̂
−1∂Σ̂

1/2

∂φj
− Σ̂

−1 ∂Σ̂

∂φj
Σ̂
−1/2

)
,

evaluated in ω = ω0 and θ = θ̂, where ε̂i = (Yi −Xβ̂) and 1 is an n× 1 vector of ones,

for j = 1, 2, 3 and i = 1, . . . , r.

Based on the likelihood function

Let g(θ̂) = L(θ̂) be the objective function and gω(θ̂ω) =
r∑
i=1

Li(θ̂ω|ω) the perturbed

function. For this case

∂gω(θ̂)

∂ω

∣∣∣
ω=ω0

= ġ0 =



Σ̂
−1/2

ε̂1

Σ̂
−1/2

ε̂2
...

Σ̂
−1/2

ε̂r



and
∂g(θ)

∂θ

∣∣∣
θ=ˆθ

= 0, so ġ0 =
∂gω(θ̂)

∂ω

∣∣∣
ω=ω0

and dmax = ġ0/
√
ġ>0 ġ0, with ġ>0 ġ0 =

r∑
i=1

ε̂>i Σ̂
−1
ε̂i.

4.7.4 Generalized Leverage

The general concept of a generalized leverage is related to a certain value observed yj,

over the corresponding fitted value ŷj, see for example (Hoaglin and Welsh, 1978; Ross,

1987; St. Laurent and Cook, 1992).

The generalized leverage is defined by GL = [(∂Ŷi/∂Y>k )] = [(GLik)] , where GLik

is an n× n matrix, for i, k = 1, . . . , r, where Ŷ = 1⊗ µ̂ with µ̂ = Xβ̂. According to Wei
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et al. (1998), it can also been written by

GL = Dθ[−L(θ)]−1LθY,

at θ = θ̂, where under the model defined in (4.1) Dθ = ∂(1r ⊗ µ)/∂θ> = 1r ⊗ [X 0n×3],

the observed information matrix −L(θ) evaluated at θ = θ̂ coincides to the expected in-

formation matrix, i.e., −L(θ̂) = F(θ) given in Section 3.6, and LθY = ∂2L(θ)/∂θ∂Y> =

(LθY1
, . . . ,LθYr

)> with LθYi
= (LβYi

,LφYi
)> where

LβYi
=

(
X>Σ−1

)
p×n and

LφYi
=

(
∂ vec>(Σ)

∂φ
vec(Σ−1Σ−1εi)

)
3×n

,

for i = 1, . . . , r. Since the model assumes the same design matrix, X, for each repetition,

GLii =
1

r
H (Galea et al., 2005). The leverage are the same for each repetition and the

elements of hjj for j = 1, . . . , n (Section 4.5) are used as diagnostic tools for the influence

in the vector Ŷi. The j-th response is potentially influential if
1

r
hjj >

1

r
h+

2

r
sd(H), where

h =
∑n

j=1 hjj/n and sd(H) is the standard deviation of h11, . . . , hnn.

4.8 Application

4.8.1 The data set

The data set were collected in a grid of 7.20×7.20 m in an experimental area with 1.33

ha at Eloy Gomes Researh Center at Cooperativa Central Agropecuária de Desenvolvi-

mento Tecnológico e Econômico Ltda (COODETEC), in Cascavel city at Paraná State

- Brazil, with Oxisol soil. It were collected soybean productivity data and four chemical

contents during April in the years 1998 (Y1) or year 1, 1999 (Y2) year 2, 2000 (Y3) year 3,

2001 (Y4) year 4 and 2002 (Y5) year 5 with 253 observations each. To explain the expec-

tation value of the productivity, it were considered as explanatory variables in the model

these chemical contents of soil: phosphorus (P)[mg dm−3], potassium (K)[cmolc dm−3],

calcium (Ca)[cmolc dm−3] and magnesium (Mg)[cmolc dm−3]. A detailed descriptive

analysis of the data set is presented in Section 3.9. Figure 4.1 shows the usual boxplots.
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Figure 4.1: Boxplots for soybean productivity in the years 1998 (Y1), 1999 (Y2), 2000 (Y3), 2001 (Y4) and
2002 (Y5).
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Source: From the author.

In order to choose the variance covariance structure that best describe the spatial

dependence of the soybean productivity, we used cross validation (CV), the log-likelihood

maximum value (LMV) and the trace of the asymptotic covariance matrix of an estimated

mean (Tr) criteria presented in Table 4.1 and in Figure 4.2. These criteria lead us to select

the Gaussian covariance function.
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Table 4.1: CV, LMV and Tr criteria with all the observations.

κ CV LMV Tr

0.3 0.1529 -640.8929 1.1814

0.5 0.1583 -639.0491 1.1667

0.8 0.1555 -637.3470 1.0873

1.0 0.1517 -636.6239 1.0367

1.3 0.1467 -635.8890 0.9777

1.5 0.1441 -635.5485 0.9474

1.8 0.1411 -635.1785 0.9121

1.9 0.1404 -635.0824 0.9025

2.0 0.1397 -634.9966 0.8937

2.1 0.1390 -634.9200 0.8856

2.2 0.1385 -634.8512 0.8788

2.5 0.1371 -634.6827 0.8597

∞(Gauss) 0.1284 -633.8891 0.8597

Figure 4.2: Criteria to choose the variance covariance structure (a) Cross validation (CV), (b) The log-
likelihood maximum value (LMV) and (c) the trace of the asymptotic covariance matrix of an estimated
mean (Tr).
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Table 4.2 shows the parameters estimates considering the Gaussian covariance func-

tion, and the respective asymptotic standard errors (se) in parenthesis. We used the Z-test,

which has normal asymptotic distribution, to test the hypothesis of the form H0: βk = 0

versus H1: βk 6= 0, where βk is any of the parameters of the vector θ = (β>,φ>)>. The

test statistic is given by Z = β̂k/se(β̂k), where β̂k is the ML estimator of βk and se(β̂k)
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the corresponding se. The level of significance of each parameter tested individually was

fixed at 5% of significance. According to Table 4.2, β̂0 is significant. Using the same idea

to test the φ′s, we find that their significants. The macronutrients P and K are needed in

relatively large quantities in the soil compared to others to prevent plant deficiencies, but

after a critical level is reached there is no additional yield increment.

Table 4.2: Parameters estimates for COODETEC data considering the Gaussian covariance function, the
asymptotic standard errors (in parenthesis) and the p-values.

Intercept P K Ca Mg nugget sill f(range)

β̂0 β̂1 β̂2 β̂3 β̂4 φ̂1 φ̂2 φ̂3

2.4013∗∗ -0.0017 0.3270 0.0118 -0.0592 0.1927∗∗ 0.0579∗∗ 0.0407∗∗

(0.1020) (0.0109) (0.1746) (0.0392) (0.0515) (0.0178) (0.0219) (0.0098)

∗∗ significant for 5%

A critical analysis of the model’s assumptions was carried out. Probability normal

graphics of the transformed distances di given in Equation (4.8) were used to evaluate the

goodness of fit and also to identify outliers, according Lange et al. (1989). As we can note,

in Figure 4.3(a) the graphic identified an atypical behaviour of a point, which is above

the line. The other transformed distance are aligned over the line with 45 degree.

di =


(
δ̂i
n

)1/3

−
[
1−

(
2

9n

)]/
√(

2

9n

)
. (4.8)

4.8.2 Case weight perturbation

Figure 4.3 presents influential plots for case weight perturbation that allow to evaluate

the individual contribution of each repetition in the process of estimation. In this case

each repetition, corresponding to a year, receive different weight. We can see that the year

2002 has more influence on the estimation process. The details are presented in Table 4.4

and Figure 4.5 show the difference between the the estimated mean of productivity when

we consider and do not consider the year 2002.
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Figure 4.3: The data for five repetitions (five years) from 1998 until 2002 (a) expected normal deviate
vs transformed distance, (b) Bi vs year i, (c)|lmax| vs year i and (d) |dmax| vs year i, considering the
case-weight perturbation.
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Source: From the author.

4.8.3 Perturbation on the response variable and generalized leverage

Figure 4.4(a), 4.4(b) and 4.4(c) present the graphics for the analysis of local influence

in the response variable. The first two graphics agree that the observations belonging to

the data collected in the year 2002 should be treated carefully. The third graphic pointed

out observations #14 and #59 which appear in the first and third bloxplots of Figure 4.1.

Figure 4.4(d) presents the leverage vs sites for each repetition, where the years have the

same sites as potentially influent over the correspondent fitted value, as we mentioned in
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Section 4.7.4. The analysis of the data set without sites #111 and #132 do not implie

changes in the estimation of the parameters and inference. The choice of the covariance

structure is still the Gaussian one and the results are quite similar with the one presented

in Tables 4.1 and 4.2 and Figure 4.2.

Figure 4.4: The data for five repetitions (five years) from 1998 until 2002 (a) Bindex vs index, (b) |lmax|
vs index, c) |dmax| vs index, considering the perturbation on the response variable and d) leverage vs
index for a year. The index vary according the number of observations.
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4.8.4 Analysis without subject #5

We reanalyzed the data without subject #5, that correspond to the whole year 2002.

The results for criteria to select the model is given in Table 4.3. The chosen model for the



APPLICATION 102

covariance structure is again the Gaussian covariance function.

Table 4.3: CV, LMV and Tr criteria for the data set without subject #5.

κ CV LMV Tr

0.3 0.1468 -424.7226 1.2141

0.5 0.1535 -423.5043 1.1692

0.8 0.1421 -422.4204 1.0685

1.0 0.1324 -421.9738 1.0121

1.3 0.1210 -421.5312 0.9492

1.5 0.1153 -421.3311 0.9175

1.8 0.1090 -421.1188 0.8808

1.9 0.1073 -421.0647 0.8709

2.0 0.1059 -421.0170 0.8618

2.1 0.1045 -420.9747 0.8536

2.2 0.1033 -420.9372 0.8460

2.5 0.1004 -420.8470 0.8268

∞(Gauss) 0.0809 -420.5483 0.8268

In Tables 5.1 and 4.4 we note that the covariates Ca and Mg are still not significant

in a level of 5%. The covariates P and K changed the signal but are still not significant.

Be aware that the Z-score test verify individually the significance of the parameters, i.e.,

even they are not significant by their own they can be in the presence of the other. The

parameters estimates and the asymptotic standard errors (in parenthesis) are given in

Table 4.4.

Comparing Tables 4.2 and 4.4 we note that the covariates Ca and Mg are now signifi-

cant in a level of 5%. The covariate P and K changed the signal but are still not significant.

Be aware that the Z-score test verify individually the significance of the parameters, i.e.,

even they are not significant by their own they can be in the presence of the other.
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Table 4.4: Parameters estimates for Coodetec data without subject #5 and the asymptotic standard
errors (in parenthesis), considering the Gaussian covariance function.

Intercept P K Ca Mg nugget sill f(range)

β̂0 β̂1 β̂2 β̂3 β̂4 φ̂1 φ̂2 φ̂3

2.7512∗∗ 0.0047 -0.1920 0.0809∗∗ -0.1528∗∗ 0.1313∗∗ 0.0490∗∗ 0.0388∗∗

(0.0966) (0.0101) (0.1640) (0.0364) (0.0477) (0.0122) (0.0173) (0.0083)

∗∗ significant for 5%

4.8.5 Maps

Figure 4.5 presents the maps for the response variable for each year and for the mean

of the years. For all cases the same explanatory variables were considered, P , K, Ca and

Mg, as well we considered the same covariance function, i.e., the Gaussian covariance

structure, given in Table 4.2. Yorinori et al. (2005) commented that on May of 2001,

rust surveys showed spread throughout most of Paraguay and into western and northern

Parana, Brazil, and that in the 2001-2002 season, rust was spread in Brazil to more than

60% of the soybean acreage, causing field losses estimated of 0.1 million metric tons. The

smallest values of the productivity are clear is the latest two years (Figures 4.5(d) and

4.5(e)), and even worst in the latest one. And also is evident the difference between the

maps considering all the years and the map without the fifth year in Figures 4.6(a) and

4.6(b), respectively. The map without the fifth year show greater value for the mean of

the productivity than the one considering the whole information.
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Figure 4.5: Maps for productivity in the year (a) 1998, (b) 1999, (c) 2000, (d) 2001 and (e) 2002.
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Source: From the author.
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Figure 4.6: Maps for productivity in the year (a) for the mean of the whole years and (b) for the mean
of the whole years (without year 2002).
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4.9 Conclusion

The purpose of diagnostic techniques is to evaluate the role of observations in the fit of

the proposed model and identify influential cases that may affect the values of statistical

interest. The evaluation of the stability of the fitted model in a data set should be part

of all statistical analysis, since a few observations can influence/distort the values of the

statistic interest (estimators and hypothesis test) and lead to wrong inference.

The goal of this work was to propose local influence measures to detect observations

that can distort some statistics of interest in the Gaussian spatial linear model with in-

dependent repetitions. We proposed measures based on the likelihood displacement and

some first order influence measures to assess the stability of the likelihood function, us-

ing the case weight perturbation scheme and perturbation on the response variable. We

applied the methodology developed in the paper to a data set of soybean productivity

collected in the West region of Paraná State, Brazil.

