.Centro L
ﬁlnformauca
i . L0] s iG]

Pos-Graduacdo em Ciéncia da Computacao

Integracédo de Linguagens Funcionais a
Plataforma .NET utilizando o Framework

Phoenix

Por

Guilherme Amaral Avelino

Dissertacao de Mestrado

3

[

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br
www.cin.ufpe.br/~posgraduacao

RECIFE, AGOSTO/2008

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
POS-GRADUACAO EM CIENCIA DA COMPUTACAO

T [AN
MR 1[AN
1[AN

I ._
]

\IRTUS IMPAVIDA

Guilherme Amaral Avelino

Integracao de Linguagens Funcionais a Plataforma .NET
Utilizando o Framework Phoenix

ESTE TRABALHO FOI APRESENTADO A POS-GRADUACAO EM
CIENCIA DA COMPUTACAO DO CENTRO DE INFORMATICA DA
UNIVERSIDADE FEDERAL DE PERNAMBUCO COMO REQUISITO
PARCIAL PARA OBTENCAO DO GRAU DE MESTRE EM CIENCIA
DA COMPUTACAO.

ORIENTADOR: Prof. Dr. ANDRE LUIS DE MEDEIROS SANTOS

RECIFE, AGOSTO/2008

Avelino, Guilherme Amaral

Integracdo de linguagens funcionais a plataforma .NET
utilizando o framework Phoenix / Guilherme Amaral
Avelino. — Recife: O Autor, 2008.

104 folhas :il., fig., tab.

Dissertacdo (mestrado) — Universidade Federal de
Pernambuco. CIn. Ciéncia da computacéo, 2008.

Inclui bibliografia e apéndices.
Linguagem de programacédo. 2. Compiladores. I. Titulo.

005.1 CDD (22.ed.) MEI2008-100

AGRADECIMENTOS

Agradeco a todos aqueles que, direta ou indiretamente contribuiram para a

realizacao desta pesquisa e em especial:

e Primeiramente a Deus, por ter me dado saude, inteligéncia e perseveranca
necessaria a execucao deste projeto.

¢ Aos meus pais, Paulo Lustosa Avelino e Aldénia Maria Amaral Santos Avelino,
pelo carinho, amor e dedicacdo com que se empenharam na minha
formacao pessoal e profissional;

¢ A Lyvia Basilio Caland, minha namorada, pela compreensao nos momentos
de auséncia e pelo apoio e incentivo constante durante esta fase de
minha vida,

¢ Ao professor André Santos, pela oportunidade de desenvolver este projeto e
acima de tudo por sua excelente orientacdo e auxilio nos mais diversos
problemas enfrentados durante a realizacao deste;

¢ Aos amigos do mestrado, em especial a Armando Soares, Vinicius Padua e
Marcos Duarte, pela motivacado, auxiio e companheirismo. Além de um
convivio fraterno que proporcionou um ambiente propicio ao
desenvolvimento deste trabalho;

¢ A Simon Peyton Jones, Tim Chevalier e demais participantes do férum do
GHC que contribuiram com informacg6es importantes sobre o GHC e a
linguagem CORE;

oA Andy Ayers e Matt Mitchel, membros da equipe desenvolvimento do
Phoenix, pela sempre atenciosa forma com que responderam as minhas
mais variadas duvidas sobre o uso desta ferramenta.

¢ A Monique Louise de Barros Monteiro, pelas explicacdes a respeito do projeto
Haskell .NET e pelas dicas e comentarios bastante Uuteis para o
desenvolvimento deste projeto.

A Microsoft Research pelo apoio financeiro, permitindo que eu me dedicasse

integralmente ao projeto.

e Ao Centro de Informatica e a sua excelente equipe de professores e
profissionais, que muito contribuiram para minha formacdo e
proporcionaram a base para o desenvolvimento deste trabalho.

¢ A todos 0s meus amigos e familiares, pelo apoio.

RESUMO

Linguagens funcionais se destacam pelo seu alto poder de expressdo e
abstracdo, promovido por construcdes de alto nivel como polimorfismo
paramétrico, funcdes de alto nivel e aplicacdes parciais. Embora estes recursos
sejam bastante Uuteis, tradicionalmente, linguagens funcionais tém sido pouco
empregadas fora do ambiente académico. Esta situacdo € em parte explicada
pela auséncia de uma infra-estrutura de desenvolvimento que forneca ferramentas
e APIs capazes de aumentar a produtividade e permita o uso das mais recentes

tecnologias.

Uma alternativa para fornecer esta infra-estrutura € integrar linguagens
funcionais a plataformas que disponibilizem tais facilidades, como a .NET. Embora a
plataforma .NET tenha sido projetada de forma a suportar mdultiplas linguagens, seu
foco foi dado ao suporte dos paradigmas imperativo e orientado a objeto,
carecendo de estruturas que permitam um mapeamento direto de linguagens

funcionais.

Objetivando estudar novas técnicas de mapeamento de estruturas
funcionais na plataforma .NET, neste trabalho foi desenvolvido um compilador
funcional que gera coédigo .NET, utilizando o framework Phoenix. O uso do
framework Phoenix além de auxiliar na geracao inicial do cdédigo permitiu que
analises e otimizacdes fossem feitas, posteriormente, melhorando o desempenho

dos programas gerados.

Palavras-chave: Linguagem funcional; NET; Phoenix; STG; Compiladores.

ABSTRACT

Functional languages stand out for their high power of expression and
abstraction, promoted by high-level buildings as parametric polymorphism, high-
level functions and partial applications. However these features are quite useful,
traditionally, functional languages have been little used outside the academic
environment. This is partly explained by the lack of a development infrastructure that
provides tools and APIs which are capable of increasing the productivity and allow

the use of latest technologies.

An alternative to provide this infrastructure is to integrate functional languages
to platforms that provide such facilities, such as .NET. Although the platform. NET has
been designed in a way that supports multiple languages, its focus was given to the
support of imperative paradigms and the object oriented, lack of structures that

allow a direct mapping of functional languages.

Aiming to study new techniques for mapping of functional structures on the
platform. NET, in this work, a functional compiler that generates .NET code was
developed, using Phoenix framework. Apart from helping in generating initial code,
the use of the Phoenix framework permitted analyses and optimizations to be made,

subsequently, improving the performance of the generated programs.

Keywords: Functional language; NET; Phoenix; STG; Compilers.

SUMARIO

(R | N 12(0] 51U @ X @ J T
1.1 CONTEXTO E MOTIVAGAOuteuuueeueereeesuessesssesssasssensssssssssssssssssssssssssssnsssnsssnsmnnsrnssmnsmmnnn 16
1.2 ORGANIZACAO DA DISSERTAGAOcvverrrerrrerrrerreerrrssresssssssssrsssssssssssrssrrrerrrer... 18

2 PROGRAMAGCAO FUNCIONAL NA PLATAFORMA .NET......cccoeieverereeereeeereeeee e,
2.1 INTRODUCAO A LINGUAGENS FUNCIONAIS ... uuiieeeeieiiiiie e e eeeeeeetiee e e e e e e eeataa e e e e e e eeenaanaenns 21

2.1.1 FUNCOES AE QA OFUEM ... 22

2.1.2 Aplicac@o parCial de FUNCOES.......uueeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 22

2.1.3 AVAlQCOO PrEQUICOSA ..uveiieeriiieeeiieeeeecieeeeeeieeeeeettaeeseeaaeeeesesseeeesnssaeaennns 23

2.1.4 PolimorfiSmo PArAMETTICO......ueeeceee e 24

2.1.5 TiDOS QIGEDIICOS. ...t e 25

2.2 PLATAFORMA .NETottt e 26

2201 CLR ettt ettt ettt neeneas 26

2.2.2 Outras Implementacdes Ada CLi........ueeeiiieeeeeeiiieeeeeeeeeeeeeecieeeee e 28

2.3 INTEGRACAO A PLATAFORMA [NET ... s s 29

2.3 T BHAGE e et e et a e e e e 29

2.3.2 COMPUIACEO .ottt e e et a e e e eenans 30

2.3.3 EStendendO O CLl.....ooiiiiiiiiieieieiceee ettt 31

2.4 MAPEANDO ESTRUTURAS FUNCIONAIS EM AMBIENTES OOcooiviiiiiiiiiiieeireee e 32

24T ClOSUIES .ttt ettt ettt ettt ettt st e et e e et e e 32
2411 ProjetandO UMA CIOSUIEcccuiiiiiiiiiaiie ettt

2.4.2 Mecanismo de aplicacAo de fUNCOES........ccoecueeeeecciieeeeecee e, 36
2.4.2.1 MOAEIO PUSH/ENTENottt e sae e b e enaee s
2.4.2.2 MOAEIO EVAI/APPIY ..ottt

2.4.3 Representacdo de tpos QIgEDriCOS.ceuueeveecieeeeeeeeceeceeeeeeeeae 38

2.5 IMPLEMENTAGOES EXISTENTES ...uuuuuuuuuuniiesissessasssnsssenssnsssenssnssssssssssassssnsssssssnsssnssnnssnnes 39

2.5 1 HUQGS FOI INET .ot ettt et et e e e ta e e e eeaees 40

2.5.2 MONGIIGN ..ttt ettt sttt s 41

2.5.3 NEMEIE....eiiiiiieeeee ettt sttt e 42

254 FHE ULX ottt 43

2.5.5 HGASKEN INET ...ttt ettt ettt sttt ettt e 44

2.6 CONSIDERAGOES FINAIS ...t s s s s s s s s s s e s e e e s e e e e e e enas 45

3 PHOENIX FRAMEWORK ...ttt ettt e e e et e e e e e e e annaa e
3.1 REPRESENTACAO INTERMEDIARIA (IR)....uuiiiieiiiiee e it e ctee e site e et e e et e e s tee e e s enrneeeenns 48

T I B o 1 1 (U oTe =T 49

31,2 OPEIANAOS. ...t e e e e 51

i 1.3 TIDOS ettt ettt e et e et e e e e e et e e e b e e e taeeearaas 52
.14 UNIQQAES ...ttt 54
315 SIMBDOIOS ..o 55
C J0t 0 R o {0)|V PP TRRPO
.2 FASES E PLUGINS ...ttt ettt ettt er e e s e s nne e e 57
3.3 GERANDO CODIGOuttiieiiriieeiitiee et ee st e et e e st et e e e s e e s e nre e e s anae e e s e reeeesareeeenns 60
3.3.1 Gerando COAIGO MSIL....cuueceeiiieieeieeeeeeee ettt 61
3.4 ANALISE E OTIMIZAGAODccc i 62
3.5 CONSIDERACOES FINAIS ... 62
4 PROJETO E IMPLEMENTAGAO ...ttt nsannans
I 1= N 11 1Y@ 1 PSP PR RURRPRIN 64
4.2 ARQUITETURA .ttt ettt ee ettt e ettt e et e e et e bt e e s et e e e e b e e e s b ee s e ba e e s e ba e e s e aaa s eseban e eebbnseasbbnsessnnn 64
2.1 STG oottt ettt ettt ettt ettt e te et e reeneeneas 67
4.2.2 COTE 1O STGo ittt 68
4.3 PHXSTGCOMPILER ..veieiiuiiiie ittt s sttt sttt sit ettt e e st e e s e e e s b a e e s s era e e e saneee s 72
4.3.1 LISTQ A& FASES .ottt ettt st 75
4.3.2 Estratégia de COMPIACAO.......uiiieecieeeee e 77
4.3.3 Ambiente de eXECUGCGOccueiiiiieciieeetee ettt e 79
4.4 CONSIDERAGOES FINAIS ...eveeeieeeeeeieeeeeeeeeeeeessseessessssesssessssssssssesssessssssssesressrssrsssrmnrrrnrmmnnns 82
5 ANALISE E OTIMIZACGAOD ...ttt ettt
5.1 METODOLOGIA. ... ctiiiiiitiie ittt sttt e e e b e s e s sr e e e e s srae e e 84
5.2 CODIGO .NET GERADO COM O USO DO PHOENIX ...cuevvieeiiiieeeinitneeesinree e e 86
5.2.1 VariAVEIS TEMPOIAIIASccveeeeeeeeeeee et 87
5.2.2 Casamento de padroes ANINNAAOS.c.ueeeeeeceeeeeecieeeeeeeee e 89
5.3 ANALISES E OTIMIZAGOES ... ei e 91
S.3T TQU Ol ettt ettt ettt s n 2
5.3.2 Desvios em chamMAdAS FE@CUISIVAScoveeveenieiiieieesieenite e eeeesieeseee e 94
5.3.3 Casamento de padrées com valores booleanos..............cceeeeeecunne... 96
5.4 ANALISE FINAL DO COMPILADORciiiiiriiesiireie s iireie s e e e sra s s s sna e s sraee e 97
54,1 Versus HASKEl INETcoiiiiiiiiieeite ettt 98
5.4.2 Versus GHC NATIVO c...eoiiiiiiiiieseeseene ettt 100
5.5 CONSIDERACOES FINAIS ...ttt 101
6 CONCLUSOES E TRABALHOS FUTUROScoveveieeecieeieeee ettt

6.1 RESUMO DAS CONTRIBUICOES.....ciiiieeiieeiieeiieeieee s ie et e et ee et e e s e e e e e e a e e e ae e e e e e e e e e aeaeeaaanaaeeaeeens 104

6.2 LIMITACOES E TRABALHOS FUTUROS ieiiie et ie et ee ettt ettt e e e e e aeaaa e e e e e e e e e e 105

APENDICE A

APENDICE B

APENDICE C

-UNIDADES DE COMPILACAO
114

-PROFILER DE MEMORIA........coiiitiiiieieieeieietee ettt 119
-PLUGIN DE RECURSAO ATRAVES DE DESVIOS

121

LISTA DE FIGURAS

[Te [U = W AN g 0] o T1=T a1 (=T AN PSR 1
Figura 2. Visdo geral da plataforma Phoenix. Adaptada da documentacao do
o L0 Y= o)4 15) SR TRR 48
Figura 3. HIR da instrucdo x = add x, *p. Adaptada da documentacdo do
o aTe Y=Y oD I SRR 50
Figura 4. Hierarquia de unidades. Adaptada da documentacao do Phoenix[45].... 55

Figura 5. Funcionamento de um plugin Phoenix. Adaptada da documentacao do

o a Lo Y=Y oD I SRS 58
Figura 6. DUMP HEIIOWOIId ... 60
Figura 7. Insercao do PRXSTGCOMPIIETcoooiiiiiieiiee et 1
Figura 8. Processo de COMPIIAGEADcuieiiiiiiiiecie e 1
Figura 9. Arquitetura do COMPIlAAOT..........c..oviiiiiee e 74
Figura 10. Arvore de COMPIIAIGADcccocveveueeeeeeeeeeteeee ettt en et en s eenens 75
FIQUIrA 11, LISTA A TASES ...ccuveiiiieie ittt e et e et et 76

Figura 12. AmMbiIiente A€ EXECUGADc.eeeeeiiiiiee ittt et e e e e s etae e s snnae e e 81

LISTA DE TABELAS

Tabela 1 - Comparacao entre implementaCOEScccuvvveeeiie e 1
Tabela 2. Configuraco do AMDIENTEooiiiii e 85
Tabela 3. Impacto da remocao de variaveis temMPOrarias...........cccveevveeiiveeeieeesieee s 88
Tabela 4. Remocao de desvios e variaveis desneCeSSANAas........ccccovcveeeeicieeeeeecieeee e 91
Tabela 5. Impacto da insercao de instruGao tail..........ccoooeeieiiie e 93
Tabela 6. Informacdes sobre o coletor de lixo apds a insercao de instrucdes tail 94
Tabela 7. Recursao através de desvio para o inicio da funCao...............cccceeeeevveneeee, 95
Tabela 8. Impacto da remocéao de construtores em desvios condicionais.................. 97
Tabela 9. PhxSTGCompiler X Haskell [NET.........cociiiiie e 98
Tabela 10. Compilacdo com informacdes ausentes na COREcccccccvvveeviiieeennee, 99
Tabela 11 - PhxSTGCompiler* x Haskell .NET. *Com alterac6es manuais....................... 99
Tabela 12. PhxSTGCOMPIIEr X GHCttt e e e 100
Tabela 13. Perfil do consumo de memaria (PhxSTGComMPIler).......ccoccovcvevieiiienienienns 101
Tabela 14. UNidades DASICAScociiiiiiiiciii e 114
Tabela 15. Unidades de compilacao que representam expressoes..........ccccvvveeeennn. 115
Tabela 16. Unidades de compilaGao atOmiCasc..eveiiiiiiieiiiiiie e 117
Tabela 17. Unidades de compilacao que representam alternativas.............ccceeenne 118

LISTA DE CODIGOS

COdIgOo 1. FUNCBES CUITY € NAO-CUITY ..ccuteeeeeetiee e ettt e e e s e e e sittae e e s sntae e e s sntaeaesantaeeessnnnanaeens 23
Codigo 2. Funcao length N80 poliMOIfICaAccooiiiiiii i 25
CAodigo 3. FuNcao length polMOI iCaA........coouvi i 25
COdigo 4. TipO AlIgEDIICO LIStINTouiiiiieie et 25
Codigo 5. TIPO algEDNCO gENETICO ... 26
COdIgO 6. EXEMPIO @ CIOSUIEoeeeiiiiieciie ettt eee e e e sse et a e e nsae e neeeenneeean 32
Caddigo 7. Representacao de closures utilizando uma classe abstrata........................ 34
Cddigo 8. Representacao de uma funcao utilizando closure e delegates................. 36
Cddigo 9. Exemplo de aplicacdo de uma funcdo desconhecida...........ccccceecevvneen. 36
(@0 To [To [T 0 I N £ o) A SRR SUR 38
Cddigo 11. Casamento de padrao utilizando SWItCh............cccceeviv i 39
Codigo 12. Criacao dO tiPO fUNGAODoeeiiiiiiiii et 53
COdigo 13. Criando UM@A ClAaSSE MSILvviiiiieiiee ettt ee e eeee e 54
Caddigo 14. Criacao de tabela de simbolos e adicdo de um mapeamento por nome
... 56
Codigo 15. ConstruiNndo UMA FASE......cccociiie ittt 59
COdigo 16. ConstruiNndo UM PIUGINooiiiieiiie et see e eee s e eesnaeesnneeans 59
Cddigo 17. Transformacao HIR para LIR em maquina .NET.........cccccevviieeiiiiee e 61

Cddigo 18. Transformando uma expressdo em um argumento atdbmico utilizando let

[o2= TS PP R PR UURUPITPTT 69
Cddigo 20. Exemplo unidades de compilaGao..........ccccuvveeiiiiiiic e 75
COdigo 21. VariAveis tEMPOTAIASc.ceieiiiieiiiiieeiiie ettt beesseesaeens 87
Cddigo 22. MSIL sem remocao de variaveis tEMPOrarias.......cccoccvveeeeicieeeeeiiiieeessiieeaens 88
Cddigo 23. Instrucdes desnecessarias em casamento de padrdes aninhados.......... 90
Caodigo 24. Cédigo ap6s a remocgao dos desvios e variaveis desnecessarias............ 90
Caodigo 25. Funcao recursiva para teste de tail-callscccceevvvieeiiiiiee e 92
Cdédigo 26. Chamadas MUtUamMENTE rECUISIVAS...........ccuvreeiiiieeeeiiiieee s siieeeesetaeeesssnneeae e 95

Cddigo 27. Representacao de desvios condicionais com construtores para valores

OO B AINOS. ..o et ————re et r e et —ar———— 96

Cddigo 28. Representacado de desvios condicionais otimizada...........ccccccceeeeeeicineeenn, 97
Caodigo 29. Ferramenta de profiler de memoria.........ccccoooeviieeccee e 120

Caddigo 30. Plugin que substitui recursdo por desvios incondicionais.ccec.u.... 122

16

1 INTRODUCAO

Este capitulo apresenta uma visdo geral do trabalho e esta organizado da

seguinte forma:

¢ A Secao 1.1 apresenta os fatores que motivaram o presente trabalho, dando
uma breve introducao sobre linguagens funcionais, maquinas virtuais
gerenciadas e motivagao para integra-las.

e A Secao 1.2 descreve a estrutura da dissertacao, apresentado 0s assuntos

discorridos em cada capitulo.

1.1 Contexto e Motivacao

Linguagens funcionais se caracterizam por tratar funcées como unidade
fundamental de um programa. Desta forma, um programa € constituido por um
conjunto de funcdes que representam sub-partes do problema a ser resolvido. Este
tipo de divisdo do problema representa uma forma de modularizar ainda mais um
problema, pois fungdes representam problemas especificos a serem resolvidos que
podem ser utilizados em mais de uma solugcao. Diferentemente de linguagens
imperativas, nas quais funcdes sdo tratadas como uma série de instrucdes, em
linguagens funcionais elas sao tratadas como expressdes matematicas. Na
programacao funcional é evitado uso de estados ou dados mutaveis e a execugao
de uma funcao, quando submetida aos mesmos argumentos, sempre retorna o
mesmo valor o que garante a auséncia de efeitos colaterais e facilita o processo de

prova da correcao de um programa [HYPERLINK \l "Hughes1989" 1].

Versbes mais recentes de linguagens de grande popularidade, tais como
Java e C#, tém incorporado algumas destas caracteristicas, antes s6 encontradas
em linguagens funcionais, numa clara demonstracao da importancia e poder de

expressdo destas. Polimorfismo paramétrico, através de generics, e closures’ séo

! Inserida a partir da versdo 2.0 do C# através de anonymons delegates e incrementado na versiao 3.0 com a
criacio de expressGes lambdas. Para a linguagem Java closures se encontra em fase de andlise da proposta|
HYPERLINK \l "Bra08" 67], a ser incorporada na versio 7.

17

exemplos dos recursos incorporados a estas linguagens. Tendo em mente este
interesse de linguagens orientadas a objetos em caracteristicas tipicas do
paradigma funcional, surge uma pergunta: porque tais linguagens ndo tém seu uso

difundido fora do mundo académico?

z

Um dos principais fatores que dificulta a expansao destas linguagens é a
auséncia de uma infra-estrutura de desenvolvimento que forneca ferramentas e
APIs capazes de aumentar a produtividade e permita o uso das mais recentes
tecnologias. Plataformas como Java (JVM) e .NET, fornecem aos programadores
tais ferramentas e APIs permitindo um enorme ganho em produtividade e uma
rApida integracdo com os modelos e tecnologias de desenvolvimento mais
recentes. Outra caracteristica importante provida por estas plataformas € o uso de
magquinas virtuais e codigo intermediario. Esta caracteristica fornece uma maior
abstracao sobre a maquina alvo, permitindo que programas e compiladores sejam
desenvolvidos sem se preocupar com o hardware ou sistema operacional onde irdo

trabalhar.

O ambiente .NET destaca-se por prover suporte a mdltiplas linguagens de
programacao, permitindo que programas sejam construidos utilizando qualquer
uma das linguagens suportadas, podendo ainda, um programa ser constituido de
modulos, escritos em linguagens diferentes, que interagem entre si. Além de ja
prover inumeras linguagens (C#, J#, C++, VB .NET, etc.), o ambiente .NET permite
facil incorporacdo de novas linguagens, desde que, estas sigam as especificacdes
do Common Language Runtime (CLR)2,3]. O CLR é a implementacao da Microsoft
para a Common Language Infrastructure (CLI)[HYPERLINK \I "ECMA335" 4], a qual
define um rico sistema de tipos e uma maquina virtual capaz de executar de forma

eficiente codigos provenientes de diversas linguagens.

Embora de forma nao restritiva, o CLR foi desenvolvida com foco na
implementacao de linguagens que seguem o0s paradigmas imperativo e orientado
a objetos. Desta forma, mapear caracteristicas de linguagens funcionais, tais como:
funcdo de alta ordem, mecanismo lazy evaluation e polimorfismo paramétrico, na
plataforma .NET representam um desafio. Diminuir este gap semantico através de
estruturas que mapeiem, eficientemente, caracteristicas comuns a linguagens
funcionais na plataforma .NET € objetivo comum de diversos projetos, tais como:
Haskell .NET5], ILX[HYPERLINK \I "Syme2001" 6], Mondrian .NET7], Bigloo .NET[

18

HYPERLINK \I "Bres2004a" 8] e Nemerle9]. Cada uma destas implementacdes define
suas proprias estruturas de mapeamento, ndo havendo um consenso sobre qual a
melhor forma de se representar tais caracteristicas no ambiente .NET. De modo
geral a implementacao das estruturas propostas no ambiente gerenciado fornecido
pela CRL ndo possui um bom desempenho, o que abre caminho para estudos de

técnicas mais eficientes.

Para mapear tais funcionalidades de forma eficiente é necessaria uma série
de experimentacdes e testes, de forma a obter estruturas que as represente com o
melhor desempenho possivel. O framework Phoenix [2], disponibilizado pela
Microsoft, € uma ferramenta que tem como propdsito facilitar a construcado de
compiladores e de ferramentas de teste e andlise. Ele utiliza uma representacao
intermediaria fortemente tipada para representar um programa e disponibiliza uma
grande quantidade de classes e métodos para manipular esta representacao.
Dentre os recursos disponibilizados, temos o redirecionamento de cdédigo para
diferentes arquiteturas e plataformas tais como: x86 e MSIL2 e mecanismo de plugin,
o0 qual permite alterar o comportamento de um programa Phoenix sem ter de

alterar diretamente seu cédigo fonte.

O presente trabalha faz uso do framework Phoenix para a criacao e analise
de estruturas que mapeiem, eficientemente, as caracteristicas especificas de
linguagens funcionais no ambiente .NET. Espera-se que o0s recursos disponibilizados
pelo framework auxiliem na construcao de um compilador que gere cédigos mais
expertos, ou seja, que usem menos recursos e sejam mais rapidos que os produzidos
atualmente. O compilador gerado servira ainda como ferramenta para
experimentacao e desenvolvimento de novas técnicas de compilacdo de

linguagens funcionais no ambiente .NET.

1.2 Organizacao da Dissertacao

Além da introducdo esta dissertagdo conta com mais cinco capitulos e trés

apéndices, como segue:

2 Microsoft Intermediate Language

19

O Capitulo 2 apresenta uma definicdo geral do paradigma funcional e do
ambiente .NET, mostrando suas principais caracteristicas. Apo6s a
apresentacdo das principais caracteristicas sdo demonstradas possiveis
abordagens de como implementar uma linguagem funcional no
ambiente .NET. Por fim, é feito um resumo das principais implementacdes
de linguagens funcionais existentes.

O Capitulo 3 discorre sobre o Framework Phoenix. Nele sdo apresentadas
as principais caracteristicas e recursos desta ferramenta, sempre que
possivel através de exemplos praticos.

O Capitulo 4 trata da implementacdo do protétipo. Nele € descrito a
arquitetura do compilador, seu ambiente de execucao e as decisdes de
projeto tomadas para geracao do cédigo.

O Capitulo 5 faz a analise do compilador e mostra o resultado das
otimizacbes e testes realizados. Os primeiros resultados se referem a
melhorias na transformacao do cédigo IR para MSIL e ao final s&o exibidos
os resultados de otimizagcBes no controle da pilha de execucéo e em
instrucOes de desvios.

O Capitulo 6 aponta as contribuicdes deste trabalho, restricdes e opcdes
para trabalhos futuros.

O Apéndice A apresenta tabelas com as classes que representam as
unidades de compilacdo do compilador PhxSTGCompiler.

O Apéndice B apresenta o cédigo da ferramenta construida para gerar o
perfil de consumo de memoaria dos programas analisados.

