
 

Pós-Graduação em Ciência da Computação 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Universidade Federal de Pernambuco 
posgraduacao@cin.ufpe.br 

www.cin.ufpe.br/~posgraduacao 
 
 

RECIFE, AGOSTO/2008 
 

Integração de Linguagens Funcionais à 
Plataforma .NET utilizando o Framework 

Phoenix  
 

Por 

Guilherme Amaral Avelino 

Dissertação de Mestrado 

 

 

 



 
 

 
 

 UNIVERSIDADE FEDERAL DE PERNAMBUCO 
CENTRO DE INFORMÁTICA 
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO 
 

 
 

 
 
 

 
 
 

 
 
 
 
 

Guilherme Amaral Avelino 
 
 
 
 

Integração de Linguagens Funcionais à Plataforma .NET 
Utilizando o Framework Phoenix 

 
 
 

ESTE TRABALHO FOI APRESENTADO À PÓS-GRADUAÇÃO EM 
CIÊNCIA DA COMPUTAÇÃO DO CENTRO DE INFORMÁTICA DA 
UNIVERSIDADE FEDERAL DE PERNAMBUCO COMO REQUISITO 
PARCIAL PARA OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIA 
DA COMPUTAÇÃO. 

 
 

 
 
ORIENTADOR: Prof. Dr. ANDRÉ LUIS DE MEDEIROS SANTOS 

 
 
 
 
 
 
 
 
 

RECIFE, AGOSTO/2008 
 

 



 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Avelino, Guilherme Amaral    
      Integração de linguagens funcionais à plataforma .NET 
utilizando o framework Phoenix / Guilherme Amaral 
Avelino.  –  Recife: O Autor, 2008. 
       104  folhas  : il., fig., tab. 
 
      Dissertação (mestrado) – Universidade Federal de 
Pernambuco. CIn. Ciência da computação, 2008. 
 
       Inclui bibliografia e apêndices. 
 
Linguagem de programação.  2. Compiladores. I. Título. 
 
       005.1                CDD (22.ed.)            MEI2008-100 
 



 
 

 
 

AGRADECIMENTOS 
 

Agradeço a todos aqueles que, direta ou indiretamente contribuíram para a 

realização desta pesquisa e em especial: 

• Primeiramente a Deus, por ter me dado saúde, inteligência e perseverança 

necessária à execução deste projeto. 

• Aos meus pais, Paulo Lustosa Avelino e Aldênia Maria Amaral Santos Avelino, 

pelo carinho, amor e dedicação com que se empenharam na minha 

formação pessoal e profissional; 

• A Lyvia Basílio Caland, minha namorada, pela compreensão nos momentos 

de ausência e pelo apoio e incentivo constante durante esta fase de 

minha vida; 

• Ao professor André Santos, pela oportunidade de desenvolver este projeto e 

acima de tudo por sua excelente orientação e auxílio nos mais diversos 

problemas enfrentados durante a realização deste; 

• Aos amigos do mestrado, em especial a Armando Soares, Vinícius Pádua e 

Marcos Duarte, pela motivação, auxílio e companheirismo. Além de um 

convívio fraterno que proporcionou um ambiente propício ao 

desenvolvimento deste trabalho; 

• A Simon Peyton Jones, Tim Chevalier e demais participantes do fórum do 

GHC que contribuíram com informações importantes sobre o GHC e a 

linguagem CORE; 

• A Andy Ayers e Matt Mitchell, membros da equipe desenvolvimento do 

Phoenix, pela sempre atenciosa forma com que responderam as minhas 

mais variadas dúvidas sobre o uso desta ferramenta. 

• A Monique Louise de Barros Monteiro, pelas explicações a respeito do projeto 

Haskell .NET e pelas dicas e comentários bastante úteis para o 

desenvolvimento deste projeto. 

• À Microsoft Research pelo apoio financeiro, permitindo que eu me dedicasse 

integralmente ao projeto. 



 
 

 
 

• Ao Centro de Informática e a sua excelente equipe de professores e 

profissionais, que muito contribuíram para minha formação e 

proporcionaram a base para o desenvolvimento deste trabalho. 

• A todos os meus amigos e familiares, pelo apoio. 



 
 

 
 

RESUMO 
 

Linguagens funcionais se destacam pelo seu alto poder de expressão e 

abstração, promovido por construções de alto nível como polimorfismo 

paramétrico, funções de alto nível e aplicações parciais. Embora estes recursos 

sejam bastante úteis, tradicionalmente, linguagens funcionais têm sido pouco 

empregadas fora do ambiente acadêmico. Esta situação é em parte explicada 

pela ausência de uma infra-estrutura de desenvolvimento que forneça ferramentas 

e APIs capazes de aumentar a produtividade e permita o uso das mais recentes 

tecnologias.  