We obtained explicit expressions for the matrices necessary for implementing these

diagnostic techniques using the Matérn family of covariance functions. We would like to

emphasize that first order local influence measures to assess the stability of the likelihood

function, are very simple to calculate, as can be seen in section 4.7. This type of results is
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not very common in the literature on the topic. Thus we extended the work of Uribe-Opazo

et al. (2012) to the case of independent repetitions.

To select the spatial dependence structure we use the likelihood function, cross valida-

tion and the trace of the asymptotic covariance matrix of the ML estimator of the mean

of the process. In the application considered, the three criteria suggest to select the same

covariance structure.

As in other statistical models, based on the normality assumption, the influence of the

outliers on statistics of interest is considerable. So, there are important effects, for exam-

ple, in the soybean productivity maps, as shown in Figure 4.5. Non-normal alternative

distributions, as the t multivariate distribution, and the framework of spatio-temporal

models for this data set are in progress.



Chapter 5

Global Diagnostics on Gaussian spatial linear

models with repetitions

5.1 Abstract

Neste caṕıtulo são apresentadas técnicas de diagnósticos de influência global nos mo-

delos espaciais lineares Gaussianos com repetições. São revisados os conceitos de distância

de Cook baseada na função de verossimilhança e na função Q. A principal contribuição

é este novo enfoque para os modelos geoestat́ısticos. Aplicação a conjunto de dados reais

ilustra a metodologia desenvolvida. Extensivos cálculos são apresentados no Apêndice.

5.2 Introduction

Geostatistics refers to the sub-branch of spatial statistics in which the data consist

of a finite sample of measured values relating to an underlying spatially continuous phe-

nomenon, Diggle and Ribeiro Jr. (2007). Some proposals have discussed Gaussian spatial

linear models to study the structure of dependence in spatially referenced data. For more

details about estimation, inference methods and applications of these models, see (De

Bastiani et al., 2016).

Most diagnostic measures were originally developed under linear regression models.

Cook’s (Cook (1977)) distance is one of the most known diagnostic tools for detecting

influential individual or subsets of observations in linear regression. Cook and Weisberg

(1982) give a comprehensive account of a variety of methods for the study of influence

on linear regression. Chatterjee and Hadi (1988) treat linear regression diagnostics as

107
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a tool for application of linear regression models to real-life data. Haslett and Dillane

(2004) extended previous work of deletion diagnostics for estimates of variance components

obtained by restricted maximum likelihood estimation for the linear mixed model.

Davison and Tsai (1992) reviewed various diagnostics for generalized linear models

and extended to more general models, such as models for censored and grouped data for

nonlinear regression. Wei (1998) presented a comprehensive introduction to exponential

family nonlinear models, giving attention to regression diagnostics and influence analysis.

Some proposals have discussed diagnostics tools for spatial linear models. In geostatis-

tics, an atypical observation can cause changes in environmental and geological patterns.

Christensen et al. (1992a) measured the effect of the observations on prediction using di-

agnostics based on case-deletion. Christensen et al. (1993) proposed diagnostics to detect

influential observations on the estimation of the covariance function. Zewotir and Galpin

(2005) provided routine diagnostic tools for linear mixed models, which are computa-

tionally inexpensive. Militino et al. (2006) proposed influence measures for multivariate

spatial linear models. Uribe-Opazo et al. (2012) presented local influence for Gaussian

spatial linear models.

De Gruttola et al. (1987) described measures of influence and leverage for a generalized

least squares (GLS) estimator of the regression coefficients in a class of multivariate linear

models for repeated measurements. Waternaux et al. (1989) suggested several pratical

procedures to detect outliers for the repeated measurements model based on the global

influence approach. For example, for longitudinal data, Preisser and Qaqish (1996) de-

veloped Cook’s distance for generalized estimation equations. Christensen et al. (1992b),

Banerjee (1998), Demidenko and Stukel (2005) and Pan et al. (2014) considered case dele-

tion and subject deletion diagnostics for linear mixed models. Assumpção et al. (2014)

present the generalized leverage to evaluate the influence of a vector on its own predicted

value for different approach for spatial linear models.

In this work we propose the study of several global influence measures for quantify-

ing the effects of perturbing spatial linear models with repeated measures. The chapter

unfolds as follows. Section 5.3 presents the Gaussian spatial linear model with repeti-

tion, the complete loglikelihood and the Q function, and present a brief description of the
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maximum likelihood estimation and asymptotic standard erros calculations. Section 5.4

reviews concepts of global influence based on the likelihood and on the Q-function. Section

5.5 contains an application with real data, to illustrate the methodology developed in this

paper. Finally, Section 5.6 contains some concluding remarks. Calculations are presented

in the appendices.

5.3 The Gaussian Spatial Linear Model with Repetitions

For a spatial process, the basic object we consider is a stochastic process {Yi(s), s ∈

S ⊂ IR2} (bi-dimensional Euclidean space), usually though not necessarily in IR2, and i = 1

means one single realization of the process. We also assume that the variance of Yi(s)

exists for all s ∈ S. The process Yi is said to be Gaussian if, for any k ≥ 1 and locations

s1, . . . , sk, the vector (Y1(s1), . . . , Y1(sk)) has a multivariate normal distribution.

Let Y = Y(s) = vec(Y1(s), . . . ,Yr(s)) be an nr×1 random vector of r independently

stochastic process of n elements each, that belong to the family of Gaussian distribu-

tions and depend on the sites sj ∈ S ⊂ IR2 for j = 1, . . . , n, where s = (s1, . . . , sn)>.

The “vec” operator transforms a matrix into a vector by stacking the columns of the

matrix one underneath the other. It is assumed the i-th stochastic process Yi(s) =

vec(Yi(s1), . . . , Yi(sn)), represents the n × 1 vector, for i = 1, . . . , r, which can be ex-

pressed as a linear mixed model by

Yi(s) = µi(s) + bi(s) + τi(s) (5.1)

where, the deterministic term µi(s) is an n×1 vector, the means of the process Yi(s), bi(s)

and τi(s) are independents and together form the stochastic error, i.e., bi(s)+τi(s) = εi(s)

is an n × 1 vector of a stationary process with zero mean vector, E[εi(s)] = 0, and

covariance Σi. For a linear model, the mean vector µi(s) can be written as µi(s) =

X(s)β, where, β = (β1, . . . , βp)
> is a p × 1 vector of unknown parameters, X = X(s) =

[xj1(s) . . .xjp(s)] is an n × p matrix of p explanatory variables, for j = 1, . . . , n, i.e, the

design matrix X is the same for all r repetitions.

As in Smith (2001), the GSLM for the i-th independent stochastic process, assuming

a homogeneous process, can be written in matrix form by Yi(s) = Xβ + εi(s).
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The covariance matrix Σi = Σ = [C(su, sv)] is an n × n covariance matrix of Yi(s)

for the i-th repetition, i = 1, . . . , r. The matrix Σ is non-singular, symmetric and positive

defined, associated to the vector Yi(s), where for the stationary and isotropic process, the

elements C(su, sv) depend on the Euclidean distance duv = ||su − sv|| between points su

and sv.

So, from what was previously written we have that Y ∼ Nnr(1r ⊗Xβ, Ir ⊗Σ), with

probability density function (pdf) given by

f(Y,θ) =
∏r

i=1 f(Yi,θ)

=
∏r

i=1(2π)−n/2|Σ|−1/2exp
[
−1

2
(Yi −Xβ)>Σ−1(Yi −Xβ)

]
,

where ⊗ denote the kronecker product and (Yi −Xβ)>Σ−1(Yi −Xβ) = δi is the Maha-

lanobis distance.

The covariance matrix Σ has a structure which depends on parameters φ = (φ1, . . . , φq)
>

as given in Equation (5.2) (Mardia and Marshall, 1984; Uribe-Opazo et al., 2012):

Σ = φ1In + φ2R, (5.2)

where, φ1 ≥ 0 is the parameter known as nugget effect; φ2 ≥ 0 is known for sill ; R =

R(φ3, φ4) = [(ruv)] or R = R(φ3) = [(ruv)] is an n×n symmetric matrix, which is function

of φ3 > 0, and sometimes also function of φ4 > 0, with diagonal elements ruu = 1, (u =

1, . . . , n); ruv = φ−12 C(su, sv) for φ2 6= 0, and ruv = 0 for φ2 = 0, u 6= v = 1, . . . , n, where

ruv depends on the Euclidean distance duv = ||su − sv|| between points su and sv; φ3 is a

function of the model range (a), φ4 when exists is known as the smoothness parameter,

and In is an n× n identity matrix.

A number of different structures are available, and the question is which one is best.

There are a large number of covariance structures to choose from. For example, exponen-

tial, Gaussian and Matérn model. To select one of them, beyond the maximum value of

the log-likelihood, we used the cross validation and the trace of the asymptotic covariance

matrix (Kano et al., 1993).

The maximum likelihood estimation were already presented in previous chapters. The
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unknown parameters to be estimated are the β’s and φ’s. The log-likelihood for the GLSM

for the r independent repetitions is given by L(θ) =
r∑
i=1

Li(θ),

Li(θ) = −n
2

log(2π)− 1

2
log |Σ| − 1

2
(Yi −Xβ)>Σ−1(Yi −Xβ),

and the score functions are given by

U(β) =
∂L(θ)

∂β
=

r∑
i=1

X>Σ−1εi,

U(φ) =
∂L(θ)

∂φ
= −r

2

∂ vec>(Σ)

∂φ
vec(Σ−1) +

1

2

r∑
i=1

∂ vec>(Σ)

∂φ
vec(Σ−1εiε

>
i Σ−1),

where εi = Yi −Xβ. The maximum likelihood estimator β is given by

β̂ = (X>Σ−1X)−1X>Σ−1Ȳ,

where Ȳ = (Ȳ1, . . . , Ȳn)>, with Ȳj =
1

r

r∑
i=1

Yi(sj), j = 1, . . . , n.

The expected information matrix, F(θ), is given by, (De Bastiani et al., 2016; Waller

and Gotway, 2004)

F(θ) = F =

E[U(β)U>(β)] E[U(β)U>(φ)]

E[U(φ)U>(β)] E[U(φ)U>(φ)]

 =

Fββ Fβφ

Fφβ Fφφ

 ,

where Fββ = rX>Σ−1X, Fβφ = 0, Fφβ = 0 and Fφφ =
r

2

∂ vec>(Σ)

∂φ
(Σ−1⊗Σ−1)

∂ vec(Σ)

∂φ>
.

We used F−1ββ and F−1φφ to estimate the dispersion matrices for the maximum likelihood

estimators β̂ and φ̂, respectively.

According to Osorio (2006) the conditional distribution is given by

bi|Yi ∼ N
(
GZ>i Σ−1i (Yi −Xiβ),Ωi

)
, i = 1 . . . , r,
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where Ωi = G−GZ>i Σ−1i ZiG. Then the complete loglikelihood is given by

Lc(θ) =
r∑
i=1

Lic(θ),

where θ is the vector of unknown parameters and

Lic(θ) = −1

2
log |Di| −

1

2
(Yi −Xiβ − Zibi)

>D−1i (Yi −Xiβ − Zibi)

−1

2
log |G| − 1

2
b>i G−1bi

Let consider φ1 = φ1, η = (η1, η2, η3)
> = (φ2, φ3, φ4)

>, so R = R(η2, η3) and Σ

= φ1I + η1R, thus θ = (β>, φ1,η
>)>, more details are given on Appendix C.1. The Q

-function, Q(θ|θ∗) = E[Lc(θ)|Y,θ = θ∗], for the model presented in (5.1) is of the form

Q(θ|θ∗) = −nr
2

log φ1 −
r

2φ1

tr(Ω∗)− 1

2φ1

r∑
i=1

r∗>i r∗i

−nr
2

log η1 −
r

2
log |R| − 1

2η1

r∑
i=1

tr[R−1(Ω∗ + b∗>i b∗i )],

where

r∗i = Yi −Xβ − b∗i ,

b∗i = E(bi|Yi,θ
∗) = η∗1R

∗Σ∗−1(Yi −Xβ∗),

Ω∗ = Cov(bi|Yi,θ
∗) = η∗1R

∗ − η∗21 R∗Σ∗−1R∗,

and the ∗ symbol means that the objects are in function of θ = θ∗.

5.4 Diagnostic Techniques

Detecting influential observations is an important step in the analysis of a data set.

There are different approaches to assess the influence of perturbations in a data set and

in the model given the estimated parameters. Cook (1977) gives a starting point to the

development of case-deletion diagnostics for all sorts of statistical models. Case-deletion

is an example of a global influence analysis, that is to asses the effect of an observation

by completely removing it. Cook (1986) presents the local influence approach, that is, a

weight ωi is given for each case and the effect on the parameter estimation is measured

by perturbing around these weights. Choosing weights equal zero or one corresponds to
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the global case-deletion approach. In general, perturbation measures do not depend on

the data directly, but rather on its structure via the model.

