

Pós-Graduação em Ciência da Computação

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE, AGOSTO/2008

Integração de Linguagens Funcionais à
Plataforma .NET utilizando o Framework

Phoenix

Por

Guilherme Amaral Avelino

Dissertação de Mestrado

 UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Guilherme Amaral Avelino

Integração de Linguagens Funcionais à Plataforma .NET
Utilizando o Framework Phoenix

ESTE TRABALHO FOI APRESENTADO À PÓS-GRADUAÇÃO EM
CIÊNCIA DA COMPUTAÇÃO DO CENTRO DE INFORMÁTICA DA
UNIVERSIDADE FEDERAL DE PERNAMBUCO COMO REQUISITO
PARCIAL PARA OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIA
DA COMPUTAÇÃO.

ORIENTADOR: Prof. Dr. ANDRÉ LUIS DE MEDEIROS SANTOS

RECIFE, AGOSTO/2008

Avelino, Guilherme Amaral
 Integração de linguagens funcionais à plataforma .NET
utilizando o framework Phoenix / Guilherme Amaral
Avelino. – Recife: O Autor, 2008.
 104 folhas : il., fig., tab.

 Dissertação (mestrado) – Universidade Federal de
Pernambuco. CIn. Ciência da computação, 2008.

 Inclui bibliografia e apêndices.

Linguagem de programação. 2. Compiladores. I. Título.

 005.1 CDD (22.ed.) MEI2008-100

AGRADECIMENTOS

Agradeço a todos aqueles que, direta ou indiretamente contribuíram para a

realização desta pesquisa e em especial:

• Primeiramente a Deus, por ter me dado saúde, inteligência e perseverança

necessária à execução deste projeto.

• Aos meus pais, Paulo Lustosa Avelino e Aldênia Maria Amaral Santos Avelino,

pelo carinho, amor e dedicação com que se empenharam na minha

formação pessoal e profissional;

• A Lyvia Basílio Caland, minha namorada, pela compreensão nos momentos

de ausência e pelo apoio e incentivo constante durante esta fase de

minha vida;

• Ao professor André Santos, pela oportunidade de desenvolver este projeto e

acima de tudo por sua excelente orientação e auxílio nos mais diversos

problemas enfrentados durante a realização deste;

• Aos amigos do mestrado, em especial a Armando Soares, Vinícius Pádua e

Marcos Duarte, pela motivação, auxílio e companheirismo. Além de um

convívio fraterno que proporcionou um ambiente propício ao

desenvolvimento deste trabalho;

• A Simon Peyton Jones, Tim Chevalier e demais participantes do fórum do

GHC que contribuíram com informações importantes sobre o GHC e a

linguagem CORE;

• A Andy Ayers e Matt Mitchell, membros da equipe desenvolvimento do

Phoenix, pela sempre atenciosa forma com que responderam as minhas

mais variadas dúvidas sobre o uso desta ferramenta.

• A Monique Louise de Barros Monteiro, pelas explicações a respeito do projeto

Haskell .NET e pelas dicas e comentários bastante úteis para o

desenvolvimento deste projeto.

• À Microsoft Research pelo apoio financeiro, permitindo que eu me dedicasse

integralmente ao projeto.

• Ao Centro de Informática e a sua excelente equipe de professores e

profissionais, que muito contribuíram para minha formação e

proporcionaram a base para o desenvolvimento deste trabalho.

• A todos os meus amigos e familiares, pelo apoio.

RESUMO

Linguagens funcionais se destacam pelo seu alto poder de expressão e

abstração, promovido por construções de alto nível como polimorfismo

paramétrico, funções de alto nível e aplicações parciais. Embora estes recursos

sejam bastante úteis, tradicionalmente, linguagens funcionais têm sido pouco

empregadas fora do ambiente acadêmico. Esta situação é em parte explicada

pela ausência de uma infra-estrutura de desenvolvimento que forneça ferramentas

e APIs capazes de aumentar a produtividade e permita o uso das mais recentes

tecnologias.

Uma alternativa para fornecer esta infra-estrutura é integrar linguagens

funcionais a plataformas que disponibilizem tais facilidades, como a .NET. Embora a

plataforma .NET tenha sido projetada de forma a suportar múltiplas linguagens, seu

foco foi dado ao suporte dos paradigmas imperativo e orientado a objeto,

carecendo de estruturas que permitam um mapeamento direto de linguagens

funcionais.

Objetivando estudar novas técnicas de mapeamento de estruturas

funcionais na plataforma .NET, neste trabalho foi desenvolvido um compilador

funcional que gera código .NET, utilizando o framework Phoenix. O uso do

framework Phoenix além de auxiliar na geração inicial do código permitiu que

análises e otimizações fossem feitas, posteriormente, melhorando o desempenho

dos programas gerados.

Palavras-chave: Linguagem funcional; NET; Phoenix; STG; Compiladores.

ABSTRACT

Functional languages stand out for their high power of expression and

abstraction, promoted by high-level buildings as parametric polymorphism, high-

level functions and partial applications. However these features are quite useful,

traditionally, functional languages have been little used outside the academic

environment. This is partly explained by the lack of a development infrastructure that

provides tools and APIs which are capable of increasing the productivity and allow

the use of latest technologies.

An alternative to provide this infrastructure is to integrate functional languages

to platforms that provide such facilities, such as .NET. Although the platform. NET has

been designed in a way that supports multiple languages, its focus was given to the

support of imperative paradigms and the object oriented, lack of structures that

allow a direct mapping of functional languages.

Aiming to study new techniques for mapping of functional structures on the

platform. NET, in this work, a functional compiler that generates .NET code was

developed, using Phoenix framework. Apart from helping in generating initial code,

the use of the Phoenix framework permitted analyses and optimizations to be made,

subsequently, improving the performance of the generated programs.

Keywords: Functional language; NET; Phoenix; STG; Compilers.

SUMÁRIO

1 INTRODUÇÃO... 16

1.1 CONTEXTO E MOTIVAÇÃO... 16
1.2 ORGANIZAÇÃO DA DISSERTAÇÃO.. 18

2 PROGRAMAÇÃO FUNCIONAL NA PLATAFORMA .NET.. 21

2.1 INTRODUÇÃO A LINGUAGENS FUNCIONAIS.. 21
2.1.1 Funções de alta ordem ... 22
2.1.2 Aplicação parcial de funções.. 22
2.1.3 Avaliação preguiçosa ... 23
2.1.4 Polimorfismo paramétrico.. 24
2.1.5 Tipos algébricos... 25

2.2 PLATAFORMA .NET.. 26
2.2.1 CLR.. 26
2.2.2 Outras Implementações da CLI.. 28

2.3 INTEGRAÇÃO À PLATAFORMA .NET .. 29
2.3.1 Bridge ... 29
2.3.2 Compilação .. 30
2.3.3 Estendendo a CLI.. 31

2.4 MAPEANDO ESTRUTURAS FUNCIONAIS EM AMBIENTES OO ... 32
2.4.1 Closures .. 32

2.4.1.1 Projetando uma closure ...34
2.4.2 Mecanismo de aplicação de funções.. 36

2.4.2.1 Modelo push/enter..37
2.4.2.2 Modelo eval/apply ...37

2.4.3 Representação de tipos algébricos... 38
2.5 IMPLEMENTAÇÕES EXISTENTES ... 39

2.5.1 Hugs for .NET .. 40
2.5.2 Mondrian.. 41
2.5.3 Nemerle.. 42
2.5.4 F#e ILX .. 43
2.5.5 Haskell .NET .. 44

2.6 CONSIDERAÇÕES FINAIS .. 45

3 PHOENIX FRAMEWORK.. 47

3.1 REPRESENTAÇÃO INTERMEDIÁRIA (IR).. 48
3.1.1 Instruções ... 49

3.1.2 Operandos... 51
3.1.3 Tipos .. 52
3.1.4 Unidades .. 54
3.1.5 Símbolos ... 55

3.1.5.1 Proxy...57
3.2 FASES E PLUGINS ... 57
3.3 GERANDO CÓDIGO ... 60

3.3.1 Gerando código MSIL .. 61
3.4 ANÁLISE E OTIMIZAÇÃO... 62
3.5 CONSIDERAÇÕES FINAIS .. 62

4 PROJETO E IMPLEMENTAÇÃO ... 64

4.1 OBJETIVOS.. 64
4.2 ARQUITETURA.. 64

4.2.1 STG .. 67
4.2.2 Core to STG.. 68

4.3 PHXSTGCOMPILER ... 72
4.3.1 Lista de fases ... 75
4.3.2 Estratégia de compilação... 77
4.3.3 Ambiente de execução .. 79

4.4 CONSIDERAÇÕES FINAIS .. 82

5 ANÁLISE E OTIMIZAÇÃO ... 84

5.1 METODOLOGIA... 84
5.2 CÓDIGO .NET GERADO COM O USO DO PHOENIX .. 86

5.2.1 Variáveis temporárias... 87
5.2.2 Casamento de padrões aninhados... 89

5.3 ANÁLISES E OTIMIZAÇÕES .. 91
5.3.1 Tail call.. 91
5.3.2 Desvios em chamadas recursivas .. 94
5.3.3 Casamento de padrões com valores booleanos................................ 96

5.4 ANÁLISE FINAL DO COMPILADOR ... 97
5.4.1 Versus Haskell .NET .. 98
5.4.2 Versus GHC nativo.. 100

5.5 CONSIDERAÇÕES FINAIS .. 101

6 CONCLUSÕES E TRABALHOS FUTUROS ... 104

6.1 RESUMO DAS CONTRIBUIÇÕES.. 104
6.2 LIMITAÇÕES E TRABALHOS FUTUROS... 105

APÊNDICE A -UNIDADES DE COMPILAÇÃO

 114

APÊNDICE B - PROFILER DE MEMÓRIA... 119

APÊNDICE C -PLUGIN DE RECURSÃO ATRAVÉS DE DESVIOS

 121

LISTA DE FIGURAS

Figura 1. Ambiente .NET .. 1

Figura 2. Visão geral da plataforma Phoenix. Adaptada da documentação do

Phoenix[45].. 48

Figura 3. HIR da instrução x = add x, *p. Adaptada da documentação do

Phoenix[45].. 50

Figura 4. Hierarquia de unidades. Adaptada da documentação do Phoenix[45].... 55

Figura 5. Funcionamento de um plugin Phoenix. Adaptada da documentação do

Phoenix[45].. 58

Figura 6. Dump HelloWorld... 60

Figura 7. Inserção do PhxSTGCompiler .. 1

Figura 8. Processo de compilação... 1

Figura 9. Arquitetura do compilador.. 74

Figura 10. Árvore de compilação... 75

Figura 11. Lista de fases .. 76

Figura 12. Ambiente de execução .. 81

LISTA DE TABELAS

Tabela 1 - Comparação entre implementações .. 1

Tabela 2. Configuração do Ambiente .. 85

Tabela 3. Impacto da remoção de variáveis temporárias.. 88

Tabela 4. Remoção de desvios e variáveis desnecessárias .. 91

Tabela 5. Impacto da inserção de instrução tail... 93

Tabela 6. Informações sobre o coletor de lixo após a inserção de instruções tail 94

Tabela 7. Recursão através de desvio para o inicio da função..................................... 95

Tabela 8. Impacto da remoção de construtores em desvios condicionais................. 97

Tabela 9. PhxSTGCompiler x Haskell .NET... 98

Tabela 10. Compilação com informações ausentes na CORE 99

Tabela 11 - PhxSTGCompiler* x Haskell .NET. *Com alterações manuais 99

Tabela 12. PhxSTGCompiler x GHC... 100

Tabela 13. Perfil do consumo de memória (PhxSTGCompiler)...................................... 101

Tabela 14. Unidades básicas ... 114

Tabela 15. Unidades de compilação que representam expressões 115

Tabela 16. Unidades de compilação atômicas .. 117

Tabela 17. Unidades de compilação que representam alternativas.......................... 118

LISTA DE CÓDIGOS

Código 1. Funções curry e não-curry... 23

Código 2. Função length não polimórfica ... 25

Código 3. Função length polimórfica.. 25

Código 4. Tipo algébrico ListInt ... 25

Código 5. Tipo algébrico genérico .. 26

Código 6. Exemplo de closure .. 32

Código 7. Representação de closures utilizando uma classe abstrata........................ 34

Código 8. Representação de uma função utilizando closure e delegates................. 36

Código 9. Exemplo de aplicação de uma função desconhecida............................... 36

Código 10. ListInt C# ... 38

Código 11. Casamento de padrão utilizando switch... 39

Código 12. Criação do tipo função .. 53

Código 13. Criando uma classe MSIL .. 54

Código 14. Criação de tabela de símbolos e adição de um mapeamento por nome

... 56

Código 15. Construindo uma fase.. 59

Código 16. Construindo um Plugin ... 59

Código 17. Transformação HIR para LIR em máquina .NET ... 61

Código 18. Transformando uma expressão em um argumento atômico utilizando let

... 69

Código 19. Transformando uma expressão em um argumento atômico utilizando

case.. 69

Código 20. Exemplo unidades de compilação... 75

Código 21. Variáveis temporárias .. 87

Código 22. MSIL sem remoção de variáveis temporárias.. 88

Código 23. Instruções desnecessárias em casamento de padrões aninhados.......... 90

Código 24. Código após a remoção dos desvios e variáveis desnecessárias............ 90

Código 25. Função recursiva para teste de tail-calls ... 92

Código 26. Chamadas mutuamente recursivas.. 95

Código 27. Representação de desvios condicionais com construtores para valores

booleanos. .. 96

Código 28. Representação de desvios condicionais otimizada.................................... 97

Código 29. Ferramenta de profiler de memória.. 120

Código 30. Plugin que substitui recursão por desvios incondicionais. 122

16

1 INTRODUÇÃO

Este capítulo apresenta uma visão geral do trabalho e está organizado da

seguinte forma:

• A Seção 1.1 apresenta os fatores que motivaram o presente trabalho, dando

uma breve introdução sobre linguagens funcionais, máquinas virtuais

gerenciadas e motivação para integrá-las.

• A Seção 1.2 descreve a estrutura da dissertação, apresentado os assuntos

discorridos em cada capítulo.

1.1 Contexto e Motivação

Linguagens funcionais se caracterizam por tratar funções como unidade

fundamental de um programa. Desta forma, um programa é constituído por um

conjunto de funções que representam sub-partes do problema a ser resolvido. Este

tipo de divisão do problema representa uma forma de modularizar ainda mais um

problema, pois funções representam problemas específicos a serem resolvidos que

podem ser utilizados em mais de uma solução. Diferentemente de linguagens

imperativas, nas quais funções são tratadas como uma série de instruções, em

linguagens funcionais elas são tratadas como expressões matemáticas. Na

programação funcional é evitado uso de estados ou dados mutáveis e a execução

de uma função, quando submetida aos mesmos argumentos, sempre retorna o

mesmo valor o que garante a ausência de efeitos colaterais e facilita o processo de

prova da correção de um programa [HYPERLINK \l "Hughes1989" 1].

Versões mais recentes de linguagens de grande popularidade, tais como

Java e C#, têm incorporado algumas destas características, antes só encontradas

em linguagens funcionais, numa clara demonstração da importância e poder de

expressão destas. Polimorfismo paramétrico, através de generics, e closures1 são

1 Inserida a partir da versão 2.0 do C# através de anonymous delegates e incrementado na versão 3.0 com a

criação de expressões lambdas. Para a linguagem Java closures se encontra em fase de análise da proposta[
HYPERLINK \l "Bra08" 67], a ser incorporada na versão 7.

17

exemplos dos recursos incorporados a estas linguagens. Tendo em mente este

interesse de linguagens orientadas a objetos em características típicas do

paradigma funcional, surge uma pergunta: porque tais linguagens não têm seu uso

difundido fora do mundo acadêmico?

Um dos principais fatores que dificulta a expansão destas linguagens é a

ausência de uma infra-estrutura de desenvolvimento que forneça ferramentas e

APIs capazes de aumentar a produtividade e permita o uso das mais recentes

tecnologias. Plataformas como Java (JVM) e .NET, fornecem aos programadores

tais ferramentas e APIs permitindo um enorme ganho em produtividade e uma

rápida integração com os modelos e tecnologias de desenvolvimento mais

recentes. Outra característica importante provida por estas plataformas é o uso de

máquinas virtuais e código intermediário. Esta característica fornece uma maior

abstração sobre a máquina alvo, permitindo que programas e compiladores sejam

desenvolvidos sem se preocupar com o hardware ou sistema operacional onde irão

trabalhar.

O ambiente .NET destaca-se por prover suporte a múltiplas linguagens de

programação, permitindo que programas sejam construídos utilizando qualquer

uma das linguagens suportadas, podendo ainda, um programa ser constituído de

módulos, escritos em linguagens diferentes, que interagem entre si. Além de já

prover inúmeras linguagens (C#, J#, C++, VB .NET, etc.), o ambiente .NET permite

fácil incorporação de novas linguagens, desde que, estas sigam as especificações

do Common Language Runtime (CLR)2,3]. O CLR é a implementação da Microsoft

para a Common Language Infrastructure (CLI)[HYPERLINK \l "ECMA335" 4], a qual

define um rico sistema de tipos e uma máquina virtual capaz de executar de forma

eficiente códigos provenientes de diversas linguagens.

Embora de forma não restritiva, o CLR foi desenvolvida com foco na

implementação de linguagens que seguem os paradigmas imperativo e orientado

a objetos. Desta forma, mapear características de linguagens funcionais, tais como:

função de alta ordem, mecanismo lazy evaluation e polimorfismo paramétrico, na

plataforma .NET representam um desafio. Diminuir este gap semântico através de

estruturas que mapeiem, eficientemente, características comuns a linguagens

funcionais na plataforma .NET é objetivo comum de diversos projetos, tais como:

Haskell .NET5], ILX[HYPERLINK \l "Syme2001" 6], Mondrian .NET7], Bigloo .NET[

18

HYPERLINK \l "Bres2004a" 8] e Nemerle9]. Cada uma destas implementações define

suas próprias estruturas de mapeamento, não havendo um consenso sobre qual a

melhor forma de se representar tais características no ambiente .NET. De modo

geral a implementação das estruturas propostas no ambiente gerenciado fornecido

pela CRL não possui um bom desempenho, o que abre caminho para estudos de

técnicas mais eficientes.

Para mapear tais funcionalidades de forma eficiente é necessária uma série

de experimentações e testes, de forma a obter estruturas que as represente com o

melhor desempenho possível. O framework Phoenix [2], disponibilizado pela

Microsoft, é uma ferramenta que tem como propósito facilitar a construção de

compiladores e de ferramentas de teste e análise. Ele utiliza uma representação

intermediária fortemente tipada para representar um programa e disponibiliza uma

grande quantidade de classes e métodos para manipular esta representação.

Dentre os recursos disponibilizados, temos o redirecionamento de código para

diferentes arquiteturas e plataformas tais como: x86 e MSIL2 e mecanismo de plugin,

o qual permite alterar o comportamento de um programa Phoenix sem ter de

alterar diretamente seu código fonte.

O presente trabalha faz uso do framework Phoenix para a criação e análise

de estruturas que mapeiem, eficientemente, as características específicas de

linguagens funcionais no ambiente .NET. Espera-se que os recursos disponibilizados

pelo framework auxiliem na construção de um compilador que gere códigos mais

expertos, ou seja, que usem menos recursos e sejam mais rápidos que os produzidos

atualmente. O compilador gerado servirá ainda como ferramenta para

experimentação e desenvolvimento de novas técnicas de compilação de

linguagens funcionais no ambiente .NET.

1.2 Organização da Dissertação

Além da introdução esta dissertação conta com mais cinco capítulos e três

apêndices, como segue:

2 Microsoft Intermediate Language

19

• O Capitulo 2 apresenta uma definição geral do paradigma funcional e do

ambiente .NET, mostrando suas principais características. Após a

apresentação das principais características são demonstradas possíveis

abordagens de como implementar uma linguagem funcional no

ambiente .NET. Por fim, é feito um resumo das principais implementações

de linguagens funcionais existentes.

• O Capítulo 3 discorre sobre o Framework Phoenix. Nele são apresentadas

as principais características e recursos desta ferramenta, sempre que

possível através de exemplos práticos.

• O Capítulo 4 trata da implementação do protótipo. Nele é descrito a

arquitetura do compilador, seu ambiente de execução e as decisões de

projeto tomadas para geração do código.

• O Capítulo 5 faz a análise do compilador e mostra o resultado das

otimizações e testes realizados. Os primeiros resultados se referem a

melhorias na transformação do código IR para MSIL e ao final são exibidos

os resultados de otimizações no controle da pilha de execução e em

instruções de desvios.

• O Capítulo 6 aponta as contribuições deste trabalho, restrições e opções

para trabalhos futuros.

• O Apêndice A apresenta tabelas com as classes que representam as

unidades de compilação do compilador PhxSTGCompiler.

• O Apêndice B apresenta o código da ferramenta construída para gerar o

perfil de consumo de memória dos programas analisados.

• O Apêndice C mostra o código de um plugin, utilizado para substituir tail

calls por desvios incondicionais em chamadas recursivas.

20

21

2 PROGRAMAÇÃO FUNCIONAL NA PLATAFORMA .NET

Aliar a alta expressividade e o poder de abstração fornecidos por linguagens

funcionais a plataformas de alta produtividade como o .NET não é uma tarefa

simples. A plataforma .NET tem um modelo de compilação voltado para os

paradigmas imperativo e orientado a objeto, o que dificulta o mapeamento de

estruturas características de linguagens funcionais.

Neste capítulo é feito uma introdução a linguagens funcionais e suas principais

características, sendo, em seguida dada uma breve introdução sobre a plataforma

.NET. Após discorrer sobre estes conceitos básicos são apresentadas técnicas que

permitem mapear linguagens funcionais na plataforma .NET. Finalizando o capítulo,

alguns projetos de mapeamento de linguagens funcionais são apresentados

descrevendo algumas de suas decisões de projetos.

2.1 Introdução a Linguagens Funcionais

Linguagens funcionais se caracterizam por tratar funções como unidade

fundamental de um programa. Desta forma, um programa é constituído por um

conjunto de funções que representam sub-partes do problema a ser resolvido.

Diferentemente de linguagens imperativas, nas quais funções são tratadas como

uma série de instruções, em linguagens funcionais elas são tratadas como

expressões matemáticas. Na programação funcional é evitado uso de estados ou

dados mutáveis e a execução de uma função, quando submetida aos mesmos

argumentos, sempre retorna o mesmo valor o que garante a ausência de efeitos

colaterais e facilita o processo de provar a correção de um programa [HYPERLINK

\l "Hughes1989" 1].

Linguagens funcionais são caracterizadas por alta expressividade e grande

poder de abstração, decorrentes de construções de alto nível tais como funções de

alta ordem, aplicação parcial de funções, avaliação preguiçosa e polimorfismo

paramétrico. Estas construções não só aumentam expressividade da linguagem,

22

como também a complexidade de sua compilação, especialmente em ambientes

orientados a objetos como o .NET. Tais características são melhores especificadas a

seguir.

2.1.1 Funções de alta ordem

Diferentemente de linguagens imperativas e orientadas a objetos, onde há

uma clara distinção entre dados e funções, linguagens funcionais não fazem tal

distinção, tratando funções como valores de primeira classe. Sendo assim, como

qualquer outro valor, elas podem ser passadas como argumentos, retornadas como

resultado de outra função, ou ainda armazenadas em estruturas de dados.

Uma função é dita de alta ordem quando recebe outra função como um

argumento ou computa outra função como seu resultado. Por exemplo, uma

função de alta ordem pode atravessar uma lista aplicando uma função recebida

como argumento em cada componente da lista10].

Em linguagens funcionais uma função pode ser criada em tempo de

execução e referenciar variáveis visíveis apenas onde ela foi declarada. Tais

variáveis são denominadas variáveis livres. Os valores referentes a estas variáveis

fazem parte da definição da função e por isto a representação de uma função

deve conter não só a expressão que a compõe, como também suas variáveis livres.

A forma mais direta para esta representação é através de uma closure[HYPERLINK

\l "Minamide1996" 11], objeto alocado dinamicamente que encapsula um código

a ser executado e um ambiente que pode ser acessado pelo código. Closure não é

uma estrutura padrão em ambientes orientados a objetos como o .NET. Alternativas

para sua representação serão apresentadas na Seção 2.4.1.

