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Resumo

Neste trabalho, apresentamos inferéncia e diagnésticos para modelos espaciais. Inicial-
mente, os modelos espaciais lineares Gaussianos sao estendidos para os modelos espaciais
lineares elipticos, e desenvolve-se a metodologia de influéncia local para avaliar a sensibi-
lidade dos estimadores de maxima verossimilhanca para pequenas perturbacoes nos dados
e/ou nos pressupostos do modelo. Posteriormente, considera-se os modelos espaciais li-
neares Gaussianos com repeticoes. Para estes modelos obteve-se em notacao matricial
um fator de correcao de Bartlett para a estatistica da razao de verossimilhangas perfi-
ladas. E também realizada inferéncia para estimar o parametro de suavizacao da classe
de modelos da familia Matérn. Os estimadores de maxima verossimilhanca sao obtidos,
e uma expressao explicita para a matriz de informacao de Fisher é apresentada, mesmo
quando o parametro de suavizacao da classe de modelos da familia Matérn da estrutura
de covariancia é estimado. Desenvolve-se técnicas de diagndsticos de influéncia local e
global para avaliar a influéncia de observagoes em modelos espaciais lineares Gaussianos
com repeticoes. Os conceitos de distancia de Cook e alavanca generalizada sao revisa-
dos e estendidos para estes modelos. Para influéncia local sao consideradas perturbagoes
apropriadas na varidvel resposta e ponderacao de casos. Finalmente, é descrita a mod-
elagem para os componentes espaciais dos campos aleatorios Markovianos nos modelos
aditivos generalizados de locagao escala e forma. Isto permite modelar qualquer ou todos
os parametros da distribuicao para a variavel resposta utilizando as variaveis explanatorias
e efeitos espaciais. Alguns estudos de simulacoes sao apresentados e as metodologias sao
ilustradas com conjuntos de dados reais.

Palavras-chave: Correcoes de Bartlett. Distribuicoes elipticas. GAMLSS. Geoestatistica.

Influéncia global. Influéncia local. Maxima verossimilhanca. Medidas repetidas.



Abstract

In this work, we present inference and diagnostics in spatial models. Firstly, we extend
the Gaussian spatial linear model for the elliptical spatial linear models, and present the
local influence methodology to assess the sensitivity of the maximum likelihood estimators
to small perturbations in the data and/or the spatial linear model assumptions. Secondly,
we consider the Gaussian spatial linear models with repetitions. We obtain in matrix
notation a Bartlett correction factor for the profiled likelihood ratio statistic. We also
present inference approach to estimate the smooth parameter from the Matérn family class
of models. The maximum likelihood estimators are obtained, and an explicit expression
for the Fisher information matrix is also presented, even when the smooth parameter for
Matérn class of covariance structure is estimated. We present local and global influence
diagnostics techniques to assess the influence of observations on Gaussian spatial linear
models with repetitions. We review concepts of Cook’s distance and generalized leverage
and extend it. For local influence we consider two different approach and for both we
consider appropriated perturbation in the response variable and case weight perturbation.
Finally, we describe the modeling and fitting of Markov random field spatial components
within the generalized additive models for locations scale and shape framework. This
allows modeling any or all of the parameters of the distribution for the response variable
using explanatory variables and spatial effects. We present some simulations and real data
sets illustrate the methodology.

Keywords: Bartlett correction. Elliptical distributions. GAMLSS. Geostatistical. Global

influence. Local influence. Maximum likelihood. Repeated measures.
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Chapter 1

Preliminary

1.1 Resumo

Este capitulo apresenta uma introdugao e breve revisao bibliografica sobre inferéncia
e diagnosticos em modelos espaciais. Apresenta os principais objetivos do trabalho, a

organizacao do mesmo e os recursos computacionais utilizados.

1.2 Introduction

Spatial statistics are useful in subjects as diverse as climatology, ecology, economics,
environmental and earth sciences, epidemiology, image analysis, agriculture and more.
This field of study is concerning statistical methods that use space and spatial relation-
ships such as distance, area, volume, length, height, orientation, centrality and more.
The most well known branches in spatial statistics are discrete spatial variation, spatial
point processes and geostatistics. (Gaetan and Guyon| (2010) covers these types of spatial
analysis.

The study of discrete spatial variation, where the variables are defined on discrete
domains, such as regions, regular grids or lattices, are studied by the Markov random field
theory. Extensive theoretical and practical details are provided by Rue and Held| (2005)).
Another area in spatial statistics is the spatial point process. A spatial point process is a
set of locations, irregularly distributed within a designated region and presumed to have
been generated by some form of stochastic mechanism, (Diggle, [2003).

Geostatistics study a response variable (and potentially explanatory variables) that are

measured at points in space. Important work by Krige| (1951) and Matheron| (1963) laid

18
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the foundation for the field of geostatistics where some of the first methods for modelling

spatial dependence were proposed, see (Schabenberger and Gotway, [2005) for more details.

The methodology developed there after is referred in the literature as “kriging”.

Srisvastaval (1989) says that geostatistics offers a way of describing the spatial continuity

of natural phenomena and provides adaptations of classical regression techniques to take
advantage of this continuity.

For more details about inference methods and applications of these models, see for

example, (Mardia and Marshall, |1984) that described the maximum likelihood method

for fitting the linear model when residuals are correlated and when the covariance among

the residuals is determined by a parametric model containing unknown parameters. [[saaks

and Srisvastaval (1989) and |Cressie| (1993)) contents coverage the principles of Geostatis-

tics. Waller and Gotway| (2004) provided a text that moves from a basic understanding of

multiple linear regression to an application-oriented introduction to statistical methods
used to analyze spatially referenced health data. (2004) showed inconsistent esti-

mation and asymptotically equal interpolations in model-based geostatistics. Diagnostic

techniques are discussed in [Cerioli and Riani (1999), Militino et al. (2006)), [Uribe-Opazo|

et al. (2012)) and Filzmoser et al.| (2014). Among references which have taken a variety of

approaches we mention Stein| (1999), |[Journel and Huijbregts (2004), Schabenberger and|

Gotway| (2005), Webster and Oliver| (2007) and Diggle and Ribeiro Jr.| (2007).

Problems of identifiability sometimes are present in geostatistical models.

(1993) presents a practical illustration of non-identifiability of the deterministic and

stochastic components contributing to a data set. Genton and Zhang| (2012) showed some

identifiability problems in skew-Gaussian and elliptical spatial linear models.

Meiring| (1999)) discussed identifiability issues for the class of models with gemometrical

anisotropy. In the case of multivariate geostatistical models, |Diggle and Ribeiro Jr. (2007)

said that even very simple multivariate constructions quickly lead to models with either
large numbers of parameters and consequent problems of poor identifiability, or poten-
tially severe restrictions on the allowable form of cross-correlation structure. According to
the same authors, replicated observations are needed at each sampling location in order

to identify the required transformation.
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There are some works that dealed with non-Gaussian and/or bayesian geostatistical
models, for instance, a model-based approach to geostatistics for non-Gaussian data based
on generalized linear mixed models has been advanced by Diggle et al.| (1998) in a Bayesian
inferential framework, see also (Banerjee et al., |2014; |Diggle and Ribeiro Jr.| 2007)). [Mi-
nozzo and Fruttini (2004) proposed an extension of the proportional covariance model
following a hierarchical model-based approach. Zhu et al.| (2005) proposed maximum like-
lihood inference using a Monte Carlo EM algorithm for a spatio-temporal framework.
Reich and Fuentes| (2007)) considered a framework in which they used a stick-breaking
prior in a semiparametric Bayesian context. Other references are |Bailey and Krzanowski
(2000) and |Christensen and Amemiya/ (2002).

An alternative to kriging in geostatistics is the smoothing techniques popularized by
Hastie and Tibshirani (1990), and also by the P-spline approach of |[Eilers and Marx! (1996)).
The P-spline models were extended to smoothing spatial data, which requires use of tensor
product and row-wise Kronecker product (Eilers (2003); Currie et al.| (2006); [Eilers and
Marx! (2010))). Thin plate regression splines are another candidate since they are invariant
to rotation of the covariate space, Wood (2006).

The generalized additive models for location scale and shape (GAMLSS) introduced
by Rigby and Stasinopoulos| (2005)) provide spatial modelling facilities and a very general
and flexible system for modelling a response variable. GAMLSS are (semi) parametric
univariate regression models, where all the parameters of the assumed distribution for the
response can be modelled as additive functions of the explanatory variables. The addtive
terms that can be incorporated are for instance, P-splines, cubic splines, simple random
effects and varying coefficient.

GAMLSS has been used in a variety of fields including: actuarial science, biology, bio-
sciences, energy economic, genomics, finance, fisheries, food consumption, growth curves
estimation, marine research, medicine, meteorology, rainfalls, vaccines. Beyerlein et al.
(2008) present GAMLSS to assess increase in childhood body mass index. Fenske et al.
(2008)) used GAMLSS in the detection of risk factors for obesity in early childhood with
quantile regression methods for longitudinal data. Verschuren et al|(2010) used GAMLSS

To establish reference values and reference curves for anaerobic performance and agility
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in ambulatory children and adolescents with cerebral palsy.

1.3 Objective and organization

The aim of this work is to present different frameworks and techniques to model spatial
data. The whole thesis is written with independent chapters and each chapter has new
research contribution. The Chapters are related in the sense they talk about spatial mod-
elling and the notation is consistent inside each Chapter. Chapter [2| presents the elliptical
spatial linear models for one single realization, an extension of the Gaussian spatial linear
model and presents the local influence methodology. Chapters [3] [ and [5] present inference,
local influence diagnostics and global diagnostics, respectively, on Gaussian spatial linear
models with repetitions. These Chapters are related to geostatistical models. Chapter [6]
presents the GAMLSS in the scope of Markov random fields.

More specifically, in Chapter [2] we extend the Gaussian spatial linear model to the
elliptical spatial linear models, for the case where we have no repetitions. For this case
we also use the local influence methodology to assess the sensitivity of the maximum
likelihood estimators to small perturbations in the data and/or the spatial linear model
assumptions. In Chapter [3| we present inference techniques in Gaussian spatial linear
models with repetitions. Mainly we present hypothesis test and estimation approach to
estimate the smooth parameter from the Matérn family class of models. The maximum
likelihood estimators are obtained, and an explicit expression for the Fisher information
matrix is also presented, even when the smooth parameter for Matérn class of covariance
structure is estimated. Chapter [4] and [5] present local and global diagnostics techniques,
respectively, to assess the influence of observations on Gaussian spatial linear models with
repetitions. We review concepts of Cook’s distance based on the likelihood and Q-function,
local influence for two different approaches and generalized leverage. Moreover, for local
influence we consider appropriate perturbation in the response variable, in the scale matrix
and case weight perturbation. Chapter [6] describes the modelling and fitting of Markov
random field spatial components within the GAMLSS framework. The methodologies are
illustrated with a real data set, and for some situations we present simulations. In Chapter

we present some conclusion remarks and future research. Each Chapter presents own
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Appendices and a general Bibliography is presented in the end.

1.4 Computing plataform

We implemented the obtained results in the R statistical software R Core Team) (2015)).
For the Monte Carlo simulation presented in Chapter |3| we use 0x matrix programming
language (Cribari-Neto and Zarkos, [2003; |Doornik, 2006). For graphical representation of
results, we use the R software. For Chapter[6] we created the new package gamlss.spatial

and the latest version of this software is freely available at http://www.R-project.org.



http://www.R-project.org

Chapter 2

Influence diagnostics in elliptical spatial li-

near models

2.1 Resumo

Neste capitulo, os modelos espaciais lineares Gaussianos foram estendidos para a
familia de distribuigoes elipticas, a qual foi considerada para estimar os parametros que
definem a estrutura de dependéncia espacial em dados georreferenciados. Além disso, por
meio da metodologia de influéncia local foi possivel avaliar a sensibilidade dos estimadores
de méxima verossimilhanga a pequenas perturbagoes nos dados e/ou nas suposigoes do
modelo espacial linear. A metodologia foi ilustrada com um conjunto de dados reais. Os
resultados permitiram concluir que a presenca de observacoes atipicas no conjunto de
dados amostrados tem forte influéncia, alterando a estrutura de dependéncia espacial.

Também foi incluido um estudo de simulacao.

2.2 Introduction

Spatial statistics is a rapidly developing field which involves the quantitative analysis
of spatial data and the statistical modelling of spatial variability and uncertainty. Appli-
cations of spatial statistics can be found not only for environmental disciplines such as
agriculture, geology, soil science, hydrology, ecology, oceanography, forestry, meteorology
and climatology, but also socio-economic disciplines such as human geography, spatial
econometrics, epidemiology and spatial planning. Recent proposals have discussed the use

of Gaussian spatial linear models to study the structure of dependence in spatially ref-

23
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erenced data. For more details about estimation, inference methods and applications of

these models, see, for example, (Cressie| [1993; [saaks and Srisvastaval, [1989; [Mardia and|

Marshall, 1984} [Schabenberger and Gotwayi, 2005} [Waller and Gotwayl, [2004; Webster and
2007)). Diagnostic techniques are discussed in (Cerioli and Riani, 1999} [Filzmoser]

et al, |2014; Militino et all |2006; Uribe-Opazo et al., 2012).

Certainly the multivariate normal distribution is useful in many cases, and most of
the statistical inference for continuous variables has been developed under the assumption
of normality. This is particularly the case of multivariate analysis, mixed effects models

and linear regression. However it is well known that the normal distribution is not always

suitable for modelling multivariate continuous data (Lange and Sinsheimer, |1993; [Lange

1989). In this Chapter we extend the model proposed by [Mardia and Marshall

(1984), relaxing the assumption of normality. We consider the spatial linear model under
the family of elliptical distributions. This class that contains distributions such as the

normal one, t, power exponential and slash, has received greater interest in the literature

(Cambanis et al |1981; [Fang and Anderson, |1990; Fang et al., 1990; [Fang and Zhang|

1990} |Gupta and Vargal, [1993; [Kelker], [1970). The family of elliptical distributions offers a

more flexible framework for modelling continuous spatial data. This class contains many
distributions with heavier tails than the normal one, allowing us to model tails that are
frequently observed in multivariate symmetric data sets.

To assess the effect of small perturbations in the model (or data) on the parameter
estimates, has proposed an interesting method, named local influence. This
analysis does not involve recomputing the parameter estimates for each case deletion,
so it is often computationally simpler. Several authors have extended the local influence
method to various regression models. developed local influence on linear

models with restriction in the parameters in the form of linear inequalities.

\Verbeke| (1998)) extended the local influence methodology to normal linear mixed mo-

dels in repeated-measurement context and under the case-weight perturbation scheme.

Influence diagnostics based on the likelihood displacement have been developed for mul-

tivariate elliptical linear models by (Galea et al| (1997) and by Liu/ (2000). Galea et al.|

(2003)) presented influence diagnostics in univariate elliptical linear regression models, and
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mentioned that the lack of correlation among the errors in the multivariate elliptical dis-
tribution is not equivalent to independent elliptical errors, as occurs in the normal case.
Galea et al. (2005) studied diagnostics in symmetrical nonlinear models. Osorio et al.
(2007) derived local influence curvatures under various perturbation schemes for elliptical
linear models with longitudinal structure. Ibacache-Pulgar and Paula (2011) applied the
approach of local influence in Student-t partial linear models.

So, in this Chapter we extend the Gaussian spatial model relaxing the assumption of
normality of the observations, considering the family of elliptical distributions, which pro-
vides greater flexibility in modeling tails or extremes that are frequently observed in mul-
tivariate symmetric data sets. Apart from this flexibility, it preserves several well-known
properties of the normal distribution allowing one to derive attractive explicit solution
forms. More specifically, in this paper, we study and develop spatial linear models where
the random errors follow an elliptical distribution, generalizing the previous Gaussian spa-
tial linear models considered in the literature. On the other hand, there are only a few
works in the literature about influence diagnostics in geostatistical analysis (Christensen
et al.,|1992a; [Diamond and Armstrong, [1984; Warnes| |1986)). Recently, Uribe-Opazo et al.
(2012)) used diagnostic techniques to assess the sensitivity of the maximum likelihood
estimators, covariance functions and linear predictor to small perturbations in the data
and/or in the Gaussian spatial linear model assumptions and Borssoi et al.| (2011) applied
local influence of explanatory variables in the same model.

We also discuss maximum likelihood estimation and some diagnostic tools such as
local influence and generalized leverage. Moreover, we consider the perturbation in the
response variable proposed by Zhu et al.| (2007). The Chapter unfolds as follows. Section
2.3] presents the Elliptical spatial linear model. In Section [2.4] the maximum likelihood
estimators are obtained, and an explicit expression for the Fisher information matrix is
also presented. The likelihood ratio test is briefly discussed. Section reviews concepts
of local influence and generalized leverage. Furthermore, we discuss the selection of an
appropriate perturbation scheme by using the methodology proposed by Zhu et al.| (2007)).
Section [2.6]contains an application, with real data, to illustrate the methodology developed

in this paper. A simulation study is also included. Finally, Section contains some
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concluding remarks. Calculations are presented in the appendices.

2.3 The Elliptical Spatial Linear Model

We say that the random vector Y, n X 1 dimensional has an elliptical distribution with

location parameter g an n x 1 vector and an n X n scale matrix 3, if its density is given

by
FOY;m,2) = B[2g{(Y —p) ' Z7(Y — )}, YeR", (2.1)

where the function g : R — [0,00) is such that [~ u"'g(u®)du < co. The function
g is known as density generator. For a vector Y distributed according to the density
(2.1), we use the notation Y ~ FEl,(p,3;g) or simply FEl,(p,X). Kelker| (1970) and
Cambanis et al.| (1981) have discussed many properties of the elliptical distributions. The
characteristic function is exp(it' p)p(t"3t) for some function ¢, where i = /—1. If it
exists, E(Y) = p and Var(Y) = ¢,X, where ¢, = —2¢p)(0) is a positive constant.
The random vector Y has the representation Y 4 pn + RAU, where R is a positive
random variable, U has the uniform distribution on w'u = 1, that is U L pU , for any
orthogonal matrix P; R and U are independent and A is a nonsingular matrix such that
AAT = 3. The moments of R are related to the characteristic function. For example,
E(R?) = —2n9oW(0), E(RY) = 4n(n + 2)p?(0), E(R%) = —8n(n + 2)(n + 4)p®(0)
and E(R®) = 16n(n + 2)(n + 4)(n + 6)p™®(0). If Y has finite fourth moments each
component of Y, z;, has zero skewness and the same kurtosis, 3{(¢®(0)/[¢™M(0)]?) -1} =
3{(E[(zi — wi)*]/3[var(z:)]?) — 1} = 3k, for i = 1,...,n, where 3k, is called the kurtosis
parameter of the corresponding elliptical distribution with density generator g.

In the case where p = 0 and ¥ = I,, (identity matrix of dimension n), we obtain the
spherical family of densities.

To model a data set with spatial correlation structure (Mardia and Marshall, [1984]),
we consider an Elliptical stochastic process {Y(s),s € D}, where D is a subset of R",
the h—dimensional Euclidean space, and Y ~ FEl,(u,3,9). It is supposed that data
Y (s1),...,Y(sy,) of this process are observed at known sites (locations) s;, fori =1,...,n,

where s; is an h—dimensional vector of spatial site coordinates, and generated from the
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model,
Y(si) = p(si) + €(si),

where both the deterministic term p(s;) and the stochastic term €(s;) may depend on the
spatial location in which Y'(s;) is observed. We assume that the stochastic errors have
zero mean, F{e(s;)}=0, and that the variation between spatial points is determined by a
covariance function C(s;,s;)=cov{e(s;), €(s;)}.

Suppose that for some known functions of s;, z1(s;), . . ., £, (s;), the mean of the stochas-

tic process is
P
p(si) = Z:cj(si)ﬁj,
j=1

where f1,..., [, are unknown parameters to be estimated. In addition, each family of
covariance functions C(s;,s;), is fully specified by a g—dimensional parameter vector
¢ = (¢1,...,0,)". In our case ¢ = 3. We use the following notations: Y(s;) = v,
Y = (v, 90) " @y = x5(80), X! = (i1, ..., T), X as the n x p matrix with ith
row x;, B = (B1,...,58)", & = €(s;), and € = (e1,...,6,)", with i = 1,...,n and
j=1,...,p. Thus, u(s;) = x;/ B and then y; = x/ B+ ¢;, i = 1,...,n. Equivalently, in

matrix notation, we have the spatial linear model
Y =X3+e (2.2)

Then, F(e) = 0 and the scale matrix of € is ¥ = [(0y;)], where o;; is proportional to
C(si,sj). We assume that ¥ is nonsingular and that X has a full rank. We concentrate

on a particular parametric form for the scale matrix given by
Y =3(¢) = ol + 2R, (2.3)

where ¢ can be viewed as a measurement error variance or a nugget effect (the magnitude

of the apparent discontinuity at the origin), ¢o is defined as sill (the value for distances
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beyond the range value), R = R(¢3) = [(ri;)], is an n x n symmetric matrix with diagonal
elements ry; = 1, 1 = ¢5 'C(s;,8;) if ¢po £ 0,75 =0if gg=0fori#j=1,...,n and ¢3
is a function of the range of the model. This parametric form occurs for several isotropic
processes, where C(s;,s;) is defined via the function C(d;;) = ¢ori;, with d;; = ||s; — s;]|
being the Euclidean distance between the points s; and s;. For example, the Matérn is a

covariance function particulary attractive given by

ch(dij) — 2/@—1F(H)( w/¢3) /{( U/q§3), >0,

CQ<¢1 + ¢2)7 dij = 0,

where once again the parameters are assumed to be non-negative, i.e., ¢1 > 0, ¢o > 0
and ¢3 > 0; K, (u) = 5 [;° gr~le=3u@+2 ™) g2 is the modified Bessel function of the third
kind of order x (Gradshteyn and Ryzhik| 2000), where £ > 0 is fixed, and ¢, is a constant
that depends on g. The Gaussian covariance function is a special case when k — oo and

it is given by

Cqtha exp [— (dij/qb?»)z} , diy >0,
cgC(dyy) =

cg(P1 + ¢2), dij = 0.

The exponential covariance is also a special case of Matérn family, it corresponds to kK = %

and can be written more simply as

cgP2exp [~ (dij/d3)] , di; >0,

c(d1 + ¢2), dij = 0.

c,C(dij) =

Under this specification the variance-covariance matrix of Y is given by Var(Y) = c,{¢11,+
¢oR}. For the normal case, ¢, = 1. Other examples of covariance function that also yield
the form (2.3) can be viewed at Diggle and Ribeiro Jr.| (2007). Although we work in terms
of covariances functions, the variogram, defined by ~(d;;) = ¢,{C(0) — C(d;;)}, can be

used.
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2.4 Maximum likelihood estimation (MLE)

Under the hypothesis that in (2.2) the errors have an elliptical distribution, then
Y ~ El,(X3,3, g), has density given by

f(Y,0) =S|V 2%{(Y -XB)'S7(Y - XB)}, YeR", (2.4)

where @ = (8", ¢")" and ¢ = (41, d2, #3) . The unknown model parameters, 6, may be

estimated by maximizing the corresponding log-likelihood function given by
1
£(6) = — log |3 + log g(0), (2.5)

where § = (Y — X3) "2 1(Y — X3), is known as Mahalanobis distance and X is defined
in [@.3).

Assuming that g is continuous and differentiable, we can define the functions
_ Ologg(0) _ ¢'(9)

% 29(5) and W;(é):

OW,(9)
05

W, ()

that depend on the distribution of the elliptical contour family assumed. Table [2.1| shows

functions ¢(0) and W,(6) for some elliptical distributions, where ¢ is a normalizing con-

stant.
Table 2.1: Functions g(d) and W,(d) for some elliptical distributions.
Distribution g(0) W,(9) Parameters
Power Exponential (A) cexp (—6*/2) —3A0M! AN#£1/2
Normal cexp(—0/2) -1
Generalized t (v,7)" YR 4 0)y) 2 L+ n)/(v+0) v,y >0
t(v) c(1+0/v)~Hv)/2 —5 (“2) v>0

*)\, v and 7 are parameters of the respective distributions.

Score functions for the spatial linear models with distribution of the elliptical contour

family are given by
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where

oLO) 1 > ) S . .
5 = "2t (2 aTbj) — W,(0)(Y —X8)'x 187%2 Y(Y — XB) is the jth

element of U(¢), for j =1,2,3.

Unfortunately, the equation U(¢) = 0 does not lead to an explicit solution for ¢. A
common practice is to maximize the concentrated log likelihood obtained as follows. Given
3, for any density generating function g, the log-likelihood function ({2.5)) is maximized

at
B=X"2'X)"'X'® Y. (2.6)

By substituting the expression (2.6 into the log-likelihood function, we obtain a concen-

trated log-likelihood

1 ~

where § = (Y — XB)TE_I(Y — XB) and 3 is given in . L.(¢) must be maximized
numerically with respect to ¢, ¢o and ¢3.

Given ¢, the MLE of ¢, the MLE of 3 is

A

B=X"2'x)IXTsY, (2.7)

where ¥ = Z((Aﬁ) Asymptotic standard errors can be calculated by inverting either the
observed information matrix or the expected information matrix. For the elliptical distri-

bution, the expected information matrix is given by (Lange et al., 1989; Mitchell, |1989)

where

K(B) = —X"¥'X
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and K(¢) = [(ki;(¢))], with

by Af B 2f 0% —18_E
kij(¢) = j<n(nj2) 1)+n(n—ig—2)tr<2 8¢i2 3(/53')’

d, = E[W,(U)2U], f, = E[W,(U)2U?], where U = |[Y|?, Y ~ El,(0,1,, 9)

b)) b))
and b;; = tr (21g¢') tr <21%), fori,7=1,2,3.
i j

For some distributions of the elliptical contour family it is possible to obtain closed

expressions for the expected values d, and f,. For t distribution, d, = %% and
2 2
Jo= n(n4—i— ) ” j_j; i % and for normal distribution d, = % and f, = n(nT+)

The covariance matrix of B, [see (2.7))], can be estimated by,
~—1 .
Vi = [(v)] = (n/4d,) (XT3 X) ™"
Then, a 100(1 — )% confidence interval for j; is given by

B £ 2(1—a/2)7/Vijj

where z(1_q/2) is the 1 — /2 percentage point from a standard normal distribution. Simi-
larly we can construct confidence intervals for ¢;, for j = 1,2, 3.