There are some papers in the literature on diagnostic for spatial linear models. Dia-

mond and Armstrong (1984) and Warnes (1986) observed the sensitivity of predictions to

perturbations in the covariance function. Christensen et al. (1992a) discussed case deletion

diagnostics for detecting observations that are influential for prediction based on universal

kriging, while Christensen et al. (1993) considered diagnostic with the deletion of points

to estimate the parameters of the covariance function by the method of restricted max-

imum likelihood. More recently, Cerioli and Riani (1999), Militino et al. (2006) showed

that case deletion diagnostics do suffer from masking and suggest robust procedures based

on subsets of data free from outliers. In this direction, Filzmoser et al. (2014) proposed

the Mahalanobis distance to identify multivariate outliers.

5.4.1 Global influence

Case-deletion is a diagnostic technique that evaluate the impact on the parameters

estimates given the model, by eliminating one or more observations from the data set.

This kind of diagnostics techniques have been discussed by Cook and Weisberg (1982) and

Chatterjee and Hadi (1988), Pan et al. (2014), among others. We can eliminate a subject,

each observation or an entire location, by using the idea of the technique proposed by

Cook (1977) known as Cook’s distance which has a typical measure defined by

Diθ = (θ̂ − θ̂[i])>M(θ̂ − θ̂[i]),

where M is an appropriately chosen positive definite matrix, for instance, the inverse of

the asymptotic covariance matrix and θ̂[i] is the estimate of θ refitting the model with

the same principles used to obtain θ̂, but without the i-th observation.

Likelihood-based diagnostics

In the Cook’s Distance case-deletion we eliminate a subject to evaluate it influences

on the analysis. For the GLSM it is given by

Diθ = (θ̂ − θ̂[i])>[−L̈[i](θ̂)](θ̂ − θ̂[i]),
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for i = 1, . . . , r, where L[i](θ) is the loglikelihood with the i-th subject deleted, L̈[i](θ) is the

second derivative of L[i](θ) with respect to θ, and θ̂[i] is the maximum likelihood estimate

under L[i](θ). Here M = [−L̈[i](θ̂)], because we have that [−L̈[i](θ̂)]−1 is an estimator

of the of the asymptotic covariance matrix and as mentioned above, M commonly is

the inverse of this estimator. Since the computation of [L̈[i](θ̂)] may become cumbersome

when r is too large, it is used L̈(θ̂) to replace L̈[i](θ̂). In general, the asymptotic covariance

matrix [−L̈(θ̂)]−1 is not block-diagonal, so to decompose the Cook’s statistic into different

components of interest an alternative is to use the expectation of [−L̈(θ̂)]−1, E[−L̈(θ̂)]−1,

which is the inverse of the expected information matrix. For the GLSM the [−L̈(θ̂)]−1 =

E[−L̈(θ̂)]−1 = F(θ̂)−1, thus both give the same measure given by

Diθ = (θ̂ − θ̂[i])>F(θ̂)(θ̂ − θ̂[i]).

To calculate θ̂[i], we may use a one-step Newton Raphson approximation at θ̂, θ̂[i] =

θ̂ + [−L̈[i](θ̂)]−1L̇[i](θ̂), where the dots over the functions denote derivatives with respect

to θ, and

L[i](θ) = −n(r − 1)

2
log(2π)− (r − 1)

2
|Σ| − 1

2

r∑
k=1
k 6=i

(Yk −Xβ)>Σ−1 (Yk −Xβ) ,

for i = 1, . . . , r. And again, to overcome some computational difficulty, using L̈(θ̂) to

replace L̈[i](θ̂), and so on F(θ̂)−1, the approximated Cook’s distance becomes

D1
iθ = [L̇[i](θ̂)]>F(θ̂)−1[L̇[i](θ̂)]

= [U[i](θ̂)]>F(θ̂)−1[U[i](θ̂)],

for i = 1, . . . , r, where U[i](θ̂) = (U[i](β̂), U[i](φ̂))> is the score function formula without

the i-th subject evaluated at θ̂ (given below). We can decompose D1
iθ = D1

iβ +D1
iφ, which

means that the diagnostic measure of θ is the sum of the diagnostic measures of the

fixed effects β and the variance components φ in terms of D1
iθ, for i = 1, . . . , r, where
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D1
iβ = [U[i](β̂)]>F−1ββ [U[i](β̂)] and D1

iφ = [U[i](φ̂)]>F−1φφ [U[i](φ̂)].

Furthermore, U[i](β̂) = −X>Σ̂
−1
ε̂i,

and

U[i](φ̂j) =
1

2
tr

(
Σ̂
−1 ∂Σ̂

∂φj

)
− 1

2
ε̂>i
∂Σ̂
−1

∂φj
ε̂i,

or in vec notation is given by

U[i](φ̂) =
1

2

∂ vec>(Σ̂)

∂φ
vec(Σ̂

−1
)− 1

2

∂ vec>(Σ̂)

∂φ
vec(Σ−1ε̂iε̂

>
i Σ̂
−1

),

where ε̂i = (Yi −Xβ̂), for i = 1, . . . , r.

Q-function-based diagnostics

Pan et al. (2014) also proposed a case-deletion approach to identify influential sub-

jects and influential observations in linear mixed models, based on the Q-function, the

conditional expectation of the logarithm of the joint-likelihood between responses and

random effects. Let consider φ1 = φ1, η = (η1, η2, η3)
> = (φ2, φ3, φ4)

>, so R = R(η2, η3)

and Σ = φ1I+η1R, thus θ = (β>, φ1,η
>)>, more details are given on Appendix C.1. The

Q-function, Q(θ|θ∗) = E[L(θ)|Y,θ = θ∗], for the model presented in (5.1) is of the form

Q(θ|θ∗) = −nr
2

log φ1 −
r

2φ1

tr(Ω∗)− 1

2φ1

r∑
i=1

r∗>i r∗i

−nr
2

log η1 −
r

2
log |R| − 1

2η1

r∑
i=1

tr[R−1(Ω∗ + b∗>i b∗i )],

where

r∗i = Yi −Xβ − b∗i ,

b∗i = E(bi|Yi,θ
∗) = η∗1R

∗Σ∗−1(Yi −Xβ∗),

Ω∗ = Cov(bi|Yi,θ
∗) = η∗1R

∗ − η∗21 R∗Σ∗−1R∗,

and the ∗ symbol means that the objects are in function of θ = θ∗.

To calculate the case-deletion estimate θ̂[i] of θ, Zhu and Lee (2001) proposed the use
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of the following one-step approximation based on the Q-function

θ̂[i] = θ̂ + [−Q̈(θ̂|θ̂)]−1Q̇[i](θ̂|θ̂),

where Q[i](θ̂|θ̂) = Q[i](θ|θ̂)|
θ=ˆθ

be the Q-function formed without the i-th subject but

evaluated at the maximum likelihood estimate θ̂, and Q̇[i](θ̂|θ̂) = [∂Q[i](θ|θ̂)/∂θ]
θ=ˆθ

and

Q̈[i](θ̂|θ̂) = [∂2Q[i](θ|θ̂)/∂θ∂θ>]
θ=ˆθ

. The Q-function-based Cook’s statistic from Zhu and

Lee (2001) and presented in Pan et al. (2014) is given by

QDiθ = [Q̇[i](θ̂|θ̂)]>[−Q̈(θ̂|θ̂)]−1[Q̇[i](θ̂|θ̂)]. (5.3)

Despite of the Q-function-based Cook’s statistic be the sum of the Q-function-based

Cook’s statistics for the fixed effects β and the variance components φ, QDiθ = QDiβ +

QDiφ, in general for the variance components it can not be separated, where η = (φ2, φ3, φ4)
>

are the variance components of the random effect and φ1 the variance component of the

random error. Then, Pan et al. (2014) propose to use −E[Q̈(θ̂|θ̂)] in (5.3) instead of

−Q̈[i](θ̂|θ̂). Pan et al. (2014) proved a theorem implying that, when replacing the log-

likelihood with the Q-function in the EM algorithm, the one-step approximation to the

maximum likelihood θ̂[i] maintains the same accuracy, of order Op(r
−2). The modified

Q-function-based Cook’s statistic is of the form

QD1
iθ = [Q̇[i](θ̂|θ̂)]>{−E[Q̈(θ̂|θ̂)]}−1[Q̇[i](θ̂|θ̂)].

Q̇[i](θ|θ∗) =



Q̇iβ

Q̇iφ1

Q̇iη1

Q̇iη2

Q̇iη3


=



− 1

φ1

X>r∗i

− 1

2φ2
1

tr(Ω∗)− 1

2φ2
1

r∗>i r∗i +
n

2φ1

n

2η1
− 1

2η21
tr
[
R−1

(
Ω∗ + b∗ib

∗>
i

)]
1

2
tr

(
R−1

∂R

∂η2

)
+

1

2η1
tr

[
∂R−1

∂η2

(
Ω∗ + b∗ib

∗>
i

)]
1

2
tr

(
R−1

∂R

∂η3

)
+

1

2η1
tr

[
∂R−1

∂η3

(
Ω∗ + b∗ib

∗>
i

)]



,



DIAGNOSTIC TECHNIQUES 117

for i = 1, . . . , r, and E[−Q̈(θ|θ∗)] evaluated at θ = θ∗ = θ̂ for the spatial linear mixed

model has the elements

E[−Q̈ββ]|
θ=θ∗=ˆθ

=
r

φ̂1

X>X,

E[−Q̈βφ1 ]|θ=θ∗=ˆθ
= 0,

E[−Q̈βη1 ]|θ=θ∗=ˆθ
= 0,

E[−Q̈βη2 ]|θ=θ∗=ˆθ
= 0,

E[−Q̈βη3 ]|θ=θ∗=ˆθ
= 0,

E[−Q̈φ1φ1 ]|θ=θ∗=ˆθ
=

2r

φ̂3
1

tr(Ω̂) +
nr

2φ̂2
1

,

E[−Q̈φ1η1 ]|θ=θ∗=ˆθ
= 0,

E[−Q̈φ1η2 ]|θ=θ∗=ˆθ
= 0,

E[−Q̈φ1η3 ]|θ=θ∗=ˆθ
= 0,

E[−Q̈η1η1 ]|θ=θ∗=ˆθ
= − nr

2η̂21
+

r

η̂31
tr
(
R̂−1Ω̂

)
+

r

η̂1
tr
(
Σ̂
−1

R̂
)
,

E[−Q̈η2η2 ]|θ=θ∗=ˆθ
=

r

2
tr

(
∂R̂−1

∂η2

∂R̂

∂η2

)
+
r

2
tr

(
R̂−1

∂2R̂

∂η2η2

)

+
r

2η̂1
tr

[
∂2R̂−1

∂η2η2

(
Ω̂ + η̂21R̂Σ̂

−1
R̂
)]

,

E[−Q̈η1η2 ]|θ=θ∗=ˆθ
= − r

2η̂21
tr

[
∂R̂−1

∂η2

(
Ω̂ + η̂21R̂Σ̂

−1
R̂
)]

,

E[−Q̈η1η3 ]|θ=θ∗=ˆθ
= − r

2η̂21
tr

[
∂R̂−1

∂η3

(
Ω̂ + η̂21R̂Σ̂

−1
R̂
)]

,

E[−Q̈η2η3 ]|θ=θ∗=ˆθ
=

r

2
tr

(
∂R̂−1

∂η3

∂R̂

∂η2

)
+
r

2
tr

(
R̂−1

∂2R̂

∂η2η3

)

+
r

2η̂1
tr

[
∂2R̂−1

∂η2η3

(
Ω̂ + η̂21R̂Σ̂

−1
R̂
)]

,

E[−Q̈η3η3 ]|θ=θ∗=ˆθ
=

r

2
tr

(
∂R̂−1

∂η3

∂R̂

∂η3

)
+
r

2
tr

(
R̂−1

∂2R̂

∂η3η3

)

+
r

2η̂1
tr

[
∂2R̂−1

∂η3η3

(
Ω̂ + η̂21R̂Σ̂

−1
R̂
)]

.

More details are given in Appendix B.1.

Because the matrix E[Q̈(θ̂|θ̂)] is always block-diagonal with respect to the parameters

β, η and φ1, the modified Q-function-based Cook’s statistic QD1
iθ, for i = 1, . . . , r, can
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thus be decomposed into three components

QD1
iθ = QD1

iβ +QD1
iη +QD1

iφ1
,

where QD1
iβ, QD1

iη and QD1
iφ1

are the modified Q-function-based Cook’s statistics cor-

responding to the fixed effects β, the between subject covariance components η and the

within-subject covariance components φ1, respectively.

5.4.2 Diagnostics at observation level

For the model in study, we have two levels of responses, namely, subjects and re-

peated measures/observations. Intuitively, an influential subject may or may not contain

influential observations.