2.1.2 Aplicação parcial de funções

Linguagens funcionais permitem descrever funções com mais de um

argumento como uma composição de funções de um argumento, de forma que

23

um argumento seja consumido por vez. Este processo, denominado currificação3

em homenagem a Haskell Curry, altera a concepção, popularizada pelas

linguagens imperativas, de que todos os argumentos de uma função devem ser

passados ao mesmo tempo, como se fosse uma única estrutura de dados.

Embora sua sintaxe favoreça a currificação de funções, Haskell permite a

criação de funções sem seu uso, utilizando para isto o conceito de tupla. O

exemplo a seguir descreve a mesma função com e sem currificação.

1 multiply :: Int -> Int ->Int
2 multiply x y = x*Y
3
4 multiplyUC :: (Int,Int) -> Int
5 multiplyUC (x,y) = x*Y

Código 1. Funções curry e não-curry

A função multiplyUC só é executada ao receber os dois argumentos

requeridos através de uma tupla. Já a função multiply permite sua aplicação

mesmo passando a ela menos argumentos do que o requerido, obtendo assim,

uma função parcial que armazena o argumento recebido e pode ter sua

execução completada quando aplicada ao argumento restante.

A técnica de executar uma função currificada utilizando menos argumentos

do que o número máximo de parâmetros suportados é denominada aplicação

parcial[10].

2.1.3 Avaliação preguiçosa

Uma função nem sempre requer que todos seus argumentos sejam avaliados.

Algumas vezes o uso de um argumento depende da avaliação de outra expressão

ou mesmo nunca é utilizado dentro do corpo da função. Sendo assim, a decisão de

quando deve ser feita a avaliação dos argumentos pode influenciar não só no

projeto de uma linguagem como também no seu desempenho. Segundo David

Watt[10], quanto ao momento em que é feita esta avaliação, podemos distinguir

dois mecanismos:

3 Embora tenha recebido este nome em Homenagem a Haskell Curry, esta técnica foi inventada por Moses

Schönfinkel.

24

• Eager Evaluation – todos os argumentos são avaliados apenas uma vez,

antes da chamada e o valor obtido é ligado a cada ocorrência do

parâmetro formal no corpo da função.

• Normal-order evaluation – os argumentos são avaliados após a chamada da

função, apenas quando requisitados. Ou seja, cada ocorrência do

parâmetro formal na função é substituída pela expressão não avaliada.

O primeiro mecanismo ao requerer que todos os argumentos sejam avaliados

antes da chamada pode gastar um tempo desnecessário em casos onde algum

dos argumentos não é utilizado no corpo da função. Já o segundo é menos

eficiente em funções onde um determinado parâmetro formal é utilizado mais de

uma vez no corpo da função, necessitando que a mesma expressão seja avaliada

mais de uma vez.

Linguagens funcionais tais como Haskell[12], Mondrian[13] e Lazy ML[14]

utilizam um aprimoramento do normal-order evaluation, denominado avaliação

preguiçosa, onde cada argumento é avaliado apenas quando necessário e uma

única vez. Tal mecanismo além de evitar avaliações desnecessárias permite a

criação de estruturas de dados infinitas tais como lazy list[10], onde cada elemento

é avaliado sob demanda.

Quando uma função sempre usa um determinado argumento, dizemos que

ela é estrita para aquele argumento. Sendo assim, linguagens que implementam

avaliação preguiçosa ou normal-ordem evaluation são denominadas não estritas,

pois podem possuir argumentos que não sendo utilizados nunca serão avaliados.

2.1.4 Polimorfismo paramétrico

Grande parte das linguagens funcionais dá suporte a polimorfismo

paramétrico, onde uma função ou estrutura de dados pode ser definida para

operar sobre diversos tipos. No polimorfismo ad-hoc, implementado por linguagens

orientadas a objeto através de mecanismos de herança ou sobrecarga, os tipos

suportados são restritos e devem ser previamente especificados. Já no polimorfismo

paramétrico é permitido o uso de qualquer tipo, devendo a operação que o utiliza

ser executada independente do formato do tipo. Como na prática muitas funções

25

são naturalmente polimórficas, o polimorfismo paramétrico eleva a expressividade

da linguagem.

Um exemplo clássico de uma aplicação de polimorfismo paramétrico é a

função length, que calcula o número de elementos de uma lista. O código Haskell a

baixo implementa a função length para o cálculo de uma lista de inteiros.

1 length :: [Int]->Int
2 length [] = 0
3 length (x:xs) = 1 + (length xs)

Código 2. Função length não polimórfica

Embora funcione perfeitamente a função definida desta forma é restrita a

listas de inteiros. Como as operações executadas em length são independentes do

tipo dentro da lista podemos generalizar a função para qualquer tipo.

1 length::[t]->Int
2 length [] = 0
3 length (x:xs) = 1 + (length xs)

Código 3. Função length polimórfica

Como veremos na Seção 2.1.5 polimorfismo paramétrico também pode ser

utilizado para modelar uniões discriminadas, permitindo a construção de tipos de

dados complexos que armazenam tipos polimórficos.

2.1.5 Tipos algébricos

Tipos de dados algébricos formam a base do sistema de tipos da maioria das

linguagens funcionais modernas. Eles permitem a definição de tipos estruturados,

uniões e tipos recursivos. Um tipo algébrico é um tipo de união discriminada

etiquetada[10], onde novos tipos são definidos utilizando construtores (etiquetas) e

os tipos dos argumentos.

1 data ListInt = Cons Int List | Nil
Código 4. Tipo algébrico ListInt

No Código 4 é definido o novo tipo algébrico ListInt o qual pode conter dois

tipos de dados, definidos pelos construtores Cons e Nil. Nil é um construtor vazio, pois

não possui nenhum campo, já Cons carrega informações através de argumentos

dos tipos Int e List. Desta forma Cons recebe um valor inteiro e um valor do tipo

ListInt, ou seja é um tipo recursivo, pois recebe um valor que ele próprio define.

26

Da mesma forma mostrada com a função length, podemos generalizar tipos

algébricos de forma que eles possam representar tipos de dados polimórficos. A

definição de List fornecida no Código 5 cria uma lista que pode armazenar

qualquer valor suportado pela linguagem.

1 data List t = Cons t (List t) | Nil
Código 5. Tipo algébrico genérico

2.2 Plataforma .NET

A plataforma .NET[15] é um ambiente de desenvolvimento e execução que

permite diferentes linguagens de programação e bibliotecas trabalharem juntas na

construção de aplicações. A portabilidade destas aplicações também é facilitada,

pois um programa criado para a plataforma .NET deve rodar em qualquer

dispositivo ou sistema operacional que possua uma implementação de seu

ambiente de execução. Com objetivo de ampliar esta portabilidade em diferentes

sistemas a Microsoft submeteu o projeto da máquina virtual, Common Language

Infrastructure (CLI)[4], para padronização nos órgãos internacionais ECMA[16] e

ISO[17]. Desta forma, desenvolvedores de diferentes sistemas operacionais e

dispositivos podem construir sua própria versão da CLI capaz de executar

aplicativos .NET independente de autorização ou suporte da Microsoft.

2.2.1 CLR

O CLR é a implementação da Microsoft para o padrão CLI, que define

especificações para código executável e ambiente de execução da

plataforma.NET. Este ambiente utiliza um compilador Just-In-Time (JIT) que permite a

execução de programas traduzidos para uma linguagem intermediária comum

(MSIL4[18]), carregando e compilando para código binário partes do código sobre

demanda. Este modelo de compilação sobre demanda permite que otimizações

sejam feitas de acordo com a plataforma na qual o código é executado.

4 A linguagem intermediária comum implementada na CLR é denominada Microsoft Intermediate Language
(MSIL) e não Common Intermediate Language (CIL), como definido pela CLI. Desta forma sempre que for mencionado
MSIL entenda linguagem intermediária comum implementada pela CLR.

27

O processo de compilação e execução de programas, como observado na

Figura 1, pode ser descrito nos seguintes passos:

1. O programa escrito em uma das linguagens suportadas pela plataforma

(C#, VB.NET, C++, J#, Haskell, etc.) é compilado para uma linguagem

intermediária, a Microsoft Intermediate Language (MSIL).

2. Este código MSIL pode fazer chamadas a métodos e classes escritos em

outras linguagens que também tenham sido compilados para MSIL, ou

ainda para o conjunto de classes da biblioteca .NET. Desta forma o uso de

uma linguagem intermediária facilita a interoperabilidade entre diferentes

linguagens.

3. O código MSIL é então submetido ao CLR para que seja feita a execução

do programa.

4. O CLR, inicialmente, busca por uma versão pré-compilada do código na

cache. Caso não encontre ou detecte que a versão resgatada tenha sido

alterada é feita a compilação através do JIT.

5. O JIT compilará então cada classe à medida que um método pertencente

a esta for requisitado. Isto vale também para métodos provenientes da

biblioteca .NET.

6. O código compilado é então executado dentro do ambiente gerenciado

.NET, o qual verifica diretivas de segurança e acesso à memória.

28

2.2.2 Outras Implementações da CLI

Ao padronizar a CLI a Microsoft possibilitou o surgimento de novas

implementações desta para sistemas operacionais e arquiteturas diferentes,

promovendo a portabilidade de programas .NET. Dentre as diversas

implementações da CLI existentes duas se destacam: a Shared Source CLI (SSCLI ou

projeto Rotor)[19] e o projeto MONO[20].

A SSCLI é uma versão de código livre da CLI e do compilador C#

implementada pela própria Microsoft para execução no Windows, FreeBSD e Mac

OS X5. Esta implementação tem cunho estritamente acadêmico, fornecendo um

ambiente de estudo da plataforma .NET e das tecnologias nela empregadas tais

como: gerenciamento de memória, coleta de lixo, compilação sob demanda, etc.

5 Apenas para versão 1.0 da SSCLI, a versão 2.0 não disponibiliza mais versões para FreeBSD e Mac OS X.

CLR

Compilado Compilado Compilado

Biblioteca
.NET

Platafor

Código
MSIL

Código
MSIL

Código
MSIL

010101010
01000100
10110001

010101111

JIT

CACHE

Código
C#

Código
C++

Código
VB .NET

Execução

Figura 1. Ambiente .NET

29

Por ser voltada para estudo não há uma preocupação quanto ao desempenho, o

que foi confirmado em testes comparando o tempo de execução de programas na

SSCLI e na CLR[21].

O projeto MONO, financiado pela Novell[22], provê implementações de

código livre da CLI para sistemas operacionais Windows, Linux, Unix, Solaris e Mac OS

X. É um projeto consistente, com uma grande comunidade de desenvolvedores que

incrementa a portabilidade de programas .NET para além do ambiente Windows.

2.3 Integração à Plataforma .NET

Antes de definir como será feito o mapeamento das estruturas funcionais na

plataforma .NET é necessário escolher uma estratégia através da qual será feita tal

integração. Esta estratégia define se será utilizado algum mecanismo responsável

pela comunicação entre a linguagem e a plataforma ou se será gerado

diretamente código suportado por esta.

2.3.1 Bridge

Permitir a comunicação entre componentes escritos em diferentes linguagens,

de forma que, possam trocar informações e acessar recursos uns dos outros é a

função de uma bridge, ou “ponte”. A bridge é responsável por intermediar as

trocas de mensagens, fornecendo uma sintaxe comum, e pela tradução dos

parâmetros e valores de retornos, processo este conhecido como marshalling6.

Antes mesmo de se integrar linguagens funcionais a ambientes gerenciados, como

.NET e Java, esta estratégia já era utilizada para permitir tal integração para código

nativo, como é caso de HDirect[23] e GreenCard[24], que implementam a Foreign

Function Interface7 (FFI). Em ambientes gerenciados, Hugs .NET[25] e Lambada[26]

6 Processo de transformação da representação na memória de um objeto em formato apropriado para

armazenamento ou transmissão. O processo contrário no qual os dados são novamente transformados em objetos
na memória é denominado unmarshalling.

7 Definição da interface para funções externas para linguagem Haskell98.

30

são exemplos de integração para a linguagem Haskell, respectivamente para as

plataformas .NET e Java.

 Esta é uma estratégia interessante quando o objetivo é obter a integração

sem a necessidade de grandes alterações no compilador ou na plataforma, pois

toda a complexidade das operações de conversões de tipos e estruturas fica a

cargo da bridge. Entretanto esta integração é superficial, no geral apenas

chamada de funções, não disponibilizando o acesso a recursos avançados. Outra

limitação desta estratégia é quanto ao desempenho, o processo de conversão de

tipos é custoso e este overhead deve ser levado em consideração em um projeto

de integração.

Na plataforma .NET outro fator deve ser considerado: este tipo de integração

requer chamadas a código não gerenciado, pois o código gerado pelo

compilador funcional gera código nativo, ou seja, não gerenciado pela plataforma

. Embora seja permitido este tipo de chamada ela requer que uma série de

operações como confirmação de permissões e importação de bibliotecas, que

degradam seu desempenho. Há ainda que se considerar que implementações de

linguagens funcionais, geralmente, inclui seu próprio ambiente de execução com

coletor de lixo e gerenciamento de memória próprios, sendo assim teríamos um

cenário onde dois ambientes de execução estariam rodando ao mesmo tempo e

consumindo recursos do sistema.

2.3.2 Compilação

Gerar código suportado diretamente pela plataforma, através de um

processo de compilação, é a forma mais direta de integração. Este processo pode

tanto ser feito utilizando como destino uma linguagem de alto nível que possua um

compilador para o ambiente, como diretamente, gerando código MSIL. A primeira

abordagem é mais fácil, pois delega ao compilador da linguagem escolhida a

responsabilidade de gerar corretamente o código para a plataforma, além de se

valer de otimizações implementadas por esta. A segunda abordagem embora seja

mais complexa e susceptível a erros, permite um maior controle sobre o código

gerado e uso de instruções não contempladas pelas linguagens de alto nível. Para

31

auxiliar a geração direta de código podemos utilizar ferramentas tais como

peverify8, ildasm9, ilasm10 e Phoenix. Esta última será detalhada no Capítulo 3.

A integração utilizando compilação possui diversas vantagens em relação ao

mecanismo de bridge. O compartilhamento de uma mesma representação facilita

a comunicação com programas escritos em outras linguagens, reduzindo o

overhead causado pelo processo de marshilling/unmarshalling e pela chamada a

código não gerenciado. O uso de um mesmo ambiente de execução diminui o uso

de recursos do sistema que antes teria que ser compartilhado por dois ambientes

com coletores de lixo e gerenciamento de memória separados.

 A maioria dos projetos de integração de linguagens funcionais à plataforma

.NET utilizam a compilação como abordagem. Mondrian[13] e Making Haskell .NET

Compatible [27] fazem uso de uma linguagem de alto nível para gerar código

enquanto que Nemerle[9] e Haskell .NET[5] geram diretamente código MSIL.

2.3.3 Estendendo a CLI

Os tipos e a linguagem intermediária descritos pela Common Language

Infrastructure (CLI) visam proporcionar um ambiente que suporte a implementação

de diversas linguagens capazes de interagir entre si, entretanto seu foco é dado a

linguagens imperativas e orientada a objetos. Desta forma, faltam a este ambiente

estruturas básicas para a representação de funcionalidades comuns a linguagens

funcionais. Modificar a CLI adicionando extensões necessárias para representar

estruturas funcionais facilitaria a compilação de linguagens funcionais para a

plataforma .NET. O projeto ILX [28] utilizou esta abordagem, adicionando a CLI

novas características como closures, polimorfismo paramétrico, uniões discriminadas

e funções de alta ordem.

Alterar a máquina virtual permite a implementação de linguagens funcionais

com um ganho expressivo no desempenho, além de deixar um legado para futuras

8 Ferramenta, disponibilizada com o framework .NET, que verifica se o código MSIL esta de acordo com as
especificações definidas pela CLI.

9 MSIL disassembler. Gera código MSIL a partir de um arquivo PE (DLL ou EXE).

10 MSIL assembler. Gera um arquivo PE (DLL ou EXE) a partir de código MSIL.

32

implementações. Entretanto, perde na portabilidade, pois requer que o novo

ambiente seja distribuído junto com a linguagem, ou ainda que estas modificações

sejam incorporadas a distribuição padrão, o CLR no caso da plataforma .NET . A CLI

segue uma padronização, ECMA-335 [4], e a incorporação de novas características

a este é dificultada, pois requer aprovação de um conselho de padronização.

O projeto F#[29], desenvolvido pela mesma equipe que criou a ILX, faz uso

desta última como linguagem alvo do processo de compilação. ILX, por sua vez, é

posteriormente traduzido para MSIL, de forma a preservar a compatibilidade com o

ambiente padrão de .NET.

2.4 Mapeando Estruturas Funcionais em Ambientes OO

Para que seja feito o mapeamento de linguagens funcionais em um ambiente

OO, como o .NET, faz-se necessário o desenvolvimento de técnicas e estruturas

capazes de diminuir o gap semântico entre estes dois mundos. Nesta Seção tais

técnicas estruturas serão apresentadas e discutidas.

2.4.1 Closures

Closures são estruturas essenciais para a representação de linguagens

funcionais. Sendo assim o modelo adotado para a representação desta influenciará

todo o restante do projeto. Podemos definir uma closure como uma função que

armazena todas as variáveis utilizadas por ela, mas que foram definidas fora dela.

Tais variáveis são definidas na teoria do cálculo lambda[30] como variáveis livres.

Através do exemplo mostrado no Código 6 podemos observar com mais detalhes

tais conceitos.

1 f1 :: Int -> t -> (Int -> Int)
2 f1 x y = let f2 k = x + k in f2

Código 6. Exemplo de closure

 A função f2 definida dentro da função f1, utilizando o comando let, faz uso

da variável x definida fora de seu escopo, ou seja, x é uma variável livre da função

f2. Ou seja, f2 é uma closure que representa uma função que recebe um

argumento k e faz uso de uma variável livre, a qual deve ser encapsulada dentro

de sua representação. A função f1 também pode ser considerada uma closure, só

33

que sem variáveis livres, o que faz sentido para uma representação única para

todas as funções.

Em linguagens funcionais, além de representar funções, closures são

comumente utilizadas para representar expressões não avaliadas, conhecidas

como thunks. Em linguagens com mecanismo de avaliação preguiçosa (Seção

2.1.3) onde a avaliação das expressões é feita apenas uma vez e somente quando

necessária, closures são utilizadas para representar a expressão a ser avaliada,

armazenando suas variáveis livres e o valor resultante após a avaliação.

Closures são, normalmente, implementadas através de estruturas de dados

especiais que contém um ponteiro para o código da função e o ambiente léxico

da função (conjunto de variáveis livres)[28,31]. Esta abordagem é inviabilizada, ou

ainda desestimulada, em ambientes com gerenciamento de memória, como o

.NET, onde o uso de ponteiros embora permitido, gera código não verificável11.

Ainda que, projetos como o ILX[6] tenham utilizado código não verificável para a

construção de closures esta abordagem sofre de restrições de uso, uma vez que a

execução de código não verificável requer permissões específicas e não pode se

valer das garantias e funcionalidades fornecidas pela CLI. O próprio projeto ILX

abandonou tal abordagem em implementações posteriores.

Uma alternativa ao uso de ponteiro em código verificável é o uso de estruturas

conhecidas como delegates. Delegate é a versão orientada a objetos de ponteiro

para função, que permite a chamada de métodos, tanto de instância como

estático, de forma segura e verificável. Na implementação 1.0 da CLR havia

problemas de desempenho, o que justificou a utilização de ponteiros na ILX,

entretanto testes realizados demonstraram que tais problemas foram solucionados a

partir da versão 2.0 fazendo com que chamadas a métodos utilizando delegates

tenham desempenho semelhante a chamadas a métodos virtuais ou de interface

[21].

11 Código não verificável, no ambiente .NET, significa que o código não segue as restrições de segurança

impostas pela CLI não sendo gerenciado diretamente pelo ambiente.

34

2.4.1.1 Projetando uma closure

Uma forma bastante direta de se representar closures em ambientes

orientados a objetos é através da definição de uma classe abstrata Closure que

possui um método Invoke, responsável pela execução da expressão. Neste modelo

para cada closure deve ser criada uma nova classe que herda da classe Closure,

armazena suas variáveis livres em campos da classe e sobrescreve o método Invoke

de forma que ele execute o código correspondente a avaliação da closure. O

Código 7 demonstra como criar uma nova closure estendendo a classe abstrata.

1 //Classe abstrata Closure
2 public abstract class Closure
3 {
4 public abstract object Invoke();
5 }
6
7 // Criando uma nova closure
8 class newClosure : Closure
9 {
10 // Campos representando variáveis livres
11
12 public override object Invoke()
13 {
14 //Código da closure
15 }
16 }

Código 7. Representação de closures utilizando uma classe abstrata

Para passagem de argumentos para a função Invoke poderia ser utilizado um

array de objetos ou ainda uma pilha. F# [29] possui classes abstratas pré-definidas

para até cinco argumentos e um valor de retorno, utilizando generics[32] para

definição dos tipos. Funções com mais que cinco argumentos são tratadas

utilizando aplicações parciais, mecanismo detalhado na Seção 2.5.4. Nemerle[9]

utiliza mecanismo semelhante, entretanto possui classes abstratas pré-definidas para

até vinte argumentos, além de permitir chamadas não currificadas utilizando para

tanto uma tupla contendo todos os argumentos da função. É importante observar

que embora hajam classes pré-definidas para cada nova closure definida deverá

ser produzida uma nova classe que herde da classe correspondente,

sobrescrevendo seu método Invoke e adicionando campos para suas variáveis

livres.

Tanto F# como Nemerle são linguagens estritas, o que reduz o número de

closures geradas, uma vez que, não são necessárias novas closures para representar

computações não avaliadas. Entretanto, a geração de uma classe por closure em

35

linguagens funcionais não estritas, como Haskell, resultaria em uma grande

quantidade de classes. Segundo Don Syme [6], estima-se que seja encontrado na

biblioteca padrão do GHC uma closure por linha de código Haskell. Como na

plataforma .NET a cada classe são associados metadados que necessitam ser

carregados e checados durante a execução do programa, uma enorme

quantidade de classes causariam uma queda no desempenho do código

produzido.

Visando diminuir o número de classes geradas e conseqüentemente a queda

de desempenho o projeto Haskell .NET [5] utilizou a abordagem da construção de

classes pré-definidas para closures com n variáveis livres e adotou um mecanismo

de pilha para a passagem dos argumentos. Neste, ao invés de ser gerada uma

nova classe para representação de cada closure, todas as closures que possuem a

mesma quantidade de variáveis livres serão representadas através de instâncias de

uma mesma classe pré-definida no ambiente de execução da linguagem. O que

diferencia as diversas instâncias da mesma classe será a função armazenada,

correspondente ao código da closure. No projeto Haskell .NET para o

armazenamento desta função é utilizada um delegate ao invés de um ponteiro ou

método abstrato.

O Código 8 mostra como criar uma closure para representar a função f2

mostrada no Código 6. Nas linhas 2 e 3 é criado o delegate que armazena a

função com o código de f2. Como será mostrado na Seção 2.4.2.1, utilizando o

modelo push/enter o delegate não armazena diretamente a função com o código

correspondente a expressão, mas sim, uma função auxiliar. As linhas 6 e 7 são

responsáveis por construir a closure que representa a função. Pode-se observar que

a classe utilizada para representar a closure possui um tipo genérico, este tipo

genérico representa o tipo da variável livre armazenada pela closure, que neste

caso é instanciado como sendo do tipo inteiro. Na linha 10 é configurado o valor da

aridade da função. Este valor, como será visto na Seção 2.4.2 é útil para definir se a

aplicação da função é saturada ou não. Por último, na linha 13, o valor da variável

livre é adicionado a closure.