O Apéndice C mostra o cédigo de um plugin, utilizado para substituir tail

calls por desvios incondicionais em chamadas recursivas.

20

21

2 PROGRAMACAO FUNCIONAL NA PLATAFORMA .NET

Aliar a alta expressividade e o poder de abstracéo fornecidos por linguagens
funcionais a plataformas de alta produtividade como o .NET ndo € uma tarefa
simples. A plataforma .NET tem um modelo de compilacdo voltado para os
paradigmas imperativo e orientado a objeto, o que dificulta o mapeamento de

estruturas caracteristicas de linguagens funcionais.

Neste capitulo é feito uma introducéao a linguagens funcionais e suas principais
caracteristicas, sendo, em seguida dada uma breve introducao sobre a plataforma
.NET. Apés discorrer sobre estes conceitos basicos sdo apresentadas técnicas que
permitem mapear linguagens funcionais na plataforma .NET. Finalizando o capitulo,
alguns projetos de mapeamento de linguagens funcionais sao apresentados

descrevendo algumas de suas decisdes de projetos.

2.1 Introduc¢do a Linguagens Funcionais

Linguagens funcionais se caracterizam por tratar fungdées como unidade
fundamental de um programa. Desta forma, um programa € constituido por um
conjunto de funcbes que representam sub-partes do problema a ser resolvido.
Diferentemente de linguagens imperativas, nas quais fungcdes sdo tratadas como
uma série de instrucdes, em linguagens funcionais elas sao tratadas como
expressdes matematicas. Na programacao funcional é evitado uso de estados ou
dados mutaveis e a execucao de uma funcado, quando submetida aos mesmos
argumentos, sempre retorna 0 mesmo valor o que garante a auséncia de efeitos
colaterais e facilita o processo de provar a correcado de um programa [HYPERLINK
\l "Hughes1989" 1].

Linguagens funcionais sdo caracterizadas por alta expressividade e grande
poder de abstracdo, decorrentes de construgdes de alto nivel tais como funcdes de
alta ordem, aplicacao parcial de funcdes, avaliacdo preguicosa e polimorfismo

paramétrico. Estas construcdes ndo s6 aumentam expressividade da linguagem,

22

como também a complexidade de sua compilacao, especialmente em ambientes
orientados a objetos como o .NET. Tais caracteristicas s&o melhores especificadas a

seguir.

2.1.1 Funcoes de alta ordem

Diferentemente de linguagens imperativas e orientadas a objetos, onde ha
uma clara distincdo entre dados e funcées, linguagens funcionais nao fazem tal
distincao, tratando fungcbes como valores de primeira classe. Sendo assim, como
qualquer outro valor, elas podem ser passadas como argumentos, retornadas como

resultado de outra funcéo, ou ainda armazenadas em estruturas de dados.

Uma funcao é dita de alta ordem quando recebe outra funcdo como um
argumento ou computa outra fungcdo como seu resultado. Por exemplo, uma
funcdo de alta ordem pode atravessar uma lista aplicando uma funcao recebida

como argumento em cada componente da listal0].

Em linguagens funcionais uma funcdo pode ser criada em tempo de
execucao e referenciar variaveis visiveis apenas onde ela foi declarada. Tais
variaveis sdo denominadas variaveis livres. Os valores referentes a estas variaveis
fazem parte da definicdo da funcdo e por isto a representacdo de uma funcao
deve conter ndo s6 a expressao que a compde, como também suas variaveis livres.
A forma mais direta para esta representacdo é através de uma closure[HYPERLINK
\l "Minamide1996" 11], objeto alocado dinamicamente que encapsula um cdédigo
a ser executado e um ambiente que pode ser acessado pelo cédigo. Closure nao é
uma estrutura padrédo em ambientes orientados a objetos como o .NET. Alternativas

para sua representacao serao apresentadas na Secao 2.4.1.

2.1.2 Aplicacdo parcial de fung¢des

Linguagens funcionais permitem descrever fungces com mais de um

argumento como uma composicao de funcdes de um argumento, de forma que

23

um argumento seja consumido por vez. Este processo, denominado currificacdo3
em homenagem a Haskell Curry, altera a concepcgdo, popularizada pelas
linguagens imperativas, de que todos os argumentos de uma funcdo devem ser

passados ao mesmo tempo, como se fosse uma Unica estrutura de dados.

Embora sua sintaxe favoreca a currificacdo de funcdes, Haskell permite a
criacdo de funcBes sem seu uso, utilizando para isto o conceito de tupla. O

exemplo a seguir descreve a mesma funcao com e sem currificacdo.

multiply -: Int -> Int ->Int
multiply x y = x*Y

multiplyUC :: (Int,Int) -> Int
multiplyUC (X,y) = x*Y

OO WNPE

Cddigo 1. Fungdes curry e ndo-curry

z

A funcao multiplyUC s6 €é executada ao receber os dois argumentos
requeridos através de uma tupla. Ja a funcdo multiply permite sua aplicacao
mesmo passando a ela menos argumentos do que o requerido, obtendo assim,
uma funcdo parcial que armazena o argumento recebido e pode ter sua

execucao completada quando aplicada ao argumento restante.

A técnica de executar uma funcao currificada utilizando menos argumentos
do que o numero maximo de parametros suportados € denominada aplicacdo

parcial[10].

2.1.3 Avaliacdo preguicosa

Uma funcao nem sempre requer que todos seus argumentos sejam avaliados.
Algumas vezes o uso de um argumento depende da avaliacdo de outra expressao
ou mesmo nunca € utilizado dentro do corpo da funcao. Sendo assim, a decisao de
guando deve ser feita a avaliacao dos argumentos pode influenciar ndo sé no
projeto de uma linguagem como também no seu desempenho. Segundo David
Watt[10], quanto ao momento em que € feita esta avaliacdo, podemos distinguir

dois mecanismos:

3 Embora tenha recebido este nome em Homenagem a Haskell Cutry, esta técnica foi inventada por Moses
Schénfinkel.

24

e Eager Evaluation - todos os argumentos sao avaliados apenas uma vez,
antes da chamada e o valor obtido é ligado a cada ocorréncia do
parametro formal no corpo da funcéao.

e Normal-order evaluation — os argumentos sdo avaliados ap6s a chamada da
funcdo, apenas quando requisitados. Ou seja, cada ocorréncia do
parametro formal na funcao é substituida pela expressdo ndo avaliada.

O primeiro mecanismo ao requerer que todos 0s argumentos sejam avaliados
antes da chamada pode gastar um tempo desnecessario em casos onde algum
dos argumentos nao é utilizado no corpo da funcédo. J& o segundo € menos
eficiente em fungcdes onde um determinado parametro formal é utilizado mais de
uma vez no corpo da funcao, necessitando que a mesma expressao seja avaliada

mais de uma vez.

Linguagens funcionais tais como Haskell[12], Mondrian[13] e Lazy ML[14]
utiizam um aprimoramento do normal-order evaluation, denominado avaliagao
preguicosa, onde cada argumento é avaliado apenas quando necessario e uma
Unica vez. Tal mecanismo além de evitar avaliagcbes desnecessarias permite a
criacao de estruturas de dados infinitas tais como lazy list[10], onde cada elemento

é avaliado sob demanda.

Quando uma funcdo sempre usa um determinado argumento, dizemos que
ela é estrita para aquele argumento. Sendo assim, linguagens que implementam
avaliacao preguicosa ou normal-ordem evaluation sdo denominadas nao estritas,

pois podem possuir argumentos que nao sendo utilizados nunca serdo avaliados.

2.1.4 Polimorfismo paramétrico

Grande parte das linguagens funcionais da suporte a polimorfismo
paramétrico, onde uma funcdo ou estrutura de dados pode ser definida para
operar sobre diversos tipos. No polimorfismo ad-hoc, implementado por linguagens
orientadas a objeto através de mecanismos de heranca ou sobrecarga, 0s tipos
suportados sao restritos e devem ser previamente especificados. Ja no polimorfismo
paramétrico é permitido o uso de qualquer tipo, devendo a operacao que o utiliza

ser executada independente do formato do tipo. Como na pratica muitas funcoes

25

sdo naturalmente polimoérficas, o polimorfismo paramétrico eleva a expressividade

da linguagem.

Um exemplo classico de uma aplicagcdo de polimorfismo paramétrico é a
funcéo length, que calcula o numero de elementos de uma lista. O codigo Haskell a

baixo implementa a fungéo length para o calculo de uma lista de inteiros.

1 length :: [Int]->Int
2 length [] =0
3 length (x:xs) = 1 + (length xs)

Cadigo 2. Funcgao length nao polimoérfica

Embora funcione perfeitamente a funcdo definida desta forma é restrita a
listas de inteiros. Como as operacdes executadas em length sdo independentes do

tipo dentro da lista podemos generalizar a funcao para qualquer tipo.

1 length::[t]->Int
2 length [] =0
3 length (x:xs) = 1 + (length xs)

Cddigo 3. Funcao length polimérfica

Como veremos na Secao 2.1.5 polimorfismo paramétrico também pode ser
utiizado para modelar unides discriminadas, permitindo a construcao de tipos de

dados complexos que armazenam tipos polimérficos.

2.1.5 Tipos algébricos

Tipos de dados algébricos formam a base do sistema de tipos da maioria das
linguagens funcionais modernas. Eles permitem a definicdo de tipos estruturados,
unides e tipos recursivos. Um tipo algébrico € um tipo de unido discriminada
etiquetada[10], onde novos tipos sdo definidos utilizando construtores (etiquetas) e

os tipos dos argumentos.

1 data Listint = Cons Int List | Nil

Caédigo 4. Tipo algébrico Listint

No Cddigo 4 é definido o novo tipo algébrico Listint o qual pode conter dois
tipos de dados, definidos pelos construtores Cons e Nil. Nil € um construtor vazio, pois
nao possui nenhum campo, ja Cons carrega informacoes através de argumentos
dos tipos Int e List. Desta forma Cons recebe um valor inteiro e um valor do tipo

Listint, ou seja € um tipo recursivo, pois recebe um valor que ele préprio define.

26

Da mesma forma mostrada com a funcéao length, podemos generalizar tipos
algébricos de forma que eles possam representar tipos de dados polimoérficos. A
definicdo de List fornecida no Cddigo 5 cria uma lista que pode armazenar

qualquer valor suportado pela linguagem.

1 data List t = Cons t (List t) | Nil

Cddigo 5. Tipo algébrico genérico

2.2 Plataforma .NET

A plataforma .NET[15] € um ambiente de desenvolvimento e execucao que
permite diferentes linguagens de programacao e bibliotecas trabalharem juntas na
construcao de aplicacdes. A portabilidade destas aplicacdes também é facilitada,
pois um programa criado para a plataforma .NET deve rodar em qualquer
dispositivo ou sistema operacional que possua uma implementacdo de seu
ambiente de execucédo. Com objetivo de ampliar esta portabilidade em diferentes
sistemas a Microsoft submeteu o projeto da maquina virtual, Common Language
Infrastructure (CLI)[4], para padronizacdo nos 6rgaos internacionais ECMA[16] e
ISO[17]. Desta forma, desenvolvedores de diferentes sistemas operacionais e
dispositivos podem construir sua propria versdo da CLI capaz de executar

aplicativos .NET independente de autorizag&o ou suporte da Microsoft.

2.2.1 CLR

O CLR é a implementacdo da Microsoft para o padrao CLI, que define
especificagcbes para coédigo executavel e ambiente de execucdo da
plataforma.NET. Este ambiente utiliza um compilador Just-In-Time (JIT) que permite a
execucao de programas traduzidos para uma linguagem intermediaria comum
(MSIL#[18]), carregando e compilando para cédigo binario partes do cdédigo sobre
demanda. Este modelo de compilagdo sobre demanda permite que otimizacoes

sejam feitas de acordo com a plataforma na qual o cédigo é executado.

4 A linguagem intermediaria comum implementada na CLR ¢ denominada Microsoft Intermediate 1.angnage
(MSIL) e nao Common Intermediate Langnage (CIL), como definido pela CLI. Desta forma sempre que for mencionado
MSIL entenda linguagem intermedidria comum implementada pela CLR.

27

O processo de compilacdo e execucdo de programas, como observado na

Figura 1, pode ser descrito nos seguintes passos:

1. O programa escrito em uma das linguagens suportadas pela plataforma
(C#, VB.NET, C++, J#, Haskell, etc.) € compilado para uma linguagem
intermediaria, a Microsoft Intermediate Language (MSIL).

2. Este cédigo MSIL pode fazer chamadas a métodos e classes escritos em
outras linguagens que também tenham sido compilados para MSIL, ou
ainda para o conjunto de classes da biblioteca .NET. Desta forma o uso de
uma linguagem intermediaria facilita a interoperabilidade entre diferentes
linguagens.

3. O cdédigo MSIL é entdo submetido ao CLR para que seja feita a execugao
do programa.

4. O CLR, inicialmente, busca por uma versao pré-compilada do cédigo na
cache. Caso ndo encontre ou detecte que a versao resgatada tenha sido
alterada é feita a compilacao através do JIT.

5. O JIT compilara entdo cada classe a medida que um método pertencente
a esta for requisitado. Isto vale também para métodos provenientes da
biblioteca .NET.

6. O codigo compilado é entdo executado dentro do ambiente gerenciado

.NET, o qual verifica diretivas de seguranca e acesso a memaoria.

28

~odigc

Execucéao

Biblioteca
NET

Figura 1. Ambiente .NET

2.2.2 Outras Implementacoes da CLI

Ao padronizar a CLI a Microsoft possibiitou o surgimento de novas
implementacdes desta para sistemas operacionais e arquiteturas diferentes,
promovendo a portabiidade de programas .NET. Dentre as diversas
implementacdes da CLI existentes duas se destacam: a Shared Source CLI (SSCLI ou

projeto Rotor)[19] e o projeto MONO[20].

A SSCLI € uma versdo de codigo livre da CLI e do compilador C#
implementada pela prépria Microsoft para execucdo no Windows, FreeBSD e Mac
OS X5. Esta implementagdo tem cunho estritamente académico, fornecendo um
ambiente de estudo da plataforma .NET e das tecnologias nela empregadas tais

como: gerenciamento de memoaria, coleta de lixo, compilacao sob demanda, etc.

5> Apenas para versdo 1.0 da SSCLI, a versao 2.0 ndo disponibiliza mais versdes para FreeBSD e Mac OS X.

29

Por ser voltada para estudo ndo ha uma preocupacao quanto ao desempenho, o
que foi confirmado em testes comparando o tempo de execucéo de programas na

SSCLI e na CLR[21].

O projeto MONO, financiado pela Novell[22], prové implementacdes de
codigo livre da CLI para sistemas operacionais Windows, Linux, Unix, Solaris e Mac OS
X. E um projeto consistente, com uma grande comunidade de desenvolvedores que

incrementa a portabilidade de programas .NET para além do ambiente Windows.

2.3 Integracao a Plataforma .NET

Antes de definir como sera feito o0 mapeamento das estruturas funcionais na
plataforma .NET é necessario escolher uma estratégia através da qual sera feita tal
integracdo. Esta estratégia define se serd utilizado algum mecanismo responsavel
pela comunicacdo entre a linguagem e a plataforma ou se serd gerado

diretamente cddigo suportado por esta.

2.3.1 Bridge

Permitir a comunicacao entre componentes escritos em diferentes linguagens,
de forma que, possam trocar informacdes e acessar recursos uns dos outros € a
funcdo de uma bridge, ou “ponte”. A bridge é responsavel por intermediar as
trocas de mensagens, fornecendo uma sintaxe comum, e pela traducdo dos
parametros e valores de retornos, processo este conhecido como marshalling®.
Antes mesmo de se integrar linguagens funcionais a ambientes gerenciados, como
.NET e Java, esta estratégia ja era utilizada para permitir tal integracao para cédigo
nativo, como é caso de HDirect[23] e GreenCard[24], que implementam a Foreign

Function Interface’ (FFl). Em ambientes gerenciados, Hugs .NET[25] e Lambada[26]

¢ Processo de transformacdo da representacdo na memoria de um objeto em formato apropriado para
armazenamento ou transmissao. O processo contrario no qual os dados sio novamente transformados em objetos
na memoria ¢ denominado unmarshalling.

7 Definicdo da interface para fun¢Ges externas para linguagem Haskell98.

30

sado exemplos de integracdo para a linguagem Haskell, respectivamente para as

plataformas .NET e Java.

Esta € uma estratégia interessante quando o objetivo é obter a integragao
sem a necessidade de grandes alteraces no compilador ou na plataforma, pois
toda a complexidade das operacdes de conversdes de tipos e estruturas fica a
cargo da bridge. Entretanto esta integracdo € superficial, no geral apenas
chamada de func¢des, ndo disponibilizando o acesso a recursos avancados. Outra
limitacao desta estratégia € quanto ao desempenho, o processo de conversao de
tipos é custoso e este overhead deve ser levado em consideracdo em um projeto

de integracao.

Na plataforma .NET outro fator deve ser considerado: este tipo de integracao
requer chamadas a cédigo ndo gerenciado, pois o coédigo gerado pelo
compilador funcional gera cédigo nativo, ou seja, ndo gerenciado pela plataforma
. Embora seja permitido este tipo de chamada ela requer que uma série de
operacdes como confirmacado de permissdes e importacdo de bibliotecas, que
degradam seu desempenho. Ha ainda que se considerar que implementacdes de
linguagens funcionais, geralmente, inclui seu préprio ambiente de execucao com
coletor de lixo e gerenciamento de memoria proprios, sendo assim teriamos um
cenario onde dois ambientes de execucao estariam rodando ao mesmo tempo e

consumindo recursos do sistema.

2.3.2 Compilacdo

Gerar codigo suportado diretamente pela plataforma, através de um
processo de compilacao, € a forma mais direta de integracao. Este processo pode
tanto ser feito utilizando como destino uma linguagem de alto nivel que possua um
compilador para o ambiente, como diretamente, gerando cédigo MSIL. A primeira
abordagem é mais facil, pois delega ao compilador da linguagem escolhida a
responsabilidade de gerar corretamente o cédigo para a plataforma, além de se
valer de otimizacdes implementadas por esta. A segunda abordagem embora seja
mais complexa e susceptivel a erros, permite um maior controle sobre o cdédigo

gerado e uso de instrucdes nao contempladas pelas linguagens de alto nivel. Para

31

auxiiar a geracao direta de coédigo podemos utilizar ferramentas tais como

peverifys, ildasm?, ilasm’® e Phoenix. Esta lltima sera detalhada no Capitulo 3.

A integracao utilizando compilacéo possui diversas vantagens em relacéo ao
mecanismo de bridge. O compartihamento de uma mesma representacao facilita
a comunicagcdo com programas escritos em outras linguagens, reduzindo o
overhead causado pelo processo de marshilling/unmarshalling e pela chamada a
codigo nao gerenciado. O uso de um mesmo ambiente de execugao diminui o uso
de recursos do sistema que antes teria que ser compartilhado por dois ambientes

com coletores de lixo e gerenciamento de memoria separados.

A maioria dos projetos de integracao de linguagens funcionais a plataforma
.NET utilizam a compilacdo como abordagem. Mondrian[13] e Making Haskell .NET
Compatible [27] fazem uso de uma linguagem de alto nivel para gerar cédigo

enguanto que Nemerle[9] e Haskell .NET[5] geram diretamente codigo MSIL.

2.3.3 Estendendo a CLI

Os tipos e a linguagem intermediaria descritos pela Common Language
Infrastructure (CLI) visam proporcionar um ambiente que suporte a implementagao
de diversas linguagens capazes de interagir entre si, entretanto seu foco é dado a
linguagens imperativas e orientada a objetos. Desta forma, faltam a este ambiente
estruturas basicas para a representacdo de funcionalidades comuns a linguagens
funcionais. Modificar a CLI adicionando extensdes necessarias para representar
estruturas funcionais facilitaria a compilacdo de linguagens funcionais para a
plataforma .NET. O projeto ILX [28] utilzou esta abordagem, adicionando a CLI
novas caracteristicas como closures, polimorfismo paramétrico, unides discriminadas

e funcdes de alta ordem.

Alterar a maquina virtual permite a implementacdo de linguagens funcionais

com um ganho expressivo no desempenho, além de deixar um legado para futuras

8 Ferramenta, disponibilizada com o framework NET, que verifica se o codigo MSIL esta de acordo com as
especificacoes definidas pela CLI.

O MSIL disassembler. Gera c6digo MSIL a partir de um arquivo PE (DLL ou EXE).

10 MSTL assembler. Gera um arquivo PE (DLL ou EXE) a partir de codigo MSIL.

32

implementacdes. Entretanto, perde na portabilidade, pois requer que 0 novo
ambiente seja distribuido junto com a linguagem, ou ainda que estas modificacdes
sejam incorporadas a distribuicdo padréao, o CLR no caso da plataforma .NET . A CLI
segue uma padronizacao, ECMA-335 [4], e a incorporacao de novas caracteristicas

a este é dificultada, pois requer aprovacado de um conselho de padronizacao.

O projeto F#[29], desenvolvido pela mesma equipe que criou a ILX, faz uso
desta ultima como linguagem alvo do processo de compilacao. ILX, por sua vez, é
posteriormente traduzido para MSIL, de forma a preservar a compatibilidade com o

ambiente padrao de .NET.

2.4 Mapeando Estruturas Funcionais em Ambientes OO

Para que seja feito o mapeamento de linguagens funcionais em um ambiente
OO, como o .NET, faz-se necessario o desenvolvimento de técnicas e estruturas
capazes de diminuir o gap semantico entre estes dois mundos. Nesta Secao tais

técnicas estruturas serao apresentadas e discutidas.

2.4.1 Closures

Closures sao estruturas essenciais para a representacao de linguagens
funcionais. Sendo assim o modelo adotado para a representacao desta influenciara
todo o restante do projeto. Podemos definir uma closure como uma funcdo que
armazena todas as variaveis utilizadas por ela, mas que foram definidas fora dela.
Tais variaveis sao definidas na teoria do calculo lambda[30] como variaveis livres.
Através do exemplo mostrado no Cédigo 6 podemos observar com mais detalhes

tais conceitos.

1 f1 :: Int -> t -> (Int -> Int)
2 flxy=1let f2 k = x + k in 2

Cddigo 6. Exemplo de closure

A funcao f2 definida dentro da funcéo fI, utilizando o comando let, faz uso
da variavel x definida fora de seu escopo, ou seja, x € uma variavel livre da funcao
f2. Ou seja, f2 &€ uma closure que representa uma funcao que recebe um
argumento k e faz uso de uma variavel livre, a qual deve ser encapsulada dentro

de sua representacao. A funcao f1 também pode ser considerada uma closure, s6

33

gue sem variaveis livres, o que faz sentido para uma representacao Unica para

todas as funcoes.

Em linguagens funcionais, além de representar funcdes, closures sao
comumente utilizadas para representar expressées nao avaliadas, conhecidas
como thunks. Em linguagens com mecanismo de avaliacdo preguicosa (Secao
2.1.3) onde a avaliacado das expressdes € feita apenas uma vez e somente quando
necessaria, closures sao utilizadas para representar a expressdo a ser avaliada,

armazenando suas variaveis livres e o valor resultante apds a avaliacao.

Closures sao, normalmente, implementadas através de estruturas de dados
especiais que contém um ponteiro para o cédigo da funcdo e o ambiente Iéxico
da funcao (conjunto de variaveis livres)[28,31]. Esta abordagem é inviabilizada, ou
ainda desestimulada, em ambientes com gerenciamento de memdria, como o
.NET, onde o0 uso de ponteiros embora permitido, gera cédigo nao verificavelll.
Ainda que, projetos como o ILX[6] tenham utilizado cbédigo nao verificavel para a
construcdo de closures esta abordagem sofre de restricbes de uso, uma vez que a
execucao de codigo nao verificavel requer permissdes especificas e ndo pode se
valer das garantias e funcionalidades fornecidas pela CLI. O préprio projeto ILX

abandonou tal abordagem em implementacdes posteriores.

Uma alternativa ao uso de ponteiro em codigo verificavel é o uso de estruturas
conhecidas como delegates. Delegate é a versao orientada a objetos de ponteiro
para funcdo, que permite a chamada de métodos, tanto de instdncia como
estatico, de forma segura e verificavel. Na implementacdo 1.0 da CLR havia
problemas de desempenho, o que justificou a utiizacdo de ponteiros na ILX,
entretanto testes realizados demonstraram que tais problemas foram solucionados a
partir da versdo 2.0 fazendo com que chamadas a métodos utilizando delegates
tenham desempenho semelhante a chamadas a métodos virtuais ou de interface
[21].

11 Cédigo nio verificavel, no ambiente .NET, significa que o cédigo ndo segue as restri¢bes de seguranca
impostas pela CLI ndo sendo gerenciado diretamente pelo ambiente.

34

2.4.1.1 Projetando uma closure

Uma forma bastante direta de se representar closures em ambientes
orientados a objetos é através da definicdo de uma classe abstrata Closure que
possui um método Invoke, responsavel pela execucao da expressao. Neste modelo
para cada closure deve ser criada uma nova classe que herda da classe Closure,
armazena suas variaveis livres em campos da classe e sobrescreve o método Invoke
de forma que ele execute o cddigo correspondente a avaliacdo da closure. O

Cddigo 7 demonstra como criar uma hova closure estendendo a classe abstrata.

//Classe abstrata Closure
public abstract class Closure

{
+

// Criando uma nova closure
class newClosure : Closure

{

public abstract object Invoke();

OCO~NOOODWNE

[E=Y
o

// Campos representando variaveis livres

B
N

public override object Invoke()

i
Hw

//Codigo da closure

[
)]

}

'_\
(e}
-

Cadigo 7. Representacéo de closures utilizando uma classe abstrata

Para passagem de argumentos para a funcao Invoke poderia ser utilizado um
array de objetos ou ainda uma pilha. F# [29] possui classes abstratas pré-definidas
para até cinco argumentos e um valor de retorno, utilizando generics[32] para
definicdo dos tipos. Funcdes com mais que cinco argumentos sao tratadas
utiizando aplicacdes parciais, mecanismo detalhado na Secao 2.5.4. Nemerle[9]
utiliza mecanismo semelhante, entretanto possui classes abstratas pré-definidas para
até vinte argumentos, além de permitir chamadas nao currificadas utilizando para
tanto uma tupla contendo todos os argumentos da funcao. E importante observar
que embora hajam classes pré-definidas para cada nova closure definida devera
ser produzida uma nova classe que herde da classe correspondente,
sobrescrevendo seu método Invoke e adicionando campos para suas variaveis

livres.

Tanto F# como Nemerle sao linguagens estritas, o que reduz o niumero de
closures geradas, uma vez que, nao sao necessarias novas closures para representar

computacdes nao avaliadas. Entretanto, a geracao de uma classe por closure em

35

linguagens funcionais nao estritas, como Haskell, resultaria em uma grande
quantidade de classes. Segundo Don Syme [6], estima-se que seja encontrado na
biblioteca padrdo do GHC uma closure por linha de cdédigo Haskelll. Como na
plataforma .NET a cada classe sdo associados metadados que necessitam ser
carregados e checados durante a execucao do programa, uma enorme
quantidade de classes causariam uma queda no desempenho do cédigo

produzido.