Observation-deletion

D1
[ij]θ = [L̇[ij](θ̂)]>F(θ̂)−1[L̇[ij](θ̂)]

= [U[ij](θ̂)]>F(θ̂)−1[U[ij](θ̂)],

for i = 1, . . . , r and j = 1, . . . , n, where [ij] is to designate the j-th observation of the i-th

subject is deleted from the dataset, U[ij](θ̂) = ∂L[ij](θ)/∂θ|
θ=ˆθ

and

L[ij](θ̂) = −(nr − 1)

2
log(2π)− (r − 1)

2
log|Σ| − 1

2
log|Σ[j]|

−1

2

r∑
k=1
k 6=i

(Yk −Xβ)>Σ−1(Yk −Xβ)

−1

2
(Yi[j] −X[j]β)>Σ−1[j] (Yi[j] −X[j]β).
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Thus,

U[ij](β̂) =
∂L[ij](θ)

∂β
= −X>Σ−1(Yi −Xβ̂) + X>[j]Σ

−1
[j] (Yi[j] −X[j]β̂),

U(φ̂) =
∂L[ij](θ)

∂φ
=

1

2
tr

(
Σ−1

∂Σ̂

∂φl

)
− 1

2
tr

(
Σ−1[j]

∂Σ̂[j]

∂φl

)
1

2
(Yi −Xβ̂)>

∂Σ̂
−1

∂φl
(Yi −Xβ̂)

−1

2
(Yi[j] −X[j]β̂)>

∂Σ̂
−1
[j]

∂φl
(Yi[j] −X[j]β̂),

for l = 1, . . . , 4, or in vec notation

U(φ̂) =
1

2

∂ vec>(Σ)

∂φ
vec(Σ−1)

−1

2

∂ vec>(Σ)

∂φ
vec(Σ−1(Yi −Xβ̂)(Yi −Xβ̂)>Σ−1)

−1

2

∂ vec>(Σ[j])

∂φ
vec(Σ−1[j] )

+
1

2

∂ vec>(Σ[j])

∂φ
vec(Σ−1[j] (Yi[j] −X[j]β̂)(Yi[j] −X[j]β̂)>Σ−1[j] ),

where X[j] is an (n − 1) × p matrix in which the j-th row of X is deleted, Yi[j] is Yi

without the j-th observation, R̂[j] and Σ̂[j] are (n− 1)× (n− 1) matrices.

The modified Q-function-based Cook’s statistic is of the form

QD1
[ij]θ = [Q̇[ij](θ̂|θ̂)]>{−E[Q̈(θ̂|θ̂)]}−1[Q̇[ij](θ̂|θ̂)],
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where Q̇[ij](θ̂|θ̂) has the elements

Q̇[ij]β|θ=θ∗=ˆθ
= − 1

φ̂1

X>r̂i +
1

φ̂1

X>[j]r̂i[j],

Q̇[ij]φ1 |θ=θ∗=ˆθ
= − 1

2φ̂1

r̂>i r̂i −
tr(Ω∗)

2φ̂2
1

+
1

2φ̂2
1

r̂>i[j]r̂i[j] +
1

2φ̂2
1

tr(Ω̂[j]) +
1

2φ̂1

,

Q̇[ij]η1|θ=θ∗=ˆθ
= − 1

2η̂21
tr
[
R̂−1(Ω̂ + b̂ib̂

>
i )
]

+
1

2η̂21

+
1

2η̂21
tr
[
R̂−1[j] (Ω̂[j] + b̂i[j]b̂

>
i[j])
]
,

Q̇[ij]η2|θ=θ∗=ˆθ
=

1

2
tr

(
R̂−1

∂R̂

∂η2

)
+

1

2η̂1
tr

[
∂R̂−1

∂η̂2
(Ω̂ + b̂ib̂

>
i )

]

−1

2
tr

(
R̂−1[j]

∂R̂[j]

∂η2

)
− 1

2η̂1
tr

[
∂R̂−1[j]

∂η̂2
(Ω̂[j] + b̂i[j]b̂

>
i[j])

]
,

Q̇[ij]η3|θ=θ∗=ˆθ
=

1

2
tr

(
R̂−1

∂R̂

∂η3

)
+

1

2η̂1
tr

[
∂R̂−1

∂η̂3
(Ω̂ + b̂ib̂

>
i )

]

−1

2
tr

(
R̂−1[j]

∂R̂[j]

∂η2

)
− 1

2η̂1
tr

[
∂R̂−1[j]

∂η̂3
(Ω̂[j] + b̂i[j]b̂

>
i[j])

]
,

where X[j] is an (n − 1) × p matrix in which the j-th row of X is deleted, r̂i[j] = Yi[j] −

X[j]β̂ − b̂i[j], Yi[j] is Yi without the j-th observation, b̂i[j] = η̂1R̂[j]Σ̂
−1
[j] (Yi[j] − X[j]β̂),

R̂[j], Σ̂[j] and Ω̂[j] are (n− 1)× (n− 1) matrices. Details are given in Appendix .

Site-deletion

Since we have the same number of observations for each site, we can remove an entire

location. Following Cook’s approach we have

Diθ = (θ̂ − θ̂[j])>F(θ̂)(θ̂ − θ̂[j]),

where θ̂ is the maximum likelihood estimator of θ = (β>,φ>)> for the postulated model

and θ̂[j] is the maximum likelihood estimator of θ[j] = (β>[j],φ
>
[j])
>, without the j-th

individual, i.e, all the observations for a specific location for our case.

To calculate θ̂[j], we may use a one-step Newton Raphson approximation at θ̂, θ̂[j] =

θ̂+ [−L̈[j](θ̂)]−1L̇[j](θ̂), where the dots over the functions denote derivatives with respect

to θ. And to overcome some computational difficulty, using L̈(θ̂) to replace L̈[j](θ̂), and
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so of the expectation of it. So that the approximated Cook’s distance becomes

D1
[j]θ = [U[j](θ̂)]>F(θ̂)−1[U[j](θ̂)],

for j = 1, . . . , n, for all sites, where U[j](θ̂) = (U[j](β̂), U[j](φ̂))> is the score function

formula without the j-th location evaluated at θ̂ (given below). We can decompose D1
[j]θ =

D1
[j]β + D1

[j]φ, which means that the diagnostic measure of θ is the sum of the diagnostic

measures of the fixed effects β and the variance components φ in terms of D1
[j]θ, for

j = 1, . . . , n,, where D1
[j]β = [U[j](β̂)]>F−1ββ [U[j](β̂)], D1

[j]φ = [U[j](φ̂)]>F−1φφ [U[j](φ̂)].

U[j](β̂) =
r∑
i=1

X>[j]Σ̂
−1
[j] (Yi[j] −X[j]β̂),

U[j](φ̂l) = −r
2

tr

(
Σ−1[j]

∂Σ̂[j]

∂φl

)
− 1

2

r∑
i=1

(Yi[j] −X[j]β̂)>
∂Σ̂
−1
[j]

∂φl
(Yi[j] −X[j]β̂),

for l = 1, . . . , 4, or in vec notation

U[j](φ̂) = −r
2

∂ vec>(Σ[j])

∂φ
vec(Σ−1[j] )

+
1

2

∂ vec>(Σ[j])

∂φ
vec(Σ−1[j] (Yi[j] −X[j]β̂)(Yi[j] −X[j]β̂)>Σ−1[j] ),

where X[j] is an (n − 1) × p matrix in which the j-th row of X is deleted, Yi[j] is Yi

without the j-th observation, R̂[j] and Σ̂[j] are (n− 1)× (n− 1) matrices.

The modified Q-function-based Cook’s statistic is of the form

QD1
[j]θ = [Q̇[j](θ̂|θ̂)]>{−E[Q̈(θ̂|θ̂)]}−1[Q̇[j](θ̂|θ̂)],
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for j = 1, . . . , n where,

Q̇[j](θ̂|θ̂) =



1

φ̂1

r∑
i=1

X>[j]r̂i[j]

r

2φ̂2
1

tr(Ω̂[j]) +
1

2φ̂2
1

r∑
i=1

r̂>i[j]r̂i[j] −
(n− 1)r

2φ̂1

−(n− 1)r

2η̂1
+

1

2η̂21

r∑
i=1

tr
[
R̂−1[j]

(
Ω̂[j] + b̂i[j]b̂

>
i[j]

)]
−r

2
tr

(
R̂−1[j]

∂R̂[j]

∂η2

)
− 1

2η̂1

r∑
i=1

tr

[
∂R̂−1[j]

∂η2

(
Ω̂[j] + b̂i[j]b̂

>
i[j]

)]

−r
2

tr

(
R̂−1[j]

∂R̂[j]

∂η3

)
− 1

2η̂1

r∑
i=1

tr

[
∂R̂−1[j]

∂η3

(
Ω̂[j] + b̂i[j]b̂

>
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

.

The Appendix C.1 shows more details.

5.4.3 Cutoff value for influential cases

Cook and Weisberg (1982) indicated that the Cook’s distance can be compared with

a χ-squared distribution with an appropriate degree of freedom for calibration, and also

for the Cook’s distance approximated. Zhu et al. (2007) suggested to use (p + q)/r for

models with missing data as a rough cutoff value for calibrating the Q-function-based

Cook’s statistics QDi, where (p + q) is the dimension of the parameter vector θ and r is

the number of repetitions. We also suggest to use 2 ∗QDi as a cutoff value.

5.5 Applications

5.5.1 Productivity data from the year 1998 to 2002

The data set were first analyzed by De Bastiani et al. (2016) and consist of 253 ob-

servations in each year from 1998 to 2002. The data consist of soybean productivity data

and four chemical contents considered as explanatory variables were collected in a grid

of 7.20 × 7.20m an experimential area with 1.33ha. The chemical contents of soil are

phosphorus (P)[mg.dm−3], potassium (K)[cmolc.dm−3], calcium (Ca)[cmolc.dm−3] and

magnesium (Mg)[cmolc.dm−3]. The observations were taken at the same site for each

repetition. Figure 5.1 show the usual boxplots for the productivity, where only the obser-

vations taken in the harvest year 2002 do not have outliers.
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Figure 5.1: Boxplot for soybean productivity in the years 1998 (Y1), 1999 (Y2), 2000 (Y3), 2001 (Y4) and
2002 (Y5).
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In other to choose the variance covariance structure that best describe the spatial

dependence of the soybean productivity, we used cross validation (CV), the log-likelihood

maximum value (LMV) and the trace of the asymptotic covariance matrix of an estimated

mean (Tr) criteria. These criteria lead us to select the Gaussian covariance function (Figure

5.2).

Figure 5.2: Criteria to choose the variance covariance structure (a) Cross validation (CV), (b) The log-
likelihood maximum value (LMV) and (c) the trace of the asymptotic covariance matrix of an estimated
mean (Tr).
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Source: From the author.

Table 5.1 shows the parameters estimates considering the Gaussian covariance func-

tion, and the respective asymptotic standard errors (se) in parenthesis. We used the Z-test,

which has normal asymptotic distribution, to test the hypothesis of the form H0: βk = 0

versus H1: βk 6= 0, where βk is any of the parameters of the vector θ = (β>,φ>)>. Accord-
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ing to Table 5.1, β̂0 is significant. Considering the same idea to test the φ’s, we find that

they are significants. The macronutrients P and K are needed in relatively large quantities

in the soil compared to others to prevent plant deficiencies, but after a critical level is

reached there is no additional yield increment.

Table 5.1: Parameters estimates for Coodetec data considering the Gaussian covariance function, the
asymptotic standard errors (in parenthesis) and the p-values.

Intercept P K Ca Mg nugget sill f(range)

β̂0 β̂1 β̂2 β̂3 β̂4 φ̂1 φ̂2 φ̂3

2.4013∗∗ -0.0017 0.3270 0.0118 -0.0592 0.1927∗∗ 0.0579∗∗ 0.0407∗∗

(0.1020) (0.0109) (0.1746) (0.0392) (0.0515) (0.0178) (0.0219) (0.0098)

∗∗ significant for 5%

5.5.2 Global influence

First we consider case-deletion which allows to evaluate the individual contribution of

each repetition in the process of estimation. Each repetition correspond to a year. Figure

5.3 shows Cook’s distance for one-step approximation. It shows that the subject #5, that

correspond to the year 2002/2003 has more influence for both β and φ.

Figure 5.3: Cook’s distance using one-step approximation for elimination the i-th year, a)D1
β , b) D1

φ and

c)D1
i .
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Source: From the author.

Figure 5.4 shows Cook’s distance based on Q-function for case-deletion and also high-

lights the year #5, nevertheless this subject is not pointed as influential for the η’s pa-

rameters, according Figure 5.4(c).
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Figure 5.4: Q-function based distance using one-step approximation for elimination the i-th year, a) QD1
β ,

b) QD1
φ1

, c) QD1
η and d) QD1
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Source: From the author.

Figure 5.5 and 5.6 shows Cook’s distance based on likelihood and Q-function, respec-

tively, for observational level when removing each observation from the data set. Both

figures highlight observations from the year 2002/2003, the latest one. The observation

#14 is from the the year 1998/1999 and correspond to a value 1.19 ha, which is the min-

imum value in this year. The observation #1200 has value 0.98 ha, below the mean, and

below of the values of this location for the other year that were 2.05, 2.48, 3.62 and 2.65

ha.
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Figure 5.5: Cook’s distance using one-step approximation for eliminating the j-th observation from the
i-th year, a)D1

ijβ , b) D1
ijφ1

and d)D1
ij .
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Source: From the author.