1 //Delegate para a função
2 NonUpdCloFunction_1_FV<int> funcDelegate =
3 new NonUpdCloFunction_1_FV<int>(function);
4
5 //Criação da closure que recebe como argumento o delegate

36

6 NonUpdateableClosure_1_FV<int> closure =
7 new NonUpdateableClosure_1_FV<int>(funcDelegate);
8
9 //Configura a aridade da função
10 closure.arity = 1;
11
12 //Armazena o valor da variável livre
13 closure.fv1 = x;

Código 8. Representação de uma função utilizando closure e delegates

2.4.2 Mecanismo de aplicação de funções

A combinação de polimorfismo paramétrico, funções de alta ordem e

aplicação parcial de funções gera um cenário onde em alguns momentos pode ser

necessário efetuar a aplicação de uma função desconhecida em tempo de

compilação. No Código 9, f representa uma função desconhecida, uma vez que

não se sabe em tempo de compilação como se comportará tal função. Não é

possível simplesmente aplicar f aos dois argumentos, pois não se pode afirmar

quantos argumentos f espera receber e qual o retorno da aplicação. Esta pode ser

uma função que recebe apenas um argumento, processa este e gera uma nova

função que consumirá o argumento restante, ou mesmo, uma função que receba

mais de dois argumentos e desta forma o resultado de zipwith é uma lista de

funções.

1 zipWith :: (a->b->c)-> [a] -> [b] -> [c]
2 zipWith f [] [] = []
3 zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

Código 9. Exemplo de aplicação de uma função desconhecida

Para tratar a aplicação de funções desconhecidas em linguagens funcionais

existem dois modelos: eval/apply e push/enter. A diferença básica entre os dois

modelos é quem será o responsável por tratar em tempo de execução a aplicação

da função, se a própria função chamada ou o código que faz a chamada. O uso

de um destes mecanismos deve ser efetuado apenas para funções desconhecidas

em tempo de compilação, caso contrário a função deve ser chamada

normalmente, evitando assim um overhead desnecessário.

37

2.4.2.1 Modelo push/enter

No modelo push/enter a própria função será a responsável por, em tempo de

execução, verificar a aridade12 da função, o número de argumentos recebidos e

decidir como deverá ser feita a aplicação da função. Neste modelo para cada

função definida na linguagem duas funções devem ser geradas após a

compilação. Uma, denominada fast entry point (FEP), contendo o código

correspondente da função original e outra, slow entry point (SEP), com o código

responsável por verificar a aridade e o número de argumentos, decidindo que

atitude tomar. O processo executado pode ser resumido em duas etapas:

• Push: os argumentos passados para a função são empilhados (push) em uma

pilha diferente da pilha de execução da CLR.

• Enter: é feita a chamada a função SEP que avalia a aridade da função e o

número de argumentos presente na pilha e baseado nestas informações

determina se o próximo passo será a ou b.

a. Caso o número de argumentos presentes na pilha sejam suficientes, estes

são desempilhados e a função FEP é executada retornando o valor da

avaliação. Argumentos excedentes são mantidos na pilha para que

possam ser consumidos posteriormente, provavelmente pelo retorno de

FEP.

b. Caso o número de argumentos presentes na pilha seja inferior à aridade,

estes são desempilhados e utilizados para criar uma aplicação parcial

que é retornada como valor da avaliação.

Haskell .NET utiliza esta abordagem criando pilhas diferentes para armazenar

diferentes tipos de argumentos boxing e unboxing.

2.4.2.2 Modelo eval/apply

Neste modelo a responsabilidade sobre como tratar a chamada de uma

função desconhecida fica a cargo do código que invoca a função (caller). Este

código deve, primeiramente, avaliar (eval) a aridade e o número de argumentos e

12 Aridade pode ser entendido como o número de argumentos que uma função espera receber para realizar

sua funcionalidade.

38

então decidir qual a aplicação (apply) deve ser feita: chamar diretamente a

função, caso o número de argumentos seja maior ou igual à aridade, ou criação de

uma aplicação parcial a ser retornada, caso contrário.

Historicamente a grande maioria dos compiladores para linguagens funcionais

lazy utilizam a abordagem push/enter, entretanto após estudos feitos por Marlow e

Peyton Jones [33], que demonstraram uma ligeira vantagem do uso do modelo

eval/apply em uma implementação do Glasgow Haskell Compiler (GHC), o modelo

eval/apply tem ganhado espaço. Na plataforma .NET, ainda não existem estudos

que apontem qual modelo apresenta melhor desempenho. Nesta plataforma, o

uso do eval/apply teria como vantagem o uso direto da pilha da CLR como

mecanismo de passagem de parâmetros, o que não é possível no modelo

push/enter devido a restrições na manipulação direta da pilha impostas pela CLR.

Entretanto, o modelo eval/apply pode gerar aplicações parciais desnecessárias,

não geradas utilizando o push/enter [33]. F# e Nemerle são exemplos de utilização

de eval/apply na plataforma .NET.

2.4.3 Representação de tipos algébricos

Na plataforma .NET não existe o conceito de tipos algébricos como em

linguagem funcionais. O mais perto que há são as enumerações que permitem que

se descreva um tipo através de um conjunto de constantes, entretanto

enumerações não permitem o uso de argumentos. O uso de uma classe abstrata

para representar um tipo algébrico e subclasses destas para representar as possíveis

construções é uma das abordagens mais utilizadas em ambientes orientados a

objetos [34,35,36]. Utilizando tal abordagem ListInt (Código 4) teria a seguinte

representação em código C#.

1 public abstract class ListInt{}
2 public class Nil : ListInt {}
3 public class Cons : ListInt
4 {
5 public int val;
6 public ListInt list;
7 }

Código 10. ListInt C#

39

Variações polimórficas como a mostrada em List (Código 5) seriam facilmente

traduzida utilizando para isto generics. Esta representação permite um

mapeamento fácil e direto, entretanto peca quanto ao desempenho em

operações de casamento de padrões. Operações estas bastante comuns na

manipulação de tipos algébricos em linguagens funcionais. Tal queda de

desempenho se deve ao fato do uso da instrução isinst13 para testar se um objeto é

da subclasse desejada.

O uso de um número inteiro (tag) para diferenciar os construtores de um tipo

algébrico como proposto por Jones e Lester[37] fornece uma maneira de otimizar

operações de casamento de padrões com tipos algébricos. Sendo assim, a classe

abstrata passaria a ter um campo inteiro que armazenaria a tag e o construtor de

cada subclasse deve preencher este campo com um valor diferente dos demais.

Casamentos de padrões poderiam ser executados utilizando instruções switch sobre

a tag, com mostrado a seguir:

1 switch (list.tag)
2 {
3 case tagNil: // código correspondente a opção Nil
4 break;
5 case tagCons: // código correspondente a opção Cons
6 break;
7 default: // código correspondente a opção default
8 break;
9 }

Código 11. Casamento de padrão utilizando switch

2.5 Implementações Existentes

Tentativas de integração de linguagens funcionais a ambientes gerenciados

tem sido feitas mesmo antes do surgimento da plataforma .NET. Projetos como

Lambada[26], Pizza[36] são exemplos de tentativas de integração à Java Virtual

Machine (JVM) que forneceram as bases para posteriores integrações com a

plataforma .NET. Por ser multi-linguagens a plataforma .NET possui algumas

características que favorecem esta integração, tais como um rico sistema de tipos e

instruções que facilitam a implementação de outros paradigmas de linguagens, tais

13 Instrução IL, sua correspondente em C# é is.

40

como .tail que permite descartar o frame de execução em algumas chamadas

recursivas, evitando desta forma o estouro da pilha de execução.

Como o foco deste trabalho é a integração de linguagens funcionas à

plataforma .NET, nesta Seção serão apresentados apenas projetos desenvolvidos

para este ambiente, de forma a demonstrar como tais projetos tratam os problemas

e desafios de mapear estruturas e características funcionais na plataforma .NET.

2.5.1 Hugs for .NET

Hugs98 for .NET[25] é uma extensão do interpretador Haskell, Hugs98, que

provê uma boa interoperabilidade entre o mundo Haskell e o mundo do framework

.NET. Esta extensão permite que sejam instanciados objetos .NET dentro de

programas Haskell e, vice-versa, permitindo a chamada de funções Haskell a partir

de qualquer linguagem provida pelo framework .NET. Com isto o Hugs98 for .NET

incrementa o potencial dos programas Haskell permitindo que eles façam uso das

funcionalidades presentes na biblioteca da plataforma .NET.

Para fazer a interoperabilidade entre Haskell e a plataforma .NET, Hugs98 for

.NET usa uma abordagem conhecida como bridge. Nesta abordagem o código

Haskell não é compilado dentro de um assembly .NET contendo código MSIL o qual

seria gerenciado pelo ambiente de execução .NET. O que ele faz é interpretar as

instruções lado a lado com o ambiente de execução .NET, provendo o código para

ambos os mundos através de chamadas de um mundo ao outro, utilizando uma

biblioteca FFI .

Esta abordagem possui uma série de características que comprometem seu

desempenho, dentre elas:

• Durante a execução de um programa que possui código dos dois mundos

são mantidos dois ambientes de execução: o interpretador Hugs e runtime

.NET. Dentre outros custos, temos o de manter dois coletores de lixos, um em

cada ambiente.

• Para acessar o modelo de objetos .NET é utilizada a API de Reflexão.

Trabalhos, como Rail[38], que utilizaram esta API relatam que ela possui

41

baixo desempenho. Outro problema decorrente de se utilizar esta API é que

os objetos construídos por ela são acessados como componentes COM[39],

que possuem certo custo para seu uso.

• O acesso ao código Haskell é feito através de invocação de código não

gerenciado, o que acarreta overhead na transição entre código

gerenciado e código não-gerenciado.

Embora com esta abordagem, o Hugs98 for .NET, consiga fazer uso das

funcionalidades disponíveis na plataforma .NET em programas Haskell, inter-

operando entre os dois mundos, ele está longe do ideal no quesito desempenho.

2.5.2 Mondrian

Mondrian[35,7] é uma linguagem funcional não estrita especificamente

projetada para ambientes orientados a objetos, possuindo uma versão para a

plataforma .NET. Pode ser visto como uma versão light de Haskell, contendo uma

sintaxe mista entre Haskell e C#. Por ser uma linguagem criada especificamente

para integração com ambiente OO, Java e .NET, possui comando nativos para

criação de objetos, chamada a métodos e acesso a campos.

Quanto a sua implementação na plataforma .NET suas principais

características são:

• Utiliza push/enter como modelo de aplicação de funções.

• Sua representação de thunks utiliza exceções, onde o consumo de uma

closure não avaliada gera uma exceção que é tratada avaliando a

expressão e retornando o resultado desta avaliação. Este valor é

armazenado na closure para futuras chamadas.

• Sua compilação gera código C#, o qual é posteriormente compilado para

código MSIL utilizando o compilador C# padrão da plataforma.

O mesmo projeto que construiu Mondrian desenvolveu, também, um

compilador Haskell para .NET[27]. Este compilador usa o GHC, como frontend, o

qual é responsável por fazer o parser, a checagem de tipos e otimizações do

código Haskell, gerando uma saída no formato GHC Core. Utilizando uma

42

ferramenta, o código GHC Core é, então, transformado em Mondrian Core que

através do compilador Mondrian gera código .NET.

2.5.3 Nemerle

Baseada em ML, Nemerle[9] foi projetada para ser uma linguagem funcional

estaticamente tipada voltada para a plataforma .NET. Outro objetivo levado em

consideração no seu projeto foi permitir o uso de construções típicas de linguagens

imperativas e orientadas a objetos de forma a promover uma boa transição de

programadores destes paradigmas para linguagens funcionais. Esta característica

também facilita a interoperabilidade com a plataforma .NET. Dentre suas

funcionalidades se destaca o suporte a meta-programação que permite estender a

linguagem através de macros. Embora seja estrita, permite criação de expressões

com avaliação preguiçosa através do uso da palavra reservada lazy.

Sua implementação na plataforma .NET faz uso das seguintes estratégias:

• Adota o modelo de aplicação eval/apply utilizando para isto classes pré-

definidas para n argumentos de tipos genéricos.

• Funções quando utilizada como valor de alta-ordem são representadas

utilizando classes específicas. Esta classe deve estender da classe

correspondente ao número de argumentos, dentre as classes pré-definidas

no ambiente, e sobrescrever o método apply com o código

correspondente, geralmente uma chamada para a uma função estática.

• Caso a função tenha variáveis livres, é criada uma nova classe onde estas

são armazenadas e uma instancia desta classe é adicionada a um campo

da classe que representa a closure da função.

• Funções não utilizadas como valor de alta ordem e que não possuam

variáveis livres não geram closures sendo representadas diretamente como

funções estáticas.

• Tipos algébricos são representados utilizando mecanismo de herança e

casamento de padrões através da verificação de tipos com uso da

instrução isinst.

43

2.5.4 F#e ILX

Assim como Nemerle, F# [6] é uma linguagem da família ML especialmente

desenvolvida para integração com a plataforma .NET. Ela pode facilmente

interoperar com qualquer linguagem .NET, bem como suas bibliotecas de classe. Ela

também permite integração com Caml[40], possibilitando a importação de

bibliotecas desta para a plataforma.NET. Por ter sido desenvolvida tendo como

foco a integração com .NET, F# possui suporte sintático e semântico para a maioria

das construções presentes no mundo .NET.

F# utiliza a ILX como código destino de seu processo de compilação a qual é

posteriormente convertida em código IL. Entretanto, diferentemente do descrito por

Don Syme[6] no trabalho que apresenta a ILX e da versão baixada através do site

do produto [41] o código gerado não faz uso de ponteiro para referenciar funções

em sua representação de closure. O que demonstra que a ILX vem sendo evoluída

em conjunto com o F#. Devido ao uso do ILX como código final as características

aqui descritas, observadas através da utilização do compilador F#, provavelmente

são providas pela versão atual da ILX e não diretamente pelo F#:

• Modelo de aplicação eval/apply, com classes pré-definidas para aplicações

otimizadas de até cinco argumentos de tipos genéricos.

• Da mesma forma que Nemerle (Seção 2.5.3) funções de alta ordem estende

de uma das classes pré-definidas sobrescrevendo o método Invoke com o

código correspondente, geralmente com uma chamada para uma função

estática.

• Utiliza mecanismos de inline de código evitando a criação de novas closures

e desta forma diminuindo o número de classes geradas.

• Permite a execução de funções provenientes de outra linguagem como

função de alta ordem, através de um mecanismo implementado utilizando

delegates.

• Caso a função tenha variáveis livres é criada uma nova classe onde estas

são armazenadas e uma instancia desta classe é adicionada a um campo

da classe que representa a closure da função.

44

• Funções não utilizadas como valor de alta ordem e que não possuam

variáveis livres não geram closures sendo representadas diretamente como

funções estáticas.

• Tipos algébricos são representados utilizando mecanismo de herança e

casamento de padrões através da verificação de tipos com uso da

instrução isinst.

A geração de código verificável, decorrente do abandono do uso de

ponteiros, e outras características aqui apresentada demonstra um

amadurecimento no projeto da ILX. A disponibilização desta nova versão facilitaria

o surgimento de novas implementações de linguagens funcionais na plataforma

.NET, bem como a interoperabilidade entre estas. O projeto ILX serviu como base

para a prototipagem e testes da implementação de generics para a CLR, o que

demonstra a importância deste dentro do projeto .NET sugerindo que novas

características, tais como closures, possam vir a ser integradas em futuras versões da

CLR.

2.5.5 Haskell .NET

O projeto Haskell .NET[5] faz alterações no compilador Glasgow Haskell

Compiler (GHC)[42] criando um novo backend capaz de gerar código MSIL. Este

backend tem como entrada uma representação intermediária do programa,

produzido pelo frontend do GHC, na linguagem Spineless Tagless G-Machine

(STG)[28,43]. Utilizar esta representação facilita o processo de compilação, pois

toda a checagem de tipo fica a cargo do frontend e também se aproveita de

otimizações feitas em etapas anteriores a sua produção.

Sua implementação possui inúmeras peculiaridades que objetivam otimizar o

mapeamento de uma linguagem funcional não estrita, como haskell na

plataforma.NET:

• Representa closures utilizando classes pré-definidas para n variáveis livres de

tipo genéricos e delegates para fazer referência à função. A função

referenciada pelo delegate corresponde ao slow entry point, o qual busca

os argumentos na pilha de argumentos. Desta forma evita a geração de um

45

grande número de classes, como ocorre quando se utiliza a estratégia de

uma classe por closure.

• De forma a permitir que tipos unboxed sejam passados como argumentos,

sua implementação para a pilha de argumentos é divida em quatro pilhas

correspondente aos tipos inteiro, double, object e closure. Diferentes valores

são convertidos para o tipo que mais se aproxima.

• Para representação de tipos algébricos existem classes genéricas pré-

definidas no ambiente capazes de representar construtores com até nove

tipos variáveis.

• Utiliza um número inteiro como tag para identificar construtores e assim

otimizar operações de casamento de padrões através de instruções switch.

• Com objetivo de evitar a criação de várias instâncias de valores comuns em

tempo de execução o próprio ambiente de execução pré-instancia alguns

valores booleanos e inteiros e os compartilha sempre que necessários.

O foco deste projeto foi dado à otimização do mapeamento das estruturas

funcionais na plataforma .NET, desta forma, conversão de tipos e mecanismos que

facilitassem a interoperabilidade com linguagens não funcionais, presentes no

ambiente, não foram implementados.

2.6 Considerações Finais

Neste capítulo foram descritas algumas das principais construções

características a linguagens funcionais, que ao mesmo tempo em que

incrementam o poder de expressão destas dificulta a implementação em

ambientes orientados a objetos como o .NET. Possíveis alternativas para o

mapeamento de cada uma destas construções apresentadas e discutidas. Por fim,

foram apresentados exemplos de implementações, explicitando a abordagem

tomada por cada projeto. A Erro! Fonte de referência não encontrada. mostra um

resumo das principais características encontradas nas implementações analisadas

neste capítulo.

46

Tabela 1 - Comparação entre implementações

47

3 PHOENIX FRAMEWORK

Phoenix[44] é um framework completo para construção de compiladores e de

uma grande quantidade de ferramentas para análise, otimização e testes de

programas. Sua estrutura é bastante flexível e está centrada na representação

intermediária (IR) e na existência de diversos readers e writers que são capazes de

ler e gerar código em diversos formatos. A função de um reader é ler de um

formato específico (PE14, MSIL, CIL15) e gerar uma representação intermediária a ser

manipulada com o Phoenix. De forma contrária, um writer é o responsável por gerar

um arquivo específico (PE, MSIL, COFF, etc.) a partir da representação intermediária.

Os compiladores atuais funcionam como caixas pretas, onde todo o processo

interno é escondido do usuário e alterações em seu funcionamento não são

permitidas. Tudo que o usuário pode fazer é fornecer o código fonte como entrada,

passar algumas diretivas de compilação e aguardar a compilação do programa.

Phoenix objetiva abrir esta caixa. Um compilador escrito utilizando Phoenix é

formado por uma lista de fases, sendo cada fase responsável por uma etapa do

processo de compilação. Através de um mecanismo, denominado plugins, Phoenix

permite que seja alterado o comportamento do compilador acrescentando,

retirando ou alterando fases. A existência de uma representação intermediária

própria, bem como uma rica API para manipulação desta, facilitam a alteração do

compilador e a construção de ferramentas de análise e otimização.

A Figura 2 dá uma visão geral da plataforma Phoenix, apresentando seus

principais componentes: readers, writers, Intermediate Representation (IR), Phases,

API e ferramentas (análise, instrumentação e otimização). Nela, podemos observar

que o processo de manipulação da IR é feito durante as fases, utilizando

ferramentas construídas com a API do framework.

14 Portable Executable [39]. Padrão para arquivos executáveis do Windows.

15 C/C++ Intermediate Language.

48

Figura 2. Visão geral da plataforma Phoenix. Adaptada da documentação do Phoenix[45].

Desta forma, Phoenix fornece um rico ambiente capaz de atender as

necessidades tanto de pesquisadores como desenvolvedores. Aos pesquisadores é

fornecida uma sólida infra-estrutura que suporta um modular reuso de código e o

fácil redirecionamento para diferentes arquiteturas e linguagens. Assim,

pesquisadores podem desenvolver novas ferramentas e elementos de compiladores

sem o custo usual de ter de desenvolver uma nova infra-estrutura. Já

desenvolvedores podem facilmente criar ferramentas para análise e otimização de

seus programas, bem como, alterar o comportamento de programas já compilados

sem ter que alterar diretamente o código.

3.1 Representação Intermediária (IR)

Phoenix utiliza uma representação intermediária fortemente tipada e linear

para representar o fluxo de instruções de uma função. É sobre esta representação

que é feita a manipulação de um programa utilizando a biblioteca de classes

Phoenix. Para um programa ser reescrito utilizando o Phoenix, primeiramente, este

deve ser convertido para a IR por um reader (readers para código nativo, MSIL e

49

AST16 já são fornecidos pelo Phoenix, e outros podem ser escritos para formatos não

suportados). Após a conversão a IR pode ser manipulada por uma ferramenta

Phoenix e ao final do processo convertida novamente em um programa utilizando o

writer específico. Desta forma, entender como é estruturada a IR é essencial para a

construção de ferramentas e compiladores utilizando Phoenix.

A IR permite que uma função seja representada em diversos níveis de

abstração, podendo representar uma função desde uma forma independente de

máquina, alto nível, até uma forma dependente da máquina alvo, baixo nível,

onde peculiaridades específicas como manipulação de registradores e pilha são

descritas. Existem quatro níveis de representação providos por Phoenix, em ordem

crescente de dependência: high-level IR (HIR), mid-level IR (MIR), low-level IR (LIR) e

encoded IR (EIR).

A IR pode ser dividida em conjunto de conceitos básicos, cada um sendo

representado por uma classe na API do Phoenix:

• Instruções e Operandos: representam respectivamente operações e recursos

descritos através da IR.

• Tipos e Símbolos: conceitos básicos para definir o armazenamento e a

referência dos dados manipulados.

• Unidades: são como containeres para o armazenamento dos demais

elementos da IR.

• Classes Auxiliares (Safety, Debug, Alias e Constant): auxiliam na construção e

manipulação da IR e na análise do código gerado.

As três primeiras categorias são essenciais para entender como construir um

compilador utilizando o Phoenix e por isto serão detalhadas a seguir.

3.1.1 Instruções

Phoenix armazena a IR de uma função como uma lista de instruções

duplamente ligadas, onde cada nó é uma instrução constituída de um operador

(representado por um opcode) e duas listas de operandos: uma contendo os

16 Abstract Syntax Tree.

50

operandos de origem e a outra com os de destino, como mostrado na Figura 3. Esta

representação mostra de forma explícita todos os efeitos colaterais possíveis de

uma instrução, uma vez que, todos os recursos lidos aparecem na lista de origem e

todos os recursos potencialmente alterados estão especificados na lista de destino,

favorecendo a análise destas instruções.

Figura 3. HIR da instrução x = add x, *p. Adaptada da documentação do Phoenix[45].

As instruções são classificadas em pseudo-instruções (label, pragma e data) e

instruções reais (value, call, compare, etc.). Pseudo-instruções representam

elementos tais como labels para fluxo de controle, pragma diretivas e alocação

estática de dados. Embora pseudo instruções não sejam mapeadas para código

de máquina elas são úteis para executar análise de código, passando diretivas

para as unidades de compilação e identificando seções de dados.

• LabelInstruction: cria labels definidos pelo usuário e pontos de ligação

para o fluxo de controle. Pode ser usado para determinar locais do

código úteis para a criação de ferramentas de análise.

• PragmaInstrucion: representam diretivas e dados fornecidos pelo

usuário. Pode ser usado para suprir informações do usuário para uma

ferramenta ou compilador criado.

• DataInstruction: cria dados estaticamente alocados. Pode representar

qualquer coisa que pode ser codificado em formato binário, tal como

dados do programa ou instruções.

Instruções reais são as que modificam dados ou o fluxo de controle de um

programa. Estas instruções são mapeadas diretamente para uma ou mais instruções

de máquinas. São elas:

• ValueInstruction: operação aritmética ou lógica que produz um valor.

51

• CallInstruction: procedimento de invocação, direto ou indiretamente de

uma função.

• CompareInstruction: instrução de comparação de dois operandos.

Baseado neste resultado podem ser gerados códigos condicionais.

• BranchInstruction e SwitchInstruction: instruções de controle de fluxo

para desvios condicionais, incondicionais e de múltiplas alternativas.

