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Resumo

Fornecer meios para que desenvolvedores de software tomem decisões energéticamente
eficientes é uma dimensão crítica para se melhorar o consumo de energia de sistemas computa-
cionais. Apesar do crescente interesse em processos de desenvolvimento de software, arcabouços,
e modelos de programação de forma a facilitar o gerenciamento de energia no nível da aplicação,
pouco se sabe sobre como arquitetar sistemas concorrentes energéticamente eficientes que rodem
em arquiteturas paralelas. Isso é inoportuno por pelo menos duas razões: (1) graças a proliferação
de CPUs multicore, programação concorrente se tornou uma prática padrão na engenharia de
software moderna; (2) uma CPU com várias unidades de processamento (por exemplo, 32)
geralmente dissipa mais potência do que uma com um número menor (por exemplo, 1 ou 2).

No entanto, desenvolvedores ainda não entendem como suas modificações de código
impactam no consumo de energia de uma aplicação paralela. Uma análise do StackOverflow
mostrou evidências que esse é um problema real; mesmo embora exista um crescente interesse
em questões relacionadas ao consumo de energia, desenvolvedores ainda cometem equívocos
e mantêm suposições que não são sempre verdadeiras. Essa falta de conhecimento é primari-
amente devido a falta de ferramentas apropriadas para medir/identificar/refatorar hotspots de
consumo de energia. Essa tese então começa a pavimentar o abismo do primeiro problema — a
falta de conhecimento — através de uma extensa exploração experimental de dois dos pilares
fundamentais da programação concorrente: (1) coleções thread-safe e (2) construções para o
gerenciamento de threads. Através de uma lista de achados que não são sempre óbvios, esta
tese ilumina o relacionamento entre escolhas de design de código paralelo com seu consumo de
energia.

Esta tese começa então a pavimentar a lacuna do segundo problema — a falta de
ferramentas. Lições aprendidas em um dos estudos anteriores mostraram que várias tarefas do
arcabouço ForkJoin operam em estrutura de dados indexáveis, com sub-tarefas operando
somente em parte dessa estrutura de dados. Uma solução ingênua é de copiar parta da estrutura de
dados e utiliza-la na computação sub-sequente. Em um arcabouço recursivo como o ForkJoin,
dado uma representação baseada em arrays, cada chamada recursiva criará n novos arrays, onde
n é a profundidade do fork. Como solução, esta tese apresenta uma refatoração que, ao invés de
copiar parte da estrutura de dados, ela compartilha-a, possibilitando que sub-tarefas operem em
partições contíguas da estrutura de dados.

Essa refatoração foi avaliada em 15 projetos de código aberto, a qual foi capaz de
economizar energia em todos os casos (média de 12% de economia). A versão refatorada
foi enviada aos mantenedores do projeto original e, durante um período de 40 dias, 7 dos 9
mantenedores que responderam aos patches enviados já haviam aceitado-os e integrado-os.
Discussões durante o processo de integração revelaram que desenvolvedores não estão cientes
desta otimização. Esta tese então implementou essa refatoração como um plug-in da IDE Eclipse



de forma que outros desenvolvedores possam (1) detectar usos de cópia em cenários o quais
seriam beneficiais o uso do modelo de compartilhamento and (2) refatorar o código de forma
automática.

Palavras-chave: Eficiência Energética, programação concorrente, refatoração



Abstract

Empowering application programmers to make energy-aware decisions is a critical di-
mension in improving energy efficiency of computer systems. Despite the growing interest
in designing software development processes, frameworks, and programming models to facil-
itate application-level energy management, little is known on how to design application-level
energy-efficient solutions for concurrent software running on parallel architectures. This is
unfortunate for at least two reasons: (1) thanks to the proliferation of multicore CPUs, concurrent
programming is a standard practice in modern software engineering; (2) a CPU with more cores
(say 32) often consumes more power than one with fewer cores (say 1 or 2).

However, application developers still do not understand how their code modifications
impact energy consumption in a parallel system. Analyzing STACKOVERFLOW showed evidence
that this is a real problem; Even though the interest in energy consumption issues is increasing
over the years, developers still hold misconceptions and assumptions that are not always true.
This lack of knowledge is primarily due to a lack of appropriate tools to measure/identify/refactor
energy consumption hotspots. This thesis begins to bridge the chasm of the first problem —
the lack of knowledge — by presenting an extensive experimental space exploration over two
concurrent programming building blocks: (1) thread-safe collections and (2) thread management
constructs. Through a list of findings that are not always obvious, we illuminate the relationship
between the choices and settings of design decisions and energy consumption of parallel systems.

This thesis then starts to bridge the gap of the second problem — the lack of tools.
Lessons learned in our previous studies showed that ForkJoin tasks often operate on an
indexable data structure, with subtasks operating only on part of this data structure. One naive
solution is to copy part of the data structure and use it in the next computation. In a recursive
framework such as ForkJoin, given an array-based representation, each recursive call will
create n new arrays, where n is the width of forking. To address this, we derive a refactoring that,
instead of copy part of the data structure, it shares it, allowing subtasks to operate on contiguous
partitions of the data structure.

We manually applied this refactoring into 15 open source projects. Our refactoring
succeed in saving energy for each one of them (12% average saving). We sent the refactored
versions to the project owner and, during a timeframe of 40 days, 7 out of 9 projects that
replied to our patches have already accepted and merged them. Discussions during the merge
process revealed that developers were not aware of this optimization. We then implemented this
refactoring as an Eclipse plug-in so that other developers can (1) detect uses of copy where it
would be beneficial to use sharing and (2) refactor the code in an automated way.

Keywords: Energy efficiency, concurrent programming, refactoring
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1
Introduction

Um passo a frente e você não está mais no mesmo lugar
One step forward and you are not in the same place

—CHICO SCIENCE (Um Passeio No Mundo Livre, Afrociberdelia)

Modern computing platforms are experiencing an unprecedented diversification. Beneath
the popularity of the Internet of Things, Android phones, Apple iWatch and Unmanned Aerial
Vehicles, a critical looming concern is energy consumption. This concern pertains not only for
unwired devices as data centers have limited scalability as they struggle with soaring energy
costs. Since large companies rely on reliable and fast computing services, cooling such hardware
turned out to be a new concern for them.

This issue, if not properly addressed, not only can impact negatively on revenue, but can
also emit dozens of thousands of tons of carbon dioxide in the atmosphere. As a consequence,
large companies are struggling to find an optimal solution for this case. Google, on the one
hand, claims to save millions of dollars per year by following a set of recommendations on
how to improve energy efficiency in data centers1. Facebook, on the other hand, is planing a
more aggressive approach: move part of its data center to just 100km south of the Arctic Circle,
because of “its access to renewable energy and the cold climate that is crucial for keeping the
servers cool”2. Since not all companies can afford such investments, a better way to decrease
energy costs is by promoting energy efficient systems.

For many years, research that connects computing and energy efficiency has concentrated
on the hardware layer. One of the reasons is due to, for instance, while a lightbulb can consume
40 watts, a CPU with interconnects and DRAM can consume 60 watts (see Chapter 4). However,
there are studies motivated by the assumption that only hardware dissipates power, not software.
However, recent studies have showed strong evidences that this assumption does not capture
the whole picture (BELLOSA, 2000; LI; TRAN; HALFOND, 2014). That would be analogous

1http://www.google.com/about/datacenters/efficiency/external/
2http://www.theguardian.com/environment/2011/dec/15/facebook-coal-clean-power-energy-greenpeace
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to postulating that only automobiles are responsible for burning gasoline, not the people who
drive them and the way they are used. In any computer system, it is software that directs much
of the activity of the hardware. Consequently, software can have a substantial impact on power
consumption.

In spite of advances in many areas, IT energy consumption keeps rising steeply (ASAFU-
ADJAYE, 2000), which indicates that rising demand is outpacing efficiency improvement. This
is not surprising, given that software engineering has, in the past decades, focused on developer
efficiency, not on minimization of resource consumption. Software solutions for improving
energy efficiency of computer systems can work at different levels, ranging from machine code
level to end-user applications. But, generally speaking, concerns about energy usage were left
for low-level developers. And they made it right. Energy efficient solutions on hardware/archi-
tecture (HOROWITZ; INDERMAUR; GONZALEZ, 1994; TIWARI; MALIK; WOLFE, 1994;
IYER; MARCULESCU, 2002; ISCI et al., 2006; KUMAR et al., 2003; SOLERNOU et al.,
2013), operating systems (GE et al., 2007; YUAN; NAHRSTEDT, 2003; MERKEL; BELLOSA,
2006; RANGAN; WEI; BROOKS, 2009), and runtime systems (VIJAYKRISHNAN et al., 2001;
FARKAS et al., 2000; RIBIC; LIU, 2014) are more established.

While the strategy of leaving the energy consumption optimization problem to the lower-
level layers has been successful, recent work showed that even better results can be achieved
by empowering and encouraging software developers to participate in the process (KWON;
TILEVICH, 2013; LI; TRAN; HALFOND, 2014; CARBIN et al., 2012). As a result, in recent
years, a number of solutions from higher levels of the computer stack — such as program
analysis (HAO et al., 2013; BARTENSTEIN; LIU, 2013), programming models (SORBER
et al., 2007; BAEK; CHILIMBI, 2010; SAMPSON et al., 2011; COHEN et al., 2012; KANSAL
et al., 2013), and applications (PINTO; CASTOR; LIU, 2014a; ZHANG et al., 2012) — were
proposed.

These application-level energy management strategies complement lower-level strategies
with an expanded optimization space, yielding distinctive advantages: first, applications are
viewed as a white box, whose structural features may be considered for energy optimization;
second, the knowledge of programmers and their design choices can influence energy efficiency;
third, application programmers can take the usage context into account to make more aggressive
optimizations whereas low level ones are inherently conservative.

Concomitantly, in the last decade, the impact of multicore architectures has clearly
been felt by computer users. Multicore systems offer the potential for cheap, scalable, high-
performance computing. To achieve this potential, it is essential to take advantage of new
heterogeneous architectures comprising collections of multiple processing elements. To leverage
multicore technology, applications must be concurrent, which poses a challenge, since it is
well-known that concurrent programming is hard (SUTTER, 2005). However, both academia
and industry believe that mutli-core technology will remain prevalent for the years to come (ES-
MAEILZADEH et al., 2013).
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In order to adapt to the new hardware, the software community has been very active in
developing novel software techniques to address a wide range of properties of multithreaded
programs, such as correctness, programmability, and performance. However, despite their
promise, few language-level or application-level energy-efficient solutions address concurrent
software running on parallel architectures (BARTENSTEIN; LIU, 2013; GAUTHAM et al.,
2012; TREFETHEN; THIYAGALINGAM, 2013; RIBIC; LIU, 2014). This is unfortunate for at
least two reasons: (1) thanks to the proliferation of multicore CPUs, concurrent programming
is a standard practice in modern software engineering (TORRES et al., 2011); (2) a CPU with
more cores (say 32) often consumes more power than one with fewer cores (say 1 or 2). Energy
optimization over programs on such platforms has the potential to yield larger savings, but may
also face more challenges (IYER; MARCULESCU, 2002; ISCI et al., 2006; PINTO; CASTOR;
LIU, 2014b).

Ultimately, the energy consumption of a multithreaded program is not an easy task to
reason about. For instance, if a multi-threaded program receives a 2x speed-up but, at the same
time, yields a fivefold increase in power consumption (as compared with a single core execution),
energy consumption — the product of power consumption times execution time — and thus
energy efficiency — the amount of work that can be achieved by consuming a certain amount
of energy — degrades as the user embraces multi-core CPUs. This challenge, if not addressed
properly, may have a severe negative impact on the future of multicore technology, since one
of the main reasons for the popularization of multi-core architectures was the high-energy
consumption of high-end single core processors.

In this thesis, we believe that educating and empowering software developers with useful
tools can play a prominent role in reducing the energy consumption of the applications they
write. On large-scale long-running applications deployed on computing clusters, even a small
drop in power consumption can implicate in large savings. To achieve this goal, it is important to
get a better understanding of high-level design and implementation choices and the associated
implications for software energy consumption. However, understanding and redesigning an
application to consume less energy is easier said than done.

1.1 The Problem

Developing an energy efficient concurrent system is a daunting task. One of the most
important problems in this task is to understand where energy is being consumed and, then,
understand how the code can be changed to reduce the energy consumed. The software develop-
ment process is usually supported by a great diverse set of tools, and programmers are used to
rely on them. For measure and analyze software energy consumption, it would not be different.
Energy consumption estimation tools do exist (LIU; PINTO; LIU, 2015; HAO et al., 2013; LI
et al., 2013; SEO; MALEK; MEDVIDOVIC, 2008a), but they do not fully support this activity,
due to at least three reasons:
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1. They require an in-depth knowledge of low-level implementation details and pro-
grammers under time pressure have little change to learn how to use them;

2. They do not provide direct guidance on energy optimization, i.e., bridging the gap
between understanding where energy is consumed and understanding how the code
can be modified in order to reduce energy consumption;

3. They do not take into consideration the impact of parallel programming techniques
into the code.

Without usable and useful tools, software developers can only rely on their conventional
wisdom, or search for energy saving best practices in software development forums and blogs.
Unfortunately, many of these guidelines are not supported by empirical evidence or, at the worst
case, can be even incorrect (PINTO; CASTOR; LIU, 2014b).

In this thesis we tackle two important problems found in the development of concur-
rent applications that run on parallel architectures with focus on software energy consumption
optimization. The first one is the lack of knowledge. Nowadays, developers do not fully un-
derstand how their code modification can impact in energy consumption in a parallel software
system. Moreover, since there are several threading implementations available in a mainstream
programming language such as Java, practitioners should carefully choose which one imple-
mentation is more appropriated to which scenario. These implementations differ in several
ways, such as performance (GU; LEE; CAI, 1999) and programmer effort, satisfaction and error-
proneness (PANKRATIUS; SCHMIDT; GARRETON, 2012), but their trade-off are reasonably
well-understood. However, little is known about their energy efficiency.

This lack of knowledge is primarily due to our second problem: the lack of tools.
Developers are in need of appropriated tools to measure/identify/refactor energy consumption
hotspots. Even though there are some preexisting tools that can be used to fill part of this gap,
most of them falls in one of the following categories: (1) they do not provide direct guidance,
(2) they are platform dependent, (3) they are difficult to use or (4) they do not take parallel
programming constructs into consideration. This fact indicates an opportunity to build a better,
simpler, more applicable tools.

1.2 The Goal

The goal of this study is to mitigate these two problems aforementioned: the lack of
knowledge, and the lack of tools for developing parallel energy efficient applications. To achieve
this goal, this thesis investigates the following key research questions regarding software energy
consumption:

⌅ RQ1. What are the common problems faced by developers building energy-efficient
applications?
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⌅ RQ2. Do different thread-safe collections have different impacts on energy consump-
tion?

⌅ RQ3. Do different thread management techniques have different impacts on energy
consumption?

⌅ RQ4. Can refactoring play a role in reducing the energy consumption of a parallel
system?

To answer these questions, we conducted several investigations. To gain an understanding
of this problem and answer RQ1, we first quantitatively and qualitatively analyzed STACKOVER-
FLOW, one of the most used Q&A website in the software development world, in order to
observe how practitioners are dealing with energy consumption issues. Second, we answer RQ2
by investigating the energy consumption characteristics of 16 Java collection implementations
grouped by 3 well-known interfaces: List, Set, and Map. Third, in order to answer RQ3,
we conducted an empirical study aiming to illuminate the relationship between the choices and
settings of three thread management constructs, the Thread, Executors and ForkJoin
styles, and energy consumption. We then conducted an extensive experimental space exploration
over both micro-benchmarks and real-world Java programs, which were manually modified to
use three important thread management constructs in concurrent programming. Ultimately, we
provide answers for RQ4 by presenting a refactoring approach that can be used to mitigate one
common misuse present in ForkJoin data-parallel computations. With such tool, we mitigate
the burden faced by developers when writing energy efficient parallel programs.

1.3 The Contributions

This thesis makes several contributions. Some contributions bring significant improve-
ments over the state-of-the-art tools for improving software energy consumption, while others
break new ground in areas never before explored.

⌅ Insights about what developers think about software energy consumption. To
the best of our knowledge, ours is the first quantitative and qualitative study that
offers insights into what developers think about software energy consumption.

⌅ The categorization of the most common energy problems, causes and solutions.
Following a qualitative research approach, we categorize 5 common problems, 7
possible causes and 8 possible solutions for those problems. We also compare if the
solutions suggested by practitioners are supported by researchers.

⌅ An understanding of software energy consumption in thread-safe collections.
We present an empirical study evaluating the performance and energy consumption
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characteristics of 16 Java collection implementations grouped by 3 well-known
interfaces: List, Set, and Map.

⌅ An understanding of software energy consumption in parallel systems. We con-
duct an extensive experimental space exploration illuminating the relationship be-
tween the choices and settings of thread management constructs, and performance
and energy consumption over real-world Java programs;

⌅ The L curve. We introduce the L curve, which is an observation that energy con-
sumption typically increases as the number of threads increases, and then gradually
decreases as the number of threads approaches the number of CPU core.

⌅ Race to idle does not hold. Race to idle is the assumption that faster programs
will consume less energy because they will have the machine idle fast. However, we
provide evidences that being “faster” has little correlation with being “greener” for
CPU computations only, running in multi-core architectures.

⌅ A discussion of when to use the Java threading constructs. We observe that dif-
ferent thread management constructs have different impacts on energy consumption.
For instance, for I/O-bound programs, the Thread style exhibits the best energy con-
sumption, whereas the ForkJoin style has the worst. For embarrassingly parallel
benchmarks, the opposite holds.

⌅ A refactoring approach. To the best of our knowledge, we derived the first refactor-
ing approach aiming to improve software energy consumption of a parallel software
system.

⌅ A refactoring engine. We implemented the first refactoring engine as an Eclipse
plug-in. This plugin can be used to (1) help a programmer detect a kind of ForkJoin
misuses; and (2) refactor the misused code into a lightweight form.

1.4 Organization

The remainder of this work is organized as follows.

⌅ Chapter 2 reviews essential concepts used throughout this work;

⌅ Chapter 3 presents the motivation to study software energy consumption. In this
chapter, we present the results of an empirical analysis of STACKOVERFLOW, the
most important forum in the software development world. This study reveals that
energy consumption is a real problem observed in practice, and illustrates some
problems, causes and solutions for energy-related problems (Section 3.3.2, 3.3.3
and 3.3.4, respectively);
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⌅ Chapter 4 shows the impact on energy consumption of different thread-safe collection
implementations. We consider three important collection interfaces: List, Set,
and Map. We also consider different “tuning knobs” of these constructs: the number
of threads, the initial capacity, and the load factor. To gain confidence in our results
in the presence of platform variations and measurement environments, we employ
two machines with different architectures (a 32-core AMD vs. a 16-core Intel). We
further use two distinct energy measurement strategies: an external energy meter, and
Machine-Specific Registers (MSRs).

⌅ Chapter 5 shows how different threading techniques impact energy consumption. We
consider three important thread management constructs in concurrent programming:
explicit thread creation, fixed-size thread pooling, and work stealing. We further shed
light on the energy/performance trade-off of three “tuning knobs” of these constructs:
the number of threads, the task division strategy, and the characteristics of processed
data. Through an extensive experimental space exploration over real-world Java
programs, we produce a list of findings about the energy behaviors of concurrent
programs, which are not always obvious.

⌅ Chapter 6 presents a catalog of bottlenecks present in ForkJoin applications, and it
discusses how one can overcome them. Also, it presents our proposal of a refactoring
tool. Our refactoring is based in one of the patterns identified in the previous chapter.
We then present the design and evaluation our approach for detecting and refactoring
a kind of ForkJoin misuse. We have applied our approach in 15 open-source
projects, and we observed an energy saving of up to 23% (12% on average). Also,
our evaluation reveals that our approach is useful and requires little programming
effort.

⌅ Chapter 7 surveys the related work; and

⌅ Chapter 8 presents our final considerations and schedule for the remaining activities;

The main chapters of this thesis have been published at premiere software engineering
conferences and journals. In particular, Chapter 3 is a MSR-2014 paper (PINTO; CASTOR;
LIU, 2014b). Chapter 4 is a JSS-2015 paper (PINTO et al., 2015). A previous version of this
chapter has also appeared in the SEPS-2014 workshop (PINTO; CASTOR, 2014). Chapter 5
appeared in an OOPSLA-2014 paper (PINTO; CASTOR; LIU, 2014a). Chapter 6 is currently
under review (PINTO et al., 2015) at a premiere software engineering conference. These chapters
have been extended and revised when writing this thesis.
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2
Background

When a history of the last 5,000 years of computing is written in the future,
shared memory will be viewed as an aberration.

—JOE ARMSTRONG

In this chapter we review and introduce some essential concepts used in this work. First,
we discuss what concurrent programming is in Section 2.1. In this context, we discuss the benefits
and the challenges that still make concurrent programming hard. Section 2.2 discusses important
concepts of software energy consumption and how it can be measured. Finally, Section 2.3
introduces the benefits and challenges related to software refactoring.

2.1 A Sip of the History of Concurrency

Nowadays, computers are capable of doing several things at the same time, such as
playing games, movies, and music. This is due to the innate capacity of sophisticated operating
systems in performing multi-tasking, which is achieved primarily with time-sharing techniques.
In this model, the scheduler has to share the processor time between all other processes that want
to use the processor. One of the motivating factors led to the development of operating systems
that support time sharing is because it is more efficient to use the wait time of a program to let
another program use the CPU in his place.

This model emerged as the prominent model of computing during the 1970s, representing
one of the major technological shifts in the history of computing (LEA, 1999). Using this model,
a larger number of clients can interact concurrently with a single computer, dramatically lowering
the cost of using computers. Some time-shared computers consist of a single CPU, while others
consist of a set of identical CPUs. With only one CPU, programs can be executed concurrently.
However, with more than one CPU, programs can be executed in parallel. With a single CPU,
no real parallel execution is possible, but that one CPU can be shared in such a way that many
programs seem to be executing at the same time and that CPU is used more efficiently (e.g., wait
time is decreased)
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Although concurrency and parallelism are similar concepts, they are not the same.
Concurrency consists in simulating several execution units, taking advantage of the fact that
some of these operations may take longer and do not require them to use the CPU (e.g. I/O
operations). On the other hand, the term parallelism refers to techniques used to make the
program faster. This is achieved by performing several computations in parallel. Parallelism,
however, requires hardware with multiple CPUs. Depending on the number of CPUs available,
the execution of program can be literally parallel, entirely time-shared, or a combination of both.

Sequential programs are easier to write because they are more intuitive to reason about,
since they only have a single control flow. However, the new reasoning model is not the unique
problem in the transitioning from sequential to concurrent systems. Several difficulties and
challenges are encountered in order to write correct and efficient concurrent programs. Here after
we briefly present some historical facts (Section 2.1.1), some basic concepts for the construction
of concurrent programs (Section 2.1.2), and some well-known problems that programmers might
stumble upon when writing concurrent programs (Section 2.1.3). In Section 2.1.4, we turn our
focus on writing concurrent programs using the Java programming language.

2.1.1 The Free Lunch is Over

Gordon Moore, co-founder of Intel, observed that the number of transistors on a chip
would double in approximately every two years with no additional cost. This prediction has
proven to be accurate and became known as the Moore’s Law (SCHALLER, 1997), which was
valid for years. In part, the reason is because, as processor technology progressed, the size of
transistors has decreased significantly. This exponential improvement has dramatically enhanced
the impact of digital electronics in general, and this law has been constantly employed to describe
the growth of performance metrics in technology, and has also applied in other fields such as
economy. Developers got used to the “free lunch” of computer performance, which allowed them
to have faster applications simply by using faster computers, without the need of any additional
source code modification.

However, exponential growth can not last forever. For instance, one hard physical
limit can never be overcome: light will not get faster. Around 2004, it has become difficult
to increase the clock rate due to not just one but at least two issues such as (1) too much heat
and (2) too high power consumption. Cooling processors with clock rates higher than 3.4GHz
became prohibitively expensive. In this scenario, new solutions to improve performance became
necessary.

One approach to address this problem is to use more than one processor in a single chip
(also known as multi-core processors). Thus, each processor does not need to work on a high
frequency. However, this architectural change places a burden on application developers since to
leverage parallel architectures, applications must be built with parallelism in mind. One possible
solution is through automatic program parallelization of sequential programs (BANERJEE et al.,
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1993). However, many researchers agree that automatic techniques are capable of exploiting
only modest parallelism and have been pushed as far as they will go (LEE, 2006). A natural
conclusion is that programs themselves must become more concurrent. If developers hope
to continue to get performance gains in computing, now they should rethink about software
development — the lunch is not free anymore.

Multi-core processors are mainstream nowadays, and both academia and industry believe
that multi-core technology will remain prevalent for the years to come (ESMAEILZADEH et al.,
2013). Nevertheless, multi-core processors are only beneficial for concurrent applications and
have little value for most existing mainstream software. Moreover, processor manufacturer are
talking about someday producing 1,000-core chips on mainstreams computers. A single-threaded
application running in those chips can exploit, at most, 1/1,000 of potential throughput. This is a
near future, though. In a quick search for the top 10 supercomputers in the world1, we observed
that, on average, the systems contain 182,035 processors. Since the average clock frequency of
these machines is fairly low (in our search it was 2.5 GHz), the full potential of these systems
must be exploited through efficient use of the parallelism that is provided by the thousands of
processors they contain.

Another issue that parallel programming researchers have do deal with is, as showed in
a recent study (ESMAEILZADEH et al., 2011), regardless of chip organization and topology,
multicore scaling is power limited and, at the best-case, researchers believe on an average
speedup of only 7.9x between 2011 and 2024. This calls for better energy-parallel efficient
solutions.

On the practitioners side, the main issue remains on redesign one application to fully
explore parallelism. However, redesign single-threaded applications to better leverage parallelism
is easier said than done. Several reasons explain this problem. One reason is because not all
problems can be fully parallelizable. Another one is because concurrent programming is still
hard. In the next section we will describe the common abstractions used to write concurrent
programs.

2.1.2 Processes and Threads

In concurrent programming, a program execution is called a process (TANENBAUM,
2007). For example, when the web browser program is started, a process is created. Processes
are heavyweight: each process consumes a non-trivial amount of memory. To run, the process
needs an address space and a list of memory locations in which the process can read and write.
The address space contains the executable program, the data of the program, and its stack. Also,
associated with each process there is a set of resources, such as registers, a list of open files, a
list of related processes, and all the other information needed to run the program. A process is
fundamentally a container that holds all the information needed to run a program.

1http://www.top500.org
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Unlike processes, threads are lightweight. The implementation of threads and processes
differs from one operating system to another but, in most cases, a thread is contained inside a
process. Multiple threads can exist within the same process sharing memory, while multiple
processes usually do not share memory. Threads share the code and the context — that is, the
values that their variables reference at any given moment — of a process, but threads do not
share registers and stack.

In multi-threaded applications, multiple threads can be created, each representing a call
stack of methods separately. Multiple procedure calls are thus running simultaneously. On a
single processor, multi-threading generally occurs by time-division multiplexing: the processor
switches between different threads. This context switching generally happens faster than the user
perceives that different threads are running at the same time. On a multi-core system, threads
can actually run at the same time: each processor running a particular thread. The number of
cores in the processor is then the maximum number of runnable threads simultaneously, without
the need of time division multiplexing and context switches.

High-level programming languages favor the use of threads instead of process for the
development of concurrent software. The main reason to choose threads is because they are
easier and faster to manage: creating a thread is one hundred times faster than creating a
process (BUTENHOF, 1997). Nevertheless, dealing with threads is not straightforward as it
would seem (LEE, 2006). Next we describe the most common errors that could be raised in a
multi-core environment.

2.1.3 Concurrent Programming Errors

Previously, we mentioned that threads are one of the most common ways to write
concurrent programs. We also mentioned that threads share state. However, when threads
are being executed within the same process performing read and write operations to the same
memory address, a new class of errors arise. The most common concurrent errors are described
next.

Race conditions. Race condition arise when two or more threads are trying to change the same
shared memory at the same time. Since the thread scheduling algorithm can swap between
threads at any time, the programmer does not have any guarantee about the order in which the
threads will attempt to access the shared memory. Therefore, the final result can be inconsistent.
To avoid this problem, the programmer has to ensure that the shared memory is accessed by only
one thread at a time. Race conditions have a reputation of being difficult to reproduce and debug,
since the end result is nondeterministic and depends on the relative timing between interfering
threads. Problems occurring in production systems can therefore disappear when running in
debug mode, when additional logging is added. Despite early efforts, race condition detection
and fixing is still a hot topic of research and debate.

Deadlocks. Deadlock happens when a thread enters in a waiting state because a resource
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requested by it is being held by another waiting thread, which in turn is waiting for another
resource, resulting in both threads ceasing to function. For instance, Thread X holds lock A
and tries to acquire lock B, but at the same time Thread Y holds B and tries to acquire A. Both
threads will wait forever. Figure 2.1 illustrates this case.

Figure 2.1: A simple example of a deadlock.

One attempt to mitigate this problem is, after several attempts to acquire both resource,
some thread can unlock its resource in order to repeat and in next try to succeeded in acquire
both resource. However, this approach do not guarantee that deadlock will not occurs again.
Despite early efforts, thread deadlock is also a topic of research concern.

Livelocks. A livelock is similar to a deadlock, except that the states of the threads involved
constantly change with regard to one another, none progressing. However, it is not evident
that this is happening. A real-world example of livelock occurs when two people meet in a
narrow corridor, and each tries to be polite by moving aside to let the other pass, but they end
up swaying from side to side without making any progress because they both repeatedly move
the same way at the same time. Livelock is a risk with some algorithms that detect and recover
from deadlock. If more than one process takes action, the deadlock detection algorithm can be
repeatedly triggered. This can be avoided by ensuring that only one process (chosen randomly or
by priority) takes action.

Starvation. Starvation happens when one thread waits for an event that might take much longer,
or forever to happen. For example, wait for an input from a user who is not present at the time,
can result in starvation. When a thread waits indefinitely for a condition to unlock a lock may
also result in starvation. Starvation is similar to deadlock in the sense that it causes a process to
freeze. Two or more processes become deadlocked when each of them is doing nothing while
waiting for a resource occupied by another program in the same set. This problem can be avoided
by setting a maximum timeout for the waiting thread.
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2.1.4 Concurrent Programming in Java

Along this thesis, we will focus on the Java programming language, since it is widespread
among concurrent programmers. In the Java programming language, concurrent programming
is mostly concerned with threads. Multi-threaded execution is an essential feature of the
Java platform. A Java program can have many threads, and these threads can run concur-
rently, either asynchronously or synchronously. Every Java program starts with a main thread.
This thread has the ability to create additional threads. In Java, every thread is created and
controlled through the java.lang.Thread class, although programmers can also use the
java.lang.Runnable interface, which is the most often used approach that Java developers
use to create threads (TORRES et al., 2011).