Also, for the Elliptical spatial linear model, we can consider linear hypothesis of the
form H : C3 = a, where C is a full rank matrix of contrasts, of known order ¢ X p, range
q < p while a is a known vector of order ¢ x 1. To test the hypothesis H we can use the

likelihood ratio test, given by

}+210g{

where, § = (Y — XB)TfJ_l(Y —XA3) and § = (Y — XB)TfJ_l(Y — Xf3), with 3 and =

>

Mg

(
(

~—

Q

Tp = log { }, (2.8)

NgE
Q

S
S~—

being the MLE of 3 and X, under H. The asymptotic distribution of 7z is x%(¢) under

H. For the t spatial linear model the statistics (2.8)) takes the form

}+(n—|—y)log{y+§},

v+

M

Ty = log{

INgE
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~ ~

and for the normal spatial linear model, 7y = log(|3|/|2]) + (0 — 4).

Finally, an important goal in studies that generate spatial data, is a future measure-
ment prediction at a new location inside the same spatial region known as kriging. Let
Zy = Z(sp) be a future observation at location sy € D. The mean of Zj is xgﬁ, where
zg = (o1, ..., Top) and xo; = x;(8o), for j = 1,...,p. The minimum mean square error

predictor [best linear unbiased (Schabenberger and Gotway, 2005))] is
p(s0,0) = B8+ Cy X7 (Y — XB),

where, C] = (C(dy),...,C(dn)), with dig = ||s; — o, for i = 1,...,n. So, a point

estimator of Zj is
> A Th | ~Te ! P

An alternative expression for Zo using robust estimators of Cy, B and X is given in

Atkinson and Riani (2004)) and Barnett| (2004)).

2.5 Influence diagnostics

An important step in spatial data analysis is the examination of possible deviations of
the assumptions of the statistical model, as well as the detection of atypical observations
which have a disproportionate influence on the results of statistical analysis. There are
various techniques to assess the influence of perturbations in a data set and in the model
assumptions.

There are some papers in the literature on diagnostic influences on spatial linear mo-
dels. [Diamond and Armstrong (1984) and Warnes| (1986)) observed the sensitivity of pre-
dictions to perturbations in the covariance function. Christensen et al.| (1992a) discussed
case deletion diagnostics for detecting observations that are influential for prediction based
on universal kriging, while Christensen et al.| (1993) considered diagnostic with the dele-
tion of points to estimate the parameters of the covariance function by the method of

restricted maximum likelihood. More recently, Cerioli and Riani| (1999) and Militino et al.
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(2006) showed that case deletion diagnostics do suffer from masking and suggest robust
procedures based on subsets of data free from outliers. In this direction, Filzmoser et al.
(2014)) proposed the Mahalanobis distance to identify multivariate outliers. Borssoi et al.
(2011)) and |Uribe-Opazo et al.| (2012) discussed diagnostic techniques, using local influence
methodology, to evaluate the sensitivity of MLE, the covariance functions and the linear
predictor under small perturbations in the data and/or spatial linear model with normal

distribution.
2.5.1 Local influence

The local influence method suggested by |Cook| (1986) evaluates the simultaneous effect
of observations on the ML estimator without removing it from the data set.

Let w be a vector of perturbation r x 1 € €2 subset of R", and the perturbed statistical
model M = {f(Y,0,w) : w € Q}, where f(Y,0,w) is the density function of Y
perturbed by w and £(0,w) = log f(Y,0,w) the correspondent log-likelihood function.
Denoting the vector of no perturbation (the null vector) by wy, we suppose that £(0,wq) =
L£(0) given in ([2.5)).

The influence of the perturbation w on the ML estimator can be evaluated by the
likelihood displacement given by LD(w) = 2{L(0) — L(8,,)}, where 0 is the ML estima-
tor of @ = (B",¢")" in the postulated model, with 3 = (81,...,8,)", ¢ = (¢1, pa, b3) "
and 6, is the ML estimator of @ in the perturbed model by w. |Cook (1986) proposed to
study the local behavior of LD(w) around w, and shows that the normal curvature Cj of
LD(w) at wy in direction of some unit vector 1, is given by C; = C;(8) = 2|l ATL'Al|,
with ||l]| = 1, where L is the observed information matrix (given in Appendix A), eval-
uated at @ = 6 and A is a (p + 3) X 7 matrix given by A = (AF,A])", where
Ag = 9L(0,w)/0B0w™ and A, = 0*L(0,w)/0pdw, evaluated at @ = 6 and at
w = wy.

The plot of the elements |l,,,.| versus ¢ (order of data) can reveal what type of per-
turbation has more influence on LD(w), in the neighborhood of wy, (Cook, 1986). Even
considering C; = 2|f;|, where f; form the main diagonal of the matrix F = ATL A,

can be used the index plot of C; to evaluate the presence of influential observations.
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Since C] is not invariant under uniform change of scale, Poon and Poon| (1999)) proposed
the conformal normal curvature B; = C;/tr(2F), (Zhu and Lee, 2001). An interesting
property of conformal curvature is that for any direction unit I, it follows that 0 < B; < 1.
This allows, for example, comparison of curvatures among different elliptical models. We
denote by B; = 2|fi;|/tr(2F) the conformal curvature in the unit direction with i—th
entry 1 and all other entries 0. According to Zhu and Lee (2001)), the ith observation
is potentially influential if B; > B + 2sd(B), where B = Y. | B;/n and sd(B) is the
standard deviation of By,..., B,.

In this paper we consider as perturbation scheme the model shift in mean, i.e. Y =
p(w) + €, with p(w) = X3 + Aw where A, is an n X n matrix that does not depend
on B or on w. In this case wy = 0. Equivalently we can write Y, = X3 + €, with
Y, =Y + (—1)Aw, that corresponds to a perturbation scheme of the response vector.
The Az and Ay matrices for this perturbation scheme are presented in the Appendix
. In Appendix , using the proposal of |Zhu et al. (2007)), we show that A = /2

produces an adequate perturbation scheme.
2.5.2 Generalized Leverage

The general concept of a generalized leverage is related to a certain value observed
y;, over the corresponding adjusted value g;, see for example (Hoaglin and Welsh, [1978;
Ross|, [1987; |St. Laurent and Cookl, [1992).

Based on the generalized leverage by Wei et al. (1998), which is defined as GL(8) =
Y /OY T = [(84;/dy;)] where Y = u(8) and  is an estimator of . The element (i, 5) of
GL(@), is the instantaneous rate of change in ¢th predicted values with respect to the jth
value of the response.

Let 6 be the maximum likelihood estimator of 0, assuming it exists and it is unique,
and assuming that the log-likelihood function has continuous second derivatives with

respect to @ and Y, and using results from Wei et al.| (1998)) it can be shown that the

generalized leverage may be expressed as GL(60) = GLy + G Ls, where

GLi = X(Lgs— LgsLyyLss) " (—Lpy) and

GLy = X(Lgs— LpyLyyLes)  (LpgLyyLoy),
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with elements

with Lgy = —2XTE W, (6)X + 2W, (d)ee" }= 7" and Ly = %7
% = —2521%21{%(5)65 +W,(0)Z}2! for j =1,2,3.

Note that if Lg, ~ 0 then GL(0) ~ XLE;(—Lﬁy). Furthermore, if we use the Fisher
information matrix K(6) instead of —L, we have GL(0) =~ (n/4d,)X(X S 'X) 1 Lgy.
For the normal case, d, = n/4, Lgy = X 27" and then GL(0) ~ X(X'Z7'X)!1 X
that coincides with the generalized leverage matrix proposed by Martin (1992).

The diagonal elements of the matrix GL(é), i.e., the elements GL;; fori =1,...,n, are
used as diagnostics tool of the influence in the vector Y. The ith response is potentially

influential if GL; > GL+2sd(GL), where GL = >_"" | GL;;/n and sd(GL) is the standard
deviation of GL11,...,GLy,.

2.6 Application

In this Section the methodology developed in this paper is illustrated using observa-
tions from 93 wells in a single aquifer near Saratoga Valley, Wyoming. The water heights,
y, are in meters above mean sea level, and the size of the aquifer is about 1300 square kilo-
meters. The x; and x5 coordinates are in kilometers. The first goal is to obtain a predicted
surface map for the response. The data set appears in |Jones| (1989)). As in|Christensen et al.
(1992a)), for the normal spatial linear models, we use the Gaussian covariance function

which is given by

xp [— (dij/03)°] . diy >0,
C(dij): o€ p[ (j/¢3)] j >

¢1 + ¢27 dij = 0,

with ¢1, o and ¢3 non-negative. We use the model y = p+¢€, where u = Sy + f121 + Baxo.

To illustrate the methodology, we use the t distribution. This basically for two reasons.
First, within the class of elliptical distributions undoubtedly the t distribution is one of
the most used, with applications in literature of several areas, see for instance (Lange and
Sinsheimer, |1993; [Lange et al. [1989). Second, in this case the degrees of freedom for the

t spatial linear model cannot be selected using the likelihood function, as proposed by
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Lange et al| (1989), and we think that is interesting to discuss this point. In effect, as
noted by |[Zellner| (1976), for the case of the usual t—linear regression model, (see Appendix
, the likelihood function of the t model is an increasing function of v, and then can
not be used to select the degree of freedom of the t distribution. In this paper we used,
initially, cross-validation to select the degree of freedom of the t spatial linear model. In

effect, the cross-validation is defined by

ov-ev- (Y

where g;(s;) = Xjﬁ(i), with x; the ith row of the matrix X, is the prediction in the

location s; without considering this observation, (y;,x; ), B(-) is the ML estimator of (3

(]

without considering the ith observation, and h;; is the ith diagonal element of the projec-
tion matrix H = X(XTﬁlilX)_lXTﬁlil, for i = 1,...,n. To simplify the calculations we
can use the approximation B(i) ~ 3+ Kﬁl(,@)U(,-) ([3), where

~ v+n A —1
K :(—)XTE X
(B) ——

and
A v+n—1 A1 N
(hﬂﬁ)=<————f—>X%E (Y — X»8), (2.9)

where 0; = (Y —X(i),é) ﬁ]_l(Y(i) —X(i)B), with X;), (n—1) xp, the matrix X without
the ith row, x;, and Y (), (n — 1) x 1 denotes the vector Y without the response y;, for
i =1,...,n. Note that in the matrix 3 is of order (n—1) x (n—1).
Alternatively, |[Kano et al. (1993) within the class of elliptical distributions, proposed
to use the trace of the asymptotic covariance matrix of an estimated mean as a criterion
in selecting a better model. Let fr = X3. From the results of Section 3, it follows that

the trace of the asymptotic covariance matrix of [ is given by,

{V+n+2

o }tr{(XTX) (XT8'X)1.
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Table 2.2: Criteria C'V and T, for some values of v for Jones’ data.

v cVv T,
3 961.102  2123.977
4 960.857  2114.881
5 952.036 1839.644
10 953.252 1860.548
20 956.735 1945.884
40  958.222 1951.239
80  960.224  1955.717
160 962.515 1960.754
200 963.234  1962.506
oo 1220.443 1975.651

Figure 2.1: Plots of CV(v) (a) and T;.(v) (b) versus v for the Jones’ data.

cv(v)
Tv)

1850 1900 1950 2000 2050 2100
1

952 954 956 958 960 962

W

Source: From the author.

Table shows the C'V and T, criteria for some values of v and Fig. shows the
graphs corresponding for the Jones’ data. We can see that both criteria suggest that a
suitable value for v is 5. According to these criteria the t5 spatial linear model presents a
better fit. Thus, we use the model to illustrate the methodology developed in this paper.
For comparative purposes we also fit the normal spatial linear model. Table presents
the MLEs for the parameters under the normal and ¢5 spatial linear models. The standard
errors were estimated using the expected information matrix.

Table 2.3]shows the marked differences between the values of the estimators, especially
él, $2 and ég between the two models. Also the standard errors under the t5 model are
smaller when compared to the ones obtained under the normal model, except for gzgl and

@2. One hypothesis of interest in this case is H : 1 = o = 0. Using the results of Section 3,
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Table 2.3: MLEs and asymptotic standard errors (in parentheses) estimates under normal and 5 distri-
butions for the Jones’ data.

Distribution Bo B B2 () P2 P3

2248.2280 -0.6881  -3.0336  25.7923  950.4528 7.7435
(30.9242) (1.2133) (0.4974) (5.3874) (320.2882) (0.7143)
2222.5280 -0.3403 -2.9237  7.4101 651.1403 0.0020
(15.0209) (0.6758) (0.2186) (7.9408) (432.2509) (0.0002)

normal

ts

we have the values of the likelihood ratio test (p-value) are given by 7y = 19.068 (< 0.001)
and 7, = 130.568 (< 0.0001), for the normal and t5 spatial models, respectively. In both
models, the coordinates (z1,x9) are significant.

Fig. shows two index plots of B; for the normal and t5 models. As expected the
MLESs are more sensitive under the normal model. We can see that, although we highlight
some points, possible outliers are not detected, at least clearly, under the t5 spatial linear
model.

Figure 2.2: Index plots of B; for the normal (a) and t5 (b) for perturbation scheme the model shift in
mean for Jones’ data.
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Fig. shows the leverage plots. We note that the predicted values g; are more stable
to changes in y;, for 1 = 1,...,n, under the t5 spatial linear model. Table presents the
MLESs for the parameters under the normal and 5 spatial linear models for the Jones’
data without observation #1. Interestingly, this observation only produces some changes
in @ and in the respective standard error, in both spatial models, with less effect under

the t5 model. The analysis without #1 incrases the value of QZBQ, which leads to a model
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that consider even more the spatial correlation between the observations.

Figure 2.3: Generalized leverage plots for the normal (a) and t5 (b) models for Jones’ data.
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Table 2.4: Case deletion: MLEs and standard errors (in parentheses) estimates under normal and ts
spatial linear models, fitted to Jones’ data without observation #1.

Distribution Bo Bl 82 q51 ¢Ez ¢23
2247.1563 -0.2185  -3.3351  24.9241  1053.0808 8.0731
normal
(32.7975)  (1.2980) (0.5488) (5.1528) (365.2411) (0.7401)
2222.6580 -0.3574  -2.9144 7.9756 710.1933 0.0020
ts
(15.6539)  (0.7039) (0.2276) (8.6383) (471.3820) (0.0002)

Figure 2.4: Thematic maps for the normal (a) and ¢5 (b) models for Jones’ data.
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In the Fig. thematic maps of the spatial variability built by universal kriging are
presented, for normal and t5 spatial linear models. Both maps show an increasing trend of
the response variable on the north-south direction, which is consistent with the hypothesis
test, where the coordinates (z,y) are significant.

Finally we conducted a small simulation study. To analyze the performance of the
criterion C'V and T, based on the above example, we generate 500 data sets considering
n = 93 for each case, of the t5 spatial linear models, with Gaussian covariance function.
The parameters were 5y = 2126, f; = —0.3400, By = —2.9200, ¢; = 7, ¢ = 650,
¢3 = 0.002. For each data set we estimate the parameters and calculate C'V and T, for
v =5 and for ¥ = 0o, normal model. For the 500 simulated data set we count how many
times were chosen the t5 and normal models. The results are presented in Table where
we can see the effectiveness of C'V in this case. The T, criterion presents, in this situation,
a 67% of effectiveness.

Table 2.5: N of times was chosen the normal and t5 models using the criteria CV and T, in 500 simulated
data set. In parentheses percentage.

Model cVv T,

normal spatial 1 (0.2) 163 (32.6)

t5 spatial 499 (99.8) 337 (67.4)

Of course it is necessary to make a deeper simulation study, considering different
scenarios, to evaluate the performance of the criteria C'V and T, in the selection of v in

a t spatial linear model.

2.7 Conclusion

It is well known that the normal distribution is not always suitable for modelling
multivariate continuous data. In this paper we extended the Gaussian spatial linear model
relaxing the assumption of normality of observations. We considered the spatial linear
model under the family of elliptical distributions, which offers a more flexible framework
for modeling tails or extremes that are frequently observed in multivariate symmetric

data sets. Moreover, it preserves several well-known properties of the normal distribution
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allowing one to derive attractive explicit solution forms.

In the Elliptical spatial linear model we discussed maximum likelihood estimation and
some diagnostic tools such as local influence and generalized leverage. Explicit expressions
for the Fisher information matrix and for the Delta matrix were presented. The likelihood
ratio test for linear hypothesis, was also discussed.

To illustrate the methodology developed in the paper, we used the t spatial linear mo-
del. Because the likelihood function of the t spatial linear model is an increasing function
of the degree of freedom, we used cross-validation to select the degree of freedom. The
trace of the asymptotic covariance matrix of the ML estimator of the vector mean also
was used to fixed the degree of freedom. A small simulation study, showed that cross-
validation performed better than the trace of the asymptotic covariance matrix. However,
it is necessary to make a deeper simulation study, considering different scenarios, to eval-
uate the performance of these criterion in the selection of the degree of freedom in a t

spatial linear model. This topic will be addressed in a subsequent study.




Appendix A

A.1 The observed information matrix for elliptical spatial linear
models

The log-likelihood function is given by

1
£(8) = —5 log X[ +log g(9),

where § = (Y — X3)'271(Y — X3).

The second derivatives matrix, is given by

Lgs L
L(G) L= BB Bé ’
Lgs  Lgg
2 2
where Lgg = M = 22X YW, (6) + 2W, (6)ee )T !X, Lgy = &@, with
0BoB 0BOP
0?L(0) , 0x ox
2 =2X'xy! i ypt — its jth col for j =1,2,3;
9800, {ngé)ee 90, +Wg(5)a¢j} €, as its jth column, for j ,2,3;
Lys = L;(ﬁ and Lyy = gqu(q?’ with elements
0?L(0) 1 (0¥ L 0% 0?%
= = by bl s bl Sl
06,06, 2 ur (a@ %) a@a(;séz)l }
Tz—l ! ) 2—1 Tz—l_
+ € {Wg( ) 900 €€ 99,

2
. Wg(5)<022102 >y azzlaz) }2*16,

96, 96, 9600, 96, 06,
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fori,j = 1,2, 3. The derivatives of first and second-order of the scale matrix 3, (2.3)), with

respect to ¢;, for j = 1,2, 3; for some covariance functions are presented in Uribe-Opazo

et al. (2012).

A.2 A matrix for perturbation scheme of the mean for elliptical
spatial linear models

In this case we have that £(0,w) is given by
1
L(O,w) = —§log 13| + log g(bw), (A.1)

where 0, = {Y — p(w)}'SHY — p(w)) = €/ 27 ', e, = Y — p(w) and p(w) =
XB + Aw. Then

OL(0,w) _

o = —2W, ()Y — p(w)} A, (A.2)

Differentiating (A.2)) with respect to 3, see (Nel, [1980)),

82£(0 CIJ) Twe—1 ’ T -1
—— T L =92X'¥Y YX+2 YA A.
080w {Wy(0.,)% + 2W, (0u,)€vE, } (A.3)

The derivative with respect to ¢; is given by,

= _er{wg(dw)(z—l% —D;A) — W, (d.)e,D;je, T A}, (A.4)

0?L(0,w)
8¢j8wT

for j = 1,2,3 and D; = 2_182/8¢j2_1. Evaluating 1} and 1} at w = wq we
obtain the A = (Ag, Al)T matrix.

A.3 The Fisher information matrix G(w) for elliptical spatial
linear models

To select an adequate matrix A we can use the methodology proposed by Zhu et al.

(2007). In effect, the score function for w in the perturbed log-likelihood function (A.1))
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is given by

_ 0L(0,w)

U(w) e

= —2W,(6,)ATS Y — p(w)}.

Following Zhu et al.| (2007) let G(w), the Fisher information matrix with respect to
the perturbation vector w. That is, G(w) = E {U(w)U"(w)}, where E, denotes the
expectation with respect to f(Y,0,w). A perturbation w is appropriate if it satisfies

G(wo) = cl,,, where ¢ > 0. In our case we have
G(w) =c(w)ATS A

That is, G(wg) = cATE 1A with ¢ = ¢(wy) a positive constant, see Appendix C. Notice
that usually ATX 7' A # I,. However if A = 32 then G(w) = cI,, and so p(w) = XB+
>2w is a perturbation scheme appropriate. The derivatives §%%/2 /0¢; for j =1,2,3,

are given in Appendix [A.4]

A.4 Derivative of the square root »1/2

Corresponding to any matrix 3 n x n symmetric and nonnegative definite, there is
a matrix symmetric nonnegative definite »Y2 = W, such that & = 22212 = W2,

Furthermore, W is unique and can be expressed by
W =PAY?PT,

where A'/? = diag(\/ay, . .., /an), with o, . . ., a, the eigenvalues of 3 and P is a matrix
n x n orthogonal (PPT = I,,) such that PXP" = A, with A = diag(ay,...,a,). So,

derivatives of 3 with respect to ¢; is given by

[0)> oW  O0W
—— =W—+—W, for j=123. A5
90, " 09, | 09, ! A2

. . . . o oW .
This equation can be written as 3; = WW; + W, W, where X; = % and w =W;,
J J

which has been extensively studied in the literature, see for instance (Jameson, [1968]).
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Note that 3;, W and W, are symmetric matrices. Let J; = PT3,P and Q = [(¢,s)]
symmetric matrices n x n, with ¢., = (/a, + /a;)"!, for r,s = 1,...,n. Then, the
solution to equation (A.5)) is given by

oW ox'?
d¢; 09,

P(J;0Q)P",

where ® denotes the Hadamard product for j = 1,2, 3.

A.5 The likelihood function of the t model is an increasing func-

tion of v

As noted by |Zellner| (1976)), for the case of the usual linear regression model, “the
necessary conditions on 3, ¥ = ¢I and v for a maximum of the likelihood function cannot
be satisfied for ¥ > 1”. In our case, the likelihood function is an increasing function of v.

For illustration, we consider the bivariate case, t2(0,1, ) with density function given by,

I'((v+2)/2)

v —(v+2)/2
D 2)m LT

f(Y,v,0) =

with § = Y'TY. Clearly, from Fig. , the likelihood function is an increasing function

of v and also of §.

Figure A.1: Likelihood function versus v and 6.
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Chapter 3

Inference on (Gaussian spatial linear models

with repetitions

3.1 Resumo

Este capitulo apresenta os testes da razao de verossimilhangas usual e corrigido (via
Bartlett) para os parametros de locagdo nos modelos espaciais lineares com repetigoes,
e sua respectiva versao corrigida. Apresenta-se o enfoque de inferéncia para o parametro
de suavizacao da familia Matérn de modelos. Os estimadores de maxima verossimilhanca
sao obtidos, e uma forma explicita da matriz de informacao de Fisher é apresentada.
Simulacoes de Monte Carlo e aplicagoes a dados reais sao apresentadas para ilustrar a

metodologia.

3.2 Introduction

Geostatistical data are data collected at known locations in space, from a process that
has a value at every location in a certain (1, 2 or 3-D) domain. These data are modelled as
the sum of a constant (or varying trend) and a spatially correlated residual. The geostatis-
tics began in South Africa and reached maturity at the Ecoles des Mines at Fontainebleau
near Paris. One of the earliest papers in this field developed the basis equations for optimal
linear interpolation in a spatially correlated field, by [Krige| (1951)). Then Matheron| (1962,
1963, 11965, [1970) published books and used the term krigeage (in French), Krigagem (in
Portuguese) or kriging (in English), which is the geostatistical prediction, finding the best

linear unbiased prediction (the expected value) with its prediction error for a variable at

46
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a location, given observations and a model for their spatial variation. Given a model for
the trend, and under some stationarity assumptions, geostatistical modelling involves the
estimation of the spatial correlation.

The observations that can be observed may not be taken in regular grid. The spatial
variability can be studied by modeling the parametric form of the covariance matrix. Com-
mon models assume a certain shape for the local process, i.e., they assume predetermined
behavior. Thus, Stein (1999)) and Minasny and McBratney| (2005) promoted the use of
the Matérn class of models (Matérn), [1960) which has great flexibility for modeling the
spatial dependence structure, and it can model many local spatial process. This class has
also been presented in Handcock and Wallis (1994), Diggle| (2003)) and Diggle and Ribeiro
Jr.| (2007)). |Gneiting et al.|(2010]) introduced a flexible parametric family of matrix-valued
covariance functions for multivariate spatial random fields, where each constituent compo-
nent is a Matérn process. Ripley| (1987)), Mardia and Watkins (1989), Diggle et al.| (1998))
and Zhang (2002) reported difficulties in likelihood estimation of covariogram parameters.
Zhang| (2004) has used properties of equivalence of probability measures to show that not
all parameters in a spatial generalized linear mixed model are consistently estimated, but
one quantity can be estimated consistently by maximum likelihood (ML) methods un-
der asymptotics fixed-domain. Kaufman and Shaby| (2013)) show that asymptotic results
for a Gaussian process over a fixed domain with Matérn covariance function, previously
proven only in the case of a fixed range parameter, can be extended to the case of jointly
estimating the range and the variance process.

Repeated measures of data have been widely analyzed in many fields, such as biology
and medicine, but we can find only a few works which study repeated measures in the
geostatistics field. In this case, the observations are taken from different experimental
units, which is different geographical locations, where each variable is observed more than
once. Considering independent realizations of the process, it is easily to present hypothesis
test to verify, for instance, the explanatory variables that should be or should not be part
of the model.

Often the number of observations is small, so it is important to use inference strategies

that incorporate small sample corrections. The likelihood ratio test, quite often displays
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distortions when the sample size is small, because its null distribution is poorly approxi-
mated by the limiting x? distribution, from which critical values are obtained. A strategy
to improve the approximation of the test statistics approximations by the chi-squared dis-
tribution, is to alter these statistic by a correction factor. For the likelihood ratio statistic
(LR), Bartlett (1937) proposed a correction factor to be multiplied by the statistic in such
a way that your corrected version (LR*) presents null distribution xi with an error of or-
der n=2. More details about Bartlett correction, see (Cribari-Neto and Cordeiro, |1996))
and |Cordeiro and Cribari-Netol (2014)).

The Bartlett correction factor used to modify the likelihood ratio test statistic bring its
null distribution closer to its limiting counterpart. When the investigated model involves
perturbation parameters, it is common to base the inference on the profile likelihood.
Ferrari and Uribe-Opazo| (2001) obtained a Bartlett correction factor for the LR statistic
in the symmetric linear models class, and |Cordeiro| (2004) extended this results to the
symmetric non-linear model class. [Ferrari et al.| (2004, 2005) and Cysneiros and Ferrari
(2006) showed that the combined use of modified profile likelihood and Bartlett correc-
tion can deliver accurate and reliable inference in small samples. |Cordeiro et al.| (2006)
presented Bartlett adjustments for overdispersed generalized linear models. Savalli et al.
(2006) discussed the problem of testing variance components in elliptical linear mixed mo-
dels. [Melo et al.| (2009) developed modified versions of the likelihood ratio test for fixed
effects inference in mixed linear models. |Cysneiros et al.| (2010) obtained a correction fac-
tor Bartlett-type for the score statistic in heteroskedastic symmetric non-linear models.
However, it seems that there is no work in the literature about Bartlett correction for
geoestatistical models.