• OutlineInstruction: instrução para retirada do fluxo principal de

instruções, tal como um bloco de assembly inline.

Embora o tipo de instrução restrinja os possíveis tipos de operação, o que

realmente determina a operação a ser executada é o opcode. Por exemplo: para

fazermos o cálculo de uma expressão utilizamos uma ValueInstruction, mas é

através do opcode que determinamos se será realizada uma soma (add),

subtração (sub) ou outra operação qualquer para a qual exista um opcode

correspondente.

Para cada operação mapeada pelo Phoenix existe um opcode

correspondente e este deve ser utilizado com a respectiva instrução. Na

documentação do Phoenix[45] é fornecida uma lista com todos os opcodes

existentes na IR.

3.1.2 Operandos

Operandos aparecem tanto na lista de origem quanto na de destino de uma

instrução sendo que cada operando é associado a uma única instrução. Uma vez

que, todos os efeitos das instruções são representados explicitamente, operandos

refletem todos os potenciais recursos usados. O que inclui registros, alocações de

memória e códigos condicionais. Cada operando possui um tipo abstrato

associado a ele, este tipo abstrato é, posteriormente, mapeado para um tipo de

máquina quando a instrução que o contém for transformada em uma instrução LIR

ou EIR.

Existem diferentes tipos de operandos, cada um responsável por representar

um determinado recurso. Por exemplo, para representar uma variável, seja ela

temporária ou não, é utilizado um operador do tipo VariableOperand. Da mesma

forma, existem operandos específicos para representar recursos armazenados na

52

memória (MemoryOperand), constantes (ImmediateOperand), labels

(LabelOperand) e símbolos para funções (FunctionOperand). Tendo como exemplo

a instrução descrita na Figura 3 “x” é referenciada utilizando um VariableOperand e

“*p” através um MemoryOperand.

3.1.3 Tipos

Phoenix possui um sistema de tipos bastante abrangente capaz de suportar

todos os tipos descritos no Common Language Runtime (CLR)[3], incluindo tipos

genéricos, bem como herança simples e múltipla (C++). Por ser a IR fortemente

tipada para cada símbolo ou operando criado seu tipo deve ser especificado.

O sistema de tipos do Phoenix disponibiliza não só diferentes tipos como

também a possibilidade de criar novos tipos e definir regras para a checagem

destes tipos. Desta forma, um compilador ou ferramenta pode criar um conjunto de

tipos e provê regras customizadas para sua checagem. É possível expressar tanto

tipos de alto nível como tipos à nível de máquina, sendo permitida a checagem de

tipos nos diversos níveis da representação intermediária (HIR, MIR e LIR).

A classe abstrata Phx.Types.Type é a classe base para todos os tipos

suportadas por Phoenix, compartilhando propriedades e métodos utilizados por

estes. Um sistema de tipos Phoenix é representado por um conjunto de tipos

armazenados em um objeto Phx.Types.Table e um conjunto de regras prescritas por

um objeto Phx.Types.Check. Assim, ao criarmos um compilador ou ferramenta deve

ser criada uma única tabela de tipos, a qual deve ser compartilhada por toda a

ferramenta. Vale observar que esta tabela é particular para uma arquitetura alvo

uma vez que cada arquitetura possui sua própria representação de tipos. Certos

tipos, tais como tipos primitivos, são disponibilizados como propriedades da tabela,

sendo criados automaticamente quando Phoenix gera a instância da tabela.

Dentro do sistema de tipos Phoenix há uma classificação dos tipos,

independentemente de estes serem padrão ou definidos pelo usuário devem se

encaixar em uma das classes de tipos pré-existentes. Tais classes de tipos possuem

atributos e métodos característicos de um determinado conjunto de tipos,

facilitando a construção e a checagem de tipos. Desta forma Phoenix define

53

classes específicas para representar tipos primitivos, ponteiros, arrays, tipos variáveis,

campos, tipos agregados e funções.

O tipo função é peculiar, pois diferentemente do que possa parecer ele não é

utilizado para representar um tipo função como o existente em linguagens

funcionais. Ele é utilizado para descrever um protótipo de uma função definindo sua

assinatura, ou seja, os tipos de seus argumentos e de seu valor de retorno. Este tipo é

essencial para a construção de uma função na IR. A tabela de tipos possui um

método GetFunctionType, o qual facilita a criação de tipos função que possuam

até quatro parâmetros. Para funções mais completas deve se utilizar a classe

FunctionTypeBuilder. O Código 12 demonstra como criar um tipo para uma função

que recebe um argumento do tipo inteiro e não retorna nenhum valor.

1 // Criando o tipo utilizando o método GetFunctionType
2 typeTable.GetFunctionType(CallingConventionKind.ClrCall,
3 typeTable.VoidType, typeTable.Int32Type, null, null, null);
4
5 // Criando o tipo utilizando FunctionTypeBuilder
6 FunctionTypeBuilder builder = FunctionTypeBuilder.New();
7 builder.Begin();
8 builder.CallingConventionKind = CallingConventionKind.ClrCall;
9 builder.AppendArgumentType(typeTable.Int32Type);
10 builder.AppendReturnType(typeTable.VoidType);
11 // Retorna o typo função criado
12 builder.GetFunctionType();

Código 12. Criação do tipo função

Tipos que possuem membros tais como classe, interfaces e estruturas são

representados através da classe AggregateType. Para representar os diferentes

tipos agregados são utilizados meta-propriedades que especificam as diferenças

funcionais entre tipos diferentes. Ou seja, a combinação de meta-propriedades é

que descrevem qual tipo esta sendo modelado diferenciando, por exemplo, uma

interface de uma classe ou mesmo a representação de uma classe em linguagens

diferentes como C++ e as linguagens .NET. O Código 13 demonstra como criar um

tipo agregado que representa uma classe MSIL.

1 Phx.Name classTypeName = Phx.Name.New(lifetime, strClassTypeName);
2 Phx.Symbols.MsilTypeSymbol classTypeSym =
3 Phx.Symbols.MsilTypeSymbol.New(peModuleUnit.SymbolTable,
4 classTypeName, 0);
5
6 AggregateType classType =
7 AggregateType.NewDynamicSize(typeTable, classTypeSym);
8
9 // Configurando metapropriedades
10 classType.IsPrimary = true;
11 classType.IsSelfDescribing = true;
12

54

13 // Adição de métodos e campos.
14 classType.AddMethod(methodSymbol);
15 classType.AddField(fieldSymbol);

Código 13. Criando uma classe MSIL

A um tipo agregado podem ser adicionados campos e métodos. Campos

são criados através da classe FieldType e possuem propriedades específicas como

tamanho e deslocamento (offset).

Para representar tipos variáveis, Phoenix disponibiliza a classe VariableType, a

qual foi criada especificamente para representar tipos genéricos MSIL. Tipos

variáveis são sempre associados a funções ou classes as quais definem o escopo

dentro do qual ele pode ser acessado, sendo este escopo o tipo genérico ou

método genérico que introduz o tipo variável.

3.1.4 Unidades

Unidades representam containeres lógicos para o armazenamento da IR. Além

de outras unidades, estas unidades armazenam fluxos de instruções, tabelas de

símbolos e variáveis inicializadas.

• GlobalUnit - Unidade de compilação mais externa, contém uma lista de

objetos ProgramUnits. Criada quando inicializamos a infra-estrutura Phoenix,

armazena, entre outras coisas, as tabelas de símbolos e de tipos globais.

• ProgramUnit - Unidade de compilação correspondente a uma imagem

executável, podendo ser um arquivo EXE ou DLL. Contém uma lista de

AssemblyUnits e uma lista de ModuleUnits. A razão para conter duas listas é

que arquivos Win32 não são formados por assembly e desta forma um

objeto ProgramUnit pode conter diretamente módulos que não estejam

dentro de assemblies.

• AssemblyUnit - unidade de compilação de um assembly do Framework .NET.

Contém uma lista de objetos ModuleUnits. Menor unidade de re-uso,

segurança e versionamento.

• ModuleUnit – coleção de funções (FunctionUnits), que normalmente

representam um programa ou um arquivo fonte. Pode conter DataUnits.

55

• PEModuleUnit – tipo especial de ModuleUnit que representa um arquivo PE,

pode ser um arquivo executável Windows (EXE) ou uma biblioteca de link

dinâmico (DLL).

• FunctionUnit – representa uma função e com seu fluxo de instruções. Unidade

alvo da maioria das transformações proporcionadas pela lista de fases.

• DataUnit – coleção de dados relacionados tal como um conjunto de

variáveis inicializadas ou o resultado da codificação de FunctionUnit. Provê

dados necessários para processar uma unidade.

Estas unidades podem ser aninhadas formando uma estrutura hierárquica,

onde o a unidade mais externa é a GlobalUnit (Figura 4).

Figura 4. Hierarquia de unidades. Adaptada da documentação do Phoenix[45].

3.1.5 Símbolos

Símbolos Phoenix são associados a entidades tais como variáveis, labels, tipos,

nomes de funções, endereços, entidades de metadados e módulos, fornecendo

um nome para cada instância destes elementos. É o mecanismo através do qual

tais entidades são referenciadas na IR. Estes símbolos são mantidos em tabelas que

por sua vez são armazenados em unidades (Seção 3.1.4), devendo haver apenas

56

uma tabela de símbolos por unidade. Desta forma, a união de unidades e tabela

de símbolos proporciona um controle sobre o escopo de um símbolo.

Para cada entidade a ser referenciada há um tipo correspondente e estes

podem ser agrupados em:

• Símbolos básicos – símbolos que referenciam variáveis (locais e globais),

funções, constantes, tipos, campos, labels, etc.

• Símbolos que representam aspectos de módulos no formato PE – módulos e

variáveis importadas ou exportadas.

• Símbolos para elementos de metadados da CLR – assemblies, recursos,

atributos, permissões, etc.

Uma tabela de símbolos não possui, por si só, nenhum mecanismo de busca.

Para realizar uma busca numa tabela devemos associar a ela um mapeamento

através de um objeto Symbol.Map, que permitirá fazer a busca na tabela utilizando

como chave uma das propriedades do símbolo. Toda tabela possui pelo menos um

mapeamento do tipo IdMap, o qual permite a busca na tabela através da

propriedade LocalId, que é única para cada símbolo contido na tabela.

ExternIdMap e NameMap são outros exemplos de mapeamento permitidos por

Phoenix, sendo o último bastante útil pois permite a busca pelo nome do símbolo. A

criação de uma tabela de símbolos e um mapeamento por nome pode ser

observado no Código 14.

1 // Cria uma nova tabela de símbolos e associa a uma unidade
2 Phx.Symbols.Table funcSymTable =
3 Phx.Symbols.Table.New(functionUnit, TABLESIZE, false);
4
5 // Cria um mapeamento por nome e o adiciona a tabela de símbolos
6 functionSymbolTable.AddMap(NameMap.New(funSymTable, TABLESIZE));

Código 14. Criação de tabela de símbolos e adição de um mapeamento por nome

É importante ressaltar que o tamanho tanto da tabela de símbolos como do

mapeamento são fixadas no momento de sua criação, devendo estes ser grandes

o suficiente para armazenar todos os símbolos que a ferramenta venha a necessitar

ou deve ser feito um esquema que proporcione a expansão de seus tamanhos

através da criação de uma nova tabela e novo mapeamento, de maior

capacidade, e a cópia dos símbolos. O tamanho do mapeamento deve ser igual

ou superior ao da tabela, para que este possa mapear corretamente todos os

elementos desta.

57

3.1.5.1 Proxy

Proxy é um símbolo especial que permite que um mesmo símbolo apareça em

mais de uma tabela de símbolo. Por exemplo, uma variável estática que é definida

dentro de uma função usa um proxy para indicar que é tanto, logicamente, um

membro do escopo da função como, fisicamente, uma variável global.

Um exemplo de quando se deve utilizar um proxy é quando uma instrução em

uma FunctionUnit faz referência a uma variável global. Sabendo-se, que os

operandos de uma instrução só podem referenciar símbolos na tabela de símbolos

da unidade da função, para acessar uma variável global será necessário criar um

proxy para esta variável na tabela de símbolos da função.

3.2 Fases e Plugins

Fases e plugins são estruturas que trabalham em conjunto, permitindo alterar o

comportamento de ferramentas e compiladores, construídos com o Phoenix, sem

que seja necessário alterar o código fonte destes.

Phoenix utiliza o conceito de fases para o processo de transformação de sua

representação intermediária. Desta forma, um programa Phoenix é constituído por

uma lista de fases, onde cada fase é responsável por uma característica específica

do processo de compilação: transformação da IR, geração de código, otimização,

alocação de registradores, etc. Uma fase atua sobre uma unidade, geralmente

uma FunctionUnit, a qual representa uma função armazenando todos os símbolos e

fluxo de instruções que compõem esta.

Plugins são módulos externos criados utilizando código gerenciado e

armazenado em arquivos dll, os quais podem ser adicionados a programas

construídos utilizando o Phoenix. Através deste mecanismo é possível modificar a

lista de fases que compõe um programa Phoenix substituindo, alterando ou

inserindo fases. Esta funcionalidade permite a modificação destes programas após

sua compilação sem alterar seu código fonte.

58

A Figura 5 demonstra a utilização do plugin MyPlugin.dll que atua modificando

o comportamento do compilador cl (compilador para código C/C++ construído

utilizando o Phoenix). O compilador cl é dividido em dois módulos, o frontend

(C1.exe) e o backend (C2.exe). O C2 é responsável pela geração de código final e

foi construído utilizando o framework Phoenix. O plugin altera a lista de fases que

compõem o backend c2, modificando assim seu funcionamento, o que pode ser

refletido no programa gerado pelo compilador (App.exe).

Figura 5. Funcionamento de um plugin Phoenix. Adaptada da documentação do Phoenix[45].

Com o uso de plugins fica fácil adicionar novas funcionalidades a um

compilador. Para isto, basta identificar qual fase do processo de compilação

proporciona representação e informações adequadas e através de um plugin

inserir uma nova fase que execute a funcionalidade. O SDK17 do Phoenix vem com

um compilador C/C++ e um leitor de arquivos PE (PEReader), utilizando plugins é

possível alterar o comportamento destes programas de forma a modificar o

processo de compilação de códigos C/C++ ou obter informações de arquivos PE.

A construção de um plugin é bem simples, consistindo basicamente por duas

etapas: construção de uma fase responsável por realizar a funcionalidade desejada

e definição de uma posição na lista de fases onde esta será inserida. Para construir

uma nova fase basta estender da classe Phase, criar um método construtor e

sobrescrever o método Execute com o código correspondente ao trabalho a ser

17 Software Development Kit.

59

realizado. O Código 15 demonstra a criação de uma fase (MyPhase), a qual

descarrega o fluxo de instruções de uma função, fornecendo informações como

opcode e operandos que compõem estas instruções.

1 public class MyPhase : Phx.Phases.Phase
2 {
3 public static MyPhase New(Phx.Phases.PhaseConfiguration config)
4 {
5 MyPhase phase = new MyPhase();
6 phase.Initialize(config, "Minha fase. Dump de instruções");
7 return phase;
8 }
9
10 protected override void Execute(Unit unit)
11 {
12 if (unit.IsFunctionUnit)
13 {
14 FunctionUnit funcUnit = unit.AsFunctionUnit;
15 foreach (Instruction instr in funcUnit.Instructions)
16 {
17 instr.Dump();
18 }
19 }
20 }
21 }

Código 15. Construindo uma fase

Após a construção da fase, o plugin pode ser criado estendendo a classe

PlugIn e sobrescrevendo os métodos RegisterObjects e BuildPhases, sendo este

último o responsável por definir onde a nova fase será inserida. No Código 16 é

exemplificada a construção de um plugin, o qual insere a fase MyPhase na lista de

fases de um programa Phoenix após a fase de criação da IR. A implementação do

método RegisterObjects é opcional, servindo para registrar controles que modificam

o comportamento do plugin. É ainda necessário sobrescrever a propriedade

NameString a qual deve retornar o nome do plugin criado.

1 public class MyPlugIn : Phx.PlugIn
2 {
3 public override void RegisterObjects() { }
4 public override void BuildPhases(
5 Phx.Phases.PhaseConfiguration config)
6 {
7 Phx.Phases.Phase encodingPhase;
8 Phx.Phases.Phase myPhase;
9 encodingPhase = config.PhaseList.FindByName("RaiseIR");
10 myPhase = MyPhase.New(config);
11 encodingPhase.InsertAfter(myPhase);
12 }
13 public override string NameString
14 {
15 get {return "MyPlugin"; }
16 }
17 }

Código 16. Construindo um Plugin

60

Utilizando o pereader, programa para leitura de arquivos PE fornecido junto

com o SDK do Phoenix, é possível testar o funcionamento do plugin criado. Basta

para isto executar o seguinte comando, descrito abaixo, substituindo <arquivoPE>

por qualquer programa ou biblioteca .NET sobre o qual se deseja executar o plugin.

Com isto é feita uma alteração na lista de fases do programa pereader, passando

este a executar a fase MyPhase, logo após a fase RaiseIR.

pereader –plugin:myplugin.dll <arquivoPE>

A Figura 6 mostra o resultado obtido aplicando o plugin, com auxílio do

pereader, sobre o clássico programa HelloWorld.

Figura 6. Dump HelloWorld

3.3 Gerando Código

O framework Phoenix é estruturado de forma a permitir a fácil geração de

código para diversas arquiteturas (x86, x64 e CLR) por padrão e, também, facilitar a

geração para novas arquiteturas através da Grand Unified Retargeting Language

(GURL). A GURL é uma linguagem declarativa para descrição de instruções de

máquinas utilizada, atualmente, apenas pela equipe de desenvolvimento interno

do Phoenix. Entretanto, segundo Andy Ayers, gerente do projeto Phoenix, futuras

versões do SDK devem incorporá-la.

O processo de geração de código é composto por diversas fases, com uma

pequena variação para diferentes arquiteturas. Estas fases são responsáveis por

transformar a representação intermediária de alto nível, adicionando

61

gradativamente informações da arquitetura alvo, até que seja gerada a

representação codificada (EIR). A EIR pode então ser escrita em um arquivo

utilizando o writer (PE ou COFF18) correspondente ao formato de arquivo a ser

gerado.

3.3.1 Gerando código MSIL

Diferentemente da IR onde as instruções recebem diretamente os operandos

sobre os quais a operação deve ser executada, as instruções MSIL operam

utilizando uma pilha de execução. Phoenix faz esta conversão automaticamente

durante o processo de transformação da HIR para EIR.

A fase StackAllocation é a responsável por fazer esta transformação nos

operandos de forma que eles referenciem posições na pilha MSIL. Neste processo

são utilizados pseudo-registradores que representam locais específicos na pilha. Por

exemplo, o Código 17 demonstra como seria a representação de uma subtração

em alto nível em baixo nível para uma máquina .NET. Na representação HIR SR0 e

SR1 são pseudo-registradores onde a numeração representa a posição na pilha,

sendo zero seu topo.

1 // Representação HIR
2 A.i32 = Subtract B.i32, C.i32
3
4 // Representaçõ LIR MSIL
5 T1.i32(SR0) = ldsfld B.i32
6 T2.i32(SR0) = ldsfld C.i32
7 T3.i32(SR0) = sub T1.i32(SR1), T2.i32(SR0)
8 A.i32 = stsfld T3.i32(SR0)

Código 17. Transformação HIR para LIR em máquina .NET

Além desta transformação a fase StackAllocation é responsável por:

• Calcular o tamanho máximo da pilha, informação esta necessária para a

construção do cabeçalho de um método em código MSIL.

• Alocar espaço para variáveis locais e temporárias

• Gerar metadados com informações relacionadas às variáveis.

A geração automática de código MSIL pelo Phoenix permite que todas as

otimizações feitas na IR sejam repassadas de forma consistente ao código final.

18 Common Object File Format.

62

Desta forma, técnicas de otimização e ferramentas de análise podem ser criadas

sem se preocupar em que arquitetura serão utilizadas.

3.4 Análise e Otimização

Phoenix fornece diversas bibliotecas que facilitam a criação de ferramentas

de análise e otimização de programas. Estas bibliotecas tanto podem ser utilizadas

dentro de fases do processo de compilação como na construção de novas

ferramentas focadas na análise e otimização.

• DataFlow – implementa técnicas de análise de fluxo de dados que operam

sobre a IR, tais como: liveness e reaching definitions.

• Graphs – fornece uma infra-estrutura para a construção de grafos que

podem ser utilizados para representar fluxos de controle ou dados. Os grafos

são direcionados (cada aresta possui um nó de origem e um de destino) e

cada nó pode ser ligado a outro por mais de uma aresta.

• Static Single Assignment (SSA) – possui um conjunto de classes que facilitam a

criação de representações SSA de um programa, bem como a análise e

otimização baseada nestas representações. Dependências são modeladas

utilizando um grafo SSA, onde as dependências são representadas como

arestas entre operandos da IR.

• Alias – utilizado para rastrear o uso de memória feito pelas variáveis de um

programa e modificações ocorridas nestas áreas decorrentes da execução

das instruções de um programa.

O manual do Phoenix[45] fornece diversos exemplos práticos de como utilizar

estas bibliotecas.

3.5 Considerações Finais

Os conceitos aqui apresentados dão uma visão geral de como construir um

compilador utilizando o Phoenix e sua representação intermediária. Para tanto,

inicialmente, é definida a hierarquia de módulos, a começar pela GlobalUnit a qual

63

conterá a tabela de símbolos globais e a tabela contendo os tipos a serem utilizado

pelo compilador. Cria-se uma ModuleUnit, ou uma PEModuleUnit, caso se deseje

gerar um arquivo PE, na qual serão adicionadas as FunctionUnits que representarão

as funções presentes no programa a ser compilado. As variáveis criadas, utilizando

símbolos e tipos correspondentes, deverão ser armazenadas no devido escopo,

definido através da união entre tabela de símbolos e hierarquia de unidades. As

instruções que compõem o programa poderão então fazer uso destas variáveis

através dos operandos. Para finalizar, estas unidades serão submetidas a uma lista

de fases responsáveis por tornarem a representação intermediária mais próxima da

máquina alvo e por fim gerar o código.

Por fim, plugins e um conjunto de bibliotecas de análise de código como

DataFlow, Graph, SSA e Alias fornecem uma rica infra-estrutura para análise e

otimização do código gerado.

64

4 PROJETO E IMPLEMENTAÇÃO

O compilador aqui proposto busca, com auxílio da ferramenta Microsoft

Phoenix, criar uma implementação de um compilador de uma linguagem funcional

para a plataforma .NET que facilite o estudo e o desenvolvimento de novas

técnicas de mapeamento de linguagens funcionais nesta plataforma. Neste

capítulo serão descritos detalhes da implementação do compilador, bem como

problemas e decisões de projetos.

4.1 Objetivos

Este projeto visa, com auxílio da ferramenta Microsoft Phoenix, criar uma

implementação de um compilador de uma linguagem funcional .NET, que facilite o

estudo e o desenvolvimento de técnicas de mapeamento de linguagens funcionais

nesta plataforma. Com esta implementação objetiva-se, além de demonstrar a

viabilidade de tal abordagem, desenvolver uma representação de um ambiente

que contemple estruturas capazes de mapear características comuns a diversas

linguagens funcionais na plataforma .NET. Com base nestes objetivos, ficam claros

os seguintes requisitos:

• Gerar código MSIL a partir de uma linguagem representativa que contemple

características mais relevantes de uma linguagem funcional.

• Compilar um prelúdio básico contendo funções necessárias para execução

dos aplicativos selecionados para fazer a avaliação de desempenho.

• Facilitar a análise e otimização das estruturas responsáveis pelo mapeamento

das características funcionais na plataforma .NET.

4.2 Arquitetura

O foco da implementação aqui proposta é dado à geração de código,

análise e otimização (backend), desta forma preocupações quanto à análise léxica

65

e semântica do código são delegadas ao frontend a ser utilizado. O compilador

desenvolvido tem como base a máquina abstrata Spineless Tagless G-Machine

(STG)[28], a qual foi projetada para dar suporte a linguagens funcionais de alta

ordem não estritas. Sua escolha se deve ao fato de fornecer estruturas semânticas

simples capazes de representar as mais diversas construções características de uma

linguagem funcional e por esta representação já ter sido amplamente testada e

utilizada como formato intermediário em compiladores reais.