Visando diminuir o nimero de classes geradas e consequentemente a queda
de desempenho o projeto Haskell .NET [5] utilizou a abordagem da construcao de
classes pré-definidas para closures com n variaveis livres e adotou um mecanismo
de pilha para a passagem dos argumentos. Neste, ao invés de ser gerada uma
nova classe para representacao de cada closure, todas as closures que possuem a
mesma quantidade de variaveis livres serdo representadas através de instancias de
uma mesma classe pré-definida no ambiente de execucao da linguagem. O que
diferencia as diversas instancias da mesma classe sera a funcdo armazenada,
correspondente ao coédigo da closure. No projeto Haskell .NET para o
armazenamento desta funcédo é utilizada um delegate ao invés de um ponteiro ou

método abstrato.

O Cddigo 8 mostra como criar uma closure para representar a funcao f2
mostrada no Cdédigo 6. Nas linhas 2 e 3 é criado o delegate que armazena a
funcdo com o cédigo de f2. Como sera mostrado na Secao 2.4.2.1, utilizando o
modelo push/enter o delegate ndo armazena diretamente a fungdo com o codigo
correspondente a expressao, mas sim, uma funcao auxiliar. As linhas 6 e 7 sao
responsaveis por construir a closure que representa a funcao. Pode-se observar que
a classe utilizada para representar a closure possui um tipo genérico, este tipo
genérico representa o tipo da variavel livre armazenada pela closure, que neste
caso é instanciado como sendo do tipo inteiro. Na linha 10 é configurado o valor da
aridade da funcao. Este valor, como sera visto na Secao 2.4.2 é util para definir se a
aplicacao da funcao é saturada ou nao. Por ultimo, na linha 13, o valor da variavel

livre é adicionado a closure.

1 //Delegate para a funcao

2 NonUpdCloFunction_1_FV<int> funcDelegate =

3 new NonUpdCloFunction_1_FV<int>(function);
4

5

//Criacao da closure que recebe como argumento o delegate

36

6 NonUpdateableClosure_1_FV<int> closure =
7 new NonUpdateableClosure_1_FV<int>(funcDelegate);
8

9 //Configura a aridade da funcéo
10 closure.arity = 1;

12 //Armazena o valor da variavel livre
13 closure.fvl = x;

Cadigo 8. Representagéo de uma fungéao utilizando closure e delegates

2.4.2 Mecanismo de aplicacao de funcdes

A combinacdo de polimorfismo paramétrico, funcdes de alta ordem e
aplicacao parcial de fungdes gera um cenario onde em alguns momentos pode ser
necessario efetuar a aplicagcdo de uma funcdo desconhecida em tempo de
compilacado. No Cadigo 9, f representa uma funcao desconhecida, uma vez que
nao se sabe em tempo de compilacdo como se comportara tal funcado. Nao é
possivel simplesmente aplicar f aos dois argumentos, pois nao se pode afirmar
qguantos argumentos f espera receber e qual o retorno da aplicacao. Esta pode ser
uma funcado que recebe apenas um argumento, processa este e gera uma nova
funcdo que consumira o argumento restante, ou mesmo, uma funcao que receba
mais de dois argumentos e desta forma o resultado de zipwith € uma lista de

funcdes.

1 zipWith :: (a->b->c)-> [a] -> [b] -> [c]
2 zipwith F 01 0 =0
3 zipWith f (x:xs) (y:ys) = F xy - zipWith f xs ys

Cddigo 9. Exemplo de aplicagdo de uma funcéo desconhecida

Para tratar a aplicacao de funcdes desconhecidas em linguagens funcionais
existem dois modelos: eval/apply e push/enter. A diferenca basica entre os dois
modelos € quem sera o responsavel por tratar em tempo de execugao a aplicagcao
da funcao, se a propria fungcdo chamada ou o cédigo que faz a chamada. O uso
de um destes mecanismos deve ser efetuado apenas para funcdes desconhecidas
em tempo de compilacdo, caso contrario a funcdo deve ser chamada

normalmente, evitando assim um overhead desnecessario.

37

2.4.2.1 Modelo push/enter

No modelo push/enter a propria funcéo sera a responsavel por, em tempo de
execucao, verificar a aridade!? da funcao, o niumero de argumentos recebidos e
decidir como devera ser feita a aplicacdo da funcdo. Neste modelo para cada
funcdo definida na linguagem duas funcdes devem ser geradas apds a
compilacdo. Uma, denominada fast enfry point (FEP), contendo o cdédigo
correspondente da funcao original e outra, slow entry point (SEP), com o cédigo
responsavel por verificar a aridade e o niumero de argumentos, decidindo que

atitude tomar. O processo executado pode ser resumido em duas etapas:

e Push: os argumentos passados para a funcéo sédo empilhados (push) em uma
pilha diferente da pilha de execucéao da CLR.

sEnter: é feita a chamada a funcao SEP que avalia a aridade da funcao e o
numero de argumentos presente na pilha e baseado nestas informacdes

determina se o0 proximo passo sera a ou b.

a. Caso o niumero de argumentos presentes na pilha sejam suficientes, estes
sdo desempilhados e a funcédo FEP é executada retornando o valor da
avaliacdo. Argumentos excedentes sdo mantidos na pilha para que
possam ser consumidos posteriormente, provavelmente pelo retorno de
FEP.

b. Caso o numero de argumentos presentes na pilha seja inferior a aridade,
estes s&o desempilhados e utilizados para criar uma aplicagao parcial
gue é retornada como valor da avaliacao.

Haskell .NET utiliza esta abordagem criando pilhas diferentes para armazenar

diferentes tipos de argumentos boxing e unboxing.

2.4.2.2 Modelo evallapply

Neste modelo a responsabilidade sobre como tratar a chamada de uma
funcdo desconhecida fica a cargo do cdédigo que invoca a funcao (caller). Este

codigo deve, primeiramente, avaliar (eval) a aridade e o numero de argumentos e

12 Aridade pode ser entendido como o nimero de argumentos que uma fungio espera receber para realizar
sua funcionalidade.

38

entdo decidir qual a aplicacao (apply) deve ser feita: chamar diretamente a
funcdo, caso o numero de argumentos seja maior ou igual a aridade, ou criagcao de

uma aplicacao parcial a ser retornada, caso contrario.

Historicamente a grande maioria dos compiladores para linguagens funcionais
lazy utilizam a abordagem push/enter, entretanto apoés estudos feitos por Marlow e
Peyton Jones [33], que demonstraram uma ligeira vantagem do uso do modelo
eval/apply em uma implementacéo do Glasgow Haskell Compiler (GHC), o modelo
eval/apply tem ganhado espaco. Na plataforma .NET, ainda nao existem estudos
gue apontem qual modelo apresenta melhor desempenho. Nesta plataforma, o
uso do eval/apply teria como vantagem o uso direto da pilha da CLR como
mecanismo de passagem de parametros, o que nao €é possivel no modelo
push/enter devido a restricdes na manipulacao direta da pilha impostas pela CLR.
Entretanto, o modelo eval/apply pode gerar aplicacdes parciais desnecessarias,
ndo geradas utilizando o push/enter [33]. F# e Nemerle sdo exemplos de utilizagao

de eval/apply na plataforma .NET.

2.4.3 Representacao de tipos algébricos

Na plataforma .NET ndo existe o conceito de tipos algébricos como em
linguagem funcionais. O mais perto que ha sao as enumeracgdes que permitem que
se descreva um tipo através de um conjunto de constantes, entretanto
enumeracdes nao permitem o uso de argumentos. O uso de uma classe abstrata
para representar um tipo algébrico e subclasses destas para representar as possiveis
construgcdes € uma das abordagens mais utilizadas em ambientes orientados a
objetos [34,35,36]. Utilizando tal abordagem Listint (Cédigo 4) teria a seguinte

representacao em codigo C#.

public abstract class Listint{}
public class Nil : Listint {}
public class Cons : Listint
{

public int val;

public Listint list;

NO O~ WNE

-

Caddigo 10. Listint C#

39

Variacfes polimérficas como a mostrada em List (Codigo 5) seriam facilmente
traduzida utilizando para isto generics. Esta representagcdo permite um
mapeamento facil e direto, entretanto peca quanto ao desempenho em
operacdes de casamento de padrdes. OperacOes estas bastante comuns na
manipulacdo de tipos algébricos em linguagens funcionais. Tal queda de
desempenho se deve ao fato do uso da instrug&o isinst’3 para testar se um objeto é

da subclasse desejada.

O uso de um numero inteiro (fag) para diferenciar os construtores de um tipo
algébrico como proposto por Jones e Lester[37] fornece uma maneira de otimizar
operacdes de casamento de padrbes com tipos algébricos. Sendo assim, a classe
abstrata passaria a ter um campo inteiro que armazenaria a fag e o construtor de
cada subclasse deve preencher este campo com um valor diferente dos demais.
Casamentos de padrbes poderiam ser executados utilizando instrucdes switch sobre

a tag, com mostrado a seguir:

1 switch (list.tag)

2 {

3 case tagNil: // codigo correspondente a opcao Nil

4 break;

5 case tagCons: // codigo correspondente a opgdo Cons

6 break;

7 default: // codigo correspondente a opcédo default
8 break;

9

3

Cddigo 11. Casamento de padrao utilizando switch

2.5 Implementacdes Existentes

Tentativas de integracdo de linguagens funcionais a ambientes gerenciados
tem sido feitas mesmo antes do surgimento da plataforma .NET. Projetos como
Lambada[26], Pizza[36] sdo exemplos de tentativas de integracao a Java Virtual
Machine (JVM) que forneceram as bases para posteriores integragcbes com a
plataforma .NET. Por ser multi-inguagens a plataforma .NET possui algumas
caracteristicas que favorecem esta integracao, tais como um rico sistema de tipos e

instrucOes que facilitam a implementacdo de outros paradigmas de linguagens, tais

13 Instrugdo IL, sua correspondente em C# ¢ is.

40

como .tail que permite descartar o frame de execucdo em algumas chamadas

recursivas, evitando desta forma o estouro da pilha de execucéao.

Como o foco deste trabalho é a integracdo de linguagens funcionas a
plataforma .NET, nesta Secao serdo apresentados apenas projetos desenvolvidos
para este ambiente, de forma a demonstrar como tais projetos tratam os problemas

e desafios de mapear estruturas e caracteristicas funcionais na plataforma .NET.

2.5.1 Hugs for .NET

Hugs98 for .NET[25] € uma extensdo do interpretador Haskell, Hugs98, que
prové uma boa interoperabilidade entre o mundo Haskell e o mundo do framework
.NET. Esta extensdo permite que sejam instanciados objetos .NET dentro de
programas Haskell e, vice-versa, permitindo a chamada de funcdes Haskell a partir
de qualquer linguagem provida pelo framework .NET. Com isto o Hugs98 for .NET
incrementa o potencial dos programas Haskell permitindo que eles facam uso das

funcionalidades presentes na biblioteca da plataforma .NET.

Para fazer a interoperabilidade entre Haskell e a plataforma .NET, Hugs98 for
.NET usa uma abordagem conhecida como bridge. Nesta abordagem o cdédigo
Haskell ndo € compilado dentro de um assembly .NET contendo cédigo MSIL o qual
seria gerenciado pelo ambiente de execucao .NET. O que ele faz é interpretar as
instrucdes lado a lado com o ambiente de execucao .NET, provendo o cédigo para
ambos os mundos através de chamadas de um mundo ao outro, utiizando uma

biblioteca FFI .

Esta abordagem possui uma série de caracteristicas que comprometem seu

desempenho, dentre elas:

e Durante a execucdo de um programa que possui codigo dos dois mundos
sao mantidos dois ambientes de execugdo: o interpretador Hugs e runtime
.NET. Dentre outros custos, temos o de manter dois coletores de lixos, um em

cada ambiente.

e Para acessar o modelo de objetos .NET é utilizada a APl de Reflexao.

Trabalhos, como Rail[38], que utilizaram esta API relatam que ela possui

41

baixo desempenho. Outro problema decorrente de se utilizar esta API é que
0s objetos construidos por ela s&o acessados como componentes COM|[39],

que possuem certo custo para seu uso.

¢ O acesso ao codigo Haskell é feito através de invocacao de codigo nao
gerenciado, o que acarreta overhead na transicdo entre codigo

gerenciado e codigo nao-gerenciado.

Embora com esta abordagem, o Hugs?8 for .NET, consiga fazer uso das
funcionalidades disponiveis na plataforma .NET em programas Haskell, inter-

operando entre os dois mundos, ele esta longe do ideal no quesito desempenho.

2.5.2 Mondrian

Mondrian[35,7] € uma linguagem funcional ndo estrita especificamente
projetada para ambientes orientados a objetos, possuindo uma versao para a
plataforma .NET. Pode ser visto como uma versao light de Haskell, contendo uma
sintaxe mista entre Haskell e C#. Por ser uma linguagem criada especificamente
para integracdo com ambiente OO, Java e .NET, possui comando nativos para

criacao de objetos, chamada a métodos e acesso a campos.

Quanto a sua implementacdo na plataforma .NET suas principais

caracteristicas sao:

e Utiliza push/enter como modelo de aplicagdo de funcdes.

e Sua representacdo de thunks utiliza excec¢des, onde o consumo de uma
closure ndo avaliada gera uma excecao que € tratada avaliando a
expressdo e retornando o resultado desta avaliacao. Este valor é
armazenado na closure para futuras chamadas.

e Sua compilacado gera cédigo C#, o qual é posteriormente compilado para
codigo MSIL utilizando o compilador C# padrao da plataforma.

O mesmo projeto que construiu Mondrian desenvolveu, também, um

compilador Haskell para .NET[27]. Este compilador usa o GHC, como frontend, o
qgual é responsavel por fazer o parser, a checagem de tipos e otimizacdes do

codigo Haskell, gerando uma saida no formato GHC Core. Utllizando uma

42

ferramenta, o cédigo GHC Core €, entao, transformado em Mondrian Core que

através do compilador Mondrian gera cédigo .NET.

2.5.3 Nemerle

Baseada em ML, Nemerle[9] foi projetada para ser uma linguagem funcional
estaticamente tipada voltada para a plataforma .NET. Outro objetivo levado em
consideracao no seu projeto foi permitir o uso de construcdes tipicas de linguagens
imperativas e orientadas a objetos de forma a promover uma boa transicao de
programadores destes paradigmas para linguagens funcionais. Esta caracteristica
também facilita a interoperabiidade com a plataforma .NET. Dentre suas
funcionalidades se destaca o suporte a meta-programacao que permite estender a
linguagem através de macros. Embora seja estrita, permite criacao de expressdes

com avaliagcéo preguicosa através do uso da palavra reservada lazy.
Sua implementacao na plataforma .NET faz uso das seguintes estratégias:

e Adota o modelo de aplicagcédo eval/apply utilizando para isto classes pré-
definidas para n argumentos de tipos genéricos.

eFuncdes quando utlizada como valor de alta-ordem sao representadas
utiizando classes especificas. Esta classe deve estender da classe
correspondente ao numero de argumentos, dentre as classes pré-definidas
no ambiente, e sobrescrever o método apply com o cdédigo
correspondente, geralmente uma chamada para a uma funcao estatica.

e Caso a funcao tenha variaveis livres, € criada uma nova classe onde estas
sdo armazenadas e uma instancia desta classe é adicionada a um campo
da classe que representa a closure da funcao.

eFuncbes ndo utlizadas como valor de alta ordem e que ndo possuam
variaveis livres nado geram closures sendo representadas diretamente como
funcdes estaticas.

o Tipos algébricos sao representados utilizando mecanismo de heranca e
casamento de padrbes através da verificacdo de tipos com uso da

instrucao isinst.

43

2.5.4 Ft#eILX

Assim como Nemerle, F# [6] € uma linguagem da familia ML especialmente
desenvolvida para integracdo com a plataforma .NET. Ela pode faciimente
interoperar com qualquer linguagem .NET, bem como suas bibliotecas de classe. Ela
também permite integracdo com Caml[40], possibilitando a importagcdo de
bibliotecas desta para a plataforma.NET. Por ter sido desenvolvida tendo como
foco a integracdo com .NET, F# possui suporte sintatico e semantico para a maioria

das construcdes presentes no mundo .NET.

F# utiliza a ILX como cédigo destino de seu processo de compilacdo a qual é
posteriormente convertida em coédigo IL. Entretanto, diferentemente do descrito por
Don Syme[6] no trabalho que apresenta a ILX e da versado baixada através do site
do produto [41] o cbédigo gerado nao faz uso de ponteiro para referenciar funcées
em sua representacao de closure. O que demonstra que a ILX vem sendo evoluida
em conjunto com o F#. Devido ao uso do ILX como cdédigo final as caracteristicas
aqui descritas, observadas através da utilizacdo do compilador F#, provavelmente

sao providas pela versao atual da ILX e nao diretamente pelo F#:

e Modelo de aplicacao eval/apply, com classes pré-definidas para aplicacdes
otimizadas de até cinco argumentos de tipos genéricos.

¢ Da mesma forma que Nemerle (Secao 2.5.3) funcdes de alta ordem estende
de uma das classes pré-definidas sobrescrevendo o método Invoke com o
codigo correspondente, geraimente com uma chamada para uma funcao
estatica.

¢ Utiliza mecanismos de inline de codigo evitando a criacao de novas closures
e desta forma diminuindo o nimero de classes geradas.

ePermite a execucédo de fungbes provenientes de outra linguagem como
funcdo de alta ordem, através de um mecanismo implementado utilizando
delegates.

e Caso a funcao tenha variaveis livres é criada uma nova classe onde estas
sdo armazenadas e uma instancia desta classe € adicionada a um campo

da classe que representa a closure da funcao.

44

eFuncdes ndo utllizadas como valor de alta ordem e que nao possuam
variaveis livres ndo geram closures sendo representadas diretamente como
funcdes estaticas.

e Tipos algébricos sao representados utilizando mecanismo de heranca e
casamento de padrbes através da verificacdo de tipos com uso da
instrucao isinst.

A geracdo de cddigo verificavel, decorrente do abandono do uso de
ponteiros, e outras caracteristicas aqui apresentada demonstra um
amadurecimento no projeto da ILX. A disponibilizac&o desta nova versao facilitaria
o0 surgimento de novas implementac8es de linguagens funcionais na plataforma
.NET, bem como a interoperabilidade entre estas. O projeto ILX serviu como base
para a prototipagem e testes da implementacéo de generics para a CLR, o que
demonstra a importancia deste dentro do projeto .NET sugerindo que novas
caracteristicas, tais como closures, possam vir a ser integradas em futuras versdes da
CLR.

2.5.5 Haskell .NET

O projeto Haskell .NET[5] faz alteracbes no compilador Glasgow Haskell
Compiler (GHC)[42] criando um novo backend capaz de gerar codigo MSIL. Este
backend tem como entrada uma representacdo intermediaria do programa,
produzido pelo frontend do GHC, na linguagem Spineless Tagless G-Machine
(STG)[28,43]. Utilizar esta representacao facilita o processo de compilacdo, pois
toda a checagem de tipo fica a cargo do fronfend e também se aproveita de

otimizacdes feitas em etapas anteriores a sua producao.

Sua implementacado possui inUmeras peculiaridades que objetivam otimizar o
mapeamento de uma linguagem funcional ndo estrita, como haskell na

plataforma.NET:

e Representa closures utilizando classes pré-definidas para n variaveis livres de
tipo genéricos e delegates para fazer referéncia a funcdo. A funcao
referenciada pelo delegate corresponde ao slow entry point, o qual busca

0s argumentos na pilha de argumentos. Desta forma evita a geracéo de um

45

grande numero de classes, como ocorre quando se utiliza a estratégia de
uma classe por closure.

e De forma a permitir que tipos unboxed sejam passados como argumentos,
sua implementacao para a pilha de argumentos é divida em quatro pilhas
correspondente aos tipos inteiro, double, object e closure. Diferentes valores
sado convertidos para o tipo que mais se aproxima.

ePara representacdo de tipos algébricos existem classes genéricas pré-
definidas no ambiente capazes de representar construtores com até nove
tipos variaveis.

e Utiliza um numero inteiro como fag para identificar construtores e assim
otimizar operacdes de casamento de padrdes através de instrugdes swifch.

e Com objetivo de evitar a criagcdo de varias instancias de valores comuns em
tempo de execucao o proprio ambiente de execucao pré-instancia alguns
valores booleanos e inteiros e os compartilha sempre que necessarios.

O foco deste projeto foi dado a otimizacdo do mapeamento das estruturas

funcionais na plataforma .NET, desta forma, conversdo de tipos e mecanismos que
facilitassem a interoperabilidade com linguagens nao funcionais, presentes no

ambiente, nao foram implementados.

2.6 Consideracoes Finais

Neste capitulo foram descritas algumas das principais construcdes
caracteristicas a linguagens funcionais, que ao mesmo tempo em que
incrementam o poder de expressdo destas dificulta a implementacdo em
ambientes orientados a objetos como o .NET. Possiveis alternativas para o
mapeamento de cada uma destas construcdes apresentadas e discutidas. Por fim,
foram apresentados exemplos de implementacdes, explicitando a abordagem
tomada por cada projeto. A Erro! Fonte de referéncia ndo encontrada. mostra um
resumo das principais caracteristicas encontradas nas implementacdes analisadas

neste capitulo.

Tabela 1 - Comparacao entre implementacdes

WapJo EYE 3P
ogs oeu anb sagduny esed

5I55B[2 SEAOQU ELD OENe

SOIJEW 2P SanEILE

-2puawepddxa
opedaya=dsa

Ajddy oedunyep onuap
epeadew @2 oessaudxa v

o2iy2adsa soluawndie 3p

. 15UIS
eziin sagiped 3p OJUSWESED e

wafensuw e 1zpulnss =anb apssp ‘esodindaid osawnu o esed eplujap-aid S23J01N1ISU0D SO JUl3p eled
sywuad anb oefeweiBoid opdeyene sywpe walod Aidde/jen= ISSE[D ELUN SpUILSD NSO sassejpgns @ oougaBe odn
-ElaW B auodns e ‘BlIISD wiagdendur s3au38 ez » o|2poN e EpPED "2UNsOp Jod 3SSED BWN e WN2uap esed e1ea]Sge 35580« OEdENdWOD - alawap
31UEY NS
JOjEA Op OWolad O 3 sojuawndie so Jessed esed
opssaudxa ep oednaaxa soialgo ap eynd ewn ezijin e
Ep S3ABJIE EpPEIRI] 3 "aunsop ep opssaldxa suIs)
cedaoxa ¥ "zaa edawud walaq] e 2uaas ofipoy © ez sagiped 3p OJUBWESED =
13N swaigwe e2d sepeusinbas oES odil op eduelay inssod anb 43303 opolaw wn $3J01NL1SU0T SO Jull3p esed
Ou spozJy) 2p oedndaxa opuenb sagjanxe wesad Ip sanese aaquafysnd inssod 3sSE[D BpED "IUNSOP sasseppgns 3 oJugIde odi
ered eudosd edsjongige anb saunsold BN OWSIHOWIOG = ojgpoy e Jod 3SSE)D BWIN BuyaQ e wnoaugep eded eleisge asseD e oedepdwio) « 0 UBHPUOy
13N wod oedeadaqul esed esodin8aud oeleleae ey BpEJIUOIUS Bupoysiowun/Bujoysiow
seayoadse sapdeziwilo oBuU 13N° ope| op ‘s8nH sluawepeiedas oEU s8nH Op OpE| OU W3151X3 05 ap sapielado ap (26puig)
was -oyuadw3sIp OXIEge Op OUJSIUI OWSIUEI3N opeiuawz|dw]e OBJELUIOU| e S2UNSO|D "OESIBAUCD BY OEN & S2ABIIE SOPIL@AUCT 0ES sodil e auogd « 13N SEnH
seplianbay
‘2568 opuenb o5 3 zana
‘i sagiezenie enwiSe ewn seuade SEpE|EAE NS0 SUN| SIDABLIEA sapiped ap 01USWESED
SOUE3|00Q OES S3UNSO]Y SELS3 odil op edueiay u eied seplulsp-ud sassep w2 osn eied Bpy owod
E] SoAI31uUl STUO|EA CSYUNLY] Je1Uasaudal p SINEIE Jz1uafysnd Inssod oeduny e Jenualaad SOJISIUl soJawnu 3 saususb 13IN°
ap cuaweyiuedwods eied s3insoD BN oLSIHOWIOd » ojzpoly = Eied sa1nBajap BZIiN « opuezyin sopiuyep-a4d sodile oedepdwon e l1®45eH
soJiawesed
waplio oAUl oEIUNLEp was sodn ezed sapdeziwngo ze4 »
ele oceu sagdiuny eled oJjuap epeadew 2 ogssaudx3 e 15UIS]
SBSSE[? SEACU BUD OENs -oigoadsa souawngie ap EZ|In sagiped ap CJUSWESED +
S2INS0[2 oJawnu o eied epuyap-a.d *SII0INASUOD S0 Nuap eled
senou ap oedeud Jeuna esodingaud ogdeiene fidde/jen= ISSE[D BLUN JpUILSI NSO s3ssejogns 3 o0ougIsle odn
eied sagduny 2p Sujuje was ‘elulse wafendun sauaual eziiin « O]2pOW e EpED "2unsoj2 Jod 3ssepD Bwn e wnauiap esed eleilsge asseD « oedepdwod . yalVEE
oollaWElRg saghung ap
saodeziwnig esodindald ogdeleny cwsidowl|od ogdeady saunse|) soolged|y sedi) e1daedisy o3afoayg

a7

3 PHOENIX FRAMEWORK

Phoenix[44] é um framework completo para construcado de compiladores e de
uma grande quantidade de ferramentas para andlise, otimizacado e testes de
programas. Sua estrutura é bastante flexivel e esta centrada na representacao
intermediaria (IR) e na existéncia de diversos readers e writers que sao capazes de
ler e gerar cédigo em diversos formatos. A funcdo de um reader é ler de um
formato especifico (PE, MSIL, CIL1%) e gerar uma representacao intermediaria a ser
manipulada com o Phoenix. De forma contraria, um writer € o responsavel por gerar

um arquivo especifico (PE, MSIL, COFF, etc.) a partir da representacao intermediaria.

Os compiladores atuais funcionam como caixas pretas, onde todo o processo
interno é escondido do usuéario e alteracdes em seu funcionamento nao sao
permitidas. Tudo que o usuario pode fazer é fornecer o cdédigo fonte como entrada,
passar algumas diretivas de compilacdo e aguardar a compilacdo do programa.
Phoenix objetiva abrir esta caixa. Um compilador escrito utiizando Phoenix é
formado por uma lista de fases, sendo cada fase responsavel por uma etapa do
processo de compilacéo. Através de um mecanismo, denominado plugins, Phoenix
permite que seja alterado o comportamento do compilador acrescentando,
retirando ou alterando fases. A existéncia de uma representacdo intermediaria
prépria, bem como uma rica APl para manipulacao desta, facilitam a alteracdo do

compilador e a construcao de ferramentas de analise e otimizacao.

A Figura 2 da uma visdo geral da plataforma Phoenix, apresentando seus
principais componentes: readers, writers, Intermediate Representation (IR), Phases,
API e ferramentas (andlise, instrumentacao e otimizacédo). Nela, podemos observar

que o processo de manipulacdo da IR é feito durante as fases, utilizando

ferramentas construidas com a APl do framework.

14 Portable Execntable |39]. Padrio para arquivos executaveis do Windows.

15 C/C++ Intermediate Langnage.

48

| Input 1 _— CIL Reader I

Input 2 —» MSIL Reader |

| Input 3 — PE Reader I

l‘ Phases Phoenix DB

Phoenix IR ' . :

COFF Writer |—»— OBJ |

L Linker f—» EXE/DLL]
Analysis Tools Instrumentation Toals Optimization Tools

Figura 2. Visdo geral da plataforma Phoenix. Adaptada da documentacéo do Phoenix[45].