Our main goal is on hypothesis test for Gaussian spatial linear models (GSLM) with
repetitions considering the Matérn class of geostatistics models and to present the infer-
ence approach to estimate the smooth parameter from the Matérn family class of models.
We present the likelihood ratio statistic and its corrected version by using Bartlett cor-
rected factor. The Chapter unfolds as follows. Section presents the Gaussian spatial
linear model. Section discuss techniques for the parameters estimation. In Section

the Matérn class of covariance functions models is described and the inference for the
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smoothness parameter is discussed. Furthermore we present hypothesis testing for the 3
parameter vector, and the respectively corrected test, using Bartlett correction, in Sec-
tion B.7.3l In Section [3.8] we show the Monte Carlo simulations results. Section [3.9 has
applications to two real data sets. Finally, Section contains some concluding remarks.

Calculations are presented in the appendices.

3.3 (Gaussian spatial linear model

For a spatial process, we consider is a stochastic process {Y;(s),s € S C R?} (bi-
dimensional Euclidean space), usually though not necessarily in R?, and 7 = 1 means one

single realization of the process. Let

m(s) = E[Yi(s)],

denote the mean value at location s. We also assume that the variance of Y;(s) exists for
all s € S. The process Y is said to be Gaussian if, for any £ > 1 and locations sy, ...,s,,
the vector (Yi(s1),...,Y1(s,)) has a multivariate normal distribution.

The treatment so far has been based on the assumption that inference must be based
on a single realization of the random field Y; (i = 1). As mentioned by |Smith (2001),
we can expect to get better estimates if there are multiple repetitions of the process.
Let Y = Y(s) = vec(Y(s),..., Y,(s)) be an nr x 1 random vector of r independently
stochastic process of n elements each, that belong to the family of Gaussian distributions
and depend on the position s € S C R%. The “vec” operator transforms a matrix into a
vector by stacking the columns of the matrix one underneath the other. It is assumed the
i-th stochastic process Y;(s) = vec(Y;(s1), ..., Yi(s,)), s € S C R?, represents the n x 1
vector , for ¢ = 1,...,r. Considering the matrix notation, p,(s) = X(s)8, the model can

be expressed as

Y,(s) = X(s)8 + &(s), (3.1)

for i = 1,...,r, where 8 = (B1,...,8,)" is a p x 1 vector of unknown parameters,

X(s) = X is an tnxp matrix with vth row x| , where z,; = z;(s,) with x, = (21, ..., Typ),




GAUSSIAN SPATIAL LINEAR MODEL 50

for v =1,...,n. The design matrix X is the same for all r repetitions, s € S CR?, and ¢;
is the stochastic error.

Let 3; = [Ci(su,Sy)] be the n x n covariance matrix of Y;(s) for i-th repetition,
i =1,...,r. The matrix 3; is non-singular, symmetric and positive defined, associated to
the vector Y;(s), where for the stationary and isotropic process, the elements C;(s,,s,)
depend on the Euclidean distance between points s,, and s,,. If a stationary spatial random
process has the property that the dependence between any two observations depends only
on the distance between their locations, d,, = ||s, — s,||, irrespective of the direction,
then the process is said to be isotropic. Otherwise it is said to be anisotropic. Isotropic
process are convenient to deal with because there are a widely used parametric forms for
Ci(duwy) = Ci(Su,8y).

In the same approach of [Smith/ (2001), we shall assume a homogeneous process. We
consider the same covariance structure for each repetition, i.e., the covariance matrix
3, = 3 = [C(sy,sy)], has a structure which depends on the vector of parameters ¢ =
(1, P2, 03) " or @ = (@1, o, P3,¢4) ", depending on the form of the covariance structure

(see Section for more details). The covariance matrix is given by

Y, =X =q¢L, + %R, (3.2)

for i« = 1,...,r, where, ¢; > 0 is the parameter named as nugget effect; ¢o > 0 is
named as sill ; R = R(¢3,d4) = [(rw)] or R = R(¢3) = [(Tw)] is an n X n symmetric
matrix, which is function of ¢3 > 0, and sometimes also function of ¢4 > 0, with diagonal
elements 7y, = 1, (u = 1,...,0); Tuy = ¢y C(54,5,) for ¢y # 0, and r,, = 0 for ¢y = 0,
u#v=1,...,n, where r,, depends on the Euclidean distance d,, = ||s, — s,|| between
points s, and s,; ¢3 is a function of the model range (a), ¢4 when exists is known as the
smoothness parameter, and I,, is an n x n identity matrix.

We assume that p(s) is constant which we may, without loss of generality, take to be

0, and then define

var[Yy(su) = Ya(sy)] = 27(|[su = so|)-
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The function ~(-) is called the semivariance, and it makes sense only if the variance
between observations depends on s, and s, only through their difference s, — s,. If the

process is stationary then

Statistical methods for second-order stationary processes can be considered in terms of
covariances or in terms of variograms. Statisticians prefer the first way, geostatisticians
the second. We concentrate on the covariance.

According to Stein (1999), for a space-time process observed at a fixed set of spatial
locations at sufficiently distant points in time, it may be reasonable to assume that obser-
vations from different times are independent realizations of a random field. Goodal and
Mardial (1994) says we can remove the effect of time from the data and then we can view
the data as independent repeated measurements in space.

Another characteristic of the model is that it can be expressed as a linear mixed model

by

Yi(s) = p(s) + bi(s) + 1(s)

where, the deterministic term p(s) is an n x 1 vector, the means of the process Y;(s),
b;(s) + Ti(s) = €(s) and b; ~ N,(0,»R) and T; ~ N,(0,¢,I) are independents, for

1=1,...,n.

3.4 Parameters estimation

The unknown parameters to be estimated are the 5’s and ¢’s. Stein| (1999) demon-
strated with simulated data that the method of moments is poor at describing the smooth
process. It is straightforward in principle to write down the exact likelihood function and
hence maximize it numerically with respect to the unknown parameters in the case we
assume that we are sampling from a Gaussian process. According to [Smith| (2001)), de-
spite of disadvantages such as non-robustness when there are outliers in the data, or the

possible multimodality of the likelihood surface, these are not reasons to abandon maxi-
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mum likelihood (ML) estimation. And, we can expect to get better estimates if there are
multiple repetitions of Y;. The maximum likelihood procedure in this case is only slightly
different from that in the single-realisation case.

Common practice is first to calculate the empirical variogram by the method of mo-
ments (Matheron|, |1965]), and then fit the model to the empirical variogram by (weighted)
nonlinear least squares.

To resume, the weighted least squares (WLS) applied to the sample variogram gives a
simple and convenient method for obtaining initial estimates of variogram parameters. Our
wider conclusion is that the variogram should be used as a graphical method of exploratory
data analysis, rather than as a vehicle for formal parameter estimation (Diggle and Ribeiro
Jr., 2007)). We suggest, for example, the use of robust semivariogram proposed in (Genton
(1998). Diggle and Ribeiro Jr.| (2007) also pointed out that an unbiased set of estimating
equations could be obtained from an iteratively weighted least squares algorithm, as used
in generalized linear modelling (McCullagh and Nelder} [1989).

It can be used, for instance, the algorithms Newton-Raphson or score Fisher (Little
and Rubin| (1987))). In practice it should be combined such approaches with additional al-
gorithms to avoid repeated inversion of large unstructured matrices (Mardia and Marshall
(1984)); |Zimmerman| (1989))). For example, Zimmerman| (1989)) devised a computational
acceleration for the Gaussian covariance structure over a regular parallelogram lattice.

Diggle et al.| (1998); [Mardia and Watkins| (1989); Warnes and Ripley| (1987) and |Zhang
(2002) reported difficulties in likelihood estimation of covariogram parameters. Zimmer-
man and Zimmerman| (1991) numerically compare ordinary least square (OLS), WLS,
restricted maximum likelihood (REML) and ML for linear and exponential variograms.
They find that, for Gaussian observations, ML is only slightly better that ordinary least
square and WLS. REML, which often has the best bias properties, was found to have a
comparable bias to ML. This is due to the low dimension of the mean parameter vector
considered. We concentrate on maximum likelihood estimation to be presented in next
Section.

There are some packages availables in the free software |R Core Team| (2015 that

can be used for geostatistical models. For instance, the package sp (Pebesma and Bivand,
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2005) presents classes and methods for spatial data in general, more specifically the classes
document where the spatial location information resides, for 2D or 3D data, and utility
functions are provided, e.g. for plotting data as maps, spatial selection, as well as methods
for retrieving coordinates, for subsetting, and more. The package geoR (Ribeiro Jr and
Diggle, 2001) for geostatistical analysis includes traditional, likelihood-based and Bayesian
methods, the package geoRgml is an extension to the package geoR, and has functions
for inference in generalised linear spatial models. The gstat (Pebesmal, 2004) package is
for spatial and spatio-temporal geostatistical modelling, prediction and simulation. The
package fields (Nychka et al., 2014) and many more have tools to analyze spatial data.

More availabe packages for spatial data can be found in the CRAN task view.
3.4.1 Maximum likelihood

The maximum likelihood (ML) method estimates parameters of the model directly
from the data, on the assumption that it is a multivariate normal distribution. Let
Y = vec(Y] (5),...,Y,(s)) be and nr x 1 random vector of r independent and identi-
cal distributed vectors. The log-likelihood for the Gaussian spatial linear model for each

repetition is of the form
n 1 1 Teo1l
li(0) = —5 log(2m) — S log %] — o (Y, — XB) E7(Y: — XB).

The log-likelihood for the Gaussian spatial linear model for the r multiple repetitions

is given by

ie,

£(0) =~ 1os(2m) — L log[] — 5 3(¥, - XB)TE (Y, - X). (3.3)

=1
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The score functions are given by:

b0 s
i=1

U(¢):_‘9§f) _ _g—ave;;(z) vee(S7)
1 <~ Ovec' (%) R
+= Y ————vec(X €€, X,
2 0

where €; = (Y; — X3). From the solution of the score function of 3,

the maximum likelihood estimator 3 is given by:

B=X"2'X)"'X'®Y, (3.4)
_ _ _ _ 1 —
where Y = (Y1,...,Y,)", with Y, = . ;Yi(sv), v=1,...,n.

Since we can use the GLSLM with repetitions as a linear mixed model we can follow
what was mentioned by Borssoi| (2014), that Demidenko) (2004)) and |Wang and Heckman
(2009) discussed the parameter identifiability for the linear mixed models. In particular,
Wang and Heckman| (2009) showed that there is no problem since we have that var[e;] =
¢11,,. But one deficiency can be the sensitivity of the maximum likelihood estimates to
atypical observations. For that we present the study of diagnostic techniques in next
Chapters.

Unfortunately, the score equation for ¢ does not lead to a closed-form solution for
¢. Thus, a common practice is to maximize the profile log-likelihood, obtained by sub-
stituting the solution to the score equation for 8 [Equation (3.4])] into the log-likelihood
in Equation . Then, the profile log-likelihood depends only on ¢, and ignoring the

constant —%* log(27) we have

L) x ——log|S|— L LY - XX'='X) X2 YY) e
2 2 4
P (3.5)
(Y, - X(XT='X)7'XT27Y)).
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Zhang and Zimmerman (2005) compare ML estimation under increasing domain and infill
asymptotics in the Matérn family of covariances. They find that finite sample behavior
agrees more with the infill asymptotic inferences than with the increasing domain asymp-
totics. For example, the maximum likelihood estimates of covariance parameters are typ-
ically consistent and asymptotically normal when fitted by a correct model (Mardia and
Marshall, [1984)). In contrast, not all covariance parameters can be estimated consistently
under the fixed domain asymptotic framework, even for the simple exponential covariance
model in one dimension with no consideration of explanatory variables (Chen et al., | 2000
Ying, 1991). The readers are refereed to |Stein| (1999)) for more details regarding fixed
domain asymptotics. Some discussion concerning which asymptotic framework is more
appropriate can also be found in [Zhang and Zimmerman| (2005)).

Ying (1991) presents asymptotic properties of a maximum likelihood estimator with
data from a Gaussian process. (Chang et al. (2014)) studied the asymptotic properties of
generalized information criterion (GIC) for geostatistical model selection regardless of
whether the covariance model is correct or wrong, and establish conditions under which

GIC is consistent and asymptotically loss efficient.

3.5 Matérn family of covariance function

According to [Minasny and McBratney| (2005) and |Stein| (1999) promoted the use of
the Matérn class of models, which the name comes after the Swedish forestry statistician,
Bertil Matérn (Matérn|, 1960). And as we mentioned, the Matérn is a covariance function

particulary attractive given by

P2 é
ba—1T7 4\ (duv/¢3) ! K¢ (duv/qu) ’ duy > 0,
C(duv> = 294 1F(¢4) ‘ (36)
¢1+ P2, dyy = 0,
where the parameters are assumed to be non-negative, i.e., ¢; > 0, for 7 = 1,2,3,4;

Ky (u) = 5 fo z#1~Le=3u@ ) dr is the modified Bessel function of the third kind of
order ¢4; see (Gradshteyn and Ryzhik, 2000). This covariance function is particularly

attractive because its behavior can change according to ¢4 value. For instance, ¢4 = 0.5
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gives the exponential covariance structure, Whittle’s elementary covariance is obtained
with ¢4 = 1, and in the limit as ¢, approaches to infinity, with ¢3 approaching to 0 in
such way that 2@11/ 2qz53 remains constant, it approaches the Gaussian covariance function.
For a finite value of the ¢3 parameter (which is a function of the range parameter), the
Matérn function represents several bounded models. In many works the notation for the
smoothness parameter is xk or v for Matérn class, but here we use ¢4, for simplicity of
notation, since it is a parameter part of the covariance structure which can be estimated
or considered as fixed. For more details about Matérn class of models, (Haskard et al.|
2007; Minasny and McBratney, 2005} [Stein|, [1999)).

A process having the Matérn covariogram is [¢4] — 1 times mean square differ-
entiable, where [¢,] is the largest integer less than or equal to ¢,. According to [Zhang
(2004)), other classes of covariograms do not have such a parameter to yield a preferred
mean square differentiability. The practical importance is that the Matérn class of covari-
ance models allows data to determine the smoothness (Sherman) 2011)).

Table presents few special cases of the Matérn class of models.

Table 3.1: Special cases of the Matérn covariance function.

smooth parameter covariance function model

Gy =1/2 C(duy) = ¢2 exp(—dyy/d3) exponential
b1 =1 Cdu) = 62(duu/0) Ky, (dun/d5)  Whittle

Gy — 00 C(duwy) = ¢ exp(—(duy/$3)?) Gaussian

If ¢3 is large, it approximates the power function when ¢4 > 0, and a log function or
de Wijs function (de Wijs, 1951, 1953) when ¢, — 0. Figure shows some covariance
models and the Matérn covariogram with varying smoothness parameter ¢4 and constant

range and sill.
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Figure 3.1: Matérn model with ¢1 = 0, ¢2 = 1, ¢3 = 150 and different ¢4 values.
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Source: From the author.

Matérn| (1960) has shown more precisely that if a random field allows a variogram that
is everywhere continuous except at the origin, then this random field is the sum of two
uncorrelated random fields, one associated with a pure nugget effect and the other with an
everywhere continuous variogram. Zhang’s results demonstrate that, in a Matérn model
with parameters ¢o and ¢3 being ¢4 = 0.5, the ratio ¢o/¢3 is much more stably estimated
than either ¢, or ¢3 themselves. Stein| (1999)) strongly recommended to use the Matérn
model by calculating and plot likelihood functions for unknown parameters of models for
covariance structures.

For the case of the Matérn class of covariance function (or other with more than three
parameters), we suggest to use the idea presented in Minasny and McBratney| (2005) for
one single realization, which assume ¢, as fixed to find which ¢4 gives the maximum value
for the profile log-likelihood, and then use it as a initial value and estimate it. We use the
same idea, but now for a model with repetitions as we present in Section [3.9] [Stein| (1999)
said that although he does not advocate treating ¢, = 0.5 as fixed, to keep in mind that
is the same of using the exponential model.

In the case that we consider the parameter ¢4 as fixed, we have to choose which value,
between a range of values, gives the best fit. As an alternative to select ¢4, we consider

the cross validation criterion similar to the one presented in De Bastiani et al.| (2015),
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defined by
_ LN SUls) —?Ji(j)(sj)}Q
OV = CV(¢s) = — Z Z { . , (3.7)
i=1 j=1
where ;;y(s;) = XJ-TB(]»), with x] the ith row of the matrix X, is the prediction in

the location s; without considering this observation, (yj,XjT), B(j) is the ML estimator
of B without considering the jth observation, and hj; is the jth diagonal element of
the projection matrix H = X(XTﬁlilX)_lXTiil, for 7 = 1,...,n. To simplify the

calculations we can use the approximation B(j) ~ 3+ K‘l(B)U(j) (), where

K(B)=rX'S 'X and

(Yi) — X»8), (3.8)

with Xj), (n — 1) x p, the matrix X without the jth row, XJT, v Y3, (n—1) x 1 denotes
the vector Y; without the response y;(s;), for j =1,...,n and ¢ = 1...,r. Note that in
the matrix 33 is of order (n—1) x (n—1).

Minasny and McBratney| (2005)) say that the smoothness parameter, ¢4, from Matérn

model should be determined from the spatial data.
3.5.1 Inference for ¢, parameter

To estimate this parameter we used the profile likelihood method for ML. To summa-

rize the main steps of the algorithm are:
1. Choose a set of values for ¢y, for instance (0.2,0.5,1.0,1.5,2.0,2.5,3.0).
2. For each value of ¢4, maximize the log-likelihood over (¢1, @2, ¢3).

3. Plot the log-likelihood values as a functions of ¢4, and find the value of x that has

the log-likelihood maximum value (LMV).

4. Calculate the CV (Equation and find the value of ¢, that minimize CV.
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5. Choose the values of (¢1, @2, ¢3, ¢4) where the log-likelihood is maximum and con-

sidered as a inicial choice for the next step.
6. Maximize the log-likelihood over all parameters (¢1, @2, @3, P4).

The derivatives of the Matérn model with respect to ¢4 parameter are given in Ap-

pendix [B.3
3.6 Asymptotic standard error estimation

The observed information matrix 7(0) for the GLSM with multiple replications is
1(8) = —L(B), evaluated in @ = 6, where L(0) = 92L£/9000" = L(8). Furthermore,
we notice that the I(0), which is evaluated in 8 = 6, has the same equations as the
expected information matrix given below. The derivatives of first and second-order of
the scale matrix 3, with respect to ¢;, for j = 1,2,3 and j = 4 for some models; for
some covariance functions are presented in |Uribe-Opazo et al. (2012). And some useful
constructions are given in Appendices B.1] and

Asymptotic standard errors can be calculated by inverting either the observed infor-
mation matrix or the expected information matrix. The expected information matrix,
E[—0L£(0)/0000"] = E[(0L(0)/00) (0L£(0)/007)] = E(UyU,), is given by, (Lange
et al., |1989; Mitchell, [1989; Waller and Gotway, [2004]))

E(U;UL) E(UZU! Fss F
F(6) = F — B[UUT] - (UsUz) E(UU,) _ [ Fee Foo]

E(U,U;) E(ULU)) Fss Fyp

where U is the score function and

Fﬁqj — O,
Fes = 0,

rovec (X)_, _,0vec(X)
F = ——3 > —

See Appendix for the details. We used F’ 5’51 and F q;; to estimate the dispersion matrices




HYPOTHESIS TESTING FOR THE g PARAMETER VECTOR 60

for the maximum likelihood estimators ,3 and g;b, respectively.

3.7 Hypothesis testing for the [ parameter vector

The greater the number of perturbation parameter, less is the quality of asymptotic
approximations. To overcome such problems, some modifications for the log-likelihood
were proposed, as the one proposed by Barndorff-Nielsen| (1983, |1994); (Cox and Reid
(1987); [McCullagh and Tibishirani| (1990) and Stern (1997)), which are described in Pace
and Savan| (1997).

We can see our model defined in (3.1) as a particular case of the model given in
Equation (1) of Melo et al| (2009) to be able to use some of their results. Next Chapter
gives more details about this particular case. So £(0) is the total log-likelihood as defined
in (3.3), given Y = (Y{(s),..., Y, (s)), which depends on the parameters vector 8 =
(BT, ¢")7, with p +m components [m is the length of ¢]. The parameters vector 3 of p
components can be partitioned 8 = (8, ,8, )" where, 3] = (8,,... ,ﬁq)T is the interest
vector with dimension ¢ and 8, = (Byr1s - - ,ﬁp)T and the perturbations parameter
vector with dimension (p — ¢). Consequently we have X = [X; X3], where X; is an n x ¢
matrix formed by the first ¢ columns of X and X, and n X (p — ¢) matrix formed by the

(p — q) columns of X.
3.7.1 Parameters orthogonalization

Let B3, be the parameter of interest, similarly to Zucker et al. (2000) and Melo et al.
(2009) we transform the vector 8 = (B8{,85,¢" ) in ¥ = (B],£",0")" with & =
B, + (XJZ71X,) ' X 271X, 3,.

Using this transformation presented, we have that ,BlT and v = (ET, ¢T)T are orthog-

We have X3 = X3, + X23,, which after the orthogonalization it can be written as

XB = XiB8, + Xat,
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where X¥ = X; — X5(XJ X 7'X,)7'X] X' X;. Thus the log-likelihood can be written as

L(¥) = —Tlog(2m) — glog|X|
13 (Y = XiB8, — X08) ' S7N(Y, — X8, — Xa¢).
=1

Let Hy : B, = ﬁ(l) be the hypothesis of interest versus the alternative hypothesis
- AT AT AT
H, : B, # 3, where B! is a fixed vector of dimension ¢(< p), where, 9 = (3,,& ,¢ )" is
the unrestricted ML estimator for 1, and denote with a tilde the restricted ML estimator.
~ ~T ~T ~ ~
So, 9 = (,BEO)T,é ,@ )" is the restricted ML estimator of 9, where € and ¢ are the

restricted ML estimators of £ and ¢ under Hy.
3.7.2 Likelihood ratio statistic

The likelihood ratio statistic (LR) to test Hy : 3; = 3" versus H, : B, # 3%, where

ﬁ(l) is a fixed vector of dimension ¢(< p), is defined by

LR = 2(L(9) — L(D))

A

where L£(9) is given by

L) = —Slog(2m) — glog|f)|
=3 (Y = XiB, — Xo8) =Y - XiB, — Xa).

i=1

and L£(9) is given by

L(O) = — 5t log(2m) — glog|2~3|
—33 (Y - X8 — Xaf) B TN(Y - X8 - Xa).

i=1

Thus, the likelihood ratio statistic has the form:
r > 1 e~ A
L — —1 = - ;o ;
R 5 108 <2> +2 E (6; — ),

where, 8; = (Y; — X80 — X,&)TS7(Y: — X80 — X,€), is evaluated in 9, and
8: = (Yi — X8, — Xob) TS (Y: — X308, — Xof), is evaluated in 9.
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The log-likelihood given in (3.5) is a profile likelihood, which can be written considering
the partition of the parameters vector 3 how we presented in Section |3.7. Thus we can

define the profile log-likelihood by

*

£17(:31) = ‘C(ﬁbé )

*

o), (3.9)

where é'* and qAb* are the maximum likelihood estimates considering 3, as fixed.
For the hypothesis test under Hy : 3, = 550) versus Hy : B # 550), with 550) as fixed,
the likelihood ratio statistic based on (3.9) is the same as the one based on the non profile

log-likelihood given in (3.5)), (Ferrari et all 2005), i.e,
LR =2L(B,.€ ¢) ~ L(B" &, ¢)) = 2L,(B1) — £,(B")).

Asymptotically and under the null hypothesis, the LR statistic is distributed as a

chi-squared random variable, with degrees of freedom equal to (p — q).
3.7.3 Improved likelihood ratio tests - Bartlett correction

For small sample size the first order approximation in general may be not satisfactory.
Looking for improving this approximation, Bartlett| (1937)) proposed a new statistics which
consist of the multiplication of the LR statistics by a constant (1 + C/q)~!, obtaining the

corrected version of the LR statistics, LR*, given by

LR

LR = %
1+C/q

where C is a constant of order n=!, O(n™1), chosen such that, under the null hypothesis
E[LR*] = ¢+ O(n™3/?).

In regular problems and under the null hypothesis, LR* has a chi-squared distribution,
X less than an error n~?, see (Barndorff-Nielsen and Hall, [1988). Thus, while P(LR >
T,) = a+O0(nt), P(LR* > x,) = a+ O(n™?), where z, is the quantile (1 — «) of the

distribution x2. In other words, the error of approximation by x2 for the null distribution
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of LR is of order n~!, while the error of this approximation for the distribution of LR* is
reduced to order n=2.

Several methods to obtain the Bartlett correction factor are presented in the literature,
among them is the one presented in Lawley| (1956) that consider, for regular problems, to
obtain a general formula for the constant C' in terms of the cumulants and your derivatives

of the log-likelihood. Then, the Bartlett correction factor for the GSLM with repetitions

is obtained. For simplicity, here we only give the expression for C' when 5§0) =0.

B 1. 1 1 1 T
C’-tr(rD ( 21\/I—i-4P 2(§—|—V)7' )),
where D, M and P are m x m matrices given by

-1
D zltr (02 6_2) ,

2 ¢ gy,
2yt 82*1
X*TE 1x* X*T X* 2X X*
[ ( ' (9@25]8(]% " e 8¢J >}
* 82 ! * — * * az ! * * — * -1
P =tr KX T 9, ) (X;'=7'X5) (X T 90 X1> (X;'27'X)) } :

and ¢, v and T are (m)-vector whose jth elements are

ir (D'A,)
Ty—1 -1 Taz_l

tr |:(X22 Xg) <X2 6¢J Xg):|
- ox~!

t X*Tzflx* 1 (X*T X*):|
r[( {) 96,

and

1 (az—l %y ) 1 (62‘1 ?x ) 1 (az—l X )
Aj=_tr — —tr — —tr .
2 Opy 0¢;0x 2 Od 0¢;d 2 dp; Obidy

Appendix [B.4] shows the details.
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3.8 Monte Carlo Simulations

In general, Monte Carlo methods are all methods that examinate the properties of a
probability distribution, by generating a sample from the distribution and then studying
the statistical properties in this sample.