Como frontend será utilizada o Glasgow Haskell Compiler (GHC)[42], o qual é

capaz de gerar, dentre outros formatos, código STG e CORE19. Embora

internamente o GHC possua uma representação STG que contém informações

sobre o uso e definição de tipos, o código gerado não as possui. Como tais

informações são essenciais para uma implementação baseada em um ambiente

fortemente tipado como .NET, o uso do código STG gerado foi descartado. Utilizar a

representação STG interna, como feito em Haskell .NET, requer o uso de código

Haskell o que dificultaria a abordagem proposta nesse trabalho que é utilizar

framework Phoenix, uma biblioteca .NET, na construção do compilador. A

alternativa encontrada foi o uso do arquivo CORE gerado, o qual mantém as

informações de tipos necessárias. O uso da linguagem CORE seja como backend

para novos compiladores [27,46] ou como alvo de transformações e

otimizações[47,48] é bastante comum e tem seu uso sugerido pela equipe de

desenvolvimento do GHC.

O uso do GHC como frontend não só garante que o código está correto

como também permite a aplicação de uma série de otimizações, tais como

inlining[49,48] e strictness analysis[50]. O processo de compilação do GHC (Figura 7)

descrito por Peyton Jones et al. [51] pode ser resumido nos seguintes passos:

1. É feito o parser do código Haskell, gerando uma árvore sintática abstrata a

qual em seguida tem seus tipos checados.

2. A árvore sintática é então simplificada (desugaring), gerando uma

representação em linguagem CORE.

19 CORE é uma pequena linguagem funcional produzida pelo compilador GHC que tem com intuito servir

como linguagem alvo para novos backends e ferramentas de otimização que desejam utilizar o GHC como frontend. A
definição da gramática e informações mais detalhadas sobre sua sintaxe é dada por Andrew Tolmach[52].

66

3. Otimizações opcionais, quando solicitadas através de linha de comando

são feitas sobre a representação CORE.

4. A representação CORE é convertida para linguagem Shared Term Graph

(STG).

5. A representação STG é convertida em uma representação interna

denominada Abstract C, a qual pode gerar código C (quando solicitado

código otimizado), ou código assembly.

6. Código nativo é então gerado utilizando um compilador C ou o Assembler.

O compilador aqui proposto, em destaque na Figura 7, não altera diretamente

o GHC, ao invés disto utiliza como arquivo de entrada a representação CORE

produzida utilizando a diretiva de compilação -fext-core.

Figura 7. Inserção do PhxSTGCompiler

67

4.2.1 STG

A máquina STG fornece um conjunto de estruturas que, facilitam a

representação de uma linguagem funcional de alto nível e que ao mesmo tempo

são facilmente mapeadas para código nativo ou .NET. Seu modelo de execução é

baseado na técnica conhecida como graph reduction, onde um programa é

representado através de um grafo (neste caso uma árvore) e sua execução é feita

reduzindo suas expressões a Weak Head Normal Form (WHNF)20. Os nós que

compõem um grafo STG são os seguintes:

• Progam ou module – nó principal do grafo STG é composto por um

conjunto binds.

• Bind – ligação entre uma variável, que identifica o bind, e uma

abstração lambda (lambda-form).

• Lambda-form – representa uma função ou uma expressão atualizável.

Explicita suas variáveis livres e argumentos.

• Expression – pode ser uma expressão binária sobre tipos primitivos, uma

aplicação de funções e/ou construtores, uma expressão de casamento

de padrões ou uma criação de binds locais através de uma instrução

let ou letrec. Tais expressões são os alvos principais da redução.

Segundo Peyton Jones[28], criador da linguagem e da máquina STG, as

principais características desta são:

• Todos os argumentos de funções e construtores são variáveis ou

constantes. Esta restrição reflete a realidade operacional de chamadas

de função onde seus argumentos devem ser preparados (seja

construindo uma closure ou avaliando eles) antes da chamada. Esta

restrição pode ser resolvida adicionando novas instruções let para a

ligação de argumentos não triviais, como descrito na Seção 4.2.2.

• A aplicação de construtores e operadores primitivos (built-in) são

sempre saturadas, ou seja, o número de argumentos esperado pelo

construtor ou operador aplicado deve ser igual ao de argumentos

fornecido.

20 Termo criado por Peyton Jones[37] para explicitar a diferença entre Head Normal Form (HNF) e o que é

produzido através da graph reduction.

68

• Casamentos de padrões são sempre executados através de expressões

case e é permitido apenas padrões de um único nível.

• Existe uma forma especial de ligação (binding). Sua forma geral é:

f = {v1,...,vn} \π {x1,...,xn} -> e

Através deste binding f é ligado a uma closure, que armazena as

variáveis livres v1,...,vn e a função (λx1,...,xn.e). O lado direito do binding

é denominado lambda-form e é o único lugar onde uma abstração

lambda pode aparecer. A flag π determina se a closure é atualizável,

caso sua flag seja igual u, ou não atualizável caso seu valor seja n. O

fato de a lambda-form permitir que as variáveis livres de uma

abstração lambda sejam explicitadas faz com que não seja necessário

o uso de técnicas de lambda lifting21.

• Dá suporte a valores unboxed. Na STG, embora com algumas

restrições, valores unboxed podem ser ligados a variáveis, passados

como argumentos bem como serem retornos de uma função,

armazenados e estruturas de dados, etc. Esta abordagem diminui o uso

de boxing/unboxing durante operações de tipos primitivos.

4.2.2 Core to STG

A linguagem Core é facilmente traduzida para a STG de forma a ser utilizada

na máquina abstrata STG. Algumas diferenças são apenas sintáticas, não

necessitando grandes conversões, abaixo estão descritas apenas diferenças que

exigiram modificações na máquina STG ou alguma análise prévia para

identificação de informações relevantes.

1. Na STG os argumentos das funções devem ser atômicos (literais ou

variáveis), diferentemente da linguagem Core, a qual permite que

expressões sejam passadas como argumentos.

2. Aplicação de construtores e operadores primitivos tem de ser saturados.

Embora a linguagem Core não possua nenhuma restrição quanto à

21 Lambda lifting é uma técnica onde todas as definições locais de funções são elevadas para o nível definições

globais transformando suas variáveis livres em argumentos extras [87].

69

aplicação não saturada destes elementos em sua especificação[52] é

sugerido o uso de um pré-processador que torne tais aplicações

saturadas.

3. Cada ligação (bind) é feita entre uma variável e uma lambda-form, a

qual fornece explicitamente sua lista de variáveis livres. Core liga

variáveis diretamente a expressões, sem se preocupar em explicitar suas

variáveis livres.

A restrição 1 é resolvida, como proposto por Peyton Jones[28], adicionando

novos binds através de uma instrução let responsável por ligar a expressão a uma

variável a qual é utilizada para referenciar a expressão. Tomando como exemplo o

Código 18, testCore é definido como a aplicação da função f1 que recebe uma

expressão como argumento. Na STG isto não é permitido e por isto testSTG faz uso

de uma expressão let a qual cria um bind ligando t à expressão f2 2 e então aplica

a função f1 recebendo como argumento a variável ligada, no caso t.

1 testCore = f1 (f2 2)
2 testSTG = {} \u {} -> let t = f2 2 in f1

Código 18. Transformando uma expressão em um argumento atômico utilizando let

Para argumentos que correspondam à aplicação de operadores primitivos

uma otimização pode ser conseguida utilizando expressões case, como definido em

Peyton Jones e Launchbury [53]. Uma vez que tais aplicações resultam em tipos

primitivos o qual não podem ser armazenados como thunks, a melhor abordagem é

avaliar a expressão dentro de case e então retornar o resultado da avaliação

através da alternativa default (Código 19). A mesma abordagem deve ser utilizada

para aplicações de funções que retornam tipos unboxed.

1 testeSTG = {} \u {} ->
2 case 2+3 of var
3 {
4 default -> var
5 }

Código 19. Transformando uma expressão em um argumento atômico utilizando case

A forma direta para resolver a restrição 2 é utilizar o pré-processador Core,

entretanto o pré-processador disponibilizado não condiz com a Core gerada pela

atual versão do compilador GHC (6.8.2). Tim Chevalier, colaborador do projeto

GHC, tem se esforçado em atualizar não só o pré-processador, como toda a

linguagem Core gerada pelo GHC, de forma, a facilitar e ampliar o uso desta

70

linguagem. Entretanto, tais alterações só estarão presentes na próxima versão do

GHC, ainda sem data prevista para lançamento. Uma possível alternativa é aplicar

uma expansão-n, como sugerido por Peyton Jones[28], o que consiste em

transformar aplicações não saturadas, de construtores ou operadores primários, em

funções onde os valores fornecidos são considerados variáveis livres desta. A

fórmula geral é dada abaixo, onde c é um operador interno ou um construtor de

aridade n + m.

c {e1, ..., en} => λy1 ... ym . c {e1, ..., em, y1, ..., ym}

Entretanto, para aplicar tal expansão é necessário que os módulos compilados

guardem informações a respeito da aridade dos construtores, o que não era

necessário para a compilação a partir da STG. A solução encontrada foi gerar para

cada construtor uma função com código para aplicação do construtor, a qual

guarda informações sobre sua aridade. Esta função não possui nenhuma variável

livre e segue o mesmo modelo de avaliação de funções definidos na

implementação do compilador, o que permite a geração de aplicações parcial

quando aplicada a menos argumentos que o requerido. Para proporcionar melhor

desempenho, a utilização desta técnica só é empregada quando observado o uso

de aplicações não saturadas. Quando saturada, é feita a aplicação direta, criando

um construtor ou aplicando a operação. Outro ganho obtido com esta conversão

é permitir que construtores possam ser passados como parâmetros de uma função,

uma vez que estes podem ser representados como uma função qualquer da

linguagem.

O fato de não ter sido observada nenhuma aplicação não saturada de

operadores primários na linguagem Core leva a crer que, na atual versão do GHC,

tais aplicações são previamente expandidas. Desta forma, aplicações não

saturadas de operadores primitivos não são tratadas na implementação aqui

proposta.

Por fim, a transformação do lado direito dos binds em lambda-forms requer

que duas operações sejam executadas: identificação das variáveis livres da

expressão e adição da flag de atualização.

Uma variável é considerada livre se é mencionada no corpo de uma

abstração lambda e não pertence nem ao seu conjunto de argumentos e nem ao

71

conjunto de binds globais do programa. Em nossa implementação tal identificação

é feita ainda no parser da linguagem Core. Todas as variáveis referenciadas dentro

da expressão, lado direito de um bind, são guardadas e posteriormente verificadas

se pertencem ao conjunto de argumentos ou de binds globais, as que não

correspondem são adicionadas ao conjunto de variáveis livres da lambda-form.

Quanto à flag de atualização, como descrito na própria definição da STG, é

seguro configurar toda lambda-form como sendo não atualizável. Entretanto, tal

atitude contradiz a definição da avaliação lazy, que diz que cada expressão deve

ser avaliada somente quando necessária e apenas uma vez. Marcar toda lambda-

form como não atualizável acarretaria em um gasto excessivo de processamento

ao avaliar, desnecessariamente, uma mesma expressão mais de uma vez. Como

definido pela STG, funções, aplicações parciais e construtores são consideradas não

atualizáveis, sendo, apenas, thunks consideradas atualizáveis e mesmo estas, em

alguns casos, podem ser não atualizáveis. Como regra geral, em nossa

implementação consideramos thunks como sendo atualizável e separamos, ainda

no parser, as expressões lambdas com e sem argumentos, sendo que as expressões

com argumentos (funções e construtores) são sempre consideradas não

atualizáveis. Já as sem argumentos são classificadas durante a compilação, onde

se a expressão de for identificada como uma aplicação não saturada esta é

tratada como uma closure não atualizável, caso contrário, será uma closure

atualizável.

A fim de organizar e dividir melhor as responsabilidades, as transformações

explicitadas nesta Seção deveriam ser delegadas a um pré-processador, o qual

transformaria a linguagem Core numa STG enxertada com informações de tipos

capaz de ser executada diretamente pelo compilador proposto. Entretanto,

inicialmente, não foi cogitado o uso da linguagem Core como linguagem fonte.

Esta só foi viabilizada na fase de integração com o compilador GHC, onde foi

observado que a linguagem STG produzida não possui informações suficientes e a

dificuldade em utilizar a representação STG interna em conjunto com o Phoenix.

Com isto tal responsabilidade foi dividida entre o parser e o próprio compilador,

cabendo ao primeiro a maior parte.

72

4.3 PhxSTGCompiler

O processo de compilação efetuado pelo PhxSTGCompiler pode ser

observado na Figura 8. Inicialmente a linguagem Core fornecida pelo GHC é lida

através de um parser, este gera uma representação abstrata do programa em

forma de árvore a qual é convertida na representação intermediária IR, necessária

para o uso do Phoenix. Utilizando uma lista de fases, construídas utilizando a API

Phoenix, esta IR é sucessivamente manipulada e transformada em uma

representação correspondente a requerida pela máquina alvo, neste caso a CLR. A

última etapa deste processo de compilação corresponde à emissão do código

final, a qual é feita através de um writer para arquivos PE, gerando uma biblioteca

de link dinâmico (dll) ou arquivo executável (EXE).

 A implementação aqui proposta permite que seu processo de compilação

seja alterado por programas externos, denominados plugins, os quais podem

modificam a lista de fases do compilador. Este mecanismo será utilizado para

produzir otimizações no código gerado, como demonstrado no Capítulo 5.

Parse

Phoeni

x

Códi
go
Core

IR

Arquiv
o PE

(.NET)

Plugi

PhxSTGCompi

Fa
se

Figura 8. Processo de compilação

73

Internamente o PhxSTGCompiler é formado por um conjunto de classes

responsáveis por representar estruturas de compilação, gerar a IR e pelo processo

de compilação. Tais classes, representadas graficamente na Figura 9, são

detalhadas a seguir:

• Compiler: responsável por inicializar e gerenciar a infra-estrutura Phoenix e as

classes que compõem o compilador. Solicita o parser do arquivo fonte e a

geração de código IR, o qual é então transformado em código MSIL através

da execução da lista de fases definida no compilador. Ao final do processo

de compilação emite o assembly .NET, podendo este ser um arquivo

executável (EXE) ou biblioteca de classes (DLL).

• CompilationEnvironment: representa o ambiente de compilação,

armazenando informações úteis ao processo de geração de código IR, tal

como escopo e contagem de identificadores.

• CompilationUnits: coleção de classes que representam as estruturas básicas

de compilação presentes na descrição da STG. Cada objeto desta classe

armazena uma referência para um mesmo objeto da classe IRBuilder,

compartilhado por todas as unidades do programa, a qual é utilizada para

gerar o código IR. Todas as classes deste pacote herdam da classe

CompilationUnit, unidade básica de compilação, que define um método

abstrato o qual deve ser implementado em cada classe de forma a gerar,

com auxílio do IRBuilder, a representação correspondente em código IR.

Detalhes sobre a geração de cada uma das unidades pode ser observado

no Apêndice A, de forma geral tais unidades podem ser classificadas em:

o BasicUnits: unidades básicas de compilação (module, bind,

dataUnit e lambda-form). Utilizam Generate para gerar seu

código IR.

o ExpressionUnits: representam as expressões disponíveis na

máquina STG (let, case e aplicação de funções, construtores e

operações sobre tipos primitivos). Disponibilizam o método

Evaluation, responsável não só por gerar o código IR da

expressão, como também retornar operando de destino da

expressão.

o AtomUnits: expressões atômicas (variáveis, construtores e tipos

primitivos). Através do método Evaluation geram código IR,

74

quando necessário, e retornam um operando correspondente a

sua representação na IR.

o AlternativeUnits: alternativas possíveis em uma expressão case.

Podem operar sobre tipos algébricos ou primitivos. Possuem dois

campos, um que armazena o valor da alternativa e outro para

armazenar a expressão a ser executada caso seu valor seja

selecionado. O código IR para a execução de sua expressão é

gerado através do método Evaluation.

• IRBuilder: possui métodos responsáveis por gerar código IR, utilizando a API

Phoenix. Disponibiliza um método GetInstance, o qual retorna sempre a

mesma instância da classe, e deve ser utilizado sempre que se desejar obter

uma instância desta classe. A utilização de uma única instância permite

que informações sobre o código que está sendo gerado estejam sempre

disponíveis aos métodos da classe.

• Parser: responsável por percorrer o arquivo fonte e gerar uma representação

deste utilizando as unidades de compilação (CompilationUnits). Tal

representação é semelhante a uma árvore onde cada nó é constituído por

uma CompilationUnit.

• Util: possui funções que através de reflexão permitem obter informações de

métodos e classes em bibliotecas .NET.

Compiler

IRBuilder

CompilationEnvironment

Parser

CompilationUnits

Util

Figura 9. Arquitetura do compilador

 Tendo como base o Código 20, uma representação da árvore gerada

utilizando as unidades de compilação (objetos CompilationUnits) pode ser

75

observada na Figura 10. O processo de geração de código IR se inicia pelo nó raiz

(ModuleUnit) o qual gera seu código e solicita aos nós filhos que façam o mesmo.

1 module Teste
2 func1 = {} \n {x,y} -> x+y

Código 20. Exemplo unidades de compilação

Figura 10. Árvore de compilação

4.3.1 Lista de fases

Efetuar a conversão da IR para código MSIL é um trabalho efetuado por uma

lista de fases. Tais fases são responsáveis por gradativamente transformar uma IR de

alto nível (HIR), independente da máquina alvo, para uma representação de baixo

nível (LIR), dependente da máquina alvo, no caso em questão a CLR.

A lista de fases é construída dentro da classe Compiler, através do método

BuildPhaseList. O mais usual é construir uma lista fases que opere sobre FunctionUnits,

uma vez que estas unidades é que armazenam as listas de instruções. Entretanto, a

76

fim de permitir um maior controle sobre todo o código do compilador, neste projeto

a lista de fases produzida opera também sobre a ModuleUnit. Para permitir que a

lista de fases criadas operasse ao mesmo tempo sobre a ModuleUnit e sobre todas

as FunctionUnits presentes nesta foi criada um tipo de lista de fases que opera

especificamente sobre as FunctionUnits. Tal informação é importante para a

construção de plugins, uma vez que, se estes desejarem operar sobre as

FunctionUnits, deverão percorrer a primeira lista até encontrarem a outra lista e

então atuar sobre esta.

A lista de fases criada pode ser observada na Figura 11. Ela é composta por

três listas: a primeira que atua sobre ModuleUnits, a segunda que adentra a

ModuleUnit e executa sobre as unidades existentes nesta e a terceira

(FuncUnitListPhaseList) criada para selecionar apenas as FunctionUnits. Todas as

fases padrão do compilador são adicionadas a esta última, pois elas atuam sobre

as FunctionUnits transformando suas listas de instruções em código MSIL. Apenas a

fase VariableLocationPhase não é implementada por padrão pelo Phoenix, esta foi

codificada com objetivo de processar corretamente a assinatura das variáveis

locais de um método, o que não era feito pelas fases fornecidas pelo Phoenix.

Figura 11. Lista de fases

Na fase de testes e otimizações (descrita na Seção 5) esta lista de fases é

alterada, adicionando novas funcionalidades ao compilador, tanto diretamente

como indiretamente, através de plugins.

77

4.3.2 Estratégia de compilação

Embora, utilizando o Phoenix não seja necessário manipular código .NET

diretamente, e sim uma representação intermediária (IR), escolhas quanto à

representação de cada uma das estruturas da linguagem devem ser feitas tendo

em mente seu desempenho no código final. Aqui serão apresentadas quais

estratégias foram utilizadas para a construção deste compilador, selecionada

dentre as descritas na Seção 2.4.

Seguindo o modelo definido por Monteiro [5], o qual visa evitar a geração de

um grande número de classes por programa, uma única classe é gerada por

módulo, seja este um programa executável ou biblioteca de funções. Nesta

abordagem para cada módulo compilado é gerado uma nova classe e o conjunto

de binds presentes neste são compilados para funções estáticas e objetos de

classes pré-definidas, os quais são armazenados em campos estáticos. Tais classes

pré-definidas são utilizadas para representar closures com n variáveis livres, além de

construtores com n argumentos.

Em linguagens funcionais closures são estruturas essenciais para a

representação de objetos como funções e thunks na heap. Sendo assim, a forma

como tal estrutura é definida influencia todo o restante do projeto do compilador.

Na implementação aqui apresentada closures são construídas através de classes

pré-definidas que utilizam delegates para referenciar a função correspondente a

expressão e possui um conjunto de campos de tipos genéricos para armazenar as

variáveis livres. Tendo como objetivo evitar a criação de uma classe por closure,

estratégia utilizada por F# e Nemerle, é pré-definido um conjunto de classes para n

variáveis livres, permitindo que novas closures sejam criadas através de novas

instâncias da classe correspondente ao número de variáveis livres. O ambiente de

compilação prevê a criação de closures com até nove variáveis livres. Embora nos

testes realizados não tenha sido observado nenhum exemplo onde este número foi

superado, closures com número superior a este são instanciadas utilizando uma

classe especial onde as variáveis livres são armazenadas em um array de objetos do

tipo closure. O uso desta classe deve ser evitado devido a custos no acesso aos

valores do array e por não permitir o armazenamento de tipos unboxed. Uma

representação das closures presentes nesta implementação pode ser observada na

Figura 12.

78

O modelo de avaliação de funções adotado é o push/enter, o qual permite

uma fácil representação de linguagens estritas na plataforma .NET. Embora, estudos

realizados por Peyton Jones et al. [33] tenham demonstrado uma pequena

vantagem a favor do modelo eval/apply na geração de código para uma

linguagem estrita em ambientes não gerenciados, não foi encontrado nenhuma

implementação que o mesmo ocorre no ambiente .NET ou em qualquer outro

ambiente gerenciado. Dentre as implementações observadas apenas linguagens

não estritas, como F# e Nemerle, implementam tal modelo na plataforma .NET. A

implementação do modelo eval/apply na plataforma .NET permitiria o uso da pilha

de argumentos da CLR como mecanismo de passagem de parâmetros, o que

poderia acarretar um ganho no desempenho, entretanto aumentaria

enormemente o número de classes pré-definidas pois seriam necessárias classes que

combinassem um número n de argumentos a um número m de variáveis livres, o

que resultaria em n x m classes.

Utilizando o modelo push/enter cada função definida é representada através

de uma closure e dois métodos estáticos: fast entry point (FEP) e slow entry point

(SEP). FEP possui o código real da função e é chamado sempre que todos os

argumentos necessários estão presentes. SEP possui o código responsável por

avaliar se todos os argumentos necessários à aplicação da função estão presentes

na pilha, em caso positivo os desempilha e chama diretamente o FEP, caso

contrário instancia uma aplicação parcial e armazena nesta os argumentos

presentes na pilha. A closure instanciada referencia através de um delegate o

método SEP o qual é executado através do método Enter presente na closure. A

closure quando pertencente ao conjunto de binds globais do módulo é

armazenada em um campo estático da classe e quando é instanciada através de

uma expressão let é armazenada como variável local da função que engloba a

expressão let.

Diferentemente de funções, thunks necessitam de apenas um método o qual

armazena diretamente a expressão a ser executada. Esta expressão é avaliada

apenas uma vez através do método Enter da closure, o qual verifica se a closure já

foi avaliada, caso tenha sido retorna o valor armazenado, caso contrário chama a

função referenciada pelo delegate e armazena o valor resultante para evitar

futuras avaliações.

79

Tipos algébricos são representados utilizando classes pré-definidas, que

herdam da classe Pack, e possuem n argumentos genéricos. A classe Pack possui

um campo tag, o qual armazena um valor inteiro que é utilizado para identificar

diferentes construtores. Para evitar que em um mesmo módulo existam dois objetos

Pack com a mesma tag, este campo é preenchido utilizando o valor obtido através

do método GetHashCode da string correspondente ao nome do construtor, o qual

retorna um valor inteiro correspondente a hash do objeto. Casamento de padrões é

implementado utilizando uma instrução switch que opera sobre a tag do construtor,

o que é bem mais eficiente que através da verificação de tipos dos objetos. Na

maioria dos casos novos construtores são instanciados diretamente, entretanto, em

casos onde construtores são passados como argumento ou são aplicados

parcialmente uma função responsável por gerar o construtor é criada e possíveis

argumentos fornecidos são aplicados a esta.