Desta forma, Phoenix fornece um rico ambiente capaz de atender as
necessidades tanto de pesquisadores como desenvolvedores. Aos pesquisadores é
fornecida uma sdlida infra-estrutura que suporta um modular reuso de coédigo e o
facil redirecionamento para diferentes arquiteturas e linguagens. Assim,
pesquisadores podem desenvolver novas ferramentas e elementos de compiladores
sem o custo usual de ter de desenvolver uma nova infra-estrutura. Ja
desenvolvedores podem faciimente criar ferramentas para analise e otimizacao de
seus programas, bem como, alterar o comportamento de programas ja compilados

sem ter que alterar diretamente o codigo.

3.1 Representacao Intermediaria (IR)

Phoenix utiliza uma representacao intermediaria fortemente tipada e linear
para representar o fluxo de instrugdes de uma funcéo. E sobre esta representacao
que ¢é feita a manipulacdo de um programa utilizando a biblioteca de classes
Phoenix. Para um programa ser reescrito utilizando o Phoenix, primeiramente, este

deve ser convertido para a IR por um reader (readers para cédigo nativo, MSIL e

49

AST16 ja sao fornecidos pelo Phoenix, e outros podem ser escritos para formatos nao
suportados). Ap6s a conversao a IR pode ser manipulada por uma ferramenta
Phoenix e ao final do processo convertida novamente em um programa utilizando o
writer especifico. Desta forma, entender como é estruturada a IR € essencial para a

construcao de ferramentas e compiladores utilizando Phoenix.

A IR permite que uma funcdo seja representada em diversos niveis de
abstracado, podendo representar uma funcdo desde uma forma independente de
maquina, alto nivel, até uma forma dependente da maquina alvo, baixo nivel,
onde peculiaridades especificas como manipulacao de registradores e pilha sao
descritas. Existem quatro niveis de representacdo providos por Phoenix, em ordem
crescente de dependéncia: high-level IR (HIR), mid-level IR (MIR), low-level IR (LIR) e
encoded IR (EIR).

A IR pode ser dividida em conjunto de conceitos basicos, cada um sendo

representado por uma classe na API do Phoenix:

e Instrucdes e Operandos: representam respectivamente operacgdes e recursos
descritos através da IR.

eTipos e Simbolos: conceitos basicos para definir o armazenamento e a
referéncia dos dados manipulados.

eUnidades: s&o como containeres para 0 armazenamento dos demais
elementos da IR.

¢ Classes Auxiliares (Safety, Debug, Alias e Constant): auxiliam na construcao e
manipulacédo da IR e na analise do cédigo gerado.

As trés primeiras categorias sdo essenciais para entender como construir um

compilador utilizando o Phoenix e por isto ser&do detalhadas a seguir.

3.1.1 Instrucoes

Phoenix armazena a IR de uma funcdo como uma lista de instrucdes
duplamente ligadas, onde cada né € uma instrucao constituida de um operador

(representado por um opcode) e duas listas de operandos: uma contendo 0s

16_Abstract Syntax Tree.

50

operandos de origem e a outra com 0s de destino, como mostrado na Figura 3. Esta
representacdo mostra de forma explicita todos os efeitos colaterais possiveis de
uma instrucao, uma vez que, todos os recursos lidos aparecem na lista de origem e
todos 0s recursos potencialmente alterados estao especificados na lista de destino,

favorecendo a analise destas instrucdes.

aADD
Destination list / lT \ Source list
132 132 . 132 . 132
x X [P] P

Figura 3. HIR da instrugcéo x = add x, *p. Adaptada da documentacdo do Phoenix[45].

As instrucdes sao classificadas em pseudo-instrucdes (label, pragma e data) e
instrucdes reais (value, call, compare, etc.). Pseudo-instrucdes representam
elementos tais como labels para fluxo de controle, pragma diretivas e alocacéao
estatica de dados. Embora pseudo instrucdes ndo sejam mapeadas para codigo
de maquina elas sdo Uteis para executar analise de cddigo, passando diretivas

para as unidades de compilacéo e identificando secdes de dados.

e Labellnstruction: cria labels definidos pelo usuario e pontos de ligagado
para o fluxo de controle. Pode ser usado para determinar locais do
codigo Uteis para a criacao de ferramentas de analise.

e Pragmalnstrucion: representam diretivas e dados fornecidos pelo
usuario. Pode ser usado para suprir informacdes do usuario para uma
ferramenta ou compilador criado.

e Datalnstruction: cria dados estaticamente alocados. Pode representar
qualquer coisa que pode ser codificado em formato binario, tal como

dados do programa ou instrucdes.

Instrucdes reais sdo as que modificam dados ou o fluxo de controle de um
programa. Estas instrucdes sdo mapeadas diretamente para uma ou mais instrucoes

de maquinas. Sao elas:

e Valuelnstruction: operacao aritmética ou légica que produz um valor.

51

e Callinstruction: procedimento de invocacéao, direto ou indiretamente de
uma funcéao.

e Comparelnstruction: instrucdo de comparacdo de dois operandos.
Baseado neste resultado podem ser gerados coédigos condicionais.

e Branchlinstruction e Switchinstruction: instruc6es de controle de fluxo
para desvios condicionais, incondicionais e de multiplas alternativas.

e OQutlinelnstruction: instrucdo para retirada do fluxo principal de
instrucdes, tal como um bloco de assembly inline.

Embora o tipo de instrugcao restrinja os possiveis tipos de operacdo, o que
realmente determina a operacgao a ser executada € o opcode. Por exemplo: para
fazermos o calculo de uma expressao utilizamos uma Valuelnstruction, mas é
através do opcode que determinamos se sera realizada uma soma (add),
subtracado (sub) ou outra operacao qualquer para a qual exista um opcode

correspondente.

Para cada operacdo mapeada pelo Phoenix existe um opcode
correspondente e este deve ser utiizado com a respectiva instrucdo. Na

documentacdo do Phoenix[45] & fornecida uma lista com todos os opcodes

existentes na IR.

3.1.2 Operandos

Operandos aparecem tanto na lista de origem quanto na de destino de uma
instrucdo sendo que cada operando é associado a uma unica instrucdo. Uma vez
que, todos os efeitos das instrucdes sdo representados explicitamente, operandos
refletem todos os potenciais recursos usados. O que inclui registros, alocacdes de
memoria e codigos condicionais. Cada operando possui um tipo abstrato
associado a ele, este tipo abstrato €, posteriormente, mapeado para um tipo de
maquina quando a instrugcdo que o contém for transformada em uma instrugcao LIR
ou EIR.

Existem diferentes tipos de operandos, cada um responsavel por representar
um determinado recurso. Por exemplo, para representar uma variavel, seja ela
temporaria ou nao, é utilizado um operador do tipo VariableOperand. Da mesma

forma, existem operandos especificos para representar recursos armazenados na

52

memaria (MemoryOperand), constantes (ImmediateOperand), labels
(LabelOperand) e simbolos para fun¢des (FunctionOperand). Tendo como exemplo
a instrucao descrita na Figura 3 “x” é referenciada utilizando um VariableOperand e

“*p” através um MemoryOperand.

3.1.3 Tipos

Phoenix possui um sistema de tipos bastante abrangente capaz de suportar
todos os tipos descritos no Common Language Runtime (CLR)[3], incluindo tipos
genéricos, bem como heranca simples e mdltipla (C++). Por ser a IR fortemente

tipada para cada simbolo ou operando criado seu tipo deve ser especificado.

O sistema de tipos do Phoenix disponibiliza nao sé diferentes tipos como
também a possibilidade de criar novos tipos e definir regras para a checagem
destes tipos. Desta forma, um compilador ou ferramenta pode criar um conjunto de
tipos e prové regras customizadas para sua checagem. E possivel expressar tanto
tipos de alto nivel como tipos a nivel de maquina, sendo permitida a checagem de

tipos nos diversos niveis da representacao intermediaria (HIR, MIR e LIR).

A classe abstrata Phx.Types.Type € a classe base para todos o0s tipos
suportadas por Phoenix, compartihando propriedades e métodos utilizados por
estes. Um sistema de tipos Phoenix é representado por um conjunto de tipos
armazenados em um objeto Phx.Types.Table e um conjunto de regras prescritas por
um objeto Phx.Types.Check. Assim, ao criarmos um compilador ou ferramenta deve
ser criada uma uUnica tabela de tipos, a qual deve ser compartilhada por toda a
ferramenta. Vale observar que esta tabela é particular para uma arquitetura alvo
uma vez que cada arquitetura possui sua propria representacao de tipos. Certos
tipos, tais como tipos primitivos, séo disponibilizados como propriedades da tabela,

sendo criados automaticamente quando Phoenix gera a instancia da tabela.

Dentro do sistema de tipos Phoenix ha uma classificacao dos tipos,
independentemente de estes serem padrao ou definidos pelo usuario devem se
encaixar em uma das classes de tipos pré-existentes. Tais classes de tipos possuem
atributos e métodos caracteristicos de um determinado conjunto de tipos,

facilitando a construcdo e a checagem de tipos. Desta forma Phoenix define

53

classes especificas para representar tipos primitivos, ponteiros, arrays, tipos variaveis,

campos, tipos agregados e funcoes.

O tipo funcao é peculiar, pois diferentemente do que possa parecer ele ndo é
utiizado para representar um tipo funcdo como o existente em linguagens
funcionais. Ele é utilizado para descrever um protétipo de uma funcao definindo sua
assinatura, ou seja, os tipos de seus argumentos e de seu valor de retorno. Este tipo é
essencial para a construcdo de uma funcdo na IR. A tabela de tipos possui um
método GetFunctionType, o qual facilita a criacdo de tipos funcdo que possuam
até quatro parametros. Para funcdes mais completas deve se utilizar a classe
FunctionTypeBuilder. O Cédigo 12 demonstra como criar um tipo para uma funcéo

gue recebe um argumento do tipo inteiro e nao retorna nenhum valor.

// Criando o tipo utilizando o método GetFunctionType
typeTable.GetFunctionType(CallingConventionKind.ClrCall,
typeTable._VoidType, typeTable.Int32Type, null, null, null);

// Criando o tipo utilizando FunctionTypeBuilder
FunctionTypeBuilder builder = FunctionTypeBuilder._.New();
builder._.Begin();

builder.CallingConventionKind = CallingConventionKind.ClrCall;
builder._AppendArgumentType(typeTable. Int32Type);
builder.AppendReturnType(typeTable.VoidType);

// Retorna o typo funcado criado

builder.GetFunctionType();

CoOoO~NOUODWNE

e
N RO

Cddigo 12. Criagao do tipo funcédo

Tipos que possuem membros tais como classe, interfaces e estruturas s&o
representados através da classe AggregateType. Para representar os diferentes
tipos agregados sao utilizados meta-propriedades que especificam as diferencas
funcionais entre tipos diferentes. Ou seja, a combinagcdo de meta-propriedades é
gue descrevem qual tipo esta sendo modelado diferenciando, por exemplo, uma
interface de uma classe ou mesmo a representacdo de uma classe em linguagens
diferentes como C++ e as linguagens .NET. O Cdédigo 13 demonstra como criar um

tipo agregado que representa uma classe MSIL.

Phx_Name classTypeName = Phx._Name.New(lifetime, strClassTypeName);
Phx.Symbols._MsilTypeSymbol classTypeSym =
Phx._Symbols_MsilTypeSymbol .New(peModuleUnit.SymbolTable,
classTypeName, 0);

AggregateType classType =
AggregateType._NewDynamicSize(typeTable, classTypeSym);

©CoO~NOUODWNE

// Configurando metapropriedades
10 classType.lIsPrimary = true;

11 classType.IsSelfDescribing = true;
12

54

13 // Adicdo de métodos e campos.
14 classType.AddMethod(methodSymbol);
15 classType.AddField(fieldSymbol);

Cddigo 13. Criando uma classe MSIL

A um tipo agregado podem ser adicionados campos e métodos. Campos
sdo criados através da classe FieldType e possuem propriedades especificas como

tamanho e deslocamento (offset).

Para representar tipos variaveis, Phoenix disponibiliza a classe VariableType, a
qual foi criada especificamente para representar tipos genéricos MSIL. Tipos
variaveis sao sempre associados a funcdes ou classes as quais definem o escopo
dentro do qual ele pode ser acessado, sendo este escopo O tipo genérico ou

método genérico que introduz o tipo variavel.

3.1.4 Unidades

Unidades representam containeres l6gicos para o armazenamento da IR. Além
de outras unidades, estas unidades armazenam fluxos de instrucdes, tabelas de

simbolos e variaveis inicializadas.

¢ GlobalUnit - Unidade de compilagcdo mais externa, contém uma lista de
objetos ProgramuUnits. Criada quando inicializamos a infra-estrutura Phoenix,
armazena, entre outras coisas, as tabelas de simbolos e de tipos globais.

e ProgramuUnit - Unidade de compilacdo correspondente a uma imagem
executavel, podendo ser um arquivo EXE ou DLL. Contém uma lista de
AssemblyUnits e uma lista de ModuleUnits. A razdo para conter duas listas é
que arquivos Win32 nado sao formados por assembly e desta forma um
objeto ProgramUnit pode conter diretamente moédulos que nao estejam
dentro de assembilies.

¢ AssemblyUnit - unidade de compilacado de um assembly do Framework .NET.
Contém uma lista de objetos ModuleUnits. Menor unidade de re-uso,
segurancga e versionamento.

e ModuleUnit - colecao de funcdes (FunctionUnits), que normalmente

representam um programa ou um arquivo fonte. Pode conter DataUnits.

55

e PEModuleUnit - tipo especial de ModuleUnit que representa um arquivo PE,
pode ser um arquivo executavel Windows (EXE) ou uma biblioteca de link
din&mico (DLL).

¢ FunctionUnit - representa uma funcao e com seu fluxo de instrucdes. Unidade
alvo da maioria das transformacdes proporcionadas pela lista de fases.

eDataUnit — colecdo de dados relacionados tal como um conjunto de
variaveis inicializadas ou o resultado da codificacao de FunctionUnit. Prové
dados necessarios para processar uma unidade.

Estas unidades podem ser aninhadas formando uma estrutura hierarquica,

onde o a unidade mais externa é a GlobalUnit (Figura 4).

GlobalUnit
[]
ProgramUnit ProgramUnit
AssemblylUnit AssemblyUnit AssemblylUnit
I) J [| [:

ModuleUnit ModuleUnit ModulelUnit ModulelUnit ModuleUnit ModuleUnit
[. L | z - - g A B) |]

FuncUnit FuncUnit FuncUnit FuncUnit FuncUnit FuncUnit
[I]]) | |]

FuncUnit FuncUnit FuncUnit FuncUnit Datalnit FuncUnit
[i | | i | [| |]

FuncUnit Catalnit FuncUnit Catalnit FuncUnit

') I I } . ——
FuncUnit DatalUnit Datallnit
I ——— 1 ————]
Datalnit

— 1

Figura 4. Hierarquia de unidades. Adaptada da documentacdo do Phoenix[45].

3.1.5 Simbolos

Simbolos Phoenix sdo associados a entidades tais como variaveis, labels, tipos,
nomes de funcdes, enderecos, entidades de metadados e moédulos, fornecendo
um nome para cada instancia destes elementos. E o mecanismo através do qual
tais entidades sao referenciadas na IR. Estes simbolos s&o mantidos em tabelas que

por sua vez sao armazenados em unidades (Secao 3.1.4), devendo haver apenas

56

uma tabela de simbolos por unidade. Desta forma, a unido de unidades e tabela

de simbolos proporciona um controle sobre o escopo de um simbolo.

Para cada entidade a ser referenciada ha um tipo correspondente e estes

podem ser agrupados em:

e Simbolos basicos - simbolos que referenciam variaveis (locais e globais),

funcdes, constantes, tipos, campos, labels, etc.

e Simbolos que representam aspectos de mddulos no formato PE — mdédulos e

variaveis importadas ou exportadas.

eSimbolos para elementos de metadados da CLR - assemblies, recursos,

atributos, permissdes, etc.

Uma tabela de simbolos ndo possui, por si s6, nenhum mecanismo de busca.
Para realizar uma busca numa tabela devemos associar a ela um mapeamento
através de um objeto Symbol.Map, que permitira fazer a busca na tabela utilizando
como chave uma das propriedades do simbolo. Toda tabela possui pelo menos um
mapeamento do tipo IdMap, o qual permite a busca na tabela através da
propriedade Localld, que € uUnica para cada simbolo contido na tabela.
ExternldMap e NameMap sdo outros exemplos de mapeamento permitidos por
Phoenix, sendo o ultimo bastante util pois permite a busca pelo nome do simbolo. A
criacao de uma tabela de simbolos e um mapeamento por nome pode ser

observado no Cdodigo 14.

// Cria uma nova tabela de simbolos e associa a uma unidade
Phx_Symbols.Table funcSymTable =
Phx.Symbols.Table._New(functionUnit, TABLESIZE, false);

// Cria um mapeamento por nome e o adiciona a tabela de simbolos
functionSymbolTable.AddMap(NameMap .New(funSymTable, TABLESIZE));

OO~ WNPE

Cdbdigo 14. Criagao de tabela de simbolos e adicdo de um mapeamento por nome

E importante ressaltar que o tamanho tanto da tabela de simbolos como do
mapeamento sao fixadas no momento de sua criacédo, devendo estes ser grandes
o suficiente para armazenar todos os simbolos que a ferramenta venha a necessitar
ou deve ser feito um esquema que proporcione a expansao de seus tamanhos
através da criacdo de uma nova tabela e novo mapeamento, de maior
capacidade, e a copia dos simbolos. O tamanho do mapeamento deve ser igual
ou superior ao da tabela, para que este possa mapear corretamente todos 0s

elementos desta.

57

3.1.5.1 Proxy

Proxy € um simbolo especial que permite que um mesmo simbolo apareca em
mais de uma tabela de simbolo. Por exemplo, uma variavel estatica que é definida
dentro de uma funcédo usa um proxy para indicar que é tanto, logicamente, um

membro do escopo da funcdo como, fisicamente, uma variavel global.

Um exemplo de quando se deve utilizar um proxy € quando uma instrucao em
uma FunctionUnit faz referéncia a uma variavel global. Sabendo-se, que o0s
operandos de uma instrucao s6 podem referenciar simbolos na tabela de simbolos
da unidade da funcao, para acessar uma variavel global sera necessario criar um

proxy para esta variavel na tabela de simbolos da funcao.

3.2 Fases e Plugins

Fases e plugins sao estruturas que trabalham em conjunto, permitindo alterar o
comportamento de ferramentas e compiladores, construidos com o Phoenix, sem

gue seja necessario alterar o cédigo fonte destes.

Phoenix utiliza o conceito de fases para o processo de transformacao de sua
representacao intermediaria. Desta forma, um programa Phoenix é constituido por
uma lista de fases, onde cada fase é responsavel por uma caracteristica especifica
do processo de compilacao: transformacao da IR, geracdo de coédigo, otimizacao,
alocacao de registradores, etc. Uma fase atua sobre uma unidade, geralmente
uma FunctionUnit, a qual representa uma funcao armazenando todos os simbolos e

fluxo de instrucdes que compdem esta.

Plugins sao moddulos externos criados utilizando coédigo gerenciado e
armazenado em arquivos dll, os quais podem ser adicionados a programas
construidos utilizando o Phoenix. Através deste mecanismo € possivel modificar a
lista de fases que compde um programa Phoenix substituindo, alterando ou
inserindo fases. Esta funcionalidade permite a modificacao destes programas apos

sua compilacao sem alterar seu codigo fonte.

58

A Figura 5 demonstra a utilizagcao do plugin MyPlugin.dll que atua modificando
o comportamento do compilador ¢/ (compilador para cédigo C/C++ construido
utiizando o Phoenix). O compilador c/ € dividido em dois médulos, o frontend
(Cl.exe) e o0 backend (C2.exe). O C2 é responsavel pela geracao de cdodigo final e
foi construido utilizando o framework Phoenix. O plugin altera a lista de fases que
compdem o backend c2, modificando assim seu funcionamento, o que pode ser

refletido no programa gerado pelo compilador (App.exe).

- '.
| App.cpp | C2.exe

m*im,e:& -y @ .:)\H wlp APp.exe

MyPlugin.dll
o

Figura 5. Funcionamento de um plugin Phoenix. Adaptada da documentacéo do Phoenix[45].

Com o uso de plugins fica facil adicionar novas funcionalidades a um
compilador. Para isto, basta identificar qual fase do processo de compilacdo
proporciona representacao e informacfdes adequadas e através de um plugin
inserir uma nova fase que execute a funcionalidade. O SDK!” do Phoenix vem com
um compilador C/C++ e um leitor de arquivos PE (PEReader), utilizando plugins &
possivel alterar o comportamento destes programas de forma a modificar o

processo de compilacao de cédigos C/C++ ou obter informacdes de arquivos PE.

A construcdo de um plugin é bem simples, consistindo basicamente por duas
etapas: construcdo de uma fase responsavel por realizar a funcionalidade desejada
e definicdo de uma posicao na lista de fases onde esta ser& inserida. Para construir
uma nova fase basta estender da classe Phase, criar um método construtor e

sobrescrever o método Execute com o coédigo correspondente ao trabalho a ser

17 Software Development Kit.

59

realizado. O Cddigo 15 demonstra a criacdo de uma fase (MyPhase), a qual
descarrega o fluxo de instrucbes de uma funcéo, fornecendo informactes como

opcode e operandos que compodem estas instrugdes.

1 public class MyPhase : Phx.Phases.Phase

2

3 public static MyPhase New(Phx.Phases.PhaseConfiguration config)
4 {

5 MyPhase phase = new MyPhase();

6 phase. Initialize(config, "Minha fase. Dump de instrucdes'™);
7 return phase;

8 }

9

10 protected override void Execute(Unit unit)

11

12 if (unit.IsFunctionUnit)

13 {

14 FunctionUnit funcUnit = unit._AsFunctionUnit;

15 foreach (Instruction instr in funcUnit.Instructions)
16 {

17 instr.Dump(Q);

18 }

19 }

20

21 }

Cddigo 15. Construindo uma fase

Apdés a construcdo da fase, o plugin pode ser criado estendendo a classe
Plugin e sobrescrevendo os métodos RegisterObjects e BuildPhases, sendo este
ultimo o responsavel por definir onde a nova fase sera inserida. No Cdédigo 16 é
exemplificada a construcao de um plugin, o qual insere a fase MyPhase na lista de
fases de um programa Phoenix apés a fase de criagdo da IR. A implementacao do
método RegisterObjects € opcional, servindo para registrar controles que modificam
o comportamento do plugin. E ainda necessario sobrescrever a propriedade

NameString a qual deve retornar o nome do plugin criado.

1 public class MyPlugln : Phx.Plugln

2

3 public override void RegisterObjects() { }
4 public override void BuildPhases(

5 Phx.Phases.PhaseConfiguration config)
6 {

7 Phx.Phases.Phase encodingPhase;

8 Phx._.Phases.Phase myPhase;

9 encodingPhase = config.PhaseList.FindByName(*'RaiselR");
10 myPhase = MyPhase.New(config);

11 encodingPhase. InsertAfter(myPhase);

12

13 public override string NameString

14 {

15 get {return "MyPlugin'; }

16

17 }

Cadigo 16. Construindo um Plugin

60

Utilizando o pereader, programa para leitura de arquivos PE fornecido junto
com o SDK do Phoenix, & possivel testar o funcionamento do plugin criado. Basta
para isto executar o seguinte comando, descrito abaixo, substituindo <arquivoPE>
por qualguer programa ou biblioteca .NET sobre o qual se deseja executar o plugin.
Com isto é feita uma alteracado na lista de fases do programa pereader, passando

este a executar a fase MyPhase, logo apés a fase RaiselR.
pereader —plugin:myplugin.dll <arquivoPE>

A Figura 6 mostra o resultado obtido aplicando o plugin, com auxilio do

pereader, sobre o classico programa HelloWorld.

@ Phoenix SDK Command Prompt - Debug |ﬂlﬁj

n“bhin“Debug>pereader —plugin:testeplugin.dl]l HelloWorld.exe
cLi: (references=@2

{*5taticTag?, {*MotAliasedTag} = START Main<T>
Main: (references=1>

args = ENTERFUNCTION

nop
tuZeB- = ldstr &Constant—"Hello World?'=, SLS{EH>
>

call* BWriteLine, tu268-, SL5(EH
! nop
ret Maind{T)>

Main: {(references=1> Offset: 14{BxB@8e>

EXITFUNCTION
PRSLS: (references=2)
UNWIND
EQ5L2: (references=8) Offset: 14(Bx008e)
END {=StaticTag>

Figura 6. Dump HelloWorld

3.3 Gerando Codigo

O framework Phoenix é estruturado de forma a permitir a facil geracao de
codigo para diversas arquiteturas (x86, x64 e CLR) por padrao e, também, facilitar a
geracao para novas arquiteturas através da Grand Unified Retargeting Language
(GURL). A GURL é uma linguagem declarativa para descricao de instrucdes de
magquinas utilizada, atualmente, apenas pela equipe de desenvolvimento interno
do Phoenix. Entretanto, segundo Andy Ayers, gerente do projeto Phoenix, futuras

versdes do SDK devem incorporéa-la.

O processo de geracao de codigo € composto por diversas fases, com uma
pequena variacao para diferentes arquiteturas. Estas fases sdo responsaveis por

transformar a representacdo intermediaria de alto nivel, adicionando

61

gradativamente informacdes da arquitetura alvo, até que seja gerada a
representacédo codificada (EIR). A EIR pode entdo ser escrita em um arquivo
utiizando o writer (PE ou COFF!8) correspondente ao formato de arquivo a ser

gerado.

3.3.1 Gerando codigo MSIL

Diferentemente da IR onde as instrucdes recebem diretamente os operandos
sobre os quais a operacdo deve ser executada, as instrucoes MSIL operam
utiizando uma pilha de execucgéo. Phoenix faz esta conversao automaticamente

durante o processo de transformacao da HIR para EIR.

A fase StackAllocation é a responsavel por fazer esta transformacao nos
operandos de forma que eles referenciem posicoes na pilha MSIL. Neste processo
sao utilizados pseudo-registradores que representam locais especificos na pilha. Por
exemplo, o Cdédigo 17 demonstra como seria a representacdo de uma subtracao
em alto nivel em baixo nivel para uma maquina .NET. Na representacao HIR SRO e
SR1 sédo pseudo-registradores onde a numeracao representa a posicdo na pilha,

sendo zero seu topo.

// Representacdo HIR
A.132 = Subtract B.i132, C.i132

// Representacgd LIR MSIL

T1.i132(SR0O) ldsfld B.i132

T2.132(SR0) Idsfld C.i32

T3.132(SRO) = sub T1.i32(SR1), T2.i32(SR0)
A.132 = stsfld T3.i32(SR0)

O~NOOAADWNE

Cddigo 17. Transformacéo HIR para LIR em maquina .NET

Além desta transformacéo a fase StackAllocation é responsavel por:

e Calcular o tamanho maximo da pilha, informacao esta necessaria para a
construcado do cabecalho de um método em cédigo MSIL.

e Alocar espaco para variaveis locais e temporarias

e Gerar metadados com informacoes relacionadas as variaveis.

A geracao automatica de cdédigo MSIL pelo Phoenix permite que todas as

otimizacles feitas na IR sejam repassadas de forma consistente ao cdédigo final.

18 Common Object File Format.

62

Desta forma, técnicas de otimizacdo e ferramentas de andlise podem ser criadas

sem se preocupar em que arquitetura serao utilizadas.