The Java programming language also has support for synchronization techniques. The
Java memory model guarantees that synchronized code will only be executed by one thread at a
time. Synchronization is required for objects that are shared among multiple threads to avoid
corruption caused by a race condition. Synchronization in Java will only be needed if a shared
object is mutable. Read-only (objects that are protected from accidental changes to its content)
and immutable (objects that are object whose content can not be modified after it is created)
objects do not require synchronization. The Java programming language has additional support
for a number of concurrent abstractions, which are not covered by this thesis proposal. To a
deeper understanding of these concepts, we recommend the book of PEIERLS et al. (2005).

2.1.5 High-Level Concurrent Programming in Java

Regardless of the model of concurrency, many researchers argue that high level con-
currency libraries can improve software quality (DIG; MARRERO; ERNST, 2009; ISHIZAKI;
DAIJAVAD; NAKATANI, 2011; OKUR; DIG, 2012). Also, recent study have pointed out
that, when using a high-level concurrent library, non-experts concurrent programmers achieved
similar results (in terms of code size, execution time, and speedup) as expert concurrent program-
mers (NANZ; WEST; SILVEIRA, 2013). Thus using a high-level concurrent library, even a less
experienced programmer can write working concurrent applications.

In particular, the Java programming language has included a set of high-level concur-
rency APIs in its version 1.5. This library, the java.util.concurrent, aims to simplify
development of concurrent applications in the Java platform. With this library, the complexity
to develop concurrent applications decreased significantly. The java.util.concurrent
library offers several features to make the task of concurrent programing easier. In addition, the
library is optimized for performance. For instance, a ConcurrentHashMap yields a 4.72x
performance improvement when compare to its predecessor, Hashtable (PINTO et al., 2015).
This thesis is inspired in the use of such library. Below we discuss some of the most well-known
constructs.
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Locks: Implementations of the Lock interface, such as ReentrantLock, support more
flexible locking than can be performed using synchronized methods and blocks. They
promote more versatile structuring, may have different properties depending on how threads
access data, and may support multiple associated Condition (an interface defining condition
variables associated with a lock) objects. A lock is a tool for controlling access to a shared
resource by multiple threads. Commonly, a lock provides exclusive access to a shared resource:
only one thread at a time can acquire the lock and every access to the shared resource requires
that the lock be acquired first. However, some locks may allow concurrent access to a shared
resource, such as the read lock of a ReadWriteLock. Its implementation provide additional
functionality over the use of synchronized methods and blocks by supporting non-blocking
attempts to acquire a lock (tryLock()), and attempts to acquire lock that can be interrupted.

Atomic Data Types: These data types are provided by a small toolkit of classes that sup-
port lock-free, thread-safe programming on single variables. In essence, the classes in the
java.util.concurrent.atomic package extend the notion of volatile values, fields,
and array elements, providing an atomic conditional operation using the compareAndSet()
method. This method atomically sets a variable if its current value equals that of the method’s
first argument, returning true on success. The classes in this package also contain meth-
ods to get and unconditionally set values, and to increment and decrement the value of the
variable. Examples of classes in this package are AtomicBoolean, AtomicInteger and
AtomicIntegerArray.

Concurrent Collections: A group of collections specialized for multithreading, such as
ConcurrentHashMap, CopyOnWriteArrayList, and CopyOnWriteArraySet. The
Concurrent prefix used in some of these classes is a shorthand to indicate the difference from
their relatives, the synchronized ones, which usually employ a single lock for the entire col-
lection. For example, Collections.synchronizedMap() is single-lock-based, whereas
ConcurrentHashMap is “concurrent", but not governed by a single lock. In a recent effort,
we characterized the energy consumption and performance behavior of some of the concurrent
collections (PINTO; CASTOR, 2014; PINTO et al., 2015).

Condition-based synchronization: java.util.concurrent provides some classes that
can replace the wait() and notify() methods. CountDownLatch is a synchronization
aid that allows one or more threads to wait until a set of operations being performed in other
threads have all been completed. A CountDownLatch waits for N threads to finish before
allowing all of them to proceed. CyclicBarrier is another synchronization aid. It allows a
set of threads to all wait for each other to reach a common barrier point.

Executors: The Executors framework separates thread management and creation from the
rest of the application. Using this framework, instead of creating a new thread each time,
programmers create a pool of threads — often fixed in size — and further submit logically
independent units of work to the thread pool. The main advantage of using this pool is that
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threads can be scheduled, stoped and reused. The relationship between threads and the units
of work is often 1:n. Threads select and execute submitted units of work from a centralized
buffer managed by the language runtime. Executors also support multiple approaches for
managing thread execution. They provide an asynchronous task execution framework. An
ExecutorService manages queuing, scheduling of tasks, and allows controlled shutdown.
The ExecutorService interface provides methods to asynchronously execute any function
expressed as a Callable, the result-bearing analog of Runnable. A Future returns the
results of a function, allows determining whether the execution has completed, and provides
the means to cancel execution. Its implementations provide tunable, flexible thread pools. The
Executors class provides factory methods for the most common kinds and configurations of
Executors, as well as a few utility methods for using them.

ForkJoin: The ForkJoin, similarly to the Executors framework, also allows programmers
to create a pool of operating system threads and submit logically independent units of work to
the pool. However, the ForkJoin model (LEA, 2000) makes use of the work stealing approach.
Work stealing was first introduced in the Cilk language (FRIGO; LEISERSON; RANDALL,
1998), a C-like language designed for parallel programming. Nowadays it is widely available in
industry-strength C/C++/C#-based language frameworks. The core idea of work stealing has
also made its way into mainstream languages such as Java, X10, Haskell, and Scala.

Generally speaking, the program runtime consists of multiple workers, each executing
on a host CPU core (or hardware parallel unit in general). Each worker maintains a queue-like
data structure — called deque — each item of which is a task to be processed by the worker.
When a worker completes the processing of a task, it picks up one more task from the deque
and continues the execution for that item. When the deque is empty (we say the worker or
its host core is idle), the worker steals a task from the deque of another worker. In this case
we call the stealing worker a thief whereas the worker whose item was stolen a victim. The
selection of victims follows the principles observed by load balancing and may vary in different
implementations of work stealing.

The ForkJoinPool class is the entry point of this framework. It provides management
and monitoring operations, and also the work-stealing implementation. In the Java ForkJoin
framework, parallel computations are modeled as subclasses of ForkJoinTask or one of
its subclasses: RecursiveTask and RecursiveAction. Both RecursiveTask and
RecursiveAction inherit from ForkJoinTask, which is a thread-like entity (it imple-
ments the Future interface), but it is much lighter weight than a normal thread. Large numbers
of tasks and subtasks can be hosted in a small number of actual threads in a ForkJoinPool.
The RecursiveTask and RecursiveAction classes are similar to the Thread one in
the sense that the programer should inherited from one of these classes, and override the
compute() method (the run() method in case of the Thread class) with the computation
that the programer wants to run in parallel. The difference between RecursiveTask and
RecursiveAction is that the former can return the result of a computation while the latter



34 CHAPTER 2. BACKGROUND

does not.
Once the ForkJoinTask is started, it will usually in turn starts other subtasks. As

indicated by the name of this class, many programs using ForkJoinTask employ only the
methods fork() and join(). The fork() method creates a new task that will be added in
the deque of workers, waiting for execution. The join() method should be called after the
fork() one, and it introduces a point of synchronization, that halts the parent computation
until the child computation has returned. The framework also provides additional utility methods
such as the invokeAll(), which is a syntatic-sugar for the fork()-join() methods, and
isDone(), which verifies the status of the computation (returns true if the task is completed).

In this work, we devote special attention to the thread-safe data structures and the
Thread, Executors and ForkJoin concurrent programming constructs. In Chapter 5, we
caracterize the performance and energy consumption of these constructs in several configurations
and workloads.

2.2 Software Energy Consumption

For many years, research that connects computing and energy efficiency has concentrated
on the hardware layer. These studies are motivated by the assumption that only hardware
dissipates power, not software. However, there are studies that show that this assumption does
not capture the whole picture (COHEN et al., 2012; SAMPSON et al., 2011). That would be
analogous to postulating that only automobiles are responsible for burning gasoline, not the
people who drive them and the way they are used.

In any computer system, it is software that directs much of the activity of the hardware.
Consequently, software can have a substantial impact on energy consumption. Software solutions
for improving energy efficiency of computer systems can work at different levels, ranging from
machine code level to end-user applications. In spite of advances in many areas (ASAFU-
ADJAYE, 2000), IT energy consumption keeps rising steeply, which indicates that rising demand
is outpacing efficiency improvement. This is not surprising, given that software engineering
has, in the past decades, focused on developer efficiency, not on minimization of resource
consumption. Concerns about energy usage were left for compiler writers, operating system
designers and hardware engineers.

Thanks to the rapid proliferation of mobile phones, tablets, and unwired devices in
general, energy efficiency is becoming a key software design consideration where the energy
consumption is closely related to battery lifetime. It is also of increasing interest in the non-
mobile arena, such as data centers and desktop environments. Energy-efficient solutions are
highly sought after across the computer stack, with more established results through innovations
in hardware/architecture (BIRCHER; JOHN, 2008; IYER; MARCULESCU, 2002; TIWARI;
MALIK; WOLFE, 1994), operating systems (GE et al., 2007; MERKEL; BELLOSA, 2006;
RANGAN; WEI; BROOKS, 2009), and runtime systems (FARKAS et al., 2000; RIBIC; LIU,
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2014; VIJAYKRISHNAN et al., 2001).

While the strategy of leaving concerns about energy consumption to the lower-level
systems and architecture layers has been successful, recent empirical studies have provided initial
evidence that software engineers can play an effective role in reducing energy usage through
their high-level design and implementation decisions (COHEN et al., 2012; HINDLE, 2012;
HINDLE et al., 2014; KIRBAS et al., 2014; KWON; TILEVICH, 2013; LI; HALFOND, 2014;
MANOTAS; POLLOCK; CLAUSE, 2014; PINTO; CASTOR; LIU, 2014a; SAHIN et al., 2012;
SAHIN; POLLOCK; CLAUSE, 2014; TREFETHEN; THIYAGALINGAM, 2013; ZHANG et al.,
2012). These approaches complement prior hardware/OS-centric solutions, so that improvements
at the hardware/OS level are not cancelled out at the application level, e.g., due to misuses of
language/library/application features. Due to satisfactory initial results, energy efficiency for
higher layers of the software stack, in particular at the application level, is now an emerging
research topic. However, a major obstacle to developers fulfilling their role in reducing energy
consumption is a lack of information about how high-level decisions impact energy consumption.
Developers currently do not understand how the choices and tradeoffs they make on a daily
basis impact the energy consumption of their software (PINTO; CASTOR; LIU, 2014b). In a
preliminary report, we observed that programmers still rely in the old fashion frequency scaling
approach to save energy (MOURA et al., 2015). However, according to a recent studies (LIU;
PINTO; LIU, 2015; KAMBADUR; KIM, 2014), blindly downscaling CPU frequency often leads
to increased energy consumption and performance loss.

Dynamic Voltage and Frequency Scaling (DVFS) (PERING; BURD; BRODERSEN,
1998) is a common CPU feature where the operational frequency and the supply voltage of the
CPU can be dynamically adjusted. It is one of the most effective power management strategy
used in architecture research (LEBRETON; VIVET, 2008; TSENG; CHANG, 2008). Most
of the CPUs being used today support DVFS. In the era of multi-core CPUs, the frequency of
individual cores can also be adjusted separately, a feature known as multiple frequency domain
support. In addition to small portions related to static leakage, the vast majority of a CPU’s power
consumption P results from its dynamic operation, which can be computed as P =C ⇤V 2 ⇥F ,
where V is the voltage, F is the frequency, and C is the capacitance. The energy consumption E
is an accumulation of power consumption over time, E = P⇥ t, where t is the operating time.

Due to the innate nature of CPU design, voltage and frequency are often scaled together.
Scaling down the CPU frequency is thus effective in saving power. Saving energy however is
slightly more complex, because a reduction of frequency may increase the execution time, t.
DVFS-based energy management thus often deals with the trade-off between energy consumption
and performance. Even though DVFS features are still used these days (BARTENSTEIN; LIU,
2013; RIBIC; LIU, 2014), most of the existing research is based on understanding the different
trade-offs between two or more programming techniques, and provide an energy consumption
point of view based on such empirical evidence. One mandatory step towards this goal is to
accurately measure the energy consumption of a given software system.
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2.2.1 Energy Consumption Measurement

Power measurement and energy estimation are a broad area of research that encompasses
several sub-fields, including architecture, operating systems, and software engineering. The
first group of techniques, power measurement, makes use of power measurement hardware
to obtain power samples and then uses software based techniques to attribute the power to
implementation structures. Due to the wide spread presence of manufacturers, different power
meters are currently available in the market. Different power meters have different characteristics.
One of the most important among these characteristics, however, is the sampling rate, that is,
the number of samples obtained per second. The sample is often measured in watts, P (power),
and the conversion to joules, E (energy), can be done by E = P⇥ time. Depending on the power
meter used, the sampling rate can vary from 1 sample per second, to more than 1,000 samples per
second. The higher the sampling rate, the more accurate the power curve will be. In Chapter 5
we describe a study that focus on the energy efficiency of Java threading implementations. In
this study, we have used a power measurement plugged directly on the CPU cable. Figure 2.2
shows the physical setup needed. Details about the hardware configurations are provided in the
same chapter.

Figure 2.2: An infrastructure for power measurement.

The second area, energy estimation, assumes that developers do not have access to power
measurement hardware and uses software-based techniques to predict how much energy an
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application will consume at runtime. One example of this approach is the powertop2 utility.
This tool takes one sample per second, and generates a log with these measurements. This tool
analyzes the programs, device drivers, and kernel options running on a computer based on the
Linux and Solaris operating systems, and estimates the power consumption resulting from their
use. Powertop can also instrument laptop battery features in order to estimate power usage (in
Watts) and battery life.

Another example is the Running Average Power Limit (RAPL) interface (DAVID et al.,
2010). Originally designed by Intel to enable chip-level power management, RAPL is widely
supported in today’s Intel architectures, including Xeon server-level CPUs and the popular
i5 and i7. RAPL-enabled architectures monitors the energy consumption information and
stores them in Machine-Specific Registers (MSRs). Such MSRs can be accessed by OS, such
as the msr kernel module in Linux. RAPL is an appealing design, particularly because it
allows energy/power consumption to be reported at a fine-grained manner, e.g., monitoring
CPU core, CPU uncore (caches, on-chip GPUs, and interconnects), and DRAM separately.
One drawback of this approach is the fact that programmers need a deep knowledge on how
to use these low-level registers, which is not straight-forward. In a cooperative work (LIU;
PINTO; LIU, 2015), we have developed a set of APIs for profiling Java programs running on
CPUs with RAPL support, called jRAPL. The library can be viewed as a software wrapper
to access the MSRs. Since the user interface for jRAPL is simple, the programmer can focus
her efforts in the high-level application design. For any block of code in the application whose
energy/performance information is to the interest of the user, she simply needs to enclose the
code block with a pair of statCheck invocations. For example, the following code snippet
attempts to measure the energy consumption of the doWork() method, whose value is the
difference between beginning and end:

double beginning = EnergyCheck.statCheck();
doWork();
double end = EnergyCheck.statCheck();

Figure 2.3: An example on how to measure energy consumption using the jRAPL library

Compared with traditional approaches based on physical energy meters, the jRAPL-
based approach comes with several unique advantages:

⌅ Refined Energy Analysis: thanks to RAPL, our library can not only report the overall
energy consumption of the program, but also the breakdown (1) among hardware
components and (2) among program components (such as methods and code blocks).
As we shall see, refined hardware-based analysis allows us to understand the relative
activeness of different hardware components, ultimately playing an important role in
analyzing the energy behavior of programs. In meter-based approaches, hardware

2https://01.org/powertop
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design constraints often make it impossible to measure a particular hardware compo-
nent (such as CPU cores only, or even DRAMs because they often share the power
supply cables with the motherboard).

⌅ Synchronization-Free Measurement: in meter-based measurements, a some- what
thorny issue is to synchronize the beginning/end of measurement with the begin-
ning/end of the execution of interest. This problem would be magnified if one
considers fine-grained code-block based measurement, where the problem de facto
becomes the synchronization of measurement and the program counter. With jRAPL,
the demarcation of measurement coincides with that of execution; no synchronization
is needed.

In this thesis, we rely on both power measurement hardware and energy estimation tools
(with jRAPL). As we shall see, Chapter 4, which uses both strategies, shows that similar results
can be achieved using hardware and software-based techniques. Experiments in Chapter 5 uses
only a power measurement hardware. Chapter 6 uses only jRAPL.

2.3 Software Refactoring

Programs evolve. They might change because of changing in a requirement or because
the context in which they exist changes. In order to update their programs, developers usually do
so incrementally, by changing one single piece at a time. Each step can be seen as a behavior-
preserving transformation, i.e., a refactoring. Refactorings (FOWLER et al., 1999) are program
transformations that change the structure of a program but not its behavior. For instance, a
programmer can change the name of a method, remove duplicate code, or change one interface
to make it more reusable. The term refactoring was coined by OPDYKE (1992) in his PhD thesis
two decades ago, and it was later popularized by FOWLER et al. (1999) influential textbook.

Programmers have been refactoring for decades, and nowadays refactoring is well-known
as one of the key steps during a project life cycle. Refactoring occurs at all levels of the software
development process — from testing to maintenance. Refactoring is also used to overcome
technical issues related to software evolution, such as limited understanding and maintainability.
Along the years, a wide range of refactorings have been introduced, some of them from the
research community (DIG et al., 2009; LIN; DIG, 2013; KJOLSTAD et al., 2011). Refactoring
has several benefits, such as improving developer productivity by making it easier to maintain
and understand a software. Agile advocates go further and claim that a lack of refactoring
incurs technical debt (BECK; ANDRES, 2004). Some of these benefits include (FOWLER
et al., 1999; OPDYKE, 1992): make it easier to add new code and make it easier to change
existing code. However, refactoring benefits are likely to go beyond understandability, covering
different requirements such as extensibility, reusability, and testability. Also, recent research
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has succeed in applying refactoring in areas such as performance (OVERBEY et al., 2005) and
correctness (DIG; MARRERO; ERNST, 2009).

However, perform a refactoring is tedious, because it requires changing and reasoning
about several lines of source code, error-prone, because programmers can update the code
to use a wrong or deprecated API, and omission-prone, because the programmer can miss an
opportunity to use a more efficient language construct. Also, when naively applied, refactoring
can break the code of an working system. For instance, when not updating the old references of a
renamed variable. In order to point out the challenges involved to sucessfully apply a refactoring,
we will introduce and briefly describe the purpose of a well-known refactoring: EXTRACT

METHOD.

2.3.1 Example of Refactoring: Extract Method

As our example, let us consider the EXTRACT METHOD refactoring. This refactor-
ing has garnered some attention in the literature (TSANTALIS; CHATZIGEORGIOU, 2009;
SCHAEFER; MOOR, 2010) as a typical example of a non-trivial refactoring that requires a
certain amount of analysis to be performed correctly. According to Fowler, an implementation
of EXTRACT METHOD is the hallmark of a “serious” refactoring tool. This refactoring can be
described as follows:

Given a sequence of statements, extract these statements into the body of a newly
created method, and replace the original statements by a call to that method.

As a simple example, consider method m in Figure 2.4 on the left, and assume we want
to extract the body of the for loop into a new method process. Such task is relatively simple;
all the programmer needs to do is to provide i and total as parameters to the new method,
and return the value of total to update the original variable after the method returns. Thus the
resulting program should look like the one showed on the right of the same code snippet.

class A {

void m() {
int total = 0;
for (Item i: getItems()){
total += i.getValue();

}
}

}

)

class A {
void m() {
int total = 0;
for (Item i: getItems()) {
total = process(i, total);

}
}
int process(Item i, int total)
return total += i.getValue();

}

Figure 2.4: A simple example of the EXTRACT METHOD refactoring.

However, the simplicity of this example is misleading. Some questions that are easily
raised are not easly answered, such as: What if the code to be extracted is in several lines instead
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of just one? What if the code changes the control flow using return, break or continue
keyword? What if it throws/catch exceptions? How to determine which parameters do we need
to pass to the new method? How to decide which values do we need to return to the calling
method? What if more than one value need to be returned?

Although EXTRACT METHOD is a fairly well-studied and well-applied refactoring (PINTO;
KAMEI, 2013a), guarantee behavior preservation is a difficult task. In the case of EXTRACT

METHOD it would be beneficial if we could split the transformation into several steps that each
address a subset of the problematic issues in turn.

2.3.2 Refactoring Tools

In its early days, refactoring has typically been done manually, or with the help of
primitive tools (MENS; TOURWÉ, 2004). However, manually performing these tasks is fairly
time-consuming and programmers under time pressure have little chance to do it. Refactoring
tools automate refactorings that you would otherwise perform with an Integrated development
environment (IDE). Many popular development environments for a variety of languages — such
as Eclipse3, Microsoft Visual Studio4, Xcode5, and NetBeans6 — now include refactoring tools.
Researchers have then devoted efforts in the creation of refactoring tools (OKUR et al., 2014;
OKUR; DIG, 2012; WLOKA; SRIDHARAN; TIP, 2009; KJOLSTAD et al., 2011; ISHIZAKI;
DAIJAVAD; NAKATANI, 2011; DIG et al., 2009; ZHANG et al., 2012; SCHäFER et al., 2011).

Modern refactoring tools provide a rich set of functionalities, which basically promise
two benefits: First, refactoring tools promise to preserve functionality. Second, refactoring tools
promise to refactor faster than a programmer can refactor by hand (MURPHY-HILL; BLACK,
2008). In that sense, the use of refactoring tools should increase the programmer productivity.

2.4 Summary

This chapter introduces important concepts used through this work. It first gives a gentle
introduction to some concurrent programming concepts. Then it presents the importance of
software energy consumption, and explain how we can measure it. We conclude by presenting
refactoring as program transformations, showing how a simple extract method refactoring could
be challenging.

3www.eclipse.com
4www.visualstudio.com
5www.developer.apple.com/xcode/
6www.netbeasns.org
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3
Software Energy Consumption in Practice

Reason, observation, and experience; the holy trinity of science.

—ROBERT G. INGERSOLL

In last chapter, we discussed some of the basic concepts related to concurrent program-
ming, software energy consumption and refactoring. In this chapter we present an empirical
investigation used to asses whether software energy consumption is a real issue in the software
development world. Through a categorization of questions and answers posted on STACK-
OVERFLOW, we first analyze the distinctive characteristics of energy consumption questions
(Section 3.3.1), the most common energy-related problems (Section 3.3.2), causes (Section 3.3.3)
and solutions (Section 3.3.4). After that, we discuss some recurring problems identified in the
answers of these questions (Section 3.4.2). Finally, we compare the solutions proposed by the
STACKOVERFLOW users with the state of the art, in order to verify whether they are supported
(Section 3.4.3).

3.1 Overview

We believe a critical dimension to further improve energy efficiency of software systems
is to understand how software developers think. The needs of developers and the challenges
they face may help energy-efficiency researchers stay focused on the real-world problems. The
collective wisdom shared by developers may serve as a practical guide for future energy-aware
and energy-efficient software development. The conceptually incorrect views they hold may
inspire educators to develop more state-of-the-art curricula.

The goal of this work is to obtain a deeper understanding of (i) whether application
programmers are interested in software energy consumption, and, if so, (ii) how they are dealing
with energy consumption issues. Specifically, the questions we are trying to answer are:

RQ1 What are the distinctive characteristics of energy-related questions?

RQ2 What are the most common energy-related problems faced by software developers?
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RQ3 According to developers, what are the main causes for software energy consumption?

RQ4 What solutions do developers employ or recommend to save energy?

Our study is based on data from STACKOVERFLOW, a collaborative development ques-
tions and answers (Q&A) website. As one of the most popular forums in the software develop-
ment world, STACKOVERFLOW is often used for software engineering studies (MORRISON;
MURPHY-HILL, 2013; PINTO; KAMEI, 2013a; WANG; LO; JIANG, 2013). It contains over
2 million users, 5.5 million questions and 10 million answers. STACKOVERFLOW data can
be easily accessed through an open backup1. In this chapter, we are looking for questions
related to “energy efficiency”, “energy consumption”, and related terms. We found a total of
325 questions and 558 answers from more than 800 software developers. We employ a thematic
analysis (FEREDAY, 2006) to examine the data and identify recurring topics in the questions
and associated answers. The main findings of this study are the following:

⌅ Energy-related questions have distinct characteristics relative to the average STACK-
OVERFLOW questions. On the average, they have 2.6 times more answers, are marked
as favorites 3.89 times more often, have 68% more views, 10% more “up-votes”, and
11% more comments. Yet, the answers to them are less frequently “up-voted.” Albeit
interesting, we believe these questions are also more challenging for the software
development community.

⌅ We identify 5 main themes regarding energy consumption questions, namely: Mea-
surement, General Knowledge, Code Design, Context Specific and Noise. Questions
that pertain to the Code Design theme receive more attention.

⌅ Energy consumption questions sustain a near-linear growth in the last 5 years, with
contributors from 9 geographic regions. This suggests that energy consumption is an
emerging topic.

⌅ We identify 7 major causes for energy consumption problems according to developers.
Factors such as unnecessary resource usage, background activities, and excessive
synchronization are considered to be the common causes of energy consumption
problems.

⌅ We summarize 8 common solutions suggested by developers to improve energy
efficiency. We discuss their perceived effectiveness, compare them with the state of
the art of software energy consumption research, and highlight some of the mistakes
made by STACKOVERFLOW users.

1http://blog.stackoverflow.com/category/cc-wiki-dump/
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3.2 Research Methodology

In this section we describe our data collection procedure and the qualitative research
approach we employ.

Our data collection follows a mixed-method approach, collecting both quantitative and
qualitative data. Using the STACKOVERFLOW dump, we extracted questions, answers, tags, and
other metadata. STACKOVERFLOW was officialy launched on July 31, 2008. Thus, the data
reported in this study are based on questions that were asked from its creation to September 06,
2013. We filter through more than 5 million questions, 10 million answers and 2 million users.

STACKOVERFLOW allows users to register, post questions, and answer posted questions.
Since users are registered, one could track the questions/answers on a per-user basis. For each
posted question, a user can include a title and textual description of the problem in the body.
The user can also include code snippets. Code snippets are often separated from regular text.
Tags are used to organize questions. Users have to attach at least one tag and can attach up to
five tags when asking a question. For each question, multiple answers can be given by different
users. The original user who ask the question can then either post a comment or indicate one of
the answers as correct. Other people can also rate whether they like either the questions and/or
the answers. The community itself is responsible for assuring the quality of the questions and
answers: if a question or answer is considered relevant, thorough, or correct, users “up-vote”
it; if not, they “down-vote” it. Users who posted those up-voted questions and answers receive
“reputation points”. That is, building reputation within the community is a key motivator for
contributing to STACKOVERFLOW. A snapshot of the STACKOVEFLOW page showing a question
and its corresponding answer is shown in Figure 3.1.

Figure 3.1: STACKOVERFLOW environment.
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We follow a two-phase approach to filter out the questions related to energy consumption.
We first load all data in a relational database. Then we query the table with the following terms:
*energy consum*, *energy efficien*, *energy sav*, *save energy*, *power consum*, *power
efficien*, *power sa*, *save power*. The character ‘*’ in each term works as a wildcard: the
query will select questions that match at least one of these keywords, regardless of the beginning
or the end of the content. The searched keywords are matched against the subject, body or tags
associated with each question. After this automatic process, we found 615 questions and 1.197
answers.

Next, we manually eliminated the false positive questions. For instance, a false positive
question is when a programmer has an application that shows the energy consumption levels
for a given scenario, and the programmer wants to add a feature to this application2. After this
extraction phase, a total of 325 questions and 558 answers were selected. We refer this group
throughout this chapter as our base group. The amount of data we extracted comprises 123,075
words. The remaining questions on STACKOVERFLOW are called as STACKOVERFLOW group.

Once the data is collected, we extract reliable information through a thematic analysis
approach (FEREDAY, 2006). Thematic analysis involves examining, identifying and recording
patterns (or “themes”) within data. Themes are patterns across data sets important to the
description of a phenomenon and are associated with a specific research question. Themes are
identified by bringing together components or fragments of ideas or experiences, which are
often meaningless when analyzed in isolation. These themes become the categories for analysis.
Thematic analysis is performed through the process of coding in six phases to create established,
meaningful patterns. These phases are:

1. Familiarization with data: At this stage, we analyzed the STACKOVERFLOW question
and their answers. When a STACKOVERFLOW user mentioned very specific construct
or library, we have searched on internet forums and in mailing lists in order to better
familiarize with them.

2. Generating initial codes: Here we gave a code for each question. This code tries to
summarize the core of the question. For instance, a question that ask for examples
on how to improve the energy efficiency of a given algorithm was coded as “general
knowledge”. In this step, we refine codes by combining and splitting potential codes.

3. Searching for themes: In this step, we already had a list of initial themes (e.g.,
threading and synchronization), but we begin to focus on broader patterns in the data,
combining coded data with proposed themes.

4. Reviewing themes: At this stage, we have a potential set of themes. In this phase, we
searched for data that supports or refutes our theme. For instance, we initially themed
a question that asked “I want to prevent the monitor from going to sleep. What call

2www.stackoverflow.com/questions/413227



3.3. EMPIRICAL EVALUATION 45

do I make?” as “Noise”. However, we later realized that this question would fit better
as “Context-specific”.

5. Defining and naming themes: Here we refined existing themes. At this time, most of
the themes had already a name. However, we have renamed some of them in order
to cover codes with small number of questions, otherwise we would discard those
codes, since we established 5 as a threshold for the minimum number of repetitions
of a code required for it to be considered a theme (PINTO; CASTOR; LIU, 2014b;
SINGER; FILHO; STOREY, 2014). This heuristic is based on the assumption that if
more users are supporting a specific theme then it is likely to be stronger and more
useful.

6. Producing the final report: Finally, we chose only themes that make meaningful
contributions to answering our research questions. This resulted in 5 main themes. We
discuss the individual themes in Section 3.3.2. After each one, we list representative
examples of questions that were grouped into that theme.

3.3 Empirical Evaluation

In this section we describe our results grouped by research questions.

3.3.1 RQ1: What are the distinctive characteristics of energy-related ques-
tions?

To answer our first research question, we analyzed several quantitative aspects regarding
our base group of questions.