Figure 5.6: Q-function based distance using one-step approximation for eliminating the j-th observation
from the i-th year, a)QD1

β , b) QD1
φ1

, c) QD1
η and d)QD1

i .
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Source: From the author.

Figure 5.7 shows Cook’s distance for removing a location. We can see that the individu-

als #14 and #59 as influential for the β parameters. The individual #14 has productivity

values 1.19, 2.06, 1.65, 1.71 and 1.27 from years 1998/1999 to 2002/2003, respectively.

And individual #59 has productivity values 1.39, 1.52, 1.26, 1.68 and 0.26. Figure 5.6
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shows Cook’s distance based on Q-function for observation level in the case that a lo-

cation is eliminated. Figure 5.8 shows Cook’s distance based on the Q-function for the

location deletion, where the location #59 was detected as influential for the β’s and φ1,

and locations #35, #41 and #68 as influential on the η’s. Location #35 correspond to

2.00, 2.40, 2.93, 3.01 and 2.26 ha from years 1998/1999 to 2002/2003, #41 correspond to

the productivity values 1.97
”

1.89, 3.26, 2.92, 2.33 ha and #68 corresponds to 2.08, 2.41,

3.01, 2.85, 0.89 ha.

Figure 5.7: Cook’s distance for the elimitation the j-th location, a) Djβ , b) Djφ and b) Dj .
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Figure 5.8: Cook’s distance based on Q-function for the elimitation the j-th location, a) QDjβ , b) QDjφ

and b) QDj .
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5.6 Conclusions

In this Chapter we investigated diagnostics techniques in the same model presented

in previous chapters, i.e., in the Gaussian spatial linear models with repetitions. Now, we

stress the global diagnostics in this models. We presented the complete loglikelihood and

the Q-function. A brief description of the maximum likelihood estimation and asymptotic

standard errors calculations were shown.

We discussed some concepts of global influence based on the likelihood and on the

Q-function. We carried out an application to a soybean productivity data set. This diag-

nostics tool permit to evaluate in more details in which parameter the observations, sites

or subjects are influential. Another application on environmental science is underway.

In the new application we remove the temporal effect and analyze the data considering

independent repetitions, which allow us to use global diagnostics techniques.
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The exposition of this approach (with theQ function) on the study of global diagnostics

in Gaussian spatial models in the chapter is new and we believe that it has the potential

for a wide impact in applied statistics.



Appendix C

C.1 The Q-function and derivatives for Gaussian spatial linear

model

a) Linear mixed model

Yi = Xiβ + Zbi + τi for i = 1, . . . , r

where bi ∼ N(0,G) ⊥ τi ∼ N(0,Di).

b) Joint distribution

 bi

Yi

 ∼ N


 0

Xiβ

 ,

 G GZ>i

ZiG Σi


 ,

em que Σi = ZiGZ>i + Di, i = 1, . . . , r,

Cov(bi,Yi) = Cov(bi,Xiβ + Zbi + εi)

= Var(bi)Z
>
i

= GZ>i

130
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c) Conditional distribution

According to Osorio (2006) the conditional distribution is given by

bi|Yi ∼ N
(
GZ>i Σ−1i (Yi −Xiβ),Ωi

)
, i = 1 . . . , r,

where Ωi = G−GZ>i Σ−1i ZiG.

d) Complete loglikelihood

Lc(θ) =
r∑
i=1

Lic(θ),

where θ are the unknown parameters and

Lic(θ) = −1

2
log |Di| −

1

2
(Yi −Xiβ − Zibi)

>D−1i (Yi −Xiβ − Zibi)

−1

2
log |G| − 1

2
b>i G−1bi

e) Q-function

Q(θ|θ∗) =
r∑
i=1

E(Lic(θ)|Y,θ∗) =
r∑
i=1

Qi(θ|θ∗),

Qi(θ|θ∗) = −1

2
log |Di| −

1

2
tr(D−1i ZiΩ

∗
iZ
>
i )− 1

2
r∗>i D−1i r∗i

−1

2
log |G| − 1

2
tr(G−1Ω∗i )−

1

2
b∗>i G−1b∗i ,

= −1

2
log |Di| −

1

2
tr(D−1i ZiΩ

∗
iZ
>
i )− 1

2
r∗>i D−1i r∗i

−1

2
log |G| − 1

2
tr[G−1(Ω∗i + b∗ib

∗>
i )],
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where θ∗ is the vector of parameters estimate of θ = from previous iteration of the

algorithm.

r∗i = Yi −Xiβ − Zib
∗
i

b∗i = E(bi|Yi,θ
∗) = G∗Z>i Σ∗−1i (Yi −Xiβ

∗)

Ω∗i = Cov(bi|Yi,θ
∗) = G∗ −G∗Z>i Σ∗−1i ZiG

∗

f) Q-function for the spatial linear mixed model

For the spatial linear model we consider Xi = X, Zi = I, φ1 = φ1, η = (η1, η2, η3)
> =

(φ2, φ3, φ4)
>, so R = R(η2, η3) , Di = φ1I, G = G(η) = η1R, and Σi = Σ = φ1I + η1R,

so θ = (β>, φ1,η
>)> which results on the particular case of the Q-function for the spatial

linear mixed model given by

Q(θ|θ∗) =
r∑
i=1

Qi(θ|θ∗),

Qi(θ|θ∗) = −n
2

log φ1 −
1

2φ1

tr(Ω∗)− 1

2φ1

r∗>i r∗i

−n
2

log η1 −
1

2
log |R| − 1

2η1
tr[R−1(Ω∗ + b∗ib

∗>
i )],

where

r∗i = Yi −Xβ − b∗i

b∗i = E(bi|Yi,θ
∗) = η∗1R

∗Σ∗−1(Yi −Xβ∗)

Ω∗i = Ω∗ = Cov(bi|Yi,θ
∗) = η∗1R

∗ − η∗21 R∗Σ∗−1R∗,

so on

Q(θ|θ∗) = −nr
2

log φ1 −
r

2φ1

tr(Ω∗)− 1

2φ1

r∑
i=1

r∗>i r∗i

−nr
2

log η1 −
r

2
log |R| − 1

2η1

r∑
i=1

tr[R−1(Ω∗ + b∗ib
∗>
i )],

(C.1)
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g) First-order derivative of Q-function for the spatial linear mixed model

Based on (C.1) the first-order derivative ofQ(θ|θ∗) with respect to θ = (β>, φ1, η1, η2, η3)
>

is given by

Q̇(θ|θ∗) =
r∑
i=1

Q̇i(θ|θ∗),

with elements

Q̇i(θ|θ∗) =



Q̇iβ

Q̇iφ1

Q̇iη1

Q̇iη2

Q̇iη3
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∂η2
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2η1
tr

[
∂R−1

∂η2

(
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i

)]
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2
tr

(
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− 1

2η1
tr

[
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∂η3

(
Ω∗ + b∗ib
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
,

where
∂R−1

∂η2
=

∂R−1

∂φ3

= −R−1
∂R

∂φ3

R−1,
∂R−1

∂η3
=

∂R−1

∂φ4

= −R−1
∂R

∂φ4

R−1. Details in

Appendix A.4 and B.1.

Q̇(θ|θ∗) =



Q̇β

Q̇φ1

Q̇η1

Q̇η2

Q̇η3


=
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tr

[
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(
Ω∗ + b∗ib
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

.(C.2)

Letting θ = θ∗ = θ̂ in which θ̂ is the maximum likelihood estimate of θ, we have

Q̇(θ̂|θ̂) = [Q̇(θ|θ∗)]
θ=θ∗=ˆθ

= 0,
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which leads to the following

r∑
i=1

X>r̂i = 0

r

2φ̂1

tr(Ω̂) +
1

2φ̂1

r∑
i=1

r̂>i r̂i −
nr

2
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−nr
2
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2η̂1
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[
R̂−1

(
Ω̂ + b̂ib̂i

)]
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∂R̂

∂η2
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2η̂1

r∑
i=1

tr

[
∂R̂−1

∂η2

(
Ω̂ + b̂ib̂

>
i

)]
= 0
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∂η3

)
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[
∂R̂−1

∂η3

(
Ω̂ + b̂ib̂
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)]
= 0

(C.3)

h) Second-order derivative of Q-function for the spatial linear mixed model

Q̈iθθ =
∂2Qi(θ|θ∗)
∂θ∂θ>

,

with elements

Q̈iββ =− 1

φ1

X>X

Q̈iβφ1 =− 1

φ2
1

X>r∗i

Q̈iβη1 =0

Q̈iβη2 =0

Q̈iβη3 =0

Q̈iφ1φ1 =− 1

φ3
1

tr(Ω∗)− 1

φ3
1

r∗>i r∗i +
n

2φ2
1

Q̈iφ1η1 =0

Q̈iφ1η2 =0

Q̈iφ1η3 =0

Q̈iη1η1 =
n

2η21
− 1

η31
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(
Ω∗ + b∗ib

∗>
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Q̈iη1η2 =

1
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Ω∗ + b∗ib

∗>
i
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Q̈iη1η3 =
1

2η21
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,

where
∂2R−1

∂ηj∂ηk
= −2

∂R−1

∂ηk

∂R

∂ηj
R−1 − R−1

∂2R

∂ηj∂ηk
R. More details are given in Appendix

A.3 and B.1.

i) Expectation of [−Q̈] evaluating at θ = θ∗ = θ̂ for the spatial linear mixed

model

By noting that

E[r∗i ]|θ=θ∗=ˆθ
= 0

E[b∗ib
∗>
i ]|
θ=θ∗=ˆθ

= η̂21R̂Σ̂
−1

R̂

E[r∗i r
∗>
i ]|
θ=θ∗=ˆθ

= Ω̂ + φ̂1I,

and by the fact that

E[−Q(θ|θ∗)] = −
r∑
i=1

E[Qi(θ|θ∗)],

the expectation of [−Q̈] evaluating at θ = θ∗ = θ̂ for the spatial linear mixed model has

the elements

E[−Q̈ββ]|
θ=θ∗=ˆθ

=
r

φ̂1

X>X

E[−Q̈βφ1 ]|θ=θ∗=ˆθ
=0

E[−Q̈βη1 ]|θ=θ∗=ˆθ
=0

E[−Q̈βη2 ]|θ=θ∗=ˆθ
=0

E[−Q̈βη3 ]|θ=θ∗=ˆθ
=0

E[−Q̈φ1φ1 ]|θ=θ∗=ˆθ
=

2r

φ̂3
1

tr(Ω̂) +
nr

2φ̂2
1
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E[−Q̈φ1η1 ]|θ=θ∗=ˆθ
=0

E[−Q̈φ1η2 ]|θ=θ∗=ˆθ
=0

E[−Q̈φ1η3 ]|θ=θ∗=ˆθ
=0

E[−Q̈η1η1 ]|θ=θ∗=ˆθ
=− nr

2η̂21
+

r

η̂31
tr
(
R̂−1Ω̂

)
+

r

η̂1
tr
(
Σ̂
−1

R̂
)

E[−Q̈η2η2 ]|θ=θ∗=ˆθ
=
r

2
tr

(
∂R̂−1

∂η2

∂R̂

∂η2

)
+
r

2
tr

(
R̂−1

∂2R̂

∂η2η2

)

+
r

2η̂1
tr

[
∂2R̂−1

∂η2η2

(
Ω̂ + η̂21R̂Σ̂

−1
R̂
)]

E[−Q̈η1η2 ]|θ=θ∗=ˆθ
=− r

2η̂21
tr

[
∂R̂−1

∂η2

(
Ω̂ + η̂21R̂Σ̂

−1
R̂
)]

E[−Q̈η1η3 ]|θ=θ∗=ˆθ
=− r

2η̂21
tr

[
∂R̂−1

∂η3

(
Ω̂ + η̂21R̂Σ̂

−1
R̂
)]

E[−Q̈η2η3 ]|θ=θ∗=ˆθ
=
r

2
tr

(
∂R̂−1

∂η3

∂R̂

∂η2

)
+
r

2
tr

(
R̂−1

∂2R̂

∂η2η3

)

+
r

2η̂1
tr

[
∂2R̂−1

∂η2η3

(
Ω̂ + η̂21R̂Σ̂

−1
R̂
)]

E[−Q̈η3η3 ]|θ=θ∗=ˆθ
=
r

2
tr

(
∂R̂−1

∂η3

∂R̂

∂η3

)
+
r

2
tr

(
R̂−1

∂2R̂

∂η3η3

)

+
r

2η̂1
tr

[
∂2R̂−1

∂η3η3

(
Ω̂ + η̂21R̂Σ̂

−1
R̂
)]

j) Q-function and first derivatives for global influence

For the case deletion global influence study we have

Q[i](θ|θ∗) = −n(r − 1)

2
log φ1 −

(r − 1)

2φ1

tr(Ω∗)− 1

2φ1

r∑
k=1
k 6=i

r∗>k r∗k

−n(r − 1)

2
log η1 −

(r − 1)

2
log |R| − 1

2η1

r∑
k=1
k 6=i

tr[R−1(Ω∗ + b∗kb
∗>
k )].