Embora, a CLR permita a criação de funções polimórficas utilizando generics

esta opção não foi utilizada para a representação de polimorfismo paramétrico no

compilador aqui apresentado. Tal escolha se deve ao fato do GHC não permitir

que tipos primitivos (unboxed) sejam utilizados como argumentos de funções

polimórficas. Desta forma, o uso de generics não traria grandes benefícios, sendo

tipos polimórficos representados através do uso da classe base Closure, a qual é a

classe base para todos os demais tipos.

4.3.3 Ambiente de execução

Devido ao fato deste trabalho fazer parte do mesmo projeto, o ambiente de

execução utilizado neste compilador segue, com algumas poucas alterações, o

utilizado no projeto Haskell .NET. A descrição a seguir é fortemente baseada na feita

por Monique Monteiro em sua dissertação: Integrando Haskell a Plataforma .NET[5],

devendo esta ser consultada para um maior aprofundamento.

 O ambiente de execução do PhxSTGCompiler consiste das classes pré-

definidas que representam os diversos tipos de closures e das pilhas para passagem

de parâmetros. Como mostrado no diagrama UML (Figura 12) a classe Closure é a

classe base para a maioria das outras classes. Apenas PAP não herda de Closure,

pois PAP por si só não representa um objeto manipulado diretamente pela STG,

80

devendo este ser associada a uma closure que representa uma função. Closure

possui um método abstrato Enter o qual deve ser implementado por cada uma das

classes que herdam desta com o código responsável por sua avaliação. As closures

presentes no ambiente de compilação podem ser divididas em:

• Closures não atualizáveis (funções): mantém campos de tipos genéricos

para o armazenamento de suas variáveis livres, um campo inteiro para

o armazenamento da aridade e um campo PAP com valor null. Sua

avaliação retorna uma chamada para o método SEP correspondente.

• Aplicações parciais: são closures não atualizáveis (funções) cujo campo

PAP possui um objeto que armazena argumentos previamente

recebidos. Sua avaliação, assim como de uma função, se dá através

da chamada ao método SEP.

• Closures atualizáveis (thunks): expressões não avaliadas, as quais

mantêm campos para o armazenamento de suas variáveis livres e um

para armazenar o valor resultante de sua avaliação. Seu método Enter

verifica se a closure já foi atualizada, em caso positivo apenas retorna o

valor armazenado. Caso contrário é feita a avaliação e o valor

resultante é armazenado.

• Construtores de dados: mantém campos genéricos para armazenar

seus argumentos. Seu método Enter retorna ele próprio como resultado,

uma vez que este se encontra na Weak Normal Form (WHNF), ou seja,

na forma objetivada pela avaliação sob demanda[37].

No diagrama UML é possível observar os delegates responsáveis pela

chamada dos métodos englobados por cada closure. Todos eles herdam da classe

MultiCastDelegate e determinam a assinatura do método suportado. Existem

delegates de dois tipos: UpdCloFunction utilizados para closures atualizáveis e

NonUpdCloFunction para as não atualizáveis. Tal distinção se deve ao fato de

delegates restringirem os métodos sobre os quais operam através de sua assinatura.

Desta forma, um delegate do tipo UpdCloFunction suporta métodos que recebem

como argumento um UpdatableClosure e retorna uma closure e um

NonUpdCloFunction suporta métodos com um argumento do tipo

NonUpdatableClosure retornando, também, uma closure. Assim como para as

closures atualizáveis e não atualizáveis, são pré-definidos no ambiente variações

destes para n variáveis livres.

81

Figura 12. Ambiente de execução

 Para a passagem de parâmetros, necessárias ao modelo push/enter, são

utilizadas quatro pilhas que armazenam closures, inteiros, double e object. A razão

para existência de mais de uma pilha é evitar operações de boxed/unboxed de

tipos primitivos, permitindo que tipos primitivos sejam passados como parâmetros

diretamente, otimização esta implementada pelo GHC seguindo a descrição dada

por Peyton Jones et al.[53]. Outros tipos para os quais não haja pilha específica

devem ser mapeados para uma das pilhas existentes, por exemplo: caracteres são

armazenados na pilha de inteiros e tipos float na pilha de double.

82

4.4 Considerações Finais

Neste capítulo foi apresentada a arquitetura do PhxSTGCompiler, bem como,

problemas e decisões de projetos enfrentados durante sua implementação. A idéia

inicial de utilizar o código STG gerado pelo GHC como entrada se mostrou inviável e

por isto uma alternativa foi apresentada: o uso da representação CORE. O uso

desta representação requisitou que modificações fossem feitas tanto no parser

como no próprio gerador de código.

A implementação atual possui um prelúdio reduzido, o qual é suficiente

apenas para a compilação dos testes executadas no Capítulo 5. Outra restrição da

implementação diz respeito à compilação direta a partir do código CORE. Por não

estar disponível uma gramática atualizada da CORE gerada pela versão atual do

compilador, eventualmente, foram necessárias intervenções manuais para que o

código pudesse ser entendido pelo compilador.

O uso do Phoenix para geração do código final mostrou ser uma boa

abordagem, pois permitiu que código .NET fosse gerado diretamente, sem a

necessidade de manipulação de código MSIL. Pequenos problemas observados no

código gerado pelo Phoenix serão discutidos na Seção 5.2.

83

84

5 ANÁLISE E OTIMIZAÇÃO

Neste capítulo serão apresentadas avaliações de desempenho do compilador

construído, bem como otimizações implementadas utilizando o mecanismo de

plugins e a API de análise e manipulação de código do Phoenix. Ao final as

otimizações que obtiveram melhores resultados serão adicionadas ao compilador e

o código gerado por este será comparado ao gerado pelos compiladores Haskell

.NET e GHC.

5.1 Metodologia

Na avaliação do desempenho dos programas gerados, pelo compilador aqui

apresentado, foi utilizado um subconjunto dos programas presentes no benchmark

NoFib[54]. Mais especificamente, um conjunto de programas pertencentes ao

grupo Imaginário22. Embora na documentação do NoFib seja sugerido o uso dos

programas pertencentes ao grupo dos Reais, uma vez que este possui programas

mais complexos que representam problemas reais, esta opção foi descartada

devido a restrições do prelúdio compilado nesta implementação. Contudo, os

programas do grupo Imaginário, embora menos complexos, representam

problemas específicos e facilmente escaláveis, permitindo não só a validação do

processo de compilação como a descobertas de possíveis gargalos que venham a

denegrir o desempenho dos programas gerados.

O NoFib sugere, para os programas do grupo Imaginário, dois possíveis valores

de entrada, bem como, os respectivos resultados esperados. Um valor para uma

execução mais demorada e outro para uma execução mais rápida. Entretanto

estes valores não correspondem à capacidade de processamento das máquinas

atuais, o que resultou em baixos tempos de execução, mesmo para o valor que

gera um maior processamento. Desta forma, os valores de entrada utilizados para

22 Os códigos dos exemplos utilizados podem ser obtidos através do endereço

http://darcs.haskell.org/nofib/imaginary/

85

os testes aqui apresentados são diferentes dos sugeridos e foram selecionados de

forma a evitar tempos de execução demasiadamente curtos, onde o tempo de

inicialização e carga do programa predomine sobre o de execução. Para

comparação com o Haskell .NET e com gerador de código nativo do GHC foram

utilizados os seguintes valores:

• Tak: 12, 1, 25
• Primes: 4500
• Queens: 13
• Exp3: 9
• DigitsE1: 2000
• WheelSieve1: 400000
• WheelSieve2: 80000

Em alguns exemplos foi necessário o uso de valores diferentes destes, quando

isto ocorrer o valor utilizado será especificado entre parênteses.

A Tabela 2 mostra a configuração do ambiente utilizado nos testes realizados.

Tabela 2. Configuração do Ambiente

Característica Valor

Processador Intel® Core™ 2 - 7200 (2 x 2.0

GHZ)

Memória 2 GB

Sistema Operacional Windows™ XP Professional

Versão da CLR .NET™ Framework 2.0

Versão do GHC GHC 6.8.2

Para obtenção dos tempos de execução foi utilizado o comando time

presente no utilitário cygwin23. Os valores apresentados correspondem à média

obtida a partir da execução de cada exemplo 10 vezes, retirados possíveis outliers24,

tendo seu valor expresso em segundos. Os outliers são removidos, pois,

23 Emula um ambiente Linux no sistema operacional Windows. Pode ser obtido através do endereço:

http://www.cygwin.com/

24 Valores destoantes do conjunto de dados. Para o cálculo é utilizada a fórmula:
onde e corresponde, repectivamente, ao primeiro

e terceiro quartil.

86

possivelmente, representam momentos onde foi necessária alguma compilação em

tempo de execução ou consumo de recursos do computador por algum outro

processo. Nas comparações entre os valores (impacto da otimização), onde são

apresentadas porcentagens, valores positivos indicam uma melhora, enquanto que,

valores negativos indicam piora.

Para análise do consumo de memória foram testadas diversas ferramentas, tais

como o CLR Profiler, Performance Monitor, AQTime 5, entre outras. Entretanto, com

exceção do Performance Monitor, todas as ferramentas requisitaram um enorme

tempo para análise do código, mesmo para valores de entrada pequenos. Em

muitos casos todo o espaço em disco foi consumido antes que fosse retornado

qualquer resultado. Isto se deve ao grande detalhamento das análises executadas

por estas ferramentas e ao intenso consumo de memória feito pelos programas

testados. O Performance Monitor, embora não tenha apresentado problemas

quanto ao tempo de execução ou uso de recurso da máquina, mostra resultados

que correspondem a uma média de um curto intervalo de tempo, atualizado

constantemente durante a execução do programa, não refletindo o perfil

completo do programa.

A solução encontrada para traçar um perfil do consumo de memória foi a

construção de uma ferramenta específica, utilizando contadores de desempenho

fornecidos pela plataforma .NET. Esta solução permitiu que apenas os recursos

desejados fossem monitorados, evitando uma demora excessiva para análise dos

programas. O código da ferramenta de análise pode ser observado no Apêndice B.

Os valores monitorados correspondem ao número máximo de bytes alocados

dinamicamente, porcentagem do tempo gasto com a coleta de lixo e número de

coletas em cada geração.

5.2 Código .NET Gerado Com o Uso do Phoenix

Os primeiros testes com o conjunto de programas compilados demonstrou

algumas deficiências do código gerado. Nesta Seção serão apresentadas as

deficiências resultantes de restrições na geração de código .NET com o Phoenix.

Após uma breve explanação sobre o porquê de cada problema será apresentado

87

uma alternativa para resolução deste e os resultados obtidos após a

implementação da solução.

5.2.1 Variáveis temporárias

O uso de variáveis temporárias para o armazenamento de valores resultantes

de operações é uma técnica comum no desenvolvimento de um compilador.

Utilizando o Phoenix há uma série de instruções, denominada ExpressionIntructions,

que fazem uso desta técnica, tendo como operando de destino uma variável

temporária. Estas variáveis temporárias, entretanto, devem, durante a geração de

código, ser removidas ou substituídas por variáveis reais. Como exemplo, uma soma

de dois valores e o posterior armazenamento do resultado em uma variável local é

feita, utilizando o Phoenix, através do Código 21. Neste, a remoção da variável

temporária poderia ser feita passando como operando de retorno da instrução

instAdd o operando varOpZ.

1 // Instrução soma dois operandos e retorna uma variável temporária
2 Instruction instAdd =
3 Instruction.NewBinaryExpression(FuncUnitListPhaseList,
4 Phx.Common.Opcode.Add, varOpX, varOpY);
5
6 // Armazena o valor da variável temporária na variável real
7 // representada por varOpZ
8 Instruction instStore =
9 Instruction.NewUnary(FuncUnit, Phx.Common.Opcode.Store, varOpZ,
10 instAdd.DestinationOperand);

Código 21. Variáveis temporárias

O código MSIL utiliza uma pilha para armazenamento temporário de valores,

não necessitando de variáveis temporárias para executar tal função. Desta forma, o

processo de geração de código ao transformar da representação HIR para LIR

deveria remover as variáveis livres, substituindo seu uso pelo uso da pilha. Entretanto

a geração de código MSIL padrão do Phoenix não realiza esta substituição,

fazendo com que algumas variáveis temporárias que deveriam ser removidas

acabem sendo promovidas a variáveis reais no código gerado. A não remoção

destas variáveis resulta em um código sujo, cheio de instruções desnecessárias. O

Código 22, mostra as instruções MSIL geradas para o exemplo anterior, sem a

remoção da variável temporária que armazena o resultado da adição.

1 // Código gerado com variável temporária desnecessária
2 ldloc.0 // varOpx
3 ldloc.1 // varOpY

88

4 add
5 stloc.2 // variável temporária
6 ldloc.2
7 stloc.3 // varOpZ

Código 22. MSIL sem remoção de variáveis temporárias

Além de um maior consumo de memória, necessário para o armazenamento

das variáveis temporárias, as instruções geradas para armazenamento e leitura

destas variáveis intermediárias dificultavam, a implementação de algumas

otimizações no código, como a inserção de instruções tail (Seção 5.3.1). Para

minimizar tais problemas foi inserida uma nova fase no processo de compilação.

Esta fase é responsável por identificar variáveis temporárias na representação LIR,

bem como as instruções que a manipulam, e as removê-las. Com o uso desta nova

fase as instruções stloc.2 e ldloc.2, presentes no Código 22, seriam removidas, bem

como a variável local correspondente.

Tabela 3. Impacto da remoção de variáveis temporárias

Programa Número
de

variáveis
removida

s

S/ Fase de
remoção

C/ Fase de
remoção

Impacto da
remoção

 Tamanh
o

Temp
o

Tamanh
o

Temp
o

Tamanh
o

Temp
o

Tak 32 6.144 17,71 5.632 17,70 8,33% 0,05%

Primes 123 9.728 16,37 9.216 16,33 5,26% 0,24%

Queens(12) 155 12.288 02,82 11.264 02,78 8,33% 1,42%

Exp3 443 22.016 32,58 19.968 32,64 9,30% -0,20%

DigitsE1
(1500) 330 23.040 30,43 20.992 30,65 8,89% -0,72%

WheelSieve
1

(50000)
747 40.960

00,87
40.960

00,87
8,16%

0,03%

WheelSieve
2

(50000)
626 35.328

12,20
31.232

12,17
8,13%

0,03%

Média 8,02% 0,16%

A Tabela 3 mostra o impacto da remoção das variáveis temporárias

promovidas pela nova fase, inserida no processo de compilação. Em todos os

exemplos foi observada uma redução do tamanho (em megabytes) do programa,

que ficou em média 8,02% menor. Esta diminuição no tamanho se deve

89

principalmente à remoção de instruções que, desnecessariamente, liam e

armazenavam valores nestas variáveis. Quanto ao tempo de execução, foram

observadas pequenas variações para mais e para menos, ficando na média

praticamente inalterado. Resultados mais precisos poderiam ser observados para

valores de entrada maiores, principalmente para programas que fazem grande uso

de memória, como DigitsE1 e Queens e WheelSieve 1 e 2. Entretanto, neste estágio

do desenvolvimento do compilador a questão do estouro da pilha de chamadas

recursivas e vazamentos de memória ainda não haviam sido resolvidos por

completo, ocasionando estouro da pilha para valores maiores que os utilizados.

A contribuição desta nova fase vai além da redução no tamanho do

programa e do ganho de desempenho em alguns programas. Ela removeu

instruções que dificultavam a identificação de chamadas recursivas e pontos de

inserção para instruções tail (Seção5.3.1), essências para o controle da pilha de

chamadas em programas funcionais.

5.2.2 Casamento de padrões aninhados

No compilador aqui proposto expressões de casamento de padrões são

implementadas utilizando instruções switches. Tais instruções são úteis para

selecionar entre diferentes blocos de instruções, entretanto estas foram

desenvolvidas com foco em linguagens imperativas onde tais blocos são compostos

por um conjunto de comandos os quais podem alterar estados das variáveis, mas

não retornam um valor. Já em linguagens funcionais este bloco corresponde a uma

expressão, a qual após sua avaliação retorna um valor. Embora, pensando

diretamente na CLR seja possível passar este valor através da pilha de execução,

utilizando o Phoenix, mais precisamente a HIR, esta opção não é valida, pois não é

permitido o manuseio da pilha diretamente.

A solução encontrada para contornar tal restrição foi adicionar para cada

expressão de casamento de padrões uma variável responsável por armazenar o

resultado da avaliação das alternativas. Como apenas a alternativa selecionada é

executada, o valor armazenado na variável corresponderá à expressão

selecionada. Esta abordagem funciona bem para a maioria dos casos, entretanto

ao observar o código gerado para o conjunto de programas de testes foi

90

observado que em casamento de padrões aninhados eram gerados desvios e

alocações desnecessárias. Neste cenário era comum aparecer uma seqüência de

instruções que armazenavam um valor em uma variável e em seguida fazia o

desvio para outra seqüência, a qual armazenava o valor da variável anterior em

uma nova e tornava a fazer um desvio, como observado no Código 23. Este

conjunto de instruções redundantes também dificultava a identificação de pontos

de inserção da instrução tail.

1 call int32 sum(int32,int32)
2 stloc.1
3 br IL_01d5
4 ...
5 IL_01d5: ldloc.1
6 stloc.2
7 br IL_01b8
8 ...
9 IL_01b8: ldloc.2
10 ret

Código 23. Instruções desnecessárias em casamento de padrões aninhados

A fim de verificar o impacto da remoção destes desvios foi construído um

plugin que percorre a lista de instruções a procura de instruções de desvio

incondicional. Ao encontrar, é verificado se uma possível variável armazenada

antes do desvio é re-armazenada após o desvio. Em caso positivo ele guarda a

última variável armazenada e continua verificando se há novos desvios e

armazenamentos. Ao final ele substitui a variável de destino da primeira instrução

de armazenamento pela última variável guardada e apaga todas as instruções e

variáveis percorridas no caminho. Como resultado desta transformação é obtido o

Código 24, o qual não só é mais enxuto como permite a inserção de uma instrução

tail, inviável no código anterior.

1 call int32 sum(int32,int32)
2 ret

Código 24. Código após a remoção dos desvios e variáveis desnecessárias

A Tabela 4 mostra os resultados obtidos, comparando os tempos de

execução de cada programa gerado com e sem a remoção dos desvios e

variáveis desnecessárias. Embora, a inserção desta nova fase no processo de

compilação tenha causado, diretamente, pouco impacto, apenas 5,43% na média,

indiretamente o impacto foi bem maior. Ela permitiu que novos pontos para

inserção de instrução tail ou de recursão fosse identificados, melhorando o

tratamento de memória através das técnicas descritas na Seção 5.3. A pequena

melhoria se deve a diminuição da quantidade de instruções, tendo sido observado

91

pouca ou nenhuma alteração no consumo de memória após a remoção das

instruções de desvios.

Tabela 4. Remoção de desvios e variáveis desnecessárias

 Sem remoção Com remoção Impacto da

remoção

Tak 17,70 17,86 -0,90%

Primes 16,33 16,32 0,10%

Queens(12) 02,78 02,44 12,27%

Exp3 32,64 32,53 0,35%

Digitse1 02,14 02,09 0,08%

Wheelsieve1(50000) 00,87 00,65 25,67%

Wheelsieve2(50000) 12,17 12,12 0,43%

Média 5,43%

Esta otimização demonstra como é fácil identificar padrões de códigos e

alterá-los utilizando o Phoenix, o que abre um grande horizonte de possíveis

otimizações a serem implementadas.

5.3 Análises e Otimizações

Após a resolução dos problemas ocasionados pela a conversão da IR para

MSIL, discutidos na Seção anterior, novos plugins foram construídos para testar

alternativas para resolução do estouro da pilha de chamada e para otimizar o

código gerado.

5.3.1 Tail call

Como descrito na Seção 2.1, uma das principais características das

linguagens funcionais é o uso de recursão ou invés de estruturas de repetição. Este

forte uso da recursão faz com que a pilha de chamadas cresça excessivamente, o

que acarreta não só em um grande consumo de memória, como também, na

92

possibilidade de um estouro da memória. Para evitar este estouro de memória é

necessário utilizar algum mecanismo que descarte o frame de atualização de

chamadas recursivas.

A CLR disponibiliza a instrução tail a qual descarta o frame de atualização de

uma chamada a um método desde que esta seja precedida por uma instrução de

retorno. Este seria o mecanismo ideal para solucionar o problema de chamadas

recursivas, entretanto sua implementação na CLR requer melhorias, uma vez que

seu uso penaliza o desempenho do programa25. Esta penalidade, entretanto, ocorre

apenas na implementação da CLR para máquinas com arquitetura x86, na

implementação para x64 este problema foi corrigido, o que acarreta ganho de

desempenho ao utilizar a instrução tail nesta última. Detalhes sobre diferenças de

implementação da instrução tail para máquinas x86 e x64 e explicações sobre o

desempenho desta são fornecidas por Shri Borde[55].

A fim de avaliar o desempenho do uso da instrução tail em diferentes

implementações da CLR, foi utilizado o Código 2526, o qual foi executado, através

de um loop, 10.000 vezes. Após a compilação foi feita uma cópia, a qual teve seu

código IL alterado, sendo adicionada uma instrução tail antes da chamada

recursiva. Os dois programas foram então executados tanto em um sistema x86

como em um x64. Como esperado no ambiente x86 houve uma grande queda no

desempenho, com tempo de execução em média 79% maiores para o código com

a instrução tail. Já para a máquina x64 o mesmo código apresentou uma melhora

no desempenho com tempo de execução em média 44% menor.

1 static double OriginalFunction(double d, int k)
2 {
3 if (k > 1) return OriginalFunction(d * (k + 1) / k, k - 1);
4 else return d;
5 }

Código 25. Função recursiva para teste de tail-calls

No compilador a inserção desta instrução é feita através de duas fases, a

primeira (MarkTailCallPhase) responsável por marcar as instruções de chamadas

que devem ser modificadas e outra (ApplyTailCallPhase) responsável pela inserção.

25 Explicações para esta queda no desempenho no uso da instrução tail. em sistemas x86 podem ser

encontradas no endereço http://blogs.msdn.com/shrib/archive/2005/01/25/360370.aspx

26 Retirado do endereço http://www.jelovic.com/weblog/e59.htm

93

Esta separação se faz devido a uma restrição do Phoenix, que só permite a inserção

da instrução tail após a fase de construção da pilha (StackAllocatePhase). São

marcadas para inserção da instrução tail todas as instruções de chamada a um

método que precedam uma instrução de retorno.

Como o descarte da pilha de execução é essencial para o não estouro da

pilha de chamadas em alguns programas funcionais a inserção da instrução tail é

habilitada por padrão no compilador, entretanto ela pode ser desligada através da

diretiva de compilação –notail, caso o usuário identifique que esta inserção seja

desnecessária para o código a ser compilado.

A Tabela 3 mostra os tempos de execução antes e após a inserção de

instruções tail. Diferente do esperado, apenas para Tak, Queens e WheelSieve1 a

inserção da instrução tail causou um aumento do tempo de execução

considerável, respectivamente: 54,63%, 12,39% e 12,89% mais lento. O grande

aumento no tempo de execução de Tak se deve ao fato deste programa ser

altamente recursivo e sem alocação dinâmica de memória, como pode ser

observado na Tabela 6. Desta forma, não há ganho com a redução do tempo

gasto em coleta de lixo, o qual poderia compensar o tempo perdido com o uso da

instrução tail. Para os demais exemplos o tempo de execução diminui, devido à

diminuição no tempo gasto com coletas de lixo, sendo que para DigitsE1,

programa que requer muita memória, este ganho foi bastante expressivo.