First, we have analyzed whether the interest in energy consumption is increasing or
decreasing over the years. To that end, Figure 3.2 shows the distribution between questions and
answers created during the analyzed period.
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Figure 3.2: Questions and answers, from the base group, per year.
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The figure presents a chart indicating what trend is suggested by the data. The shaded
areas surrounding the lines indicate the confidence interval calculated by smoothing. Each point
in the figure represents quarterly data. We can observe a couple of interesting findings from
this figure. First, it suggests an overall growth in the number of questions throughout the years.
We observed a great increase in the number of questions until the first quarter of 2012, where
the number of questions had increased 100% when compared to the same period of 2011. The
number of questions kept increasing until it reached the highest part of the graph, located on the
first quarter of 2013. At this point, we observed an increase of 183% in the number of questions
when compared to the same period of 2012. The last point of the graph was not provided because
it does not cover the entire quarter: the data is available until September 6, 2013. Second, the
figure shows a great number of answers followed by a large standard deviation (overall SD:
13.89 for answers and 12.36 for questions). We observed that most of questions have less than
2 answers (3rd quartile: 2, median: 1, mean: 1.71), and only 15 questions (4% of them) have
received more than 5 answers. However, the number of answers regarding the latter group is
about 25% of the overall number of answers.

Second, on STACKOVERFLOW, the user who asks a question can mark at most one
answer per question as accepted. We use this feature to define the success of a question as
follows: A successful question has an accepted answer, an ordinary question has answers,
but none of them was accepted, and an unsuccessful question has no answer. Following these
definitions, Table 3.1 shows the number of questions comparing our base group of questions
with the overall questions in STACKOVERFLOW (excluding the base group).

As we can see in the Table 3.1, the majority of the questions have answers – 85.85% and
90.80% for our base group of questions, and the remaining group of questions on STACKOVER-
FLOW, respectively. However, only part of them are successful. For the base group of questions,
more than a half of these questions have successful answers. On the other hand, about half of
them are successful for the remaining questions on STACKOVERFLOW. Notwithstanding, the
base group also has the highest percentage of unsuccessful answers. As we will discuss later
(Section 3.3.2), some categories of questions are more unsuccessful than others.

We also observed that there are no obvious “energy consumption experts”. Only 1 user
has answered 3 different questions, and 27 users (4.83% of the total) have answered 2 different
questions. Also, no user asked more than one energy consumption-related question. Still, we
observed that the questions in the base group come from a greatly diverse group of developers.
They are from 9 geographic regions: North America, Central America, South America; Europe;

Table 3.1: The success status of questions on STACKOVERFLOW.

Source Successful Ordinary Unsuccessful
Base Group 45.85% 40.00% 14.15%

STACKOVERFLOW 39.99% 50.81% 9.20%
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Africa; West Asia, Central Asia, East Asia; and Australia/New Zealand. The average age,
reputation and views per user page are, respectively, 28.58, 1,798 and 218.1.

Table 3.2 summarizes the characteristics of the users who created the base group of
questions, and the remaining users on STACKOVERFLOW.

Table 3.2: The summary of users who asked energy consumption-related questions. We
removed outliers from the histograms, but not from the numerical results.
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Interestingly, some STACKOVERFLOW users have much more visibility than other
STACKOVERFLOW users. This is observed in the standard deviation of the Views variable.
We have also compared the popularity of energy consumption questions with the average STACK-
OVERFLOW questions. To measure if a given question is popular, we derived the following
formula – which we believe provides a summarized view that aggregates a number of different
popularity measures:

P= S+A+C+F+V

where S is the score of the question. The user can “up-vote” a question if she thinks that the ques-
tion is good enough, or “down-vote” it otherwise. The score is the result of this votation process.
The variables A, C, and F are, respectively, the number of answers, comments, and favorizations
per question. A favorite question is one that developers want to know more about. By indicating
a question as favorite, a developer receives notifications whenever that questions is updated (mod-
ified, answered, etc). The V variable corresponds to the number of views. We normalize each
variable to avoid distortions caused by the very large absolute values. Taking the V variable as an
example, it is normalized by the average of the number of views of the overall STACKOVERFLOW

questions (which is 380.06), as follows: V= questionsViews
.

stackOver f lowViews. The other
variables follow the same rule. We chose this normalization approach because it can give us a
fair way to compare the two groups of questions. Table 3.3 shows the normalized results of each
variable of our base group of questions.

Since the value for each metric for the STACKOVERFLOW group is normalized to be 1
(then its P value is 5) we can observe that questions from our base group are two times more
popular when compared to the average questions on STACKOVERFLOW. It not means, however,
that energy consumption is the most popular topic on STACKOVERFLOW. In particular, only
the S and the C variables have similar values. For the S variable, we observed that 3.69% (12
out of 325) of the questions have negative scores. Analyzing those questions and the associated
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Table 3.3: The popularity of questions in each group of data. We removed outliers from
the histograms, but not from the numerical results.
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comments, we have found that they were negative because they are (i) poorly elaborated3 or (ii)
already answered4. The values for A and F present the most significant differences.

Table 3.4 shows the results for S and C variables, but now regarding the answers of those
questions. We did not compute the other variables because answers do not have such information.
The popularity of answers is calculated as PA = S+C. Here, comments and scores for the
answers are similar although the results for the base group were lower. Although it is easy to
create and favorite (and then, follow) such questions, as we will discuss later, providing reliable
answers to them is not straightforward.

Table 3.4: The popularity of answers from each group. We removed outliers from the
histograms, but not from the numerical results
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Finally, we investigated how tags are used in STACKOVERFLOW. A STACKOVERFLOW

user employs tags to categorize a question and group it with other similar questions. We
found a total of 970 tags, but only 360 different keywords were used to tag questions. Each
energy consumption question has between one and five tags (median: 3, mean: 2.99, 3rd
quartile: 4, SD: 1.28). The five most common tags are: (i) “android” with 172 occurrences, (ii)
“power-management” with 33 occurrences, (iii) “Java” with 28 occurrences, (iv) “iOS” with 24
occurrences, and (v) “iPhone” with 24 occurrences. This result indicates that energy consumption
questions are strongly related to mobile development – 26.28% of the tags are mobile-related.
In particular, the Android platform has 17.78% of overall tag usage. This is probably due to its
strong adoption, and the ease of developing Android applications. Another indicator is the Java

3www.stackoverflow.com/questions/4946600
4www.stackoverflow.com/questions/9187303
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programming language appears to be of the most often used tags. Since Android applications are
written in Java, developers are also interested in saving energy in this particular language.

3.3.2 RQ2: What are the most common energy-related problems faced by
software developers?

To further understand the characteristics of software energy consumption-related ques-
tions on STACKOVERFLOW, we manually analyzed the titles and bodies of the questions from the
base group in order to identify what recurring categories these questions define. The categories
are our themes (Section 6.2). We identified a total of 5 themes.

Measurements. Questions about measurement tools or techniques, e.g., “I want to
measure the energy consumption of my own application (which I can modify) [. . . ] on Windows
CE 5.0 and Windows Mobile 5/6. Is there some kind of API for this?”5.

General Knowledge. Questions that do not have a concrete use case, e.g., “Can a code
optimized for least MCPS be guaranteed to have least power consumption as well?”6.

Code Design. Questions about programming techniques that can help in saving energy,
e.g., “Are there any s/w high level design considerations [. . . ] to make the code as power efficient
as possible?”7.

Context-specific. The authors of such questions need to provide more details in order
for other users to better understand the problem, and to facilitate replication, e.g., “I want to
prevent the monitor from going to sleep. [. . . ] What call do I make?”8.

Noise. These questions are not directly associated with an energy consumption issue.
Usually, the user first wants to improve one aspect of her application and, as a secondary goal,
also improve energy consumption, e.g., “What are the good features of a processor should have
which help in carrying out multimedia(Video/Image)?. [. . . ] PS: It has to be low power as it is
for portable applications.”9.

Table 3.5 shows the distribution of questions and answers per theme as well as the number
of successful, ordinary and unsuccessful questions in each category. The table also shows the
value of each normalized popularity variable. We use boldface to highlight the highest value for
each case.

From this table we can make some interesting observations. First, the number of questions
and answers per category can vary greatly. For instance, Code Design is the category with the
smallest number of questions (36 questions; 113 answers) and Noise is the one with the greatest
number (107 questions; 134 answers). On the one hand, questions that lie in the Code Design
category are usually focused on how programmer decisions may improve energy consumption.

5www.stackoverflow.com/questions/724349
6www.stackoverflow.com/questions/506452
7www.stackoverflow.com/questions/506452
8www.stackoverflow.com/questions/1003394
9www.stackoverflow.com/questions/3625568
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Table 3.5: Common energy-consumption themes with their status and popularity. Q
means questions, A means answers. All the values for variables S, A, C, F and V are

normalized.

# Measurements Context Specific Code Design G. Knowledge Noise
Questions 59 83 36 40 107

Answers 97 110 133 84 134
A/Q 1.64 1.33 3.69 2.10 1.25

Successful 32.2% 42.18% 72.22% 50.00% 45.65%
Ordinary 47.45% 50.60% 25.01% 40.00% 33.00%

Unsuccessful 20.33% 7.22% 2.77% 10.00% 21.35%
S 1.12 0.64 2.80 1.87 0.76
A 2.56 2.06 5.76 3.28 1.95
C 1.04 0.81 1.57 1.32 1.19
F 4.42 2.26 10.21 4.73 2.94
V 1.97 1.87 1.63 1.58 1.24
P 11.11 7.66 21.97 12.78 8.08

We believe that this category has a low number of questions because energy consumption, as an
emerging concern, has not yet firmly established itself in modern software engineering practices
outside of specific domains such as embedded systems. On the other hand, the high number of
questions in Noise category shows that, although energy consumption is not the primary software
requirement, programmers usually refer to it as a desirable requirement. Usually, programmers
are interested in improving energy consumption’s closest relative: performance. Another point
regarding the Code Design category is that it has the highest number of answers per question
(A/Q ratio: 3.96), which suggests that developers are strongly interested in this kind of questions.
However, we found 3 outlier questions with a high number of answers. Together, these three
questions have 43% of the overall answers in this category. Analyzing those questions, we
have found that they have a high number of answers because they are (i) challenging1011 and
(ii) polemic12. Despite the low number of questions, we believe that the Code Design category
is the most important one for future energy-aware software development. Thus, we dedicated
Section 3.3.4 to describe this category in greater detail.

Second, we observed that the success rate can vary significantly. For instance, Code
Design is the category that has more accepted answers (72.22%), and Measurements is the worst
(32.22%). Analyzing the answers to those questions, we observed that, for the Code Design
category, an accepted answer usually provides a number suggestions, and one of them may work
for the programmer who asked the question. In contrast, energy consumption measurement
is not always straightforward due of the lack of specialized tools. Programmers often want
to measure energy consumption at different levels of granularity. We observed a number of

10www.stackoverflow.com/questions/61882
11www.stackoverflow.com/questions/422539
12www.stackoverflow.com/questions/1318851



3.3. EMPIRICAL EVALUATION 51

granularities, including hardware devices (USB, Camera, GPS), network sensors (wifi, 3G,
bluetooth), operating systems, kernel, virtual machine, process, thread, and application (line,
method, and whole program). Although it is easy to create such questions, answering them
is not. For most of these granularities, there is no standard mainstream hardware device,
tool or technique available. In fact, only recent studies propose methods to estimate energy
consumption at the source line of code level (HAO et al., 2013; LI et al., 2013). At the same time,
STACKOVERFLOW users are clearly interested in “Measurement” questions. It is the category
with the highest number of views per question (1.97 times the average STACKOVERFLOW

question).

Third, the rate for unanswered questions (the % of unsuccessful questions) is often less
than 20%, with a small variation (SD: 8.18). Only for the Measurement and Noise categories,
the rate for unanswered questions is greater than 20%. We have explained why the Measurement
has a high percentage of unsuccessful questions. Since questions in the Noise category are not
mainly about energy consumption, the answers are not as well. Thus, the low answer rate is
not directly related to energy consumption issues. Finally, the popularity (Section 3.3.1) of the
questions in each theme varies from 7.66 to 21.97 (SD: 5.79). Again, the Code Design category
has the highest values for score, answers, comments, and favorites (variables S, A, C and F,
respectively). In fact, the value of the F variable for Code Design is more than twice higher than
the value of F for the General Knowledge category, which has the second highest value. This
result might suggest that, although a small number of users are asking these questions, they are
more interesting than any other kind of energy consumption questions.

3.3.3 RQ3: According to developers, what are the main causes for soft-
ware energy consumption?

Analyzing the answers from the base group, we identified seven common themes re-
garding the sources of energy consumption. Table 3.6 summarizes these themes with their
occurrences.

Table 3.6: The causes that STACKOVERFLOW users believe to impact on energy
consumption.

Cause # Occurrences
Unnecessary resource usage 49

Faulty GPS behavior 42
Background activities 40

Excessive synchronization 32
Background wallpapers 17

Advertisement 11
High GPU usage 8
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Unnecessary resource usage. When one resource is not being used, the programmer
should power it down (or put it to sleep). We found 49 occurrences of this theme in our data.
A resource running at full power but sitting unused can represent a powerful source of energy
drain. Indeed, a user suggested, “to have a background application that monitors device usage,
identifies unused/idle resources, and acts appropriately”13. However, this suggestion might
consume extra energy by polling the device, and by creating new background activities.

Faulty GPS behavior. STACKOVERFLOW users (42 occurrences) suggest that applica-
tion programmers should take special care when dealing with GPS features. As a user pointed
out “[..] Make sure that the GPS is only on for the bare minimum of time. Of course, when there
are bugs that are introduced that keep the GPS turned on too long they go to the top of the list
to get fixed”14. Another user also suggested to “avoid using fine grain location where a coarse
location would do (GPS vs cellular location)”15. In fact, GPS sensors are known for their high
impact on energy consumption (ZHUANG; KIM; SINGH, 2010).

Background activities. Some users (40 occurrences) highlight unnecessary background
activities, such as performing HTTP connections or changing some device features, as another
important source of energy consumption problems. When combined, such activities might
represent an important energy drain. The application programmer could avoid such background
activities by debugging her application, or by providing features to turn on/off such activities.
As a STACKOVERFLOW user has pointed, “Inefficient background activity has a dramatic impact
on system performance, power consumption, responsiveness, and memory footprint”16.

Excessive synchronization. STACKOVERFLOW users (32 occurrences) suggest that
synchronizing states between thread/process might increase energy consumption. For example
“I need to maintain the data updated, according to the modify that may happens server-side. [...]
If new data are available, other web service is called for obtaining them. This solution works
fine for my [...], but this solution is too expensive in term of energy consumption [...].”17.

Background wallpapers. STACKOVERFLOW users (17 occurrences) have pointed out
that wallpapers in mobile applications, may incur significant energy consumption. It could
be even worse when the wallpaper uses animations at a high frame rate. Also, colors play an
important role in energy consumption. STACKOVERFLOW users agree that the white color is
the most energy inefficient, whereas black is the most energy efficient. As a STACKOVERFLOW

user said “To give you an idea, a static blue wallpaper (for instance a jellyfish in an aquarium)
consumes more battery than the 3D galaxy live wallpaper”18.

Advertisement. According to STACKOVERFLOW users (11 occurrences), advertisement
can increase energy consumption in mobile applications. “to send advertisements, just turns on

13www.stackoverflow.com/questions/3092498
14www.stackoverflow.com/questions/4361967
15www.stackoverflow.com/questions/4361967
16www.stackoverflow.com/questions/422539
17www.stackoverflow.com/questions/14997997
18www.stackoverflow.com/questions/2902382
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briefly to do a quick Tx/Rx. When scanning, the Rx is turned on for a relatively long time because
you don’t know at what time or on which frequency advertisements will arrive”19. A recent study
has discussed the impact of advertisement on different mobile applications (WILKE et al., 2013).
The authors showed savings of up to 75% in applications that do not use advertisement.

High GPU usage. STACKOVERFLOW users (8 occurrences) believe that GPUs waste
more energy than CPUs. The rationale behind this intuition is that GPUs usually have more
cores (and more cooling devices as well), as stated by a user: “[. . . ] The higher the clock rate,
the more power used. GPUs tend to have high clock rates so they can do lots of work; ”20.

3.3.4 RQ4: What solutions do developers employ or recommend to save
energy

We identified that only 11.07% (36 out of 325) of the questions ask about solutions to
improve the energy consumption by doing modifications at the code level. Table 3.7 shows the
themes and occurrences. However, it is interesting to observe that some respondents seem to know
that a particular piece of code might have a substantial impact on energy consumption, which is
not straightforward. Only recent studies have focused on understanding the relationship between
code design and energy consumption in high-level applications (KWON; TILEVICH, 2013;
PINTO; CASTOR, 2013; SAHIN et al., 2012). We hypothesize that those STACKOVERFLOW

users are experiencing significant battery drain while introducing new features.
We found a total of 8 themes in our qualitative analysis. We identified these themes by

analyzing the answers about reducing the energy consumption through modifications at the code
design level. We chose these themes due to the frequency with which they appear in our data.
We briefly describe each theme next:

Keep IO to a minimum. STACKOVERFLOW users (29 occurrences) believe that ac-
cessing external devices increases energy consumption. In particular, this could be even more
detrimental to mobile devices, which perform IO operations frequently via bluetooth, wifi,

19www.stackoverflow.com/questions/13584367
20www.stackoverflow.com/questions/12332609

Table 3.7: The solutions that STACKOVERFLOW users suggest in order to save energy.

Solution # Occurrences
Keep IO to a minimum 29

Bulk operations 24
Avoid Polling 17

Hardware Coordination 11
Concurrent programming 9

Lazy Initialization 7
Efficient Data structure 5
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camera and GPS, in the same application, concurrently. One common suggestion is “to keep IO
to a minimum”21.

Bulk operations. A number of users (24 occurrences) argued that, if one needs to send a
sequence of commands to a hardware device, it is preferable to buffer them up and send them out
all at once. In this manner, the programmer may avoid multiple wakeup ! send ! sleep cycles.
For instance, as a user pointed out “Don’t transfer say 1 file, and then wait for a bit to do another
transfer. Instead, transfer right after the other. This reduces the amount of time the radios need
to be active for, and hence conserves battery life”22. It also includes other IO operations, such
as read/write in files, wifi transmissions, GPS usage, synchronizing data through the network,
among many others.

Avoid Polling. Several users (17 occurrences) have argued that polling is not a good
design choice for energy consumption. With polling, the application is continuously busy,
polling the hardware to check if the desired value is available, which may become a source
of wasted CPU cycles. As one user said, “Polling is imprecise by its nature. The higher your
target precision gets, the more wasteful the polling becomes”23. A common suggestion is to use
asynchronous communication instead. Since the recipient of asynchronous communication can
remain dormant until an event occurs, an interrupt-driven approach can make efficient use of
existing resources. Programmers should consider polling only if they cannot achieve the goal
using interruptions, “The best way I can think of to do this would to make an application entirely
interrupt-driven”24.

Hardware Coordination. Some users (11 occurrences) claim that the programmer
should know better the underlying hardware to save energy. Then, the programmer can (i)
“execute [the code] entirely in the processor cache, you’ll have less bus activity and save power”;
(ii) “If the processor has multiple levels of cache, try to fit in the lowest level of instruction or
data cache possible.”; (iii) “if the code needs to use external memory, try to use it as little as
possible”; (iv) “don’t use [the] floating point unit or any instructions that may power up any
other optional functional units unless you can make a good case that use of these instructions
significantly shortens the time that the CPU is out of sleep mode”, and (v)“Set unused memory
or flash to 0xFF not 0x00”25.

Concurrent programming. Appropriate use of multi-threading can greatly improve
application performance. Some users (9 occurrences) have pointed out that concurrency could
be used to improve energy efficiency as well. For example, “using multiple threads can save
energy when you have I/O waits. One thread can wait while other threads can perform other
computations; instead of having your application idle”26.

21www.stackoverflow.com/questions/2905958
22www.stackoverflow.com/questions/12120629
23www.stackoverflow.com/questions/10929875
24www.stackoverflow.com/questions/3866746
25All suggestions stated in this paragraph are in the same question: www.stackoverflow.com/questions/61882
26www.stackoverflow.com/questions/6925572
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Lazy Initialization. Some users (7 occurrences) pointed out that lazy resource initializa-
tion could save energy, e.g. the programmer needs to “draw to the screen only when necessary
rather than endlessly”27. The application should initialize resources only when they are strictly
necessary.

Race to Idle. Some of the STACKOVERFLOW users (7 occurrences) suggest that, to
save energy, the programmer should “do the work as quickly as possible, and then go to some
idle state”28. The rationale behind this is that faster programs will theoretically consume less
energy because they will have the machine idle faster, waiting for events (or interrupts) to happen.
Moreover, modern CPUs are very energy-efficient when idle (BIRCHER; JOHN, 2008).

Efficient Data structure. Finally, some users (5 occurrences) agree that the use of high
level data structures, such as maps or concurrent implementations, should be avoided when
unnecessary, and simple data structures should be preferred instead. As a STACKOVERFLOW

user suggested, “Use plain C data structures (instead of Foundation objects) and pack them”29.
The programmer saves energy by avoiding creating new internal objects.

3.4 Discussion

In this section, we summarize our findings, and provide additional discussion on the data
presented in the previous section.

3.4.1 Overall Assessment

Our study reveals distinct characteristics of energy consumption questions and their
answers.

Compared with the average of the questions in STACKOVERFLOW, discussions related to
energy consumption can be considered more interesting and challenging:

⌅ interesting: Questions from the base group are up-voted 1.1 times more frequently
than the average STACKOVERFLOW question. In the same vein, they are answered
2.67 more frequently than the average STACKOVERFLOW question, viewed 1.68
times more frequently, and marked as favorites 3.89 more frequently.

⌅ challenging: even though the questions related to energy consumption are more
likely to be up-voted, their answers are not (the S value for the answers is 1.05 times
lower than STACKOVERFLOW control set). These answers are also entailed by fewer
comments (the C value is 1.16 times lower). We have examined these answers and
noticed that some of them have evident problems. We discuss them in Section 3.4.2.

27www.stackoverflow.com/questions/4361967
28www.stackoverflow.com/questions/61882
29www.stackoverflow.com/questions/4361967
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3.4.2 Misconceptions, panaceas, and lack of tools

We identified three recurring problems in the answers in our base group of questions: (i)
misconceptions about software energy consumption and how it can be reduced, (ii) solutions
that are applicable in certain contexts being presented as universal, and (iii) lack of tools, in
particular, measurement tools. We examine each one in turn.

First, we find 37 users holding misconceptions, of which we describe three. (1) Some
users confuse “power” and “energy.” Scaling down CPU frequencies is often suggested as a
direct solution to reduce energy consumption, which in reality has more direct impact on power.
Scaling down the CPU frequency is effective in saving power. Saving energy however is more
complex. Since energy consumption “E” is an accumulation of power consumption “P” over
time “t”, that is E = P⇥ t, a reduction of frequency may increase the execution time, keeping
energy constant or even increasing it. (2) STACKOVERFLOW users often use performance as
the primary indicator to estimate energy consumption, such as “It may reduce execution time
since HW accel is there, therefore power consumption may be lower”30. According to numerous
studies (CAO et al., 2012; ESMAEILZADEH et al., 2012; TREFETHEN; THIYAGALINGAM,
2013; PINTO; CASTOR, 2013; RANGAN; WEI; BROOKS, 2009), power and performance are
not always correlated. (3) Some STACKOVERFLOW users believe that switching to a managed
language runtime, such as Java or .NET, might improve energy consumption, such as “My take is
that the best way is to mix languages, use existing Java-based infrastructural tools [. . . ] to build
the performance critical parts and something more nimble to build complex but not that heavy
business and presentation logic.”31. However, recent studies show that energy consumption is
heavily workload-dependent (ESMAEILZADEH et al., 2012). Also, managed languages have to
deal with the energy consumption cost of their underlying services. Another recent study points
out that the total energy consumption in VM services ranges from 9% to 82% of the overall
energy consumption of an application (CAO et al., 2012). Curiously, none of these answers were
“down-voted.”

Second, we identify some generic panaceas offered (by 23 users) as solutions to energy
problems. They are not necessarily incorrect, but the generic folklore nature of such answers
hardly qualifies them as problem solvers. For instance, one user asked “[. . . ] given this how
can I write the code ‘power’ efficiently so as to consume minimum watts?”32. Some suggested
answers include:

⌅ Interrupts are your friends; Polling / wait() aren’t your friends

⌅ Do as little as possible

⌅ Make your code as small/efficient as possible

30www.stackoverflow.com/questions/9924255
31www.stackoverflow.com/questions/1318851
32www.stackoverflow.com/questions/61882
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⌅ Turn off as many modules, pins, peripherals as possible in the micro

⌅ Run as slowly as possible

Part of the vagueness here is innate to online forums. Nonetheless, many other common
questions frequently asked by STACKOVERFLOW users, such as How to avoid memory leaks? or
How to fix null pointer bugs?, are often entailed by much more concrete and useful answers.

Third, we believe the lack of tool support poses significant hurdles to energy-aware
software development. We observe that STACKOVERFLOW users are keenly aware of the multi-
granularity multi-level nature of energy optimizations with diverse discussions on hardware
devices, operating systems, and applications. From the 59 questions under the Measurement
theme in Section 3.3.2, 38 of them are directly related with a lack of tool support. These
programmers are faced with insufficient support of established tools, from lower-level ones for
energy profiling, measurement, and estimation, to higher-level ones for energy management
frameworks, software architectures, and refactoring tools. One example of it is the following
question created by a STACKOVERFLOW user: “JouleMeter is a tool from Microsoft for measur-
ing power consumption by different processes on a windows machine. Please tell me if there is
any similar tool on linux for getting information of energy consumption by different processes
and applications on linux machine. Also I am looking for an open-source solution.”33, which has
no answer.

3.4.3 Do researchers agree with the code design suggestions?

In Section 3.3.4 we categorized 8 strategies that STACKOVERFLOW users suggested as a
way to save software energy consumption. In this section, we compare these strategies with the
state of the art, in order to verify whether they are supported.

Keep IO to a minimum. A recent study showed that an IO-intensive benchmark could
produce high energy consumption (PINTO; CASTOR, 2013). Similarly, network communication
is a major consumer of energy (PENTIKOUSIS, 2010), consuming between 10% and 50% of
the total energy budget of a typical mobile application. Thus, reducing IO might save energy.

Bulk operations. This strategy could save energy by reducing IO overhead and network
communication (KWON; TILEVICH, 2013). However, the degree of batching should be
determined by the network conditions in place. For example, for a network with limited
bandwidth (e.g., 3G or 4G), batching too many individual remote communications can saturate
the network, which in turn can increase the aggregate latency of remote interactions, thus
incurring high energy costs.

Hardware Coordination. Several authors support the idea of using memory optimiza-
tion techniques in order to reduce the bus switching activity (BRANDOLESE et al., 2002;
TIWARI; MALIK; WOLFE, 1994; GE et al., 2007; HAO et al., 2013). Other software-oriented

33www.stackoverflow.com/questions/13286662
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proposals focus on instruction scheduling and code generation, possibly minimizing memory
access cost (FARKAS et al., 2000).

Concurrent programming. Several authors (DAYLIGHT et al., 2002; LIU, 2012a;
PINTO; CASTOR, 2013; RANGAN; WEI; BROOKS, 2009; SOLERNOU et al., 2013) have
been studying the relationship between concurrent programming, performance and energy, but
no consensus has emerged from it. For example, LIU (2012a) conducted an initial study on
the energy consumption of a number of synchronization approaches. Furthermore, PINTO;
CASTOR (2013) investigated a group of high level concurrent constructs in different scenarios
in order to identify when it is possible to switch from one construct to another. In both studies
the authors suggest that concurrency cannot be seen as a one-size-fits-all solution.

Race to Idle. Race to idle is the assumption that, the faster the program executes, the
more energy efficient it will be. Most of this belief comes from the use performance as a proxy
for energy consumption. However, this is not an accurate approximation. For instance, mobile
devices and modern CPUs, scale their voltage dynamically, which makes it more difficult to
say beforehand which computation will consume less energy (LI et al., 2013). Also, hardware
components have varied energy consumption patterns (HAO et al., 2013). Concurrent software
plays yet another role: it has more complex behavior and overheads. Recent studies have shown
that the race to idle principle does not always hold for multi-threaded applications. (PINTO;
CASTOR, 2013; SOLERNOU et al., 2013).

Efficient Data structures. The idea of energy efficient data structures is not new. DAY-
LIGHT et al. (2002) discussed some energy consumption patterns and trade-offs faced during
the implementation of non-trivial energy efficient data structures. The authors showed gains in
energy consumption with a relatively small overhead.

As for the remaining solutions proposed by the respondents (Section 3.3.4), we did not
find studies in the research literature that directly support them, although there are related ones.
For example, SAHIN et al. (2012) analyzed the impact of some well-known design patterns on
energy consumption, and MENARINI et al. (2013) provided important clues on how different
e-services impact on energy consumption. We describe four more themes, from the researchers
perspective, that we consider valuable for the development community.

Loop transformations. In BRANDOLESE et al. (2002), the authors suggests 8 loop
transformations to save energy. Some of those include (i) loop fusion: merges different loops to
reduce control operations, and (ii) loop interchange: modifies the nesting ordering of the loops
to change array accesses. Even though some of these can be achieved by automatic compiler
optimization, programmers can greatly help in this area to compensate for the fundamentally
conservative nature of compiler optimizations.

Data compression. WILKE et al. (2013) showed that compressed image formats may
save energy (e.g., when transferring images through networks). With compressed image formats,
programmers decrease the overall image size, whereas maintaining reasonably image quality.

Offloading methods. Few answers (4 occurrences) mention offloading techniques
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to save energy. When developing a mobile application, sending heavy calculations to a
server (KWON; TILEVICH, 2013) has the potential to save energy. However, a threshold
should be defined when using this approach: if the calculation is too fast, it might be better to
run it locally, rather than incurring the cost of network communication.

Approximated programming. Many software components can tolerate occasional “soft
errors”, i.e., errors that may reduce the accuracy of the results. This technique might bring
the benefits of fast and energy-efficient execution at the price of some controlled approxima-
tion (CARBIN et al., 2012).