(C.4)
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Similarly to (C.2), the first-order derivative of Q̇[i](θ|θ∗) given in (C.5) and by noting

(C.3) we obtain

Q̇[i](θ|θ∗) =



− 1

φ1

X>r∗i

− 1

2φ2
1

tr(Ω∗)− 1

2φ2
1

r∗>i r∗i +
n

2φ1
n

2η1
− 1

2η21
tr
[
R−1

(
Ω∗ + b∗ib

∗>
i

)]
1

2
tr

(
R−1

∂R

∂η2

)
+

1

2η1
tr

[
∂R−1

∂η2

(
Ω∗ + b∗ib

∗>
i

)]
1

2
tr

(
R−1

∂R

∂η3

)
+

1

2η1
tr

[
∂R−1

∂η3

(
Ω∗ + b∗ib

∗>
i

)]


.

For the observation-level

Q[ij](θ|θ∗) = −(nr − 1)

2
log1−

(r − 1)

2φ1

tr(Ω∗)− 1

2φ1

 r∑
k=1
k 6=i

r∗>k r∗k


− 1

2φ1

r∗>i[j]r
∗
i[j] −

(nr − 1)

2
log η1 −

(r − 1)

2
log |R| − 1

2
log |R[j]|

− 1

2η1

r∑
k=1
k 6=i

tr[R−1(Ω∗ + b∗>k b∗k)]−
1

2η1
tr[R−1[j] (Ω∗[j] + b∗>i[j]b

∗
i[j])],

(C.5)

Q̇[ij](θ|θ∗) has elements

Q̇[ij]β =
1

φ1

r∑
k=1
k 6=i

X>r∗i +
1

φ1

X>[j]r
∗
i[j]

Q̇[ij]φ1 = −(nr − 1)

2φ1

+
(r − 1)

2φ2
1

tr(Ω∗) +
1

2φ2
1

tr(Ω∗[j]) +
1

2φ2
1

r∑
k=1
k 6=i

r∗>i[j]r
∗
i[j] +

1

2φ1

r∗>i r∗i

Q̇[ij]η1 = −(nr − 1)

2η1
+

1

2η21

r∑
k=1
k 6=i

tr
[
R−1(Ω∗ + b∗>k b∗k)

]
+

1

2η21
tr
[
R−1[j] (Ω∗[j] + b∗>i[j]b

∗
i[j])
]

Q̇[ij]η2 = −(r − 1)

2
tr

(
R−1

∂R

∂η2

)
− 1

2
tr

(
R−1[j]

∂R[j]

∂η2

)
− 1

2η1

r∑
k=1
k 6=i

tr

[
∂R−1

∂η2
(Ω∗ + b∗>k b∗k)

]
− 1

2η1
tr

[
∂R−1[j]

∂η2
(Ω∗ + b∗>i[j]b

∗
i[j])

]

Q̇[ij]η3 = −(r − 1)

2
tr

(
R−1

∂R

∂η3

)
− 1

2
tr

(
R−1[j]

∂R[j]

∂η3

)
− 1

2η1

r∑
k=1
k 6=i

tr

[
∂R−1

∂η3
(Ω∗ + b∗>k b∗k)

]
− 1

2η1
tr

[
∂R−1[j]

∂η3
(Ω∗ + b∗>i[j]b

∗
i[j])

]
.
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Evaluating at θ = θ∗ = θ̂ and noting (C.3), we obtain Q̇[ij](θ̂|θ̂) with elements

Q̇[ij]β|θ=θ∗=ˆθ
= − 1

φ̂1

X>r̂i +
1

φ̂1

X>[j]r̂i[j]

Q̇[ij]φ1 |θ=θ∗=ˆθ
= − 1

2φ̂1

r̂>i r̂i −
tr(Ω∗)

2φ̂2
1

+
1

2φ̂2
1

r̂>i[j]r̂i[j] +
1

2φ̂2
1

tr(Ω̂[j]) +
1

2φ̂1

Q̇[ij]η1|θ=θ∗=ˆθ
= − 1

2η̂21
tr
[
R̂−1(Ω̂ + b̂ib̂

>
i )
]

+
1

2η̂21
tr
[
R̂−1[j] (Ω̂[j] + b̂i[j]b̂

>
i[j])
]

+
1

2η̂21

Q̇[ij]η2 |θ=θ∗=ˆθ
=

1

2
tr

(
R̂−1

∂R̂

∂η2

)
− 1

2
tr

(
R̂−1[j]

∂R̂[j]

∂η2

)
+

1

2η̂1
tr

[
∂R̂−1

∂η̂2
(Ω̂ + b̂ib̂

>
i )

]

− 1

2η̂1
tr

[
∂R̂−1[j]

∂η̂2
(Ω̂[j] + b̂i[j]b̂

>
i[j])

]

Q̇[ij]η3 |θ=θ∗=ˆθ
=

1

2
tr

(
R̂−1

∂R̂

∂η3

)
− 1

2
tr

(
R̂−1[j]

∂R̂[j]

∂η2

)
+

1

2η̂1
tr

[
∂R̂−1

∂η̂3
(Ω̂ + b̂ib̂

>
i )

]

− 1

2η̂1
tr

[
∂R̂−1[j]

∂η̂3
(Ω̂[j] + b̂i[j]b̂

>
i[j])

]

where X[j] is an (n − 1) × p matrix in which the j-th row of X is deleted, r̂i[j] = Yi[j] −

X[j]β̂ − b̂i[j], Yi[j] is Yi without the j-th observation, b̂i[j] = η̂1R̂[j]Σ̂
−1
[j] (Yi[j] − X[j]β̂),

R̂[j], Σ̂[j] and Ω̂[j] are (n− 1)× (n− 1) matrices.

For the observation level, in the case the we remove a location, i.e. we eliminate the

j-th observation for all i, we have that Q[j](θ|θ∗) is of form

Q[j](θ|θ∗) =− (n− 1)r

2
log φ1 −

r

2φ1

tr(Ω∗[j])−
1

2φ1

r∑
i=1

r∗>i[j]r
∗
i[j]

− (n− 1)r

2
log η1 −

r

2
log |R[j]| −

1

2η1

r∑
i=1

tr[R−1[j] (Ω∗[j] + b∗i[j]b
∗>
i[j])].

And

Q̇[j](θ|θ∗) =



1

φ1

r∑
i=1

X>[j]r
∗
i[j]

r

2φ2
1

tr(Ω∗[j]) +
1

2φ2
1

r∑
i=1

r∗>i[j]r
∗
i[j] −

(n− 1)r

2φ1

−(n− 1)r

2η1
+

1

2η21

r∑
i=1

tr
[
R−1[j]

(
Ω∗[j] + b∗i[j]b

∗>
i[j]

)]
−r

2
tr

(
R−1[j]

∂R[j]

∂η2

)
− 1

2η1

r∑
i=1

tr

[
∂R−1[j]

∂η2

(
Ω∗[j] + b∗i[j]b

∗>
i[j]

)]

−r
2

tr

(
R−1[j]

∂R[j]

∂η3

)
− 1

2η1

r∑
i=1

tr

[
∂R−1[j]

∂η3

(
Ω∗[j] + b∗i[j]b

∗>
i[j]

)]



,
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thus

Q̇[j](θ̂|θ̂) =



1

φ̂1

r∑
i=1

X>[j]r̂i[j]

r

2φ̂2
1

tr(Ω̂[j]) +
1

2φ̂2
1

r∑
i=1

r̂>i[j]r̂i[j] −
(n− 1)r

2φ̂1

−(n− 1)r

2η̂1
+

1

2η̂21

r∑
i=1

tr
[
R̂−1[j]

(
Ω̂[j] + b̂i[j]b̂

>
i[j]

)]
−r

2
tr

(
R̂−1[j]

∂R̂[j]

∂η2

)
− 1

2η̂1

r∑
i=1

tr

[
∂R̂−1[j]

∂η2

(
Ω̂[j] + b̂i[j]b̂

>
i[j]

)]

−r
2

tr

(
R̂−1[j]

∂R̂[j]

∂η3

)
− 1

2η̂1

r∑
i=1

tr

[
∂R̂−1[j]

∂η3

(
Ω̂[j] + b̂i[j]b̂

>
i[j]

)]


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Chapter 6

Gaussian Markov random field within the gen-

eralized additive models for location scale and

shape

6.1 Abstract

Este caṕıtulo descreve a modelagem e ajuste dos componentes espaciais dos campos

aleatórios Gaussianos no enfoque dos modelos aditivos generalizados de locação escala e

forma (GAMLSS). Com este enfoque é posśıvel a modelar qualquer ou todos os parâmetros

da distribuição da variável resposta considerando variáveis explanatórias e efeitos espaci-

ais. A distribuição da variável resposta pode ou não pertencer a famı́lia de distribuições

exponenciais. Um novo pacote no software R foi desenvolvido para colaborar com a pro-

posta. Utilizou-se os campos aleatórios Markovianos Gaussianos para modelar o efeito

espacial nos dados de aluguel da cidade de Munich, e para explorar algumas funcionali-

dades e caracteŕısticas dos dados. O potencial sobre fazer análise de dados espaciais usando

GAMLSS é discutido. Argumenta-se que a flexibilidade da distribuição paramétrica, a ha-

bilidade de modelar todos os parâmetros da distribuição e ferramentas de diagnósticos do

GAMLSS fornecem um ambiente adequado para a modelagem espacial.

6.2 Introduction

Since the introduction of the Generalized Additive Models for Location, Scale and

Shape (GAMLSS) by Rigby and Stasinopoulos (2005), the models have been used in a

140
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variety of different fields such as actuarial science, Heller et al. (2007), biology, biosciences,

energy economics, Voudouris et al. (2011), genomics, Khondoker et al. (2007), finance, fish-

eries, food consumption, growth curves estimation, Borghi et al. (2006) and WHO (2006,

2007), marine research, medicine, meteorology, rainfall, vaccines, film studies, Voudouris

et al. (2012), etc.

Discrete spatial variation, where the variables are defined on discrete domains, such

as regions, regular grids or lattices, can be modelled by Markov random fields (MRF).

MRF can be applied in different areas such as spatial statistics, image analysis, structural

time-series analysis, analysis of longitudinal and survival data, spatio-temporal statistics,

graphical models and semiparametric models. For applications in spatial econometrics

(Anselin and Florax, 1995), in spatial and space-time epidemiology Besag et al. (1991)

and Schmid and Held (2001), respectively. Sang and Gelfand (2009) adopted multivariate

Markov random field models with temporal dependence to cater for the whole space-time

characterization. A comparison between Markov approximations and other methods for

large spatial data sets is given by Bolin and Lindgren (2013).

Kunsch (1979) present many important results for Gaussian Markov random fields

(GMRF). Extensive theoretical and practical details of GMRF are provided by Rue and

Held (2005). In statistics, Besag and Kooperberg (1995) considered the Gaussian intrinsic

autoregressive model (IAR), a very important specific case of GMRF models. Breslow

and Clayton (1993), Lee and Nelder (2001) and Fahrmeir et al. (2013) incorporated IAR

models within generalized linear mixed models (GLMMs). Wood (2006) presents IAR

models within a generalized additive model (GAM) framework. There are few papers that

use GAMLSS in a spatial framework. Mayr et al. (2012) presented GAMLSS for high-

dimensional data based on boosting. Rigby et al. (2013) commented on the paper“Beyond

mean regression”, Kneib (2013), and presented a simplified analysis of Munich rent data

with very few covariates, modelling the µ parameter with a spatial effect using an IAR

model term. In this Chapter we describe in detail the theoretical basis of the GAMLSS

implementation of GMRF, develop a package in R (De Bastiani and Stasinopoulos, 2015;

R Core Team, 2015) to achieve this and explore the potential of such modelling using the

Munich rent data.
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Section 6.3 discusses GAMLSS models and the modelling and fitting of GMRF spatial

components within GAMLSS models. In section 6.4 we present the full Munich rent data

set, the strategy to choose a model and the results for the Munich rent data set. Section 6.5

investigates the adequacy of the chosen model using residual diagnostic worm plots. The

implementation in R is described in the Appendix and the R code used in the analysis is

available from the authors at www.gamlss.org. Section 6.6 presents relevant conclusions.

6.3 Methodology

Section 6.3.1 defines the GAMLSS framework, while Section 6.3.2 describes its esti-

mation procedure. Section 6.3.3 describes how the GMRF models can be incorporated

within the GAMLSS framework.

6.3.1 The GAMLSS framework

GAMLSS provides a very general and flexible system for modelling a response variable.

The distribution of the response variable is selected by the user from a very wide range

of distributions available in the gamlss package in R, Rigby and Stasinopoulos (2005),

including highly skewed and kurtotic continuous and discrete distributions. The gamlss

package includes distributions with up to four parameters, denoted by µ, σ, ν and τ , which

usually represent the location (e.g. mean), scale (e.g. standard deviation), and skewness

and kurtosis shape parameters, respectively. All the parameters of the response variable

distribution can be modelled using parametric and/or nonparametric smooth functions of

explanatory variables, thus allowing modelling of the location, scale and shape parameters.