3.4 Analise e Otimizacao

Phoenix fornece diversas bibliotecas que faciltam a criacdo de ferramentas
de andlise e otimizacao de programas. Estas bibliotecas tanto podem ser utilizadas
dentro de fases do processo de compilagdo como na construcdo de novas

ferramentas focadas na andlise e otimizacao.

e DataFlow — implementa técnicas de analise de fluxo de dados que operam
sobre a IR, tais como: liveness e reaching definitions.

e Graphs - fornece uma infra-estrutura para a construcdo de grafos que
podem ser utilizados para representar fluxos de controle ou dados. Os grafos
sao direcionados (cada aresta possui um né de origem e um de destino) e
cada né pode ser ligado a outro por mais de uma aresta.

e Static Single Assignment (SSA) — possui um conjunto de classes que facilitam a
criacao de representac6es SSA de um programa, bem como a andlise e
otimizacao baseada nestas representacdes. Dependéncias sdo modeladas
utiizando um grafo SSA, onde as dependéncias sao representadas como
arestas entre operandos da IR.

¢ Alias — utilizado para rastrear o uso de meméaria feito pelas variaveis de um
programa e modificacdes ocorridas nestas areas decorrentes da execucao
das instrucbes de um programa.

O manual do Phoenix[45] fornece diversos exemplos praticos de como utilizar

estas bibliotecas.

3.5 Considerac¢oes Finais

Os conceitos aqui apresentados dao uma visdo geral de como construir um
compilador utilizando o Phoenix e sua representacado intermediaria. Para tanto,

inicialmente, é definida a hierarquia de mdodulos, a comecar pela GlobalUnit a qual

63

contera a tabela de simbolos globais e a tabela contendo os tipos a serem utilizado
pelo compilador. Cria-se uma ModuleUnit, ou uma PEModuleUnit, caso se deseje
gerar um arquivo PE, na qual serdo adicionadas as FunctionUnits que representarao
as funcdes presentes no programa a ser compilado. As variaveis criadas, utilizando
simbolos e tipos correspondentes, deverdo ser armazenadas no devido escopo,
definido através da unido entre tabela de simbolos e hierarquia de unidades. As
instrucdes que compdem o programa poderdo entdo fazer uso destas variaveis
através dos operandos. Para finalizar, estas unidades serdo submetidas a uma lista
de fases responsaveis por tornarem a representacao intermediaria mais proxima da

maquina alvo e por fim gerar o cédigo.

Por fim, plugins e um conjunto de bibliotecas de analise de cédigo como
DataFlow, Graph, SSA e Alias fornecem uma rica infra-estrutura para andlise e

otimizacao do cdédigo gerado.

64

4 PROJETO E IMPLEMENTACAO

O compilador aqui proposto busca, com auxiio da ferramenta Microsoft
Phoenix, criar uma implementacdo de um compilador de uma linguagem funcional
para a plataforma .NET que facilte o estudo e o desenvolvimento de novas
técnicas de mapeamento de linguagens funcionais nesta plataforma. Neste
capitulo serao descritos detalhes da implementacao do compilador, bem como

problemas e decisGes de projetos.

4.1 Objetivos

Este projeto visa, com auxilio da ferramenta Microsoft Phoenix, criar uma
implementacdo de um compilador de uma linguagem funcional .NET, que facilite o
estudo e o desenvolvimento de técnicas de mapeamento de linguagens funcionais
nesta plataforma. Com esta implementacdo objetiva-se, além de demonstrar a
viabilidade de tal abordagem, desenvolver uma representacdo de um ambiente
gue contemple estruturas capazes de mapear caracteristicas comuns a diversas
linguagens funcionais na plataforma .NET. Com base nestes objetivos, ficam claros

0s seguintes requisitos:

e Gerar codigo MSIL a partir de uma linguagem representativa que contemple
caracteristicas mais relevantes de uma linguagem funcional.

e Compilar um preludio béasico contendo fungdes necessarias para execugao
dos aplicativos selecionados para fazer a avaliagcdo de desempenho.

e Facilitar a analise e otimizagao das estruturas responsaveis pelo mapeamento

das caracteristicas funcionais na plataforma .NET.

4.2 Arquitetura

O foco da implementacao aqui proposta € dado a geracao de cdédigo,

analise e otimizacao (backend), desta forma preocupacdes quanto a analise |éxica

65

e semantica do coédigo sao delegadas ao frontend a ser utilizado. O compilador
desenvolvido tem como base a maquina abstrata Spineless Tagless G-Machine
(STG)[28], a qual foi projetada para dar suporte a linguagens funcionais de alta
ordem n&o estritas. Sua escolha se deve ao fato de fornecer estruturas seméanticas
simples capazes de representar as mais diversas construcdes caracteristicas de uma
linguagem funcional e por esta representacao ja ter sido amplamente testada e

utiizada como formato intermediario em compiladores reais.

Como frontend sera utilizada o Glasgow Haskell Compiler (GHC)[42], o qual é
capaz de gerar, dentre outros formatos, coédigo STG e CORE?. Embora
internamente o GHC possua uma representagdo STG que contém informacdes
sobre o uso e definicdo de tipos, o coédigo gerado ndo as possui. Como tais
informacdes sado essenciais para uma implementacao baseada em um ambiente
fortemente tipado como .NET, o uso do cédigo STG gerado foi descartado. Utilizar a
representacdo STG interna, como feito em Haskell .NET, requer o uso de coédigo
Haskell o que dificultaria a abordagem proposta nesse trabalho que é utilizar
framework Phoenix, uma biblioteca .NET, na construcdo do compilador. A
alternativa encontrada foi o uso do arquivo CORE gerado, o qual mantém as
informacdes de tipos necessarias. O uso da linguagem CORE seja como backend
para novos compiladores [27,46] ou como alvo de transformacbes e
otimizacbes[47,48] € bastante comum e tem seu uso sugerido pela equipe de

desenvolvimento do GHC.

O uso do GHC como fronfend ndo s6 garante que o codigo esta correto
como também permite a aplicacdo de uma série de otimizacfes, tais como
inlining[49,48] e strictness analysis[50]. O processo de compilacao do GHC (Figura 7)

descrito por Peyton Jones et al. [51] pode ser resumido nos seguintes passos:.

1. E feito o parser do codigo Haskell, gerando uma arvore sintatica abstrata a
qgual em seguida tem seus tipos checados.

2. A arvore sintatica é entao simplificada (desugaring), gerando uma

representacao em linguagem CORE.

19 CORE ¢ uma pequena linguagem funcional produzida pelo compilador GHC que tem com intuito servir
como linguagem alvo para novos backends e ferramentas de otimizagdo que desejam utilizar o GHC como frontend. A
defini¢do da gramatica e informagoes mais detalhadas sobre sua sintaxe é dada por Andrew Tolmach[52].

6.

66

OtimizagBes opcionais, quando solicitadas através de linha de comando
sao feitas sobre a representagcao CORE.
A representacdo CORE é convertida para linguagem Shared Term Graph

(STG).

z

. A representacdo STG € convertida em uma representacdo interna

denominada Abstract C, a qual pode gerar cédigo C (quando solicitado

codigo otimizado), ou cédigo assembly.

Cddigo nativo é entao gerado utilizando um compilador C ou o Assembler.

O compilador aqui proposto, em destaque na Figura 7, ndo altera diretamente

0 GHC, ao invés disto utiliza como arquivo de entrada a representacao CORE

produzida utilizando a diretiva de compilagao -fext-core.

GHC Nativo

OtimizacBes
| Arquivor
| Core :
1
¥ | smtaxeste | g
—] MR Fooo--- |
' 1 ——
Geradorderl | pustacompier ||
Codigo Assemnbly - ‘ d |
1 Codigo © o Codigo MSIL e
= (Texto)
— E v
- I" ILDASM '——>| Assembly MSIL |

| cédigo Native

| *i

| cadigoNative |

Figura 7. Insercdo do PhxSTGCompiler

67

4.2.1 STG

A maquina STG fornece um conjunto de estruturas que, facilitam a

representacdo de uma linguagem funcional de alto nivel e que ao mesmo tempo

sao facilimente mapeadas para cédigo nativo ou .NET. Seu modelo de execucao é

baseado na técnica conhecida como graph reduction, onde um programa é

representado através de um grafo (neste caso uma arvore) e sua execucao é feita

reduzindo suas expressbes a Weak Head Normal Form (WHNF)2, Os nds que

compdem um grafo STG sdo os seguintes:

Progam ou module - né principal do grafo STG € composto por um
conjunto binds.

Bind - ligacdo entre uma variavel, que identifica o bind, e uma
abstracao lambda (lambda-form).

Lambda-form - representa uma fungdo ou uma expressao atualizavel.
Explicita suas variaveis livres e argumentos.

Expression — pode ser uma expressao binaria sobre tipos primitivos, uma
aplicacao de funcdes e/ou construtores, uma expressao de casamento
de padrbes ou uma criacao de binds locais através de uma instrucao

let ou letrec. Tais expressdes sao 0s alvos principais da reducao.

Segundo Peyton Jones[28], criador da linguagem e da maquina STG, as

principais caracteristicas desta sao:

Todos os argumentos de funcdes e construtores sdo variaveis ou
constantes. Esta restricao reflete a realidade operacional de chamadas
de funcdo onde seus argumentos devem ser preparados (seja
construindo uma closure ou avaliando eles) antes da chamada. Esta
restricdo pode ser resolvida adicionando novas instrucdes let para a
ligacdo de argumentos n&o triviais, como descrito na Secao 4.2.2.

A aplicacdo de construtores e operadores primitivos (built-in) sdo
sempre saturadas, ou seja, o niumero de argumentos esperado pelo
construtor ou operador aplicado deve ser igual ao de argumentos

fornecido.

20 Termo criado por Peyton Jones[37] para explicitar a diferencga entre Head Normal Form (HNF) e o que é
produzido através da graph reduction.

68

¢ Casamentos de padrdes sao sempre executados através de expressdes
case e é permitido apenas padr6es de um unico nivel.

e Existe uma forma especial de ligacao (binding). Sua forma geral é:

f={vi,...va} \TT {X1,....Xn} -> €

Através deste binding f é ligado a uma closure, que armazena as
variaveis livres vi,...,van € a fungao (Axy,....xn.€). O lado direito do binding
€é denominado lambda-form e é o uUnico lugar onde uma abstracao
lambda pode aparecer. A flag ™ determina se a closure é atualizavel,
caso sua flag seja igual u, ou ndo atualizavel caso seu valor seja n. O
fato de a lambda-form permitir que as variaveis livres de uma
abstracdo lambda sejam explicitadas faz com que nao seja necessario
o uso de técnicas de lambda lifting?!.

e Da suporte a valores unboxed. Na STG, embora com algumas
restricdes, valores unboxed podem ser ligados a variaveis, passados
como argumentos bem como serem retornos de uma funcéo,
armazenados e estruturas de dados, etc. Esta abordagem diminui o uso

de boxing/unboxing durante operacdes de tipos primitivos.

4.2.2 Core to STG

A linguagem Core é facilmente traduzida para a STG de forma a ser utilizada
na maquina abstrata STG. Algumas diferencas sdo apenas sintaticas, nao
necessitando grandes conversdes, abaixo estdo descritas apenas diferencas que
exigiram modificacées na maquina STG ou alguma analise prévia para

identificacao de informacdes relevantes.

1. Na STG os argumentos das funcdes devem ser atdbmicos (literais ou
variaveis), diferentemente da linguagem Core, a qual permite que
expressoes sejam passadas como argumentos.

2. Aplicacao de construtores e operadores primitivos tem de ser saturados.

Embora a linguagem Core nao possua nenhuma restricdo quanto a

2 Lambda lifting ¢ uma técnica onde todas as defini¢des locais de fungdes sdo elevadas para o nivel definigGes
globais transformando suas variaveis livres em argumentos extras [87).

69

aplicacdao nao saturada destes elementos em sua especificacao[52] é
sugerido o uso de um pré-processador que torne tais aplicacdes
saturadas.

3. Cada ligacao (bind) é feita entre uma variavel e uma lambda-form, a
gual fornece explicitamente sua lista de variaveis livres. Core liga
variaveis diretamente a expressdes, sem se preocupar em explicitar suas
variaveis livres.

A restricao 1 é resolvida, como proposto por Peyton Jones[28], adicionando
novos binds através de uma instrucao let responsavel por ligar a expressdo a uma
variavel a qual é utilizada para referenciar a expressao. Tomando como exemplo o
Cddigo 18, testCore é definido como a aplicacao da funcao fl que recebe uma
expressdo como argumento. Na STG isto ndo & permitido e por isto testSTG faz uso
de uma expressao let a qual cria um bind ligando t a expressao f2 2 e entao aplica

a funcao f] recebendo como argumento a variavel ligada, no caso t.

1 testCore = f1 (2 2)
2 testSTIG={F \u{} >lett=F22in Tl

Cddigo 18. Transformando uma expressao em um argumento atémico utilizando let

Para argumentos que correspondam a aplicacao de operadores primitivos
uma otimizacao pode ser conseguida utilizando expressées case, como definido em
Peyton Jones e Launchbury [53]. Uma vez que tais aplicagcdes resultam em tipos
primitivos o qual ndo podem ser armazenados como thunks, a melhor abordagem é
avaliar a expressao dentro de case e entdo retornar o resultado da avaliacao
através da alternativa default (Codigo 19). A mesma abordagem deve ser utilizada

para aplicacdes de fungdes que retornam tipos unboxed.

testeSTG = { \u {} ->

1
2 case 2+3 of var

3

4 default -> var
5

¥

Cadigo 19. Transformando uma expressdo em um argumento atémico utilizando case

A forma direta para resolver a restricao 2 é utilizar o pré-processador Core,
entretanto o pré-processador disponibilizado ndo condiz com a Core gerada pela
atual versdo do compilador GHC (6.8.2). Tim Chevalier, colaborador do projeto
GHC, tem se esforcado em atualizar ndo s6 o pré-processador, como toda a

linguagem Core gerada pelo GHC, de forma, a faciltar e ampliar o uso desta

70

linguagem. Entretanto, tais alteracdes s6 estardo presentes na proxima versao do
GHC, ainda sem data prevista para lancamento. Uma possivel alternativa é aplicar
uma expansdo-n, como sugerido por Peyton Jones[28], o que consiste em
transformar aplicacdes ndo saturadas, de construtores ou operadores primarios, em
funcdes onde os valores fornecidos sao considerados variaveis livres desta. A
formula geral é dada abaixo, onde ¢ é um operador interno ou um construtor de

aridade n + m.
c{en ... en} =>Ayi...ym.c{ern ... em,y, ... Ym}

Entretanto, para aplicar tal expansao € necessario que os modulos compilados
guardem informacdes a respeito da aridade dos construtores, 0 que hao era
necessario para a compilacao a partir da STG. A solugdo encontrada foi gerar para
cada construtor uma funcado com coédigo para aplicagdo do construtor, a qual
guarda informacdes sobre sua aridade. Esta funcao ndo possui nenhuma variavel
livre e segue 0 mesmo modelo de avaliacdo de funcdes definidos na
implementacdo do compilador, o que permite a geracédo de aplicacdes parcial
qguando aplicada a menos argumentos que o requerido. Para proporcionar melhor
desempenho, a utilizacao desta técnica s6 é empregada quando observado o uso
de aplicacgdes nao saturadas. Quando saturada, é feita a aplicacao direta, criando
um construtor ou aplicando a operacao. Outro ganho obtido com esta conversao
€ permitir que construtores possam ser passados como parametros de uma funcéao,
uma vez que estes podem ser representados como uma funcéo qualquer da

linguagem.

O fato de néao ter sido observada nenhuma aplicacdo nao saturada de
operadores primarios na linguagem Core leva a crer que, na atual versao do GHC,
tais aplicacdes sdo previamente expandidas. Desta forma, aplicacbes n&ao
saturadas de operadores primitivos ndo sado tratadas na implementacdo aqui

proposta.

Por fim, a transformacéo do lado direito dos binds em lambda-forms requer
que duas operacles sejam executadas: identificacdo das variaveis livres da

expressao e adicao da flag de atualizacao.

z

Uma variavel é considerada livie se é mencionada no corpo de uma

abstracdo lambda e ndo pertence nem ao seu conjunto de argumentos e nem ao

71

conjunto de binds globais do programa. Em nossa implementacéao tal identificacao
é feita ainda no parser da linguagem Core. Todas as variaveis referenciadas dentro
da expressao, lado direito de um bind, sdo guardadas e posteriormente verificadas
se pertencem ao conjunto de argumentos ou de binds globais, as que nao

correspondem sao adicionadas ao conjunto de variaveis livres da lambda-form.

Quanto a flag de atualizacdo, como descrito na propria definicdo da STG, é
seguro configurar toda lambda-form como sendo ndo atualizavel. Entretanto, tal
atitude contradiz a definicdo da avaliacao lazy, que diz que cada expressao deve
ser avaliada somente quando necessaria e apenas uma vez. Marcar toda lambda-
form como n&o atualizavel acarretaria em um gasto excessivo de processamento
ao avaliar, desnecessariamente, uma mesma expressao mais de uma vez. Como
definido pela STG, funcdes, aplicacdes parciais e construtores sdo consideradas nao
atualizaveis, sendo, apenas, thunks consideradas atualizaveis e mesmo estas, em
alguns casos, podem ser ndo atualizaveis. Como regra geral, em nossa
implementacao consideramos thunks como sendo atualizavel e separamos, ainda
no parser, as expressoes lambdas com e sem argumentos, sendo que as expressdes
com argumentos (funcbes e construtores) sdo sempre consideradas nao
atualizaveis. J&4 as sem argumentos sao classificadas durante a compilagédo, onde
se a expressdo de for identificada como uma aplicacdo nao saturada esta é
tratada como uma closure nao atualizavel, caso contrario, serA& uma closure

atualizavel.

A fim de organizar e dividir melhor as responsabilidades, as transformacdes
explicitadas nesta Secao deveriam ser delegadas a um pré-processador, o qual
transformaria a linguagem Core numa STG enxertada com informacdes de tipos
capaz de ser executada diretamente pelo compilador proposto. Entretanto,
inicialmente, ndo foi cogitado o uso da linguagem Core como linguagem fonte.
Esta s6 foi viabilizada na fase de integracdo com o compilador GHC, onde foi
observado que a linguagem STG produzida ndo possui informacdes suficientes e a
dificuldade em utilizar a representacdo STG interna em conjunto com o Phoenix.
Com isto tal responsabilidade foi dividida entre o parser e o préprio compilador,

cabendo ao primeiro a maior parte.

72

4.3 PhxSTGCompiler

O processo de compilacdo efetuado pelo PhxSTGCompiler pode ser
observado na Figura 8. Inicialmente a linguagem Core fornecida pelo GHC ¢ lida
através de um parser, este gera uma representacao abstrata do programa em
forma de arvore a qual € convertida na representacao intermediaria IR, necessaria
para o uso do Phoenix. Utilizando uma lista de fases, construidas utilizando a API
Phoenix, esta IR €& sucessivamente manipulada e transformada em uma
representacgao correspondente a requerida pela maquina alvo, neste caso a CLR. A
Ultima etapa deste processo de compilagao corresponde a emissdo do codigo
final, a qual é feita através de um writer para arquivos PE, gerando uma biblioteca

de link dindmico (dll) ou arquivo executavel (EXE).

.- |
= | e
7 ="
PhxSTGCompi R

Plugi /

Fase

Figura 8. Processo de compilacao

A implementacdo aqui proposta permite que seu processo de compilacao
seja alterado por programas externos, denominados plugins, 0s quais podem
modificam a lista de fases do compilador. Este mecanismo sera utilizado para

produzir otimizacdes no cédigo gerado, como demonstrado no Capitulo 5.

73

Internamente o PhxSTGCompiler € formado por um conjunto de classes
responsaveis por representar estruturas de compilacao, gerar a IR e pelo processo
de compilagcdo. Tais classes, representadas graficamente na Figura 9, sao

detalhadas a seguir:

e Compiler: responsavel por inicializar e gerenciar a infra-estrutura Phoenix e as
classes que compdem o compilador. Solicita o parser do arquivo fonte e a
geracao de cddigo IR, o qual é entdo transformado em cédigo MSIL através
da execucao da lista de fases definida no compilador. Ao final do processo
de compilacao emite o assembly .NET, podendo este ser um arquivo
executavel (EXE) ou biblioteca de classes (DLL).

e CompilationEnvironment:. representa o ambiente de compilacao,
armazenando informacdes Uteis ao processo de geracado de cdédigo IR, tal
como escopo e contagem de identificadores.

e CompilationUnits: colecdo de classes que representam as estruturas basicas
de compilacado presentes na descricdo da STG. Cada objeto desta classe
armazena uma referéncia para um mesmo objeto da classe IRBuilder,
compartilhado por todas as unidades do programa, a qual é utilizada para
gerar o codigo IR. Todas as classes deste pacote herdam da classe
CompilationUnit, unidade basica de compilacdo, que define um método
abstrato o qual deve ser implementado em cada classe de forma a gerar,
com auxilio do IRBuilder, a representacao correspondente em coédigo IR.
Detalhes sobre a geracdo de cada uma das unidades pode ser observado
no Apéndice A, de forma geral tais unidades podem ser classificadas em:

0 BasicUnifs: unidades basicas de compilagdo (module, bind,
dataUnit e lambda-form). Utilizam Generate para gerar seu
codigo R.

o0 ExpressionUnits: representam as expressdes disponiveis na
maquina STG (let, case e aplicacdo de funcdes, construtores e
operacdes sobre tipos primitivos). Disponibiizam o método
Evaluation, responsavel ndo s6 por gerar o cédigo IR da
expressdo, como também retornar operando de destino da
expressao.

o0 AtomuUnits: expressdes atdmicas (variaveis, construtores e tipos

primitivos). Através do método Evaluation geram coédigo IR,

74

guando necessario, e retornam um operando correspondente a
sua representacao na IR.

o AlternativeUnits: alternativas possiveis em uma expressao case.
Podem operar sobre tipos algébricos ou primitivos. Possuem dois
campos, um que armazena o valor da alternativa e outro para
armazenar a expressao a ser executada caso seu valor seja
selecionado. O cddigo IR para a execucao de sua expressao é
gerado através do método Evaluation.

¢ [RBuilder: possui métodos responsaveis por gerar codigo IR, utilizando a API
Phoenix. Disponibiliza um método Getinstance, o qual retorna sempre a
mesma instancia da classe, e deve ser utilizado sempre que se desejar obter
uma instdncia desta classe. A utilizacdo de uma Unica instancia permite
que informacodes sobre o cédigo que estad sendo gerado estejam sempre
disponiveis aos métodos da classe.

e Parser: responsavel por percorrer o arquivo fonte e gerar uma representacao
deste utiizando as unidades de compilagdo (CompilationUnits). Tal
representacao € semelhante a uma arvore onde cada né é constituido por
uma CompilationUnit.

o Util: possui fungBes que através de reflexdo permitem obter informagdes de

métodos e classes em bibliotecas .NET.

Util CompilationEnvironment
i

IRBuilder

CompilationUnits i

T Parser

Figura 9. Arquitetura do compilador

Tendo como base o Cddigo 20, uma representacdo da arvore gerada

utiizando as unidades de compilacdo (objetos CompilationUnits) pode ser

75

observada na Figura 10. O processo de geracdo de codigo IR se inicia pelo noé raiz

(ModuleUnit) o qual gera seu codigo e solicita aos nos filhos que fagcam o mesmo.

1 module Teste
2 funcl = {3 \n {X,y} -> x+y

Cadigo 20. Exemplo unidades de compilagcéo

Teste
{ModuleUnit)

(Bind)

funcl

{LambdaForm)
{AtomVariable)

Varidveis Livres
(ListAtomVariable)

Argumentos

{ListAtomVariable) (ExpBuiltint)

X soma Y

(AtomVariable) (AtomVariable) (AtomVariable) (PrimitiveOperator) (AtomVariable)

Figura 10. Arvore de compilacéo

4.3.1 Lista de fases

Efetuar a conversao da IR para coédigo MSIL € um trabalho efetuado por uma
lista de fases. Tais fases sdo responsaveis por gradativamente transformar uma IR de
alto nivel (HIR), independente da maquina alvo, para uma representacao de baixo

nivel (LIR), dependente da maquina alvo, no caso em questao a CLR.

A lista de fases € construida dentro da classe Compiler, através do método
BuildPhaseList. O mais usual € construir uma lista fases que opere sobre FunctionUnits,

uma vez que estas unidades € que armazenam as listas de instrugdes. Entretanto, a

76

fim de permitir um maior controle sobre todo o cédigo do compilador, neste projeto
a lista de fases produzida opera também sobre a ModuleUnit. Para permitir que a
lista de fases criadas operasse ao mesmo tempo sobre a ModuleUnit e sobre todas
as FunctionUnits presentes nesta foi criada um tipo de lista de fases que opera
especificamente sobre as FunctionUnits. Tal informagcdo € importante para a
construcdo de plugins, uma vez que, se estes desejarem operar sobre as
FunctionUnits, deverao percorrer a primeira lista até encontrarem a outra lista e

entdo atuar sobre esta.

A lista de fases criada pode ser observada na Figura 11. Ela € composta por
trés listas: a primeira que atua sobre ModuleUnits, a segunda que adentra a
ModuleUnit e executa sobre as unidades existentes nesta e a terceira
(FuncUnitListPhaselList) criada para selecionar apenas as FunctionUnits. Todas as
fases padrao do compilador sdo adicionadas a esta Ultima, pois elas atuam sobre
as FunctionUnits transformando suas listas de instrucdées em coédigo MSIL. Apenas a
fase VariableLocationPhase ndo é implementada por padrao pelo Phoenix, esta foi
codificada com objetivo de processar corretamente a assinatura das variaveis

locais de um método, o que nao era feito pelas fases fornecidas pelo Phoenix.

E Ch\Windows\system32cmd.exe |ﬂ|i"]

phases <no control> [PhaseList]
IR Unit Punction Phases ¢(no control) [PhaseList]
FuncUnitListPhaseList <no control?> [PhaseList]
MIR Lower <control MirLower)
Canonicalize ¢control Canonicalize)
Lower <control Lower>

Switch Lower ¢control SwitchLower)

Stack Allocation <control StackAllocate?
Frame Generation {control Framel

Block Layout <control BlockLayout?

Flow Optimization <control FlowOptimization>
VariableLocationPhase (no control)

Figura 11. Lista de fases
Na fase de testes e otimizacdes (descrita na Secao 5) esta lista de fases é

alterada, adicionando novas funcionalidades ao compilador, tanto diretamente

como indiretamente, através de plugins.

77

4.3.2 Estratégia de compilacao

Embora, utilizando o Phoenix ndo seja necessario manipular coédigo .NET
diretamente, e sim uma representacdo intermediaria (IR), escolhas quanto a
representacdo de cada uma das estruturas da linguagem devem ser feitas tendo
em mente seu desempenho no cdédigo final. Aqui serdo apresentadas quais
estratégias foram utilizadas para a construcdo deste compilador, selecionada

dentre as descritas na Secao 2.4.

Seguindo o modelo definido por Monteiro [5], o qual visa evitar a geracao de
um grande numero de classes por programa, uma uUnica classe é gerada por
modulo, seja este um programa executavel ou biblioteca de funcdes. Nesta
abordagem para cada moédulo compilado é gerado uma nova classe e o conjunto
de binds presentes neste sdo compilados para funcdes estaticas e objetos de
classes pré-definidas, os quais s&o armazenados em campos estaticos. Tais classes
pré-definidas sao utilizadas para representar closures com n variaveis livres, além de

construtores com n argumentos.