3.5 Threats to Validity

We divide our threats to validity discussion in terms of internal ones and external ones.
Internal: First, our study is restricted by the size of our dataset. Despite having mined

the entire STACKOVERFLOW site, we only found 325 questions. Moreover, a number of studies
have been conducted using STACKOVERFLOW in recent years (MORRISON; MURPHY-HILL,
2013; WANG; LO; JIANG, 2013). In fact, STACKOVERFLOW is the most widely used Q&A
website in the software development world. Studies show that STACKOVERFLOW users are
greatly diverse with relation to their skills and age (MORRISON; MURPHY-HILL, 2013).
Second, not all questions that we find through querying the database using energy consumption
keywords are related to energy consumption. We minimize the false-positive rate by investigating
all questions and answers manually. Still, in order to reduce the number of false-negatives, we
experimented a number of energy consumption-related keywords. Most of the keywords used
were based on the study of WILKE et al. (2013). We examined each one of them and kept
only the keywords that retrieved relevant questions. Third, we choose Thematic Analysis as
our research method. While we achieved saturation (i.e., no more themes could be absorbed)
regarding the topics we focused on in our research, there may be additional themes that might
add new insights. We also share our raw data (extracted questions and answers) to provide a
means for replication and verification.

External: Our results only apply to application programmers interested in energy con-
sumption on STACKOVERFLOW. It does not cover systems programmers, nor application
programmers that use other Q&A websites. However, even though the results of this work might
not be generalizable, we believe that our data source is reliable. Since no user has created more
than one question and no user has produced more than three answers, our data demonstrates
diversity. Finally, we are only considering English questions and answers.

3.6 Summary

In this chapter, we investigated how STACKOVERFLOW users are interested in software
energy consumption. We observed that energy consumption questions are more interesting and
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also more challenging than the average STACKOVERFLOW question. We identify 5 main themes
regarding energy consumption questions, namely: Measurement, General Knowledge, Code
Design, Context Specific and Noise. Questions that focus on source code modifications receive
more attention (popularity and answers). We identify 7 major causes for energy consumption
problems, varying from background activities to synchronization. We also discuss how to
address each one of them and, when possible, compare with the state-of-the-art software energy
consumption research.
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4
The Energy Efficiency of Java Thread-Safe
Collections

Bad programmers worry about the code.
Good programmers worry about data structures and their relationships.

—LINUS TORVALDS

In this chapter, we present an empirical study evaluating the performance and energy
consumption characteristics of 16 Java collection implementations grouped by 3 well-known
interfaces: List, Set, and Map. We start by providing a brief overview of the problem (Sec-
tion 4.1). Section 4.2 describes our methodology, describing both benchmarks and environment.
Finally, Section 4.3 provides our results.

4.1 Overview

A question that often arises in software development forums is: “since Java has so
many collection implementations, which one is more suitable to my problem?"1. Answers
to this question come in different flavors: these collections serve for different purposes and
have different characteristics in terms of performance, scalability and thread-safety. Developers
should consider these characteristics in order to make judicious design decisions about which
implementation best fits their problems. In this chapter, we turn our focus to energy efficiency.
Energy consumption estimation tools do exist (LI et al., 2013; SEO; MALEK; MEDVIDOVIC,
2008b; LIU; PINTO; LIU, 2015), but they do not provide direct guidance on energy optimization,
i.e., bridging the gap between understanding where energy is consumed and understanding
how the code can be modified in order to reduce energy consumption. With no other option,
developers have to rely on conventional wisdom, consult software development forums and
blogs, or simply search online for “tips and tricks”. However, many of these guidelines are often

1http://stackoverflow.com/search?q=which+data+structure+use+java+is:
question

http://stackoverflow.com/search?q=which+data+structure+use+java+is:question
http://stackoverflow.com/search?q=which+data+structure+use+java+is:question
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anecdotal or even incorrect (PINTO; CASTOR; LIU, 2014b).
In this chapter, we elucidate one important area of the application-level optimization

space, focusing on understanding the energy consumption of different Java collections running
on parallel architectures. This is a critical direction at the junction of data-intensive computing
and parallel computing, which deserves more investigation due to at least three reasons:

⌅ Collections are one of the most important building blocks of computer programming.
Multiplicity — a collection may hold many pieces of data items — is the norm of
their use, and it often contributes to significant memory pressure — and performance
problems in general — of modern applications where data are often intensive (XU,
2013; BU et al., 2013).

⌅ Not only high-end servers but also desktop machines, smartphones and tablets need
concurrent programs to make best use of their multi-core hardware. A CPU with
more cores (say 32) often consumes more power than one with fewer cores (say 1 or
2) (LI; MARTÍNEZ, 2005).

⌅ Mainstream programming languages often provide a number of implementations for
the same collection and these implementations have potentially different characteris-
tics in terms of energy efficiency.

To gain confidence in our results in the presence of platform variations and measurement
environments, we employ two machines with different architectures (a 32-core AMD vs. a
16-core Intel). We further use two distinct energy measurement strategies: an external energy
meter, and Machine-Specific Registers (MSRs). Our research is motivated by the following
questions:

RQ1. Do different implementations of the same collection have different impacts on energy
consumption?

RQ2. Do different operations in the same implementation of a collection consume energy
differently?

RQ3. Do collections scale, from an energy consumption perspective, with an increasing
number of concurrent threads?

RQ4. Do different collection configurations and usages have different impacts on energy
consumption?

The goal of this study is to answer these research questions. In order to answer RQ1 and
RQ2, we select and analyze the behaviors of three common operations — traversal, insertion
and removal — for each collection implementation. To answer RQ3, we analyze how different
implementations scale in the presence of multiple threads. In this experiment, we cover the
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spectrum including both under-provisioning (the number of threads exceeds the number of CPU
cores) and over-provisioning (the number of CPU cores exceeds the number of threads). In RQ4,
we analyze how different configurations — such as the load factor and the initial capacity of the
collection — impact energy consumption.

Our study produces a list of interesting findings, some of which are not obvious. We
summarize them in Section 5.4. To highlight one of them, our experiments show that execution
time is not always a reliable indicator for energy consumption. This is particularly true for
various Map implementations. In other words, the consumption of power — the rate of energy
consumption — is not a constant across different collection implementations.

4.2 Study Setup

In this section we describe the benchmarks that we analyzed, the infrastructure and the
methodology that we used to perform the experiments.

4.2.1 Benchmarks

The benchmarks used in this study consist of 16 commonly used collections available
in the Java programming language. Our focus is on the thread-safe implementations of the
collection. Hence, for each collection, we selected a single non-thread-safe implementation
to serve as a baseline. For each implementation, we analyzed insertion, removal and traversal
operations. We grouped these implementations by the logical collection they represent, into three
categories:

Lists (java.util.List): Lists are ordered collections that allow duplicate elements.
Using this collection, programmers can have precise control over where an element is in-
serted in the list. The programmer can access an element using its index, or traverse the
elements using an Iterator. Several implementations of this collection are available in the
Java language. We used ArrayList, which is not thread-safe, as our baseline. We studied
the following thread-safe List implementations: CopyOnWriteArrayList, Vector, and
Collections.synchronizedList(). The main difference between the latter two is their
usage pattern in programming. With Collections.synchronizedList(), the program-
mer creates a wrapper around the current List implementation, and the data stored in the original
List object does not need to be copied into the wrapper object. It is appropriate in cases where
the programmer intends to hold data in a non-thread-safe List object, but wishes to add synchro-
nization support. With Vector, on the other hand, the data container and the synchronization
support are unified so it is not possible to keep an underlying structure (such as LinkedList)
separate from the object managing the synchronization. CopyOnWriteArrayList creates
a copy of the underlying ArrayList whenever a mutation operation (e.g., using the add or
set methods) is invoked.
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Maps (java.util.Map): Maps are objects that map keys to values. Logically, the keys
of a map cannot be duplicated. Each key is uniquely associated with a value. An inser-
tion of a (key, value) pair where the key is already associated with a value in the map re-
sults in the old value being replaced by the new one. Our baseline thread-unsafe choice
is LinkedHashMap, instead of the more commonly used HashMap. This is because the
latter sometimes caused non-termination during our experiments2. Our choice of thread-
safe Map implementations includes Hashtable, Collections.synchronizedMap(),
ConcurrentSkipListMap, ConcurrentHashMap, and ConcurrentHashMapV8.

ConcurrentHashMap and ConcurrentHashMapV8 are different in the sense that the
latter is an optimized version released in Java 1.8, while the former is the version present in the
JDK until Java 1.7. While all Map implementations share similar functionalities and operate
on a common interface, they are particularly known to differ in the order of element access at
iteration time. For instance, while LinkedHashMap iterates in the order in which the elements
were inserted into the map, a Hashtable makes no guarantees about the iteration order.

Sets (java.util.Set): As its name suggests, the Set collection models the mathemat-
ical set abstraction. Unlike Lists, Sets do not count duplicate elements, and are not ordered.
Thus, the elements of a set cannot be accessed by their indices, and traversals are only possi-
ble using an Iterator. Among the available implementations, we used LinkedHashSet,
which is not thread-safe, as our baseline. Our selection of thread-safe Set implementations in-
cludes ConcurrentSkipListSet, ConcurrentHashSet, CopyOnWriteArraySet,
ConcurrentHashSetV8, and Collections.synchronizedSet(). It should be noted
that both ConcurrentHashSet and ConcurrentHashSetV8 are not top-level classes
readily available in the JDK library. Instead, method Collections.newSetFromMap(),
which is available in the JDK, provides its implementation. The returned Set object observes
the same ordering as the underlying map.

4.2.2 Experimental Environment

To gain confidence in our results in the presence of platform variations, we run each
experiment on two significantly different platforms:

⌅ System#1: A 2⇥16-core AMD Opteron 6378 processor (Piledriver microarchitec-
ture), 2.4GHz, with 64GB of DDR3 1600 memory. It has three cache levels (L1,
L2, L3): L1 with 32KB per core, L2 with 256KB per core, and L3 20480 (Smart
cache). It is running Debian 3.2.46-1 x86-64 Linux (kernel 3.2.0-4-amd64), and
Oracle HotSpot 64-Bit Server VM (build 21) JDK version 1.7.0_11.

2A possible explanation can be found here: http://mailinator.blogspot.com/2009/06/
beautiful-race-condition.html

http://mailinator.blogspot.com/2009/06/beautiful-race-condition.html
http://mailinator.blogspot.com/2009/06/beautiful-race-condition.html
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⌅ System#2: A 2⇥8-core (32-cores when hyper-threading is enabled) Intel(R) Xeon(R)
E5-2670 processor, 2.60GHz, with 64GB of DDR3 1600 memory. It has three cache
levels (L1, L2, L3): L1 with 48KB per core, L2 with 1024KB per core, and L3 20480
(Smart cache). It is running Debian 6 (kernel 3.0.0-1-amd64) and Oracle HotSpot
64-Bit Server VM (build 14), JDK version 1.7.0_71.

When we performed the experiments with Sets and Maps, we employed the jsr166e
library3, which contains the ConcurrentHashMapV8 implementation. Thus, these experi-
ments do not need to be executed under Java 1.8.

We also used two different energy consumption measurement approaches. For System#1,
energy consumption is measured through current meters over power supply lines to the CPU
module. Data is converted through an NI DAQ and collected by NI LabVIEW SignalExpress
with 100 samples per second and the unit of the current sample is deca-ampere (10 ampere).
Since the supply voltage is stable at 12V, energy consumption is computed as the sum of current
samples (100 samples per second, or 0.01) multiplied by 10, that is 12⇥0.01⇥10. We measured
the “base” power consumption of the OS when there is no JVM (or other application) running.
The reported results are the measured results modulo the “base” energy consumption.

For System#2, we have used jRAPL (LIU; PINTO; LIU, 2015), which is a framework
that contains a set of APIs for profiling Java programs running on CPUs with Running Average
Power Limit (RAPL) (DAVID et al., 2010) support. Due to architecture design, the RAPL support
for System#2 can access CPU core, CPU uncore data (i.e. caches and interconnects), and in
addition DRAM energy consumption data. As we shall see in the experiments, DRAM power
consumption is nearly constant. In other words, even though our meter-based measurement
strategy only considers the CPU energy consumption, it is still indicative of the relative energy
consumptions of different collection implementations. It should be noted that the stability of
DRAM power consumption through RAPL-based experiments does not contradict the established
fact that the energy consumption of memory systems is highly dynamic (BENINI; BOGLIOLO;
DE MICHELI, 2000). In that context, memory systems subsume the entire memory hierarchy,
and most of the variations are caused by caches (PAPAMARCOS; PATEL, 1984) — part of the
“CPU uncore data" in our experiments.

All experiments were performed with no other load on the OS. We conform to the default
settings of both the OS and the JVM. Several default settings are relevant to this context: (1) the
power management of Linux is the default ondemand governor, which dynamically adjusts CPU
core frequencies based on system workloads. (2) For the JVM, the parallel garbage collector is
used, and just-in-time (JIT) compilation is enabled. The initial heap size and maximum heap
size are set to be 1GB and 16GB respectively. We run each benchmark 10 times within the same
JVM; this is implemented by a top-level 10-iteration loop over each benchmark. The reported
data is the average of the last 3 runs. We chose the last three runs because, according to a recent

3Source code available at: http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/
jsr166e/

http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/jsr166e/
http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/jsr166e/
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study, JIT execution tends to stabilize in the latter runs (PINTO; CASTOR; LIU, 2014a). The
standard deviation also supports this decision. We experienced differences in standard deviation
of over 30% when comparing the warmup run (first 3 executions) and later runs, but less than 5%
when comparing the last 3 runs. Hyper-threading is enabled and Turbo Boost feature is disabled
on System#2.

4.3 Study Results

In this section, we report the results of our experiments. Results for RQ1 and RQ2 are
presented in Section 4.3.1, describing the impact of different implementations and operations on
energy consumption. In Section 4.3.2 we answer RQ3 by investigating the impact of accessing
data collections with different numbers of threads. Finally, in Section 4.3.3 we answer RQ4 by
exploring different “tuning knobs" of data collections.

4.3.1 Energy Behaviors of Different Collection Implementations and Op-
erations

For RQ1 and RQ2, we set the number of threads to 32 and, for each group of collections,
we performed and measured insertion, traversal and removal operations.

⌅ For the insertion operation, we start with an empty data collection, and have each
thread insert 100,000 elements. Hence, at the end of the insertion operation, the
total number of elements inside the collection is 3,200,000. To avoid duplicate
elements, each insertion operation adds a String object with value thread-id + “-"
+ current-index.

⌅ For the traversal operation, each thread traverses the entire collection generated by
the insertion operation, i.e., over 3,200,000 elements. On Sets and Maps, we first
get the list of keys inserted, and then we iterate over these keys in order to get their
values. On Lists, the traversal operation is performed using a top-level loop over the
collection, accessing each element by its index using the E get(int i) method
of each collection class, where E is the generic type (instantiated to String in our
experiments).

⌅ For the removal operation, we start with the collection with 3,200,000 elements, and
remove the elements one by one. For Maps and Sets, the removals are based on
keys, and we remove until the collection becomes empty. On Lists, however, the
removal operation is based on indexes, and occurs in-place — that is, we do not
traverse the collection to look up for a particular element before removal.
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System#1

System#2

Traversal Insertion Removal

Figure 4.1: Energy and power results for traversal, insertion and removal operations for
different List implementations. Bars denote energy consumption and lines denote

power consumption.

Here, according to the List documentation, the E remove(int i) method
“removes the element at the specified position in this list (optional operation). Shifts
any subsequent elements to the left (subtracts one from their indices). Returns the
element that was removed from the list."4. As we shall see, removal operations
on Lists are excessively expensive. In order to make it feasible to perform all
experiments, we chose to remove only half of the elements.

Lists. Figure 4.1 shows the energy consumption (bars) and power consumption (lines) results of
our List experiments. Each bar represents one List implementation. AL means ArrayList,
VEC means Vector, and CSL means Collections.synchronizedList(). The three
graphs at top of the figure are collected from System#1, whereas the three graphs in the bottom
are from System#2. We do not show the figures for CopyOnWriteArrayList because the
results for insertion and removal are an outlier and would otherwise skew the proportion of the
figures.

First, we can observe that synchronization does play an important role here. As we can
see, ArrayList, the non-thread-safe implementation, consumes much less energy than the
other ones, thanks to its lack of synchronization. Collection.synchronizedList()
and Vector are similar in energy behaviors. The greatest difference is seen on insertion, on
System#1, in which Collection.synchronizedList() consumed about 24.21% less
energy than Vector. Vector and Collection.synchronizedList() are strongly
correlated in their implementations, with some differences. While both of them are thread-safe
on insertion and removal operations, Collection.synchronizedList() is not thread-
safe on traversals, when performing through an Iterator, whereas Vector is thread-safe on

4Documentation available at http://docs.oracle.com/javase/7/docs/api/java/util/
List.html#remove(int)

http://docs.oracle.com/javase/7/docs/api/java/util/List.html#remove(int)
http://docs.oracle.com/javase/7/docs/api/java/util/List.html#remove(int)


68 CHAPTER 4. THE ENERGY EFFICIENCY OF JAVA THREAD-SAFE COLLECTIONS

the Iterator. In contrast, the CopyOnWriteArrayList implementation is thread-safe in
all operations. However, it does not need synchronization on traversal operations, which makes
this implementation more efficient than the thread-safe ones (it consumes 46.38x less energy
than Vector on traversal).

Furthermore, different operations can have different impacts. As we can see on traversal,
the Vector implementation presents the worst result among the benchmarks: it consumes
14.58x more energy and 7.9x more time than the baseline on System#1(84.65x and 57.99x
on System#2, respectively). This is due both Collection.synchronizedList() and
Vector implementations need to synchronize in traversal operations. As mentioned con-
trast, the CopyOnWriteArrayList implementation is more efficient than the thread-safe
implementation.

For insertion, ArrayList consumes the least energy for System#1 and System#2.
Collections.synchronizedList(), on the thread-safe side, consumes 1.30x more
energy than Vector (1.24x for execution time) on System#1. On System#2, however,
they consume barely the same amount of energy (Vector consumes 1.01x less energy than
Collections.synchronizedList()). CopyOnWriteArrayList, on the other hand,
consumes a total of 6,843.21 J, about 152x more energy than Vector on System#1. This
happens because, for each new element added to the list, the CopyOnWriteArrayList
implementation needs to synchronize and create a fresh copy of the underlying array using the
System.arraycopy() method. As discussed elsewhere (PINTO; CASTOR; LIU, 2014a;
DE WAEL; MARR; VAN CUTSEM, 2014), even though the System.arraycopy() behav-
ior can be observed in sequential applications, it is more evident in highly parallel applications,
when several processors are busy making copies of the collection, preventing them from doing
important work. Although this behavior makes this implementation thread-safe, it is ordinarily
too costly to maintain the collection in a highly concurrent environment where insertions are not
very rare events.

Moreover, removals usually consumes much more energy than the other operations.
For instance, removal on Vector consumes about 778.88x more energy than insertion on
System#1. Execution time increases similarly, for instance, it took about 92 seconds to
complete a removal operation on Vector. By way of contrast, insertions on a Vector takes
about 1.2 seconds. We believe that several reasons can explain this behavior. First, the removal
operations need to compute the size of the collection in each iteration of the for loop and, as
we shall see in Section 4.3.4, such naive modification can greatly impact both performance and
energy consumption. The second reason is that each call to the List.remove() method leads
to a call to the System.arrayCopy() method in order to resize the List, since all these
implementations of List are built upon arrays. In comparison, insertion operations only lead to
a System.arrayCopy() call when the maximum number of elements is reached.

Power consumption also deserves attention. Since System.arrayCopy() is a mem-
ory intensive operation, power consumption decreases, and thus, execution time increase. More-
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Figure 4.2: Energy and power results for traversal, insertion and removal operations for
different Map implementations. Bars mean energy consumption and line means power

consumption.

over, for most cases, power consumption follows the same shape of energy. Since energy
consumption is the product of power consumption and time, when power consumption decreases
and energy increase, execution time tends to increase. This is what happens on removal on
System#2. The excessive memory operations on removals, also observed on DRAM energy
consumption (the black top-most part of the bar), prevents the CPU to do useful work, which
increases the execution time. Also, since the removal operation on System#2takes about twice
of the time needed by System#1, power consumption drops.

We also observed that the baseline benchmark on System#2 consumes the least energy
when compared to the baseline on System#1. We atribute that to our energy measurement
approaches. While RAPL-based measurement can be efficient in retrieving only the necessary
information (for instance, package energy consumption), our hardware-based measurement
gathers energy consumption information pertaining to everything that happens in the CPU. Such
noise can be particularly substantial when the execution time is small.

For all aforementioned cases, we observed that energy follows the same shape as time.
At the first impression, this finding might seem to be “boring". However, recent studies have
observed that energy and time are often not correlated (LI et al., 2013; PINTO; CASTOR; LIU,
2014a; TREFETHEN; THIYAGALINGAM, 2013), which is particularly true for concurrent
applications. For this set of benchmarks, however, we believe that developers can safely use time
as a proxy for energy, which can be a great help when refactoring an application to consume less
energy. Ultimately, although we have found some differences in the results, both System#1 and
System#2 presented a compelling uniformity.
Map. Figure 4.2 presents the results with Map implementations. LSM means LinkedHashMap,
HT means Hashtable, CSM means Collections.synchronizedMap(), SLM means
ConcurrentSkipListMap, CHM means ConcurrentHashMap, and CHMV8 means
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ConcurrentHashMapV8. The energy behavior for LinkedHashMap, Hashtable, and
Collections.synchronizedMap() follows the same curve as time, for both traversal
and insertion operations, on both System#1 and System#2. Surprisingly, however, the
same cannot be said for the removal operations. Removal operations on Hashtable and
Collections.synchronizedMap() exhibited energy consumption that is proportionally
smaller than their execution time for both systems. Such behavior is due to a drop on power
consumption. Since such collections are single-lock based, for each removal operation, the other
threads need to wait until the underling structure is rebuilt. This synchronization prevents the
collection to speed-up, and also decreases power usage.

On the other hand, for the ConcurrentSkipListMap, ConcurrentHashMap
and ConcurrentHashMapV8 implementations, more power is being consumed behind the
scenes. As we mentioned that energy consumption is the product of power consumption
and time, if the benchmark receives a 1.5x speed-up but, at the same time, yields a three-
fold increase in power consumption, energy consumption will increase twofold. This sce-
nario is roughly what happens in traversal operations, when transitioning from Hashtable

to ConcurrentHashMap. Even though ConcurrentHashMap produces a speedup of
1.46x over the Hashtable implementation on System#1, it achieves that by consum-
ing 1.51x more power. As a result, ConcurrentHashMap consumed slightly more en-
ergy than Hashtable (2.38%). On System#2, energy consumption for Hastable and
ConcurrentHashMap are roughly the same. This result is relevant mainly because several
textbooks (PEIERLS et al., 2005), research papers (DIG; MARRERO; ERNST, 2009) and in-
ternet blog posts (GOETZ, 2003) suggest ConcurrentHashMap as the de facto replacement
for the old associative Hashtable implementation. Our result suggests that the decision on
whether or not to use ConcurrentHashMap should be made with care, in particular, in sce-
narios where the energy consumption is more important than performance. However, the newest
ConcurrentHashMapV8 implementation, released in the version 1.8 of the Java program-
ming language, handles large maps or maps that have many keys with colliding hash codes more
gracefully. On System#1, ConcurrentHashMapV8 provides performance savings of 2.19x
when compared to ConcurrentHashMap, and energy savings of 1.99x in traversal operations
(these savings are, respectively, 1.57x and 1.61x in insertion operations, and 2.19x and 2.38x
in removal operations). In addition, for insertions and removals operations on both systems,
ConcurrentHashMapV8 has performance similar or even better than the not thread-safe
implementation.

ConcurrentHashMapV8 is a completely rewritten version of its predecessor. The
primary design goal of this implementation is to maintain concurrent readability (typically on the
get() method, but also on Iterators) while minimizing update contention. This map acts
as a binned hash table. Internally, it uses tree-map-like structures to maintain bins containing
more nodes than would be expected under ideal random key distributions over ideal numbers
of bins. This tree also requires an additional locking mechanism. While list traversal is always
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Figure 4.3: Energy and power results for traversal, insertion and removal operations for
different Set implementations. Bars mean energy consumption and lines mean power

consumption.

possible by readers even during updates, tree traversal is not, mainly because of tree-rotations that
may change the root node and its links. Insertion of the first node in an empty bin is performed
with a Compare-And-Set operation. Other update operations (insertional, removal, and replace)
require locks. Locking support for these locks relies on builtin “synchronized" monitors.
Sets. Figure 4.3 shows the results with Set. LSH means LinkedHashSet, CSS means
Collections.synchronizedSet(), SLS means ConcurrentSkipListSet, CHS
means ConcurrentHashSet, and CHSV8 means ConcurrentHashSetV8. We did not
present the results for CopyOnWriteHashSet in this figure because it exhibited a much
higher energy consumption, which made the figure difficult to read. First, for all of the im-
plementations of Set, we can observe that energy consumption follows the same behavior of
power on traversal operations for both System#1 and System#2. However, for insertion and
removal operations, they are not always proportional. Notwithstanding, an interesting trade-off
can be observed when performing traversal operations. As expected, the non-thread-safe im-
plementation, LinkedHashSet, achieved the least energy consumption and execution time
results, followed by the CopyOnWriteArraySet implementation. We believe that the same
recommendation for CopyOnWriteArrayList fits here: this collection should only be used
in scenarios where reads are much more frequent than insertions. For all other implemen-
tations, the ConcurrentHashSetV8 presents the best results among the thread-safe ones.
Interestingly, for traversals, ConcurrentHashSet presented the worst results, consuming
1.23x more energy and 1.14x more time than Collections.synchronizedSet() on
System#1 (1.31x more energy and 1.19x more time on System#2).

Another interesting result is observed with ConcurrentSkipListSet, which con-
sumes only 1.31x less energy than a Collections.synchronizedList() on removal
operations on System#1, although it saves 4.25x in execution time. Such energy consumption
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Figure 4.4: Energy consumption and execution time in the presence of concurrent
threads (X axis: the number of threads, Y axis: energy consumption normalized against

the number of element accesses, in joules per 100,000 elements)

overhead is also observed on System#2. Internally, ConcurrentSkipListSet relies on a
ConcurrentSkipListMap, which is non-blocking, linearizable, and based on the compare-
and-swap (CAS) operation. During traversal, this collection marks the “next" pointer to keep
track of triples (predecessor, node, successor) in order to detect when and how to unlink deleted
nodes. Also, because of the asynchronous nature of these maps, determining the current number
of elements (used in the Iterator) requires a traversal of all elements. These behaviors are
susceptible to create the energy consumption overhead observed in Figure 4.3.

4.3.2 Energy Behaviors with Different Number of Threads

In this group of experiments, we aim to answer RQ3. For this experiment, we chose Map
implementations only, due to presence of both single-lock and high-performatic implementations.
We vary the number of threads (1, 2, 4, 8, 16, 32, 64, 128, and 256 concurrent threads) and study
how such variations impact energy consumption. An increment in the number of threads also
increments the total number of elements inside the collection. Since each thread inserts 100,000
elements, when performing with one thread, the total number of elements is also 100,000. When
performing with 2 threads, the final number of elements is 200,000, and so on. To give an
impression on how Map implementations scale in the presence of multiple threads, Figure 4.4
demonstrates the effect of different thread accesses on benchmarks.

In this figure, each data point is normalized by the number of threads, so it represents
the energy consumption per thread, per configuration. Generally speaking, Hashtable and
Collections.synchronizedMap() scale up well. For instance, we observed a great
increment of energy consumption when using Collections.synchronizedMap() when
we move from 32 to 64 threads performing traversals, but this trend can also be observed
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for insertions and removals. Still on traversals, all Map implementations greatly increase the
energy consumed as we add more threads. Also, all thread-safe implementations have their
own “15 minutes of fame". Despite the highly complex landscape, some patterns do seem
to recur. For instance, even though ConcurrentHashMapV8 provides the best scalability
among the thread-safe collection implementations, it still consumes about 11.6x more energy
than the non-thread-safe implementation. However, the most interesting fact is the peak of
ConcurrentSkipListMap, when performing with 128 and 256 threads. As discussed
earlier, during traversal, ConcurrentSkipListMap marks or unlinks a node with null

value from its predecessor (the map uses the nullness of value fields to indicate deletion). Such
mark is a compare-and-set operation, and happens every time it finds a null node. When this
operation fails, it forces a re-traversal from caller.

For insertions, we observed a great disparity. On the one hand, Hashtable and
Collections.synchronizedMap() do not scale well. ConcurrentSkipListMap,
ConcurrentHashMap and ConcurrentHashMapV8, on the other hand, scale up very
well. ConcurrentHashMapV8 has one particular characteristic about: insertions of the
first element in an empty map employs compare-and-set operations. Other update operations
(insert, delete, and replace) require locks. Locking support for these locks relies on builtin
“synchronized" monitors. When performing using from 1 to 32 threads, they have energy and
performance behaviors similar to the non-thread-safe implementation. Such behavior was
previously discussed in Figure 4.2.

Finally, taking into consideration removal operations, both ConcurrentHashMap and
ConcurrentHashMapV8 scale better than all other implementations, even the non-thread-safe
implementation, LinkedHashMap. Interestingly, ConcurrentSkipListMap presents the
worst scenario, in particular with 16, 32 and 128 threads, even when compared to the single-lock
implementations, such as Hashtable and Collections.synchronizedMap().

4.3.3 Collection configurations and usages

We now focus on RQ4, studying the impact of different collection configurations and
usage patterns on program energy behaviors. The Map implementations have two important
“tuning knobs”: the initial capacity and load factor. The capacity is the total number of elements
inside a Map and the initial capacity is the capacity at the time the Map is created. The default
initial capacity of the Map implementations is only 16 locations. We report a set of experiments
where we configured the initial capacity to be 32, 320, 3,200, 32,000, 320,000, and 3,200,000
elements — the last one is the total number of elements that we insert in a collection. Figure 4.5
shows how energy consumption behaves using these different initial capacity configurations.

As we can observe from this figure, the results can vary greatly when using different ini-
tial capacities, in terms of both energy consumption and execution time. The most evident cases
are when performing with a high initial capacity in Hashtable and ConcurrentHashMap.
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Figure 4.5: Energy consumption and performance variations with different initial
capacities.

ConcurrentHashMapV8, on the other hand, presents the least variation on energy consump-
tion.

The other tuning knob is the load factor. It is a measure of how full the hash table is
allowed to get before its capacity is automatically increased. When the number of elements
inside a Map exceeds the product of the load factor and the current capacity, the hash table is
rehashed; that is, its internal structure is rebuilt. The default load factor value in most Map
implementation is 0.75. It means that, using initial capacity as 16, and the load factor as 0.75,
the product of capacity is 12 (16 * 0.75 = 12). Thus, after inserting the 12th key, the new map
capacity after rehashing will be 32. If the initial capacity is greater than the maximum number
of entries divided by the load factor, no rehash operations will ever occur. Figure 4.6 shows
how energy consumption behaves using different load factors configurations. We perform these
experiments only with insertion operations.5.