Let R be rejection area. To estimate the Plerror type I| for small values of r by the

Monte Carlo simulation the main steps are:

1- Generate N independent sample according the null hypothesis,
(ch)a S 7Y7("k))7

for k=1,..., N and each Y; is a random vector of lenght n,

2- calculate the statistic,

fork=1,...,N,

3- determine the percentage of samples of Hy that are rejected (wrongly), that is
X
Plerror type I] = P[T € R| =~ i ; Lpwer-

All simulations were performed using the Ox matrix programming language (Doornik,
2006). We consider 10000 Monte Carlo replications, n = 25 the sample size in a regular

grid of 5 x 5 units.
3.8.1 Simulation 1

We present the results of Monte Carlo simulation experiments in which we evaluate the
finite sample performances of the likelihood ratio test and its Bartlett-corrected version.
The simulations were based on the following linear model Y; = (y + 1% + €, for
it =1,...,5. The values of x; were obtained as random draws from the standard uniform
distribution ¢4(0,1), and € ~ N,(0,X), with 3 = ¢11,, + ¢p2R(¢3) considering the expo-

nential geostatistical model. We test Hy : 5, = 0 against Hy : f; # 0. The parameters
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values are By = 0.5, 81 = 0.5, ¢; = 3.0, we varied ¢ = 0.5 and ¢ = 3.0, and ¢3 = 3.0
treated as fixed in a sample grid of 5 x 5. All tests were carried out at the following nom-
inal levels: o = 1%, o = 5% and « = 10%. The results are presented in Table [3.2] Note
that, apart from the first situation, all the statistics present the rejection rates above the
nominal level, but the corrected version of the likelihood statistic presents slightly better

results.

Table 3.2: Null rejection rates of the tests of Hy : f; = 0. For » = 5 repetitions of the exponential
geostatistical model with ¢ =1 in an regular grid with n = 25.

¢ a%) LR LR*

0.5 1.00 140 094
0.5 5.00 1149 8.89
0.5 10.00 23.17 19.72

3.0 1.00 266 1.89
3.0 5.00 12.11 10.28
3.0 10.00 21.24 19.08

Table presents the mean and variance of the x?, LR and LR* statistics. The results
showed that the LR* statistics present mean and variance closest to the mean and variance
of the x? then the mean and variance of LR, but still they exceed the values of the 3

statistics.

Table 3.3: Mean and variance of the x%, LR and LR*. For r = 5 repetitions of the exponential geostatistical
model in a regular grid with n = 25.

¢y Mean x? Var x2 Mean LR Var LR Mean LR* Var LR*

0.5 1.00 2.00 1.8739  19.009 1.7131 16.476

3.0 1.00 2.00 1.6310  7.3866 1.5142 6.7151

3.8.2 Simulation 2

This simulation is similar to the first one, but now we increased the number of parame-
ters to be tested. The simulation were based on the linear model Y; = [y + 51x1 4 F2X2 + €,
for i+ = 1,...,5. The values of x; were obtained as random draws from the standard

uniform distribution ¢(0, 1), x3 is and indicator function and € ~ N, (0,X), with 3 =
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&1L, + d2R(¢3) considering the exponential geostatistical model. We test Hy : f; = B2 = 0
against Hy : f1 # 0and B3 # 0. The parameters values are Sy = 0.5, f; = 0.5, ¢; = 3.0, we
varied ¢o = 0.5 and ¢2 = 3.0, and ¢3 = 3.0 treated as fixed in a sample grid of 5 x 5. All
tests were carried out at the following nominal levels: o = 1%, o = 5% and o = 10%. The
null rejection rates of the test under evaluation is displayed in Table [3.4] Note that all the
statistics present the rejection rates above the nominal level. As expected, the corrected
version of the likelihood ratio statistic shows null rejection rates closer to the nominal

level compared to the no corrected version.

Table 3.4: Null rejection rates of the tests of Hy : 81 = 2 = 0. For r = 5 repetitions of the exponential
geostatistical model with ¢ = 2 in an regular grid with n = 25.

¢ a(%) LR LR

0.5 1.00 2.00 1.82
0.5 5.00 747 6.80
0.5 10.00 14.08 13.21

3.0 1.00 2891 26.35
3.0 5.00 16.1 13.96
3.0 10.00 2891 26.35

The mean and variance of the x3, LR and LR* statistics are presented in Table .
The results showed that the LR* statistics present mean and variance closer to the mean
and variance of the x3 compared the mean and variance of LR. On the other hand the

values exceed the one of the 3 statistics, specially the variance of LR and LR* statistics.

Table 3.5: Mean and variance of the x2, LR and LR*. For r = 5 repetitions of the exponential geostatistical
model in an regular grid with n = 25.

¢o Mean x5 Varyz Mean LR Var LR Mean LR* Var LR*

0.5 2.00 4.00 1.5940  18.897 1.5361 17.917

3.0 2.00 4.00 2.1248  4.6723 1.9869 4.1811
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3.9 Application

The data set were collected in a grid of 7.20x7.20 m in an experimental area with 1.33
ha at Eloy Gomes Researh Center at Cooperativa Central Agropecudria de Desenvolvi-
mento Tecnoldgico e Economico Ltda (COODETEC), in Cascavel city at Paranad State
- Brazil, with Oxisol soil. It were collected soybean productivity data and four chemical
contents during April in the years 1998 (Y7) or year 1, 1999 (Y3) year 2, 2000 (Y3) year 3,
2001 (Yy) year 4 and 2002 (Y;) year 5 with 253 observations each. To explain the expec-
tation value of the productivity, it were considered as explanatory variables in the model
these chemical contents of soil: phosphorus (P)[mg dm™?], potassium (K)[cmolec dm™?],
calcium (Ca)[cmolc dm™] and magnesium (Mg)[cmolc dm™3].

Table presents a descriptive analysis of productivity dataset. The smallest value
for the mean of the productivity is for Prod 2002 (Y5). This year has the biggest variance
coefficient (var. coef.) and beyond that, in general the lower values as shown in Figures

and [3.3] The observations were taken at the same site for each repetition and Figure

3.2(a)| show how the data are spread in the area. Figures|3.2(b) |3.2(c)| [3.2(d)} [3.2(e)[ and

3.2(f)| are the scatterplot for each repetition. The values of the productivity have been
decreasing along the years. Figure [3.3|show the usual boxplots for the productivity, where

only the observations taken in the harvest year 2002 do not have outliers.

Table 3.6: Descriptive analysis of productivity dataset.

Prod Min. 1st Quartil Median Mean 3rd Quartil Max. var. coef.
1998  1.190 2.420 2.740  2.755 3.050 4.140 0.18
1999  0.690 1.960 2,190  2.154 2.390 3.610 0.18
2000 1.260 2.930 3.150  3.106 3.330 3.980 0.12
2001 1.310 2.520 2720 2.644 2.880 3.340 0.14
2002  0.190 0.770 1.220  1.283 1.820 2.340 0.44
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Figure 3.2: (a) Plot of how the data is spread in the area; each point has five repetitions, (b), (¢), (d), (e)
and (f) scatterplot for each repetition, for years 1998, 1999, 2000, 2001 and 2002, respectively.
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Figure 3.3: Boxplot for soybean productivity in the years 1998 (Y1), 1999 (Y2), 2000 (Y3), 2001 (Y1) and
2002 (Y5).
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In other to choose the variance covariance structure that best describe the spatial
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dependence of the soybean productivity, we used cross validation (CV), the log-likelihood
maximum value (LMV) and the trace of the asymptotic covariance matrix of an estimated
mean (Tr) criteria presented in Table and in Figure of Chapter . Based on this
criteria we selected the Gaussian covariance structure to model the spatial variability.

In Table are presented the results to test the fixed effects, considering the Gaussian
covariance structure. We observe that in all situations the null hypothesis is rejected when
considering 10% of significant level, and the only hypothesis that is not rejected when

considering 5% and 1% of significant is the first one, 3, = 0.

Table 3.7: Profile Likelihood ratio test and Bartlett correction version with the respectives p-values, for
the soybean productivity data set.

H, LR LR-p-value LR* LR*-p-value
B =0 2.248747 0.0864 2.213197 0.0887
By =0 22.65191 0.0000 22.28766 0.0000
B3 =10 12.35896 0.0002 12.04922 0.0003
Bs=0 17.10885 0.0000 16.80962 0.0000
B =0and By =0 24.10884 0.0000 23.44502 0.0000
B3 =0and 8, =0 23.35274 0.0000 22.30249 0.0000
B =0and 3 =0 16.57818 0.0001  15.97536 0.0000
B =0and By =0 16.57818 0.0001 16.10108 0.0000
B2 =0and 3 =0 31.26882 0.0000 30.14944 0.0000
B2y =0and By =0 36.73298 0.0000 35.68228 0.0000
By =0; f3=0and B, =0 42.5386 0.0000 40.33767 0.0000
B1=0;PB3=0and By =0 27.86659 0.0000 26.41378 0.0000
B1=0;B2=0and 34 =0 39.56427 0.0000 38.15563 0.0000
B1=0; B =0and B53=0 33.53977 0.0000 32.10161 0.0000
B1=0;82=0; B3=0and 5, =0 45.02532 0.0000 42.55362 0.0000

Based on the likelihood ratio test and its respective Bartlett corrected version, we
considered all the explanatory variables in the analysis.

Table [3.8] shows the parameters estimates considering the Gaussian covariance func-
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tion, and the respective asymptotic standard errors (se) in parenthesis. We note that P
and Mg has an inverse proportional relationship with the mean of the productivity, that is,
after a determined value as we increase the contents of P and Mg, the mean of productiv-
ity decrease. The opposite happen with K and Ca. For the Gaussian covariance structure,
the range of the model is given by v/3¢s, so we conclude that under this scenario, the

range of spatial dependence is approximately 0.0705 m.

Table 3.8: Parameters estimates for Coodetec data considering the Gaussian covariance function, the
asymptotic standard errors (in parenthesis) and the p-values.

Intercept P K Ca Mg nugget  sill f(range)
Bo B By Bs By b1 ¢ %3
2.4013 -0.0017  0.3270 0.0118 -0.0592  0.1927 0.0579 0.0407

(0.1020)  (0.0109) (0.1746) (0.0392) (0.0515) (0.0178) (0.0219) (0.0098)

3.10 Conclusions

We performed likelihood-based testing inference on the parameters of a spatial linear
model. We had written the model as a random effect model, so is the same to say that
we addressed the issue to test the fixed effects parameters of mixed linear models when
the sample contains a small number of observations. We allow to test joint restrictions on
one or more fixed effects parameters.

For the spatial linear model the covariance matrix of the random effects is not neces-
sarily linear when deriving the Bartlett correction to the profile likelihood ratio test. We
obtained the likelihood ratio statistic and the corrected version by using Bartlett corrected
factor.

The standard likelihood ratio test is liberal, as evidenced by our Monte Carlo re-
sults. The simulation study clearly show that the proposed tests slightly outperform the
standard likelihood ratio test. It needs a deeper study to obtain more results.

We also present some useful derivatives for the selection and estimation procedure
of the covariance matrix that define the spatial dependence structure, considering the

Matérn family of geostatistical models.




Appendix B

B.1 Covariance matrix derivatives

Let us consider the covariance matrix X = ¢;1 + @R given in , Where ¢ =
(¢1,...,0,)" are unknown parameters, I is an n x n identity matrix and R is defined
according the chosen geostatistical model (Uribe-Opazo et al.; 2012). Without loss of

generality, for ¢ = 3 we have
VeCT(Z) = VecT(gblI + »R) = ¢ VeCT(I) + ¢ VeCT(R),

consequently,

dvec' (L) Oy vec' (I) N gy vec! (R)

: (B.1)
B D D¢

where the “vec” operator transforms a matrix into a vector by stacking the columns of the

matrix one underneath the other. The first part of the Equation (B.1)) is given by

[ ¢y vec (I) ]
O vec' (I)
D¢y vec' (I) _ | 9¢uvec' () | _ 0
ey O
¢y vec' (I) 0
L O¢s]
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and the second part of the Equation (B.1)) is given by

[ D¢ vec (R) ]| i 0 T
Oy
Opavec’ (R) | Ogavec'(R) | veeT (8_R
8¢ - 8¢>2 N a¢2
gy vec' (R) g veeT (G_R)
| 0p3 1 L 093 ) |

Thus, the solution for Equation (B.1)) is an 3 x n? matrix given by

vec' (I)
dvec' (X)

96 = vec' (R)

OR
¢y vec" (87%)

B.2 Expected information matrix

Asymptotic standard errors can be calculated by inverting either the observed infor-
mation matrix or the expected information matrix. The expected information matrix is
given by

E(U;UN) E(UZUT F F
F(0)— F — (UsUgz) E(UsU,) _ | Fee Fae

E(U,U}) E(ULU)) Fys Fyg

where Ug = U(f) and Uy = U(¢) are the score functions for 3 and ¢, respectively.
Let define Z; = Z~Y2(Y; — XB3), where Y; ~ N,(X3,X) then Z; ~ N,(0,I), where

0 is an n X p null matrix and I is an n X n identity matrix. Thus,

U,U] = Z X s Y R X

1, 0vec(X)
UﬁU(—g = ——ZXT 1/2Y vec (2 1)W
+—ZXTE‘1/2Yi veeT (5 12y y -1/ 2vedE).
25 z 2

U,U; = Th+To+Ts+ 1Ty,
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where,

.
T, = 2—8veac¢(2) VeC(El)vecT(El)—aV;;(TE),
1 (= Ovec' (%) ~1 T(y—1/2 Ts—1/2 0 vee(X)
T = _ZZTVGC(E Jvec (7YY, X )W’
Ty = ——Zavec vec(z:—l/?Yinz—l/?)VecT(z—l)aV;T‘ng),
T, — _Zavec ) vee(SV2Y, Y TR 12) vee T (512, YT 2—1/2)32;’7(;@,
which implies that Fgs = rX"S7'X, Fgs =0, Fys = 0, and
Fss = E[T1]+ E[L:] + E[15] + E[T4]
by b))
= Zave§¢< )vec(E_l)VecT(E_l)avaeTf(T)
- Z avec [ (E' oS+ (ET e K, (S e R
_ _1,]0vec(X)
T g1y ] g Vee(x)
+vec(§T] Hvec (X )} 96
rovec' (X)), 4, Ovec(X)
- 2= "5 D Pt St

where ® denote the kronecker product and K, is the commutation matrix.

B.3 Derivative for smoothness parameter of Matérn class of mo-

dels

For the Matérn class of covariance structure there is an extra parameter, known as
smooth parameter, that give more flexibility for this class. To get the asymptotic standard
error of such parameter we need the first derivative of the log-likelihood in respect of it.
For that, we used results presented on Mencia and Sentana (2005) and Harkard (2007),
based on |Abramowitz and Stegun (1965)) as we present in the following.

The modified Bessel function of the third kind with order ¢4, which we denote as

Kg,(.), is closely related to the modified Bessel function of the first kind I,,(, as

i . 7T[*¢4(¢5) [¢4(¢5)
. (053) 2 sin(mey) ' (B.2)
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Mencia and Sentana (2005) present some comments according to their experience in
relation to the stability of the modified Bessel functions derivative. For example, for ¢4, > 0
and (d/¢3) > 12, the derivative of with respect to ¢4 gives a better approximation
than the direct derivative of K ¢4(¢%), which is in fact very unstable.

To evaluate the derivative with respect to ¢4 at ¢4 # 0, +1,£2, ..., use

0Ky (£) 4

= —mcsc(ggm)

Opy 2

P d
a]_§¢g¢3> - 3I¢;§4¢3> — 1 cot(gam) Ky, (%) ,

o (&) _, (£} (12) - (10)" 55 sor ke Dl
D4 “\ o 2 63 2¢5) = T(ga+k+Dk

k=

and

o4, (1) . ( d ) . (1 d) N (1 d )—¢4 (= + k + D[L(L)2

b3 2 ¢ 2 ¢ D(—¢y+k+ 1kl

k=0

where 1 is the digamma function, ¢ = £{InT'(z)} = I'(z)['(z) and

For evaluating at integer values of ¢y,

d S
0Ky, (£) mi(3L)-m ml (L), (L)
@¢4 pa=m 2 0 (m — k?)k?' ’
form=1,2,3....

Continuing to find J(R)/d¢4 for Matérn model we have that

3(%)m A" [d
() ()
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and

o [2¢4711—‘(¢4)] -1
Oa

= —[2¢4_1F(¢4)]_1[1n(2) + 1(¢a)],

using I"(¢4) = ¢(¢4)(@a).

Then, using the product rule and the results above we have for Matérn covariance

structure that

Ory  _ (diy/ds)™ [K@(%) (log (i—;) —log(2) — ¢(¢4)> +

Dby 29711 (¢u)

0K, (52)
o4 ’

B.4 Factor for Bartlett correction

The factor for Bartlett correction factor is obtained for the Gaussian spatial linear
models with multiple repetitions. The vector of parameters is 9 = (BIT, '3 q&T)T, where
1, is the rth element of 1. We adopt the the tensor notation for the log-likelihood cumu-
lants: A\, = E(0*L(19)/09,009;), A\t = E(PL(9)/09,09,00;), ..., and the following for
the derivatives of cumulants: (M) = OAs/00¢, (Ars)tw = 0% Nps /09100, . ... The Fisher’s
information matrix has elements —\,., where —A\™ is the element of its inverse. Addition-
aly 77 = \2\*g,,, where (0,) is the inverse of the matrix A% of dimension ¢ x ¢. We
use indices a, b, ¢, d in reference to the components of 3, indices f, g for the components
of &, and indices j, k, [, o for the elements of ¢.

Lawley’s (1956) formula for the Bartlett correction factor, C, is given by

C = Z (lrstu - lrstuvw) - Z(lrstu - lTSiuUw)?
B.&P £

with

1
)\rstu - /\TS)\tu |:Z>\7"stu - (/\rst)u - (/\Tt)su:| )
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and

The following notation and results will be used to obtain C'.

zi=Y,; — X151 - X2€>

OX:
o8 "
oX:
asl =0

g% = X, = 2Xo(X] 271 X0) 71X 882;;)(2()(;2—1)(2) X 8;21)(9{

9?2yt
— X, (XTI, X =
2( 2 2) 2 8¢Ja¢k

X/ 27X =0,

XTE‘lX{ =0,
Xlg 8¢ X = 07

The first-order derivatives of the log-likelihood function in Equation (3.9) are

0L(V) _ N~ yeTynt
= X'y Z;,
B~ 2N

T
—— =3"X]5g,
=1

OL(Y ( ) e 1 & pox!
— + XI5z - 2 ) Zi
Op; 2 Op; ;ﬁ 15 2 ; Ob;

~—

Note that when r is not a subindex, it is the number of repetitions. The second-order
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derivatives are

I*L(Y) Te—1
= —rX; Z7IX],
08,08, ' '
LW _
0B8,0¢ ’
92L(9) Lox!
= X ¥tz ) X2
8B18¢J Z Z a¢j
O L(Y) Tl
il Sl A X
dog, — ed X
92L () Lo
= X Y X
9609, Z > 56, ).
0*L(9) r (02 82) r ( ., 0%? ) T w1
=—— ——tr(® + X:1 31y,
0;0¢, 9o 00;) 2 000y ;B PR
+251TX1]T Do _ZﬁIX ;3X k131+ZB1TX1; 96
i=1 J
_1 ~ 1 0%
“ 8¢18¢k

The third-order derivatives are

PLO)
08,0808

PL)
08,081 0¢
PBL(I) ) Sat i
08,081 06, Xy 845 1

PL(D)

0B,0670¢

PLW)
0B,0¢ 0p;

BL(Y o oy D) 0 >
aﬂladfja)m B> (XWZ Xt X 1Ta¢36¢k)

PLw XTazﬂ
0 D, 2 D,

PLMW) XT *x!
0600;005 =" 96,00

D3L(9) —ftr (a? >t 82) T (a_z 822—1) T (a_z 822‘1>
000610, 0Pr0; 09; 2 Odr, 09;0¢; 2 Opy D0y,

X,

(Y; — Xz8),
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r Pyt ik oyt
——tr (X7t ) L Yot G
2 ( 990000 ;'31 < 2ol 5O

.oyt 52> YRR, ) Y 2yt 2y
X*- *T * * T X*T

W og, X gg00 T X ag T X g a6, T X1 6%8@)
Ly~ ot

2 &= 0¢;00r01

The third-order derivatives not shown above are equal to 0. Finally, the fourth-order

derivatives are

OLL(9) oz o2yt

* T *x 1 *
0808 0,00, Nk g, XX 500 X
ILw)
08,08, 0coe"
PLO)
0B, 0B, 0€00,

Taking expected values of second, third and fourth derivatives, we obtain

02L(9)
Aa o —
by E(aﬂlﬂl

_ * T v—1wy *
and in similar way we have

A,31€ =0,
Aﬁl(ﬁj =0,

Aee = —1rXy 271Xy,
ox~t

A£¢J - TX; a¢J Xiﬁla
0¥
Ag ké; ¢j = —TX*T X*,
1P1 1 a¢] 1
A51¢j¢k =0,
ox!
Aeeg. = —rX) ——X
&€ r 2 8@% 29
622—1 .
Aeoion = Xy 7= X7B,

? a¢j 8¢k
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Aﬁlﬂlﬁﬁ =0,
Agigieg, = 0,
) S 2yt
A o= —2r Xl X;—rXi’ X1,
5151¢]¢k r 1k a¢j 1 8¢]a¢k
r X! o%
o o . X*TE IX*
)\]k 2tr( a¢] a¢k) T/Bl k:/617
\ ot ox~! 0% 510 LT ox~ !t orx! T o) Yo i
ik = — r —= —tr
k=T 00 00k 09, 00; 0100n O, 04i09;

N e <82_1 9?2yt )
— r .
2 O¢y 0000y

The expected Fisher’s information matrix out of minus is given by

Ags 0 0
0 Ag Agy

Using inverse matrix rule from |[Rao| (1973), the matrices formed out of minus Fisher’s
information matrix inverse are: A% = Agé, AP = (Agp — AisAg 1A§¢,) 1A% = A55 +
At Mg APPAL AL and A% = —A Ay AT, where the jth column of Agg is Ay, and the

(4, k)th element of Ay, is Aj,. The derivatives of cumulants are

(AIBLBl)j = —TXlT 8925] le
ox! Pyt
A ) X*T X* X*T X*,
( ,61,81) TAqp 26, 181 — 1 0;00n, 1
ox !
(Age)j = —TXQTT%XQ,
ot G) Y
(A§¢J)k - X2 a¢ a¢kX1/61 +TX2 3¢ Xlk/Bh
7 7
Xt ox o r Xt 2%
N = =1t > >+ tr ( )
il g r( O¢r 09, Oy, dpy 090y,

LTy <8§]1 % )

—tr — .

2 0¢; 0Pr0P

From the orthogonality between B, and (£7,¢")7 that A% = XY = (\uf)ip = Njja =

Ajfap = 0. And also it is possible to show that lsped = laprg = lavjs = lrga = 0 and that

)
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Aavjre = (Napj)k = Njkap. After tiresome algebraic manipulations, the Bartlett correction

factor reduces to

C = Z{ SNENEN ik 4)\“b)\6d)\3’“)\abj>\cdk—5)\“b)\]k)\l°)\abj()\lok 2(\io)k)

. 1 .
FAPNENN 4y, (Q(Afk)l — gAfk,> — iAabAngﬂanbjAfgk} :

And in matrix notation it is given by

1 1 1 1
C=tr{ A |—-M+-P—(=¢—0+-v|T'
r{ l 5 + 1 (2§ + 21/) T ,
where ¢, dand vare m-vectors whose j-th elements are, respectively, tr (A¢¢Aj), tr ( AT B j>

-1
and tr {—Aff (XQT 882; X2>:|.

J

9?2yt G)

Xi +2X] 5% X}‘k) B,.
J

The matrix B; contains the m column vectors ( X ==

2 6¢] agbk
This results are similar to the ones obtained by Melo et al. (2009).




Chapter 4

Local influence on GGaussian spatial linear mo-

dels with repetitions

4.1 Resumo

Neste capitulo, sao apresentadas técnicas de diagnosticos de influéncia local em mo-
delos espaciais lineares Gaussianos com repeticoes. Conceitos de influéncia local sob dois
enfoques diferentes e alavanca generalizada sao revisados. Além disso, foi desenvolvido
medidas de diagnéstico sob esquemas de perturbacao apropriados para a resposta e pon-
deracao de casos. Uma aplicagao a dados reais ilustra a metodologia desenvolvida neste

capitulo.

4.2 Introduction

Geostatistical began in South Africa and reached maturity at the Ecoles des Mines at
Fontainebleau near Paris. Geostatistical data are data collected at known sites in space,
from a process that has a value at every site in a certain domain. The data are modelled
as the sum of a constant or varying trend and a spatially correlated residual. Given a
model for the trend, and under some stationarity assumptions, geostatistical modelling
involves the estimation of the spatial correlation, Pebesmaj (2004)).

Recent proposals have discussed Gaussian spatial linear models (GSLM) to study the
structure of dependence in spatially referenced data. For more details about estimation,
inference methods and applications of these models, see, for example, (Cressie, |1993;

[saaks and Srisvastava, [1989; Mardia and Marshall, {1984} [Schabenberger and Gotway],
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2005; [Waller and Gotway, [2004; [Webster and Oliver, 2007)).

To assess the effect of small perturbations in the model (or data) on the parameter
estimates, |Cook! (1986) proposed an interesting method, named local influence. This anal-
ysis does not involve recomputing the parameter estimates for each case deletion, so it is
often computationally simpler. Influence diagnostics based on the likelihood displacement
have been developed for multivariate elliptical linear models by (Galea et al.| (1997) and Liu
(2000). |Cadigan and Farell (2002) considered local influence diagnostics for a statistical
model that is fully parametric, and where estimation involves a fit function that is second
order differentiable with respect to the parameters. Zhu et al.| (2007) constructed influence
measures by assessing local influence of perturbations to a statistical model. |Chen and
Zhu! (2009)) proposed a perturbation selection method for selecting an appropriate pertur-
bation with desirable properties then, developed a second-order local influence measure
on the basis of the selected perturbation, in the context of general latent variable models.
Vasconcellos and Zea Fernandez| (2009) presented influence analysis with homogeneous
linear restrictions. (Giménez and Galeal (2013) applied the approach of [Zhu et al. (2007)
in functional heteroskedasticity measurement error models.

There are only a few works in the literature about influence diagnostics in geostatistical
analysis, see (Christensen et al., |1992a; Diamond and Armstrong, [1984; Warnes|, [1986)). For
the situation we have no repetition, Uribe-Opazo et al.| (2012]) used diagnostic techniques
to assess the sensitivity of the maximum likelihood estimators, covariance functions and
linear predictor to small perturbations in the data and/or in the Gaussian spatial linear
model assumptions. Assumpgao et al.[(2014) presented the generalized leverage to evaluate
the influence of a vector on its own predicted value for different approaches for ¢-Student
spatial linear models. De Bastiani et al.|(2015)) presented local influence on elliptical spatial
linear models under the appropriated perturbation scheme. |Garcia-Papani et al.| (2016)
presented diagnostics tools for the Birbaum-Saunders distribution within the geostatistical
framework.