Em linguagens funcionais closures sa&o estruturas essenciais para a
representacao de objetos como funcdes e thunks na heap. Sendo assim, a forma
como tal estrutura € definida influencia todo o restante do projeto do compilador.
Na implementacao aqui apresentada closures sao construidas através de classes
pré-definidas que utilizam delegates para referenciar a funcao correspondente a
expressao e possui um conjunto de campos de tipos genéricos para armazenar as
variaveis livres. Tendo como objetivo evitar a criacdo de uma classe por closure,
estratégia utilizada por F# e Nemerle, é pré-definido um conjunto de classes para n
variaveis livres, permitindo que novas closures sejam criadas através de novas
instancias da classe correspondente ao numero de variaveis livres. O ambiente de
compilacao prevé a criacao de closures com até nove variaveis livres. Embora nos
testes realizados nao tenha sido observado nenhum exemplo onde este niumero foi
superado, closures com numero superior a este sao instanciadas utilizando uma
classe especial onde as variaveis livres séo armazenadas em um array de objetos do
tipo closure. O uso desta classe deve ser evitado devido a custos ho acesso aos
valores do array e por nao permitir 0 armazenamento de tipos unboxed. Uma
representacao das closures presentes nesta implementacéo pode ser observada na

Figura 12.

78

O modelo de avaliacao de fungdes adotado é o push/enter, o qual permite
uma facil representacao de linguagens estritas na plataforma .NET. Embora, estudos
realizados por Peyton Jones et al. [33] tenham demonstrado uma pequena
vantagem a favor do modelo eval/apply na geracdo de cdédigo para uma
linguagem estrita em ambientes ndo gerenciados, ndo foi encontrado nenhuma
implementacdo que o mesmo ocorre no ambiente .NET ou em qualgquer outro
ambiente gerenciado. Dentre as implementacdes observadas apenas linguagens
nao estritas, como F# e Nemerle, implementam tal modelo na plataforma .NET. A
implementacédo do modelo eval/apply na plataforma .NET permitiria o uso da pilha
de argumentos da CLR como mecanismo de passagem de parametros, o que
poderia acarretar um ganho no desempenho, entretanto aumentaria
enormemente o nimero de classes pré-definidas pois seriam necessarias classes que
combinassem um ndmero n de argumentos a um nimero m de variaveis livres, o

gue resultaria em n x m classes.

Utilizando o modelo push/enfer cada funcao definida é representada através
de uma closure e dois métodos estaticos: fast entry point (FEP) e slow entry point
(SEP). FEP possui o codigo real da funcdo e € chamado sempre que todos os
argumentos necessarios estdo presentes. SEP possui o coédigo responsavel por
avaliar se todos 0s argumentos necessarios a aplicacao da funcao estao presentes
na pilha, em caso positivo os desempilha e chama diretamente o FEP, caso
contrario instancia uma aplicacado parcial e armazena nesta 0s argumentos
presentes na pilha. A closure instanciada referencia através de um delegafe o
método SEP o qual é executado através do método Enter presente na closure. A
closure quando pertencente ao conjunto de binds globais do moédulo é
armazenada em um campo estatico da classe e quando é instanciada através de
uma expressao let € armazenada como variavel local da funcdo que engloba a

expressao let.

Diferentemente de funcdes, fhunks necessitam de apenas um método o qual
armazena diretamente a expressdo a ser executada. Esta expressao é avaliada
apenas uma vez através do método Enter da closure, o qual verifica se a closure ja
foi avaliada, caso tenha sido retorna o valor armazenado, caso contrario chama a
funcéo referenciada pelo delegate e armazena o valor resultante para evitar

futuras avaliacoes.

79

Tipos algébricos sdo representados utilizando classes pré-definidas, que
herdam da classe Pack, e possuem n argumentos genéricos. A classe Pack possui
um campo fag, o qual armazena um valor inteiro que é utilizado para identificar
diferentes construtores. Para evitar que em um mesmo modulo existam dois objetos
Pack com a mesma tag, este campo é preenchido utilizando o valor obtido através
do método GetHashCode da string correspondente ao nhome do construtor, o qual
retorna um valor inteiro correspondente a hash do objeto. Casamento de padrbes é
implementado utilizando uma instrucao switch que opera sobre a tag do construtor,
0 que € bem mais eficiente que através da verificacdo de tipos dos objetos. Na
maioria dos casos novos construtores s&o instanciados diretamente, entretanto, em
casos onde construtores sao passados como argumento ou sdo aplicados
parcialmente uma funcao responsavel por gerar o construtor é criada e possiveis

argumentos fornecidos séo aplicados a esta.

Embora, a CLR permita a criagéo de funcdes polimorficas utilizando generics
esta opcao nao foi utilizada para a representacdo de polimorfismo paramétrico no
compilador aqui apresentado. Tal escolha se deve ao fato do GHC n&o permitir
que tipos primitivos (unboxed) sejam utilizados como argumentos de funcdes
polimoérficas. Desta forma, o uso de generics nao traria grandes beneficios, sendo
tipos polimaérficos representados através do uso da classe base Closure, a qual é a

classe base para todos os demais tipos.

4.3.3 Ambiente de execucao

Devido ao fato deste trabalho fazer parte do mesmo projeto, o ambiente de
execucao utiizado neste compilador segue, com algumas poucas alteracdes, o
utilizado no projeto Haskell .NET. A descricdo a seguir é fortemente baseada na feita
por Monique Monteiro em sua dissertacéo: Integrando Haskell a Plataforma .NET[5],

devendo esta ser consultada para um maior aprofundamento.

O ambiente de execucdo do PhxSTGCompiler consiste das classes pré-
definidas que representam os diversos tipos de closures e das pilhas para passagem
de parametros. Como mostrado no diagrama UML (Figura 12) a classe Closure é a
classe base para a maioria das outras classes. Apenas PAP ndo herda de Closure,

pois PAP por si s6 ndao representa um objeto manipulado diretamente pela STG,

80

devendo este ser associada a uma closure que representa uma funcdo. Closure
possui um método abstrato Enfer o qual deve ser implementado por cada uma das
classes que herdam desta com o cédigo responsavel por sua avaliagao. As closures

presentes no ambiente de compilacéo podem ser divididas em:

¢ Closures nao atualizaveis (funcdes): mantém campos de tipos genéricos
para o armazenamento de suas variaveis livres, um campo inteiro para
o armazenamento da aridade e um campo PAP com valor null. Sua
avaliacao retorna uma chamada para o método SEP correspondente.

o Aplicacdes parciais: sdo closures nao atualizaveis (funcdes) cujo campo
PAP possui um objeto que armazena argumentos previamente
recebidos. Sua avaliacao, assim como de uma funcao, se da através
da chamada ao método SEP.

e Closures atualizaveis (thunks): expressdes nao avaliadas, as quais
mantém campos para o armazenamento de suas variaveis livres e um
para armazenar o valor resultante de sua avaliacdo. Seu método Enter
verifica se a closure ja foi atualizada, em caso positivo apenas retorna o
valor armazenado. Caso contrario é feita a avaliacdo e o valor
resultante é armazenado.

e Construtores de dados: mantém campos genéricos para armazenar
seus argumentos. Seu método Enfer retorna ele préprio como resultado,
uma vez que este se encontra na Weak Normal Form (WHNF), ou seja,
na forma objetivada pela avaliacao sob demanda[37].

No diagrama UML é possivel observar os delegates responsaveis pela
chamada dos métodos englobados por cada closure. Todos eles herdam da classe
MultiCastDelegate e determinam a assinatura do método suportado. Existem
delegates de dois tipos: UpdCloFunction utilizados para closures atualizaveis e
NonUpdCloFunction para as ndo atualizaveis. Tal distingdo se deve ao fato de
delegates restringirem os métodos sobre 0s quais operam atraveés de sua assinatura.
Desta forma, um delegate do tipo UpdCloFunction suporta métodos que recebem
como argumento um UpdafableClosure e retorna uma closure e um
NonUpdCloFunction suporta métodos com um argumento do tipo
NonUpdatableClosure retornando, também, uma closure. Assim como para as
closures atualizaveis e nao atualizaveis, sdo pré-definidos no ambiente variacdes

destes para n variaveis livres.

81

UpdCloFunction UpdCloFunction_1_FV<T1> UpdCloFunction_n_FV<T1 ... Tn>

VJ7Y7

MultiCastDelegate

+Invoke()()

A%A

NonUpdCloFunction NonUpdCloFunction_1_FV<T1> NonUpdCloFunction_n_FV<T1 ... Tn>
UpdatableClosure UpdatableClosure_1_FV<T1> UpdatableClosure_n_FV<T1 ... Tn>
+value : Closure +value : Closure +value : Closure

+function : UpdCloFunction | |+function : UpdCloFunction_1_FV<T1> | [+function : UpdCloFunction_n_FV<T1 ... Tn>

| |
e 1L e

IPAP
T Closure Pack

PAP_1<T1> T S 1 KF———ftag :int e

-arg1: T1 s :::g; R +Enter() : Closure QL Pack_2<T1 ... Tn>
9c: “arg?: T1
-arg2 : Tn

NonUpdatableClosure NonUpdatableClosure_1_FV<T1> NonUpdatableClosure_n_FV<T1 ... Tn>

#arity : int #value : Closure . . [#value : Closure

-function : UpdCloFunction -function : UpdCloFunction_1_FV<T1>) -function : UpdCloFunction_n_FV<T1 ... Tn>

Figura 12. Ambiente de execucéao

Para a passagem de parametros, necessarias ao modelo push/enter, sao
utiizadas quatro pilhas que armazenam closures, inteiros, double e object. A razao
para existéncia de mais de uma pilha é evitar operacdes de boxed/unboxed de
tipos primitivos, permitindo que tipos primitivos sejam passados como parametros
diretamente, otimizacao esta implementada pelo GHC seguindo a descricdo dada
por Peyton Jones et al.[53]. Outros tipos para 0os quais nado haja pilha especifica
devem ser mapeados para uma das pilhas existentes, por exemplo: caracteres sao

armazenados na pilha de inteiros e tipos float na pilha de double.

82

4.4 Consideragoes Finais

Neste capitulo foi apresentada a arquitetura do PhxSTGCompiler, bem como,
problemas e decisbes de projetos enfrentados durante sua implementacao. A idéia
inicial de utilizar o cédigo STG gerado pelo GHC como entrada se mostrou inviavel e
por isto uma alternativa foi apresentada: o uso da representacdo CORE. O uso
desta representacao requisitou que modificactes fossem feitas tanto no parser

como no proprio gerador de codigo.

A implementacdo atual possui um preludio reduzido, o qual é suficiente
apenas para a compilagao dos testes executadas no Capitulo 5. Outra restricao da
implementacao diz respeito a compilacado direta a partir do cédigo CORE. Por nao
estar disponivel uma gramatica atualizada da CORE gerada pela versao atual do
compilador, eventualmente, foram necessarias intervencdées manuais para que o

codigo pudesse ser entendido pelo compilador.

O uso do Phoenix para geracdo do cddigo final mostrou ser uma boa
abordagem, pois permitiu que coédigo .NET fosse gerado diretamente, sem a
necessidade de manipulacao de cédigo MSIL. Pequenos problemas observados no

codigo gerado pelo Phoenix serdo discutidos na Secao 5.2.

83

84

5 ANALISE E OTIMIZACAO

Neste capitulo serdo apresentadas avaliagdes de desempenho do compilador
construido, bem como otimizacdes implementadas utilizando o mecanismo de
plugins e a APl de analise e manipulacao de cdédigo do Phoenix. Ao final as
otimizagcdes que obtiveram melhores resultados serdo adicionadas ao compilador e
0 codigo gerado por este sera comparado ao gerado pelos compiladores Haskell
.NET e GHC.

5.1 Metodologia

Na avaliacdo do desempenho dos programas gerados, pelo compilador aqui
apresentado, foi utilizado um subconjunto dos programas presentes no benchmark
NoFib[54]. Mais especificamente, um conjunto de programas pertencentes ao
grupo Imaginario?2. Embora na documentacdo do NoFib seja sugerido o uso dos
programas pertencentes ao grupo dos Reais, uma vez que este possui programas
mais complexos que representam problemas reais, esta opcao foi descartada
devido a restricbes do preludio compilado nesta implementacdo. Contudo, os
programas do grupo Imaginario, embora menos complexos, representam
problemas especificos e faciimente escalaveis, permitindo ndo sé a validacao do
processo de compilagcdo como a descobertas de possiveis gargalos que venham a

denegrir o desempenho dos programas gerados.

O NoFib sugere, para os programas do grupo Imaginario, dois possiveis valores
de entrada, bem como, os respectivos resultados esperados. Um valor para uma
execucao mais demorada e outro para uma execucdo mais rapida. Entretanto
estes valores nao correspondem a capacidade de processamento das maquinas
atuais, o que resultou em baixos tempos de execucdo, mesmo para o valor que

gera um maior processamento. Desta forma, os valores de entrada utilizados para

2 Os cbodigos dos exemplos utilizados podem ser obtidos através do endereco
http://darcs.haskell.org/nofib/imaginary

85

os testes aqui apresentados sao diferentes dos sugeridos e foram selecionados de
forma a evitar tempos de execucdo demasiadamente curtos, onde o tempo de
inicializacdo e carga do programa predomine sobre o de execucao. Para
comparacao com o Haskell .NET e com gerador de cdédigo nativo do GHC foram

utilizados os seguintes valores:

Tak: 12,1, 25

Primes: 4500
Queens: 13

Exp3: 9

DigitsE1: 2000
WheelSievel: 400000
WheelSieve2: 80000

Em alguns exemplos foi necessario o uso de valores diferentes destes, quando

isto ocorrer o valor utilizado sera especificado entre parénteses.

A Tabela 2 mostra a configuragcdo do ambiente utilizado nos testes realizados.

Tabela 2. Configuragdo do Ambiente

Caracteristica Valor

Processador Intel® Core™ 2 - 7200 (2 x 2.0
GH2)

Memoria 2 GB

Sistema Operacional Windows™ XP Professional
Versao da CLR .NET™ Framework 2.0

Versao do GHC GHC 6.8.2

Para obtencdo dos tempos de execucgdo foi utilizado o comando time
presente no utilitario cygwin?3, Os valores apresentados correspondem a média
obtida a partir da execucao de cada exemplo 10 vezes, retirados possiveis outliers?,

tendo seu valor expresso em segundos. Os oufliers sdo removidos, pois,

2> Emula um ambiente Linux no sistema operacional Windows. Pode ser obtido através do endereco:
http://www.cygwin.com

24 Valores destoantes do conjunto de dados. Para o cilculo ¢ utilizada a férmula:

{x| @ — Lis E'?! —I?i}ﬂ x5 @+ L 'El?l-onde e corresponde, repectivamente, a0 primeiro

e terceiro quartil.

86

possivelmente, representam momentos onde foi necessaria alguma compilacao em
tempo de execucdo ou consumo de recursos do computador por algum outro
processo. Nas comparacdoes entre os valores (impacto da otimizac&ao), onde sao
apresentadas porcentagens, valores positivos indicam uma melhora, enquanto que,

valores negativos indicam piora.

Para analise do consumo de meméoéria foram testadas diversas ferramentas, tais
como o CLR Profiler, Performance Monitor, AQTime 5, entre outras. Entretanto, com
excecao do Performance Monitor, todas as ferramentas requisitaram um enorme
tempo para andlise do cédigo, mesmo para valores de entrada pequenos. Em
muitos casos todo o espaco em disco foi consumido antes que fosse retornado
qualquer resultado. Isto se deve ao grande detalhamento das analises executadas
por estas ferramentas e ao intenso consumo de memdaria feito pelos programas
testados. O Performance Monitor, embora nao tenha apresentado problemas
quanto ao tempo de execucgao ou uso de recurso da maquina, mostra resultados
qgue correspondem a uma média de um curto intervalo de tempo, atualizado
constantemente durante a execucdo do programa, nao refletindo o perfil

completo do programa.

A solucdo encontrada para tracar um perfil do consumo de memaria foi a
construcdo de uma ferramenta especifica, utilizando contadores de desempenho
fornecidos pela plataforma .NET. Esta solucdo permitiu que apenas 0S$ recursos
desejados fossem monitorados, evitando uma demora excessiva para analise dos
programas. O codigo da ferramenta de andalise pode ser observado no Apéndice B.
Os valores monitorados correspondem ao numero maximo de bytes alocados
dinamicamente, porcentagem do tempo gasto com a coleta de lixo e nimero de

coletas em cada geracao.

5.2 Codigo .NET Gerado Com o Uso do Phoenix

Os primeiros testes com o conjunto de programas compilados demonstrou
algumas deficiéncias do cédigo gerado. Nesta Secao serdo apresentadas as
deficiéncias resultantes de restricdes na geracao de coédigo .NET com o Phoenix.

Apds uma breve explanacao sobre o porqué de cada problema sera apresentado

87

uma alternativa para resolucdo deste e o0s resultados obtidos apds a

implementacéao da solucéo.

5.2.1 Variaveis temporarias

O uso de variaveis temporarias para o armazenamento de valores resultantes
de operacdes € uma técnica comum no desenvolvimento de um compilador.
Utilizando o Phoenix ha uma série de instrugcées, denominada Expressionintructions,
que fazem uso desta técnica, tendo como operando de destino uma variavel
temporaria. Estas variaveis temporarias, entretanto, devem, durante a geracao de
codigo, ser removidas ou substituidas por variaveis reais. Como exemplo, uma soma
de dois valores e o posterior armazenamento do resultado em uma variavel local é
feita, utilizando o Phoenix, através do Codigo 21. Neste, a remocao da variavel
temporaria poderia ser feita passando como operando de retorno da instrucao

instAdd o operando varOp/Z.

// Instrucao soma dois operandos e retorna uma variavel temporaria
Instruction instAdd =
Instruction._NewBinaryExpression(FuncUnitListPhaselList,
Phx.Common.Opcode .Add, varOpX, varoOpY);

// Armazena o valor da variavel temporaria na variavel real
// representada por varOpZ
Instruction instStore =
Instruction._NewUnary(FuncUnit, Phx.Common.Opcode.Store, varOpZ,
0 instAdd.DestinationOperand);

POO~NOURAWNE

Codigo 21. Variaveis temporarias

O cédigo MSIL utiliza uma pilha para armazenamento temporario de valores,
nao necessitando de variaveis temporarias para executar tal funcdo. Desta forma, o
processo de geracdo de codigo ao transformar da representacdo HIR para LIR
deveria remover as variaveis livres, substituindo seu uso pelo uso da pilha. Entretanto
a geracdo de codigo MSIL padrdao do Phoenix ndo realiza esta substituicao,
fazendo com que algumas variaveis temporarias que deveriam ser removidas
acabem sendo promovidas a variaveis reais no codigo gerado. A ndo remocgao
destas variaveis resulta em um coédigo sujo, cheio de instrucdes desnecessarias. O
Cddigo 22, mostra as instrucdes MSIL geradas para o exemplo anterior, sem a

remocao da variavel temporaria que armazena o resultado da adicao.

1 // Cbédigo gerado com variavel temporaria desnecessaria
2 Idloc.0 // varOpx
3 Idloc.1 // varOpY

88

add

stloc.2 // variavel temporaria
Idloc.2

stloc.3 // varOpZ

~No o h

Caodigo 22. MSIL sem remocgéao de variaveis temporarias

Além de um maior consumo de memadria, hecessario para o armazenamento
das variaveis temporarias, as instrucdes geradas para armazenamento e leitura
destas variaveis intermediarias dificultavam, a implementacdo de algumas
otimizagdes no coédigo, como a insercdo de instrucdes fail (Secao 5.3.1). Para
minimizar tais problemas foi inserida uma nova fase no processo de compilacao.
Esta fase é responsavel por identificar variaveis temporéarias na representacao LIR,
bem como as instrucdes que a manipulam, e as remové-las. Com o uso desta nova
fase as instrucdes stloc.2 e Idloc.2, presentes no Codigo 22, seriam removidas, bem

como a variavel local correspondente.

Tabela 3. Impacto da remocgéao de variaveis temporarias

Programa Numero S/ Fase de C/ Fase de Impacto da
de remocao remocao remocao
variaveis
removida

S

Tamanh Temp Tamanh Temp Tamanh Temp

(0) (©) (o) (o) (0) (0)
Tak 30 6.144 17,71 5632 17,70 8,33% 0,05%
Primes 123 9.728 16,37 9.216 16,33 5,26% 0,24%
Queens(12) 155 12288 02,82 11.264 02,78 8,33% 1,42%
Exp3 443 22016 32,58 19.968 32,64 9,30% -0,20%
DigitsEl 23.040 20.992 8,89% 0729
(1500) 330 30,43 30,65 0,72%
WheelSieve
1 747 40.960 40.960 8,16% 0
(50000) 00,87 00,87 0,03%
WheelSieve
5 626 35.328 31.232 8,13% 0
(50000) 12,20 12,17 0,03%
Média 8,02% 0,16%

A Tabela 3 mostra o impacto da remocao das variaveis temporarias
promovidas pela nova fase, inserida no processo de compilacdo. Em todos os
exemplos foi observada uma reducéo do tamanho (em megabytes) do programa,

que ficou em média 8,02% menor. Esta diminuicdo no tamanho se deve

89

principalmente a remocao de instrucdes que, desnecessariamente, liam e
armazenavam valores nestas variaveis. Quanto ao tempo de execucao, foram
observadas pequenas variacdes para mais e para menos, ficando na média
praticamente inalterado. Resultados mais precisos poderiam ser observados para
valores de entrada maiores, principalmente para programas que fazem grande uso
de memoaria, como DigitsEl e Queens e WheelSieve 1 e 2. Entretanto, neste estagio
do desenvolvimento do compilador a questdo do estouro da pilha de chamadas
recursivas e vazamentos de memodria ainda ndo haviam sido resolvidos por

completo, ocasionando estouro da pilha para valores maiores que os utilizados.

A contribuicdo desta nova fase vai além da reducdo no tamanho do
programa e do ganho de desempenho em alguns programas. Ela removeu
instrucdes que dificultavam a identificacao de chamadas recursivas e pontos de
insercdo para instrucoes fail (Secaobs.3.1), esséncias para o controle da pilha de

chamadas em programas funcionais.

5.2.2 Casamento de padrdes aninhados

No compilador aqui proposto expressdes de casamento de padrbes sao
implementadas utilizando instrugcbes switches. Tais instrucdes sao Uteis para
selecionar entre diferentes blocos de instrugdes, entretanto estas foram
desenvolvidas com foco em linguagens imperativas onde tais blocos s&o compostos
por um conjunto de comandos 0s quais podem alterar estados das variaveis, mas
nao retornam um valor. Ja em linguagens funcionais este bloco corresponde a uma
expressdo, a qual apd6s sua avaliacdo retorna um valor. Embora, pensando
diretamente na CLR seja possivel passar este valor através da pilha de execucéao,
utiizando o Phoenix, mais precisamente a HIR, esta op¢cdo nao é valida, pois nao é

permitido o manuseio da pilha diretamente.

A solucdo encontrada para contornar tal restricdo foi adicionar para cada
expressdo de casamento de padrdes uma variavel responsavel por armazenar o
resultado da avaliacao das alternativas. Como apenas a alternativa selecionada é
executada, o valor armazenado na variavel correspondera a expressao
selecionada. Esta abordagem funciona bem para a maioria dos casos, entretanto

ao observar o cédigo gerado para o conjunto de programas de testes foi

90

observado que em casamento de padrbes aninhados eram gerados desvios e
alocacdes desnecessarias. Neste cenario era comum aparecer uma sequéncia de
instrucbes que armazenavam um valor em uma varidvel e em seguida fazia o
desvio para outra sequéncia, a qual armazenava o valor da variavel anterior em
uma nova e tornava a fazer um desvio, como observado no Cdédigo 23. Este
conjunto de instru¢cdes redundantes também dificultava a identificagdo de pontos

de inser¢cdo da instrucao tail.

IL_01b8: I1dloc.2
0 ret

1 call int32 sum(int32, int32)
2 stloc.1

3 br IL_01d5

4 -

5 1L_01d5: Idloc.1

6 stloc.2

7 br IL_01b8

8

9

1

Cddigo 23. Instrucdes desnecessarias em casamento de padrdes aninhados

A fim de verificar o impacto da remogao destes desvios foi construido um
plugin que percorre a lista de instrucdes a procura de instrucfées de desvio
incondicional. Ao encontrar, é verificado se uma possivel variavel armazenada
antes do desvio é re-armazenada ap6s o desvio. Em caso positivo ele guarda a
ultima variavel armazenada e continua verificando se h& novos desvios e
armazenamentos. Ao final ele substitui a variavel de destino da primeira instrucao
de armazenamento pela ultima variavel guardada e apaga todas as instrucdes e
variaveis percorridas no caminho. Como resultado desta transformacao é obtido o
Cddigo 24, o qual nao s6 é mais enxuto como permite a insercao de uma instrucao

tail, inviavel no cédigo anterior.

1 call int32 sum(int32, int32)
2 ret

Cadigo 24. Codigo apds a remocgao dos desvios e variaveis desnecessarias

A Tabela 4 mostra os resultados obtidos, comparando os tempos de
execucdo de cada programa gerado com e sem a remocao dos desvios e
variaveis desnecessarias. Embora, a insercdo desta nova fase no processo de
compilacdo tenha causado, diretamente, pouco impacto, apenas 5,43% na média,
indiretamente o impacto foi bem maior. Ela permitiu que novos pontos para
insercdo de instrucdo tail ou de recursdo fosse identificados, melhorando o
tratamento de memoaria através das técnicas descritas na Secao 5.3. A pequena

melhoria se deve a diminuicdo da quantidade de instrugdes, tendo sido observado

91

pouca ou nenhuma alteracdo no consumo de memdria apds a remocao das

instrucoes de desvios.

Tabela 4. Remocéao de desvios e variaveis desnecessarias

Sem remocé&o Com remocgao Impacto da

remocgao

Tak 17,70 17,86 -0,90%

Primes 16,33 16,32 0,10%
Queens(12) 02,78 02,44 12,27%
Exp3 32,64 32,53 0,35%
Digitsel 02,14 02,09 0,08%
Wheelsievel(50000) 00,87 00,65 25,67%
Wheelsieve2(50000) 12,17 12,12 0,43%
Média 5,43%

Esta otimizacdo demonstra como é facil identificar

altera-los utiizando o Phoenix, o que abre um grande

otimizagdes a serem implementadas.

5.3 Analises e Otimizacodes

padrbes de coédigos e

horizonte de possiveis

Apobs a resolugcdo dos problemas ocasionados pela a conversao da IR para

MSIL, discutidos na Secao anterior, novos plugins foram construidos para testar

alternativas para resolucdo do estouro da pilha de chamada e para otimizar o

codigo gerado.

5.3.1 Tail call

Como descrito na Secdo 2.1, uma das principais caracteristicas das

linguagens funcionais € o uso de recursdo ou invés de estruturas de repeticao. Este

forte uso da recursao faz com que a pilha de chamadas cresca excessivamente, o

que acarreta ndo s6 em um grande consumo de memdadria, como também, na

92

possibilidade de um estouro da memoaria. Para evitar este estouro de memoaria é
necessario utilizar algum mecanismo que descarte o frame de atualizacdo de

chamadas recursivas.