From this figure we can observe that, albeit small, the load factor also influences both
energy consumption and time. For instance, when using a load factor of 0.25, we observed the
most energy inefficient results on System#1, except in one case (the energy consumption of
LinkedHashMap). On System#2, the 0.25 configuration was the worst in three out of 5 of
the benchmarks. We believe they is due to the successive rehashing operations that must occur.

5We did not performed experiments with ConcurrentSkipListMap because it does not provide access to
initial capacity and load factor variables.
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Figure 4.6: Energy consumption and performance variations with different load factors.

Generally speaking, the default load factor (.75) offers a good tradeoff between performance,
energy, and space costs. Higher values decrease the space overhead but increase the time cost
to look up an entry, which can reflect in most of the Map operations, including get() and
put()). It is possible to observe this cost when using a load factor of 1.0, which means that the
map will be only rehashed when the number of current elements reaches the current maximum
size. The maximum variation was found when performing operations on a Hastable on
System#1, in the default load factor, achieving 1.17x better energy consumption over the 0.25
configuration, and 1.09x in execution time.

4.3.4 The Devil is in the Details

In this section we further analyze some implementation details that can greatly affect
energy consumption.
Upper bound limit.

We also observed that, on traversal and insertion operations, when the upper bound limit
needs to be computed in each iteration, for instance, when using

for(int i=0; i < list.size(); i++) {

// do stuf...

}

the Vector implementation consumed about twice as much as it consumed when this
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limit is computed only once on (1.98x more energy and 1.96x more time), for instance, when
using

int size = list.size();

for(int i=0; i < size; i++) {

// do stuf...

}

When this limit is computed beforehand, energy consumption and time drop by half.
Such behavior is observed on both System#1 and System#2. We believe it happens mainly
because for each loop iteration, the current thread needs to fetch the list.size() variable
from memory, which would incur in some cache misses. When initializing a size variable close
to the loop statement, we believe that such variable will be stored in a near memory location, and
thus, can be fetched all together with the remaining data. Using this finding, well-known IDEs,
such as Eclipse and IntelliJ, can take advantage of it and implement refactoring suggestions
for developers. Currently, the Eclipse IDE does not provide such feature. Also, recent studies
have shown that programmers are more likely to follow IDE tips (MURPHY-HILL; JIRESAL;
MURPHY, 2012). One concern, however, is related to removal operations. Since removal on
Lists shift any subsequent elements to the left, if the limit is computed beforehand, the i++
operation will skip one element.
Enhanced for loop.

We also analyzed traversal operations when the programmer iterates using an enhanced
for loop, for instance, when using

for (String e: list) { ... }

which is translated to an Iterator at compile time. Figure 4.7 shows the results.
In this configuration, Vector needs to synchronize in two different moments: during the
creation of the Iterator object, and in every call of the next() method. By contrast, the
Collections.synchronizedList() does not synchronize on the Iterator, and thus
has similar performance and energy usage when compared to our baseline, ArrayList. On
System#1, energy decreased from 37.07J to 2.65J, whereas time decreased from 0.81 to 0.10.
According to the Collections.synchronizedList() documentation, the programmer
must ensure external synchronization when using Iterator.
Removal on objects. When using Lists, instead of perform removals based on the indexes, one
can perform removals based on object instances, for instance, when using

for (int i = 0; i < threads; i++) {

for (int j = 0; j < list.size(); j++) {

boolean b = list.remove(i + "-" + j);

}

}
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Figure 4.7: traversal operations using the get() method. We use the same
abbreviations of Figure 4.1.

When using this operation, we observed an increment on energy consumption of 39.21%
on System#1 (32.28% on execution time). This additional overhead is due to the traversal
needed for this operations. Since the collection does not know in which position the given object
is placed, it needs to traversal and compare each element until it finds the object – or until the
collection ends.

4.4 Threats to Validity

We divide our discussion on threats to validity into internal factors and external factors.

Internal factors: First, the elements which we used are not randomly generated. We
chose to not use random number generators because they can greatly impact the performance
and energy consumption of our benchmarks. We observed standard deviation of over 70%
between two executions when using the random number generators. We mitigate this problem by
combining the index of the for loop plus the thread id that inserted the element. This approach
also prevents compiler optimizations that may happen when using only the index of the for loop
as the element to be inserted in the collection.

External factors: First, our results are limited by our selection of benchmarks. Nonethe-
less, our corpus spans a wide spectrum of collections, ranging from lists, sets, and maps. Second,
there are other possible collections implementations beyond the scope of this paper. With our
methodology, we expect similar analysis can be conducted by others. Third, our results are
reported with the assumption that JIT is enabled. This stems from our observation that later runs
of JIT-enabled executions do stabilize in terms of energy consumption and performance PINTO;
CASTOR; LIU (2014a). We experienced differences in standard deviation of over 30% when
comparing the warmup run (first 3 executions) and later runs, but less than 5% when comparing
the last 3 runs.
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4.5 Summary

In this chapter, we presented an empirical study that investigates the impacts of using
different collections on energy usage. As subjects for the study, we analyzed the main methods
of 16 types of commonly used collection in the Java language. Some of the findings of this
study include: (1) just by switching to a newer implementation of the ConcurrentHashMap
can yield a 2.19x energy savings when compared to the old associative implementation. (2)
Execution time is not always a reliable indicator for energy consumption; this is particularly
true for various Map implementations. In other words, the consumption of power — the rate of
energy consumption — is not a constant across different collection implementations.
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5
The Energy Efficiency of Java Threading
Constructs

The biggest sea change in software development since the OO revolution is
knocking at the door,

and its name is Concurrency

—HERB SUTTER

This chapter presents an empirical study to illuminate and understand energy behaviors of
concurrent programs on multi-core architectures. In particular, our study is unique in its focus on
how programmer decisions — the choices and settings of thread management constructs — may
impact energy consumption and its close relative, performance. We first provide an overview
(Section 5.1) of these concurrent programming constructs, and state the research questions.
Section 5.2 shows how code is modified to use these three techniques to solve the same problem.
Section 5.3 presents our methodology, describing both benchmarks and environment. Section 5.4
shows the results of a first round of experiment, grouped by the research questions. Finally,
Section 5.5 presents a second round of experiments aiming to understand how different platform
variations impact the first round of experiments.

5.1 Overview

Despite their promise, few language-level or application-level energy-efficient solutions
address concurrent software running on parallel architectures (BARTENSTEIN; LIU, 2013;
GAUTHAM et al., 2012; TREFETHEN; THIYAGALINGAM, 2013; RIBIC; LIU, 2014). This is
unfortunate for at least two reasons: (1) thanks to the proliferation of multicore CPUs, concurrent
programming is a standard practice in modern software engineering (TORRES et al., 2011); (2)
a CPU with more cores (say 32) often consumes more power than one with fewer cores (say 1
or 2) (LI; MARTÍNEZ, 2005). Energy optimization over programs on such platforms has the
potential to yield larger savings, but may also face more challenges (IYER; MARCULESCU,
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2002; ISCI et al., 2006).
We believe a first step to optimize energy consumption of concurrent programs is to gain

a comprehensive understanding of their energy behaviors. This chapter presents an empirical
study to illuminate and understand energy behaviors of Java concurrent programs on multicore
architectures. In particular, our study is unique in its focus on how programmer decisions — the
choices and settings of thread management constructs — may impact energy consumption and
its close relative, performance. Our research is motivated by the following questions:

⌅ RQ1. Do alternative thread management constructs have different impacts on energy
consumption?

⌅ RQ2. What is the relationship between the number of threads and energy consump-
tion?

⌅ RQ3. What is the relationship between task division strategies and energy consump-
tion?

⌅ RQ4. What is the relationship between data volume/access and energy consumption?

To answer RQ1, we select three thread management constructs influential in concurrent
language design:

⌅ Explicit threading (“the Thread style”): programmers manually map logically in-
dependent units of work to threads, i.e., the scheduling unit of the virtual machine
and/or the underlying operating system. Explicit threading is the most widely used
approach in Java multi-threaded programming (TORRES et al., 2011).

⌅ Thread pooling (“the Executor style”): programmers create a pool of threads — often
fixed in size — and further submit logically independent units of work to the thread
pool. The relationship between threads and the units of work is often 1:n. Threads
select and execute submitted units of work from a centralized buffer managed by the
language runtime. In Java, this mechanism is known as executors and is part of the
java.util.concurrent library.

⌅ Work stealing (“the ForkJoin style”): similar to thread pooling, programmers also
create a pool of threads and submit logically independent units of work to the pool.
What is unique to work stealing is that each thread maintains its own buffer of units
of work. When one such buffer becomes empty, its maintaining thread may “steal”
work from other threads. Its incarnation in Java is the ForkJoin framework (LEA,
2000).

Given these constructs, our investigation is further aimed at understanding how their
settings —“tuning knobs” of concurrent programming for programmers — may impact energy
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consumption. Among them, the number of threads and the size of data are two classic knobs,
addressing the dual control vs. data aspects of concurrency. Their respective impacts on energy
consumption are focuses of our study. Tasks, i.e., logically independent units of work, have
an intimate relationship with both. Just as the Executor and ForkJoin styles indicate, the ratio
between the number of tasks and the number of threads is a design consideration of concurrent
programmers. When the number of tasks increases while the size of data remains the same,
each task will process a smaller “slice” of data, de facto tuning task granularity. We call the
programmer job of dividing work to achieve desirable task granularity task division. The impact
of task division strategies on energy consumption is another focus of our study.

Our study produces a list of findings, many of which are not obvious. We summarize
them in Section 5.4, at the end of each RQ’s discussion. We now highlight two of them.

First, our study reveals the context-dependent nature of the energy behaviors of thread
management constructs. Each thread management construct has its own “15 minutes of fame.”
Despite the highly complex landscape, some patterns do seem to recur. For example, as the
number of threads for running a concurrent program continues to increase, we observe its energy
consumption often increases first, and then decreases later, a phenomenon we term the L curve.
The shape of the curve differs significantly from the one that describes performance (execution
time).

Second, taking into consideration only the CPU usage, our experiments further demon-
strate that “faster” is not a synonym with “greener” for concurrent programs, and performance as
an indicator to estimate energy consumption is unreliable at best — incorrect in most cases —
for multi-threaded Java programs. We observed that a (faster) multi-threaded program execution
generally does not consume less energy. In fact, the opposite is often true: the sequential variants
of the benchmarks (i.e., executing a multi-threaded program with one thread) often consume the
lowest energy consumption. That being said, the (effective) use of multi-threading does have
its benefit in promoting energy efficiency: except for some embarrassingly serial benchmarks,
multi-threading often achieves the best trade-off between energy consumption and performance.
For example, one benchmark achieved a speedup of 9.5x when running with 32 threads, while
its energy consumption only grew 1.97x.

Throughout our exploration, a recurring theme is to illuminate the intricate relation-
ship between energy consumption and performance. There exists a rich literature on this
topic (IYER; MARCULESCU, 2002; ISCI et al., 2006; SAMPSON et al., 2011; COHEN et al.,
2012; BARTENSTEIN; LIU, 2013; RIBIC; LIU, 2014). We enrich existing work by offering a
programming-level perspective.

This chapter makes the following contributions:

1. It describes an empirical study — the first of its kind to the best of our knowledge
— to correlate energy behaviors of concurrent programs with thread management
constructs and their knobs.
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2. It conducts an extensive experimental exploration that involves a combination of
factors, ranging from thread management constructs, the number of threads, task
division strategies, task granularity choices, data sizes, and data access characteristics.
The exploration carves out a landscape that involves thousands of distinct points in
the experiment space. In addition, the chapter describes a preliminary study on the
stability and portability of our results under different settings of heap size, garbage
collection, just-in-time compilation, and platforms.

3. It offers insights into energy behaviors of real-world concurrent Java programs, with
a detailed list of often non-obvious findings.

5.2 Programming Patterns for Thread Management

We use an (overly) simplified version of the sunflow benchmark (BLACKBURN
et al., 2006) to illustrate the distinct programming patterns of the three thread management
constructs. Figure 5.1 and Figure 5.2 demonstrate the Thread style and the Executor style,
respectively. Figure 5.3 and Figure 5.4 both demonstrate the ForkJoin style, with a difference we
will explain shortly. The three parameters related to RQ2-RQ4 are THREADN for the number of
threads (RQ2), and TASKN for the number of tasks (RQ3), and DATAN for the data size (RQ4),
respectively.

The sunflow benchmark centers around a rendering algorithm (ray tracing) where
coordinates are stored in array coords and method render takes one coordinate to render. The
rendering logic is encompassed in a method called dowork. The coordinates to be processed by
a dowork invocation are a range of size number of consecutive elements beginning at index
start. For brevity, the code snippets here omit the body of the render method, and further
omit program logic unrelated to our discussion here, such as post-rendering processing (typically
performed through placing a barrier at the end of the main function).

In the Thread style, the program explicitly bootstraps THREADN threads, through mes-
saging the start method of a Bucket object, whose class is a subclass of the JDK Thread

class. The run method of the Bucket class (an inner class of Main in the example) is executed
by each bootstrapped thread. Here, each thread continuously processes tasks through a busy
while loop, and each task is defined as executing an instance of dowork. Since there are
TASKN tasks, each task will work on a “slice” of coordinates of size DATAN/TASKN. A global
counter d is used to track the size of data that has been processed, and the counter is accessed
from within a synchronized block.

In the Executor style, THREADN threads are created in a fixed-size thread pool, managed
by an instance of the ExecutorService class of the JDK. The inner class Bucket now only
encompasses a task and its run method only executes the dowork method (definition identical
to that in Figure 5.1) once. Each task is identified by a counter t. In the main method, TASKN
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class Main {
int coords[DATAN];
void main() {

for(int i=0; i<THREADN; i++)
(new Bucket()).start();

}
class Bucket extends Thread {
static int d = 0;
public void run() {

int start;
while(d<DATAN){

synchronized (this) {
if (d >= DATAN) return;

start=d; d+=DATAN/TASKN;
}

dowork(start, DATAN/TASKN);
}

}
public void dowork(int start, int size) {

for (int j=start; j<DATAN && size>0; j++, size--)
render(coords[j]);

}
}

}

Figure 5.1: Concurrent Programming in Thread Style

class Main {
int coords[DATAN];
void main() {

ExecutorService es = Executors.newFixedThreadPool(THREADN);
for (int i = 0; i < TASKN; i++)
es.execute(new Bucket(i));

}
class Bucket extends Thread {
...
int t;
Bucket(int t) {this.t = t;}
public void run()
{dowork(t * DATAN/TASKN, DATAN/TASKN); }

}
}

Figure 5.2: Concurrent Programming in Executor Style
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class Main {
int coords[DATAN];
void main() {

(new ForkJoinPool(THREADN)).submit(new Bucket(0));
}
class Bucket extends RecursiveAction {
...
int t;
Bucket(int t) {this.t = t;}
public void compute() {

if (t < TASKN) {
(new Bucket(t+1)).fork();
dowork(t * DATAN/TASKN, DATAN/TASKN);

}
}

}
}

Figure 5.3: Concurrent Programming in Task-Centric ForkJoin Style

class Main {
int coords[DATAN];
void main() {

(new ForkJoinPool(THREADN))
.submit(new Bucket(0, DATAN));

}
class Bucket extends RecursiveAction {
...
int start, size;
Bucket(int start, int size) {

this.start = start; this.size = size;
}
public void compute() {

if(size < SEQUENTIAL_CUTOFF) dowork(start, size);
else {
int half = size / 2;
new Bucket(start, half).fork();
new Bucket(start + half, size - half).fork();

}
}

}
}

Figure 5.4: Concurrent Programming in Data-Centric ForkJoin Style
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tasks will be managed by the pool of THREADN threads. The submission for management is
achieved through the use of the execute method of the ExecutorService object.

The ForkJoin style is similar to the Executor style in that a fix-sized pool – the ForkJoinPool
object – will manage THREADN threads. Unlike Executor however, ForkJoin adopts a work
stealing algorithm to manage threads. Instead of submitting all tasks to a centralized service
such as in Executor, each thread under a work-stealing scheduler maintains its own localized
queue-like structure, called a deque, for tasks. A thread running out of tasks (a thief ) will “steal”
a task from the deque of another randomly selected thread (a victim). The runtime behavior of
work stealing is defined through a classic yet sophisticated algorithm, with subtleties detailed in
prior work (FRIGO; LEISERSON; RANDALL, 1998; LEA, 2000).

From a programming perspective, the thread pool for work stealing is initially only
submit’ed with one task, an object subclassed from the JDK class RecursiveAction. A
thread in the pool will pick up the task, i.e., run its compute method. The compute method
may further fork new tasks “on the go,” where forking can be viewed as placing the task on
the thread’s own deque. Such a task in turn may either be picked up by the current thread, or be
stolen and picked up by other threads in the pool. Both Figure 5.3 and Figure 5.4 follow this
common pattern.

Recursively dividing work into smaller tasks is a distinct programming pattern for
programs written in work-stealing languages or language frameworks. As it turns out, different
task division strategies exist, with Fig. 5.3 highlighting a task-centric task division strategy, and
Fig. 5.4 demonstrating a data-centric task division strategy. In the task-centric approach, we
directly fix the number of tasks (through TASKN), and keep a counter to track how many tasks
have been forked so far. In contrast, the data-centric approach sets a sequential cutoff threshold
to data, i.e., the size of data a task will work on, instead of explicitly setting and tracking the
number of tasks. The two strategies lead to different programming patterns, and the choice is
largely dependent on what is considered more natural to specific programs. It however should
be pointed out that they are indeed two sides of the same coin for task granularity: given the
overall data, fixing the number of tasks will implicitly set the data size per task, whereas fixing
(sequential cutoff) data size will implicitly determine the number of tasks.

In the rest of the chapter, we manually refactor each benchmark into the four pro-
gramming patterns. Figures 5.1, 5.2, 5.3, and 5.4 serve as examples of what we view as
“comparable” programs in our benchmarking process. We routinely fix two of the three param-
eters — THREADN, DATAN, TASKN (or its counterpart of sequential cutoff threshold) — and
observe the impact on energy/performance when the 3rd parameter varies. For example, when
THREADN and DATAN remain the same but TASKN increases, it is aligned with our intuition
that tasks become more “fine-grained.”
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5.3 Experiment Setup

In this section we describe the benchmarks that we analyzed, the infrastructure and the
methodology that we used to perform the experiments.

5.3.1 Benchmarks

We use a variety of benchmarks for evaluation, listed as follows. Benchmarks 1-3
are from a Debian-based language benchmark suite1. Benchmark 4 was developed by us.
Benchmark 5 is a modification of a program originally developed for a work-stealing language
system (KUMAR et al., 2012). The rest of the benchmarks are from the well-known DaCapo
suite (BLACKBURN et al., 2006).

1. knucleotide: This benchmark takes a DNA sequence, and counts the occur-
rences and their frequencies of nucleotide patterns. The memory-intensive benchmark
employs string manipulation intensively. There is no synchronization point in the
program, but one atomic variable is used.

2. mandelbrot: A mandelbrot is a mathematical set of points whose boundary is a
distinctive and easily recognizable two-dimensional fractal shape. Mandelbrot set
images are created by sampling complex numbers and determining for each one
whether the result tends toward infinity when a particular mathematical operation is
iterated on it. According to its website, this benchmark spends 99% of the time using
CPU, and uses I/O only to print the results. There is no synchronization point in the
program, but one atomic variable is used.

3. spectralnorm: The spectral norm is the maximum singular value of a matrix.
The benchmark is CPU-intensive, and scales up well in multicore machines. This
benchmark synchronizes threads using a barrier, and uses one atomic variable.

4. largestimage: This I/O-intensive benchmark performs a recursive search into
the file system, looking for image files. During traversal, it keeps track of the number
of image files it encountered and the largest among them. This benchmark has two
synchronization points and is strongly I/O-bound.

5. n-queens: This benchmark is the classic N-queens chessboard game, placing N
chess queens on an NxN chessboard so that no two queens attack each other. It is
a computationally intensive, CPU-bound problem. This benchmark does not have
synchronization points, but uses one atomic variable.

1http://benchmarksgame.alioth.debian.org
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6. sunflow: renders a set of images using ray tracing2.

7. xalan: transforms XML documents into HTML.

8. h2: executes a number of transactions against a model of a banking application, in a
style similar to JDBCbench.

9. tomcat: runs a set of queries against a Tomcat server retrieving and verifying the
resulting webpages.

We selected the benchmarks based on their diverse characteristics. For instance, ac-
cording to a recent study (KALIBERA et al., 2012), sunflow scales well when the number
of CPU cores increases, h2 scales rather poorly, and xalan is the middle-of-the-road bench-
mark in terms of scalability. Benchmark largestimage is I/O-intensive, knucleotide
is memory-intensive, and benchmarks mandelbrot, n-queens, and spectralnorm are
CPU-intensive.

For the benchmarks, DATAN represents the number of patterns for knucleotide,
the size of the vector for both mandelbrot and spectralnorm, the size of a matrix for
n-queens, the number of directories for largestimage, the size of the image for sunflow,
the number of converted files for xalan, and the number of database transactions for h2.

5.3.2 Experimental Environment

Unless noted otherwise, all experiments were conducted on a machine with 2⇥16-core
AMD Opteron 6378 processor (Piledriver microarchitecture), 2.4GHz, with 64GB of DDR3
1600 memory. It has three cache levels (L1, L2, L3): L1 with 32KB per core, L2 with 256KB per
core, and L3 with 20480KB (Smart cache). It is running Debian 3.2.46-1 x86-64 Linux (kernel
3.2.0-4-amd64), and Oracle HotSpot 64-Bit Server VM (build 21) JDK version 1.7.0_11.

All experiments were performed with no other load on the OS. We conform to the default
settings of both the OS and the JVM. Several default settings are relevant to this context: (1) the
power management of Linux is the default ondemand governor, which dynamically adjusts CPU
core frequencies based on system workloads. (2) For the JVM, the parallel garbage collector is
used, and just-in-time (JIT) compilation is enabled. The initial heap size and maximum heap
size are set to be 1GB and 16GB respectively. We run each benchmark 10 times within the same
JVM; this is implemented by a top-level 10-iteration loop over each benchmark. The reported
data is the average of the last 3 runs. We justify this decision in Section 5.5.

Energy consumption is measured through current meters over power supply lines to the
CPU module. Data is converted through an NI DAQ and collected by NI LabVIEW SignalExpress
with 100 samples per second and the unit of the current sample is deca-ampere (10 ampere).

2The description for the DaCapo benchmarks was taken directly from the DaCapo website:
http://www.dacapobench.org/
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Since the supply voltage is stable at 12V, energy consumption is computed as the sum of current
samples multiplied by 12⇥0.01⇥10. We measured the “base” power consumption of the OS
when there is no JVM (or other applications) running. The reported results are the measured
results modulo the “base” energy consumption.

5.4 Study Results

In this section, we report the results of our experiments. Results for RQ1 and RQ2 are
presented in Section 5.4.1, which describes the impact of different thread management constructs
in the presence of varying numbers of threads. In Section 5.4.2 we attempt to answer RQ3 by
investigating the impact of different task division strategies. Finally, in Section 5.4.3 we present
answers to RQ4 by exploring different data characteristics.

5.4.1 Energy Behaviors with Alternative Programming Abstractions and
Varying Numbers of Threads

In this group of experiments, we fix the number of tasks and the size of the data, and study
how variations on the number of threads and the choice of different thread management constructs
impact energy consumption. The results of our experiments are presented in Figures 5.5 and
5.6. Here, the first set of figures are energy consumption results, whereas the other ones are the
corresponding performance results.
The L Curve.

One interesting observation throughout our study is that energy consumption typically
increases as the number of threads increases, and then gradually decreases as the number of
threads approaches the number of CPU cores. In the energy consumption figures, the curves
typically display a L shape, which we term the L curve. Nearly all benchmarks display the L
curve.

We believe the L curve results from a combination of multicore processor characteristics
and program performance traits. Under the default setting of the ondemand governor, power
management modules of multicore CPUs work in an “adaptive” fashion: when a particular core
stays idle, the operating frequency of the core will be dynamically adjusted to a lower level.
When a 32-core CPU is only loaded with 4 threads for instance, a large number of cores will
operate on the lowest frequency (the specific number of cores is likely to be slightly more than 4,
because of the running of VM/OS threads). It is standard knowledge that power consumption is
reduced when the operating frequency is lower. For that reason, a program running 4 threads is
likely to consume less power than one running 8 threads. This helps us explain the / part of the
L curve.

To see why energy consumption often decreases after the initial increase, note that energy
consumption, by definition, is the multiplication of power and time. As more threads are used,
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Figure 5.5: Energy Consumption with Alternative Programming Abstractions and
Varying Numbers of Threads
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program execution time tends to shorten. The extent of the drop — the \ part of the L curve —
is determined by the increase in performance (and thus decrease in time) and the increase in
power consumption. The greater the ratio between speedup and increase in power, the steeper
the \ part of the curve will be.

The specific shape details of the L curve, including the “peaking” point and the slope
of the increase/decrease, are application-specific. Take sunflow and h2 (in the Thread style)
for example. Power consumption for the two benchmarks is 8.54 W and 6.87 W on average,
respectively, when using 1 thread, and 88.05 W and 14.27 W when using 32 threads. Execution
time is 17.74 and 9.92 seconds, respectively, when using 1 thread, and 1.34 and 10.38 seconds
when using 32 threads. Since the power consumption for sunflow increases about 10x
and performance improves 13x, energy consumption in fact decreases. For h2 however — a
benchmark known to scale rather poorly as the number of cores increases — power consumption
increases 2.07x but execution time also increases 1.04x, yielding 2.17x energy consumption.
Thus, in this extreme case, the \ part of the curve does not exist.

Embarrassingly Parallel vs. Embarrassingly Serial. Our selection of benchmarks range from
“embarrassingly parallel” ones ( sunflow, tomcat, spectralnorm, and n-queens), to
middle-of-the-road ones (xalan, knucleotide, and mandelbrot), to “embarrassingly
serial” ones (h2, and to some extent largestimage)). The performance results of four Dacapo
benchmarks — Figure 5.6(a)(b)(c)(i) — are consistent with recent studies (e.g., KALIBERA
et al. (2012)).

We find the (more) embarrassingly parallel benchmarks are likely to “peak” earlier on
the L curve, i.e., reaching the highest energy consumption with the smallest number of threads.
For example, sunflow’s L curve peaks at 4 threads, whereas xalan peaks at 16. We think
this is reasonable: the speed-up of sunflow is almost 8x when the number of threads increases
from 1 to 8 (linear speedup), so the reduction in execution time can quickly offset the increase
in power consumption early on. In comparison, xalan produces a 5x speedup with the same
variation in threads and its performance does not improve with more threads. Hence, its L curve
peaks later.

Faster is not Greener. In most of our benchmarks, additional threads would initially lead
to improved performance; see Figure 5.6(a)(b) for example. Following the / part of the L
curve however, the energy consumption increases as the number of threads increases initially.
Furthermore, for 6 of our 9 benchmarks, the lowest energy consumption was achieved by the
sequential (1 thread) version. For CPU computations only, being “faster” clearly has little
correlation with being “greener”. However, a precise and definitive answer to this question must
consider not only CPU (or DRAM and interconnects, as the last chapter did), but also the entire
system’s energetic footprint. Unfortunately, the current state of the art on energy tooling does
not offer support to such kind of analysis. We expect to revisit this question when better support
is available.

Moreover, since benchmarks “peak” at different parts of the L curve, it is not possible to
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generalize that an improvement in time could be seen as an improvement in energy, and vice
versa.

Which Programming Style Should I Use? As Figures 5.5 and 5.6 show, it is possible to detect
differences in the amount of energy used when different concurrent programming abstractions
are employed. For some benchmarks, this difference is small, e.g., xalan in Figure 5.5(b)
and Figure 5.6(b). However, the difference is more noticeable in others. Every programming
abstraction may have its “15 minutes of fame.” In one configuration of sunflow, ForkJoin

outperforms Thread and Executor by reducing energy consumption by 30%, as shown in
Figure 5.5(a). In one configuration of h2 however, ForkJoin underperforms Thread and Executor

by increasing energy consumption by 50%, as shown in in Figure 5.5(c). Our experiments do
show that there are scenarios where one style is more likely to outperform the others, which we
summarize now.

First, the Thread style performs well in I/O-bound (such as largestimage) bench-
marks. One possible explanation is that in I/O-bound benchmarks, the instruction pipeline has a
higher likelihood to stall. In such a scenario, the Thread style defers context switching and/or
load balancing to the OS, which appears to be efficient. The Executor style and the ForkJoin

style build an additional layer of thread management on top. Unfortunately, this higher layer of
decision making may disagree with the OS, missing some opportunities for context switch in the
presence of long-latency I/O operations.

Second, the energy consumption of the ForkJoin-style programming is sensitive to the
degree of parallelism latent in the benchmarks. It outperforms the other two strategies when
the benchmarks are embarrassingly parallel (e.g., Figures 5.5(a)(e)(g)(i)), but underperforms
the other two strategies in the presence of more serial benchmarks, such as h2. We believe
this can be explained through the nature of the work stealing algorithm: it excels through
balancing the deques of individual threads. For benchmarks involving significant serial portions,
synchronization (such as a barrier) is often used during the execution of a task. The work
stealing algorithm is oblivious to such intra-task synchronizations, preventing tasks from being
stolen and thus suppressing load balancing. In other words, the impacts of stealing a task with
long synchronization delays and one without are clearly different, and the natural strength of
work stealing in balancing tasks among threads is broken when long intra-task synchronization
delays are present. Along this line, the Executor style performs slightly better, but still not as
efficient as the Thread style. One possible reason is that an Executor needs to manage a queue
of worker threads. Updates to the queue are protected from clients by a lock, thus increasing
synchronization costs when a new task is submitted. Such overhead does not exist in the Thread

style.

Energy-Performance Trade-offs. An energy-related question arises when we move from single-
threaded programming to multi-threaded programming, or from 16 threads to 32 threads: what
is the relationship between energy consumption and performance? One well-known metric to
evaluate the energy/performance trade-off is the Energy-Delay Product (EDP): the product of
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energy consumption and execution time. We compute the EDP for the benchmarks, with results
presented in Fig. 5.7, where a smaller EDP value indicates the more favorable trade-off.

We observed that a parallel execution is generally more favorable for energy-performance
trade-offs than its single-threaded counterpart. This is particularly true for embarrassingly parallel
programs: the EDP for sunflow with 32 threads is only 5.8% of its single-threaded execution.
The degree of improvement on EDP appears to be in sync with the potential of parallelism in
applications, and for specific benchmarks, increasing the number of threads is most likely not
aligned with the improvement of EDP. For instance, when the number of threads increases for
xalan from 8 to 16, EDP for all three programming constructs deteriorates significantly. The
most unfortunate case among our benchmarks is perhaps h2. As the number of threads increases,
the benchmark produces no gain in performance, but its energy consumption triples. As a result,
EDP degrades as we move from sequential to parallel execution.
Overpopulating Cores with Threads. For the Thread style of thread management, we have also
constructed experiments where the number of threads goes beyond the number of cores. In
all experiments, we did not notice significant change in energy consumption. This suggests
that the JVM and the OS are well-versed in handling cases where threads outnumber cores.
Make no mistake: the number of context switches does increase as the cores become more
overpopulated with threads. For instance, in the sunflow benchmark, the number of context
switches increases 3.57x when the number of threads varies from 32 to 128 threads, as Figure 5.8
shows.