Tabela 5. Impacto da inserção de instrução tail

Programa Sem Tail Com Tail Impacto da

Inserção

TAK 17,86 27,62 -54,63%

PRIMES 16,32 15,14 7,19%

Queens(12) 02,44 02,74 -12,39%

EXP3 32,53 30,71 5,60%

DigitsE1 02,09 36,75 40,82%

WheelSieve1(50000) 00,65 00,73 -12,89%

WheelSieve2(50000) 12,12 09,45 7,70%

Média -2,95%

94

A fim de buscar uma explicação sobre o porquê do comportamento

observado, foi traçado um perfil do uso de memória destes programas através da

observação do comportamento do coletor de lixo, os resultados podem ser

observados na Tabela 6. Para Tak e WheelSieve1 não ocorreu nenhum diminuição

do tempo em coleta de lixo, uma vez que para estes foram realizadas poucas ou

nenhuma coleta de lixo tanto antes como após inserção da instrução tail. Para os

demais programas houve a diminuição do tempo gasto pelo coletor de lixo, o que

ajudou a compensar as perdas impostas pela inserção da instrução tail. Como

pode se observar o número de coleta de lixos praticamente não se alterou o que

demonstra que a diminuição do tempo de coleta não se deve a uma diminuição

do número de coletas, e sim a diminuição do número de frames a serem percorridos

pelo coletor de lixo, promovida pela instrução tail ao descartar frames

desnecessários.

Tabela 6. Informações sobre o coletor de lixo após a inserção de instruções tail

Sem Tail Com Tail

Programa
% Tempo

em coleta

de lixo

Total de

coletas

% Tempo

em coleta

de lixo

Total de

coletas

Tak 0,0% 0 0,0% 0

Primes 63,9% 231 60,7% 231

Queens(12) 21,0% 65 17,9% 65

Exp3 70,2% 1644 64,6% 1644

DigitsE1 71,1% 2985 44,7% 3124

WheelSieve1(50000) 0,0% 3 0,0% 3

WheelSieve2(50000) 70,3% 159 50,1% 159

5.3.2 Desvios em chamadas recursivas

Como demonstrado anteriormente o uso de instruções tail não apresenta

bom desempenho em implementações da CLR para sistemas x86. Outra técnica

que pode ser utilizada para evitar que a pilha de chamadas estoure em chamadas

recursivas é através da inserção de uma instrução de desvio incondicional para o

95

início da função. Esta técnica, entretanto, só pode ser utilizada para chamadas

recursivas à própria função, não contemplando chamadas mutuamente recursivas,

onde duas funções diferentes fazem chamadas recursivas entre si, como a

mostrada no Código 26. Neste código a função foo chama boo, que por sua vez

chama foo. Desta forma, instruções tail ainda são necessárias para este tipo de

recursão.

1 foo = boo
2 boo = if ({-condição de parada-}) 1 else foo

Código 26. Chamadas mutuamente recursivas

Para promover esta otimização foi criado um plugin, o qual faz uso das

marcações feitas na fase MarkTailCallPhase e substitui a fase ApplyTailCallPhase por

uma nova que verifica se a instrução marcada corresponde a uma chamada a

própria função na qual ela esta inserida e se este for o caso ao invés de adicionar

uma instrução tail salva os argumentos e faz um desvio para o início da chamada.

O código deste plugin pode ser conferido no Apêndice C.

O resultado da aplicação deste plugin pode ser observado na Tabela 7. O

maior impacto foi observado nos programa Tak e Queens que tiveram seus tempos

de execução drasticamente reduzidos, respectivamente, 45,48% e 30,19% menor.

Outro programa beneficiado por esta substituição foi WheelSieve1 que obteve um

tempo 25,23% menor. Os demais programas variaram pouco, obtendo variações

menores que 1% para mais e para menos.

É importante observar que a melhoria ocorre nos exemplos onde a inserção

da instrução tail, Seção 5.3.1, gerou uma grande queda de desempenho. Desta

forma, a substituição de instruções tail por instruções de desvio permite o

tratamento de chamadas recursivas sem os efeitos colaterais no desempenho

gerados pela instrução tail.

Tabela 7. Recursão através de desvio para o inicio da função

Programa Com Tail Com desvio Impacto

Tak 27,62 15,06 45,48%

Primes 15,14 15,23 -0,56%

Queens 16,47 11,50 30,19%

Exp3 30,71 30,62 0,29%

96

DigitsE1 36,75 36,70 0,13%

WheelSieve1 12,93 09,67 25,23%

WheelSieve2 20,70 20,71 -0,04%

Média 14,39%

Por ter apresentado na média um bom desempenho (14,39%) e uma grande

melhora (acima de 25%) para programas extremamente recursivos, como o Tak,

Queens e WheelSieve1, o uso de desvios em chamadas recursivas para a própria

função foi incorporado ao compilador. Entretanto, este pode ser desabilitado pelo

usuário através da diretiva –nobranchrecursion.

5.3.3 Casamento de padrões com valores booleanos

Desvios condicionais, como instruções if em haskell, são traduzidas para a

linguagem Core como instruções de casamento de padrões de valores booleanos.

Uma vez que, na Core, valores booleanos são representados utilizando tipos

algébricos, a avaliação da expressão condicional e a escolha da alternativa

requerem uma série de operações, que degradam seu desempenho. O Código 27

mostra em C# como é feito tal mapeamento. Inicialmente, a condição é avaliada

e de acordo com o resultado é gerado o construtor correspondente, linhas 1 a 5.

Através de uma instrução switch a tag deste construtor é verificada e é feito o

desvio para o código da alternativa correspondente, linhas 7 a 15.

1 //Avaliação da expressão e instanciação do Construtor correspondente
2 if (ExpCondição)
3 pack = RuntimeSystem.TRUE;
4 else
5 pack = RuntimeSystem.FALSE;
6 //Casamento de padrão utilizando o valor resultante da avaliação da condição
7 switch (((Pack) pack).tag)
8 {
9 case 0:
10 //Alternativa condição falsa
11 break;
12
13 case 1:
14 //Alternativa condição verdadeira
15 break;
16 }

Código 27. Representação de desvios condicionais com construtores para valores booleanos.

97

Este código pode facilmente ser otimizado, eliminando se o uso de um

construtor para representar o valor booleano. Uma vez que a avaliação da

expressão de comparação retorna sempre um valor inteiro (zero para falso e um

para verdadeiro), é possível substituir a avaliação da tag na instrução switch pela

avaliação da expressão condicional, resultando no Código 28.

1 switch (ExpCondição)
2 {
3 case 0:
4 //Alternativa condição falsa
5 break;
6
7 case 1:
8 //Alternativa condição verdadeira
9 break;
10 }

Código 28. Representação de desvios condicionais otimizada

Com auxílio de um plugin, tal otimização foi adicionada ao compilador. O

impacto desta adição pode ser observado na Tabela 8. Três programas tiveram

grande melhoria de desempenho: Tak (16,46%), Queens (11,77%) e WheelSieve1

(18,21%). Para os demais o impacto foi pequeno, ou ainda irrelevante (variação

menor que 0,1%).

Tabela 8. Impacto da remoção de construtores em desvios condicionais.

Programa Com Tail Com desvio Impacto

Tak 15,06 12,58 16,46%

Primes 15,23 15,22 0,07%

Queens 11,50 10,15 11,77%

Exp3 30,62 30,64 -0,07%

DigitsE1 36,70 36,01 1,89%

WheelSieve1 09,67 07,91 18,21%

WheelSieve2 20,71 20,58 0,65%

Média 7,00%

5.4 Análise Final do Compilador

Após os testes utilizando plugins, descritos nas seções anteriores, foram

selecionadas as otimizações que obtiveram melhores resultados, as quais foram

98

adicionadas como fases do compilador final. De modo a quantificar o desempenho

do código gerado por este compilador, nesta Seção, este será comparado com

outros compiladores Haskell.

5.4.1 Versus Haskell .NET

O compilador Haskell .NET[5], representou o modelo de compilação utilizado

neste trabalho e é o único dentre os compiladores analisados na Seção 2.5 que

gera código .NET a partir de uma linguagem funcional estrita. Desta forma, foi o

melhor exemplo encontrado para mensurar a qualidade do código gerado pelo

PhxSTGCompiler, tendo como base uma implementação anterior.

 Como pode ser observado na Tabela 9 na média o PhxSTGCompiler obteve

tempos 1,70% menores que o Haskell .NET. Tak e Queens obtiveram uma grande

melhoria, acima de 20%, decorrente principalmente da otimização dos desvios

condicionais, descrita na Seção 5.3.3. Apenas em dois exemplos: Exp3 (-2,2%) e

DigitsE1 (-44,8%), ocorreu uma queda no desempenho, sendo esta bastante

expressiva para o último.

Tabela 9. PhxSTGCompiler x Haskell .NET

Programa Haskell .NET PhxSTGCompiler PhxSTGCompiler/Haskell

.NET

Tak 15,10 12,58 20,00%

Primes 15,24 15,22 0,13%

Queens 13,54 10,15 33,45%

EXP3 29,97 30,64 -2,20%

DigitsE1 19,86 36,01 -44,83%

WheelSieve1 08,29 07,91 4,77%

WheelSieve2 20,70 20,58 0,60%

Media 1,70%

Buscando identificar o porquê de DigitsE1 ter tido uma queda de

desempenho tão grande, foi feito um vasto estudo tanto no código Core como no

STG gerados para este. Tal estudo demonstrou a ausência, no código Core, de

99

algumas otimizações e informações importantes. Foi observado que na STG de

DigitsE1 algumas expressões ao invés de gerarem thunks, para avaliação posterior,

eram avaliadas imediatamente através de expressões case. Este tipo de otimização

era previsto na transformação Core para STG (Seção 4.2.2), mas apenas para tipos

Unboxed, o que não é o caso. Outra informação, ausente, que demonstrou alta

relevância foi a presença da flag de atualização /r (reentrant) em alguns binds, que

informa que a closure não necessitava ser atualizada. O uso desta última

informação causou grande impacto no programa WheelSieve2.

Tais informações não são obtidas através da Core, desta forma, a fim de

comprovar a importância destas, alterações manuais foram feitas no processo de

compilação. Estas alterações não se estendem a compilação em geral sendo

específicas para comprovar a influência destas informações em DigitsE1 e

WheelSieve2. Como observado na Tabela 10, a grande queda no desempenho

observado em DigitsE1, praticamente, não existe mais (-0,5%) e WheelSieve2 obteve

uma grande melhoria, passando a ser 224% mais rápido que a versão compilada

com o Haskell .NET.

Tabela 10. Compilação com informações ausentes na CORE

Programa PhxSTGCompiler(Alt) Haskell .NET PhxSTGCompiler/Haskell

.NET

DigitsE1 19,97 19,86 -0,5%

WheelSieve2 6,39 20,58 224,0%

Com estes novos valores, com exceção de Exp3, o PhxSTGCompiler obtém

melhores resultados para todos os códigos analisados e passa a ser na média

39,95% mais veloz que o Haskell .NET, vide Tabela 11. Como mencionando na Seção

4.2.2, a Core gerada pelo GHC está sendo, atualmente, modificada. Espera-se que

em futuras versões estas informações possam estar presentes, auxiliando na

geração de um código mais veloz.

Tabela 11 - PhxSTGCompiler* x Haskell .NET. *Com alterações manuais

Programa Haskell .NET PhxSTGCompiler PhxSTGCompiler/Haskell

.NET

100

Tak 12,58 15,10 20,00%

Primes 15,22 15,24 0,13%

Queens 10,15 13,54 33,45%

EXP3 30,64 29,97 -2,20%

DigitsE1 19,97 19,86 4,77%

WheelSieve1 07,91 08,29 -0,5%

WheelSieve2 06,39 20,58 223,98%

Media 39,95%

5.4.2 Versus GHC nativo

Por ser considerado o compilador estado da arte para Haskell, a

comparação com o gerador de código nativo do GHC é essencial para qualquer

implementação de um compilador Haskell. A Tabela 12 resume os resultados desta

comparação. Como esperado, os tempos obtidos com GHC foram menores,

havendo uma diferença superior a uma ordem de magnitude apenas para Primes e

Exp3. Para os demais a variação foi bem menor, sendo bastante semelhante para

Tak (1,21) e praticamente igual para WheelSieve2 (1,02).

Tabela 12. PhxSTGCompiler x GHC

Programa PhxSTGCompiler GHC PhxSTGCompiler/GHC

Tak 12,58 10,43 1,21

Primes 15,22 00,46 33,08

Queens 10,15 03,29 3,09

Exp3 30,64 01,74 17,58

DigitsE1* 19,97 02,01 9,95

WheelSieve1 07,91 02,38 3,32

WheelSieve2* 06,39 06,26 1,02

Média 9,89

*Valores obtidos com modificações manuais explicadas na Seção anterior.

A explicação para uma diferença tão grande para Primes e Exp3 se deve ao

alto tempo gasto com coleta de lixo realizados durante a execução destes

101

programas, onde a porcentagem de tempo gasto com coleta de lixo em relação

ao tempo total de execução ficou acima de 55% (Tabela 13). Como o GHC tem um

coletor de lixo especificamente criado para lidar com uma linguagem funcional

estrita, em programas onde o consumo de memória exige um grande trabalho por

parte do coletor de lixo o GHC tende a se destacar.

Tabela 13. Perfil do consumo de memória (PhxSTGCompiler)

Programa Bytes alocados na

Heap

% Tempo em coleta

de lixo

Tak 0 0,00%

Primes 549.341.700 55,34%

Queens 729.656 18,66%

Exp3 12.138.600 65,29%

DigitsE1* 6.657.824 53,36%

WheelSieve1 33.458.150 11,48%

WheelSieve2* 14.589.090 22,28%

*Valores obtidos com modificações manuais explicadas na Seção anterior.

A comparação com GHC demonstrou que com exceção dos programas

onde o consumo de memória é algo crítico o compilador implementado é capaz

de gerar programas com desempenho semelhante. Mostra ainda onde está o

gargalo do mapeamento de uma linguagem funcional na plataforma .NET,

gerenciamento de memória, apontando a direção para a qual futuras pesquisas

nesta área devem ser voltadas.

5.5 Considerações Finais

Neste capítulo foram efetuadas diversas alterações no código utilizando o

modelo de plugins, fornecido pelo Phoenix. Este recurso em conjunto com a

biblioteca de manipulação de código IR demonstrou ser bastante útil, facilitando a

identificação de padrões de códigos e sua manipulação. O conjunto de

otimizações permitiu que o compilador final gerasse um código com desempenho

satisfatório.

102

Ficou evidente que o maior problema no mapeamento de linguagens

funcionais na plataforma .NET é o gerenciamento de memória. Por este motivo a

maioria das otimizações realizadas tiveram como objetivo diminuir o consumo de

memória dos programas gerados. Entretanto, melhorias maiores não foram possíveis

devido à inviabilidade da manipulação do coletor de lixo da CLR e da opção por

gerar código verificável.

103

104

6 CONCLUSÕES E TRABALHOS FUTUROS

Neste trabalho, após um amplo estudo de técnicas de implementações de

linguagens funcionais na plataforma .NET, foi apresentada uma nova abordagem

para construção de um compilador .NET para uma linguagem funcional. O

compilador foi construído utilizando o framework Phoenix, que é uma ferramenta

para construção de compiladores e de ferramentas para análise e otimização de

código.

O uso do framework Phoenix, inicialmente, representou uma dificuldade a

mais, pois por ser uma ferramenta recente, havia pouco material de referência para

estudo. Entretanto, passado esta etapa inicial seu uso facilitou, bastante, a

construção do compilador, ao abstrair o processo de geração de código .NET,

evitando a manipulação de código MSIL diretamente. A maior contribuição do

Phoenix, entretanto, foi permitir que uma série de otimizações fossem realizadas,

melhorando o desempenho do código gerado.

O uso de plugins permitiu que diversas otimizações fossem testadas

gradualmente, sem que fosse necessário alterar diretamente o código do

compilador. O teste individual de cada otimização permitiu avaliar, isoladamente, o

impacto de cada uma das otimizações e assim escolher uma melhor configuração

para o compilador.

Por fim, a comparação com outros compiladores demonstrou que o código

gerado possui um bom desempenho, produzindo códigos mais velozes que os

gerados pelo Haskell .NET e valores satisfatórios quando comparado ao código

gerado pelo GHC nativo.

6.1 Resumo das Contribuições

A seguir é descrito um resumo das principais contribuições deste trabalho:

105

• apresentação do estado da arte de implementações de linguagens

funcionais na plataforma .NET, onde foram descritas as principais técnicas

de mapeamento e comparação entre projetos reais;

• estudo detalhado do framework Phoenix, com descrição das principais

funcionalidades, sempre que possível através de exemplos práticos;

• apresentação de uma nova abordagem para construção de um

compilador funcional, capaz de gerar código .NET para programas

Haskell. Este compilador além de validar a abordagem escolhida serve

como ferramenta para auxílio de pesquisas na área de otimização de

código, uma vez que novas técnicas podem facilmente ser incorporadas

a ele;

• descrição e implementação de técnicas de otimização de código.

Podendo algumas destas técnicas ser implementadas mesmo em

compiladores não funcionais.

6.2 Limitações e Trabalhos Futuros

O prelúdio compilado representa apenas uma pequena parte do real.

Apenas as funcionalidades básicas requeridas pelos exemplos utilizados nos testes

foram contempladas. A compilação completa de toda a especificação Haskell 98

[12] e das bibliotecas do GHC, embora bastante trabalhosa, permitiria que qualquer

programa Haskell pudesse ser diretamente compilado para .NET através desta

implementação. Com a compilação completa do prelúdio, melhores testes

poderiam ser efetuados utilizando os grupos Espectral e Real do NoFib. O que pode

apontar novas possibilidades de otimização do código.

Neste projeto foi utilizada a versão de julho de 2007 do Phoenix SDK. Esta

versão possui diversas limitações quanto à geração de código .NET. Algumas destas

limitações foram contornadas, seguindo orientações obtidas através do fórum da

ferramenta, outras foram contornadas utilizando plugins, como especificado na

Seção 5.2. Pouco antes do fim deste trabalho uma nova versão do Phoenix foi

lançada, trazendo, dentre outras novas funcionalidades, diversas correções e

melhorias na geração de código MSIL. Foram feitas algumas tentativas de atualizar

o código para esta nova versão do SDK, entretanto devido a restrições de tempo

106

esta atualização foi deixada de lado. A atualização para a nova versão por si só já

corrige uma série de deficiências na geração de código MSIL e pode resultar na

geração de códigos mais velozes.

O framework Phoenix fornece uma grande quantidade de facilidades para

execução de análises e otimizações de código. As otimizações aqui implementadas

utilizaram apenas uma parte destes recursos, o que já foi suficiente para um ganho

considerável no desempenho. Dentre os diversos projetos que podem ser

desenvolvidos utilizando o compilador aqui implementado em conjunto com a API

Phoenix, são sugeridos:

• Adição de labels que permitam identificar trechos do código IR

responsáveis pelo mapeamento das estruturas funcionais. A identificação

destes trechos de código poderia ser utilizada para permitir que novas

formas de mapeamentos fossem testadas utilizando o modelo de plugins.

• Utilizar as bibliotecas de análise, tais como: Graph e Alias, para identificar

trechos de código que executam tarefas desnecessárias ou passíveis de

otimização. A identificação destes trechos de código pode ser

adicionada a plugins que alterariam o funcionamento do compilador

permitindo a otimização do código gerado.

Embora o PhxSTGCompiler permita chamadas a métodos estáticos escritos

em outras linguagens .NET, como foi feito em algumas das bibliotecas do prelúdio, a

implementação aqui proposta teve como objetivo principal melhorar o

desempenho do mapeamento de estruturas funcionais no ambiente .NET, não

investindo muito na interoperabilidade. Sem dúvida esta interoperabilidade foi

facilitada uma vez que após mapeadas na CLR todas as linguagens compartilham

o mesmo conjunto de tipos. Entretanto, a construção de bibliotecas que

encapsulem as diferenças existentes entre as estruturas funcionais e as estruturas OO

permitiria uma comunicação mais direta.

107

REFERÊNCIAS BIBLIOGRÁFICAS

[1] J. Hughes, "Why Functional Programming Matters," in Research Topics in Functional

Programming. Addison-Wesley Pub, 1989, vol. 32, pp. 98-107.

[2] J. Gough, Compiling for the .NET Common Language Runtime (CLR). Upper Saddle

River, NJ, USA: Prentice Hall PTR, 2001.

[3] D. Box and T. Pattison, Essential .NET: The Common Language Runtime. Addison-

Wesley Longman Publishing Co., Inc., 2002.

[4] ECMA, "Standard ECMA-335: Common language infrastructure (CLI).," 2006.

[5] M. L. d. B. Monteiro, "Integrando Haskell à Plataforma .NET," Dissertação de Mestrado,

2006.

[6] D. Syme, "ILX: Extending the .NET Common IL for Functional Language

Interoperability," Electronic Notes in Theoretical Computer Science, vol. 59, 2001.

[7] E. Meijer, N. Perry, and A. v. Yzendoorn, "Scripting .NET Using Mondrian," in ECOOP

'01: Proceedings of the 15th European Conference on Object-Oriented Programming,

2001, pp. 150-164.

[8] Y. Bres, B. P. Serpette, and M. Serrano, "Bigloo.NET: compiling Scheme to .NET

CLR," Journal of Object Technology, vol. 3, pp. 71-94, 2004.

[9] M. Moskal, P. W. Olszta, and K. Skalski, "Nemerle: Introduction to a Functional .NET

Language,"

[10] D. A. Watt, Programming Language Design Concepts. John Wiley & Sons, 2004.

[11] Y. Minamide, G. Morrisett, and R. Harper, "Typed Closure Conversion," in Symposium

on Principles of Programming Languages, 1996, pp. 271-283.

[12] S. L. Peyton Jones, Haskell 98 Language and Libraries: The Revised Report. Cambridge

University Press, 2003.

[13] J. Smith, N. Perry, and E. Meijer, "Mondrian for .NET," Dr. Dobb's J., vol. 27, pp. 28-

34, 2002.

[14] L. Augustsson and T. Johnsson, "The Chalmers lazy ML-compiler," Comput. J., pp. 127-

141, 1989.

[15] Microsoft Corporation. Microsoft .NET Framework. [Online]. Disponível em:

108

http://www.microsoft.com/net/

[16] ECMA International. [Online]. Disponível em: http://www.ecma-

international.org/default.htm

[17] International Organization for Standardization. [Online]. Disponível em:

http://www.iso.org/iso/home.htm

[18] S. Lidin, Expert .NET 2.0 IL Assembler. Apress, 2006.

[19] Microsoft Research. SSCLI (Rotor) Home Page. [Online]. Disponível em:

http://research.microsoft.com/sscli/

[20] MONO. [Online]. Disponível em: http://www.mono-project.com/Main_Page

[21] G. A. Avelino, "Avaliação de Desempenho de Programas C# em Ambientes .NET -

SSCLI 2.0, .NET 2.0 e .NET 3.0," Trabalho não publicado, 2006.

[22] Novell. NOVELL: Worldwide. [Online]. Disponível em:

http://www.novell.com/home/index.html

[23] S. Finne, D. Leijen, E. Meijer, and S. L. Peyton Jones, "H/Direct: A Binary Foreign

Language Interface for Haskell," in ICFP'98, 1998.

[24] GreenCard: A Haskell Foreign Function Interface Preprocessor. [Online]. Disponível em:

http://www.haskell.org/greencard/

[25] S. Finne. Hugs98 for .NET. [Online]. Disponível em:

http://www.galois.com/~sof/hugs98.net/

[26] E. Meijer and S. Finne, "Lambada, Haskell as a better Java," in Proc. Haskell Workshop,

vol. 41, 2001, pp. 91-119.

[27] L. O´Boyle, "Making Haskell .NET Compatible,"

[28] S. L. Peyton Jones, "Implementing Lazy Functional Languages on Stock Hardware: The

Spineless Tagless G-Machine," Journal of Functional Programming, vol. 2, pp. 127-202,

1992.

[29] Microsoft F#. [Online]. Disponível em: http://research.microsoft.com/fsharp/

[30] H. Barendregt and E. Barendsen, "Introduction to Lambda Calculus," in Aspenäs

Workshop on Implementation of Functional Languages, Göteborg, 1988.

[31] T. M. Breuel, "Lexical Closures for C++," in C++ Conference, 1988, pp. 293-304.

[32] A. Kennedy and D. Syme, "Design and implementation of generics for the .NET

109

Common language runtime," in PLDI '01: Proceedings of the ACM SIGPLAN 2001

conference on Programming language design and implementation, New York, NY,

USA, 2001, pp. 1-12.