A CLR disponibiliza a instrugcao fail a qual descarta o frame de atualizacao de
uma chamada a um método desde que esta seja precedida por uma instrucdo de
retorno. Este seria 0 mecanismo ideal para solucionar o problema de chamadas
recursivas, entretanto sua implementacéo na CLR requer melhorias, uma vez que
seu uso penaliza o desempenho do programa?s. Esta penalidade, entretanto, ocorre
apenas na implementacdo da CLR para maquinas com arquitetura x86, na
implementacédo para x64 este problema foi corrigido, o que acarreta ganho de
desempenho ao utilizar a instrucao tail nesta ultima. Detalhes sobre diferencas de
implementacao da instrucao tfail para maquinas x86 e x64 e explicacdes sobre o

desempenho desta sao fornecidas por Shri Borde[55].

A fim de avaliar o desempenho do uso da instrucdo fail em diferentes
implementacdes da CLR, foi utilizado o Cdédigo 25%, o qual foi executado, através
de um loop, 10.000 vezes. Ap6s a compilacao foi feita uma copia, a qual teve seu
coédigo IL alterado, sendo adicionada uma instrucdo tail antes da chamada
recursiva. Os dois programas foram entdo executados tanto em um sistema x86
como em um x64. Como esperado no ambiente x86 houve uma grande queda no
desempenho, com tempo de execucdo em média 79% maiores para o cdédigo com
a instrucao tail. Ja para a maquina x64 o mesmo codigo apresentou uma melhora

no desempenho com tempo de execucao em média 44% menor.

static double OriginalFunction(double d, int k)

if (k > 1) return OriginalFunction(d * (k + 1) / k, k - 1);
else return d;

OO WNPE

Caodigo 25. Funcgéo recursiva para teste de tail-calls
No compilador a insercao desta instrucao é feita através de duas fases, a
primeira (MarkTailCallPhase) responsavel por marcar as instrugcdes de chamadas

que devem ser modificadas e outra (ApplyTailCallPhase) responsavel pela insergao.

% Explicagbes para esta queda no desempenho no uso da instrugdo tail. em sistemas x86 podem ser
encontradas no endereco http://blogs.msdn.com/shrib/archive/2005/01/25/360370.aspx

26 Retirado do endereco http://www.jelovic.com/weblog/e59.htm

93

Esta separacao se faz devido a uma restricdo do Phoenix, que s6 permite a insercao
da instrugcdo fail ap6s a fase de construcdo da pilha (StackAllocatePhase). Séo
marcadas para insercdo da instrucao tail todas as instrucdées de chamada a um

método que precedam uma instrucao de retorno.

Como o descarte da pilha de execucao € essencial para o nao estouro da
pilha de chamadas em alguns programas funcionais a insercdo da instrucao fail é
habilitada por padrédo no compilador, entretanto ela pode ser desligada através da
diretiva de compilacdo —notail, caso o usuario identifique que esta insercao seja

desnecessaria para o codigo a ser compilado.

A Tabela 3 mostra os tempos de execucao antes e apdés a insercao de
instrucdes fail. Diferente do esperado, apenas para Tak, Queens e WheelSievel a
insercdo da instrucdo tail causou um aumento do tempo de execucao
consideravel, respectivamente: 54,63%, 12,39% e 12,89% mais lento. O grande
aumento no tempo de execucao de Tak se deve ao fato deste programa ser
altamente recursivo e sem alocacao dindmica de memodria, como pode ser
observado na Tabela 6. Desta forma, ndo ha ganho com a reducdo do tempo
gasto em coleta de lixo, o qual poderia compensar o tempo perdido com o uso da
instrucéo tail. Para os demais exemplos o tempo de execucao diminui, devido a
diminuicdo no tempo gasto com coletas de lixo, sendo que para DigitsEl,

programa que requer muita memoaria, este ganho foi bastante expressivo.

Tabela 5. Impacto da insercdo de instrucao tail

Programa Sem Tail Com Tall Impacto da
Insercéo

TAK 17,86 27,62 -54,63%

PRIMES 16,32 15,14 7,19%
Queens(12) 02,44 02,74 -12,39%
EXP3 32,53 30,71 5,60%
DigitsE1l 02,09 36,75 40,82%
WheelSieve1(50000) 00,65 00,73 -12,89%
WheelSieve2(50000) 12,12 09,45 7,70%

Média -2,95%

94

A fim de buscar uma explicacdo sobre o porqué do comportamento
observado, foi tracado um perfil do uso de memadria destes programas atraves da
observacdo do comportamento do coletor de lixo, os resultados podem ser
observados na Tabela 6. Para Tak e WheelSievel nao ocorreu henhum diminuicdo
do tempo em coleta de lixo, uma vez que para estes foram realizadas poucas ou
nenhuma coleta de lixo tanto antes como apods inser¢cdo da instrucao tail. Para os
demais programas houve a diminuicdo do tempo gasto pelo coletor de lixo, o que
ajudou a compensar as perdas impostas pela insercdo da instrucdo fail. Como
pode se observar o niumero de coleta de lixos praticamente ndo se alterou o que
demonstra que a diminuicdo do tempo de coleta ndo se deve a uma diminuicao
do nimero de coletas, e sim a diminuicdo do numero de frames a serem percorridos
pelo coletor de lixo, promovida pela instrucdo fail ao descartar frames

desnecessarios.

Tabela 6. Informacdes sobre o coletor de lixo apds a inser¢cao de instrugdes tail

Sem Tall Com Tall
% Tempo % Tempo
Programa Total de Total de
em coleta em coleta
_ coletas _ coletas
de lixo de lixo
Tak 0,0% 0 0,0% 0
Primes 63,9% 231 60,7% 231
Queens(12) 21,0% 65 17,9% 65
Exp3 70,2% 1644 64,6% 1644
Digitsel 71,1% 2985 44, 7% 3124
WheelSievel(50000) 0,0% 3 0,0% 3
WheelSieve2(50000) 70,3% 159 50,1% 159

5.3.2 Desvios em chamadas recursivas

Como demonstrado anteriormente o uso de instru¢cdes tail ndo apresenta
bom desempenho em implementacdes da CLR para sistemas x86. Outra técnica
gue pode ser utilizada para evitar que a pilha de chamadas estoure em chamadas

recursivas € através da insercao de uma instrucdo de desvio incondicional para o

95

inicio da funcao. Esta técnica, entretanto, s6 pode ser utilizada para chamadas
recursivas a propria fungédo, ndo contemplando chamadas mutuamente recursivas,
onde duas funcles diferentes fazem chamadas recursivas entre si, como a
mostrada no Caédigo 26. Neste codigo a funcdo foo chama boo, que por sua vez
chama foo. Desta forma, instrucdes fail ainda sdo necessarias para este tipo de

recursao.

1 foo = boo
2 boo = if ({-condicdo de parada-}) 1 else foo

Cddigo 26. Chamadas mutuamente recursivas

Para promover esta otimizacado foi criado um plugin, o qual faz uso das
marcacoes feitas na fase MarkTailCallPhase e substitui a fase ApplyTailCallPhase por
uma nova que verifica se a instrucdo marcada corresponde a uma chamada a
prépria funcdo na qual ela esta inserida e se este for o caso ao invés de adicionar
uma instrucao fail salva os argumentos e faz um desvio para o inicio da chamada.

O cédigo deste plugin pode ser conferido no Apéndice C.

O resultado da aplicacao deste plugin pode ser observado na Tabela 7. O
maior impacto foi observado nos programa Tak e Queens que tiveram seus tempos
de execucao drasticamente reduzidos, respectivamente, 45,48% e 30,19% menor.
Outro programa beneficiado por esta substituicdo foi WheelSievel que obteve um
tempo 25,23% menor. Os demais programas variaram pouco, obtendo variactes

menores que 1% para mais e para menos.

E importante observar que a melhoria ocorre nos exemplos onde a insergao
da instrucao fail, Secao 5.3.1, gerou uma grande queda de desempenho. Desta
forma, a substituicdo de instrucdes fail por instrucdes de desvio permite o
tratamento de chamadas recursivas sem os efeitos colaterais no desempenho

gerados pela instru¢ao tail.

Tabela 7. Recursao através de desvio para o inicio da funcédo

Programa Com Tall Com desvio Impacto
Tak 27,62 15,06 45,48%
Primes 15,14 15,23 -0,56%
Queens 16,47 11,50 30,19%

Exp3 30,71 30,62 0,29%

96

DigitsEl 36,75 36,70 0,13%
WheelSievel 12,93 09,67 25,23%
WheelSieve2 20,70 20,71 -0,04%

Média 14,39%

Por ter apresentado na média um bom desempenho (14,39%) e uma grande
melhora (acima de 25%) para programas extremamente recursivos, como o Tak,
Queens e WheelSievel, o uso de desvios em chamadas recursivas para a propria
funcao foi incorporado ao compilador. Entretanto, este pode ser desabilitado pelo

usuario através da diretiva —nobranchrecursion.

5.3.3 Casamento de padroes com valores booleanos

Desvios condicionais, como instrucdes if em haskell, sdo traduzidas para a
linguagem Core como instru¢gdes de casamento de padrbes de valores booleanos.
Uma vez que, na Core, valores booleanos sdo representados utilizando tipos
algébricos, a avaliacdo da expressdo condicional e a escolha da alternativa
requerem uma série de operacdes, que degradam seu desempenho. O Cdédigo 27
mostra em C# como é feito tal mapeamento. Inicialmente, a condicdo é avaliada
e de acordo com o resultado é gerado o construtor correspondente, linhas 1 a 5.
Através de uma instrucao switch a tag deste construtor é verificada e é feito o

desvio para o cédigo da alternativa correspondente, linhas 7 a 15.

//Avaliacdo da expressado e instanciacdo do Construtor correspondente
if (ExpCondicéo)
pack = RuntimeSystem.TRUE;
else
pack = RuntimeSystem.FALSE;
//Casamento de padrdo utilizando o valor resultante da avaliacdo da condicéo
switch (((Pack) pack).tag)
{

OCO~NOODWNE

case O:
10 //Alternativa condicdo falsa
11 break;

13 case 1:
14 //Alternativa condicdo verdadeira
15 break;

Cadigo 27. Representacado de desvios condicionais com construtores para valores booleanos.

97

Este codigo pode facilmente ser otimizado, eliminando se o uso de um
construtor para representar o valor booleano. Uma vez que a avaliacdo da
expressao de comparacao retorna sempre um valor inteiro (zero para falso e um
para verdadeiro), é possivel substituir a avaliacdo da fag na instrucao swifch pela

avaliacao da expressao condicional, resultando no Cédigo 28.

switch (ExpCondicéo)

1

2

3 case O:

4 //Alternativa condigédo falsa
5 break;

6

7 case 1:

8

9

1

//Alternativa condicdo verdadeira
break;

0}

Codigo 28. Representacado de desvios condicionais otimizada

Com auxilio de um plugin, tal otimizacao foi adicionada ao compilador. O
impacto desta adicdo pode ser observado na Tabela 8. Trés programas tiveram
grande melhoria de desempenho: Tak (16,46%), Queens (11,77%) e WheelSievel
(18,21%). Para os demais o impacto foi pequeno, ou ainda irrelevante (variacao

menor que 0,1%).

Tabela 8. Impacto da remocgéao de construtores em desvios condicionais.

Programa Com Tall Com desvio Impacto
Tak 15,06 12,58 16,46%
Primes 15,23 15,22 0,07%
Queens 11,50 10,15 11,77%
Exp3 30,62 30,64 -0,07%
DigitsEl 36,70 36,01 1,89%
WheelSievel 09,67 07,91 18,21%
WheelSieve2 20,71 20,58 0,65%
Média 7,00%

5.4 Analise Final do Compilador

Ap6s os testes utilizando plugins, descritos nas secdes anteriores, foram

selecionadas as otimizacOes que obtiveram melhores resultados, as quais foram

98

adicionadas como fases do compilador final. De modo a quantificar o desempenho
do cdédigo gerado por este compilador, nesta Secao, este serA& comparado com

outros compiladores Haskell.

5.4.1 Versus Haskell .NET

O compilador Haskell .NET[5], representou o modelo de compilacao utilizado
neste trabalho e é o Unico dentre os compiladores analisados na Secao 2.5 que
gera codigo .NET a partir de uma linguagem funcional estrita. Desta forma, foi o
melhor exemplo encontrado para mensurar a qualidade do cdédigo gerado pelo

PhxSTGCompiler, tendo como base uma implementacao anterior.

Como pode ser observado na Tabela 9 na média o PhxSTGCompiler obteve
tempos 1,70% menores que o Haskell .NET. Tak e Queens obtiveram uma grande
melhoria, acima de 20%, decorrente principalmente da otimizagcdo dos desvios
condicionais, descrita ha Secao 5.3.3. Apenas em dois exemplos: Exp3 (-2,2%) e
DigitsEl (-44,8%), ocorreu uma queda no desempenho, sendo esta bastante

expressiva para o ultimo.

Tabela 9. PhxSTGCompiler x Haskell .NET

Programa Haskell .NET PhxSTGCompiler PhxSTGCompiler/Haskell
NET

Tak 15,10 12,58 20,00%

Primes 15,24 15,22 0,13%
Queens 13,54 10,15 33,45%

EXP3 29,97 30,64 -2,20%
DigitsE1l 19,86 36,01 -44,83%
WheelSievel 08,29 07,91 4,77%
WheelSieve2 20,70 20,58 0,60%
Media 1,70%

Buscando identificar o porqué de DigitsEl ter tido uma queda de
desempenho tado grande, foi feito um vasto estudo tanto no cédigo Core como no

STG gerados para este. Tal estudo demonstrou a auséncia, no cédigo Core, de

99

algumas otimizacdes e informacdes importantes. Foi observado que na STG de
DigitsEl algumas expressdes ao invés de gerarem thunks, para avaliagdo posterior,
eram avaliadas imediatamente através de expressdes case. Este tipo de otimizacao
era previsto na transformacéao Core para STG (Secao 4.2.2), mas apenas para tipos
Unboxed, o que nao é o caso. Outra informacao, ausente, que demonstrou alta
relevancia foi a presenca da flag de atualizagao /r (reentrant) em alguns binds, que
informa que a closure ndo necessitava ser atualizada. O uso desta Ultima

informacao causou grande impacto no programa WheelSieve2.

Tais informacdes nao sao obtidas através da Core, desta forma, a fim de
comprovar a importancia destas, alteragcdes manuais foram feitas no processo de
compilacado. Estas alteracBes nao se estendem a compilacdo em geral sendo
especificas para comprovar a influéncia destas informacdes em DigitsEl e
WheelSieve2. Como observado na Tabela 10, a grande queda no desempenho
observado em DigitsEl, praticamente, nao existe mais (-0,5%) e WheelSieve2 obteve
uma grande melhoria, passando a ser 224% mais rapido que a versao compilada

com o Haskell .NET.

Tabela 10. Compilagdo com informagdes ausentes na CORE

Programa PhxSTGCompiler(Alt) Haskell .NET PhxSTGCompiler/Haskell
.NET
DigitsEl 19,97 19,86 -0,5%
WheelSieve2 6,39 20,58 224,0%

Com estes novos valores, com excecao de Exp3, o PhxSTGCompiler obtém
melhores resultados para todos os cdodigos analisados e passa a ser na média
39,95% mais veloz que o Haskell .NET, vide Tabela 11. Como mencionando na Secao
4.2.2, a Core gerada pelo GHC esta sendo, atualmente, modificada. Espera-se que
em futuras versbes estas informacdes possam estar presentes, auxiiando na

geracao de um cdédigo mais veloz.

Tabela 11 - PhxSTGCompiler* x Haskell .NET. *Com altera¢ces manuais

Programa Haskell .NET PhxSTGCompiler PhxSTGCompiler/Haskell
NET

100

Tak 12,58 15,10 20,00%
Primes 15,22 15,24 0,13%
Queens 10,15 13,54 33,45%
EXP3 30,64 29,97 -2,20%
DigitsEl 19,97 19,86 4,77%
WheelSievel 07,91 08,29 -0,5%
WheelSieve2 06,39 20,58 223,98%
Media 39,95%

5.4.2 Versus GHC nativo

Por ser considerado o compilador estado da arte para Haskell, a
comparacdo com o gerador de cdédigo nativo do GHC é essencial para qualquer
implementacdo de um compilador Haskell. A Tabela 12 resume os resultados desta
comparacao. Como esperado, os tempos obtidos com GHC foram menores,
havendo uma diferenca superior a uma ordem de magnitude apenas para Primes e
Exp3. Para os demais a variagéo foi bem menor, sendo bastante semelhante para

Tak (1,21) e praticamente igual para WheelSieve2 (1,02).

Tabela 12. PhxSTGCompiler x GHC

Programa PhxSTGCompiler GHC PhxSTGCompiler/GHC
Tak 12,58 10,43 1,21
Primes 15,22 00,46 33,08
Queens 10,15 03,29 3,09
Exp3 30,64 01,74 17,58
Digitse1* 19,97 02,01 9,95
WheelSievel 07,91 02,38 3,32
WheelSieve2* 06,39 06,26 1,02
Média 9,89

*Valores obtidos com modificac8es manuais explicadas na Secao anterior.

A explicacao para uma diferenca tao grande para Primes e Exp3 se deve ao

alto tempo gasto com coleta de lixo realizados durante a execucdo destes

101

programas, onde a porcentagem de tempo gasto com coleta de lixo em relacao
ao tempo total de execucgao ficou acima de 55% (Tabela 13). Como o GHC tem um
coletor de lixo especificamente criado para lidar com uma linguagem funcional
estrita, em programas onde o consumo de memadria exige um grande trabalho por

parte do coletor de lixo o GHC tende a se destacar.

Tabela 13. Perfil do consumo de memdaria (PhxSTGCompiler)

Programa Bytes alocados na % Tempo em coleta
Heap de lixo

Tak 0 0,00%
Primes 549.341.700 55,34%
Queens 729.656 18,66%
Exp3 12.138.600 65,29%
DigitsE1* 6.657.824 53,36%
WheelSievel 33.458.150 11,48%
WheelSieve2* 14.589.090 22,28%

*Valores obtidos com modificagc6es manuais explicadas na Secéo anterior.

A comparacdo com GHC demonstrou que com excecao dos programas
onde o consumo de memodria € algo critico o compilador implementado é capaz
de gerar programas com desempenho semelhante. Mostra ainda onde esta o
gargalo do mapeamento de uma linguagem funcional na plataforma .NET,
gerenciamento de memoaria, apontando a direcdo para a qual futuras pesquisas

nesta area devem ser voltadas.

5.5 Consideracoes Finais

Neste capitulo foram efetuadas diversas alteracdes no codigo utilizando o
modelo de plugins, fornecido pelo Phoenix. Este recurso em conjunto com a
biblioteca de manipulacdo de cddigo IR demonstrou ser bastante util, facilitando a
identificacdo de padrbes de cbédigos e sua manipulacao. O conjunto de
otimizacfes permitiu que o compilador final gerasse um cédigo com desempenho

satisfatorio.

102

Ficou evidente que o maior problema no mapeamento de linguagens
funcionais na plataforma .NET € o gerenciamento de memoaria. Por este motivo a
maioria das otimizagOes realizadas tiveram como objetivo diminuir o consumo de
memoria dos programas gerados. Entretanto, melhorias maiores nao foram possiveis
devido a inviabilidade da manipulacao do coletor de lixo da CLR e da opcao por

gerar codigo verificavel.

103

104

6 CONCLUSOES E TRABALHOS FUTUROS

Neste trabalho, ap6s um amplo estudo de técnicas de implementacdes de
linguagens funcionais na plataforma .NET, foi apresentada uma nova abordagem
para construcdo de um compilador .NET para uma linguagem funcional. O
compilador foi construido utilizando o framework Phoenix, que é uma ferramenta
para construcao de compiladores e de ferramentas para analise e otimizacdo de

cadigo.

O uso do framework Phoenix, inicialmente, representou uma dificuldade a
mais, pois por ser uma ferramenta recente, havia pouco material de referéncia para
estudo. Entretanto, passado esta etapa inicial seu uso facilitou, bastante, a
construcdo do compilador, ao abstrair o processo de geracao de cdédigo .NET,
evitando a manipulacdo de cdédigo MSIL diretamente. A maior contribuicdo do
Phoenix, entretanto, foi permitir que uma série de otimizacdes fossem realizadas,

melhorando o desempenho do codigo gerado.

O uso de plugins permitiu que diversas otimizacdes fossem testadas
gradualmente, sem que fosse necessario alterar diretamente o cdédigo do
compilador. O teste individual de cada otimizac&o permitiu avaliar, isoladamente, o
impacto de cada uma das otimizagGes e assim escolher uma melhor configuracao

para o compilador.

Por fim, a comparacao com outros compiladores demonstrou que o cédigo
gerado possui um bom desempenho, produzindo cédigos mais velozes que 0s
gerados pelo Haskell .NET e valores satisfatérios quando comparado ao coédigo

gerado pelo GHC nativo.

6.1 Resumo das Contribuigoes

A seguir & descrito um resumo das principais contribuicdes deste trabalho:

105

e apresentacdo do estado da arte de implementacbes de linguagens
funcionais na plataforma .NET, onde foram descritas as principais técnicas
de mapeamento e comparacao entre projetos reais;

e estudo detalhado do framework Phoenix, com descricao das principais
funcionalidades, sempre que possivel através de exemplos praticos;

e apresentacdo de uma nova abordagem para construcdo de um
compilador funcional, capaz de gerar cddigo .NET para programas
Haskell. Este compilador além de validar a abordagem escolhida serve
como ferramenta para auxilio de pesquisas na area de otimizacao de
codigo, uma vez que novas técnicas podem facilmente ser incorporadas
aele;

e descricdo e implementacdo de técnicas de otimizacdo de cddigo.
Podendo algumas destas técnicas ser implementadas mesmo em

compiladores nao funcionais.

6.2 LimitacOes e Trabalhos Futuros

O preludio compilado representa apenas uma pequena parte do real.
Apenas as funcionalidades basicas requeridas pelos exemplos utilizados nos testes
foram contempladas. A compilacdo completa de toda a especificacdo Haskell 98
[12] e das bibliotecas do GHC, embora bastante trabalhosa, permitiria que qualquer
programa Haskell pudesse ser diretamente compilado para .NET através desta
implementacdao. Com a compilacao completa do prelidio, melhores testes
poderiam ser efetuados utilizando os grupos Espectral e Real do NoFib. O que pode

apontar novas possibilidades de otimizacao do cdédigo.

Neste projeto foi utilizada a versédo de julho de 2007 do Phoenix SDK. Esta
versao possui diversas limitacdes quanto a geracao de codigo .NET. Algumas destas
limitacdes foram contornadas, seguindo orientacdes obtidas através do férum da
ferramenta, outras foram contornadas utilizando plugins, como especificado na
Secao 5.2. Pouco antes do fim deste trabalho uma nova versao do Phoenix foi
lancada, trazendo, dentre outras novas funcionalidades, diversas correcGes e
melhorias na geracao de cédigo MSIL. Foram feitas algumas tentativas de atualizar

0 codigo para esta nova versao do SDK, entretanto devido a restricbes de tempo

106

esta atualizacao foi deixada de lado. A atualizacao para a nova versao por si sO ja
corrige uma série de deficiéncias na geracao de cddigo MSIL e pode resultar na

geracao de codigos mais velozes.

O framework Phoenix fornece uma grande quantidade de facilidades para
execucao de analises e otimizacdes de cdodigo. As otimizacdes aqui implementadas
utilizaram apenas uma parte destes recursos, 0 que ja foi suficiente para um ganho
consideravel no desempenho. Dentre os diversos projetos que podem ser
desenvolvidos utilizando o compilador aqui implementado em conjunto com a API

Phoenix, sdo sugeridos:

e Adicao de labels que permitam identificar trechos do cdédigo IR
responsaveis pelo mapeamento das estruturas funcionais. A identificacao
destes trechos de coédigo poderia ser utilizada para permitir que novas

formas de mapeamentos fossem testadas utilizando o modelo de plugins.

e Utilizar as bibliotecas de analise, tais como: Graph e Alias, para identificar
trechos de cédigo que executam tarefas desnecessarias ou passiveis de
otimizacdo. A identificacao destes trechos de cdédigo pode ser
adicionada a plugins que alterariam o funcionamento do compilador
permitindo a otimizacdo do cédigo gerado.

Embora o PhxSTGCompiler permita chamadas a métodos estaticos escritos

em outras linguagens .NET, como foi feito em algumas das bibliotecas do preludio, a
implementacdo aqui proposta teve como objetivo principal melhorar o
desempenho do mapeamento de estruturas funcionais no ambiente .NET, ndo
investindo muito na interoperabilidade. Sem duvida esta interoperabilidade foi
facilitada uma vez que ap6s mapeadas na CLR todas as linguagens compartilham
0 mesmo conjunto de tipos. Entretanto, a construcdo de bibliotecas que
encapsulem as diferencas existentes entre as estruturas funcionais e as estruturas OO

permitiria uma comunicacao mais direta.

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

107

REFERENCIAS BIBLIOGRAFICAS

J. Hughes, "Why Functional Programming Matters," in Research Topics in Functional
Programming. Addison-Wesley Pub, 1989, vol. 32, pp. 98-107.

J. Gough, Compiling for the .NET Common Language Runtime (CLR). Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2001.

D. Box and T. Pattison, Essential .NET: The Common Language Runtime. Addison-
Wesley Longman Publishing Co., Inc., 2002.

ECMA, "Standard ECMA-335: Common language infrastructure (CLI).," 2006.

M. L. d. B. Monteiro, "Integrando Haskell a Plataforma .NET," Dissertacdo de Mestrado,
2006.

D. Syme, "ILX: Extending the .NET Common IL for Functional Language
Interoperability,” Electronic Notes in Theoretical Computer Science, vol. 59, 2001.

E. Meijer, N. Perry, and A. v. Yzendoorn, "Scripting .NET Using Mondrian," in ECOOP
'01: Proceedings of the 15th European Conference on Object-Oriented Programming,

2001, pp. 150-164.

Y. Bres, B. P. Serpette, and M. Serrano, "Bigloo.NET: compiling Scheme to .NET
CLR," Journal of Object Technology, vol. 3, pp. 71-94, 2004.

M. Moskal, P. W. Olszta, and K. Skalski, "Nemerle: Introduction to a Functional .NET

Language,”

[10] D. A. Watt, Programming Language Design Concepts. John Wiley & Sons, 2004.

[11] Y. Minamide, G. Morrisett, and R. Harper, "Typed Closure Conversion,” in Symposium

on Principles of Programming Languages, 1996, pp. 271-283.

[12] S. L. Peyton Jones, Haskell 98 Language and Libraries: The Revised Report. Cambridge

University Press, 2003.

[13] J. Smith, N. Perry, and E. Meijer, "Mondrian for .NET," Dr. Dobb's J., vol. 27, pp. 28-

34, 2002.

[14] L. Augustsson and T. Johnsson, "The Chalmers lazy ML-compiler,” Comput. J., pp. 127-

141, 1989.

[15] Microsoft Corporation. Microsoft .NET Framework. [Online]. Disponivel em:

108

http://www.microsoft.com/net/

[16] ECMA International. [Online]. Disponivel em: http://www.ecma-

international.org/default.htm

[17] International ~ Organization for Standardization. [Online]. Disponivel em:

http://www.iso.org/iso/home.htm

[18] S. Lidin, Expert .NET 2.0 IL Assembler. Apress, 2006.