We choose not to perform experiments over the cases where there are more threads than
CPU cores for Executor and ForkJoin styles. The “comparable” (Section 5.2) implementation
would create a thread pool that outnumbers the number of cores. We do not believe that is the
intended use for these thread management constructs.

0
1

0
0

0
0

2
5

0
0

0

Number of Threads

#
 o

f 
C

o
n

te
x
t 

S
w

it
c
h

e
s

Sunflow

1 2 4 8 12 32 64 128

Figure 5.8: Context Switches and Thread Overpopulation

5.4.2 Energy Behaviors and Task Division Strategies

In this section, we fix the number of threads and the size of data, and study how the
variations on the number of tasks have effects on energy consumption. To thoroughly explore the
experimental space, we further refine our benchmarks into two versions: a task-centric division
strategy and a data-centric division strategy as we first introduced in Section 5.2.
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Task Granularity with Task-Centric Division. In this style, we divide the work based on TASKN.
Figure 5.9 demonstrates the effect of task granularity on xalan benchmark. We observed a
similar energy consumption behavior in the other benchmarks. Here the data exhibit remarkable
uniformity: the number of tasks submitted/executed as logically independent units of work has
little impact on energy consumption, independently of the thread management construct.
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Figure 5.9: Energy/Performance and Task-Centric Division

At first glance, the results may be disappointingly “boring.” We believe, however, that
no news is news. The data reveal that task granularity matters little to energy consumption
of concurrent programs. For instance, we have at a point increased the number of tasks to
1024, for a benchmark whose overall DATAN is 2048. In other words, every task only takes
2 pieces of data. In this case, no noticeable energy consumption increase was observed. Its
version in the Executor style submits 1024 tasks to the ExecutorService and its version
in the ForkJoin style recursively creates 1024 RecursiveAction objects. Though such
programming patterns may appear to be “extreme,” our experiments show they place little burden
on energy consumption.
Task Granularity with Data-Centric Division. Under a data-centric approach, ForkJoin can
also be seen as a divide-and-conquer algorithm, where in each recursive call new tasks are
spawned until a certain threshold is reached. Using this approach, Figure 5.10 shows the
energy/performance behavior of different sequential threshold configurations for the sunflow
benchmark, where each recursive call sapwns two tasks to divide work into halves. We choose not
to perform experiments of the case using Thread and Executor styles because their programming
patterns do not naturally fall into the divide-and-conquer style as ForkJoin does.

There are three observations from this set of experiments. First, energy consumption and
execution time both increase when the sequential threshold changes from 135 to 405, a 2.66x
increase in energy consumption and a 2.64x increase in execution time. In this example, the
benchmark operates over an array of 2048 positions. Thus, when we use 405 as the sequential
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Figure 5.10: Energy/Performance and Data-Centric Division

cutoff threshold, the benchmark creates less than 10 tasks and operates on at most as many CPU
cores. With the majority of the cores idle, the benchmark is not able to take advantage of the
multiprocessors. As the sequential threshold reduces to 135, the program operates on more
cores. As the L curve suggests, both the energy consumption and the execution time reduce for
sunflow.

Second, the overhead of scheduling a high number of tasks does not seem to impact
energy consumption. This phenomenon appears to recur in all benchmarks, and it is consistent
with our findings for the task-centric experiments.

Third, energy consumption and execution time do not always increase in sync. For
example, there is a small energy consumption variation (7.85%) when the sequential threshold
changes from 45 to 135. Performance, on the other hand, degrades 23.8%. One possible reason
is that, when tasks become more coarse-grained, it is less likely that a ForkJoin thief will steal a
task, because the total number of available tasks decreases. Thus, after few unsuccessful attempts,
the processor goes idle and the average power consumption decreases.

Asymmetric Workload. So far, we have created tasks where the data is divided uniformly.
Another important characteristic to take into consideration is the use of asymmetric workloads.
With different amounts of work, some ForkJoin workers will finish their work faster than others.
Hence, the likelihood of steals may increase. Figure 5.11 shows the average number of steals per
task granularity in the presence of symmetric load, a random asymmetric work division, and an
80-20 asymmetric work division.

The figure shows that the number of steals is strongly correlated to the symmetric vs.
asymmetric nature of task workloads. Further, the number of steals is also correlated to task
granularity: the smaller the tasks, the greater the number of steals. We observed an average
energy savings of 3.26% using asymmetric workloads. We have experienced similar results in
CPU-bound benchmarks, as Figure 5.12 shows.
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0
2

0
0

6
0

0

Sequential Threshold

E
n

e
rg

y 
(J

)

Sunflow

5 15 45 135 405 1215

Symmetric Load

Asymmetric Random

Asymmetric 80−20

0
2

0
0

4
0

0
6

0
0

Sequential Threshold

T
im

e
 (

se
c)

Sunflow

1 15 45

Symmetric Load
Asymmetric Random
Asymmetric 80−20

Figure 5.12: Energy/Performance with Asymmetric Workload
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The Width of Forking. The ForkJoin-style can be configured to divide the work into n desirable
tasks, instead of two per recursive call, which we term the width of forking. We have analyzed 4
different forking widths. For the sunflow benchmark in Figure 5.13, we observed a negligible
difference of energy consumption from 2 to 4 forks, and from 4 to 8 forks per recursive call
(about 0.96% and 1.21% respectively). From 8 forks to 16 forks, however, we observed an
increase of 5.78% over the total energy consumption, and a similar increase in the execution time
of 5.67%. This result is consistent with the other benchmarks. The experiment here suggests that
excessive forking width can lead to increased energy consumption.
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Figure 5.13: Energy/Performance and Forking Width

5.4.3 Energy Behaviors and Data

We now focus on RQ4, studying the impact of data — its size and access patterns — on
program energy behaviors.
Data Size. Fixing the number of threads and the number of tasks, we now study how the
variations on data size have effect on energy consumption. Figure 5.14 shows the energy
behavior for the xalan benchmark, where the analogous DATAN value (as used in examples
Fig. 5.1/5.2/5.3/5.4) represents the number of XML files to be converted. THREADN and TASKN
were fixed at 32 and 256, respectively.

As predicted, energy consumption increases when a larger number of files are processed.
Observe however, the increase in energy consumption is not necessarily linear to data size.
Generally speaking, the precise relationship is application-specific: it depends on the algorithm
complexity relative to the data size. In cases of data-parallel benchmarks, one phenomenon we
observe is that the curve is often convex, especially for the part of the curve where the data sizes
are relatively small. Take xalan for instance. When data size increases from 50 to 100, the
energy consumption and performance remain almost unchanged. We think this has to do with
the programming pattern itself. In data-parallel programs, there is usually a barrier at the end of
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Figure 5.14: Energy/Performance and Data Size

data processing, and performance is determined by the slowest processing thread. When overall
data size is small, the execution time of processing each data “slice” is also small. Variations on
processors and scheduling may contribute to a larger proportion on the progress of individual
threads, and differences in data size may be masked. When data size increases, the masking
effect is reduced.

In xalan, the energy behaviors with the 3 thread management constructs are nearly
identical, but there is a small but detectable difference in performance for the three constructs,
with ForkJoin taking the least time and Executor taking the most. Since energy is the accumulated
effect of power over time, this indicates ForkJoin is likely to have completed the task faster with
a higher power consumption. Work stealing systems are most known for their ability for load
balancing, where CPU core idling is reduced, improving performance while presenting fewer
opportunities for cores to fall into lower power modes. This phenomenon is reduced when data
size becomes larger, because data processing time would be proportionally larger, reducing the
relative effect of frequent steals.

Data Sharing vs. Copying. We now study how memory-intensive tasks may impact energy
consumption. Many ForkJoin benchmarks (in the style of data-centric division) operate on an
indexable data structure, with subtasks operating on partitions of this data structure. During
recursion, it is often necessary to split the data structure into smaller pieces on which the newly
forked tasks can work on. One possible solution is to copy part of the data structure and use it for
the newly forked tasks. Given an array-based data structure, each recursive call in this scenario
will create n new arrays, where n is the width of forking. However, an alternative solution is to
share this array, with newly forked tasks operating on contiguous partitions of this data structure.
In all the experiments we have reported so far, sharing is the default strategy for data use. In
the next set of experiments, we modify each benchmark to one that the forked tasks operate on
copies of the data structure, instead of working on in-place data. In Figure 5.15 we compare the
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Figure 5.15: Energy/Performance and Data Sharing Strategies

two approaches using the mandelbrot benchmark.
As the figure shows, we experienced an energy consumption increase of 15.38% when

copying is used. In the meantime, performance degrades by 20.85%. In other words, copying
has severe impact on both energy and performance. In cases where the newly forked tasks are
unlikely to lead to data races, this set of experiments demonstrate that a ForkJoin programmer
should use shared data structures as much as possible. Furthermore, observe that copying has a
more severe impact on performance than energy. This is indeed natural: when long-latency main
memory request is issued, the issuing cores can often be reduced to a lower frequency, and a
lower level of power consumption. (Recall again that energy is the multiplication of power and
execution time.)

public void compute() {
...
Solver[] tasks = new Solver[size];
for (int i = 0; i < tasks.length; i++) {

int[] newElements = new int[depth + 1];
System.arraycopy(currentElements, 0,

newElements, 0, depth);
tasks[i] = new Solver(newElements);
tasks[i].fork();

}
...
for (int i = 0; i < tasks.length; i++) {

if(tasks[i] != null) tasks[i].join();
}

}

Figure 5.16: ForkJoin: Spreading Out Data Copying

Data Locality. Next, we investigate the impact of data locality on energy consumption. We
modify the (data copying flavor of the) n-queens benchmark into two versions: Figure 5.16
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public void compute() {
...
List<Solver> tasks = new ArrayList<>(size);
for (int i = 0; i < tasks.size(); i++) {

int[] newElements = new int[depth + 1];
System.arraycopy(currentElements, 0,

newElements, 0, depth);
tasks.add(new Solver(newElements));

}
...
invokeAll(tasks);

}

Figure 5.17: ForkJoin: Aggregating Data Copying

and Figure 5.17. The two versions are functionally identical. In the first version, the execution
of a task follows the sequence of ababababc where a is copying memory for a subtask, b is
forking the subtask, and c is computing the current task. In the second version, the execution of
task follows the sequence of aaaacbbbb3.

Which version should fare better? On the surface, the second version indeed admits less
parallelism on the execution of the current task: it forks the subtasks only after the current task
has finished. Therefore, it cannot be executed in parallel with any of the a steps or the c step.
Our benchmarking results on the other hand show the opposite: the second version yields energy
savings of 10.11% and a performance improvement of 10.66%.

We hypothesize that data locality plays an important role. Note that in the first version,
we interspersed data copying with thread forking (together with other operations in a loop
iteration). Any of the latter operations may potentially pollute the cache, increasing the chance of
memory round-trips. In the second version however, the same memory area is repeated requested,
leading to significant data locality.

To further strengthen our belief that data locality is the main cause here, we also investi-
gated the same two-version approach, but using a data sharing strategy. There is no noticeable
difference in energy consumption and performance for the two versions.

5.5 Threats to Validity

In experimental systems research, a fundamental challenge is the vast number of factors
across the compute stack. For instance, it is a valid question to ask whether different OS schedul-
ing policies (YUAN; NAHRSTEDT, 2003; MERKEL; BELLOSA, 2006), different processor
and interconnect layouts (KUMAR et al., 2003; SOLERNOU et al., 2013), and different VLSI
circuit designs (A.CHANDRAKASAN; SHENG; BRODERSEN, 1992), have impact on results.
They clearly all do. Our study takes a route common in experimental programming language

3The invokeall method in the second version is part of the Java ForkJoin API. It forks all tasks and then
joins them all. Through inspecting its source code, we find no “magic” that would otherwise skew the results.
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research, by constructing experiments over representative system software and hardware, and the
results are empirical by nature.

To take a step further, we seek to gain a preliminary understanding of how variations in
the underlying system impact our results. In particular, we focus on configuration variations
of the language runtime. The primary goal is to understand the stability and portability of our
results.
Heap Size. Heap size settings are known to impact JVM performance (GEORGES; BUYTAERT;
EECKHOUT, 2007). Figure 5.18 shows the energy consumption and performance under different
settings of maximum heap sizes (to trigger GC) for sunflow; the rest of the JVM settings are
identical to those described in Section 5.3. When maximum heap size is restricted to a very low
level – such as 20MB for sunflow – both energy consumption and performance go higher
significantly. We speculate the additional overheads result from VM allocation and garbage
collection. Variations in energy consumption that stem from heap size appear to be small if the
maximum heap size is higher. While examining this benchmark without setting a fixed maximum
heap size, we observed that its heap usage reaches a peak of more than 50MB before GC is
triggered. Fixing the heap size at 20MB may have triggered significantly more GC.

Executors
Thread
ForkJoin

E
n

e
rg

y 
C

o
n

su
m

p
tio

n
 (

J)

0
4

0
8

0
1

2
0

20MB 25MB 30MB 40MB

Executors
Thread
ForkJoin

T
im

e
 (

se
c)

0
5

1
0

1
5

2
0

2
5

20MB 25MB 30MB 40MB

Figure 5.18: Heap Size Effect (sunflow, 32 threads, 256 tasks, 256 as image data size)

Garbage Collection Strategy. To gain a preliminary understanding of how GC strategies may
pose a threat to the validity of our results, we constructed experiments over 5 GC options
over Hotspot: (a) SerialGC: the stop-the-world serial collector, (b) ParallelGC: the parallel
collector, (c) PrallelOldGC: the parallel collector with data compression, (d) ConcMarkSweepGC:
concurrent mark sweep collector, and (e) G1GC: the garbage-first collector. All have been
specified by ORACLE (2014). Figure 5.19 shows the results for xalan.
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5.5. THREATS TO VALIDITY 103

As shown, GC strategies do have observable impact on program energy consumption.
In the context of this study, the effect is relatively mild, within ±10%. A precise relationship
between GC and energy consumption is a complex topic beyond the scope of this study.
Just-In-Time Compilation. Just-In-Time (JIT) compilation dynamically optimizes the program
and is known to have significant impact on performance. Predictably, JIT also has direct impact
on energy consumption. Figure 5.20 shows the effect of JIT on sunflow.
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Figure 5.20: JIT Effect (sunflow, 32 threads, 256 tasks, 256 as image data size, 10
runs on X-axis)

Here, the X-axis represents 10 “hot” runs of sunflow, i.e., a top-level loop that encom-
passes 10 executions within one JVM. With JIT, early runs incur higher energy/time overhead
than later runs, as illustrated in Figure 5.20(a) and Figure 5.20(b). Also note that energy/perfor-
mance behaviors do stabilize after a number of runs. With JIT disabled, both energy consumption
and performance are uniform, as shown in Figure 5.20(c) and Figure 5.20(d). Both of them
however are also significantly worse than their JIT counterparts.

Moreover, the growth of energy and time is not proportional. Execution time increases
by 33x from using JIT to not using JIT, whereas energy consumption increases more than 45x.
For instance, for the 10th sunflow execution, the average power consumption using JIT was
85.47W , and when not using it was 118.35W . After a more detailed inspection in the data, we
observed that although the JIT executions recorded the highest power consumption (175.3W
using JIT and 166.3W not using JIT), non-JIT dominates the executions with higher power
consumptions (3rd quartile: 163.2W ), that is, consuming more power, than the approach using
JIT (3rd quartile: 154.6W ).
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In Section 5.3, we explained our data collection strategy as averaging the last runs of JIT-
enabled executions. This decision stems from our observations here: (1) JIT-disabled executions
incur energy/performance overhead unrealistic to common use of Java applications, and (2) later
runs of JIT-enabled executions do stablize in terms of energy consumption and performance.
Platform Variations. As a final experiment, we ran some of the benchmarks on a different
machine: an 8-core AMD FX-8150 processor (Bulldozer architecture) with 16GB of DDR 1600
memory, running Debian 3.2.46-1 Linux (kernel 3.2.0-4-amd64) and Oracle HotSpot 64-Bit
server VM, JDK version 1.7.0_45, build 18. Figure 5.21 shows the results for n-queens
benchmark.
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Figure 5.21: Energy/Performance on Alternative Platform

The benchmarking results show similar trends. For instance, the L curve recurs, peaking
at 4 threads – the same behavior for this benchmark when using 32 processors. The thread
management styles behave similarly when compared to the 32-core machine. Still, ForkJoin

style outperforms Thread and Executor.

5.6 Summary

In this chapter, we present a study on how concurrent programming practices may have
impact on energy consumption. Our results suggest that different constructs for managing
concurrent execution can impact energy consumption in different ways, and energy consumption
is determined by the choice of thread management constructs, the number of threads, the
granularity of tasks, the size of the data, and the nature of data access. This study is a step toward
a better understanding of the interplay between energy efficiency and performance.
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6
Understanding and Overcoming Bottlenecks
in Java ForkJoin Applications

The lack of refactoring incurs technical debt.

—MIRYUNG KIM

In last chapter, we present a comprehensive empirical study on real-world FORKJOIN ap-
plications, identifying potential bottlenecks against parallelism in these applications, illustrating
their impacts on systems performance, and demonstrating how simple changes on source code
can make a big difference (Section 6.3). We summarize our findings as 6 potential bottlenecks
latent in FORKJOIN applications, particularly focusing on how data management and thread
management interact with FORKJOIN’s work-stealing scheduler(Section 6.4). We finish this
chapter by presenting our refactoring tool (Section 6.5), with our evaluation (Section 6.5.2).

6.1 Overview

As parallel applications become pervasive, the significance of providing performant, easy-
to-use parallelism support has never been so critical for the design of the Java language. Unlike
parallel programming in C-like languages or scientific programming in MPI-like frameworks,
the design of Java parallel programming models needs to place more emphasis on programmer
productivity. In this backdrop, the FORKJOIN framework LEA (2000) rises as an important
parallel framework for Java. FORKJOIN is intuitive for programming task-parallel and data-
parallel jobs with a divide-and-conquer nature. Since its inception in 2010, it has become
the bedrock of numerous applications — many of which we will study in this chapter — and
more importantly, it has been the foundation of newer Java concurrent libraries, such as Java
Streams TUTORIALS (????) and many important state-of-the-art parallel language frameworks,
such as Scala (HALLER; ODERSKY, 2009), Groovy GROOVY (2015) and Clojure CLOJURE
(2015).

Apart from ease of use, efficiency is another important goal of the FORKJOIN design, just
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as any modern parallel programming framework. Unknown to many application programmers,
FORKJOIN employs a state-of-the-art work-stealing runtime LEA (2000). While work stealing
provides many benefits in resource utilization and scalability, efficient stealing dictates careful
coordination across the layers of applications, runtime systems, and the OS. This requires
knowledge about how these different layers interact, of which many Java programmers are
unaware. It is not uncommon that the executions of seemingly legitimate programs give rise to
unexpectedly poor performance. The goal of this work is to provide a better understanding—as
well as raise the awareness—of the subtleties and common performance pitfalls in FORKJOIN

programming through a comprehensive study of characteristics and behaviors of real-world
FORKJOIN applications.

Since performance and energy efficiency of parallel applications is a topic that has been
extensively studied, the first question one may ask is how different a FORKJOIN program is from
other parallel programs and whether these differences are large enough to be worthy of a new
study. We observe that FORKJOIN applications face a distinctive set of challenges that did not
exist in other parallel frameworks:

⌅ Data Management with Work Stealing: the Java runtime primarily allocates objects
in the heap, and deallocation is managed by garbage collection. This is in sharp
contrast with other established work-stealing frameworks such as Cilk, where data
are routinely represented as arrays of primitive data types. As a result, how data
are managed — allocated, distributed, localized, aggregated, deallocated among
worker threads in a work-stealing scheduler — plays a much more pivotal role in the
performance of FORKJOIN applications.

⌅ Thread Management with Work Stealing: work stealing presents a unique flavor of
management on synchronization and thread states. Unfortunately, legacy parallel Java
programs heavily rely on locks (e.g., synchronized methods) and explicit thread state
managements (e.g., sleep) PINTO et al. (2015). As an application-level framework,
FORKJOIN is faced with diverse applications developed by programmers with uneven
skills.

Do these challenges manifest themselves in modern parallel Java applications? If so,
what kinds of bottlenecks can they create in parallelism? How severe are these bottlenecks in
terms of hurting performance and energy? Is there generalizable wisdom that can be shared with
FORKJOIN programmers to avoid the bottlenecks?

This Chapter This chapter is a quest for answers to these questions. We present a
comprehensive empirical study on real-world FORKJOIN applications, identifying potential
bottlenecks against parallelism in these applications, illustrating their impacts on systems per-
formance, and demonstrating how simple changes on source code can make a big difference.
We summarize our findings as 6 potential bottlenecks latent in FORKJOIN applications, partic-
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ularly focusing on how data management and thread management interact with FORKJOIN’s
work-stealing scheduler.

Our study is the first empirical study to bridge the gap between modern software en-
gineering and systems in the arena of work stealing. It is unique in its application-driven,
systems-oriented perspective.

First, our study is application-driven. In systems research, developing a new runtime,
OS, or architecture to optimize work stealing has a long history (e.g., DING et al. (2012); WANG
et al. (2010); AGRAWAL et al. (2008)), including some over managed runtimes like Java (GUO
et al., 2010; MICHAEL; VECHEV; SARASWAT, 2009; KUMAR et al., 2012). Although there
are numerous debates on the comparative strengths or weaknesses of FORKJOIN and other
parallel frameworks, the focus of this chapter is neither on assessing FORKJOIN in the landscape
of parallel programming, nor on making a judgment call on any mechanism in FORKJOIN.
Instead, the goal of our study is to understand how real-world applications behave and how small
changes can be made to unleash the power of FORKJOIN in these applications. The bottlenecks
we have identified are not of the FORKJOIN design, but of applications that use FORKJOIN.
In addition, FORKJOIN is the first implementation of work stealing that has attracted a large
number of application developers, and hence, understanding FORKJOIN applications provides
useful insights in coming up with a fair evaluation of the idea of work stealing from a practical
viewpoint.

Second, our study is systems-oriented. Unlike traditional software engineering studies,
we are aimed at finding the root causes of the bottlenecks on the systems stack, such as how each
bottleneck may potentially hamper the behavior of work stealing, memory allocator, garbage
collector, and cache. Our analysis considers a diverse set of performance metrics, including
energy consumption, work stealing runtime status, memory consumption, as well as execution
time. Beyond its implication to Java parallelism support, we believe our study may be also
interesting towards the understanding of the design of runtime systems.

This chapter makes the following contributions:

⌅ We present a comprehensive application-driven investigation into 32 real-world
FORKJOIN projects from GitHub, with a total of 791K LOC.

⌅ We summarize potential hurdles of parallelism in FORKJOIN applications into 6
bottlenecks, and present an in-depth systems-oriented analysis on the root causes of
these bottlenecks in a work stealing runtime and JVM.

⌅ We develop a bottleneck detection and refactoring tool FJDETECTOR that can per-
form interactive source-code-level optimizations of FORKJOIN applications. The
optimized applications can produce an average of 26% of performance improvement
and 23% of energy savings. Our optimization patches were confirmed by the majority
of application developers we communicated with.
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Table 6.1: Quantitative characteristics of the analyzed projects.

# Mean Median Std. Histogram

LOC 19,157.73 3,099.0 58,869.86

Commits 103.6 23.0 188.59

6.2 Methodology and Caveats

This section describes the programs that we analyze, as well as the infrastructure and
methodology that we use to conduct the study.

Methodology To find real-world programs using ForkJoin, we searched in Github for
the key word “ForkJoin” and selected a set of 32 open-source projects, covering a wide range
of application domains from supervisor management to raytracing. Our selection criteria are:
(1) they must be of reasonable length; we removed all programs that are tutorial in nature; (2)
they should demonstrate continuous development, i.e., multiple commits over a duration; (3)
they should be recent, but not currently under rapid changes. For example, we did not select
any projects whose first commit and last commit are both within 6 months; (4) they must be
able to compile and run. Table 6.1 provides the overall quantitative characteristics of all projects
included in our study. The detailed information of a sample of these programs is shown in
Table 6.2.

We ran each selected application in a machine with a 2⇥8-core (32-core when hyper-
threading is enabled) Intel(R) Xeon(R) E5-2670 CPU (2.60GHz) and 64GB of DDR3 1600
memory, running Debian 6 (kernel 3.0.0-1-amd64) and Oracle HotSpot 64-Bit Server VM (build
25.5-b02, mixed mode, JDK version 1.8.0_05-b13). The machine has three cache levels (L1,
L2 and L3), whose sizes are 64KB per core (128KB total), 256KB per core (512KB total), and
3MB (smart cache), respectively. All experiments were performed in the OS-exclusive mode
without any other loads running simultaneously.

The default settings of both the OS and the JVM were used. In particular, (1) the power
management of Linux is the default ondemand governor, which dynamically adjusts CPU core
frequencies based on system workloads. (2) For the JVM, the parallel garbage collector is used
and just-in-time (JIT) compilation is enabled. The initial heap size and maximum heap size were
set to be 1GB and 16GB respectively. We ran each benchmark 10 times; this is implemented by
a top-evel 10-iteration loop over each benchmark. The reported data is the average of the last
3 runs to warm up the JIT optimizations (PINTO; CASTOR; LIU, 2014a). Hyper-threading is
enabled and the Turbo Boost feature is disabled.

Energy consumption was measured using jRAPL (LIU; PINTO; LIU, 2015), a framework
that contains a set of APIs for profiling Java programs running on CPUs with Running Average
Power Limit (RAPL) (DAVID et al., 2010) support. Originally designed by Intel to enable chip-
level power management, RAPL is widely supported in today’s Intel architectures, including
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Table 6.2: A sample of projects used in this study. LoC encompass only non-blank and
non-commented lines of code computed using the cloc program.
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DocumentIndexing 1,127 1 07-2013 1, 4
hyungjin 873 16 04-2015 1
mills 8,846 50 08-2015 1
itemupdown 4,925 2 08-2013 2
jAcer 4,476 35 12-2014 2
educational 1,323 7 05-2014 2
scalatuts 253 5 11-2013 2
knn 3,099 27 11-2014 2
doms-transformers 3,714 254 06-2014 2
ForkAndJoinUtility 127 12 03-2013 2
Solitaire 1,527 39 11-2011 2
mywiki 1,920 17 10-2012 2
MagicSquares 664 153 10-2013 2
ejisto 12,330 274 06-2014 2, 3
exhibitor 15,314 701 11-2014 2, 3, 4
cq4j 5,815 23 10-2013 2, 3
netflixoss 231,361 1 09-2013 2, 3
javaOneBR-2012 518 4 12-2012 2, 3
jadira 46,095 630 08-2015 3
ecco 5,849 119 02-2015 3
conflate 934 9 11-2013 3
bazzar-base 7,766 15 10-2013 3, 4
CSSTProto 10,721 17 01-2012 4
Fibonacci 79 2 08-2013 5
Mandelbrot 1,442 30 06-2015 5
Solitaire 1,527 39 11-2011 5
Matrices 2,356 15 04-2015 5
LockedBasedGrid 1,390 1 2013 5
Basic-Blocks 4,821 41 08-2015 5
warp 15,287 338 01-2015 6
j7cc 5,110 76 09-2013 6
lowlatency 3,018 18 02-2015 6

Xeon server-level CPUs and the popular i5 and i7 processors. RAPL-enabled architectures
monitor energy consumption and store the information in Machine-Specific Registers (MSRs).
The RAPL support can access both CPU core and uncore data (i.e., caches and interconnects) as
well as data on DRAM energy consumption. RAPL-based energy measurement has been used
in recent work (e.g., KAMBADUR; KIM (2014)), and its precision and reliability have been
extensively studied (HäHNEL et al., 2012).

Caveats As with all empirical studies, there is an inherent risk that our findings may



110 CHAPTER 6. UNDERSTANDING AND OVERCOMING BOTTLENECKS IN JAVA
FORKJOIN APPLICATIONS

work stealing fine-grained dynamic GC unstructured programmable
parallelism allocation synchronization thread states

Fortran no no no no yes uncommon
Pthread no no uncommon no prevalent prevalent

OpenMP no no uncommon no uncommon uncommon
MPI yes yes uncommon no uncommon uncommon
Go yes yes uncommon yes uncommon uncommon

Cilk yes yes uncommon no uncommon uncommon
Java threads no no prevalent yes prevalent prevalent

X10 yes yes prevalent yes uncommon uncommon
FORKJOIN yes yes prevalent yes prevalent prevalent

Table 6.3: Representative parallel programming frameworks.

not be representative. While the FORKJOIN applications we selected cover representative and
important domains and workloads, there may still be missing categories. However, we took care
to select diverse projects from GitHub. At the very least, these projects are actively maintained:
developers from 9 out of the 15 projects replied to our recommended patches.

6.3 Case Study: An Overview

Our study is intended to inspire researchers and practitioners to develop techniques that
can detect, fix, and avoid parallelism bottlenecks in real-world FORKJOIN applications.

Why FORKJOIN? We begin this section by placing the Java FORKJOIN framework
in the context of existing parallel programming frameworks. As illustrated in Table 6.3, the
FORKJOIN system is a unique combination of the following features :

⌅ It employs a work-stealing scheduler that performs deque management and structured
synchronization;

⌅ It provides support for fine-grained parallelism. It is routine for a short 1-minute
FORKJOIN application execution to produce tens of thousands of tasks, each of which
may only execute in milliseconds;

⌅ Due to its Java base, a FORKJOIN program makes heavy use of dynamic allocation
and unstructured synchronization (i.e., object locks), and employs automatic memory
management (i.e., garbage collection).

⌅ FORKJOIN and the underlying Java has a rich set of APIs that expose numerous
thread states for application programmers to manipulate.

The performance and energy consumption for systems with this unique set of features —
and especially their combined effects — has rarely been empirically studied before.

A Bottleneck Example Next, we use a motivating example to answer the following
three questions: (1) How are performance bottlenecks in FORKJOIN programs different from
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those in other parallel applications? If they are very different, what are the unique features of the
FORKJOIN bottlenecks? (2) Do these bottlenecks have significant impact on performance and
energy consumption of the applications? (3) At what level can and should these bottlenecks be
fixed?