Specifically, a GAMLSS model assumes that, for i = 1, 2, . . . , n, independent observations

Yi have probability (density) function fY (yi|θi) conditional on θi = (θ1i, θ2i, θ3i, θ4i)
> =

(µi, σi, νi, τi)
> a vector of four distribution parameters, each of which can be a function of

the explanatory variables. Rigby and Stasinopoulos (2005) define an original formulation

of a GAMLSS model as follows.

For k = 1, 2, 3, 4, let gk(.) be a known monotonic link function relating the distribution
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parameter θk = (θk1, . . . , θkn)> to predictor ηk = (ηk1, . . . , ηkn)>. Then we set

gk(θk) = ηk = Xkβk +

Jk∑
j=1

hjk(xjk), (6.1)

where Xk is a known design matrix, βk = (β1k, . . . , βJ ′kk
)> is a parameter vector of length

J
′

k, hjk is a smooth nonparametric function of variable Xjk and the xjk’s are vectors of

length n, for k = 1, 2, 3, 4 and j = 1, . . . , Jk.

Model (6.1) can be written in a random effects form and random effects can also be

included in the model for the n× 1 vectors µ, σ, ν and τ :

g1(µ) = η1 = X1β1 +

J1∑
j=1

Zj1γj1

g2(σ) = η2 = X2β2 +

J2∑
j=1

Zj2γj2

g3(ν) = η3 = X3β3 +

J3∑
j=1

Zj3γj3

g4(τ ) = η4 = X4β4 +

J4∑
j=1

Zj4γj4,

(6.2)

where here the random effects parameters γjk are assumed to have independent (prior)

normal distributions with γjk ∼ Nqjk(0, λ−1jk G−1jk ) and G−1jk is the (generalized) inverse of

a qjk× qjk symmetric matrix Gjk, where if Gjk is singular then γjk has an improper prior

density function proportional to exp(−1
2
λjkγ

>
jkGjkγjk).

Different formulations of the Z’s and the G’s result in different types of additive terms,

for example, random effects terms, smoothing terms, time series terms or spatial terms

as presented in Section 6.3.3. The advantage of modelling spatial data within GAMLSS

is that different distributions beside the exponential family can be fitted and also it is

possible, if needed, to model spatially any or all the parameters of the distribution.
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6.3.2 Estimation of the model

The log likelihood function for the GAMLSS model (6.2) under the assumption that

observations of the response variable are independent is given by

` =
n∑
i=1

log f
Y

(yi|µi, σi, νi, τi),

where f
Y

(.) represents the probability (density) function of the response variable. The

penalised log-likelihood function for model (6.2) is given by

`p = `− 1

2

4∑
k=1

Jk∑
j=1

λjkγ
>
jkGjkγjk. (6.3)

We will need estimates for the ‘betas’, β = (β1,β2,β3,β4)
>, the parameters of the linear

part of the model, the ‘gammas’, γ = (γ11, . . . ,γJ11,γ12, . . . ,γJ44)
>, the random effects

parameters, and the ‘lambdas’ λ = (λ11, . . . , λJ11, λ12, . . . , λJ44)
>, the hyper-parameters

of the model.

Within the GAMLSS framework the linear parameters β and the random effects pa-

rameters γ are estimated (for fixed values of the smoothing hyper-parameters λ) by

maximizing the penalized likelihood function `p given by (6.3). There are two basic algo-

rithms to achieve this, the RS and the CG algorithms. Both use an iteratively reweighted

(penalised) least squares algorithm. Appendix C of Rigby and Stasinopoulos (2005) shows

that both algorithms lead, for given λ hyper-parameters, to the maximum penalised log

likelihood estimates for the betas and the gammas, i.e. β̂ and γ̂. Appendix A.1 of Rigby

and Stasinopoulos (2005) shows that these estimates are also posterior mode (or MAP) es-

timates. The hyper-parameters λ can be estimated locally, see (Rigby and Stasinopoulos,

2013), or globally, see (Rigby and Stasinopoulos, 2005). The local methods are in general

a lot faster and easier to implement than the global ones. ‘Local’ means that the method

of estimation of the hyper-parameters applies each time within the RS or CG GAMLSS

algorithms and ‘global’ means the method is applied outside the RS or CG GAMLSS al-

gorithms. In addition, for either ‘local’ or ‘global’ estimation, there are (at least) three

different criteria for estimating the smoothing hyper-parameters:
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1. minimising the generalised cross validation (GCV), Wood (2006),

2. minimising the generalized Akaike information criteria (GAIC), Akaike (1983),

3. maximum likelihood (ML).

The default method in the GAMLSS software implementation is ‘local ML’ in which

the (smoothing) hyper-parameters (and therefore their corresponding effective degrees of

freedom) are estimated automatically using a local maximum likelihood (ML) procedure

see (Rigby and Stasinopoulos, 2013). (This ‘local ML’ procedure is a penalised quasi-

likelihood (PQL) method, Breslow and Clayton (1993)).

6.3.3 Gaussian Markov Random Fields

A Markov random field (MRF) is a set of random variables having a Markov property

based on conditional independence assumptions and described by an undirected graph,

G, where each vertex represents an areal unit and each edge connects two areal units and

represents a neighbouring relationship, Rue and Held (2005). Areal data are sometimes

called lattice data, and often the lattice is a 2-dimensional grid in the plane, either finite

or infinite.

Let G = (V , E) be an undirected graph (Edwards, 2000; Whittaker, 2009) that consists

of vertices V = (1, 2, . . . , q), and a set of edges E , where a typical edge is (m, t), m, t ∈ V .

Undirected is in the sense that (m, t) and (t,m) refer to the same edge. Following Rue and

Held (2005), a random vector γ = (γ1, . . . , γq)
> is called a Gaussian MRF (i.e. GMRF)

with respect to the graph G, with mean µ and precision matrix λG, if and only if its

density has the form

π(γ) ∝ exp

[
−1

2
λ(γ − µ)>G(γ − µ)

]

and

Gmt 6= 0⇐⇒ (m, t) ∈ E form 6= t,

where Gmt is the element of matrix G for row m and column t.

Hence the nonzero pattern of G determines G. We can read off from G whether γm and
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γt are conditionally independent, because a well known theorem is this field (Theorem 3.2

of Rue and Held (2005)) says that γm and γt are conditionally independent, given γr for

all r not equal to m or t, if and only if Gmt = 0. It also means in practice that the precision

matrix is often sparse. When G is non-singular, another way to represent a GMRF, by

its conditional mean and precision matrix, was given in Besag (1974), and known as the

conditional autoregressive model (CAR).

When G is singular the GMRF model can be represented by the intrinsic autoregressive

model (IAR), Besag and Kooperberg (1995). The IAR model has been used for spatially

structured random effects in generalized linear models Banerjee et al. (2014). Rue and

Held (2005) and Wood (2006) present the IAR model within a generalized additive model

(GAM) framework. In this context we extend to the GAMLSS framework.

Assume that a response variable and explanatory variables are recorded at observations

which belong spatially to one of a set of areas (or regions). Zero, one or more than one ob-

servation may be recorded in each region. To incorporate IAR models within the GAMLSS

model (6.2), set Z to be an index matrix defining which observation belongs to which area,

and let γ be the vector of q spatial random effects and assume γ ∼ Nq(0, λ
−1G−1), where

G−1 is the (generalized) inverse of a q × q matrix, G. In the following IAR model, based

on Besag and Higdon (1999), the matrix G contains the information about the neighbours

(adjacent regions), with elements given by Gmm = nm where nm is the total number of

adjacent regions to region m and Gmt = −1 if region m and t are adjacent, and zero

otherwise, for m = 1, . . . , q and t = 1, . . . , q. This model has the attractive property

that conditional on λ and γt for all t 6= m, then γm ∼ N(
∑
γtn
−1
m , (λnm)−1) where the

summation is over all regions which are neighbours of region m.

The nonzero pattern of the matrix G determines the graph G. A non-zero value in

matrix G implies a connection between the two corresponding regions in the graph G (they

are connected neighbours). The zero value in matrix G implies no connection between the

two regions in the graph G and hence that the corresponding spatial random effects γm

and γt for the two regions are conditionally independent (given the other spatial random

effects γr for all r not equal to m or t).

The R implementation of the above IAR model as a predictor term for any parameter
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of the distribution of the response variable in a GAMLSS model is achieved by the R

package gamlss.spatial which is described in the Appendix.

6.4 Application to the Munich rent data

Here we use the package gamlss.spatial to provide a detailed spatial analysis of a

data set on rents for flats in the City of Munich.

6.4.1 The data

The response variable is the rent, (i.e. the monthly rental price, which remains after

having subtracted all running costs and incidentals) of properties in the city of Munich,

Kneib (2013). We used the Munich rent data in the year 1999, available from data frame

rent99 in the gamlss.data package in R. The data frame rent99 has 3082 observations

on the following 9 variables:

• rent: rent per month (in Euro),

• rentsqm: rent per month per square meter (in Euro),

• area: living area in square meters,

• yearc: year of construction,

• location: quality of location: a factor indicating whether the location is average

location, (1), good location, (2), or top location, (3),

• bath: quality of bathroom: a factor indicating whether the bathroom facilities are

standard, (0), or premium, (1),

• kitchen: quality of kitchen: a factor indicating whether the kitchen is standard, (0),

or premium, (1),

• cheating: central heating: a factor indicating a property with central heating, (1),

or without central heating, (0),

• district: district in Munich (this provides the spatial explanatory variable).
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In the data frame rent99 the variables location, bath, kitchen and cheating are

declared as factors with reference levels 1, 0, 0 and 0 respectively. The reference level for

cheating was changed to 1 in the analysis, because most properties have central heating.

The distribution of the monthly rent is asymmetric and skewed towards the right as

is shown in Figure 6.1.

Figure 6.1: Histogram and box and whisker plots for rent data from the year 1999 in Munich.
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Figure 6.2 shows plots of the rent against each of the above explanatory variables. Al-

though these are bivariate exploratory plots and take no account of the interplay between

the explanatory variables, they give an indication of the complexity of this data. The

first two explanatory variables, area and yearc, are continuous. The plot of rent against

area suggests a positive relationship between median rent and area, with an increased

variation for larger area. The assumption of homogeneity in the variance of the rent99

variable appears to be violated here. There is also some indication of positive skewness in

the distribution of the rent variable. The peculiarity of the plot of rent against yearc

is due to the method of data collection. The plot suggests that for houses up to 1960 the

median rent price is roughly constant, but for flats constructed after that year there is an

increasing trend in the median rent price. The remaining box and whisker plots display

how the rent price varies according to the explanatory factors. The median rent price

increases as the location changes from average to good and then to top location. The

median rent price also increases if the flat has a premium bathroom, a premium kitchen

or central heating. There are no surprises in the plots here, but again the problem of
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skewness is prominent with generally (but not always) longer upper than lower tails.

Figure 6.2: Plot of the rent99 against explanatory variables area, yearc, location, bath, kitchen and
cheating.
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In summary, any statistical model used for the analysis of the above data should be

able to deal with the complexity of the relationship between rent and the explanatory

variables. The dependence of the median of the response variable rent on floor space
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(area) and year of construction (yearc) is non-linear and non-parametric smoothing

functions may be needed. Median rent may also depend on interactions between the

explanatory variables. There is clear indication of nonhomogeneity of the variance of rent.

The variance of the response variable rent may depend on its mean and/or explanatory

variables. There is clear indication of skewness in the distribution which may also depend

on explanatory variables. The median rent (and the variance and skewness of rent) may

also depend on the spatial explanatory variable (district), which is a key part of the

analysis.

6.4.2 Model selection strategy

This section describes the model selection strategies adopted in this paper. Let M =

{D,L, T ,λ} represent a GAMLSS model as defined in Section 6.3.1. The components of

M are defined as follows:

D specifies the distribution of the response variable,

L specifies the set of link functions for the distribution parameters µ, σ, ν and τ ,

T specifies the terms appearing in the predictors for µ, σ, ν and τ ,

λ specifies the smoothing hyperparameters which determine the amount of smooth-

ing of continuous explanatory variables (area and yearc) and of the spatial effect

(district).

In the search for an appropriate GAMLSS model for any new data set, all the above

four components have to be specified as objectively as possible. The GAMLSS framework

requires that the empirical researchers have a good understanding of the properties of the

distributions from the list of available distributions in the GAMLSS framework.

The selection of the appropriate distribution D is done in two stages, the fitting stage

and the diagnostic stage. The fitting stage involves the comparison of different fitted

models using a generalised Akaike information criterion (GAIC). The diagnostic stage

involves the normalized quantile residuals, Dunn and Smyth (1996), or ’z-scores’, which

provide information about the adequacy of the model and can be used in connection with

diagnostic plots like worm plots, van Buuren and Fredriks (2001), or other test statistics
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eg. Z-statistcs and Q-statistcs, Royston and Wright (2000). The selection of the link

function L is usually determined by the range of parameters. For a given distribution for

the response variable, the selection of the terms T for the parameters of the distributions

is done using a stepwise GAIC procedure.