Waternaux et al. (1989) suggested several practical procedures to detect outliers for
the repeated measurements model based on the global influence approach. Lesaffre and

Verbeke| (1998) extended the local influence methodology to normal linear mixed models
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in repeated-measurement context and under the case-weight perturbation scheme.

Smith| (2001) presented the model of multiple repetitions of a spatial process and
parameter estimation process. The observations are taken from different experimental
units, which is different geographical site for our case, where each variable are observed
more than once.

In this work we propose the study of repeated measures in the geostatistical field. We
focus on the GSLM with repetitions and we present diagnostic studies. We discuss max-
imum likelihood estimation and diagnostic tools such as local influence and generalized
leverage. Moreover, we consider appropriated perturbation scheme in the response vari-
able and case weight perturbation, proposed by [Zhu et al. (2007). The Chapter unfolds
as follows. Section [4.3] presents the GSLM with repetitions. In Section [£.4], the maximum
likelihood estimators are obtained and in Section we present a procedure to select the
covariance structure model. In Section an explicit expression for the Fisher informa-
tion matrix is presented. Section [4.7] reviews concepts of local influence for two different
approaches and generalized leverage. We discuss the selection of an appropriate pertur-
bation scheme by using the methodology proposed by [Zhu et al.| (2007)) and present the
results for the GSLM with repetitions. Section [£.8] contains an application with real data
to illustrate the methodology developed in this paper. Finally, Section [4.9] contains some

concluding remarks. Calculations are presented in the appendices.

4.3 Gaussian spatial linear model with repetitions

Let Y = Y(s) = vec(Y4(s), ..., Y,.(8)) be an nr x 1 random vector of r independently
stochastic process of n elements each, that belong to the family of Gaussian distributions
and depend on the sites s; € S CR? for j = 1,...,n, where s = (s,...,s,)". The “vec”
operator transforms a matrix into a vector by stacking the columns of the matrix one un-
derneath the other. It is assumed the i-th stochastic process Y;(s) = vec(Y;(s1), ..., Yi(sn)),
represents the n x 1 vector, for ¢ = 1,...,r, which can be expressed as a linear mixed

model by

Yi(s) = pi(s) +bi(s) + Ti(s)
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where, the deterministic term p,(s) is an n x 1 vector, the means of the process Y;(s), b;(s)
and T;(s) are independents and together form the stochastic error, i.e. b;(s) +T;(s) = €(s)
is an n x 1 vector of a stationary process with zero mean vector, E[e;(s)] = 0, and

covariance ¥;. The mean vector w,(s) can be written as a spatial linear model by

where, B = (B1,...,5,)" is a p x 1 vector of unknown parameters, X = X(s) = [x;1(s) ...
X;p(s)] is an n x p matrix of p explanatory variables, for j = 1,...,n, i.e, the design matrix
X is the same for all r repetitions.

Goodal and Mardia| (1994)) argue that we can remove the effect of time from the data
and then we can view the data as independent repeated measurements in space. According
Stein| (1999), for a space-time process observed at a fixed set of spatial sites at sufficiently
distant points in time, it may be reasonable to assume that observations from different
times are independent realizations of a random field.

As in [Smith (2001), the GSLM for the i-th independent stochastic process, assuming

a homogeneous process, can be written in matrix form by

Yi(s) = X8 + €(s). (4.1)
for i = 1,...,r. The covariance matrix 3; = 3 = [C(sy,, s,)] is an n x n covariance matrix
of Y;(s) for the i-th repetition, i = 1,...,r. The matrix X is non-singular, symmetric and

positive defined, associated to the vector Y;(s), where for the stationary and isotropic
process, the elements C(s,, s,) depend on the Euclidean distance d,, = ||s, —S,|| between
points s, and s,,.

So, from what was previously written we have that Y ~ N,,.(1, ® X3,1, ® ), with

probability density function (pdf) given by

f(Y,0) = [I_, f(Y;,0)
= [I_,2m) 2|57 V2exp [—

(4.2)
(Y: = XB)'=71(Y; - XB)],

1
2
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where ® denote the kronecker product and (Y; — X3)"S 7 (Y; — X3) = §; is the Maha-
lanobis distance.

The covariance matrix X has a structure which depends on parameters ¢ = (¢1,...,d,) "

as given in Equation (4.3) (Mardia and Marshall, [1984; [Uribe-Opazo et al., [2012):

Y= ¢, + ¢2R, (4.3)

where, ¢; > 0 is the parameter known as nugget effect; ¢o > 0 is known for sill ; R =
R(¢3, ¢4) = [(ruww)] or R = R(¢p3) = [(7uv)] is an n x n symmetric matrix, which is function
of ¢3 > 0, and sometimes also function of ¢4 > 0, with diagonal elements r,, = 1, (u =
L,...,n); Tu = ¢y C(5y,5,) for ¢o # 0, and 74, = 0 for ¢ =0, u # v =1,...,n, where
rw depends on the Euclidean distance d,, = ||s, — s,|| between points s, and s,; ¢3 is a
function of the model range (a), ¢4 when exists is known as the smoothness parameter,
and I, is an n X n identity matrix.

The Matérn (Matérn, |1960; |[Minasny and McBratney, [2005}, Stein| [1999) is a covariance

function particularly attractive given by

P2 p
o (duo/03)™ Koy (duv/d3),  duw >0,
C(dy) = 4 277 T(04) "
le + ¢27 duv = 07
where the parameters are assumed to be non-negative, i.e., ¢, > 0, for ¢ = 1,2,3,4;

Ko (u) = 5 [° 291 lem2u= ) gy is the modified Bessel function of the third kind of
order ¢g4; see (Gradshteyn and Ryzhik, 2000). This covariance function is particularly
attractive because its behavior can change according ¢4 value. For instance, ¢4 = 0.5
gives the exponential covariance structure, Whittle’s elementary covariance (¢4 = 1), and
in the limit as ¢, approaches to infinity, with ¢3 approaching to 0 in such way that 2@11/ qug
remains constant, it approaches the Gaussian covariance function. For a finite value of the
¢3 parameter (which is function of the range parameter), the Matérn function represents
several bounded models. In many works the notation for the smoothness parameter is x

or v for Matérn class, but for simplicity of notation we use ¢4, since it is a parameter part
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of the covariance structure which can be estimated or considered as fixed.

4.4 Maximum likelihood estimation

According to[Smith (2001)), despite of disadvantages such as non-robustness when there
are outliers in the data, or the possible multimodality of the likelihood surface, they are
not reason to abandon maximum likelihood (ML) estimation. Of course, we can expect
to get better estimates if there are repetitions of Y;. The maximum likelihood procedure
in this case is only slightly different from that in the single case.

The log-likelihood for the GLSM for the r independent repetitions is given by

£(6) =" Li(6).

where,
1 1
L(6) = —g log(2m) — 5 log |Z| — (Y — XB) B! (Y: - XB). (4.4)
The score functions are given by
9L(6) ~ Tl
Uup)=———- = X' 'Y e,
CEE DY
0L(0) rdvec' (X) 1 G Ovec (D) 1 Twel
U(g) = o6~ 2 0o vec(X77) + 3 ; —op vec(X 7 €E, X7,
where €; = Y; — X3. From the solution of the score function of 3, U(8) = ag(ﬁ@) =0,
the maximum likelihood estimator 3 is given by
B=X"2'X)"'X'mlY, (4.5)

S S : 1 O 1 ¢ .
where Y = (Y1,...,Y,)", with Y; = r ZI:Y;(SJ)’ j=1,...,n.
Since we can see the GSLM with repetitions as a linear mixed model we can follow what
Demidenko (2004) and Wang and Heckman (2009) said about parameter identifiability
problems for the linear mixed models. In particular, Wang and Heckman| (2009) showed

that there is no problem since we have that Varle;] = ¢11,,. But one deficiency can be
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the sensibility of the maximum likelihood estimates for atypical observations. For that we
present the study of diagnostic techniques in Section [£.7]

Unfortunately, the score equations for ¢ do not lead to a closed-form solution for
¢. Thus, a common practice is to maximize the concentrated log-likelihood, obtained
substituting the solution to the score equation for 3 [Equation (4.5))] into the log-likelihood
in Equation . The concentrated log-likelihood then depends only on ¢, and ignoring
the constant —% log(27) it is given by

L(¢) o —g log || — %XT:(Y,» XX X)X Y) s
i=1

x(Y; - X(XTZ'X)"'XT2Y).

The package geoR (Ribeiro Jr and Digglel [2001) from software R has already implemented
procedures for the parameters estimation. The ML estimates of covariance parameters are
typically consistent and asymptotically normal when fitted by a correct model (Mardia
and Marshall, [1984). The readers are refereed to |Stein| (1999)) for more details regarding
fixed domain asymptotics. Some discussion concerning which asymptotic framework is

more appropriate can also be found in Zhang and Zimmerman (2005)).

4.5 Covariance Structure Selection

For the case of the Matérn class of covariance function (or other with more than three
parameters), we suggest to use the idea presented in Minasny and McBratney| (2005)) for
one single realization, which assume ¢, as fixed to find which ¢, gives the maximum value
for the profile log-likelihood, and then use it as a initial value and estimate it. We use the
same idea, but now for a model with multiple repetitions. Steinl (1999)) says that although
he do not advocate treating ¢, = 0.5 as fixed, it is important to keep in mind that is the
same of using the exponential model.

In the case that we consider the parameter ¢, as fixed, we have to choose which
value, between a range of values, gives the best fit. Despite of the maximum value of the

log-likelihood, we consider the cross validation criterion similar to the one presented in
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(De Bastiani et al., 2015), defined by

OV = CV($y) = ZZ{y sjl_yz })(S])} ,

i=1 j=1

where g;(j)(s;) = X;B(j), with ij the i-th row of the matrix X, is the prediction in the site
s; without considering this observation, (yj,ij), B(j) is the ML estimator of B without

considering the j-th observation, and hj; is the j-th diagonal element of the projection

matrix H = X(XTﬁlilX)_lXTﬁlil, for j = 1,...,n, see Section |4.7.4] To simplify the

calculations we can use the approximation B(j) ~ 3+ K‘l(B)U(j)(B), where

K(B)=rX'S 'X and

Uy(B) = Y X,E (Y — X ). (46)

with X;), (n — 1) x p, the matrix X without the j-th row, x, and Y, (n — 1) x 1
denotes the vector Y, without the response y;(s;), for j =1,...,nand ¢ =1...,r. Note
that in the matrix 33 is of order (n—1)x (n—1).

Alternatively, another criterion is to use the trace of the asymptotic covariance matrix
of an estimated mean as a criterion in selecting a better model (Kano et al., [1993)). Let
(L = XB From the results of Section , it follows that the trace of the asymptotic

covariance matrix of pu is given by,

tr(6a) = (1/r) (X X)(XTS X)),

4.6 Asymptotic standard error estimation

The observed information matrix, say I(6), is I(6) = —L(8), evaluated in 0 = 6,
where L(0) = 0>°£(6)/0006" . Furthermore, we notice that the 1(8), which is evaluated

in @ = 9, has the same equations as the expected information matrix given below. The
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derivatives of first and second-order of the scale matrix 3, with respect to ¢,, for some
covariance functions are presented in |Uribe-Opazo et al.| (2012). Some useful constructions
are given in Appendix

Asymptotic standard errors can be calculated by inverting either the observed infor-
mation matrix or the expected information matrix. The expected information matrix,

F(0), is given by, (Waller and Gotway), 2004)

E(UzU}) E(UU/! Fy; F
F(O) = F — (UsUs) E(UsUg) | _ (Fss Fso |
E(UsU;) E(U,U) Fos Fyy
T D) »
where Fgg = rX 271X, Fyy = 0, Fyp = 0 and Fy, = 2_6 Ve§¢( Szt @2—1>—0§;(T—>.

See Appendix for the details. We used Fgﬁl and F;(; to estimate the dispersion

matrices for the maximum likelihood estimators [‘3 and q?&, respectively.

4.7 Local Influence

Detecting influential observations is an important step in the analysis of a data set.
There are different approaches to assess the influence of perturbations in a data set and
in the model given the estimated parameters. |Cook (1977)) gave a starting point to the
development of case-deletion diagnostics for a broad class of statistical models, that is
to asses the effect of an observation by completely removing it. |Cook (1986|) presented
the local influence approach, that is, a weight w; is given for each case and the effect
on the parameter estimation is measured by perturbing around these weights. Choosing
weights equal zero or one corresponds to the global case-deletion approach. In general,
perturbation measures do not depend on the data directly, but rather on its structure via
the model.

Lesaffre and Verbeke (1998)) extended the local influence methodology to normal linear
mixed models in repeated-measurement context and under the case-weight perturbation
scheme. |Cerioli and Riani| (1999)), Militino et al. (2006) showed that case deletion diag-
nostics do suffer from masking and suggest robust procedures based on subsets of data

free from outliers. Borssoi et al. (2011)) and [Uribe-Opazo et al.| (2012) discussed diagnos-
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tic techniques, using local influence methodology, to evaluate the sensitivity of maximum
likelihood estimators, the covariance functions and the linear predictor under small per-
turbations in the data and/or spatial linear model with normal distribution.

The method of local influence was introduced by |Cook| (1986) as a general tool for
assessing the influence of local departures from the assumptions underlying the statis-
tical models. A perturbation scheme is introduced into the postulated model through a
perturbation vector w = (wy,...,wr) (w € Q C R¥), generating the perturbed model
M={f(Y,0,w): w e Q}, where f(Y,0,w) is the pdf of Y given in (4.2)), perturbed by
w and L(0|w) = log f(Y,0,w) is the corresponding loglikelihood function. Then, an in-
fluence measure is constructed using the basic geometric idea of curvature of the likelihood

displacement given by

where 0 is the ML estimator of 6 = (B",¢")7 in the postulated model, with 8 =
Bis-- s B) ", = (¢1,...,0,) " and 6., is the ML estimator of 8 in the perturbed model
M.

Cook| (1986) proposed to study the local behavior of LD(w) around wgy and shows
that the normal curvature C; of LD(w) at wy in the direction of some unit vector I, is
given by C; = Cj(0) = 2|l ATL ' Al|, with ||I|| = 1, where —L = —L(8) is the observed
information matrix (given in Section , evaluated at @ = 0 and A = (A, AT,
where Ay = 02L(0|w)/0B0w” and A, = 92L(8|w)/dpdw’, evaluated at @ = @ and
at w = wy, where £(6|w) is the perturbed log-likelihood and wy is the non perturbation
vector.

Zhu et al. (2007) developed a rigorous differential-geometrical framework of a per-
turbation model. First and second-order influence measures based on the observed data
likelihood function of the related statistical model are proposed in order to assess the
local influence of small perturbations on any statistics of interest and the important issue
about the selection of and appropriate perturbation vector is also addressed. Essentially,

to verify if the perturbation scheme is appropriated, Zhu et al.| (2007) proposed to use the
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Fisher information matrix of w in the model M considering the vector @ as fixed. Below
we briefly describe the methodology.

Let G(w) be the Fisher information matrix with respect to the perturbation vector
w. That is, G(w) = E,[U(w)U " (w)], where E, denotes the expectation with respect to
f(Y,0,w), and U(w) the perturbed score function. A perturbation w is appropriate if it
satisfies G(wy) = cl,,, where ¢ > 0. According to Zhu et al. (2007)), see also (Giménez and
Galea), 2013)), this condition determines orthogonality between the different components

of w, ensures the amounts of perturbation introduced by the components of w are uni-

form and avoids redundant components of w. In Sections 4.7.2] and [4.7.3| we present the

appropriate perturbation for case weight perturbation and perturbation of the response
variable.

The plot of the elements |l,,q,| versus i (order of data) can reveal what type of per-
turbation has more influence on LD(w), in the neighborhood of wy, Cook (1986)). Even
considering C; = 2|j;|, where j; are the elements of the main diagonal of the matrix
J = ATL7!A, can be used the index plot of C; to evaluate the presence of influential
observations.

Since C is not invariant under uniform change of scale,|Poon and Poon|(1999) proposed
the conformal normal curvature B; = C;/ tr(2J), see (Zhu and Lee, [2001)). An interesting
property of conformal curvature is that for any direction unit I, it follows that 0 < B; < 1.
We denote by B; = 2|j;|/tr(2J) the conformal curvature in the unit direction with i-th
entry 1 and all other entries 0. According to |Zhu and Lee| (2001), the i-th observation
is potentially influential if B; > B + 2sd(B), where B = Y. | B;/n and sd(B) is the

standard deviation of By, ..., B,.
4.7.1 Influence measures based on the likelihood function

Since the log-likelihood is used in the estimation process for inference and we are using
it as a criterion to select the covariance matrix structure that best describe the spatial
dependence, it is of concern to analyze the sensitivity of this statistic to a particular
perturbation scheme. More details can be seen in (Billor and Loynes, |1993} (Cadigan and

Farell, 2002; (Tsai, [1986; |Zhu et al., [2007). In fact, following Cadigan and Farell (2002)
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A

notation, let g(@) be the objective function. We are interested in evaluate the influence of
the perturbed objective function g, = gw(éw). The first order influence of a perturbation
scheme w is measured through the slope in the direction d given by, (Cadigan and Farell,

2002), S(d) = d" g, where

. 9g.(6) T 109(0)
= —A'L —’ .
P = 0w lw-ws 00 lo-o
The maximum slope S0 = gOT go and the corresponding direction vector d,,.. =

90/ Smaz, evaluated at 6 = 0 and w = wy, are useful to detect local influence.
4.7.2 Case weight perturbation

The case weights perturbation scheme is often the basis of the study of influence. A
perturbed log-likelihood function, allowing different weights for each repetition can be

defined as
L(Blw) = w;Li(6),
i=1

and £;(0) is the contribution of the i-th repetition of the log-likelihood and w = (wy, ..., w,)"
is the vector of perturbation which is assumed to belong to an open subset {2 of R", with

0 < w; < 1. For this case we have that wg = (1,...,1)" is the non-perturbed vector, such
that £(0|wy) = L(0) and f(Y,0,w,) = f(Y,0) for all 6.

The density of the perturbed model is given by

F(Y.0,w) = []2m) "2l 2 2exp [—%(Yi —X8) =YY, - X)) .

=1

Then, the i-th contribution of the perturbed log-likelihood is given by

n 1 Wi _
Li(Blw) = —3log(2m) — 5log|Tw| = S(Y, — XB) B (Y, — XP)

1 1
_ _g log(2r) — - log| 5| + g log i — swi(Ys = XB)TE7(Y, - XB).
As showed by |Zhu et al.| (2007)), for the case weight pertubation scheme, in general G(w) =

diag{Var,[L1(0),...,L.(0)]} is of the form G(wy) = I, when we have the same number
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of observation for each repetition. In our case we have that

Var,,[£;(0)] = Var,, —g — %log || — %(Yl — Xﬁ)TE_l(Yi - X0)

1
= ;Vary (Y = XB) =Y, - XB)] = g’

because (Y; — XB) 'S (Y, — Xf) has x?,) distribution.

The model given in is assumed to be homoscedastic, that is, the covariance matrix
of the random errors is assumed to be the same, 3. If we consider the perturbation w; s,
for i« = 1,...,r, we can analyze the sensitivity of the log-likelihood estimates under a
possibility of heteroskedasticity in the model. The log-likelihood function of the perturbed
model and the metric matrix G(wy) take the same form as for case weights perturbation.

Thus, the perturbation of the covariance matrix is an appropriate too.
Based on the likelihood displacement

Considering the appropriated perturbation scheme, for the likelihood displacement
methodology A = (Aj,A/[)T, where Ag = (Af,,...,A;)" with dimension p x r and
Ay = (AL, ce A:gb) with dimension 3 x r, where

_ 0*L(B|w)

2
A, = 0 L(0|w)

90w N Do = HoauT

with elements

0*L;(0|w) Tl
Azﬁ = W =X'X €; and

OL;(0lw)  1dvec (D) 1 el
Ay = ddow, 2 09 vec (E €€, 2 ) ,

where & = (Y; — X/3), evaluated at w = wy and @ =0, for i = 1,... n.

Based on the likelihood function

Let g(6) = L(0) be the objective function and g,(0,,) = Zwiﬁi(éw) be the per-
i=1

agc;cié) ‘w:wo - [El(é)’ T ’LT(é)} : = §o, then

Armaz = Go// 39 Go- Notice that gJ go = Y21, £2(8) such that the i-th component of dynqe

turbed objective function. In this case,
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in absolut value is |dimae| = [L£i(8)]/1/Sor_y £2(8), for i = 1,...,r. As a result, |dima|
can be interpreted as a measure of the relative importance of the i-th contribution to the

total likelihood, which in turn is very simple to calculate.
4.7.3 Perturbation on the response variable

Let us consider as a perturbation scheme the model shift in mean, i.e. Y; = p(w;)+e€;,
with p(w;) = XB + Aw; where A, n X n, is a matrix that does not depend on 3 or on
w;, for e =1,...,r. In this case wy = 0. Equivalently we can write Y,, = X8 + €;, with
Y., =Y;+ (—1)Aw,, that corresponds to a perturbation scheme of the response vector.

In this case we have that L(0|w) = Z L;(0|w) where L£;(0|w) is given by

=1

n 1 1

where 0, = [Y; — po(w)] T2 Y — pu(w;)].

To select an adequate matrix A we can use the methodology proposed by [Zhu et al.
(2007). In effect, the i-th score function for w in the perturbed log-likelihood function
(4.7)) is given by

OLi(0]w;)

Ui(w) ow;

= ATE_I[Yi — p(w;)],

fori=1,...,r. Let G(w) = E,[U(w)U" (w)] = diag[gi1(w1), ..., g (w,)] be the Fisher
information matrix with respect to the perturbation vector w. That is, g;;(w;) = E,, [U;(w;) U, (w;)].
A perturbation w; is appropriate if it satisfies g;;(wo) = cI,,, where ¢ > 0, fori = 1,...,r.
In our case we have g;(w;) = cATS A, with ¢ = 1. Notice that usually ATS'A # 1,,.
However if A = /2 then gii(wo) = cI,, and so p(w;) = XB + »1/2w, is a perturbation
scheme appropriate for ¢ = 1,...,r, as shown in [De Bastiani et al.| (2015)) and Borssoi

(2014]).
Based on the likelihood displacement

Considering the appropriated perturbation scheme, for the likelihood displacement

methodology, where Ag = (AITB, e Ajﬁ) is an p X nr matrix, with A;3 an p x n matrix,
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and Ay = (AL, cee Alﬁ) is an 3 x nr matrix, with A;4 an 3 X n matrix. We obtain

0*L;(0|w) o172
Apg=—1——""=-"X'3X d
B 980w o
2, r T
Ay = M - _ Z M Vec(E_l ® 2—1/2) vec(e; ® 1T>

dp0w] = 0

with elements

09; 9;

- 1/2 N
PL0w) 1 fe1087 105 1
A, =2 Ty pI it 3

Z¢j 8¢Jaw;r 62 ’

evaluated in w = wg and @ = 9, where €; = (Y; — XB) and 1 is an n x 1 vector of ones,

forj=1,2,3andi=1,...,r.

Based on the likelihood function
Let (@) = £(0) be the objective function and g,(8,) = Zﬁi(9w|w) the perturbed

i=1
function. For this case

s
. ~—1/2 .
8gw(9)‘ . €
ow lw=w,
S1/2
9g.,(0) L el

—a 0 h . . . . . . ~ N
and %(9 ) ‘9:9 =0,80 gp = and d,,az = Go/\/ G 9o, With gg go = Z e,LTE &

Ow lw=wy -
1=

4.7.4 Generalized Leverage

The general concept of a generalized leverage is related to a certain value observed y;,
over the corresponding fitted value g;, see for example (Hoaglin and Welsh, |1978; [Ross,
1987; |St. Laurent and Cook, 1992).

The generalized leverage is defined by GL = [(9Y;/0Y])] = [(GLy)] , where GLy,

is an n X n matrix, for ¢,k =1,...,r, where Y=1® f with o = XB According to |Wei
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et al.| (1998), it can also been written by
GL = Dy[-L(6)] 'Ly,

at @ = 6, where under the model defined in 1) Dg =0(1, ® )00 =1, ®[X 0,3],
the observed information matrix —L(6) evaluated at 8 = 0 coincides to the expected in-
formation matrix, i.e., —L(0) = F(6) given in Section , and Lg,, = 9°L£(0)/000Y " =

(Lgyl, . ,LthT)T with Loy = (Lﬁyi, Lqﬁyi)T where

Lgy, = (X'=7') , and
dvec' (%) )
L = | ——Lvec(Z I g ,
¢Yi ( 8¢ ( ) 3xXn
for 2 =1,...,r. Since the model assumes the same design matrix, X, for each repetition,

GL; = %H (Galea et al., 2005). The leverage are the same for each repetition and the
elements of hj; for j =1,...,n (Section are used as diagnostic tools for the influence
in the vector Y;. The j-th response is potentially influential if %hjj > %E—i— gsd(H), where
h= Z;‘:l h;j/n and sd(H) is the standard deviation of hyy, ..., Ay,

4.8 Application

4.8.1 The data set

The data set were collected in a grid of 7.20x7.20 m in an experimental area with 1.33
ha at Eloy Gomes Researh Center at Cooperativa Central Agropecudria de Desenvolvi-
mento Tecnologico e Economico Ltda (COODETEC), in Cascavel city at Parand State
- Brazil, with Oxisol soil. It were collected soybean productivity data and four chemical
contents during April in the years 1998 (Y1) or year 1, 1999 (Y3) year 2, 2000 (Y3) year 3,
2001 (Yy) year 4 and 2002 (Y;) year 5 with 253 observations each. To explain the expec-
tation value of the productivity, it were considered as explanatory variables in the model
these chemical contents of soil: phosphorus (P)[mg dm™?], potassium (K)[cmolec dm™?],
calcium (Ca)[cmolc dm™] and magnesium (Mg)[cmole dm™3]. A detailed descriptive

analysis of the data set is presented in Section [3.9, Figure [4.1| shows the usual boxplots.
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Figure 4.1: Boxplots for soybean productivity in the years 1998 (Y1), 1999 (Y2), 2000 (Y3), 2001 (Y3) and
2002 (Ys).
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Source: From the author.