In data-parallel programming, two strategies exist in achieving divide-and-conquer. In
the first pattern, which we term cascaded division, the programmer recursively divides the data
into slices until a sequential slice, i.e., one meant to be handled by a task, is reached:

class Task extends RecursiveAction {

public Task (User[] u, int lo, int hi) { ... }

protected void compute() {

if (hi - lo < 16) {

for (int i = lo; i < hi; i++) f(u[i])

} else {

int mid = (lo + hi) / 2;

invokeAll(new Task(u, lo, mid),

new Task(u, mid, hi));

} } }

In the second strategy, which we term flat division, the programmer may divide all data
into sequential slices all at once:

class Task extends RecursiveAction {

public Task(User[] users, int lo, int hi) { ... }

protected void compute() {

if (hi - lo == 16) {

for (int i = lo; i < hi; i++) f(users[i]);

} else {

int tasks = 16;

for (int i = 0; i < users.length; i = (i+tasks))

new Task(users, i, i + tasks).fork();

} } }

We observed that most FORKJOIN programmers adopted the cascaded division strategy.
We speculate this may result from its prevalent use in online code samples and tutorials, including
some from the JDK documentation itself. The less obvious question is why cascaded division
is favored. As it turns out, this can be traced back to the history of work stealing design in
Cilk, guided by a now well-known mechanism called the work-first principle. There, each
forked task is executed in the current worker thread, and it is the continuation (whatever the
next program counter points to) that is pushed onto the deque and may be later stolen by a
thief. This principle, also dubbed as “thief steals continuation”, suggests that flat division would
inadvertently linearize stealing: at any given moment, there is only one work item among all
deques ready for stealing. In other words, work-first work stealing crucially depends on cascaded
division to be effective.

The lesser known fact is that FORKJOIN is future-based: the forked task is the one that
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is pushed onto the deque and may be stolen by a thief. In this design, all tasks created in the
flat division will immediately be pushed onto the deque and ready for stealing. In contrast, the
cascaded division will “roll out” the tasks gradually, potentially reducing the opportunity for
stealing.

We conducted experiments for the two division strategies, with the results shown in
Figure 6.1. Figures at the top, middle and bottom show, respectively, stealing count, execution
time and energy consumption. The X-axis represents data size, the length of the users array.
To construct a fair comparison, we make sure the size of sequential slices in two strategies
are the same (16 in our experiment). As it turns out, flat division enjoys a noticeable margin
of improvement for both execution time and energy consumption, and there is a significant
difference in the number of steals.
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Figure 6.1: A comparison on execution time, energy consumption and steal counts
between the flat and cascade style programming.

This example can help us answer the questions asked earlier: (1) parallel bottlenecks
in FORKJOIN applications can be very different than those in other parallel applications due
to the subtle interactions between the high-level application and the low-level work-stealing
runtime; (2) from the performance measurements shown above, they have non-trivial impact
on application performance and energy consumption; (3) while optimizations can be developed
at different levels of the compute stack to improve performance, the bottleneck described here
is highly related to program semantics — for example flat division outperforms only for data
parallel programs — and simple changes in the source code may result in significant performance
gains.
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6.4 A Study of Parallelism Bottlenecks

Motivated by the observation that many parallelism bottlenecks can be easily removed
by making minor changes to the source code, this section studies the sources of bottlenecks and
groups them into six main patterns.

Bottleneck 1: Cascaded Division in Data Parallelism
The program discussed in §6.3 is an example of this bottleneck. We have found 3 in-

stances of this usage among the 32 projects studied. One example is project DocumentIndexing,
which searches for text files and indexes them. The benchmark begins with a given folder, and
it creates a new task for each subfolder found. The number of tasks is directly related to the
number of visited folders. During the execution of a moderate-sized workload, the program
visited 1,000 folders and indexed 2,000 text files. Figure 6.2 shows the results.
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Figure 6.2: A comparison of energy and performance between the flat and cascade
programming styles, for varying numbers of threads in DocumentIndexing.

Figure 6.2 presents a similar behavior of the one observed in Figure 6.1, which corrobo-
rate our initial observation. The flat programming style presents a slightly improvement over the
cascade one. This is an interesting fact in particular because the benchmark present in Figure 6.1
is CPU-intensive, whereas the current one is IO-intensive.

Bottleneck 2: Copy on Fork For data-intensive applications, a performance-sensitive
dimension of design is data distribution, i.e., how data are spread through parallel execution
units. In divide-and-conquer frameworks — including FORKJOIN — the general strategy is to
represent the data as an indexible structure, e.g., a (potentially multidimensional) array, which
in turn can be partitioned into slices and fed to individual parallel execution units. Both CPU
frameworks such as OpenMP, MPI, or Cilk and GPU frameworks such as CUDA follow the
same general route.

This simple process may pose challenges to a FORKJOIN programmer. In particular, data
in Java are often represented as objects. The combination effect of aliasing and shared-memory
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programming implies that data distribution “by reference” at forking time may introduce race
conditions.

As a conservative approach, many FORKJOIN programmers choose to copy data at the
forking time. Observe the copyOfRange method below:

import static Arrays.*;
class Task extends RecursiveAction {
public Task (User[] u) { ... }
protected void compute() {
if (u.length < N) { local(u); }
else {
int split = u.length / 2;
User[] u1 = copyOfRange(u, 0, split);
User[] u2 = copyOfRange(u, split, u.length);
invokeAll(new Task(u1), new Task(u2));

} } }

Beyond the obvious consequences such as memory bloat (XU et al., 2009), excessive
copying turns out to be uniquely unfriendly to FORKJOIN, for a number of reasons. (1) As a
fine-grained parallelism framework, most tasks are completed within milliseconds. Copying
upon fork implies the dominating growth of short-lived objects, creating a severe burden for
garbage collection. (2) The cascaded division common in FORKJOIN applications means that
data are copied at every level of recursion, potentially leading to an O(log n) growth in memory.
In contrast, copying for flat data partitioning can only lead to a constant growth in memory.
(3) Unlike copying with flat data partitioning where all allocations are done once and for all, a
strategy somewhat friendly for the memory allocator due to batching, copying with cascaded
data partitioning leads to frequent yet intermittent allocation requests, hampering performance.

Among the 32 programs we have studied, we found 18 occurrences of this bottleneck, in
15 FORKJOIN programs. Fixing the bottleneck requires simple modification of the source code
that shares the input data structure and lets subtasks work on distinct regions of the data structure.
Figure 6.3 shows the energy gains from fixing this bottleneck. Clearly, the energy consumption is
reduced in all the refactored programs. The average reduction in energy consumption is 12.63%.
The execution time decreases proportionally. Interestingly, 9 out of the 15 analyzed projects
cross the 10% barrier of energy savings. However, 5 of the analyzed projects have energy
savings of less than 5%. For the projects above 5%, the minimum energy saving was 8.23% (for
itemupdown), and the maximum was 23.51% (for MagicSquares). After inspecting these
projects, we have observed that the amount of energy savings is related to the width of forking.
That is, the more the program creates redundant copies of the data structure, the more effective
our refactoring is.

Next we provide an in-depth analysis for benchmark MagiSquares. Figure 6.4 shows
the comparison results before and after eliminating copies for varying numbers of threads in
MagiSquares.

MagicSquare is an implementation of the magic square puzzle. It can be described
as “a square array of numbers consisting of the distinct positive integers 1,2, . . . ,n2 arranged
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Figure 6.3: A summary of the energy savings when removing the Copy on Fork
bottleneck.
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Figure 6.4: A comparison on energy and performance with varying numbers of threads
before and after copies are removed in MagicSquares.

such that the sum of the n numbers in any horizontal, vertical, or main diagonal line is always
the same number”1. It is a CPU intensive computation. This program has only one test case,
which exercises the whole program. The data-parallel computation is based on the number of
permutations available, which represents all possible rows, columns, and diagonals. Each parallel
task attempts to construct a matrix whose first row is the permutation and whose first column is
another permutation that begins with the same entry and contains no other duplicate entries. The
algorithm attempts to find sum permutations to fill in the remaining rows and columns. When
sharing the data structure, we saved the program from creating 128 additional data structures
(with integer data type), leading to a 23.51% energy saving, when running with 32 threads.

Moreover, one of the unique advantages of jRAPL is that it provides ability to observe
how different hardware components behave in terms of energy usage. Using this feature, we
present inspect the energy consumptions of three different hardware components: DRAM, CPU,

1http://mathworld.wolfram.com/MagicSquare.html
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and Uncore. Figure 6.5 shows the results.

Figure 6.5: Energy consumptions for each hardware component before and after
removing excessive copies (MagicSquares, 32 threads).

As we can see, roughly the same amount of CPU energy was consumed before and after
removing the copies (i.e., 8.32 Joules and 6.67 Joules, respectively). However, the difference is
more obvious when the energy consumptions of DRAM and Uncore are compared. Due to the
excessive object creation, DRAM and Uncore of the original version consume 1.39⇥ and 1.43⇥
more energy than the optimized version.
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Figure 6.6: A Comparison of GC costs (MagicSquares, 32 threads; GC algorithms
are: a: SerialGC, b: ParallelGC, c: ParallelOldGC, d: ParallelNewGC, e: G1GC).

Since Copy on Fork creates large volumes of small, shortly-lived data structure objects, it
is interesting to understand how different GC algorithms may impact our results, we conducted
experiments over 5 GC options in Hotspot: (a) SerialGC: the stop-the-world serial collector, (b)
ParallelGC: the parallel collector, (c) ParallelOldGC: the parallel collector with data compression,
(d) ConcMarkSweepGC: concurrent mark sweep collector, and (e) G1GC: the garbage-first
collector. Figure 6.6 shows the results for MagicSqure. For almost all algorithms, the fix can
speed up garbage collection by 20%–40%.

Bottleneck 3: Copy on Join The counterpart of Copy on Fork is Copy on Join: after
having joined on its subtasks, a task must usually combine the results of the subtasks into a result
for the larger problem. Consider the following program, extracted from the cq4j benchmark.
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Figure 6.7: A summary of the energy savings after removing the Copy on Join
bottleneck.

protected List<T> compute() {

int size = dataSource.size();

if (size < FORK_SIZE) {

return computeDirectly();

} else {

List<T> result = new ArrayList<T>();

int mid = size / 2;

RecursiveFilteringTask<T> first = new RecursiveFilteringTask<T>(filter,

dataSource.subList(0, mid));

first.fork();

RecursiveFilteringTask<T> second = new RecursiveFilteringTask<T>(filter,

dataSource.subList(mid, size));

second.fork();

result.addAll(first.join());

result.addAll(second.join());

return result;

}

}

As one reader might observe, this particular code snippet suffer from the same bottleneck
previously explained (creating sublists of the current data structure). However, this benchmark
also presents a different bottleneck. At the end of the execution, an expensive operation addAll
is invoked to copy merge collections. Copy on Join has many negative consequences similarly to
Copy on Fork, with one additional unique drawback: since joining in a work stealing system is
implemented by barriers, Copy on Join increases the wait time at barriers, particularly unfriendly
for energy consumption. Note that this is an established fact PARK et al. (2007a); LI; MAR-
TINEZ; HUANG (2004); RIBIC; LIU (2014); PINTO; CASTOR; LIU (2014a): barrier wait at
the low level is either implemented as spin locks or context switch, both of which can lead to
energy waste without contributing to program progress.

We have found 5 occurrences of this bottleneck in the 32 programs studied. A fix of this
bottleneck is similar to that of Copy on Fork: a shared data structure can be passed into subtasks
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to carry results. After applying these changes in 5 programs, we have achieved overall 3% – 13%
energy savings. The detailed results are shown in Figure 6.7.

Bottleneck 4: Scattered Data We investigate the impact of data locality on the perfor-
mance and energy consumption. An important pattern we found is that the execution of a task
follows the sequence of ababababc, where a performs memory copies for a subtask, b forks
the subtask, and c does the computation of the current task. The following figure shows a code
snippet of this case, extracted from benchmark CSSTProto.

protected R compute() {
if (len == 1) {

RecursiveTask<R> task = createAtomicTask(from);
return task.invoke();

} else {
ForkJoinTask<R>[] tasks = new ForkJoinTask[len];
for (int i = 0; i < len; i++) {

ForkJoinTask<R> task = createAtomicTask(from+i)
task.fork();
tasks[i] = task;

}
R result = tasks[0].join();
tasks[0] = null;
for (int i = 1; i < len; i++) {

R next = tasks[i].join();
tasks[i] = null;
result = merge(result, next);

}
return result;

}

However, this implementation relies on the method named createAtomicTask,
which creates a new copy of the current task, to avoid potential data races. Notwithstanding, it
has an impact on energy consumption and performance. This is first because the copy operation
has the potential of polluting caches, increasing the chance of memory round-trips. Second, the
number of context switches might also increase, due to the sparse task creations. A possible
solution to this problem is to create a list of tasks and, during the for loop, add each new task
object to the list. After the execution of the for loop, one might call the invokeAll method,
which is responsible for forking and joining all tasks in the list. With this fix, we have observed
an energy saving of 9.82% for CSSTProto. Regarding cache behavior, we observed that the
original implementation had a 34.24% cache misses, whereas the fix reduced it to 31.98%. We
also observed a reduction on context switches, from 24,550 to 23,193. Yet, the number of
branch misses also reduced: from 1.14% of all branches to 1.14% 2, which we believe is due
to the boilerplate code used our initial example; invokeAll eliminates the first for loop, then
reducing the overall number of branches and, as a consequence, the number of branch misses.

Bottleneck 5: Exacting Intra-Task Synchronization As locks play a central role in
Java shared-memory programming and metadata representation, unstructured synchronization

2We used the perf linux tool to calculate cache misses, context switches, and branch misses.
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is pervasive in Java applications. Synchronization occurs via invoking synchronized meth-
ods or code blocks, or using popular concurrent library classes such as CountDownLatch.
Improving performance and energy efficiency for systems where unstructured synchronization
is the only mechanism to achieve concurrency safety — such as Pthreads or the Java Thread
library— is a well understood topic.

Mixing unstructured synchronization in a structured parallel system such as work stealing
leads to additional subtle interactions between the application runtime and the OS. When
unstructured synchronization happens in the middle of the task execution, it effectively stalls
stealing from that worker. Unfortunately, the stalled worker cannot forgo the current task and
select another task from its deque — even if there are many other task items in it — because tasks
on the deque in a work stealing system carry inherent logical dependencies, analogous to stack
frames. At best, the worker itself can be context-switched by the OS. Observe however, even
though there may be thousands of tasks in the work-stealing runtime, the number of workers —
the JVM representation of OS threads — is few, typically smaller than the number of CPU cores.
In other words, OS-level context switch may at best help other applications in a time-sharing
environment, but will not contribute to improving the performance or energy efficiency of the
application itself.

The most principled solution to avoid the bottleneck is to eradicate unstructured syn-
chronization from Java. There is encouraging progress in recent Java development to support
asynchronous abstractions, such as futures ). However, it may take time before Java practitioners
fully embrace these features (PINTO et al., 2015). In this study, we investigate into legacy
programs, attempting to understand how unstructured synchronization is used in the real world.

Overall, we found 7 occurrences of this bottleneck. Surprisingly, we found in a significant
number of projects, an easier solution exists: many synchronizations are simply to implement
exact computations, which can be safely relaxed (CARBIN et al., 2012) without creating any
impact on correctness (MISAILOVIC; SIDIROGLOU; RINARD, 2012). We use a few concrete
programs to illustrate this bottleneck.

Mandelbrot A mandelbrot is a mathematical set of points whose boundary is a distinc-
tive and easily recognizable two-dimensional fractal shape. The synchronized block is then
used when a task needs to render the fractal image. This is done by calling the setRGB method,
available on the BufferedImage class, as showed in the following code snippet.

Figure 6.8 shows the results for this benchmark, varying the number of threads. Figure
on top shows energy (in Joules), whereas figure on bottom shows execution time (in seconds). In
this benchmark, a task has a range of values of which it should work on. For our input data (width:

if (!isBenchmarking && mandelbrot.isLiveRendering) {
synchronized (mandelbrot.lock) {
mandelbrot.renderImage.setRGB(j, i, color.getRGB());

}
mandelbrot.repaint();

}
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1000, height: 10000), the benchmark creates a total of 2,048 tasks. As we can see, there is a
great difference between the synchronized version and the unsynchronized one. This difference
can be found in both energy consumption and execution time. On average, the unsynchronized
version consumes 42% less energy then its counterpart (38% faster). Interestingly, when the
number of cores increases, one might expect that the synchronization overhead would create a
higher performance penality. However, we found that the proportional difference between the
synchronized version and the unsynchronized one, in terms of energy consumption and execution
time, remained the same.
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Figure 6.8: A comparison of energy and performance, with and without synchronization,
for varying numbers of threads in MandelBrot.

After inspecting the implementation, we observed that the method setRGB is already
synchronized, so there is no need to use another synchronization construct to wrap up this
single method call. In fact, we could not find any visible difference between the images generated
by executions with and without the synchronization. We sent the modified source code as a
patch to its developer, who then acknowledged the over-synchronization and accepted our patch3.
Due to the CPU-intensive nature of this program, we also analyze the energy behaviors of the
program under different CPU frequencies using DVFS. Figure 6.9 shows the results.

As expected, the execution time increases as we decrease frequency. However, interest-
ingly, the energy consumption increases in much slower speed. For instance, while the execution
time increases 1.97⇥ when the CPU frequency is bumped down from 2.6GHz to 1.2GHz, the un-
synchronized version, the energy consumption increases only by 14.29% in the unsynchronized
version.

The major reason why unstructured synchronization is much more harmful in FORKJOIN

is that a FORKJOIN program can create significantly more threads than a regular parallel
applications. For example, program Fibonacci creates a total of 331,160,282 tasks when

3https://github.com/catree/SimpleMandelbrotDemo/pull/1

https://github.com/catree/SimpleMandelbrotDemo/pull/1
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Figure 6.9: Energy consumptions under different CPU frequencies before and after the
synchronization was removed (Mandelbrot, 32 threads).

performing on number 40. Removing an unnecessary synchronization in the program leads to a
20.52⇥ reduction in energy consumption and a 117.02⇥ reduction in running time. It can be
extremely rare for a parallel program under another programming model to create 300 million
threads even for processing large workloads.

Bottleneck 6: Sleepy Workers A more extreme case — but along the same line of
Intra-Task Synchronization — is the use of Thread.sleep during task execution. Just as
the previous bottleneck, the invocation of this thread management primitive stalls stealing,
and explicitly requests OS context switches. From a logical perspective, the intention of the
programmer may be to put the task to sleep, but unfortunately, the work stealing runtime will
place the worker to sleep. As described earlier, the worker cannot forgo the sleep-inducing task
and pick up other tasks from its deque; neither can the idle CPU core help other workers of the
same application. What is worse is that unless the OS has other applications running, an idle
core under the widely used on-demand governor would put the core in a low-power state, which
later needs a long time to wake up. In a work stealing runtime where competitive performance
is of its first priority, user-level sleeping is often more detrimental than beneficial. We found 3
occurrences of this bottleneck.

CTask The CTask benchmark presents the worst scenario of this bottleneck. During
the sequential execution, this benchmark puts every current task to sleep for a second. Figure 6.10
shows this impact on both performance and energy consumption.

The sleep construct creates significant penalities in both performance and energy con-
sumption. The execution without sleep can be 13,495.26⇥ more energy efficient than the
execution with (and 1,917⇥ reduction in running time). After inspecting the source code, we
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Figure 6.10: A comparison on energy and Performance, with and without thread
sleeping, for varying numbers of threads in ctask.

observed that the developer used sleep to force the program to wait for a result from another
computation. However, this sleep is completely unnecessary, since the computation on which the
sleep is waiting is a synchronous operation.

6.5 Detecting Refactoring Opportunities

In §6.4, we observed that one of the ways to misuse FORKJOIN is to create copies of data
structures within parallel computations when sharing these data structures would be more efficient.
For the benchmarks we analyzed, improvements of up to 23.5% in energy consumption (26% in
performance) could be obtained by applying this optimization. Based on these observations, we
built a tool named FJDETECTORcapable of automatically detecting and refactoring copy-related
bottlenecks. Human intervention is only required to judge whether the tool should actually
perform the refactoring once a bottleneck is identified. For most of the benchmarks mentioned in
Figure 6.7, the copy-related bottleneck was removed using FJDETECTOR.

6.5.1 FJDETECTOR

FJDETECTORstarts its analysis by building the ASTs for the files of the target appli-
cation. For each Java source file, FJDETECTORscans the class hierarchy of the application,
looking for indicators of relevant properties, for instance, whether the class inherits either
RecursiveAction or RecursiveTask.

Detecting bottlenecks requires the understanding of whether (1) the program exhibits
data parallelism and (2) it contains a divide-and-conquer-based implementation. For (1), we
check if the computation is done on a data structure, such as array or List. Since most of
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the List methods provide accesses over arrays, our approach handles them in a similar way.
FORKJOIN computations are usually described in terms of inner-classes, where the data is passed
through the inner-class constructor. Hence, for each parameter of the constructor, we verify (a) if
it is a data structure, (b) if it is splitted and copied inside the compute method, and (c) if the
variables containing the copy results are passed into new instances of the Task class.

To understand if a divide-and-conquer approach is used, we first verify if the control flow
of method compute has an if-then-else structure, e.g., if the size of the data structure
u is greater than x, then invoke compute on u; otherwise, split u in two smaller parts. In
the FORKJOIN framework, the if and else parts can be described as sequential and parallel
operations, respectively. However, programmers have numerous ways to implement this idiom.
To improve usefulness, FJDETECTORcovers three common scenarios: (1) sequential computation
in the if block and parallel computation in the else block; (2) parallel computation in the if
block and sequential computation in the else block; and (3) sequential computation in the if
block plus a return at the end of the block, and the parallel computation in the remainder of
the method. Finally, FJDETECTORdetects I/O operations inside the FORKJOIN code by looking
for the signatures of I/O-related methods.

Once a bottleneck is confirmed by the developer, FJDETECTORperforms refactoring,
i.e., a set of transformations on the FORKJOIN code.Our transformations remove copies by
computing indices for each subtask and letting them work on distinct regions of the same (shared)
data structure.

6.5.2 FJDETECTOR Results

We have applied FJDETECTORto 15 of the benchmarks listed in §6.2, since they exhibit
Bottleneck 2 (§6.4). For all these benchmarks the use of FJDETECTORboth saved energy and
improved performance. In 9 of them, the reduction in energy consumption was greater than 10%.
In this section, we assess FJDETECTORin terms of the following evaluation questions:

⌅ EQ1. Is our approach useful?

⌅ EQ2. How intrusive is FJDETECTOR?

To answer EQ1, we have sent modified versions of the benchmarks to their developers
as patches. If these matches are useful, they will eventually be merged into the benchmarks.
To assess the intrusiveness of FJDETECTOR, we measured the number of lines of code that
FJDETECTORadds to and removes from the benchmarks in order to refactor them. A large
number of modifications makes the code harder to understand and modify for its developers.

Subjects Our benchmark set spans a wide range of open-source projects, from 127
to 231K lines of code, implemented by between 1 and 14 different developers. The bench-
marks were selected due to the presence of Bottleneck 2 (§6.4). They vary across multiple
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Table 6.4: The benchmarks used in this study. Columns Add and Del indicate the number
of additions and deletions applied by FJDETECTOR. The symbols X, ⇥ and — on the
Repplied? and Accepted? columns mean, respectively, ‘yes’, ‘no’, ‘no response yet’.
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itemupdown 13 7 — — 8.23%
jAcer 14 8 X X 4.21%
educational 13 17 — — 18.51%
scalatuts 12 6 X X 12.41%
knn 20 8 X X 21.3%
netflixoss 17 13 — ⇥ 2.18%
doms-transformers 20 9 X — 3.82%
ForkAndJoinUtility 13 6 X X 21.17%
exhibitor 21 15 X — 1.23%
Solitaire 14 5 — — 14.12%
javaOneBR-2012 13 4 X X 22.21%
mywiki 17 18 — — 16.12%
ejisto 18 9 X X 3.2%
cq4j 14 7 — — 11.23%
MagicSquares 12 11 X — 23.51%

dimensions, including lines of program code, number of developers, developer age, and project
domain (NAGAPPAN; ZIMMERMANN; BIRD, 2013). Table 6.4 lists the selected benchmarks.

Results of EQ1 Using our corpus of 15 projects, we applied our approach in 18 places
(we have applied the same refactoring in 4 different classes of project knn). We then sent these
modified versions as patches to the owners of the corresponding repositories via the pull request
feature of Github. On Table 6.4, columns “Replied?” and “Accepted?” flag the projects that
have replied and accepted our patch with a X symbol. At the time when this chapter was written,
9 projects had replied showing an intention to accept our patch. However, one of them (project
doms-transformers) answered that the “code is currently not actively maintained, but I’m
leaving the pull request open in case we ever return to it”4. This particular patch is not expected
to be merged soon. For the remaining 8 projects that replied, 7 of them have already accepted
and merged our patches.

In contrast, netflixoss was the only project that closed our patch with no response.
This particular project seems to be a fork from another existing project (it has 231,361 lines
of Java code performed by a single developer in a single commit), and does not seem to be
maintained anymore. The owners of the remaining 7 projects did not provide any comments for
our patches. At first, this might suggest that the patches were not useful. However, in the mining
software repositories literature, it is well-known that an addressed issue may not be integrated
into an official release for some time (COSTA et al., 2014). For instance, one contribution for the
Linux Kernel usually takes 1-3 months to complete the code review, and between 1 and 3 months

4https://github.com/statsbiblioteket/doms-transformers/pull/1
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for the change be integrated (JIANG; ADAMS; GERMAN, 2013). The intermittent nature of
Github projects (KALLIAMVAKOU et al., 2014) only exacerbates this.

Results of EQ2 To answer EQ2, we measured the number of new statements that
were added to and the number existing statements that were deleted from the benchmarks. A
large number of modifications can produce code that is hard to understand and modify. So, a
refactoring that results in a small number of modifications is desirable.

Overall, our approach has added 231 statements and removed 143 ones to the 15 bench-
marks. Considering that one of them has 4 instances of Bottleneck 2, the mean number of
modifications for each transformation was 12.8 additions and 7.9 deletions. Thus, our approach
is not very intrusive. Most of the additions are due to the addition of a new constructor, which
means that preexisting code, e.g., the compute method, is the target of only a few modifications.
The refactoring of the parallel code added an average 5.3 new statements. Deletions have differ-
ent explanations. For instance, most of the deletions on project exhibitor are due rewriting
the parallel computation (10 out of the 15 deletions). Initially, this project used a more verbose
approach, iterating through the data structure, creating and forking each new parallel task, and
joining them at the end. We simplified this computation by just using the invokeAll method,
as shown in the (simplified) code snippet below:

1 protected List<ServerStatus> compute() {
2 for (List<ServerSpec> subList : Lists.partition(specs, size / 2)) {
3 Task task = new Task(exhibitor, subList);
4 task.fork();
5 tasks.add(task);
6 }
7 for (Task task : tasks) {
8 statuses.addAll(task.join());
9 }

10 }

+
1 protected List<ServerStatus> compute() {
2 // ...
3 int split = (from + to)/2;
4

5 invokeAll(
6 new Task(exhibitor, specs, from, split),
7 new Task(exhibitor, specs, from + split, to)
8 );
9 // ...

10 }

Project mywiki, on the other hand, presents an interesting approach. In this particular
project, the copying process is done without using built-in library functions, for instance:

This approach used 9 out of the 18 deleted lines. This approach not only requires more
lines of code to accomplish the same task, but it is also error-prone and omission-prone. Further-
more, the built-in library copy functions are written in low-level libraries in order to be optimized
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protected Object[] splitArray(Object[] array, int start, int end) {
int length = end - start;
Object[] part = new Object[length];
for ( int i = start; i < end; i++ ) {
part[i-start] = array[i];

}
return part;

}

for performance. Another interesting observation from this code snippet is that the programmer
used a similar solution when compared to our Bottleneck 2, e.g., she creates a length variable
whose value is obtained by subtracting the end and start variables. However, even though
she employed a very similar solution, she missed an optimization opportunity by keeping the
data copying over sub-tasks. This shows that, albeit straightforward to understand, it is not easy
to identify this optimization opportunity. This finding is also supported by a comment from the
owner of the javaOneBR-2012 project: “Thanks for the improvement, I didn’t notice that”5.

6.6 Summary

This chapter describes a comprehensive study on parallelism bottlenecks in the Java
FORKJOIN applications. Based on an in-depth analysis of more than 30 open-source FORKJOIN

applications on GitHub, we classify the bottlenecks in 6 different kinds, and present comparisons
on performance and energy before and after these bottlenecks are fixed. We have also developed
a tool that can semiautomatically detect copy-related bottlenecks and refactor a program to
remove bottlenecks.

5https://github.com/mariofts/javaOneBR-2012/pull/1
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7
Related Work

If I have seen further it is by standing on the shoulders of giants.

—ISAAC NEWTON

In this chapter we present related work. Section 7.1 presents the works related to energy
consumption, and Section 7.2 presents the works related to refactoring.

7.1 Software Energy Consumption

Studying energy efficiency at the application level is an emerging direction. In this
section we describe the studies overlapping with the scope of our work.

Energy Management. The most established energy management approaches are focused on the
hardware level (HOROWITZ; INDERMAUR; GONZALEZ, 1994; DAVID et al., 2010) and the
OS level (GE et al., 2007; MERKEL; BELLOSA, 2006; YUAN; NAHRSTEDT, 2003). TIWARI;
MALIK; WOLFE (1994) correlated energy consumption with CPU instructions. VIJAYKR-
ISHNAN et al. (2001) and FARKAS et al. (2000) performed two early studies on the energy
consumption of the JVM. In recent years, a number of studies have explored energy management
strategies at the application level as an attempt to empower the application programmer to take
energy-aware decisions, since some design choices might influence energy efficiency.

Within the programming language community, it is an active area of research to design
energy-aware programming languages, with examples such as Eon (SORBER et al., 2007),
Green (BAEK; CHILIMBI, 2010), EnerJ (SAMPSON et al., 2011), Energy Types (COHEN et al.,
2012), and LAB (KANSAL et al., 2013). None of these software-centric energy management
approaches focuses on multi-threaded programs. In these systems, recurring patterns of energy
management tasks are incarnated as first-class citizens. Approximated programming (CARBIN
et al., 2012; CARBIN; MISAILOVIC; RINARD, 2013) trades and reasons about occasional
“soft errors”, i.e., errors that may reduce the accuracy of the results, for a reduction in energy
consumption. The authors coined the acceptability properties term, which is based on relaxed
programming constructs. In this language, variable assignments can be nondeterministic, that is,
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an assignment relax X = P can assign the variable X to any set of values that satisfies the
relaxation predicate P. The relationship between this line of work and our work is complementary:
existing work provides language support to facilitate energy optimization, whereas our work
experimentally and empirically evaluates some of those language constructs.