[33] S. Marlow and S. L. Peyton Jones, "Making a fast curry Push/enter vs eval/apply for

higher-order languages," in ICFP '04: Proceedings of the ninth ACM SIGPLAN

international conference on Functional programming, 2004, pp. 4-15.

[34] O. Hunt, "The Provision of Non-Strictness, Higher Kinded types and Higher Ranked

Types on an Object Oriented Virtual Machine," Dissertação de Mestrado, 2006.

[35] E. Meijer and K. Claessen, "The Design and Implementation of Mondrian," in Haskell

Workshop, 1997.

[36] M. Odersky and P. Wadler, "Pizza into Java: translating theory into practice," in POPL

'97: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, 1997, pp. 146-159.

[37] S. L. Peyton Jones and D. R. Lester, Implementing Functional Languages. Prentice-Hall,

Inc, 1992.

[38] B. Cabral, P. Marques, and L. Silva, "RAIL: Code Instrumentation for .NET," in SAC

'05: Proceedings of the ACM Symposium on Applied Computing, 2005.

[39] Microsoft Corporation. COM: Component Object Model Technologies.

[40] INRIA. (2008,) The Caml language. [Online]. Disponível em: http://caml.inria.fr/

[41] Microsoft Corporation. Microsoft Research. [Online]. Disponível em:

http://research.microsoft.com/projects/ilx/ilx.aspx

[42] S. Marlow. The Glasgow Haskell Compiler. [Online]. Disponível em:

http://www.haskell.org/ghc/

[43] S. L. Peyton Jones and S. Marlow, "The STG Runtime System (Revised)," Yale

University, 1999.

[44] M. Research. Microsoft Research. [Online]. Disponível em:

http://research.microsoft.com/phoenix/

[45] "Phoenix Documentation," 2007.

[46] D. Stewart, "Multi-Paradigm Just-In-Time Compilation," Dissertação de Mestrado, 2002.

[47] S. L. Peyton Jones and A. L. M. Santos, "A transformation-based optimiser for Haskell,"

Sci. Comput. Program., vol. 32, pp. 3-47, 1998.

110

[48] S. L. Peyton Jones and S. Marlow, "Secrets of the Glasgow Haskell Compiler Inliner,"

Journal of Functional Programming, vol. 12, pp. 393-434, 1999.

[49] M. Serrano, "Inline expansion: when and how?," in Proceedings of the conference on

Programming Languages, Implementation and Logic Programming, 1997.

[50] P. Wadler and R. J. M., "Projections for Strictness Analysis," in Functional

Programming Languages and Computer Architecture, vol. 274, 1987, pp. 385-407.

[51] S. L. Peyton Jones, C. V. Hall, K. Hammond, W. Partain, and P. Wadler, "The Glasgow

Haskell compiler: a technical overview," in Proceedings of UK Joint Framework for

Information Technology (JFIT) Technical Conference, 1993.

[52] A. Tolmach, "An External Representation for the GHC Core Language,"

[53] S. L. Peyton Jones and J. Launchbury, "Unboxed Values as First Class Citizens in a Non-

Strict Functional Language," in Proceedings of the Conference on Functional

Programming and Computer Architectur, Cambridge, Massachussets, USA, 1991, pp.

636-666.

[54] W. Partain, "The nofib Benchmark Suite of Haskell Programs," Proceedings of the 1992

Glasgow Workshop on Functional Programming, no. Springer-Verlag, 1993.

[55] S. Borde. Shri Borde's WebLog. [Online]. Disponível em:

http://blogs.msdn.com/shrib/archive/2005/01/25/360370.aspx

[56] D. Stutz, T. Neward, and G. Shilling, Shared Source CLI Essentials. O´Reilly, 2003.

[57] D. Wakeling, "A Haskell to java Virtual Machine Code Compiler," in , 1998, pp. 39-52.

[58] S. Thompson, Haskell: The Craft of Functional Programming (2nd Edition). Addison

Wesley, 1999.

[59] M. M. T, "The Haskell 98 Foreign Function Interface 1.0,"

[60] D. Syme, A. Granicz, and A. Cisternino, Expert F\#. APress, 2007.

[61] R. Pickering, Foundations of F\#. Apress, 2007.

[62] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific Languages. The

Pragmatic Bookshelf, 2007.

[63] A. Kennedy and D. Syme, "Pre-compilation for .NET Generics," Microsoft Research,

Cambridge, U.K., 2005.

[64] A. V. Aho, R. Sethi, and J. D. Ullman, Compiladores: Princípios, Técnicas e

Ferramentas. LTC, 1995.

111

[65] J. Launchbury and S. L. Peyton Jones, "Lazy Functional State Threads," SIGPLAN Not.,

vol. 29, pp. 24-35, 1994.

[66] The NoFib Haskell Benchmark Suite. [Online]. Disponível em:

http://einstein.dsic.upv.es/nofib/ingles/index_1024_en.php

[67] G. Bracha, N. Gafter, J. Gosling, and P. von der Ahé. Closure for the Java Programming

Language. [Online]. Disponível em: http://www.javac.info/

[68] T. Dowd, F. Henderson, and P. Ross, "Compiling Mercury to the .NET Common

Language Runtime," Proceedings of Babel'01, 2001.

[69] J. Hamilton, "Language integration in the common language runtime," SIGPLAN Not.,

vol. 38, 2003.

[70] G. A. Avelino, "Análise Comparativa de Frameworks para Instrumentação de Código

.NET," Trabalho não publicado, 2006.

[71] S. Smetsers, E. Nöcker, J. v. Groningen, and R. Plasmeijer, "Generating Efficient Code

for Lazy Functional Languages," in Proceedings of the Conference on Functional

Programming and Computer Architecture, 1991, pp. 592-617.

[72] S. C. Wray and J. Fairbairn, "Non-Strict Languages - Programming and

Implementation," The Computer Journal, vol. 32, pp. 142-151, 1989.

[73] M. Tullsen, "Compiling Haskell to Java," in IFL '97: Selected Papers from the 9th

International Workshop on Implementation of Functional Languages, 1996.

[74] M. Serrano and M. Feeley, "Storage use analysis and its applications," in IFL '97:

Selected Papers from the 9th International Workshop on Implementation of Functional

Languages, 1996, pp. 50-61.

[75] J. B. Rosser, "Highlights of the history of the lambda-calculus," in LFP '82: Proceedings

of the 1982 ACM symposium on LISP and functional programming, 1982, pp. 216-225.

[76] N. Perry and E. Meijer, "Implementing Functional Languages on Object-Oriented Virtual

Machines," IEE Proceedings - Software, vol. 151, pp. 1-9, 2004.

[77] I. Holyer and E. Spiliopoulou, "The Brisk Machine: A Simplified STG Machine," in

Implementation of Functional Languages, 9th International Workshop, {IFL}'97, St.

Andrews, Scotland, {UK}, September 1997, Selected Papers, {LNCS} 1467, 1999, pp. 20-

38.

[78] R. Douence and P. Fradet, "A Systematic Study of Functional Language

112

Implementations," ACM Transactions on Programming Languages and Systems, vol. 20,

pp. 344-387, 1998.

[79] F. H. de, H. P. de, R. M. Ferreira, and R. D. Lins, "An Action Semantics for STG,"

[80] D. Coutts, D. Stewart, and R. Leshchinskiy, "Rewriting Haskell Strings," in Practical

Aspects of Declarative Languages 8th International Symposium, PADL 2007, 2007, pp.

50-64.

[81] J. Clements and M. Felleisen, "A Tail-recursive Machine With Stack Inspection," ACM

Trans. Program. Lang. Syst., vol. 26, pp. 1029-1052, 2004.

[82] K. Choi, H.-i. Lim, and T. Han, "Compiling Lazy Functional Programs Based on the

Spineless Tagless G-Machine for the Java Virtual Machine," Lecture Notes in Computer

Science, vol. 2024, 2001.

[83] Y. Bres, B. P. Serpette, and M. Serrano, "Compiling Scheme programs to .NET Common

Intermediate Language," in 2nd International Workshop on .NET Technologies, 2004.

[84] S. L. Peyton Jones and D. Lester, "A Modular Fully-lazy Lambda Lifter in HASKELL,"

Software - Practice and Experience, vol. 21, pp. 479-506, 1991.

[85] R. Ennals and S. L. Peyton Jones, "Optimistic evaluation: an adaptive evaluation strategy

for non-strict programs," in ICFP '03: Proceedings of the eighth ACM SIGPLAN

international conference on Functional programming, 2003, pp. 287-298.

[86] S. Finne, D. Leijen, E. Meijer, and S. L. Peyton Jones, "Calling Hell from Heaven and

Heaven from Hell," in ICFP '99: Proceedings of the fourth ACM SIGPLAN international

conference on Functional programming, 1999, pp. 114-125.

[87] T. Johnsson, "Lambda lifting: transforming programs to recursive equations," in

Functional programming languages and computer architecture. Proc. of a conference

(Nancy, France, Sept. 1985), 1985.

[88] M. Monteiro, M. Araújo, R. Borges, and A. Santos, "Compiling Non-strict Functional

Languages for the .NET Platform," Journal of Universal Computer Science, vol. 11, pp.

1255-1274, 2005.

[89] R. F. Massa, R. D. Lins, and A. L. M. Santos, "A back-end for GHC based on categorical

multi-combinators," in SAC '04: Proceedings of the 2004 ACM symposium on Applied

computing, New York, NY, USA, 2004, pp. 1482-1489.

[90] S. Marlow, A. R. Yakushev, and S. L. Peyton Jones, "Faster laziness using dynamic

113

pointer tagging," in ICFP '07: Proceedings of the 2007 ACM SIGPLAN international

conference on Functional programming, Freiburg, Germany, 2007, pp. 277-288.

114

APÊNDICE A ‐ UNIDADES DE COMPILAÇÃO

As unidades de compilação representam estruturas presentes na máquina

STG e contém código responsável por gerar sua respectiva representação IR. São

divididas em unidades básicas, expressões, unidades atômicas e alternativas.

A Tabela 14 descreve classes que representam as unidades básicas de

compilação, as quais correspondem aos nós principais da STG. Utilizam o método

Generate para gerar seu código IR e delega às unidades que as compõem a

geração de seus próprios códigos.

Tabela 14. Unidades básicas

Classe Campos Geração da IR (método Generate)

ModuleUnit • name:String
• binds:List<Bind>

Constrói a classe correspondente ao

módulo e adiciona um método .cctor para

inicialização dos campos estáticos

correspondentes aos binds globais. Através

de um loop é chamado o método

Generate de cada um dos binds

armazenados em sua lista.

Bind • var:AtomVariable
• lambda:LambdaForm

Verifica se a ligação (bind) é global ou

local e cria o local correspondente para o

armazenamento da closure. Caso seja

global é criado um campo estático na

classe e um método para sua inicialização,

o qual é adicionado a uma lista de

métodos de inicialização a serem

chamados no método .cctor da classe.

Caso o bind seja local a closure é

armazenada como variável local da

função FEP, criada a partir da lambda-form.

Lambda-

Form

• freeVars:List<AtomVari
ble>

• arg:List<AtomVarible>

Verifica a flag de atualização para

identificar se é necessário criar a SEP e

115

 • flag:Bool
• expression:Expression

decidir o tipo de closure a ser instanciado.

A SEP é criada apenas quando o valor da

flag for falso (closure não atualizável). O

método Generate da lambda-form gera o

esqueleto da FEP e chama o método

Evaluation da expressão armazenada, a

qual gera o código correspondente da

função.

DataUnit • listTvs:List<String>
• listConsDef:List<Constr

uctorDefUnit>

Cria lambda-forms que instanciam

construtores. Tais lambda-form são

necessárias para aplicações parciais de

construtores e passagem de um construtor

como argumento de uma função. Após a

criação das lambda-forms, estas são

ligadas a variáveis através de um bind e

cada um destes binds tem seu método

Generate executado.

As unidades de compilação que representam expressões correspondem às

expressões presentes na STG. Geram código IR através do método Evaluation, o

qual além de gerar sua representação IR retorna um operando que armazena o

resultado da expressão.

Tabela 15. Unidades de compilação que representam expressões

Classe Campos Geração da IR (método Evaluation)

ExpLet • binds:List<Bind>
• expression:Expressi

on

Casa bind presente tem seu método

Generate executado. Após a geração do

código dos binds a expressão é avaliada,

retornando o operando que armazena o

resultado.

ExpLetRec • binds:List<Bind>
• expression:Expressi

on

Semelhante a ExpLet, porém antes de efetuar

o bind cada variável é adicionada a lista de

variáveis livres da lambda-form, permitindo

que a expressão possa fazer referência

116

recursiva.

ExpCase • expression:Expressi
on

• alts:List<Alternative
>

Cria uma instrução switch onde para um case

é gerado para cada objeto AlternativeUnit.

Para tipos algébricos os valores presentes no

construtor geram variáveis locais, para

poderem ser acessados pela expressão. É

criada uma variável para o armazenamento

da expressão selecionada, a qual consiste no

retorno da avaliação de uma expressão case.

ExpLiteral • lit:AtomLiteral Retorna a avaliação do AtomLiteral

armazenado.

ExpApplicati

on

• var:AtomVariable
• args:List<Atom>

Utiliza Reflection e informações armazenadas

no ambiente de compilação para decidir se a

função pode ser chamada diretamente. Se a

aridade é conhecida em tempo de

compilação e a aplicação é saturada é

gerado código para a chamada direta da

função estática correspondente. Caso

contrário os argumentos são empilhados na

pilha de argumentos e é feita a chamado ao

método Enter da closure correspondente.

ExpConstruct

or

• const:Constructor
• args:List<Atom>

Utilizando as informações coletadas através

de funções criadas a partir da DataUnit

correspondente é verificado se a aplicação

do construtor é saturada. Se a aplicação for

satura é gerada a classe Pack

correspondente ao construtor e seus

argumentos, caso contrário a aplicação do

construtor é tratada como uma aplicação

parcial da função do construtor.

ExpBuiltIn • op:PrimitiveOperat
or

• args:List<Atom>

Gera uma instrução que aplica dois

operandos e retorna o resultado da

aplicação. A operação a ser executada é

definida pelo PrimitiveOperator, o qual é

117

mapeado para uma operação básica

presente na CLR.

Unidades de compilação atômicas representam os elementos atômicos da

STG. Estes elementos pode ser variáveis, literais, construtores ou ainda expressões

entre parênteses. Seu método Evaluation retorna o operando correspondente a

unidade atômica que pode ser uma variável ou uma constante. Não gera

instruções IR diretamente, no geral, apenas retorna operandos criados em outras

unidades de compilação.

Tabela 16. Unidades de compilação atômicas

Classe Campos Geração da IR (método Evaluation)

AtomVariable • moduleName:String
• varName:String
• type:STGType

Faz a busca, primeiramente, na tabela

de símbolos da função, caso não

encontre nesta faz a busca na tabela de

símbolos do módulo. A partir do símbolo

localizado é retornado um

VariableOperand que representa ou

uma variável local da função ou um

campo estático da classe, neste último

caso quando o símbolo é localizado na

tabela de símbolos do módulo (bind

global).

AtomLiteral<T> • value:T Retorna um ImmediateOperand com o

valor correspondente ao literal.

Constructor • moduleName:String
• constName:String

Utilizado apenas para armazenar o

nome do construtor. Não é avaliado

diretamente.

AtomExpression • expression:Expression Retorna a avaliação da expressão

armazenada.

Esta última classe de unidades de compilação representa possíveis

alternativas de uma expressão case. Não geram código IR diretamente, apenas

armazenam a expressão, que caso selecionada, será executada.

118

Tabela 17. Unidades de compilação que representam alternativas

Classe Campos Geração da IR (método Evaluation)

AltPrimitive • literal:Interger Sua avaliação retorna avaliação da

expressão armazenada.

AltAlgebraic • const:Constructor
• vars:List<Atomvariabl

e>
• expression:Expression

Armazena variáveis que devem ser

preenchidas antes da avaliação da

expressão. Sua avaliação retorna avaliação

da expressão armazenada.

AltDefault • expression:Expressio
n

Sua avaliação retorna avaliação da

expressão armazenada.

119

APÊNDICE B ‐ PROFILER DE MEMÓRIA

O Código 29 cria uma ferramenta que gera o perfil de consumo de memória

de um programa. Utiliza, para tanto, contadores de desempenho disponibilizados

pelo framework .NET. São retornados cinco valores, que corresponde,

respectivamente, ao máximo de memória heap alocado, a média das

porcentagens de tempo gasto em coleta de lixo e o número de coletas realizadas

nas gerações 0, 1 e 2.

1 class MemoryProfiler
2 {
3 static float maxMem;
4 static float totalGCTime;
5 static int numGCTime;
6 static int ger0;
7 static int ger1;
8 static int ger2;
9 private static PerformanceCounter gcTimerCounter;
10 private static PerformanceCounter heapBytesCounter;
11 private static PerformanceCounter ger0Counter;
12 private static PerformanceCounter ger1Counter;
13 private static PerformanceCounter ger2Counter;
14 static void Main(string[] args)
15 {
16 if (File.Exists(args[0]))
17 {
18 string instanceName = args[0].Remove(args[0].Length-4);
19
20 // Cria contadores
21 gcTimerCounter =
22 new PerformanceCounter(".NET CLR Memory", "% Time in GC");
23 gcTimerCounter.InstanceName = instanceName;
24 heapBytesCounter =
25 new PerformanceCounter(".NET CLR Memory", "# Bytes in all
26 Heaps");
27 heapBytesCounter.InstanceName = instanceName;
28 ger0Counter =
29 new PerformanceCounter(".NET CLR Memory", "# Gen 0
30 Collections");
31 ger0Counter.InstanceName = instanceName;
32 ger1Counter =
33 new PerformanceCounter(".NET CLR Memory", "# Gen 1
34 Collections");
35 ger1Counter.InstanceName = instanceName;
36 ger2Counter =
37 new PerformanceCounter(".NET CLR Memory", "# Gen 2
38 Collections");
39 ger2Counter.InstanceName = instanceName;
40
41 //Cria thread para monitorar execução do programa
42 ThreadStart memoryOperation = new ThreadStart(GetMemoryCount);
43 Thread memoryThread = new Thread(memoryOperation);
44 memoryThread.Start();
45
46 //Executa o programa e espera pelo seu final

120

47 Process p = Process.Start(args[0]);
48 p.WaitForExit();
49 memoryThread.Abort();
50
51 //Imprime valores obtidos
52 Console.Write("{0:N0}\t", maxMem);
53 if (numGCTime > 0)
54 {
55 Console.Write(totalGCTime / numGCTime + "\t");
56 }
57 else
58 Console.Write("0");
59 Console.Write("{0:N0}\t", ger0);
60 Console.Write("{0:N0}\t", ger1);
61 Console.Write("{0:N0}\n", ger2);
62 }
63 else
64 Console.WriteLine("Programa não existe: " + args[0]);
65 }
66
67 static void GetMemoryCount()
68 {
69 while (true)
70 {
71 try
72 {
73 float totalmemory = heapBytesCounter.NextValue();
74 if (maxMem < totalmemory)
75 maxMem = totalmemory;
76 Thread.BeginCriticalRegion(); //Inicio operação unária
77 totalGCTime += gcTimerCounter.NextValue();
78 numGCTime++;
79 Thread.EndCriticalRegion(); //Fim operação unária
80 //Armazena os ultimos valores para cada geração
81 ger0 = (int)ger0Counter.NextValue();
82 ger1 = (int)ger1Counter.NextValue();
83 ger2 = (int)ger2Counter.NextValue();
84 }
85 catch (Exception){}
86 //Aguarda 10 milisegundos
87 Thread.Sleep(10);
88 }
89 }
90 }

Código 29. Ferramenta de profiler de memória.

121

APÊNDICE C ‐ PLUGIN DE RECURSÃO ATRAVÉS DE DESVIOS

Plugin responsável por substituir chamadas recursivas por desvios

incondicionais para o início da função. De forma a evitar redundância, no Código

30 é apresentado, apenas, o método Execute do plugin, o qual contém a parte

funcional deste. Instruções de como construir o restante do plugin podem ser vistas

na Seção 3.2.

A função Execute verifica se a instrução marcada se chama recursivamente

(linhas 18 e 19), se este for o caso cria a instrução de desvio (linhas 53 a 102), caso

contrário apenas adiciona uma instrução tail antes da chamada (linhas 23 a 43).

1 protected override void Execute(Phx.Unit unit)
2 {
3 if (!unit.IsFunctionUnit)
4 return;
5
6 Phx.FunctionUnit functionUnit = unit.AsFunctionUnit;
7 foreach (Phx.IR.Instruction instruction in
8 functionUnit.Instructions)
9 {
10 if (instruction is Phx.IR.CallInstruction)
11 {
12 TailCallExtensionObject extObj =
13 TailCallExtensionObject.Get(instruction);
14 if (extObj != null)
15 {
16 //Verifica se função chamada tem o mesmo nome da função que a
17 //contém
18 if (instruction.AsCallInstruction.FunctionSymbol !=
19 functionUnit.FunctionSymbol)
20 {
21 //Se não tiver o mesmo nome é inserido uma instrução tail
22
23 Phx.IR.Instruction tailInstruction =
24 Phx.IR.ValueInstruction.New(functionUnit,
25 Phx.Targets.Architectures.Msil.Opcode.TAILPREFIX);
26
27 instruction.InsertBefore(tailInstruction);
28
29 //Remove a instrução que armazena o valor de
30 //retorno da função
31 if (instruction.Next.Opcode ==
32 Phx.Targets.Architectures.Msil.Opcode.st)
33 instruction.Next.Remove();
34
35 //Busca a instrução de retorna da função
36 Phx.IR.Instruction returnInstruction =
37 instruction.Next;
38 while (!returnInstruction.IsReturn)
39 returnInstruction = returnInstruction.Next;
40 instruction.InsertAfter(returnInstruction.Copy());
41
42 //Desmarca a instrução

122

43 instruction.RemoveExtensionObject(extObj);
44 }
45 else
46 //Chama método responsável por gerar desvio
47 InsereBranch(instruction, functionUnit);
48 }
49 }
50 }
51 }
52 //Método responsável por criar instruções de desvio
53 void InsereBranch(Instruction instruction,FunctionUnit functionUnit)
54 {
55 Operand varOp =
56 functionUnit.FirstEnterInstruction.DestinationOperandList;
57 Phx.Symbols.FunctionSymbol funcSym = instruction.FunctionSymbol;
58
59 //Cria lista com os argumentos passados à função
60 List<Operand> argsOpAux = new List<Operand>();
61 while (varOp!=null)
62 {
63 if (varOp.IsVariableOperand)
64 {
65 argsOpAux.Add(varOp);
66 }
67 varOp = varOp.Next;
68 }
69
70 //Inverte a lista de argumentos para que sejam armazenados corretamente
71 List<Operand> argsOp = new List<Operand>();
72 for (int i = 1; i <= argsOpAux.Count; i++)
73 {
74 argsOp.Add(argsOpAux[argsOpAux.Count - i]);
75 }
76
77 //Armazena os valores passados para a função
78 foreach (Operand op in argsOp)
79 {
80 if (op.IsVariableOperand)
81 {
82 Operand sourceOp =
83 Operand.NewRegister(functionUnit, op.Type,
84 Phx.Targets.Architectures.Msil.Register.SR0);
85 Instruction storeInstr =
86 Instruction.NewUnary(functionUnit,
87 Phx.Targets.Architectures.Msil.Opcode.st, op, sourceOp);
88 instruction.InsertBefore(storeInstr);
89 }
90 }
91 //Cria instrução de desvio p/ inicio da função
92 Instruction branchInstruction =
93 Instruction.NewBranch(functionUnit,
94 Phx.Targets.Architectures.Msil.Opcode.br,
95 functionUnit.FirstEnterInstruction.AsLabelInstruction);
96 instruction.InsertBefore(branchInstruction);
97
98 //Remove a instrução que armazena o valor de retorno da função
99 if (instruction.Next.Opcode == Phx.Targets.Architectures.Msil.Opcode.st)
100 instruction.Next.Remove();
101 instruction.Remove();
102 }

Código 30. Plugin que substitui recursão por desvios incondicionais.

123