In order to choose the variance covariance structure that best describe the spatial
dependence of the soybean productivity, we used cross validation (CV), the log-likelihood
maximum value (LMV) and the trace of the asymptotic covariance matrix of an estimated

mean (Tr) criteria presented in Table[f.1]and in Figure[d.2] These criteria lead us to select

the Gaussian covariance function.
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Table 4.1: CV, LMV and Tr criteria with all the observations.

K cv LMV Tr

0.3 0.1529 -640.8929 1.1814
0.5 0.1583 -639.0491 1.1667
0.8 0.1555 -637.3470 1.0873
1.0 0.1517 -636.6239 1.0367
1.3 0.1467 -635.8890 0.9777
1.5 0.1441 -635.5485 0.9474
1.8 0.1411 -635.1785 0.9121
1.9 0.1404 -635.0824 0.9025
2.0 0.1397 -634.9966 0.8937
2.1 0.1390 -634.9200 0.8856
2.2 0.1385 -634.8512 0.8788
25 0.1371 -634.6827 0.8597

oo(Gauss) 0.1284 -633.8891 0.8597

Figure 4.2: Criteria to choose the variance covariance structure (a) Cross validation (CV), (b) The log-
likelihood maximum value (LMV) and (c) the trace of the asymptotic covariance matrix of an estimated
mean (Tr).
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Table shows the parameters estimates considering the Gaussian covariance func-
tion, and the respective asymptotic standard errors (se) in parenthesis. We used the Z-test,
which has normal asymptotic distribution, to test the hypothesis of the form Hgy: 5, = 0
versus Hy: B # 0, where [ is any of the parameters of the vector 8 = (BT, ¢T)T. The

test statistic is given by Z = Bk/se(ﬁk), where (3 is the ML estimator of 3 and se(Bk)
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the corresponding se. The level of significance of each parameter tested individually was
fixed at 5% of significance. According to Table , By is significant. Using the same idea
to test the ¢'s, we find that their significants. The macronutrients P and K are needed in
relatively large quantities in the soil compared to others to prevent plant deficiencies, but
after a critical level is reached there is no additional yield increment.

Table 4.2: Parameters estimates for COODETEC data considering the Gaussian covariance function, the
asymptotic standard errors (in parenthesis) and the p-values.

Intercept P K Ca Mg nugget  sill f(range)
Bo By By Bs Ba 1 s s
2.4013**  -0.0017  0.3270 0.0118 -0.0592  0.1927** 0.0579** 0.0407*

(0.1020)  (0.0109) (0.1746) (0.0392) (0.0515) (0.0178) (0.0219) (0.0098)

** significant for 5%

A critical analysis of the model’s assumptions was carried out. Probability normal
graphics of the transformed distances d; given in Equation (4.8]) were used to evaluate the
goodness of fit and also to identify outliers, according Lange et al. (1989)). As we can note,
in Figure the graphic identified an atypical behaviour of a point, which is above

the line. The other transformed distance are aligned over the line with 45 degree.

A @A

4.8.2 Case weight perturbation

Figure presents influential plots for case weight perturbation that allow to evaluate
the individual contribution of each repetition in the process of estimation. In this case
each repetition, corresponding to a year, receive different weight. We can see that the year
2002 has more influence on the estimation process. The details are presented in Table [4.4
and Figure show the difference between the the estimated mean of productivity when

we consider and do not consider the year 2002.
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Figure 4.3: The data for five repetitions (five years) from 1998 until 2002 (a) expected normal deviate
vs transformed distance, (b) B; vs year i, (¢)|lmaz| vs year ¢ and (d) |dmae| vs year i, considering the
case-weight perturbation.
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4.8.3 Perturbation on the response variable and generalized leverage

Figure 4.4(a)| [4.4(b) and [4.4(c)| present the graphics for the analysis of local influence

in the response variable. The first two graphics agree that the observations belonging to
the data collected in the year 2002 should be treated carefully. The third graphic pointed
out observations #14 and #59 which appear in the first and third bloxplots of Figure [4.1]
Figure presents the leverage vs sites for each repetition, where the years have the

same sites as potentially influent over the correspondent fitted value, as we mentioned in
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Section [4.7.4] The analysis of the data set without sites #111 and #132 do not implie
changes in the estimation of the parameters and inference. The choice of the covariance
structure is still the Gaussian one and the results are quite similar with the one presented

in Tables [£.1 and [4.2] and Figure 4.2]

Figure 4.4: The data for five repetitions (five years) from 1998 until 2002 (a) Bindex vs index, (b) |lmaz]
vs index, ¢) |dmaz| vs index, considering the perturbation on the response variable and d) leverage vs
index for a year. The index vary according the number of observations.
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4.8.4 Analysis without subject #5

We reanalyzed the data without subject #5, that correspond to the whole year 2002.

The results for criteria to select the model is given in Table [4.3] The chosen model for the
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covariance structure is again the Gaussian covariance function.

Table 4.3: CV, LMV and Tr criteria for the data set without subject #5.

K cv LMV Tr

0.3 0.1468 -424.7226 1.2141
0.5 0.1535 -423.5043 1.1692
0.8 0.1421 -422.4204 1.0685
1.0 0.1324 -421.9738 1.0121
1.3 0.1210 -421.5312 0.9492
1.5 0.1153 -421.3311 0.9175
1.8 0.1090 -421.1188 0.8808
1.9 0.1073 -421.0647 0.8709
2.0 0.1059 -421.0170 0.8618
2.1 0.1045 -420.9747 0.8536
2.2 0.1033 -420.9372 0.8460
2.5 0.1004 -420.8470 0.8268

oo(Gauss) 0.0809 -420.5483 0.8268

In Tables and [£.4) we note that the covariates Ca and Mg are still not significant
in a level of 5%. The covariates P and K changed the signal but are still not significant.
Be aware that the Z-score test verify individually the significance of the parameters, i.e.,
even they are not significant by their own they can be in the presence of the other. The
parameters estimates and the asymptotic standard errors (in parenthesis) are given in
Table 4.4

Comparing Tables [£.2] and [£.4) we note that the covariates Ca and Mg are now signifi-
cant in a level of 5%. The covariate P and K changed the signal but are still not significant.
Be aware that the Z-score test verify individually the significance of the parameters, i.e.,

even they are not significant by their own they can be in the presence of the other.
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Table 4.4: Parameters estimates for Coodetec data without subject #5 and the asymptotic standard
errors (in parenthesis), considering the Gaussian covariance function.

Intercept P K Ca Mg nugget  sill f(range)
Bo B By Bs By 1 s 3
2.7512**  0.0047 -0.1920  0.0809** -0.1528** 0.1313** 0.0490** 0.0388**

(0.0966)  (0.0101) (0.1640) (0.0364) (0.0477) (0.0122) (0.0173) (0.0083)

** significant for 5%

4.8.5 Maps

Figure [4.5] presents the maps for the response variable for each year and for the mean
of the years. For all cases the same explanatory variables were considered, P, K, C'a and
Mg, as well we considered the same covariance function, i.e., the Gaussian covariance
structure, given in Table . Yorinori et al.| (2005) commented that on May of 2001,
rust surveys showed spread throughout most of Paraguay and into western and northern
Parana, Brazil, and that in the 2001-2002 season, rust was spread in Brazil to more than
60% of the soybean acreage, causing field losses estimated of 0.1 million metric tons. The
smallest values of the productivity are clear is the latest two years (Figures and
, and even worst in the latest one. And also is evident the difference between the
maps considering all the years and the map without the fifth year in Figures and
, respectively. The map without the fifth year show greater value for the mean of

the productivity than the one considering the whole information.
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Figure 4.5: Maps for productivity in the year (a) 1998, (b) 1999, (c) 2000, (d) 2001 and (e) 2002.
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Figure 4.6: Maps for productivity in the year (a) for the mean of the whole years and (b) for the mean
of the whole years (without year 2002).
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4.9 Conclusion

The purpose of diagnostic techniques is to evaluate the role of observations in the fit of
the proposed model and identify influential cases that may affect the values of statistical
interest. The evaluation of the stability of the fitted model in a data set should be part
of all statistical analysis, since a few observations can influence/distort the values of the
statistic interest (estimators and hypothesis test) and lead to wrong inference.

The goal of this work was to propose local influence measures to detect observations
that can distort some statistics of interest in the Gaussian spatial linear model with in-
dependent repetitions. We proposed measures based on the likelihood displacement and
some first order influence measures to assess the stability of the likelihood function, us-
ing the case weight perturbation scheme and perturbation on the response variable. We
applied the methodology developed in the paper to a data set of soybean productivity
collected in the West region of Parana State, Brazil.

We obtained explicit expressions for the matrices necessary for implementing these
diagnostic techniques using the Matérn family of covariance functions. We would like to
emphasize that first order local influence measures to assess the stability of the likelihood

function, are very simple to calculate, as can be seen in section [£.7} This type of results is
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not very common in the literature on the topic. Thus we extended the work of|Uribe-Opazo
et al.| (2012)) to the case of independent repetitions.

To select the spatial dependence structure we use the likelihood function, cross valida-
tion and the trace of the asymptotic covariance matrix of the ML estimator of the mean
of the process. In the application considered, the three criteria suggest to select the same
covariance structure.

As in other statistical models, based on the normality assumption, the influence of the
outliers on statistics of interest is considerable. So, there are important effects, for exam-
ple, in the soybean productivity maps, as shown in Figure [£.5] Non-normal alternative
distributions, as the ¢ multivariate distribution, and the framework of spatio-temporal

models for this data set are in progress.




Chapter 5

Global Diagnostics on Gaussian spatial linear

models with repetitions

5.1 Abstract

Neste capitulo sao apresentadas técnicas de diagnodsticos de influéncia global nos mo-
delos espaciais lineares Gaussianos com repeticoes. Sao revisados os conceitos de distancia
de Cook baseada na fungao de verossimilhanca e na funcao ). A principal contribuicao
é este novo enfoque para os modelos geoestatisticos. Aplicacao a conjunto de dados reais

ilustra a metodologia desenvolvida. Extensivos cdlculos sao apresentados no Apéndice.

5.2 Introduction

Geostatistics refers to the sub-branch of spatial statistics in which the data consist
of a finite sample of measured values relating to an underlying spatially continuous phe-
nomenon, |Diggle and Ribeiro Jr.| (2007). Some proposals have discussed Gaussian spatial
linear models to study the structure of dependence in spatially referenced data. For more
details about estimation, inference methods and applications of these models, see (De
Bastiani et al., [2016)).

Most diagnostic measures were originally developed under linear regression models.
Cook’s (Cook| (1977))) distance is one of the most known diagnostic tools for detecting
influential individual or subsets of observations in linear regression. |(Cook and Weisberg
(1982) give a comprehensive account of a variety of methods for the study of influence

on linear regression. |Chatterjee and Hadi (1988) treat linear regression diagnostics as

107
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a tool for application of linear regression models to real-life data. |Haslett and Dillane
(2004) extended previous work of deletion diagnostics for estimates of variance components
obtained by restricted maximum likelihood estimation for the linear mixed model.

Davison and Tsai (1992)) reviewed various diagnostics for generalized linear models
and extended to more general models, such as models for censored and grouped data for
nonlinear regression. Wei (1998)) presented a comprehensive introduction to exponential
family nonlinear models, giving attention to regression diagnostics and influence analysis.

Some proposals have discussed diagnostics tools for spatial linear models. In geostatis-
tics, an atypical observation can cause changes in environmental and geological patterns.
Christensen et al.| (1992a)) measured the effect of the observations on prediction using di-
agnostics based on case-deletion. |Christensen et al.| (1993) proposed diagnostics to detect
influential observations on the estimation of the covariance function. |[Zewotir and Galpin
(2005) provided routine diagnostic tools for linear mixed models, which are computa-
tionally inexpensive. Militino et al. (2006|) proposed influence measures for multivariate
spatial linear models. Uribe-Opazo et al.| (2012) presented local influence for Gaussian
spatial linear models.

De Gruttola et al.|(1987) described measures of influence and leverage for a generalized
least squares (GLS) estimator of the regression coefficients in a class of multivariate linear
models for repeated measurements. Waternaux et al. (1989) suggested several pratical
procedures to detect outliers for the repeated measurements model based on the global
influence approach. For example, for longitudinal data, Preisser and Qaqish (1996) de-
veloped Cook’s distance for generalized estimation equations. Christensen et al.| (1992h),
Banerjee (1998),|Demidenko and Stukel (2005)) and |Pan et al. (2014) considered case dele-
tion and subject deletion diagnostics for linear mixed models. |Assumpcao et al.| (2014)
present the generalized leverage to evaluate the influence of a vector on its own predicted
value for different approach for spatial linear models.

In this work we propose the study of several global influence measures for quantify-
ing the effects of perturbing spatial linear models with repeated measures. The chapter
unfolds as follows. Section presents the Gaussian spatial linear model with repeti-

tion, the complete loglikelihood and the ) function, and present a brief description of the
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maximum likelihood estimation and asymptotic standard erros calculations. Section
reviews concepts of global influence based on the likelihood and on the Q)-function. Section
contains an application with real data, to illustrate the methodology developed in this
paper. Finally, Section contains some concluding remarks. Calculations are presented

in the appendices.

5.3 The Gaussian Spatial Linear Model with Repetitions

For a spatial process, the basic object we consider is a stochastic process {Y;(s),s €
S C R?} (bi-dimensional Euclidean space), usually though not necessarily in R?, and 7 = 1
means one single realization of the process. We also assume that the variance of Y,(s)
exists for all s € S. The process Y; is said to be Gaussian if, for any £ > 1 and locations
S1,-..,Sk, the vector (Yi(s1),...,Y1(sx)) has a multivariate normal distribution.

Let Y =Y(s) = vec(Yi(s),..., Y.(s)) be an nr x 1 random vector of r independently
stochastic process of n elements each, that belong to the family of Gaussian distribu-
tions and depend on the sites s; € S C R? for j = 1,...,n, where s = (s1,...,8,)".
The “vec” operator transforms a matrix into a vector by stacking the columns of the
matrix one underneath the other. It is assumed the i-th stochastic process Y;(s) =
vec(Yi(s1), ..., Yi(s,)), represents the n x 1 vector, for @ = 1,...,r, which can be ex-

pressed as a linear mixed model by

Yi(s) = pi(s) + bifs) + i(s) (5.1)

where, the deterministic term ;(s) is an nx 1 vector, the means of the process Y;(s), b;(s)
and T;(s) are independents and together form the stochastic error, i.e., b;(s)+T;(s) = €;(s)
is an n X 1 vector of a stationary process with zero mean vector, E[e;(s)] = 0, and
covariance 3J;. For a linear model, the mean vector p;(s) can be written as p;(s) =
X(s)B, where, 8 = (B1,...,8,)" is a p x 1 vector of unknown parameters, X = X(s) =
(x;1(8)...Xp(s)] is an n x p matrix of p explanatory variables, for j = 1,...,n, i.e, the
design matrix X is the same for all  repetitions.

As in [Smith (2001), the GSLM for the i-th independent stochastic process, assuming

a homogeneous process, can be written in matrix form by Y,(s) = X3 + €;(s).
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The covariance matrix ¥; = 3 = [C(s,, sy)] is an n X n covariance matrix of Y,(s)
for the i-th repetition, ¢ = 1,...,r. The matrix X is non-singular, symmetric and positive
defined, associated to the vector Y;(s), where for the stationary and isotropic process, the
elements C(s,,s,) depend on the Euclidean distance d,, = ||s, — s,|| between points s,
and s,.

So, from what was previously written we have that Y ~ N,,.(1, ® X3,I, ® X), with

probability density function (pdf) given by

f(Y> 0) = H::l f<Yi’ 0)

= [T, @m) 2|5 2exp [-5(Y: - XB)'E271(Y; — XB)] .

1
2

where ® denote the kronecker product and (Y; — X3)TS 1 (Y; — X3) = §; is the Maha-
lanobis distance.

The covariance matrix X has a structure which depends on parameters ¢ = (¢1,...,d,) "

as given in Equation ([5.2]) (Mardia and Marshall, [1984; [Uribe-Opazo et al., [2012):

¥ = ¢,1, + &R, (5.2)

where, ¢; > 0 is the parameter known as nugget effect; @2 > 0 is known for sill ; R =
R(¢3, ¢4) = [(ruy)] or R = R(¢3) = [(ruy)] is an n X n symmetric matrix, which is function
of ¢3 > 0, and sometimes also function of ¢4 > 0, with diagonal elements r,, = 1, (u =
L,...,n); Tu = ¢y C(5y,5,) for ¢o # 0, and 74, = 0 for ¢ =0, u # v =1,...,n, where
rww depends on the Euclidean distance d,, = ||s, — s,|| between points s, and s,; ¢3 is a
function of the model range (a), ¢4 when exists is known as the smoothness parameter,
and I, is an n X n identity matrix.

A number of different structures are available, and the question is which one is best.
There are a large number of covariance structures to choose from. For example, exponen-
tial, Gaussian and Matérn model. To select one of them, beyond the maximum value of
the log-likelihood, we used the cross validation and the trace of the asymptotic covariance
matrix (Kano et al., [1993).

The maximum likelihood estimation were already presented in previous chapters. The
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unknown parameters to be estimated are the 8’s and ¢’s. The log-likelihood for the GLSM

for the r independent repetitions is given by £(0) = Z L£:(0),
i=1

L;(0) = —glog(%r) — %log 12| - %(Yi —-XB)'sHY; - XPB),
and the score functions are given by
L 0LO) Xyt
U(B) = B - ;XE €,
0L(0) rdvec' (X) 1 G Ovec (D) 1 Ta
=—2 = ———= pX = _— Y leie, X
U(op) 96 SR vec(X77) 4+ 5 12:1: 0% vec(X €€, ),

where €; = Y; — X3. The maximum likelihood estimator 3 is given by
B=X"2X)"'X'=ly,

S S S S IR .
where Y = (Yy,...,Y,)", with Y, = r ;Y;(Sj)’ j=1,...,n.
The expected information matrix, F(0), is given by, (De Bastiani et al., 2016; [Waller,

and Gotway, [2004)

F(6) = F — EU@UT @) EUEUN O] _ [Fss Fay
E[U(@)U(8)] E[U(¢)U'(9)] Fos Fog
where Fﬁg = rXTE’lX, F5¢ = 0, F¢5 =0 and F¢¢ = gm%;(ED)(Zl ®Zl)a\§Tﬁg—Z})

We used F/;é and F;(; to estimate the dispersion matrices for the maximum likelihood

estimators B and qAb, respectively.

According to |Osorio| (2006) the conditional distribution is given by
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where Q; = G — GZ/ 3;'Z;G. Then the complete loglikelihood is given by

£c(0) = Z 'Czc(e)a

where 0 is the vector of unknown parameters and

1 1

1 1
—Z1 — b/ G b,
5 og |G| 5Pi G 'b;

Let consider ¢; = ¢1, 1 = (n1,72,1m3)" = (¢, P3,04)", s0 R = R(1z,n3) and 2

= I+ mR, thus @ = (8", 61,m")", more details are given on Appendix . The @
-function, Q(0|0") = E[L.(0)]Y, 0 = 6], for the model presented in (/5.1)) is of the form

Qo)6%) = —%log & — %ﬁtr(ﬂ*) — %451 ;rfrj
_% logn; — glog IR| — 2%71 Zz;:tr[Rl(Q* X bijj)],
where
r; = Y,-XB8-bj,

bl = E(bi[Y;,07) =R Z(Y; - X37),
Q* = Cov(b;Y;,0%) = niR* — n?R*S 'R,

and the x symbol means that the objects are in function of 8 = 6*.

5.4 Diagnostic Techniques

Detecting influential observations is an important step in the analysis of a data set.
There are different approaches to assess the influence of perturbations in a data set and
in the model given the estimated parameters. |Cook (1977) gives a starting point to the
development of case-deletion diagnostics for all sorts of statistical models. Case-deletion
is an example of a global influence analysis, that is to asses the effect of an observation
by completely removing it. |Cook! (1986) presents the local influence approach, that is, a
weight w; is given for each case and the effect on the parameter estimation is measured

by perturbing around these weights. Choosing weights equal zero or one corresponds to
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the global case-deletion approach. In general, perturbation measures do not depend on
the data directly, but rather on its structure via the model.

There are some papers in the literature on diagnostic for spatial linear models. |Dia-
mond and Armstrong| (1984) and Warnes| (1986)) observed the sensitivity of predictions to
perturbations in the covariance function. Christensen et al.| (1992a)) discussed case deletion
diagnostics for detecting observations that are influential for prediction based on universal
kriging, while |Christensen et al. (1993)) considered diagnostic with the deletion of points
to estimate the parameters of the covariance function by the method of restricted max-
imum likelihood. More recently, |Cerioli and Riani| (1999)), |[Militino et al.| (2006|) showed
that case deletion diagnostics do suffer from masking and suggest robust procedures based
on subsets of data free from outliers. In this direction, Filzmoser et al.| (2014]) proposed

the Mahalanobis distance to identify multivariate outliers.
5.4.1 Global influence

Case-deletion is a diagnostic technique that evaluate the impact on the parameters
estimates given the model, by eliminating one or more observations from the data set.
This kind of diagnostics techniques have been discussed by |Cook and Weisberg| (1982)) and
Chatterjee and Hadi| (1988)), |Pan et al. (2014), among others. We can eliminate a subject,
each observation or an entire location, by using the idea of the technique proposed by

Cook| (1977) known as Cook’s distance which has a typical measure defined by
Dig = (60 — 03) " M(0 — 6y,

where M is an appropriately chosen positive definite matrix, for instance, the inverse of
the asymptotic covariance matrix and é[i} is the estimate of @ refitting the model with

the same principles used to obtain 6, but without the i-th observation.
Likelihood-based diagnostics

In the Cook’s Distance case-deletion we eliminate a subject to evaluate it influences

on the analysis. For the GLSM it is given by

Dig = (0 —0)T[L(0))(8 — 6y),
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fori =1,...,r, where Ly;(8) is the loglikelihood with the i-th subject deleted, L;(8) is the
second derivative of Ly; (@) with respect to 8, and é[i} is the maximum likelihood estimate
under L;(0). Here M = [—ﬁ[i](é)], because we have that [—E[i](é)]*l is an estimator
of the of the asymptotic covariance matrix and as mentioned above, M commonly is
the inverse of this estimator. Since the computation of [E[Z](é)] may become cumbersome
when r is too large, it is used £(6) to replace ﬁ[ﬂ (). In general, the asymptotic covariance
matrix [—£(0)]~" is not block-diagonal, so to decompose the Cook’s statistic into different
components of interest an alternative is to use the expectation of [—£(0)]~, E[-L£(8)] ™,

which is the inverse of the expected information matrix. For the GLSM the [—£(8)]! =

E[—£(0)]"! = F(6), thus both give the same measure given by

To calculate ém, we may use a one-step Newton Raphson approximation at 9, é[i] =

6 + [—ﬁm(é)]_lﬁ[i](é), where the dots over the functions denote derivatives with respect

to 0, and
£0) = "D iogom) - Ui - L v, - x) w (v, - xp)
(4] 9 g 9 9 £ k k )
k#i
for i = 1,...,r. And again, to overcome some computational difficulty, using [,(9) to

replace ﬁm(é), and so on F(@)_l, the approximated Cook’s distance becomes

Dly = [Ly(6)]"F(6)7'[L1(0)]

for i = 1,...,r, where Um(é) = (Uy (B), U[Z»]((Ab))T is the score function formula without
the i-th subject evaluated at @ (given below). We can decompose D}y = D}s+ D;,, which
means that the diagnostic measure of 6 is the sum of the diagnostic measures of the

fixed effects 3 and the variance components ¢ in terms of D}, for i = 1,...,7, where
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A ~

D}y = [U3(B)] "F55[Un(B)] and DL, = [Upy($)] " F o [Uga ().

~ A —1

Furthermore, Uy (B) = XS e,

and

- A1
- 1 ~—1 03 ) YR
U[z]((bj) = —tr (Z 1—) — 562— €,
or in vec notation is given by

U[i](qAb) _ %(9\/6;;(2) vec(f]il) B 18VeCT(2)

where €; = (Y; — XB), fori=1,...,r.
@-function-based diagnostics

Pan et al. (2014) also proposed a case-deletion approach to identify influential sub-
jects and influential observations in linear mixed models, based on the Q-function, the
conditional expectation of the logarithm of the joint-likelihood between responses and
random effects. Let consider ¢; = ¢1, 1 = (771,772,773)T = (¢2, 3, ¢4)T, so R = R(n2,n3)
and ¥ = ¢ I4+mR, thus 8 = (ﬁT, $1,m" )", more details are given on Appendix . The
Q-function, Q(0|0*) = E[L(0)|Y, 0 = 67|, for the model presented in is of the form

r

nr T 1
0|0y = ——1o — —tr(Q* ——g et
Q( | ) 92 g¢1 2¢1 ( ) 2¢1 " 7 7
nr r 1 —
——1 ——logIR|— — ) tr[RYQ"+b"b!
5 logm — 5 log R o ;:1 r[R™(Q" +bj bj)],

where
rp o= Yi-XB-bj,
bi = E(bi|Y:,07) = RS (Y, - XB°),
o = COV(bZ‘|Yi7 0*) = /)T{R* _ ,’,’TQR*E*flR*’
and the * symbol means that the objects are in function of 8 = 6™.

To calculate the case-deletion estimate é[i] of 8, Zhu and Lee| (2001)) proposed the use
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of the following one-step approximation based on the -function

(=¥

0 = 6+ [-Q(010)] ' Q(610),

where Q[l](éw) = Q[i](0|é)|0:9 be the @-function formed without the i-th subject but
evaluated at the maximum likelihood estimate 6, and Qm(mé) = [0Q;(0 16)/06)] g_p 2nd
Qm(mé) = [82Q[¢](0]9)/6000T]0:9. The @-function-based Cook’s statistic from Zhu and
Lee| (2001)) and presented in |Pan et al.| (2014) is given by

QDig = [Q1:(010)]"[-Q(610)]'[Q;;(616)]. (5.3)
Despite of the @Q-function-based Cook’s statistic be the sum of the @-function-based
Cook’s statistics for the fixed effects 3 and the variance components ¢, Dy = QD;s +
@Dy, in general for the variance components it can not be separated, where n = (¢, ¢3, d4) "
are the variance components of the random effect and ¢, the variance component of the
random error. Then, Pan et al| (2014) propose to use —E[Q(8]0)] in instead of
—Qm(mé) Pan et al.| (2014) proved a theorem implying that, when replacing the log-
likelihood with the @-function in the EM algorithm, the one-step approximation to the
maximum likelihood é[ﬂ maintains the same accuracy, of order O,(r~?). The modified

@-function-based Cook’s statistic is of the form

QDjy = [Q(010)] {~ E[Q(6]6)]} ' [Q1(616))-

) —iXTr;‘

Qzﬂ (bl

. _L tr(Q*) — Lr*Tr* + ﬂ

Qign 207 201 " 20

n 1
. . 3. — — —tr|[R! Q’W—bjb;kT
Ouele) = | Q| = oy~ TR ) ,

. 1 OR 1 OR™!