Energy Measurement. Energy measurement is a broad area of research. Prior work has
attempted to model energy consumption at the individual instruction level (TIWARI et al., 1996),
system call level (DONG; ZHONG, 2011), bytecode level (SEO; MALEK; MEDVIDOVIC,
2008c,a), and source code level (LIU; PINTO; LIU, 2015). Recent progress also includes fine-
grained measurement for Android programs (COUTO et al., 2014; HAO et al., 2013; LI et al.,
2013), with detailed energy measurement of different hardware components such as camera,
Wi-Fi and GPS. They also observed that there is no strong correlation between performance
and energy consumption. RAPL-based energy measurement has appeared in recent literature
(SUBRAMANIAM; FENG, 2013; LIU; PINTO; LIU, 2015; KAMBADUR; KIM, 2014); its
precision and reliability have been extensively studied (HäHNEL et al., 2012).

Empirical Studies. Existing research that dealt with the trade-off of comparing individual
characteristics of an application and energy consumption has covered a wide spectrum of
applications. These characteristics vary from data structures (DAYLIGHT et al., 2002; HUNT;
SANDHU; CEZE, 2011; MANOTAS; POLLOCK; CLAUSE, 2014), VM services (CAO et al.,
2012), cloud offloading (KWON; TILEVICH, 2013), code obfuscation (SAHIN et al., 2014),
and design patterns (SAHIN et al., 2012; LI; HALFOND, 2014). To the best of our knowledge,
our study is the first in specifying and implement refactorings for energy efficiency focusing on
a multi-core environment. In a recent study, SAHIN; POLLOCK; CLAUSE (2014) analyzed
how different refactorings impact in energy consumption. In this work, the authors analyzed the
implications of applying 6 of the most commonly used refactorings (Convert Local Variable to
Field, Extract Local Variable, Extract Method, Introduce Indirection, Inline Method, Introduce
Parameter Object) under a subject of 9 applications, totalizing 197 refactored applications. Even
though their work considers the energy efficiency of refactorings, the authors are not specifying
and implementing refactorings to improve software energy consumption.

The mobile arena is also an important topic of research. HINDLE (2012) investigated the
relationship between software changes (several versions of the Mozila Firefox app) and power
consumption. The author observed that intentional performance optimization introduced a steady
reduction in power consumption. More recently, HINDLE et al. (2014) proposed an energy
consumption framework to be used in mobile devices. The authors suggest that this framework
is more accurate than real meters in measuring energy consumption of smartphones because it
does not take the battery usage in consideration. PATHAK; HU; ZHANG (2011) categorized
energy bugs through analyzing the posts from 4 online forums. They produced a comprehensive
taxonomy ranging from battery problems, SIM card problems, OS configuration problems,
to no-sleep bugs. In comparison, our study of STACKOVERFLOW — a programmer-centric
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website — allows us to zero in on energy-aware software development, instead of taking the
more system-oriented view for mobile devices. The Q&A form of STACKOVERFLOW further
offer rich contextual information of the energy-related keywords, providing insights such as
what solutions software practitioners know about energy consumption problems. In a subsequent
study, PATHAK; HU; ZHANG (2012) presented an in-depth investigation in order to understand
which is the root cause for energy consumption problems in mobile applications. Like our study,
they also observed that advertisement plays an important role, consuming up to 75% of energy
consumption in free apps.

There is also some research that focus on handset users, not software developers.
ZHANG; HINDLE; GERMÁN (2014) analyze the impact of user applications, such as browser
and text editors, on energy efficiency. Likewise, WILKE et al. (2013) compared how the choice of
mobile user applications can impact on energy consumption. HEIKKINEN et al. (2012) studied
energy problems of mobile handsets through a questionnaire-based study. Recently, WILKE
et al. (2013) analyzed the Apps from Google Play market place. Their study focuses on a domain
complementary to ours: the impact of energy consumption problems on the post-programming
stages of software lifecycle. Their work is particularly interesting in correlating energy consump-
tion problems with the user ratings to the Apps, the pricing of Apps, and different natures of
Apps.

Most of the existing work which focus on energy efficiency of concurrent programs con-
centrates on energy behaviors in the presence of synchronization. PARK et al. (2007b) developed
several synchronization-aware runtime techniques to balance the trade-off between energy and
performance. GAUTHAM et al. (2012) studied the relative energy efficiency of synchronization
implementation techniques (such as spin locks and transactions). A recent short paper, LIU
(2012a) called for energy management based on different synchronization patterns, a concrete
instance of which based on futures has been formally defined (LIU, 2012b). TREFETHEN;
THIYAGALINGAM (2013) surveyed energy-aware software, including multi-threaded programs
with different workload settings. BARTENSTEIN; LIU (2013) designed a data-centric approach
to improve energy efficiency for multi-threaded stream programs. RIBIC; LIU (2014) designed
an algorithm to improve the energy efficiency of the work-stealing runtime of Intel Cilk Plus by
managing the relative speed of threads. However, our work is unique in its focus on the impact
of programming models for managing thread execution and program design choices on energy
consumption.

There are many approaches for energy management of multi-threaded programs at the
architecture- and OS-levels. Examples in the former category include investigating the impact of
Dynamic Voltage and Frequency Scaling on multi-core architectures (IYER; MARCULESCU,
2002), meeting power budget based on hardware performance counters (ISCI et al., 2006), and
leveraging hardware heterogeneity (KUMAR et al., 2003) and processor topology (SOLERNOU
et al., 2013). Examples in the latter include studying the impact of energy consumption based
on workloads (GE et al., 2007), thread schedules (YUAN; NAHRSTEDT, 2003; MERKEL;
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BELLOSA, 2006), and thread migration (RANGAN; WEI; BROOKS, 2009). Our work and
related work cited here are complementary. Together, they attempt to understand energy behaviors
of multi-threaded programs through the perspectives of different levels of the compute stack.

7.2 Refactoring

In object-oriented systems, refactoring is the process of improving the structure of exist-
ing code through behaviour-preserving transformations, themselves called refactorings. OPDYKE
(1992) coined the term refactoring in his thesis. He informally proposes refactorings as behavior-
preserving program transformations that improve quality factors. After this initial study, refac-
toring has been greatly studied in several contexts (ALVES et al., 2006; MENS; TOURWE,
2004; BROWN; LOIDL; HAMMOND, 2012; FOWLER et al., 1999; PINTO; KAMEI, 2013a;
NEGARA et al., 2013; COLE; BORBA, 2005), but only a few of them are related to the concur-
rency field. This is unfortunate for at least two reasons. First, refactoring can also be applied to
concurrent programs in order to improve a number of quality attributes, such as thread-safety
and performance (DIG; MARRERO; ERNST, 2009). Second, when applied to concurrent
programs, some refactorings that work reliably for sequential code may introduce concurrency
bugs (SCHäFER et al., 2010).

7.2.1 Refactoring for Concurrency

Most of the refactoring for concurrency studies rely on the use of high-level concurrent
libraries (DIG; MARRERO; ERNST, 2009; ISHIZAKI; DAIJAVAD; NAKATANI, 2011; DIG
et al., 2009; SCHäFER et al., 2010, 2011; OKUR et al., 2014; OKUR; ERDOGAN; DIG, 2014;
LIN; RADOI; DIG, 2014), mainly because they are easier to use. One example of such library
is the java.util.concurrent, briefly described in Chapter 2 of this document. In such
studies, the authors focus on specifying and implementing refactorings from low level concurrent
code to the high-level counterparts.

DIG; MARRERO; ERNST (2009) introduced CONCURRENCER, a tool that automates
three refactorings: from int to AtomicInteger; from HashMap to ConcurrentHashMap,
and from a recursive algorithm to a parallel version using ForkJoin. The authors show that the
automated approach is effective in identifying and applying such transformations. In a similar
work, DIG et al. (2009) proposed a new tool called RELOOPER, which refactors sequential loops
to execute in parallel using the ParallelArray library. In recent work, OKUR et al. (2014)
proposed a set of refactoring tools used to safely refactor from low level threading constructs
to high-level counterparts in the C# platform. Similarly, LIN; RADOI; DIG (2014) proposed a
refactoring tool to use AsyncTask in the Android platform.

A similar study was conducted by SCHäFER et al. (2010). The authors stressed that
the correctness of traditional refactorings on concurrent code is not well-studied. The authors
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showed examples of how basic refactorings can break concurrent programs, even if they work
properly in sequential code. The authors then propose a systematic approach to ensuring the
correctness of commonly used refactorings on concurrent code. SCHäFER et al. (2011) also
proposed REENTRANCER, a tool that transforms programs to be reentrant, enabling safe parallel
execution.

One way to tackle concurrency problems is by reducing mutability. Following this
direction, KJOLSTAD et al. (2011) introduced IMMUTATOR, a tool that automates the anal-
ysis and transformations required to make a class immutable. Another way of improving
the behavior of existing concurrent software is by fixing concurrent code that could lead to
bugs. LIN; DIG (2013) presented an empirical study of CHECK-THEN-ACT idioms used in
java.util.concurrent collections. Even though the individual operations of these collec-
tions are thread-safe, when operations are combined (e.g. first checks if the queue is empty and,
if not, removes elements from it), it could lead to bugs when executed under multiple threads.
The authors then implemented a tool to detect and correct such CHECK-THEN-ACT misused
idioms. More broadly, RADOI et al. (2014) introduced MOLD, a tool that transforms sequential
Java programs into Scala programs that can be executed either on a single computing node via
parallel Scala collections, or in a distributed manner, using a MapReduce framework.

7.2.2 Refactoring for Energy Efficiency

Finally, even though refactoring towards improve energy efficiency in concurrent soft-
ware is a promising research topic (FRASER et al., 2011a), to the best of our knowledge, no
study was found in the literature. However, through an investigation on premiere software
engineering venues, we identify and discuss 14 contributions that can be further instantiated in
refactoring tools used to improve software energy efficiency — and the challenges behind this
process (PINTO; SOARES-NETO; CASTOR, 2015a). Here we describe three of them:

1. Opportunity: Cloud offloading. KWON; TILEVICH (2013) have described a tech-
nique to offload CPU intensive computations from a mobile device to the cloud, then
reducing battery usage. However, not all possible CPU intensive computations can
be offloaded, since offloading is not free. It does pay a toll on energy consumption,
mainly due GSM and Wi-Fi power consumption for transmitting data over the net-
work. The trade-off of when using this technique relies on the execution time of
the computation; if it is small, it does not pay the network costs. However, when
careful applied, this technique can reduce the overall energy consumption of a mobile
application in up to 50%. However, to take advantage of the benefits of the cloud,
developers face a high entry barrier. They need expertise on many topics: commu-
nication protocols, data storage, databases, and cloud infrastructure. Moreover, the
manual set up of the cloud environment is tedious, error-prone and omission-prone.
A refactoring engine can greatly lower the entry barrier to allow beginner developers
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to partition their mobile applications, so that the energy intensive functionality can
be executed in the cloud.

Challenges. The refactoring engine has two main challenges. The first one is to
determine whether the computation is worth refactoring, that is, if offloading will
not turn out to be more energy inefficient than performing the computation locally.
Refactoring engines can take advantage of runtime analysis and energy consumption
estimation tools to help programmers to decide when to refactor. Second, if a
programmer agrees with the refactoring, the refactoring engine needs to set up all the
environment to receive the computation in the cloud. While starting a virtual machine
with default settings can be seem as trivial, set up a particular configuration to work
with a particular piece of refactored code would require more sophisticated analysis.
However, recent efforts have showed that such challenges can be overcome (HILTON
et al., 2014).

2. Opportunity: Software testing. As a means of ensuring the reliability of a soft-
ware, software testing have become one fundamental activity during the software
development process. Software engineers are often motivated to write several test
cases to their programs. In nontrivial applications, however, executing test cases can
be an extremely time-consuming due to the great number of them. Selecting the
most important test cases to be executed, without losing testing coverage, is a topic
of great interest that researchers have extensively worked on. This is a particular
concern for embedded software, which has to routinely perform test cases on a live
deployed system, which in turn has its life-time limited to battery power. LI et al.
(2014) proposed a technique used to minimize the energy consumption of test suites.
This technique selects test cases based not only on their coverage but also on their
energy usage. Results revealed that the technique is effective at generating test suites
that consume up to 95% less energy, while maintaining testing coverage requirements.
Prior to deploy, a refactoring engine can be used to select only useful high-quality
energy efficient test cases.

Challenges. First, the refactoring engine should be seemly integrate with the pro-
posed approach. Since the proposed approach needs to modify the existing test suite,
this should be done automatically by the refactoring tool. Second, the energy savings
of the proposed approach is based on the quality of the test cases. If the test suite
doe not have enough quality, the refactoring can impact negatively on the testing
coverage. Such analysis should be performed by the refactoring engine. Finally, since
test suites written in an ad hoc manner are not supported by the proposed approach,
the refactoring engine should also be capable to refactor such test cases to use a
high-level framework, such as JUnit or TestNG.

3. Opportunity: HTTP Requests. LI et al. (2014) presented the first large scale
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study on the energy efficiency of mobile applications. Among the findings, they
describe two remarkable ones: (1) a few set of APIs used in applications dominate
non-idle energy consumption and (2) an HTTP request is the most energy consuming
operation of the network. Likewise, NOUREDDINE et al. (2012) also observed that
the highest power consumption methods on the Jetty Web Server came from classes
that manage HTTP requests. Still, in COHEN et al. (2012), the authors examined
the top 5 energy hotspots of mobile applications and, for most of the target systems,
HTTP usage consumed the most energy. We believe that refactoring engines can play
a role here. A refactoring engine should be able to identify such energy hungry APIs,
and replace them for an energy-friendly ones.

Challenges. Even though not every energy-intensive API has an energy-friendly
counterpart, some of them do have. An example of such component is the power
efficient work queue1. Refactoring tools should keep track of the cutting edge energy
efficient implementations. For those of which do not have such energy-efficient
implementation, there are probably other implementations available. Webservices,
for example, can be implemented using at least two commonplace protocols: SOAP
and REST, which greatly differ in their internal characteristics. While REST is more
flexible and light-weight, SOAP is more detailed and heavy-weight. In the absence
of an energy-efficient implementation, refactoring tools should support the transition
to more light-weight components.

1http://lwn.net/Articles/548281/

http://lwn.net/Articles/548281/
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8
Concluding Remarks

The future is not laid out on a track. It is something that we can decide.

—ALAN KAY

This Chapter reviews the problem stated, the solution proposed and the main contributions
of this thesis to the state-of-art. This Chapter also presents other results that were obtained along
the Ph.D., although not included in this document. We finish by present further extensions of the
main contributions of this work.

8.1 The Problem

This thesis tackles two timely but overlooked energy related problems:

1. The lack of knowledge for writing energy efficient parallel applications;

2. The lack of tools used to detect, refactor and prevent energy bloats from occurring in
an early stage of software development.

8.2 The main contributions

This thesis makes the following contributions:

1. A developer-oriented view of energy-aware software development;

2. An understanding of energy-behaviors of different thread-safe collections;

3. An understanding of energy-behaviors of different thread management approaches;

4. A Catalog of bottlenecks found in ForkJoin Java applications;

5. A refactoring approach;

6. A refactoring engine;
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8.3 Other contributions

In addition to the results described in greater details in the other chapters of this thesis,
many others were obtained during the journey of my Ph.D. Most of them were done in a
collaboration with colleagues from the CIn-UFPE, and from the State University of New York.
These results are briefly described next.

⌅ In TORRES et al. (2011) we provided a small-scale analysis of the adoption of the
java.util.concurrent library in a handset of well-known Java programs. We
further improved this paper in large-scale study covering more than 2,000 mature
and non-trivial Java projects, spaning a timeframe of more than 8 years. Results
suggest that more than 75% of the latest versions of the projects either explicitly
create threads or employ some concurrency control mechanism (PINTO et al., 2015).

⌅ In SARAIVA et al. (2012) we performed a systematic mapping study on Aspect-
Oriented Software Maintainabiliy (AOSM). Using the guidelines of Kitchenham and
Charters’, we searched in well-known digital libraries engines. A total of 138 primary
studies were selected, which describe 67 aspect-oriented (AO) maintainability metrics.
This catalogue provides an objective guide to researchers looking for maintainability
metrics to be used as indicators in their quantitative and qualitative assessments.

⌅ In ABREU et al. (2012) we investigated which methods, techniques and tools have
been used to assist the development of educational software. Using the guidelines of
Kitchenham and Charters’, we searched in well-known digital libraries engines. A
total of 65 primary studies were selected, which describe 11 mechanisms the assist
the development of educational software and 11 teaching resources. The result of
this work generates the underlying technical and pedagogical foundations for, in
further research, the development of a methodology or the improvement of existing
techniques, considering the intrinsic characteristics of educational software.

⌅ In PINTO; KAMEI (2013b), adopting a mixed-method approach, we analyzed the
contributions of more than 12,400 Brazilian OSS programmers in more than 15,000
projects during the period of a year. Our results show that exists an OSS trend in
Brazil: most part of the contributors are active, performing around 30 contributions
per year, and they contribute to OSS mostly due altruism PINTO; KAMEI (2014).

⌅ In PINTO; KAMEI (2013a) we qualitatively and quantitatively analyzed investigated
STACKOVERFLOW in order to understand what are the barriers to adoption and
the desirable features in refactoring tools. We manually analyzed more than 1,400
messages — 324 questions and 1,115 answers to those questions — from more
than 1,200 refactoring users. Results showed that the most desirable features are
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refactoring recommendations and refactoring for dynamic languages. On the other
hand, usability problems, such as unknown error messages, are the most common
ones.

⌅ In LIU; PINTO; LIU (2015) we studied the energy impact of alternative data manage-
ment choices by programmers, such as data access patterns, data precision choices,
and data organization. Second, we attempt to build a bridge between application-level
energy management and hardware-level energy management, by elucidating how
various application-level data management features respond to Dynamic Voltage and
Frequency Scaling (DVFS). Finally, we apply our findings to real-world applications,
demonstrating their potential for guiding application-level energy optimization.

8.4 Future Work

We divide future work in two parts: (1) future work directly related to this PhD thesis,
and (2) future work that we envision for other energy consumption research.

8.4.1 A Look Ahead for this Thesis

In particular, we intend to complement this work with the following future work:

Chapter 3. As regarding the STACKOVERFLOW study, we plan to extend the findings of this
study with a survey, in order to observe if our findings could be generalizable to other data
sources. We also plan to analyze commit messages and bug reports as ways to investigate how
frequently energy bugs are being introduced during the software evolution process.

Chapter 4. When considering the thred-safe collections study, we first plan on enlarging the
scope of our study. Although we considered a significant number of subjects, adding additional
collection, and their methods, would potentially allow us to refute or confirm some of our
observations in addition to perform the removal experiments for all collections available. With
insights of this study, we plan to introduce the concept of relaxed collection. One step towards
this goal is to reduce their accuracy (CARBIN et al., 2012). Since Java8 introduced the concept
of Streams, which use implicitly parallelism and is well-suitable for data-parallel programs,
an approximate solution for a given function, for instance sum the values of all elements, over a
huge collection can take a fraction of memory, time and, last but not least, energy consumption

Chapter 5. For the thread management constructs, we intent to replicate this study using
jRAPL (LIU; PINTO; LIU, 2015). Since such framework provides a power-based perspective
on different hardware levels, we can provide additional discussions of our results. Second, we
plan to investigate the energy consumption of different concurrent programming models, such as
the actor programming model (AGHA, 1986). In particular, this investigation would introduce an
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energy-perspective brick on the wall of the mutable ⇥ immutable programming models. Finally,
we also plan to derive a cookbook of energy efficient design choices for concurrent software.

Chapter 6. Finally, on the refactoring contribution, we plan to extend our tool to cover additional
ForkJoin bloats, such as the “Data Locallity” one, discussed in Chapter 5. Second, we plan
to investigate how our refactoring can be further extended to cover different instantiations of
this same runtime bloat on other object-oriented programming languages, so that non-Java
communities would also benefit from them.

8.4.2 A Look Ahead for Energy Consumption Research

Although far from complete, this section provides a discussion on how software energy
consumption research will mitigate the lack of knowledge and the lack of tools problems in a
near future.

8.4.2.1 Lack of Knowledge

In order to mitigate the lack of knowledge, we believe that energy-aware researchers will
act in two main fronts: conducting empirical studies and synthesizing the main findings of these
studies into cookbooks.

Empirical studies. Even though there are several efforts on this direction (KWON; TILEVICH,
2013; LI et al., 2014; LINARES-VáSQUEZ et al., 2014; LIU; PINTO; LIU, 2015; PINTO;
CASTOR; LIU, 2014a; PINTO et al., 2015; TREFETHEN; THIYAGALINGAM, 2013), these
studies do not cover the whole spectrum of programming languages design and implementations.
If we start from the beginning, the question of when performance and energy consumption
are not correlated still need better attention. Even though recent effort was invested in this
direction (CORRAL et al., 2014), there is still no generalization or clear answer for that. If we
move one step further, we can reach design patterns and refactoring techniques. We believe
that a new set of design patterns will emerge, using energy consumption as a standpoint —
what we call thin-patterns. Such patterns will be redesigned to use less resource as possible.
Similarly, refactoring research will derive new refactorings focusing on energy efficiency. These
refactorings will play an important role in the transitioning to the sustainable software engineering.
Moreover, we believe that threading techniques will be focus of several studies. Some well-
known Java threading constructs have been studied before (PINTO; CASTOR; LIU, 2014a), but
other ones such as Software Transaction Memory and the Actor Programing Model still need
more attention.

Cookbooks. Most of the software development methodologies used in practice pay little attention
to the design of an energy efficient system. Also, most good programming and design cookbooks
and catalogues, like the refactoring and design pattern catalogues, do not even mention energy
consumption. Since programers often rely on these catalogues of good practices, we envision
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that in the future, researchers will summarize results of empirical studies in these textbooks.
These textbooks will then be useful for better educating application software developers about
software energy consumption and also empowering the to create the next generation of energy
consumption tools.

8.4.2.2 Lack of Tools

Before we start discussing specific tools in details, it is worth to mention that although
there are existing software tools for energy measurement, such tools have well-known draw-
backs. First, energy measurement tools may pay an additional overhead on energy consumption,
mostly due to the sampling mechanism. Even though recent efforts have mitigate this prob-
lem (LIU; PINTO; LIU, 2015), software-based approaches are often regarded as less rigorous
than hardware-based ones. Second, energy measurement tools do not provide the granularity
level that developers are more interested in (PINTO; CASTOR; LIU, 2014b). For instance, there
is no tool support to measure energy consumption per thread or per process. In the following
years, we expect much more contributions on this important direction. The presence of solid,
platform-independent, and easy to use software measurement tools is the key to success of this
emerging research field.

Refactoring tools. It is well-known that refactoring is a common practice among software
developers. However, recent research suggests that existing refactoring tools are underused
– about 90% of refactorings that developers could do with modern refactoring tools are done
manually instead ). When taking energy consumption into account, developers currently do not
have enough knowledge to refactor their source code in order to consume less energy, so they
cannot perform “green refactorings” without the assistance of specialized tools. Refactoring
tools can take advantage of cutting-edge research, and incorporate such knowledge in refactoring
engines. However, even though researchers have been speculating on this subject during the
last years (FRASER et al., 2011b), little effort has been placed on introducing novel refactoring
tools for improving the energy efficiency of a software system. This lack of contributions
is not related to a lack of opportunities. As aforementioned, a recent study has pointed out
more than 14 opportunities for green refactoring tools (PINTO; SOARES-NETO; CASTOR,
2015b). In the following decade, we expect that refactoring for energy efficiency will become
a solid research field and will drive the development of energy-efficient pathways. In order to
support this belief, mainstream development environments should provide support for green
refactoring. Refactoring engine engineers should then learn how language constructs and design
implementations impact on energy consumption. To help on this direction, researchers should
focus on energy consumption studies with empirical evidences. Several studies are currently
being conducted on this subject, and we expect that even more will be available in the years that
come. With empirical support and solid evidences, refactoring engine engineers can apply this
knowledge on novel refactoring tools. In the following decade, we expect that refactoring for
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energy efficiency will become a solid research field and will drive the development of energy-
efficient pathways. In order to support this belief, mainstream development environments should
provide support for green refactoring. Refactoring engine engineers should then learn how
language constructs and design implementations impact on energy consumption. To help on
this direction, researchers should focus on energy consumption studies with empirical evidences.
Several studies are currently being conducted on this subject, and we expect that even more will
be available in the years that come. With empirical support and solid evidences, refactoring
engine engineers can apply this knowledge on novel refactoring tools.

Reengineering tools. Differently than Refactoring tools, which are more static-based, reengi-
neering tools can also be dynamic-based. As a promising example, method reallocation and
method offloading are two strategies that can become a standard practice to implement energy-
aware methods. Based on measurement tools that are able to estimate the energy consumption
per method, or per line of source code, we envision that in the future, such estimation tools
could be integrated to IDEs in a way that the estimation can be done at coding time, and that
eventually, at building time, such results could be passed to a module that can recommend to
implement method reallocation or method offloading. For instance, to implement reallocation,
the module may recommend what methods to keep as they are, and what methods to re-code in a
different programming language to be called as an hybrid application or shared library. In terms
of method offloading, we envision that the recommender module can determine whether to place
a method in the application, or to offload it to a third party.

Debugging tools. Debugging tools are commonly used by software developers in order to
catch errors in program formulation. If we think that errors in green software development
are energy inefficient pieces of code, we can think about debuggers as tools smart enough to
help programmers to identify such source code inefficiencies. We believe that in a near future,
debugging tools will have the capability of inspecting the energy consumption used in a given
line of code, as well as their common ability to identify which value was attributed to a given
variable. Debugging tools can go further and highlight the energy intensive lines of code, which
in turn will ease the perception of these inefficiencies by the programmers.

Testing tools. We believe that testing tools for improving energy efficiency will receive much
more attention in the years that come. At least, new testing techniques will be evaluated using
energy consumption as another important metric. At best, energy testing will become a research
area. Several possible areas of research can be further visualized. One of them is what we call
“green assertions”, that is, the possibility to one define an energy budget, in Joules, for which
the test case should assert whether the computation fits in the budget. The test should fail if
the energy consumed is greater than the suggested budget. For instance, the following example
defines that the render() method should consume, at most, 200 Joules. Otherwise, the test
should fail.

double maxEnergy = 200;
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assertTrue(render(), expected, maxEnergy);

More sophisticated approaches can be derived from this initial example. For instance,
the programmer can define a energy budget delta. Any energy consumption value between
the delta range should be accepted. Also, the test can be fast-fail, that is, the test can fail
as soon as the testing tool figure out that the test case under execution exceeds the budget.
Continuous integration (CI) tools should also take advantage of this knowledge, and grade test
cases according to their “greeness”. A straightforward way to grade test cases is to judge them in
a binary fashion, that is, based on their success/fail status. However, a fine-grainded granularity
can also be visualized. For instance, if the test case consumes only, say, 30% of the suggested
budget, it can be seen as “A”. On the other hand, if it consumes around 80% of the budget, it
can be seen as “B”. All test cases over the budget are clearly “C” test cases. With this family
of labels, developers can easily visualize how energy-efficiency is the software system just by
refactoring existing test cases.

Visualization tools. In the context of software evolution research, visualization has proven to be
a key technique, due to the large amounts of information that need to be processed and understood.
We strongly believe in the value of such research, and we also believe that visualization tools
will play an important role in the software energy consumption research agenda. Visualization
techniques are useful to support the understanding of software systems in order to discover
and analyze their anomalies. In our context, energy consumption hotspots can be seen as our
anomalies, which should be properly identified and fixed/removed. However, how to identify that
a given method became more energy intensive from a given version to another? This question
still lacks an answer that can hardly be given by the usually provided line/bar charts that depict
the evolution of one particular aspect of a system over time. In order to mitigate this problem,
ideas can be borrowed from stablished software engineering visualization techniques, such as
the software as a city project (WETTEL; LANZA; ROBBES, 2011), in which software system
as are visualized as interactive, navigable 3D cities. In a nutshell, the classes are represented
as buildings in the city, while the packages are depicted as the districts in which the buildings
reside.

Using this idea, software energy consumption researchers can provide an energy efficient
view of a whole software system. With this paradox in mind, we can catch a glimpse of a
visualization tool that can correlate energy consumption with his closest relative, performance.
Since it is well-known the energy and performance do not always follow the same path (PINTO;
CASTOR; LIU, 2014a), we can think about a class, or in this case a building, as the relation
between energy consumption and performance. Energy consumption can represent the width,
whereas performance can play as height. Thus a tall, though thin, building is a one where the
execution time of the methods that pertain to that classes are high, but the energy consumption is
not. Such information is valuable because, until now, the trade-off between energy consumption
and execution is still an open topic of research.
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However, since the original idea is based on source code analysis, and energy con-
sumption should be measured during runtime only, this visualization tool should be based on
an existing energy report generated by another tool. As a practical example, the testing tool
aforementioned can provide such information. Since maximize code coverage is regarded as
an important software development practice, there will be little effort placed on the software
engineer side.

Static analysis tools. Finally, one of the main challenges of software energy consumption
research is to bring the analysis to the static level. Currently, software energy consumption
instrumentation can only be conducted at the runtime level, and often has several limitations, such
as sophisticated (and expensive) hardware equipments (e.g., PINTO; CASTOR; LIU (2014a)) or
specific hardware configurations (e.g., LIU; PINTO; LIU (2015)). This fact has the potential of
limiting the usability of software energy consumption tools. In the following decade, we believe
that new static-based solutions will emerge in this scenario. There are at least two important
motivating factors that support this decision:

⌅ First, it does not require one to run the program. Currently, it is extremely labor
intensive to conduct a large-scale energy consumption study mainly because the
software under analysis needs to run correctly, which means that the internal source
code should be compiled and external dependencies should be fixed. A static analysis
tool will greatly reduce this workload, since it is not required to run the system.

⌅ Second, developers under time pressure have little chance to use another runtime
tool to analyze energy consumption. With static analysis ones, tool vendors can
integrate them into well-known IDEs, which programmers often use and rely on, thus
decreasing the barrier of adopting such tools.

The main challenge for deriving static analysis tools for energy consumption, is the need
of a body of knowledge of how language constructs and design decisions impact on energy
consumption. Although several empirical studies have been conducted on this subject (e.g., HAO
et al. (2013); LIU; PINTO; LIU (2015); PINTO; CASTOR; LIU (2014a)), they are far from
covering the whole spectrum of programming language designs and implementations. However,
due to the emerging character of the field, we believe that new studies will be conducted in the
following years, which in turn will help researchers to create static analysis tools.
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