Preliminary analysis, using distributions defined on the positive real line, indicated

that the Box-Cox Cole and Green distribution (Cole and Green, 1992), BCCGo(µ, σ, ν),

seems an appropriate distribution for the rent data to use for model selection. The BCCGo

distribution has a default log link for the median µ. If we use an identity link for µ it

implies an additive model for µ and so, for example, changing from an unpopular to a

popular district results in a fixed change in median rent, irrespective of how large an area

the property has and irrespective of its year. It is more likely that the change in median

rent is not a fixed amount but a fixed percentage, implying that a multiplicative model

is more appropriate, i.e, a log link for µ. It was found that the log link for µ provided a

better fit to the data then the identity link.

Because the fitting time of the spatial GMRF term for district in the model is longer

that the rest of the terms, first we used a selection procedure for all explanatory variables

(apart from district) for all distribution parameters (µ, σ and ν) using a generalised

Akaike information criterion, GAIC, with penalty equal 4. Then, given the selected model,

we tried adding the GMRF term IAR, with penalty equal 2. The reason for the choice

of k = 4 in GAIC for the selection of terms (excluding the spatial effect) is that several

terms have a single parameter and a 5% significance level for a generalized likelihood

ratio test for a single parameter being different from zero is based on an (asymptotic)

Chi-squared distribution with critical value χ2
1,0.05 = 3.84 ≈ 4. The spatial term involves

many effective parameters being jointly tested and so a lower critical value per effective

parameter is appropriate. When choosing whether to select a spatial term, we decided to

use the standard AIC with k = 2.

The procedure to select the explanatory variables using the BCCGo distribution is

first to fit an initial starting model and then:

(1) use a forward GAIC selection procedure to select an appropriate model for µ, with

σ and ν as constants,
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(2) use a forward selection procedure to select an appropriate model for σ, given the

model for µ obtained in (1) and for ν fitted as a constant,

(3) use a forward selection procedure to select an appropriate model for ν, given the

models for µ and σ obtained in (1) and (2), respectively,

(4) use a backward elimination procedure to select an appropriate model for σ, given

the models for µ and ν obtained in (1) and (3), respectively;

(5) use a backward elimination procedure to select an appropriate model for µ, given

the models for σ and ν obtained in (3) and (4), respectively.

The above procedure is executed in gamlss using the function stepGAICAll.A. The re-

sulting chosen model may contain different explanatory variables for µ, σ and ν. Then

from this model we

(i) add the district as a spatial effect for µ using the IAR spatial model,

(ii) add the district as a spatial effect for µ and σ using the IAR spatial model,

(iii) add the district as a spatial effect for µ, σ and ν using the IAR spatial model.

The (smoothing) hyper-parameters λ can be fixed or estimated from the data. The

standard way of fixing the (smoothing) hyper-parameters is by fixing their effective degrees

of freedom (edf) for smoothing.

The local maximum likelihood estimation method for each λ is the method used in

our analysis. Hence, the model terms were selected using the GAIC, while the smooth-

ing parameters (and hence their corresponding edf) were chosen using local maximum

likelihood.

6.4.3 Results

In Section 6.4.2 we explained the model selection strategy. The final chosen fitted

model m2final is given by
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Y ∼BCCGo(µ̂, σ̂, ν̂),

log(µ̂) =6.06 + h11(yearc) + h21(area) + s(district)

+ 0.079(if location=2, good) + 0.211(if location=3, top)

− (0.255− 0.0038nyearc)(if cheating=0, no central heating)

+ (0.146− 0.0034nyearc+ 0.0023narea)(if kitchen=1, premium)

+ 0.067(if bath=1, premium),

log(σ̂) =11.811 + h12(yearc) + 0.0016(area)

+ 0.231(if cheating=0, no central heating),

ν̂ =− 12.377 + h13(yearc) + h23(area) + 2.381(if kitchen=1, premium),

(6.4)

where the h functions are smooth non-parametric functions and s is an IAR spatial

smoothing function. The distribution BCCGo(µ, σ, ν) has a multiplicative model for the

median µ, (resulting from the log link for µ), and nyearc and narea are respectively

yearc and area centred at their means (i.e. subtract their means, 67.37 and 1956.31, re-

spectively). The median µ model includes a spatial term in district (using the GMRF

model IAR), and provides an improvement (i.e. reduction) in AIC. We also fitted the

model with additional spatial effects for σ and ν but the improvement was too small so

we opted for the simpler model, in this case, the spatial effect just for µ.

Figures 6.3, 6.4 and 6.5 display the fitted parametric terms and smooth functions in

log(µ̂) in the final chosen model (6.4). Their effects are additive for log(µ̂) and hence

multiplicative for the fitted median rent µ̂. The fitted median rent generally increases

with area and year of construction (from Figure 6.3). A good location results in a 8.2%

[calculated by (e0.079 − 1) × 100] increase in fitted median rent (relative to an average

location), while a premium location results in a 23.5% increase, and a premium bathroom

results in a 6.9% increase.

The effect on median rent of no central heating depends on the year of construction.

No central heating results in a 22.5% decrease in median rent for the average year of

construction, and a higher % decrease for older properties. The effect of a premium kitchen
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on median rent depends on both year of construction and area of the property, resulting

in a 15.6% increase in median rent for a property with average year of construction and

average area, and a higher % increase for older or larger properties.

Figure 6.5 shows the district effect on log(µ̂) where we can see that the rent prices

are higher in the centre and southeast regions than in the north and west regions of the

Munich city. Relative to the baseline district a region with the best district has a 10.5%

[i.e (e0.10 − 1) × 100] higher fitted median rent, while a region with worst district has a

9.5% [i.e (1 − e−0.10) × 100%] lower fitted median rent (assuming all other explanatory

variables including location type are fixed).

Figure 6.3: Term plots for µ.
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Figure 6.4: Term plots of the interactions for µ.
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Figure 6.5: The fitted spatial effect for µ for the chosen model with spatial effect.
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Figure 6.6 shows the fitted parametric terms and smooth function in log(σ̂), in the

final chosen model (6.4). Figure 6.6 shows that the fitted σ̂ (the approximate coefficient of

variation of rent) increases with area but decreases with year of construction. No central

heating results in a 26.1% increase in σ̂. [It should be noted that if the total effective

degrees of freedom used in the model for µ is high relative to the sample size, then this

can result in negative bias in σ̂. This was not the case in the fitted model (6.4)].
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Figure 6.6: Term plots for σ.
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Figure 6.7 shows that the fitted ν̂ (the skewness parameter) in (6.4) decreases with

area but increases with year of construction. Note that decreasing ν̂ increases the positive

skewness of the fitted distribution for rent. A premium kitchen results in an increase of

2.4 in ν̂. Hence larger older properties with a standard kitchen have a more positively

skew fitted distribution for rent.
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Figure 6.7: Term plots for ν.
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6.5 Residual diagnostics

We check the adequacy of the fitted model using (normalised quantile) residuals, Dunn

and Smyth (1996). If the model is correct then the true residuals have a standard normal

distribution. Figure 6.8 displays a worm plot for the residuals of the chosen fitted model.

The worm plot is a detrended normal QQ plot of the residuals which indicates a reasonable

fit to the data, since over 95% of the points lie within the elliptical (dashed) 95% pointwise

interval bands.
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Figure 6.8: Worm plot of the residuals for the chosen final model m2final.
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In order to investigate the adequacy of the chosen model for different combinations

of the two continuous explanatory variables yearc and area, we cut each explanatory

variable into four non-overlaping intervals with equal numbers of observations giving 16

joint intervals and obtain a worm plot (i.e detrented QQ plot) for cases in each of the

16 joint intervals. This is a way of highlighting failures of the model within different

joint ranges of the two explanatory variables. Figure 6.9 shows the result, (obtained by a

single worm command in the gamlss package), where above the plot the four intervals for

yearc are displayed and to the right of the plot the four intervals of area are displayed.

The worm plots generally indicate a reasonable fit to the data in the 16 joint intervals.

Similarly, Figure 6.10 displays the worm plots for combinations of the two explanatory

variables yearc and kitchen, which also indicate a reasonable fit to the data. For the sake

of brevity, the worm plots for individual explanatory variables and for other combinations

of two explanatory variables were omitted here, but they also indicated a reasonable fit

to the data.
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Figure 6.9: Worm plot of the residuals split by the yearc and area variables for the final model.
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Figure 6.10: Worm plot of the residuals split by the yearc and kitchen variables for the final model.
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6.6 Conclusions

We have shown that the GAMLSS framework provides a platform to fit, compare and

check spatial models for the parameters of the distribution of a response variable which

may be non exponential family. This includes continuous response variable distributions

which are highly positively or negatively skewed and/or have high or low kurtosis (i.e.

leptokurtic or platykurtic), discrete count distributions that are overdispersed (eg negative

binomial) or have excess zeros (eg zero inflated negative binomial), or mixed continuous-
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discrete distributions (eg zero inflated gamma and inflated beta). The spatial analysis

shown in this paper can be applied to other data sets that have geographical information

specifying the neighbours of each region.

We would like to finish by emphasizing that looking at a single statistical model

in isolation is not a good practice. Any chosen model should be able to stand up to

scrutiny and that involves being able to compare it with alternative models and checking

its assumptions.



Appendix D

D.1 The R implementation of GMRF spatial model within GAMLSS

Here we explain the implementation of the important GMRF submodel, the IAR

model described in Section 6.3.3, within GAMLSS. The IAR model is implemented in

the package gamlss.spatial thought the function gmrf(). A new package was needed

because of several dependencies of the function gmrf() on existing but not standard R

packages. Also gmrf() is the first function of a series of additive term spatial functions

that are in progress. The function gmrf() fits an IAR term within the predictor of any

distribution parameter in a GAMLSS model. There are two methods implemented for

estimating the (smoothing) hyperparameter λ. The two different methods should produce

identical results and can be seen as PQL methods, (Breslow and Clayton, 1993). The

method is selected by the argument method of the function gmrf(). There are two possible

values for the method:

i) method = "Q" which estimates the spatial IAR (smoothing) hyper-parameter λ by

minimizing the Q-function, (Rigby and Stasinopoulos, 2013), which is a way to

minimize the local marginal likelihood function,

ii) method = "A" which estimates the spatial IAR (smoothing) hyper-parameter λ us-

ing the “alternating” method to minimize the local marginal likelihood, see (Rigby

and Stasinopoulos, 2013).

To perform the analysis, we need the matrix G, which has the information about

the relationships between the areas, showing if they are neighbouring areas or not. If two

162
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polygons areas have at least a single point in common, then they are treated as neighbours.

The function gmrf() accepts three different ways to pass the geographical information:

i) polys, the polygon: a 2-column matrix of coordinates defining the boundary for

each area,

ii) neighbour, a list of the polygon area neighbours of each area, or

iii) precision, the matrix G.

If the polys information is given, then the function gmrf() will automatically compute

the matrix G to do the analysis. The same happens if the neighbour information is given.

The fastest way to estimate the spatial IAR model in (6.2), as described in sections 6.3.2

and 6.3.3, is to give the precision (i.e. matrix G) since no extra calulations are needed.

Extra utility functions available within the package to obtain the matrix G before

performing the analysis (to speed up the fitting) are:

polys2nb() which creates neighbour list from the polygon polys information and

nb2prec() which creates the matrix G from the neighbour information.

When fitting several models for model selection this saves time. To plot the fitted values

of a fitted gmrf object the function draw.polys() is available. For more details about the

gamlss.spatial package, see the help file in http://cran.r-project.org/.



Chapter 7

Discussion

7.1 Resumo

Neste caṕıtulo são apresentadas as conclusões gerais da tese e temas para trabalhos

futuros.

7.2 Conclusion

In this work we presented inference and diagnostics in spatial model with different

frameworks and techniques. In the geoestatistics framework, Chapter 2 extended the Gaus-

sian spatial linear model relaxing the assumption of normality of observations and local

influence methodology, for one single realization of the process. Chapters 3 presented in-

ference on Gaussian spatial linear models with repetitions, likelihood ratio test and the

Bartllet corrected version, and we amended and inference approach to estimate the smooth

parameter from the Matérn family class of models. Chapters 4 and 5 considered new ap-

proach on local influence diagnostics and global diagnostics on Gaussian spatial linear

models with repetitions, respectively. In the Markov random fields framework, Chapter 6

presented the generalized additive models for location, scale and shape and showed the

flexibility of these models. The exposition of spatial models in GAMLSS in the paper is

new and we believe that it has the potential for a wide impact in applied statistics. We

believe this is well illustrated by the real data set analysis in the paper.

7.3 Future research

Some ideas of ongoing and/or future research are for instance:

164
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• To obtain the modified likelihood ratio statistic and the corrected version by using

Bartlett corrected factor;

• Non-normal alternative distributions for the Gaussian spatial linear models with

repetitions such as the t multivariate distribution, and the framework of spatio-

temporal models for this type of data set;

• The study of identifiability in the ellyptical spatial linear models with repetitions

considering heteroskedasticity, and

• the spatio-temporal approach in geostatistics and within the GAMLSS framework.
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