Qi —tr (R—1—> + —tr { Q* +bb:T }

" 2 oy 2m on ( )

). 1 1 -1

Qma Ztr (Rla_R) 4+ —tr |:8R (Q_* + b;bfT)}

2 o3 2m on3
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fori =1,...,r, and E[—Q(0|0*)] evaluated at @ = 8* = @ for the spatial lincar mixed

model has the elements

. r
El-Qullg_g_g = (/B—XTX,
1
El-Qsollg_g_p = O
E[_Q,Bm]‘g:g*zg = 0,
E[_Qﬂnzngzg*:[g = 0,
E[_Qﬁnsﬂgzg*zg = 0,
= A nr
E[_Q¢1¢1H0:0*:9 = A_:f tr(Q) + T&%’
E[_Q¢1771”9:0*:9 = 0,
E[_Q¢1n2]|0:0*:9 = 0,
E[_Q%ns”g:e*zg = 0,
: T (RA) 4 (87
El-Qunll_g_g = 57 Tt (r Q>+ﬁ1 w(2R),
) r OR~ IR, r . PR
- g = St — | +str[R7!
Hl QHWHBZO =0 2 r( e 8772> - 2 r< 3772772)
_82R‘1 -
+—tr Q+7RY R)|,
2 | Onam ( ! )]
" r OR /- U I ]
E[_anz”g:g*:g = _Z_f]%tr B, (Q—FT]%RZ R) ,
. r _8]_?{—1 ) gt a1 ]
E[_Qmmﬂgzg*:g = —2—7?%“ s (Q—I—an R) ,
- r 8R__1 OR r - (92_R
E[_QW%”Q:B*:Q = §tr s 8_772> + §tr <R (9?72773>
r 82]?{71 A a1
+—tr Q+7RY R)|,
2m [3772773 < ' )]

. r R~ OR, r 31 OR
E[_Q%ﬁs”g:g*zé - §tr< 6773 8_773> —|—§t1" (R 8773773)

More details are given in Appendix [B.1]
Because the matrix E[Q(8]0)] is always block-diagonal with respect to the parameters

3, n and ¢, the modified Q-function-based Cook’s statistic @D}, for i = 1,...,7, can
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thus be decomposed into three components
QDjy = QDjs +QD;, + QDjy

where QD}/B, QDZ-ln and QDild)1 are the modified Q)-function-based Cook’s statistics cor-
responding to the fixed effects 3, the between subject covariance components 1 and the

within-subject covariance components ¢, respectively.
5.4.2 Diagnostics at observation level

For the model in study, we have two levels of responses, namely, subjects and re-
peated measures/observations. Intuitively, an influential subject may or may not contain

influential observations.

Observation-deletion

Dl = [Lan(0)]F(6)[Ly;(0)]
= [Uin(0)] F(0) [Uy1(6)],

fori=1,...,rand j =1,...,n, where [ij] is to designate the j-th observation of the i-th

~

subject is deleted from the dataset, Up;(0) = 6’£M(0)/89|0:9 and

A nr—1 r—1 1
Lij(0) = —%log(%r) — ( 5 )log|2| — §log|2m\
1 — _
5 > (Y —XB) =7 (Y, - XB)
k=1
ki

1 B
—5(Yiy = X;18) 25 (Y — X8).
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Thus,
. L;i(6) .
Ui (B) = % = - XTZ7Y(Y; - X5)+X[J]EH(Yi[j]—X[j]B)’
- B aﬁ[m(e) B 1 182 1 lazb]
U = op > b1 — | O,
-1
1 02
(Y= XB) G (Y= XB)
1 82 .
—5(Yiy = X 8)" ¢ L (Y5 - X8,
for [ =1,...,4, or in vec notation
L 1avec( ) .
U@) = 375 (s
_%8\/%() vee(S7(Y, — XB)(Y; — XB)TS )
18V€C (2[‘]) -1
_58—¢J vec(Xp;))
10vec' (X)) _ . 5 _
+§Tm vee(Zp (Y — X8) (Y — X18) '25)),

where X[; is an (n — 1) x p matrix in which the j-th row of X is deleted, Y, is Y;

without the j-th observation, f{[j] and ﬁ][j] are (n — 1) x (n — 1) matrices.

The modified @Q-function-based Cook’s statistic is of the form

QD0 = [Q1(610)]T{~ E[Q(610)]} ' [Qyin (016)).
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where Q[u](é|é) has the elements

Quitlg_gg = -—é%)(Trl%— 1)<Hr2U]
Q[z‘ﬂm’e:e*:é - —Q;Ifjfi_trz(g;) +2;2AZT[j]AzH Z%qg%tr(fl[j]wr?%l?
Quimlg_g-_g = _2—?171 tr [R 1(Q+Bibf)} 2

+% [R[ 1(Qy1 + byyby, } )

- 1 LOR 1 OR"! . ..
.. « N — — Q ; T
Q[mnz‘g:g _0 5 tr (R 8?72> 2, r [ s (2 +b;b, )]

Lo (g fRe) 1 [ORy
"9 <R[J] s ) - 2—771‘51“ [ ET) (Q[J] +bl[]]bz[j]>

1 ) 1 OR™!
+

) .o o prm— - 71_
Q[mn3|9:9*:9 - 2tr R ons 2 t 03

1 - 10Ry) 1 R
~3 tr (R[j] s t 877 (Q[J] + bZ[J]bz[g])

where X; is an (n — 1) x p matrix in which the j-th row of X is deleted, T;;;; = Y, —

(Q+ b;b])

Xm,é' — Bim, Y, is Y; without the j-th observation, Bi[ = an E[J] (Y5 Xmﬁ)

R[j], 2[3»] and Q[ﬂ are (n — 1) X (n — 1) matrices. Details are given in Appendix .
Site-deletion

Since we have the same number of observations for each site, we can remove an entire

location. Following Cook’s approach we have

where 6 is the maximum likelihood estimator of § = (,BT, ¢T)T for the postulated model
and @[j] is the maximum likelihood estimator of @} = (,B&,(ﬁg])T, without the j-th
individual, i.e, all the observations for a specific location for our case.

To calculate ém, we may use a one-step Newton Raphson approximation at é, é[ﬂ =
0+ [—ﬁ[j](@)]_lﬁm(é), where the dots over the functions denote derivatives with respect

to 8. And to overcome some computational difficulty, using £(8) to replace ﬁm(é), and
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so of the expectation of it. So that the approximated Cook’s distance becomes

DLy = [Uj(0)]TF(0) ' [U(8)],

for j = 1,...,n, for all sites, where U[j](é) = (Uy (3), U[j](éﬁ))T is the score function
formula without the j-th location evaluated at 0 (given below). We can decompose D[lj]a =
D[lﬂ st D[lﬂ > Which means that the diagnostic measure of 6 is the sum of the diagnostic

measures of the fixed effects 3 and the variance components ¢ in terms of D[lj]g, for

j=1,...,n, where D\, = [Uy(B)]"F 33Uy (B)], DLy, = (U ()] F 1 [Upsy ().

Uy(B) = Z X[3y (Yiy — X38),

A1
N 7’ 82[‘] 1« 82
Uy(é) = 5 (2[3}1 3@5; > ‘

for [ =1,...,4, or in vec notation

rdvec' ()

U[J](gb) - _5 a¢ VeC(E[j]l)
19vec (X)) - ) )
ETM vee(Bp) (Vi — X38) (Y — X38) ' 3)),

where X; is an (n — 1) x p matrix in which the j-th row of X is deleted, Y,j;) is Y;
without the j-th observation, R[j] and f][j] are (n — 1) x (n — 1) matrices.

The modified Q-function-based Cook’s statistic is of the form

QD}y = [Qy(010)] " {— E[Q(016)]} '[Q11(610)].
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for y =1,...,n where,
1 T
5 - merzm
1 < n—1)
Q T —
2¢2 (Qp) + 2¢1; i) Tils] 2
. A A~ (n — 1 [ (
| _ U LI N 1+ bubr )]

Qp;(616) 2 77% ZZ [ Pil5)

r L ORy) (OR| /.

2 (Rm Oy 2771 Z tr on (Qm + bzmb’m)
B —1

7’ 18R[J] 8 7]

2 (Rm ons | 20 Ztr | O <Q“] +b’mbz[ﬂ>

The Appendix shows more details.

5.4.3 Cutoff value for influential cases

Cook and Weisberg (1982) indicated that the Cook’s distance can be compared with
a y-squared distribution with an appropriate degree of freedom for calibration, and also
for the Cook’s distance approximated. |Zhu et al.| (2007)) suggested to use (p + q)/r for
models with missing data as a rough cutoff value for calibrating the Q-function-based
Cook’s statistics QD;, where (p + ¢) is the dimension of the parameter vector 8 and r is

the number of repetitions. We also suggest to use 2 x QD; as a cutoff value.

5.5 Applications

5.5.1 Productivity data from the year 1998 to 2002

The data set were first analyzed by De Bastiani et al| (2016]) and consist of 253 ob-
servations in each year from 1998 to 2002. The data consist of soybean productivity data
and four chemical contents considered as explanatory variables were collected in a grid
of 7.20 x 7.20m an experimential area with 1.33ha. The chemical contents of soil are
phosphorus (P)[mg.dm™3], potassium (K)[cmolc.dm™3], calcium (Ca)[cmolc.dm™?] and
magnesium (Mg)[cmolc.dm™3]. The observations were taken at the same site for each
repetition. Figure show the usual boxplots for the productivity, where only the obser-

vations taken in the harvest year 2002 do not have outliers.
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Figure 5.1: Boxplot for soybean productivity in the years 1998 (Y7), 1999 (Y3), 2000 (Y3), 2001 (Yy) and
2002 (Ys).
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In other to choose the variance covariance structure that best describe the spatial
dependence of the soybean productivity, we used cross validation (CV), the log-likelihood
maximum value (LMV) and the trace of the asymptotic covariance matrix of an estimated
mean (Tr) criteria. These criteria lead us to select the Gaussian covariance function (Figure
59).

Figure 5.2: Criteria to choose the variance covariance structure (a) Cross validation (CV), (b) The log-

likelihood maximum value (LMV) and (c) the trace of the asymptotic covariance matrix of an estimated
mean (Tr).
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Table shows the parameters estimates considering the Gaussian covariance func-
tion, and the respective asymptotic standard errors (se) in parenthesis. We used the Z-test,
which has normal asymptotic distribution, to test the hypothesis of the form Hy: 5, = 0

versus Hy: O # 0, where [y, is any of the parameters of the vector 8 = (BT, qu)T. Accord-
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ing to Table , ,5’0 is significant. Considering the same idea to test the ¢’s, we find that
they are significants. The macronutrients P and K are needed in relatively large quantities
in the soil compared to others to prevent plant deficiencies, but after a critical level is

reached there is no additional yield increment.

Table 5.1: Parameters estimates for Coodetec data considering the Gaussian covariance function, the
asymptotic standard errors (in parenthesis) and the p-values.

Intercept P K Ca Mg nugget  sill f(range)
Bo B B By By b1 é2 b3
2.4013*  -0.0017 0.3270  0.0118  -0.0592  0.1927* 0.0579** 0.0407**

(0.1020)  (0.0109) (0.1746) (0.0392) (0.0515) (0.0178) (0.0219) (0.0098)

** significant for 5%

5.5.2 Global influence

First we consider case-deletion which allows to evaluate the individual contribution of
each repetition in the process of estimation. Each repetition correspond to a year. Figure
.3 shows Cook’s distance for one-step approximation. It shows that the subject #5, that

correspond to the year 2002/2003 has more influence for both 8 and ¢.

Figure 5.3: Cook’s distance using one-step approximation for elimination the i-th year, a)Dé, b) Dé and
c)D}.
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Figure shows Cook’s distance based on Q-function for case-deletion and also high-
lights the year #5, nevertheless this subject is not pointed as influential for the n’s pa-

rameters, according Figure [5.4(c)|
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Figure 5.4: Q-function based distance using one-step approximation for elimination the i-th year, a) QDé,
b) @D} , c) @D, and d) QD}.
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Figure |5.5| and [5.6| shows Cook’s distance based on likelihood and @-function, respec-
tively, for observational level when removing each observation from the data set. Both
figures highlight observations from the year 2002/2003, the latest one. The observation
#14 is from the the year 1998/1999 and correspond to a value 1.19 ha, which is the min-
imum value in this year. The observation #1200 has value 0.98 ha, below the mean, and
below of the values of this location for the other year that were 2.05, 2.48, 3.62 and 2.65
ha.




APPLICATIONS 126

Figure 5.5: Cook’s distance using one-step approximation for eliminating the j-th observation from the
i-th year, a)Dz-ljﬂ7 b) D*ljdn and d)Dj;.
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Figure 5.6: Q-function based distance using one-step approximation for eliminating the j-th observation
from the i-th year, a)QD}, b) QDl17 c) QD}7 and d)QD}.
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Figure[5.7|shows Cook’s distance for removing a location. We can see that the individu-
als #14 and #59 as influential for the g parameters. The individual #14 has productivity
values 1.19, 2.06, 1.65, 1.71 and 1.27 from years 1998/1999 to 2002/2003, respectively.
And individual #59 has productivity values 1.39, 1.52, 1.26, 1.68 and 0.26. Figure [5.6
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shows Cook’s distance based on @-function for observation level in the case that a lo-
cation is eliminated. Figure [5.8 shows Cook’s distance based on the @-function for the
location deletion, where the location #59 was detected as influential for the 8’s and ¢y,
and locations #35, #41 and #68 as influential on the n’s. Location #35 correspond to
2.00, 2.40, 2.93, 3.01 and 2.26 ha from years 1998/1999 to 2002/2003, #41 correspond to
the productivity values 1.97,, 1.89, 3.26, 2.92, 2.33 ha and #68 corresponds to 2.08, 2.41,
3.01, 2.85, 0.89 ha.

Figure 5.7: Cook’s distance for the elimitation the j-th location, a) D;g, b) D;s and b) D;.
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Figure 5.8: Cook’s distance based on @Q-function for the elimitation the j-th location, a) @D;g, b) QD4
and b) QD;.
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5.6 Conclusions

In this Chapter we investigated diagnostics techniques in the same model presented
in previous chapters, i.e., in the Gaussian spatial linear models with repetitions. Now, we
stress the global diagnostics in this models. We presented the complete loglikelihood and
the Q-function. A brief description of the maximum likelihood estimation and asymptotic
standard errors calculations were shown.

We discussed some concepts of global influence based on the likelihood and on the
@-function. We carried out an application to a soybean productivity data set. This diag-
nostics tool permit to evaluate in more details in which parameter the observations, sites
or subjects are influential. Another application on environmental science is underway.
In the new application we remove the temporal effect and analyze the data considering

independent repetitions, which allow us to use global diagnostics techniques.
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The exposition of this approach (with the @ function) on the study of global diagnostics
in Gaussian spatial models in the chapter is new and we believe that it has the potential

for a wide impact in applied statistics.




Appendix C

C.1 The @Q-function and derivatives for Gaussian spatial linear

model

a) Linear mixed model

YZ:XZB—Fsz—{—TZ forizl,...,r

where bl ~ N(07 G’) L T; ~ N(O, Dz)

b) Joint distribution

b; 0 G GZ/

()

Y, X6 2,G %
em que 3; = Z,GZ/ +D;,i=1,...,r,

COV(bZ’, Yz) = COV(bi, XZ,B + Zb@ + ei)
= Var(b;)Z]
— Gz}

130
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c) Conditional distribution

According to |Osorio| (2006) the conditional distribution is given by

bi|Y; ~ N (GZ/ =7 1(Y: — XiB), Q) , i=1...,m,

where Q, = G —

GZ/ > 'Z,G.

d) Complete loglikelihood

where 0 are the unknown parameters and

e) Q-function

Q:(06)

1 1
1

i
—“log |G| — =b] G~ b,
5 og |G| 5Pi

i=1 =1
1 1 -1 T L -t
= —5log|Dy| — 5 tr(D; Z,Q7Z; ) — -7 D;ry
2 2 2
L log |Gl = 2 tr(G10%) — 1b TG by
9 8 2 i) i
= —llog |D;| — 1tr(D._lztﬂ’?‘Z-T) — 1r’-kTD-_lr’-k
2 ? 2 7 1=, 2 7 7 7
1

1
—510g |G| — 5 tr{G1(Q; + bybiT))
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where 0" is the vector of parameters estimate of @ = from previous iteration of the

algorithm.

b: = E(bY;,0") = GZ/ (Y, — X;8%)
Qr = Cov(b;|Y;,0") = G* — G*Z/ X' Z,G*

f) Q-function for the spatial linear mixed model

For the spatial linear model we consider X; = X, Z; =1, ¢1 = ¢, N = (1, 72,m3) | =
(¢27¢37¢4)T7 so R = R(n27773> ) Dz = ¢1I, G = G(T]) = ana and Ei =X = ¢1I + ana
s0 0 = (B",¢1,m")" which results on the particular case of the Q-function for the spatial

linear mixed model given by

Q(8]0%) = ZQZ 0/6"),
n 1 1
(016") = —-logg — — tr(Q) — —ri T
Qi(6]67) 9 0g P1 20, r(Q)*) — 2¢1rl r;
n 1 1
-5 — =1 - — “1(Q* +b'br T
5 logm — 5 log|R| o tr[R™1(Q* + bbiT)],
where
rr = Y, -XB-b!
b = E(bY,0%) =nRIT(Y, - XB)
Q; = Q= Cov(b]Y;,0%) = niR* — n?R*Z* 'R,
SO On
1 T
0|6") = ——10 — @) - — S T
(0|67 g 2, (Q*) 2¢1Z :

——logm - = log R| — — Ztr HQ* + bbb,
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g) First-order derivative of Q-function for the spatial linear mixed model

Based on (C.1)) the first-order derivative of Q(0|0*) with respect to @ = (8", é1, 11,12, 13) "

is given by
Q(6]6%) Z Q,(0]6"),

with elements

1

_XT *
) n
o ( Q) 4 T -
o 252 r<1 ) 2¢2 200
1 n
. . ) _ Q* +bib; "
. —Ztr([R1Z2) - — Q* + bb:T
Qiny 2 g ( 8772) 2m { ona ( TR )}
Qin' 1 tr (R1 8R) 1 tr [8R_ QO b }
? -3 5 5 + b}b;
2 ons 2m ons ( )
OR™! OR™! OR OR™! OR™! OR
h _ — R R - — —R'2"R~. Details |
where om 90, 90, ' om 90, 90, etails in
Appendix [A.4] and [B.1]
1 - T %
E Z X I‘i
’ * 1 *
@ 2¢% 2¢2 Z T T a0
Q¢1 T
. . : t (Q" + b}b}
Qo) =1 0, | = o Z r ” (C2)
: OR 1 « OR™!
Qs Ty (R1 )—— tr[ Q*+b’f‘b*T}
'77 2 oy 2m ; o ( o )
Qﬂs
T OR 1 « OR™!
—tr — ) == tr Q* +bib:" }
2 ( 3773) 2m ; { I3 ( )

Letting 8 = 6" = 6 in which 6 is the maximum likelihood estimate of 0, we have

Q(016) = [(016")]5_g-_g =0
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which leads to the following

.

d X't =0
i=1
T A 1 — nr
—tr(Q) + — Pt — — =0
AT L
nr 1 « s (A NN
_nr o) bibi)} -
> "o gtr [R ( + 0 (C.3)
r (. OR 1 < [oR /. ]
——tr — ) - = tr (Q—l—b,bj) =0
2 < 8772> 21 ; | One ]
) 1~ lor1,. ..\
T IR — ) tr R (Q+bzbf) =0

h) Second-order derivative of Q-function for the spatial linear mixed model

G 82Q:(016")
00 — 8080T )

with elements

B} 1

Qips =— —X'X

o
.. 1
Qippy = — 5 X1}
ol

Qiﬁm =0

Qiﬁm =0

Qiﬁns =0

- 1 1 n
Ginon == 5 0r(Q) = xiTrf + 2

oo == GO 207
Qi¢1771 =0
Qimnz =0
C;‘?i¢1773 =0
Qi == — % tr [R7(Q + bib: )]
207 Uit

. 1 OR™!

immy == tT Q* +bib’
Q mmn 277% 87]2 ( )
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OR™!

3 1 * *T
Qimn3 :2—77% tr |: b b

ons 1 ] o _
T ) g
X 1 2 -2 —1 :
oo ) ) T
) 1 5 S /
Qingns = — %t (a;;g gqu> _ % ( ;;;3) - %mtr _83772{773 (Q* +bjb2<T)_ 7
where g;fgnz = — %g—g 1R aij;]k R. More details are given in Appendix
[A3 and B

i) Expectation of [—Q] evaluating at @ = 8* = 6 for the spatial linear mixed

model

By noting that

E[r;‘]|3:9*:9 = 0
PSS
E[bfbf”g_g*_g = U%RZ R
E[rjr *T”g 0 -0 — Q+$1L

and by the fact that
E[-Q(0]6")] = - ) E[Q:(6]67)],
i=1

the expectation of [—Q)] evaluating at @ = 8 = @ for the spatial linear mixed model has

the elements

[ QBﬁHg 0 -0 — ¢ XTX

E[~Qsallg_g-_p =0
El~Qsnllg_g_g =0
El~Qpnllg_g_g =0
El~Qpnllg_g_g =0

2r A nr

E[—Qsllg_g _p :gg_g, (@) + 275%
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E[_quml”g:g*:g =0
E[_chmzﬂgzg*:g =0
E[_Q¢1n3]|9:9*:g =0

E[-Qunllg_g—_g =~ ”7 + L (RO)+—u (S R)

20 A Ul A n )
El-Qunllg_g o :gtr (ﬁ:%) i gtr (R_l%>
* 21 " 832771377_21 <Q + R 1R>]
E[—anz”eze*zé - _ 2L77% tr _85;7: (fl + ﬁ%flﬁ]lf{>_
E[-Ounllg g p = - 2%% fr :3;‘7: (Q+ ﬁfRﬁ]lR):
El-Qnullg_g _p :g ' (5;;: %) gt ( 1;72;3)
e

j) Q-function and first derivatives for global influence

For the case deletion global influence study we have

. n(r—1) (r—1) I T
21(0107) = — lo — tr(QQ*) — — r; r;
Q(0107) 5 g1 2%, (Q*) 2¢1k:1 k Tk
b (C.4)
n(r—1 r—1 I < e e '
_n 5 )logm—( 5 >log|R| —z—mZtr[R Q" +bib;")].
k=1
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Similarly to (C.2)), the first-order derivative of Qm(9|0*) given in (C.5) and by noting

(C.3) we obtain
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Evaluating at 6 = 6* = 6 and noting 1) we obtain Q[U](ém) with elements
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where X; is an (n — 1) x p matrix in which the j-th row of X is deleted, T;;;; = Y, —
Xmﬁ — Bim, Y, is Y; without the j-th observation, Bi[j] = ﬁlf{mflg]l (Y — XmB),
Ry, 3y and Qg are (n — 1) x (n — 1) matrices.

For the observation level, in the case the we remove a location, i.e. we eliminate the

j-th observation for all i, we have that Q;(0]0") is of form
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thus
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Chapter 6

Gaussian Markov random field within the gen-
eralized additive models for location scale and

shape

6.1 Abstract

Este capitulo descreve a modelagem e ajuste dos componentes espaciais dos campos
aleatorios Gaussianos no enfoque dos modelos aditivos generalizados de locacao escala e
forma (GAMLSS). Com este enfoque é possivel a modelar qualquer ou todos os parametros
da distribuicao da variavel resposta considerando variaveis explanatérias e efeitos espaci-
ais. A distribuicao da varidavel resposta pode ou nao pertencer a familia de distribuicoes
exponenciais. Um novo pacote no software R foi desenvolvido para colaborar com a pro-
posta. Utilizou-se os campos aleatorios Markovianos Gaussianos para modelar o efeito
espacial nos dados de aluguel da cidade de Munich, e para explorar algumas funcionali-
dades e caracteristicas dos dados. O potencial sobre fazer analise de dados espaciais usando
GAMLSS é discutido. Argumenta-se que a flexibilidade da distribui¢dao paramétrica, a ha-
bilidade de modelar todos os parametros da distribuigao e ferramentas de diagnésticos do

GAMLSS fornecem um ambiente adequado para a modelagem espacial.

6.2 Introduction

Since the introduction of the Generalized Additive Models for Location, Scale and

Shape (GAMLSS) by Rigby and Stasinopoulos| (2005), the models have been used in a
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variety of different fields such as actuarial science, Heller et al.| (2007)), biology, biosciences,

energy economics, Voudouris et al.[(2011)), genomics, Khondoker et al.| (2007), finance, fish-

eries, food consumption, growth curves estimation, |Borghi et al. (2006]) and (2006,
2007), marine research, medicine, meteorology, rainfall, vaccines, film studies,
(2012)), etc.

Discrete spatial variation, where the variables are defined on discrete domains, such

as regions, regular grids or lattices, can be modelled by Markov random fields (MRF).
MRF can be applied in different areas such as spatial statistics, image analysis, structural
time-series analysis, analysis of longitudinal and survival data, spatio-temporal statistics,

graphical models and semiparametric models. For applications in spatial econometrics

(Anselin and Florax| [1995), in spatial and space-time epidemiology Besag et al. (1991))

and |Schmid and Held (2001)), respectively. Sang and Gelfand| (2009) adopted multivariate

Markov random field models with temporal dependence to cater for the whole space-time

characterization. A comparison between Markov approximations and other methods for

large spatial data sets is given by Bolin and Lindgren| (2013]).

Kunsch| (1979) present many important results for Gaussian Markov random fields

(GMRF). Extensive theoretical and practical details of GMRF are provided by

(2005). In statistics, Besag and Kooperberg (1995)) considered the Gaussian intrinsic

autoregressive model (IAR), a very important specific case of GMRF models.

and Clayton| (1993), Lee and Nelder| (2001) and |[Fahrmeir et al.| (2013)) incorporated IAR
models within generalized linear mixed models (GLMMs). (2006) presents IAR

models within a generalized additive model (GAM) framework. There are few papers that

use GAMLSS in a spatial framework. Mayr et al.| (2012)) presented GAMLSS for high-

dimensional data based on boosting. Rigby et al.| (2013) commented on the paper “Beyond

mean regression”, (2013), and presented a simplified analysis of Munich rent data
with very few covariates, modelling the p parameter with a spatial effect using an TAR

model term. In this Chapter we describe in detail the theoretical basis of the GAMLSS

implementation of GMRF, develop a package in R (De Bastiani and Stasinopoulos|, 2015}

R Core Team| |2015)) to achieve this and explore the potential of such modelling using the

Munich rent data.
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Section discusses GAMLSS models and the modelling and fitting of GMRF spatial
components within GAMLSS models. In section [6.4] we present the full Munich rent data
set, the strategy to choose a model and the results for the Munich rent data set. Section 6.5
investigates the adequacy of the chosen model using residual diagnostic worm plots. The
implementation in R is described in the Appendix and the R code used in the analysis is

available from the authors at www.gamlss.org. Section presents relevant conclusions.