[19] Microsoft Research. SSCLI (Rotor) Home Page. [Online]. Disponivel em:
http://research.microsoft.com/sscli/

[20] MONO. [Online]. Disponivel em: http://www.mono-project.com/Main_Page

[21] G. A. Avelino, "Avaliacdo de Desempenho de Programas C# em Ambientes .NET -
SSCLI 2.0, .NET 2.0 e .NET 3.0," Trabalho ndo publicado, 2006.

[22] Novell. NOVELL.: Worldwide. [Online]. Disponivel em:

http://www.novell.com/home/index.html

[23] S. Finne, D. Leijen, E. Meijer, and S. L. Peyton Jones, "H/Direct: A Binary Foreign
Language Interface for Haskell," in ICFP'98, 1998.

[24] GreenCard: A Haskell Foreign Function Interface Preprocessor. [Online]. Disponivel em:

http://www.haskell.org/greencard/

[25] S. Finne. Hugs98 for .NET. [Online]. Disponivel em:

http://www.qgalois.com/~sof/hugs98.net/

[26] E. Meijer and S. Finne, "Lambada, Haskell as a better Java," in Proc. Haskell Workshop,
vol. 41, 2001, pp. 91-1109.

[27] L. O"Boyle, "Making Haskell .NET Compatible,"”

[28] S. L. Peyton Jones, "Implementing Lazy Functional Languages on Stock Hardware: The
Spineless Tagless G-Machine," Journal of Functional Programming, vol. 2, pp. 127-202,
1992.

[29] Microsoft F#. [Online]. Disponivel em: http://research.microsoft.com/fsharp/

[30] H. Barendregt and E. Barendsen, "Introduction to Lambda Calculus,” in Aspenas

Workshop on Implementation of Functional Languages, Géteborg, 1988.
[31] T. M. Breuel, "Lexical Closures for C++," in C++ Conference, 1988, pp. 293-304.

[32] A. Kennedy and D. Syme, "Design and implementation of generics for the .NET

109

Common language runtime,” in PLDI '01: Proceedings of the ACM SIGPLAN 2001
conference on Programming language design and implementation, New York, NY,
USA, 2001, pp. 1-12.

[33] S. Marlow and S. L. Peyton Jones, "Making a fast curry Push/enter vs eval/apply for
higher-order languages,” in ICFP '04: Proceedings of the ninth ACM SIGPLAN
international conference on Functional programming, 2004, pp. 4-15.

[34] O. Hunt, "The Provision of Non-Strictness, Higher Kinded types and Higher Ranked
Types on an Object Oriented Virtual Machine,” Dissertacdo de Mestrado, 2006.

[35] E. Meijer and K. Claessen, "The Design and Implementation of Mondrian," in Haskell
Workshop, 1997.

[36] M. Odersky and P. Wadler, "Pizza into Java: translating theory into practice,”" in POPL
'97: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 1997, pp. 146-159.

[37] S. L. Peyton Jones and D. R. Lester, Implementing Functional Languages. Prentice-Hall,
Inc, 1992.

[38] B. Cabral, P. Marques, and L. Silva, "RAIL: Code Instrumentation for .NET," in SAC
'05: Proceedings of the ACM Symposium on Applied Computing, 2005.

[39] Microsoft Corporation. COM: Component Object Model Technologies.
[40] INRIA. (2008,) The Caml language. [Online]. Disponivel em: http://caml.inria.fr/

[41] Microsoft ~ Corporation. Microsoft Research. [Online]. Disponivel em:

http://research.microsoft.com/projects/ilx/ilx.aspx

[42] S. Marlow. The Glasgow Haskell Compiler. [Online]. Disponivel em:
http://www.haskell.org/ghc/

[43] S. L. Peyton Jones and S. Marlow, "The STG Runtime System (Revised),” Yale
University, 1999.

[44] M. Research. Microsoft Research. [Online]. Disponivel em:

http://research.microsoft.com/phoenix/

[45] "Phoenix Documentation," 2007.
[46] D. Stewart, "Multi-Paradigm Just-In-Time Compilation,” Dissertacdo de Mestrado, 2002.

[47] S. L. Peyton Jones and A. L. M. Santos, "A transformation-based optimiser for Haskell,"

Sci. Comput. Program., vol. 32, pp. 3-47, 1998.

110

[48] S. L. Peyton Jones and S. Marlow, "Secrets of the Glasgow Haskell Compiler Inliner,"
Journal of Functional Programming, vol. 12, pp. 393-434, 1999.

[49] M. Serrano, "Inline expansion: when and how?," in Proceedings of the conference on

Programming Languages, Implementation and Logic Programming, 1997.

[50] P. Wadler and R. J. M., "Projections for Strictness Analysis,” in Functional
Programming Languages and Computer Architecture, vol. 274, 1987, pp. 385-407.

[51] S. L. Peyton Jones, C. V. Hall, K. Hammond, W. Partain, and P. Wadler, "The Glasgow
Haskell compiler: a technical overview," in Proceedings of UK Joint Framework for

Information Technology (JFIT) Technical Conference, 1993.
[52] A. Tolmach, "An External Representation for the GHC Core Language,"

[53] S. L. Peyton Jones and J. Launchbury, "Unboxed Values as First Class Citizens in a Non-
Strict Functional Language,” in Proceedings of the Conference on Functional
Programming and Computer Architectur, Cambridge, Massachussets, USA, 1991, pp.
636-666.

[54] W. Partain, "The nofib Benchmark Suite of Haskell Programs," Proceedings of the 1992
Glasgow Workshop on Functional Programming, no. Springer-Verlag, 1993.

[55] S. Borde. Shri Borde's WebLog. [Online]. Disponivel em:
http://blogs.msdn.com/shrib/archive/2005/01/25/360370.aspx

[56] D. Stutz, T. Neward, and G. Shilling, Shared Source CLI Essentials. O"Reilly, 2003.
[57] D. Wakeling, "A Haskell to java Virtual Machine Code Compiler,” in, 1998, pp. 39-52.

[58] S. Thompson, Haskell: The Craft of Functional Programming (2nd Edition). Addison
Wesley, 1999.

[59] M. M. T, "The Haskell 98 Foreign Function Interface 1.0,"
[60] D. Syme, A. Granicz, and A. Cisternino, Expert F\#. APress, 2007.
[61] R. Pickering, Foundations of F\#. Apress, 2007.

[62] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific Languages. The
Pragmatic Bookshelf, 2007.

[63] A. Kennedy and D. Syme, "Pre-compilation for .NET Generics,” Microsoft Research,
Cambridge, U.K., 2005.

[64] A. V. Aho, R. Sethi, and J. D. Ullman, Compiladores: Principios, Técnicas e
Ferramentas. LTC, 1995.

111

[65] J. Launchbury and S. L. Peyton Jones, "Lazy Functional State Threads," SIGPLAN Not.,
vol. 29, pp. 24-35, 1994,

[66] The NoFib Haskell Benchmark Suite. [Online]. Disponivel em:
http://einstein.dsic.upv.es/nofib/ingles/index 1024 en.php

[67] G. Bracha, N. Gafter, J. Gosling, and P. von der Ahé. Closure for the Java Programming

Language. [Online]. Disponivel em: http://www.javac.info/

[68] T. Dowd, F. Henderson, and P. Ross, "Compiling Mercury to the .NET Common
Language Runtime,"” Proceedings of Babel'01, 2001.

[69] J. Hamilton, "Language integration in the common language runtime,” SIGPLAN Not.,
vol. 38, 2003.

[70] G. A. Avelino, "Analise Comparativa de Frameworks para Instrumentacdo de Cddigo
.NET," Trabalho néo publicado, 2006.

[71] S. Smetsers, E. Nocker, J. v. Groningen, and R. Plasmeijer, "Generating Efficient Code
for Lazy Functional Languages,” in Proceedings of the Conference on Functional
Programming and Computer Architecture, 1991, pp. 592-617.

[72]S. C. Wray and J. Fairbairn, "Non-Strict Languages - Programming and
Implementation,” The Computer Journal, vol. 32, pp. 142-151, 1989.

[73] M. Tullsen, "Compiling Haskell to Java,” in IFL '97: Selected Papers from the 9th
International Workshop on Implementation of Functional Languages, 1996.

[74] M. Serrano and M. Feeley, "Storage use analysis and its applications,” in IFL '97:
Selected Papers from the 9th International Workshop on Implementation of Functional
Languages, 1996, pp. 50-61.

[75] J. B. Rosser, "Highlights of the history of the lambda-calculus,” in LFP '82: Proceedings
of the 1982 ACM symposium on LISP and functional programming, 1982, pp. 216-225.

[76] N. Perry and E. Meijer, "Implementing Functional Languages on Object-Oriented Virtual
Machines,” IEE Proceedings - Software, vol. 151, pp. 1-9, 2004.

[77] I. Holyer and E. Spiliopoulou, "The Brisk Machine: A Simplified STG Machine," in
Implementation of Functional Languages, 9th International Workshop, {IFL}'97, St.
Andrews, Scotland, {UK}, September 1997, Selected Papers, {LNCS} 1467, 1999, pp. 20-
38.

[78] R. Douence and P. Fradet, "A Systematic Study of Functional Language

112

Implementations,” ACM Transactions on Programming Languages and Systems, vol. 20,
pp. 344-387, 1998.

[79] F. H. de, H. P. de, R. M. Ferreira, and R. D. Lins, "An Action Semantics for STG,"

[80] D. Coutts, D. Stewart, and R. Leshchinskiy, "Rewriting Haskell Strings,” in Practical
Aspects of Declarative Languages 8th International Symposium, PADL 2007, 2007, pp.
50-64.

[81] J. Clements and M. Felleisen, "A Tail-recursive Machine With Stack Inspection,” ACM
Trans. Program. Lang. Syst., vol. 26, pp. 1029-1052, 2004.

[82] K. Choi, H.-i. Lim, and T. Han, "Compiling Lazy Functional Programs Based on the
Spineless Tagless G-Machine for the Java Virtual Machine," Lecture Notes in Computer
Science, vol. 2024, 2001.

[83] Y. Bres, B. P. Serpette, and M. Serrano, "Compiling Scheme programs to .NET Common
Intermediate Language,” in 2nd International Workshop on .NET Technologies, 2004.

[84] S. L. Peyton Jones and D. Lester, "A Modular Fully-lazy Lambda Lifter in HASKELL,"
Software - Practice and Experience, vol. 21, pp. 479-506, 1991.

[85] R. Ennals and S. L. Peyton Jones, "Optimistic evaluation: an adaptive evaluation strategy
for non-strict programs,” in ICFP '03: Proceedings of the eighth ACM SIGPLAN
international conference on Functional programming, 2003, pp. 287-298.

[86] S. Finne, D. Leijen, E. Meijer, and S. L. Peyton Jones, "Calling Hell from Heaven and
Heaven from Hell," in ICFP '99: Proceedings of the fourth ACM SIGPLAN international
conference on Functional programming, 1999, pp. 114-125.

[87] T. Johnsson, "Lambda lifting: transforming programs to recursive equations,” in
Functional programming languages and computer architecture. Proc. of a conference
(Nancy, France, Sept. 1985), 1985.

[88] M. Monteiro, M. Araujo, R. Borges, and A. Santos, "Compiling Non-strict Functional
Languages for the .NET Platform,” Journal of Universal Computer Science, vol. 11, pp.
1255-1274, 2005.

[89] R. F. Massa, R. D. Lins, and A. L. M. Santos, "A back-end for GHC based on categorical
multi-combinators,” in SAC '04: Proceedings of the 2004 ACM symposium on Applied
computing, New York, NY, USA, 2004, pp. 1482-1489.

[90] S. Marlow, A. R. Yakushev, and S. L. Peyton Jones, "Faster laziness using dynamic

113

pointer tagging,” in ICFP '07: Proceedings of the 2007 ACM SIGPLAN international

conference on Functional programming, Freiburg, Germany, 2007, pp. 277-288.

114

APENDICEA - UNIDADES DE COMPILACAO

As unidades de compilagao representam estruturas presentes na maquina

STG e contém cddigo responsavel por gerar sua respectiva representacao IR. Sao

divididas em unidades basicas, expressdes, unidades atbmicas e alternativas.

A Tabela 14 descreve classes que representam as unidades basicas de

compilacao, as quais correspondem aos noés principais da STG. Utilizam o método

Generate para gerar seu codigo IR e delega as unidades que as compdem a

geracao de seus proprios codigos.

Tabela 14. Unidades basicas

Classe Campos

Geracao da IR (método Generate)

ModuleUnit e name:String
e binds:List<Bind>

Bind evar:AtomVariable
e lambda:LambdaForm

Lambda- o freeVars:List<AtomVari
ble>

Form e arg:List<cAtomVarible>

Constr6i a classe correspondente ao
maodulo e adiciona um método .cctor para
inicializacao dos campos estaticos
correspondentes aos binds globais. Através
de um Iloop €é chamado o método
Generate de cada um dos binds
armazenados em sua lista.

Verifica se a ligacdo (bind) é global ou
local e cria o local correspondente para o
armazenamento da closure. Caso seja
global é criado um campo estatico na
classe e um método para sua inicializagao,
0 qual é adicionado a uma lista de
métodos de inicialzacdo a serem
chamados no método .cctor da classe.
Caso o bind seja local a closure é
armazenada como variavel local da
funcéao FEP, criada a partir da lambda-form.
Verifica a flag de atualizacdo para

identificar se é necessario criar a SEP e

115

o flag:Bool decidir o tipo de closure a ser instanciado.
D ICEE I HE P e A SEP é criada apenas quando o valor da
flag for falso (closure nao atualizavel). O
método Generate da lambda-form gera o
esqueleto da FEP e chama o método
Evaluation da expressao armazenada, a
gual gera o coédigo correspondente da
funcao.

DataUnit o listTvs:List<String> Cria lambda-forms que instanciam
e listConsDef:List<Constr

uctorDefUnit> construtores. Tais lambda-form sao

necessarias para aplicagdes parciais de
construtores e passagem de um construtor
como argumento de uma funcao. Apos a
criacdo das Ilambda-forms, estas sao
ligadas a variaveis através de um bind e
cada um destes binds tem seu meétodo

Generate executado.

As unidades de compilacdo que representam expressdes correspondem as
expressdes presentes na STG. Geram coédigo IR através do método Evaluation, o
qgual além de gerar sua representacao IR retorna um operando que armazena o

resultado da expressao.

Tabela 15. Unidades de compilacao que representam expressdes

Classe Campos Geracao da IR (método Evaluation)
ExpLet ebinds:List<Bind> Casa bind presente tem seu método
oiﬁpression:Expressi Generafe executado. Ap6s a geracédo do
codigo dos binds a expressao é avaliada,
retornando o operando que armazena O
resultado.
ExpLetRec ebinds:List<Bind> Semelhante a ExplLet, porém antes de efetuar
oiﬁpression:Expressi o bind cada variavel é adicionada a lista de

variaveis livres da lambda-form, permitindo

qgue a expressao possa fazer referéncia

116

recursiva.
ExpCase eexpression:Expressi Cria uma instrugcao switch onde para um case
ogl?s:List<AIternative € gerado para cada objeto AlternativeUnit.
> Para tipos algébricos os valores presentes no
construtor geram variaveis locais, para
poderem ser acessados pela expressdo. E
criada uma variavel para o armazenamento
da expressao selecionada, a qual consiste no
retorno da avaliacdo de uma expressao case.
ExpLiteral elit: AtomLiteral Retorna a avaliagcdo do Atomliteral

armazenado.
ExpApplicati evarAtomVariable Utiliza Reflection e informag¢des armazenadas

eargs:List<cAtom>
on

no ambiente de compilagcado para decidir se a
funcdo pode ser chamada diretamente. Se a
aridade ¢é conhecida em tempo de
compilacdo e a aplicacdo é saturada é
gerado codigo para a chamada direta da
funcdo estatica correspondente. Caso
contrario os argumentos sao empilhados na
pilha de argumentos e é feita a chamado ao
meétodo Enter da closure correspondente.
ExpConstruct econst:Constructor Utillizando as informacdes coletadas através
or cargsiList<Atom> de funcles criadas a partir da DataUnit
correspondente é verificado se a aplicacao
do construtor é saturada. Se a aplicacao for
satura é gerada a classe Pack
correspondente ao construtor e seus
argumentos, caso contrario a aplicacao do
construtor é tratada como uma aplicacao
parcial da funcéao do construtor.

ExpBuiltin eop:PrimitiveOperat Gera uma instrucdo que aplica dois
or

eargs:List<Atom> operandos e retorna o resultado da

z

aplicacdo. A operagdo a ser executada é

definida pelo PrimitiveOperator, o qual é

117

mapeado para uma operacao basica

presente na CLR.

Unidades de compilacdo atdbmicas representam os elementos atdbmicos da

STG. Estes elementos pode ser variaveis, literais, construtores ou ainda expressdes

entre parénteses. Seu método Evaluation retorna o operando correspondente a

unidade atébmica que pode ser uma variavel ou uma constante. Nao gera

instrucoes IR diretamente, no geral, apenas retorna operandos criados em outras

unidades de compilacao.

Tabela 16. Unidades de compilacao atbmicas

Classe Campos

Geracdao da IR (método Evaluation)

AtomVariable e

AtomLiteral<T>

Constructor

AtomExpression e

moduleName:String
varName:String
type:STGType

value:T

moduleName:String
constName:String

expression:Expression

Faz a busca, primeiramente, na tabela
de simbolos da funcdo, caso nao
encontre nesta faz a busca na tabela de
simbolos do médulo. A partir do simbolo
localizado e retornado um
VariableOperand que representa ou
uma variavel local da funcdo ou um
campo estatico da classe, neste udltimo
caso quando o simbolo é localizado na
tabela de simbolos do moddulo (bind
global).

Retorna um ImmediateOperand com o
valor correspondente ao literal.

Utiizado apenas para armazenar o
nome do construtor. Nao é avaliado
diretamente.

Retorna a avaliacdo da expressao

armazenada.

Esta dltima

classe de unidades de compilacado representa possiveis

alternativas de uma expressado case. Nao geram cddigo IR diretamente, apenas

armazenam a expressao, que caso selecionada, sera executada.

118

Tabela 17. Unidades de compilagéo que representam alternativas

Classe Campos

Geracao da IR (método Evaluation)

AltPrimitive e literal:Interger

AltAlgebraic e const:Constructor
e vars:List<cAtomvariabl
e>
e expression:Expression

AltDefault e expression:Expressio
n

Sua avaliacdo retorna avaliacdo da
expressao armazenada.

Armazena variaveis que devem @ ser
preenchidas antes da avaliacdo da
expressao. Sua avaliacao retorna avaliacao
da expressdo armazenada.

Sua avaliacdo retorna avaliacdo da

expressao armazenada.

119

APENDICE B -PROFILER DE MEMORIA

O Cddigo 29 cria uma ferramenta que gera o perfil de consumo de memaria
de um programa. Utiliza, para tanto, contadores de desempenho disponibilizados
pelo framework .NET. Sao retornados cinco valores, que corresponde,
respectivamente, ao maximo de memodria heap alocado, a média das
porcentagens de tempo gasto em coleta de lixo e o nUmero de coletas realizadas

nas geracdes 0, 1 e 2.

1 class MemoryProfiler

2 {

3 static float maxMem;

4 static float totalGCTime;

5 static int numGCTime;

6 static int geroO;

7 static int gerl;

8 static int ger2;

9 private static PerformanceCounter gcTimerCounter;

10 private static PerformanceCounter heapBytesCounter;

11 private static PerformanceCounter gerOCounter;

12 private static PerformanceCounter gerlCounter;

13 private static PerformanceCounter ger2Counter;

14 static void Main(string[] args)

15 {

16 if (File.Exists(args[0]))

17 {

18 string instanceName = args[0].Remove(args[0]-Length-4);
19

20 // Cria contadores

21 gcTimerCounter =

22 new PerformanceCounter ("' .NET CLR Memory', "% Time in GC');
23 gcTimerCounter. InstanceName = instanceName;

24 heapBytesCounter =

25 new PerformanceCounter(*".NET CLR Memory", "# Bytes in all
26 Heaps'™):

27 heapBytesCounter. InstanceName = instanceName;

28 gerOCounter =

29 new PerformanceCounter(*".NET CLR Memory", "# Gen O
30 Collections™™);

31 gerOCounter. InstanceName = instanceName;

32 gerlCounter =

33 new PerformanceCounter("".NET CLR Memory"™, "# Gen 1
34 Collections™);

35 gerlCounter. InstanceName = instanceName;

36 ger2Counter =

37 new PerformanceCounter("".NET CLR Memory", "# Gen 2
38 Collections™);

39 ger2Counter. InstanceName = instanceName;

40

41 //Cria thread para monitorar execucdo do programa

42 ThreadStart memoryOperation = new ThreadStart(GetMemoryCount);
43 Thread memoryThread = new Thread(memoryOperation);

44 memoryThread.Start();

45

46 //Executa o programa e espera pelo seu final

120

}

else

Process p = Process.Start(args[0]):
p-WaitForExit();
memoryThread.Abort();

//1Imprime valores obtidos

Console_ Write("{O:NO}\t", maxMem);
if (numGCTime > 0)

{

}

else

Console_Write('0™);
Console . Write("{0:NO}\t", ger0);
Console Write("{O:NO}\t", gerl);
Console Write("{O:NO}\n", ger2);

Console.Write(totalGCTime /7 numGCTime + "\t'");

Console._WriteLine("'Programa ndo existe: " + args[0]);

static void GetMemoryCount()

while (true)

try
{
float totalmemory = heapBytesCounter.NextValue();
if (maxMem < totalmemory)
maxMem = totalmemory;
Thread.BeginCriticalRegion(); //Inicio operacédo unaria
totalGCTime += gcTimerCounter._NextValue();
NnumGCT ime++;
Thread.EndCriticalRegion(); //Fim operagéo unaria
//Armazena os ultimos valores para cada geracao

ger0 = (int)gerOCounter _NextValue();
gerl = (int)gerlCounter.NextValue();
ger2 = (int)ger2Counter _NextValue();

catch (Exception){}
//Aguarda 10 milisegundos
Thread.Sleep(10);

Codigo 29. Ferramenta de profiler de meméaria.

121

APENDICE C -PLUGIN DE RECURSAO ATRAVES DE DESVIOS

Plugin responsavel por substitur chamadas recursivas por desvios
incondicionais para o inicio da funcédo. De forma a evitar redundancia, no Cdédigo
30 é apresentado, apenas, o método Execute do plugin, o qual contém a parte
funcional deste. Instrucdes de como construir o restante do plugin podem ser vistas

na Secao 3.2.

A funcéo Execute verifica se a instrugdo marcada se chama recursivamente
(inhas 18 e 19), se este for 0 caso cria a instrucao de desvio (linhas 53 a 102), caso

contrario apenas adiciona uma instrucao fail antes da chamada (linhas 23 a 43).

1 protected override void Execute(Phx.Unit unit)

2 {

3 ifT (lunit.IsFunctionUnit)

4 return;

5

6 Phx._FunctionUnit functionUnit = unit.AsFunctionUnit;

7 foreach (Phx.IR.Instruction instruction in

8 functionUnit. Instructions)

9

10 if (instruction is Phx_.IR_Calllnstruction)

11

12 TailCallExtensionObject extObj =

13 TailCallExtensionObject.Get(instruction);

14 if (extObj '= null)

15 {

16 //Verifica se funcdo chamada tem o mesmo nome da funcdo que a
17 //contém

18 if (instruction.AsCalllnstruction.FunctionSymbol !=
19 functionUnit.FunctionSymbol)

20 {

21 //Se nédo tiver o mesmo nome € inserido uma instrucdo tail
22

23 Phx_IR.Instruction taillnstruction =

24 Phx._IR._Valuelnstruction.New(functionuUnit,
25 Phx.Targets.Architectures.Msil.Opcode.TAILPREFIX);
26

27 instruction. InsertBefore(taillnstruction);

28

29 //Remove a instrucdo que armazena o valor de

30 //retorno da funcéo

31 if (instruction.Next.Opcode ==

32 Phx.Targets.Architectures._Msil_Opcode.st)

33 instruction._Next.Remove();

34

35 //Busca a instrucdo de retorna da funcéo

36 Phx.IR.Instruction returnlnstruction =

37 instruction.Next;

38 whille (returninstruction. IsReturn)

39 returnlnstruction = returnlnstruction.Next;
40 instruction. InsertAfter(returninstruction.Copy());
41

42 //Desmarca a instrucéo

122

51 }

instruction.RemoveExtensionObject(extObj);

}

else
//Chama método responsavel por gerar desvio
InsereBranch(instruction, functionUnit);

}

52 //Método responsavel por criar instrucdes de desvio
53 void InsereBranch(Instruction instruction,FunctionUnit functionUnit)

54 {

100
101
102 }

Operand varOp =
functionUnit_FirstEnterInstruction._DestinationOperandList;
Phx.Symbols.FunctionSymbol funcSym = instruction.FunctionSymbol;

//Cria lista com os argumentos passados a funcéo
List<Operand> argsOpAux = new List<Operand>();
while (varOp!=null)

{
if (varOp.lIsVariableOperand)
{
argsOpAux.Add(varOp);
varOp = varOp.Next;
}

//1Inverte a lista de argumentos para que sejam armazenados corretamente
List<Operand> argsOp = new List<Operand>();
for (int i = 1; i <= argsOpAux.Count; i++)

{
}

//Armazena os valores passados para a funcéo
foreach (Operand op in argsOp)
{

argsOp.Add(argsOpAux[argsOpAux.Count - i]);

it (op.lIsVariableOperand)
{
Operand sourceOp =
Operand.NewRegister(functionUnit, op.Type,
Phx.Targets.Architectures._Msil_Register.SR0O);
Instruction storelnstr =
Instruction.NewUnary(functionUnit,
Phx.Targets.Architectures._Msil _Opcode.st, op, sourceOp);
instruction. InsertBefore(storelnstr);

}

//Cria instrucdo de desvio p/ inicio da funcéo
Instruction branchlnstruction =
Instruction.NewBranch(functionuUnit,
Phx.Targets.Architectures.Msil.Opcode.br,
functionUnit.FirstEnterinstruction.AsLabellnstruction);
instruction. InsertBefore(branchinstruction);

//Remove a instrucdo que armazena o valor de retorno da funcéo

if (instruction.Next.Opcode == Phx.Targets.Architectures.Msil.Opcode.st)
instruction._Next.Remove();

instruction.Remove();

Cadigo 30. Plugin que substitui recursdo por desvios incondicionais.

123

Dissertagdo de Mestrado apresentada por Guilherme Amaral Avelino & Pés-Graduagio
em Ciéncia da Computagio do Centro de Informitica da Universidade Federal de
Pernambuco, sob o titulo, “Integraciio de Linguagens Funcionais a Plataforma NET
Utilizando o Framework Phoenix”, orientada pelo Prof. André Luis de Medeiros

Santos e aprovada pela Banca Examinadora formada pelos professores:

AN\NQ»J\ M

Prof. Hermano Perrelli de Mourd._)
Centro de Informitica / UFPE

VL)

Prof. Ricardo Massa de Oliveira Lima
Departamento de Sistemas Computacionais / UPE

L))

P(?ﬁ. André Luiz{fle Medeiros Ountes
entro de Informatica / UFPE

Visto e permitida a impressio.
Recife, 8 de agosto de 2008.

-%mmmw 4 Uiy {z;a.»f;m EJL &,-, 'A&
Prof, FRANCISCO DE ASSIS TENORIO DE CARVALHO

Coordenador da Pos-Graduagio em Ciéncia da Computagio do
Centro de Informdtica da Universidade Federal de Pernambuco.