6.3 Methodology

Section defines the GAMLSS framework, while Section describes its esti-
mation procedure. Section [6.3.3] describes how the GMRF models can be incorporated
within the GAMLSS framework.

6.3.1 The GAMLSS framework

GAMLSS provides a very general and flexible system for modelling a response variable.
The distribution of the response variable is selected by the user from a very wide range
of distributions available in the gamlss package in R, Rigby and Stasinopoulos (2005),
including highly skewed and kurtotic continuous and discrete distributions. The gamlss
package includes distributions with up to four parameters, denoted by u, o, v and 7, which
usually represent the location (e.g. mean), scale (e.g. standard deviation), and skewness
and kurtosis shape parameters, respectively. All the parameters of the response variable
distribution can be modelled using parametric and/or nonparametric smooth functions of
explanatory variables, thus allowing modelling of the location, scale and shape parameters.
Specifically, a GAMLSS model assumes that, for i = 1,2, ..., n, independent observations
Y; have probability (density) function fy(y;/@") conditional on 8" = (61, 0y;, 03, 04) " =

T a vector of four distribution parameters, each of which can be a function of

(luia Ti, Vi, Ti)
the explanatory variables. [Rigby and Stasinopoulos (2005) define an original formulation
of a GAMLSS model as follows.

For k =1,2,3,4, let gx(.) be a known monotonic link function relating the distribution
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parameter 0y, = (01, ...,0,)" to predictor n, = (Me1, .-, Mkn) |- Then we set
Jk
ge(0k) = My = X8y + Y hj(xn), (6.1)
j=1
where X, is a known design matrix, 3, = (S, - - - 75J,;1c)T is a parameter vector of length

J,;, h;ji is a smooth nonparametric function of variable X, and the x;;’s are vectors of
length n, for k=1,2,3,4and j =1,..., Ji.
Model (6.1) can be written in a random effects form and random effects can also be

included in the model for the n x 1 vectors pu, o, v and T:
Ji
gi(p) =m =X48, + Z Zj1vj
j=1

Ja
ga(0) =my = X506, + Z Zj27j»

=1

h (6.2)
93(v) = my = X303 + Z Zj3Yjs
j=1
Ja
9a(T) =my = Xu4By + Z 24 ja
j=1

where here the random effects parameters 7, are assumed to have independent (prior)

normal distributions with v, ~ N,

(0, )\j’le;kl) and G;kl is the (generalized) inverse of
a qjr. X ¢ symmetric matrix Gy, where if Gy is singular then «;, has an improper prior
density function proportional to exp(—3XjxY G Y;i)-

Different formulations of the Z’s and the G’s result in different types of additive terms,
for example, random effects terms, smoothing terms, time series terms or spatial terms
as presented in Section [6.3.3] The advantage of modelling spatial data within GAMLSS

is that different distributions beside the exponential family can be fitted and also it is

possible, if needed, to model spatially any or all the parameters of the distribution.
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6.3.2 Estimation of the model

The log likelihood function for the GAMLSS model (6.2)) under the assumption that

observations of the response variable are independent is given by

l = Zlog fy(y¢|,ui,<7i, Vi, Ti),
i=1

where f, (.) represents the probability (density) function of the response variable. The
penalised log-likelihood function for model (6.2)) is given by

4 Ji
1
b=L=5> D MV h Gt (6.3)

k=1 j=1

We will need estimates for the ‘betas’, 3 = (8;, B4, B3, 34) ", the parameters of the linear
part of the model, the ‘gammas’, v = (v1y,- -, Y51 Yi2s - - - ,'7J44)T, the random effects
parameters, and the ‘lambdas’ X = (A11,..., A1, M2, ..., Aj4) |, the hyper-parameters
of the model.

Within the GAMLSS framework the linear parameters 3 and the random effects pa-
rameters v are estimated (for fixed values of the smoothing hyper-parameters A) by
maximizing the penalized likelihood function ¢, given by . There are two basic algo-
rithms to achieve this, the RS and the CG algorithms. Both use an iteratively reweighted
(penalised) least squares algorithm. Appendix C of Righy and Stasinopoulos (2005) shows
that both algorithms lead, for given A hyper-parameters, to the maximum penalised log
likelihood estimates for the betas and the gammas, i.e. B and 4. Appendix A.1 of Rigby
and Stasinopoulos| (2005 shows that these estimates are also posterior mode (or MAP) es-
timates. The hyper-parameters A can be estimated locally, see (Rigby and Stasinopoulos,
2013), or globally, see (Rigby and Stasinopoulos, 2005|). The local methods are in general
a lot faster and easier to implement than the global ones. ‘Local’ means that the method
of estimation of the hyper-parameters applies each time within the RS or CG GAMLSS
algorithms and ‘global’ means the method is applied outside the RS or CG GAMLSS al-
gorithms. In addition, for either ‘local’ or ‘global” estimation, there are (at least) three

different criteria for estimating the smoothing hyper-parameters:
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1. minimising the generalised cross validation (GCV), Wood| (2006),
2. minimising the generalized Akaike information criteria (GAIC), |Akaike, (1983),
3. maximum likelihood (ML).

The default method in the GAMLSS software implementation is ‘local ML’ in which
the (smoothing) hyper-parameters (and therefore their corresponding effective degrees of
freedom) are estimated automatically using a local maximum likelihood (ML) procedure
see (Rigby and Stasinopoulos, 2013). (This ‘local ML’ procedure is a penalised quasi-
likelihood (PQL) method, Breslow and Clayton, (1993)).

6.3.3 Gaussian Markov Random Fields

A Markov random field (MRF) is a set of random variables having a Markov property
based on conditional independence assumptions and described by an undirected graph,
G, where each vertex represents an areal unit and each edge connects two areal units and
represents a neighbouring relationship, Rue and Held (2005). Areal data are sometimes
called lattice data, and often the lattice is a 2-dimensional grid in the plane, either finite
or infinite.

Let G = (V, &) be an undirected graph (Edwards, 2000; [Whittaker, 2009) that consists
of vertices V = (1,2,...,q), and a set of edges £, where a typical edge is (m,t), m,t € V.
Undirected is in the sense that (m, t) and (¢, m) refer to the same edge. Following |[Rue and
Held| (2005), a random vector v = (v1,...,7,) " is called a Gaussian MRF (i.e. GMRF)
with respect to the graph G, with mean p and precision matrix MG, if and only if its

density has the form

() o exp —%A('r — 1) Gy —p)

and

Gt # 0 <= (m,t) € Eform # ¢,

where (G,,; is the element of matrix G for row m and column ¢.

Hence the nonzero pattern of G determines G. We can read off from G whether ~,, and
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~; are conditionally independent, because a well known theorem is this field (Theorem 3.2
of Rue and Held| (2005)) says that =, and ; are conditionally independent, given -, for
all r not equal to m or ¢, if and only if G,,; = 0. It also means in practice that the precision
matrix is often sparse. When G is non-singular, another way to represent a GMRF, by
its conditional mean and precision matrix, was given in Besag| (1974)), and known as the
conditional autoregressive model (CAR).

When G is singular the GMRF model can be represented by the intrinsic autoregressive
model (IAR), Besag and Kooperberg (1995). The TAR model has been used for spatially
structured random effects in generalized linear models Banerjee et al| (2014). Rue and
Held| (2005) and [Wood! (2006) present the IAR model within a generalized additive model
(GAM) framework. In this context we extend to the GAMLSS framework.

Assume that a response variable and explanatory variables are recorded at observations
which belong spatially to one of a set of areas (or regions). Zero, one or more than one ob-
servation may be recorded in each region. To incorporate IAR models within the GAMLSS
model (6.2)), set Z to be an index matrix defining which observation belongs to which area,
and let 4 be the vector of ¢ spatial random effects and assume v ~ N, (0, \"'G™'), where
G~ ! is the (generalized) inverse of a ¢ x ¢ matrix, G. In the following TAR model, based
on |Besag and Higdon| (1999), the matrix G contains the information about the neighbours
(adjacent regions), with elements given by G,.,, = n,, where n,, is the total number of
adjacent regions to region m and G,,; = —1 if region m and t are adjacent, and zero
otherwise, for m = 1,...,¢ and t = 1,...,q. This model has the attractive property
that conditional on A and v; for all ¢ # m, then v, ~ N> vn !, (An,,)"') where the
summation is over all regions which are neighbours of region m.

The nonzero pattern of the matrix G determines the graph G. A non-zero value in
matrix G implies a connection between the two corresponding regions in the graph G (they
are connected neighbours). The zero value in matrix G implies no connection between the
two regions in the graph G and hence that the corresponding spatial random effects ,,
and ~; for the two regions are conditionally independent (given the other spatial random
effects ~, for all r not equal to m or t).

The R implementation of the above IAR model as a predictor term for any parameter
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of the distribution of the response variable in a GAMLSS model is achieved by the R

package gamlss.spatial which is described in the Appendix.

6.4 Application to the Munich rent data

Here we use the package gamlss.spatial to provide a detailed spatial analysis of a

data set on rents for flats in the City of Munich.
6.4.1 The data

The response variable is the rent, (i.e. the monthly rental price, which remains after
having subtracted all running costs and incidentals) of properties in the city of Munich,
Kneib| (2013]). We used the Munich rent data in the year 1999, available from data frame
rent99 in the gamlss.data package in R. The data frame rent99 has 3082 observations

on the following 9 variables:

e rent: rent per month (in Euro),

e rentsqgm: rent per month per square meter (in Euro),
e area: living area in square meters,

e yearc: year of construction,

e location: quality of location: a factor indicating whether the location is average

location, (1), good location, (2), or top location, (3),

e bath: quality of bathroom: a factor indicating whether the bathroom facilities are

standard, (0), or premium, (1),

e kitchen: quality of kitchen: a factor indicating whether the kitchen is standard, (0),

or premium, (1),

e cheating: central heating: a factor indicating a property with central heating, (1),

or without central heating, (0),

e district: district in Munich (this provides the spatial explanatory variable).
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In the data frame rent99 the variables location, bath, kitchen and cheating are
declared as factors with reference levels 1, 0, 0 and 0 respectively. The reference level for
cheating was changed to 1 in the analysis, because most properties have central heating.

The distribution of the monthly rent is asymmetric and skewed towards the right as

is shown in Figure [6.1]

Figure 6.1: Histogram and box and whisker plots for rent data from the year 1999 in Munich.
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Figure shows plots of the rent against each of the above explanatory variables. Al-
though these are bivariate exploratory plots and take no account of the interplay between
the explanatory variables, they give an indication of the complexity of this data. The
first two explanatory variables, area and yearc, are continuous. The plot of rent against
area suggests a positive relationship between median rent and area, with an increased
variation for larger area. The assumption of homogeneity in the variance of the rent99
variable appears to be violated here. There is also some indication of positive skewness in
the distribution of the rent variable. The peculiarity of the plot of rent against yearc
is due to the method of data collection. The plot suggests that for houses up to 1960 the
median rent price is roughly constant, but for flats constructed after that year there is an
increasing trend in the median rent price. The remaining box and whisker plots display
how the rent price varies according to the explanatory factors. The median rent price
increases as the location changes from average to good and then to top location. The
median rent price also increases if the flat has a premium bathroom, a premium kitchen

or central heating. There are no surprises in the plots here, but again the problem of
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skewness is prominent with generally (but not always) longer upper than lower tails.

Figure 6.2: Plot of the rent99 against explanatory variables area, yearc, location, bath, kitchen and

cheating.
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In summary, any statistical model used for the analysis of the above data should be

able to deal with the complexity of the relationship between rent and the explanatory

variables. The dependence of the median of the response variable rent on floor space
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(area) and year of construction (yearc) is non-linear and non-parametric smoothing
functions may be needed. Median rent may also depend on interactions between the
explanatory variables. There is clear indication of nonhomogeneity of the variance of rent.
The variance of the response variable rent may depend on its mean and/or explanatory
variables. There is clear indication of skewness in the distribution which may also depend
on explanatory variables. The median rent (and the variance and skewness of rent) may
also depend on the spatial explanatory variable (district), which is a key part of the

analysis.
6.4.2 Model selection strategy

This section describes the model selection strategies adopted in this paper. Let M =
{D, L, T, A} represent a GAMLSS model as defined in Section The components of
M are defined as follows:

D specifies the distribution of the response variable,
L specifies the set of link functions for the distribution parameters u, o, v and 7,
T specifies the terms appearing in the predictors for u, o, and 7,

A specifies the smoothing hyperparameters which determine the amount of smooth-
ing of continuous explanatory variables (area and yearc) and of the spatial effect

(district).

In the search for an appropriate GAMLSS model for any new data set, all the above
four components have to be specified as objectively as possible. The GAMLSS framework
requires that the empirical researchers have a good understanding of the properties of the
distributions from the list of available distributions in the GAMLSS framework.

The selection of the appropriate distribution D is done in two stages, the fitting stage
and the diagnostic stage. The fitting stage involves the comparison of different fitted
models using a generalised Akaike information criterion (GAIC). The diagnostic stage
involves the normalized quantile residuals, Dunn and Smyth| (1996), or 'z-scores’, which
provide information about the adequacy of the model and can be used in connection with

diagnostic plots like worm plots, [van Buuren and Fredriks| (2001), or other test statistics
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eg. Z-statistecs and Q-statistcs, |Royston and Wright| (2000). The selection of the link
function £ is usually determined by the range of parameters. For a given distribution for
the response variable, the selection of the terms 7 for the parameters of the distributions
is done using a stepwise GAIC procedure.

Preliminary analysis, using distributions defined on the positive real line, indicated
that the Box-Cox Cole and Green distribution (Cole and Green, 1992), BCCGo(u,o,v),
seems an appropriate distribution for the rent data to use for model selection. The BC'C'Go
distribution has a default log link for the median . If we use an identity link for u it
implies an additive model for p and so, for example, changing from an unpopular to a
popular district results in a fixed change in median rent, irrespective of how large an area
the property has and irrespective of its year. It is more likely that the change in median
rent is not a fixed amount but a fixed percentage, implying that a multiplicative model
is more appropriate, i.e, a log link for . It was found that the log link for p provided a
better fit to the data then the identity link.

Because the fitting time of the spatial GMRF term for district in the model is longer
that the rest of the terms, first we used a selection procedure for all explanatory variables
(apart from district) for all distribution parameters (i, o and v) using a generalised
Akaike information criterion, GAIC, with penalty equal 4. Then, given the selected model,
we tried adding the GMRF term TAR, with penalty equal 2. The reason for the choice
of k =4 in GAIC for the selection of terms (excluding the spatial effect) is that several
terms have a single parameter and a 5% significance level for a generalized likelihood
ratio test for a single parameter being different from zero is based on an (asymptotic)
Chi-squared distribution with critical value X%,0,05 = 3.84 =~ 4. The spatial term involves
many effective parameters being jointly tested and so a lower critical value per effective
parameter is appropriate. When choosing whether to select a spatial term, we decided to
use the standard AIC with k = 2.

The procedure to select the explanatory variables using the BC'CGo distribution is

first to fit an initial starting model and then:

(1) use a forward GAIC selection procedure to select an appropriate model for p, with

o and v as constants,




APPLICATION TO THE MUNICH RENT DATA 152

(2) use a forward selection procedure to select an appropriate model for o, given the

model for p obtained in (1) and for v fitted as a constant,

(3) use a forward selection procedure to select an appropriate model for v, given the

models for 1 and o obtained in (1) and (2), respectively,

(4) use a backward elimination procedure to select an appropriate model for o, given

the models for p and v obtained in (1) and (3), respectively;

(5) use a backward elimination procedure to select an appropriate model for p, given

the models for o and v obtained in (3) and (4), respectively.

The above procedure is executed in gamlss using the function stepGAICA11.A. The re-
sulting chosen model may contain different explanatory variables for u, ¢ and v. Then

from this model we
(i) add the district as a spatial effect for p using the IAR spatial model,
(ii) add the district as a spatial effect for p and o using the TAR spatial model,
(iii) add the district as a spatial effect for u, o and v using the IAR spatial model.

The (smoothing) hyper-parameters A can be fixed or estimated from the data. The
standard way of fixing the (smoothing) hyper-parameters is by fixing their effective degrees
of freedom (edf) for smoothing.

The local maximum likelihood estimation method for each A is the method used in
our analysis. Hence, the model terms were selected using the GAIC, while the smooth-

ing parameters (and hence their corresponding edf) were chosen using local maximum

likelihood.
6.4.3 Results

In Section we explained the model selection strategy. The final chosen fitted

model m2final is given by
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Y ~BCCGo(ji, &,0),

log(f1) =6.06 + hy1(yearc) + hoy(area) + s(district)
+ 0.079(if location=2, good) + 0.211(if location=3, top)
— (0.255 — 0.0038nyearc)(if cheating=0, no central heating)
+ (0.146 — 0.0034nyearc 4+ 0.0023narea)(if kitchen=1, premium) (6.4)
+ 0.067(if bath=1, premium),

log(6) =11.811 + hya(yearc) + 0.0016(area)
+ 0.231(if cheating=0, no central heating),

v =— 12377 + hys(yearc) + hos(area) 4+ 2.381(if kitchen=1, premium),

where the h functions are smooth non-parametric functions and s is an IAR spatial
smoothing function. The distribution BCCGo(u, o,v) has a multiplicative model for the
median g, (resulting from the log link for u), and nyearc and narea are respectively
yearc and area centred at their means (i.e. subtract their means, 67.37 and 1956.31, re-
spectively). The median p model includes a spatial term in district (using the GMRF
model TAR), and provides an improvement (i.e. reduction) in AIC. We also fitted the
model with additional spatial effects for ¢ and v but the improvement was too small so
we opted for the simpler model, in this case, the spatial effect just for u.

Figures [6.3] [6.4] and [6.5] display the fitted parametric terms and smooth functions in
log(f1) in the final chosen model (6.4). Their effects are additive for log(j1) and hence
multiplicative for the fitted median rent ji. The fitted median rent generally increases
with area and year of construction (from Figure . A good location results in a 8.2%
[calculated by (e%07 — 1) x 100] increase in fitted median rent (relative to an average
location), while a premium location results in a 23.5% increase, and a premium bathroom
results in a 6.9% increase.

The effect on median rent of no central heating depends on the year of construction.
No central heating results in a 22.5% decrease in median rent for the average year of

construction, and a higher % decrease for older properties. The effect of a premium kitchen
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on median rent depends on both year of construction and area of the property, resulting
in a 15.6% increase in median rent for a property with average year of construction and
average area, and a higher % increase for older or larger properties.

Figure shows the district effect on log(fi) where we can see that the rent prices
are higher in the centre and southeast regions than in the north and west regions of the
Munich city. Relative to the baseline district a region with the best district has a 10.5%
[i.e (e%1° — 1) x 100] higher fitted median rent, while a region with worst district has a
9.5% [i.e (1 — e %19) x 100%] lower fitted median rent (assuming all other explanatory

variables including location type are fixed).

Figure 6.3: Term plots for p.
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Figure 6.4: Term plots of the interactions for pu.
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Figure 6.5: The fitted spatial effect for u for the chosen model with spatial effect.
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Figure shows the fitted parametric terms and smooth function in log(s), in the
final chosen model . Figure shows that the fitted ¢ (the approximate coefficient of
variation of rent) increases with area but decreases with year of construction. No central
heating results in a 26.1% increase in &. [It should be noted that if the total effective
degrees of freedom used in the model for p is high relative to the sample size, then this

can result in negative bias in ¢. This was not the case in the fitted model (6.4))].
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Figure 6.6: Term plots for o.
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Figure shows that the fitted 7 (the skewness parameter) in decreases with
area but increases with year of construction. Note that decreasing © increases the positive
skewness of the fitted distribution for rent. A premium kitchen results in an increase of
2.4 in v. Hence larger older properties with a standard kitchen have a more positively

skew fitted distribution for rent.
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Figure 6.7: Term plots for v.
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6.5 Residual diagnostics

We check the adequacy of the fitted model using (normalised quantile) residuals, Dunn
and Smyth (1996). If the model is correct then the true residuals have a standard normal
distribution. Figure displays a worm plot for the residuals of the chosen fitted model.
The worm plot is a detrended normal QQ plot of the residuals which indicates a reasonable
fit to the data, since over 95% of the points lie within the elliptical (dashed) 95% pointwise

interval bands.
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Figure 6.8: Worm plot of the residuals for the chosen final model m2final.
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In order to investigate the adequacy of the chosen model for different combinations
of the two continuous explanatory variables yearc and area, we cut each explanatory
variable into four non-overlaping intervals with equal numbers of observations giving 16
joint intervals and obtain a worm plot (i.e detrented QQ plot) for cases in each of the
16 joint intervals. This is a way of highlighting failures of the model within different
joint ranges of the two explanatory variables. Figure shows the result, (obtained by a
single worm command in the gamlss package), where above the plot the four intervals for
yearc are displayed and to the right of the plot the four intervals of area are displayed.
The worm plots generally indicate a reasonable fit to the data in the 16 joint intervals.
Similarly, Figure displays the worm plots for combinations of the two explanatory
variables yearc and kitchen, which also indicate a reasonable fit to the data. For the sake
of brevity, the worm plots for individual explanatory variables and for other combinations
of two explanatory variables were omitted here, but they also indicated a reasonable fit

to the data.
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Figure 6.9: Worm plot of the residuals split by the yearc and area variables for the final model.
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Figure 6.10: Worm plot of the residuals split by the yearc and kitchen variables for the final model.
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6.6 Conclusions

We have shown that the GAMLSS framework provides a platform to fit, compare and
check spatial models for the parameters of the distribution of a response variable which
may be non exponential family. This includes continuous response variable distributions
which are highly positively or negatively skewed and/or have high or low kurtosis (i.e.
leptokurtic or platykurtic), discrete count distributions that are overdispersed (eg negative

binomial) or have excess zeros (eg zero inflated negative binomial), or mixed continuous-
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discrete distributions (eg zero inflated gamma and inflated beta). The spatial analysis
shown in this paper can be applied to other data sets that have geographical information
specifying the neighbours of each region.

We would like to finish by emphasizing that looking at a single statistical model
in isolation is not a good practice. Any chosen model should be able to stand up to
scrutiny and that involves being able to compare it with alternative models and checking

its assumptions.




Appendix D

D.1 The R implementation of GMRF spatial model within GAMLSS

Here we explain the implementation of the important GMRF submodel, the TAR
model described in Section [6.3.3] within GAMLSS. The IAR model is implemented in
the package gamlss.spatial thought the function gmrf (). A new package was needed
because of several dependencies of the function gmrf () on existing but not standard R
packages. Also gmrf () is the first function of a series of additive term spatial functions
that are in progress. The function gmrf () fits an IAR term within the predictor of any
distribution parameter in a GAMLSS model. There are two methods implemented for
estimating the (smoothing) hyperparameter A. The two different methods should produce
identical results and can be seen as PQL methods, (Breslow and Clayton, 1993). The
method is selected by the argument method of the function gmrf (). There are two possible

values for the method:

i) method = "Q" which estimates the spatial IAR (smoothing) hyper-parameter A\ by
minimizing the Q-function, (Rigby and Stasinopoulos, 2013), which is a way to

minimize the local marginal likelihood function,

ii) method = "A" which estimates the spatial IAR (smoothing) hyper-parameter A us-
ing the “alternating” method to minimize the local marginal likelihood, see (Rigby

and Stasinopoulos, [2013)).

To perform the analysis, we need the matrix G, which has the information about

the relationships between the areas, showing if they are neighbouring areas or not. If two
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polygons areas have at least a single point in common, then they are treated as neighbours.

The function gmrf () accepts three different ways to pass the geographical information:

i) polys, the polygon: a 2-column matrix of coordinates defining the boundary for

each area,
ii) neighbour, a list of the polygon area neighbours of each area, or
iii) precision, the matrix G.

If the polys information is given, then the function gmrf () will automatically compute
the matrix G to do the analysis. The same happens if the neighbour information is given.
The fastest way to estimate the spatial AR model in , as described in sections
and , is to give the precision (i.e. matrix G) since no extra calulations are needed.

Extra utility functions available within the package to obtain the matrix G before

performing the analysis (to speed up the fitting) are:
polys2nb() which creates neighbour list from the polygon polys information and
nb2prec() which creates the matrix G from the neighbour information.

When fitting several models for model selection this saves time. To plot the fitted values
of a fitted gmrf object the function draw.polys() is available. For more details about the

gamlss.spatial package, see the help file in http://cran.r-project.org/.




Chapter 7

Discussion

7.1 Resumo

Neste capitulo sao apresentadas as conclusoes gerais da tese e temas para trabalhos

futuros.

7.2 Conclusion

In this work we presented inference and diagnostics in spatial model with different
frameworks and techniques. In the geoestatistics framework, Chapter[2]extended the Gaus-
sian spatial linear model relaxing the assumption of normality of observations and local
influence methodology, for one single realization of the process. Chapters [3| presented in-
ference on Gaussian spatial linear models with repetitions, likelihood ratio test and the
Bartllet corrected version, and we amended and inference approach to estimate the smooth
parameter from the Matérn family class of models. Chapters 4] and [5| considered new ap-
proach on local influence diagnostics and global diagnostics on Gaussian spatial linear
models with repetitions, respectively. In the Markov random fields framework, Chapter [
presented the generalized additive models for location, scale and shape and showed the
flexibility of these models. The exposition of spatial models in GAMLSS in the paper is
new and we believe that it has the potential for a wide impact in applied statistics. We

believe this is well illustrated by the real data set analysis in the paper.

7.3 Future research

Some ideas of ongoing and/or future research are for instance:

164



FUTURE RESEARCH 165

To obtain the modified likelihood ratio statistic and the corrected version by using

Bartlett corrected factor;

Non-normal alternative distributions for the Gaussian spatial linear models with
repetitions such as the ¢ multivariate distribution, and the framework of spatio-

temporal models for this type of data set;

The study of identifiability in the ellyptical spatial linear models with repetitions

considering heteroskedasticity, and

the spatio-temporal approach in geostatistics and within the GAMLSS framework.
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