Uma alternativa para fornecer esta infra-estrutura é integrar linguagens 

funcionais a plataformas que disponibilizem tais facilidades, como a .NET. Embora a 

plataforma .NET tenha sido projetada de forma a suportar múltiplas linguagens, seu 

foco foi dado ao suporte dos paradigmas imperativo e orientado a objeto, 

carecendo de estruturas que permitam um mapeamento direto de linguagens 

funcionais.  

Objetivando estudar novas técnicas de mapeamento de estruturas 

funcionais na plataforma .NET, neste trabalho foi desenvolvido um compilador 

funcional que gera código .NET, utilizando o framework Phoenix. O uso do 

framework Phoenix além de auxiliar na geração inicial do código permitiu que 

análises e otimizações fossem feitas, posteriormente, melhorando o desempenho 

dos programas gerados.   

Palavras-chave: Linguagem funcional; NET; Phoenix; STG; Compiladores. 



 
 

 
 

ABSTRACT 
 

Functional languages stand out for their high power of expression and 

abstraction, promoted by high-level buildings as parametric polymorphism, high-

level functions and partial applications. However these features are quite useful, 

traditionally, functional languages have been little used outside the academic 

environment. This is partly explained by the lack of a development infrastructure that 

provides tools and APIs which are capable of increasing the productivity and allow 

the use of latest technologies. 

An alternative to provide this infrastructure is to integrate functional languages 

to platforms that provide such facilities, such as .NET. Although the platform. NET has 

been designed in a way that supports multiple languages, its focus was given to the 

support of imperative paradigms and the object oriented, lack of structures that 

allow a direct mapping of functional languages. 

Aiming to study new techniques for mapping of functional structures on the 

platform. NET, in this work, a functional compiler that generates .NET code was 

developed, using Phoenix framework. Apart from helping in generating initial code, 

the use of the Phoenix framework permitted analyses and optimizations to be made, 

subsequently, improving the performance of the generated programs. 

Keywords: Functional language; NET; Phoenix; STG; Compilers. 
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1 INTRODUÇÃO 

 

Este capítulo apresenta uma visão geral do trabalho e está organizado da 

seguinte forma: 

• A Seção 1.1 apresenta os fatores que motivaram o presente trabalho, dando 

uma breve introdução sobre linguagens funcionais, máquinas virtuais 

gerenciadas e motivação para integrá-las. 

• A Seção 1.2 descreve a estrutura da dissertação, apresentado os assuntos 

discorridos em cada capítulo. 
 

1.1 Contexto e Motivação 

Linguagens funcionais se caracterizam por tratar funções como unidade 

fundamental de um programa. Desta forma, um programa é constituído por um 

conjunto de funções que representam sub-partes do problema a ser resolvido. Este 

tipo de divisão do problema representa uma forma de modularizar ainda mais um 

problema, pois funções representam problemas específicos a serem resolvidos que 

podem ser utilizados em mais de uma solução. Diferentemente de linguagens 

imperativas, nas quais funções são tratadas como uma série de instruções, em 

linguagens funcionais elas são tratadas como expressões matemáticas. Na 

programação funcional é evitado uso de estados ou dados mutáveis e a execução 

de uma função, quando submetida aos mesmos argumentos, sempre retorna o 

mesmo valor o que garante a ausência de efeitos colaterais e facilita o processo de 

prova da correção de um programa [ HYPERLINK \l "Hughes1989" 1 ]. 

Versões mais recentes de linguagens de grande popularidade, tais como 

Java e C#, têm incorporado algumas destas características, antes só encontradas 

em linguagens funcionais, numa clara demonstração da importância e poder de 

expressão destas. Polimorfismo paramétrico, através de generics, e closures1 são 

                                                 
1 Inserida a partir da versão 2.0 do C# através de anonymous delegates e incrementado na versão 3.0 com a 

criação de expressões lambdas. Para a linguagem Java closures se encontra em fase de análise da proposta[ 
HYPERLINK \l "Bra08" 67 ], a ser incorporada na versão 7.  
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exemplos dos recursos incorporados a estas linguagens. Tendo em mente este 

interesse de linguagens orientadas a objetos em características típicas do 

paradigma funcional, surge uma pergunta: porque tais linguagens não têm seu uso 

difundido fora do mundo acadêmico?  

Um dos principais fatores que dificulta a expansão destas linguagens é a 

ausência de uma infra-estrutura de desenvolvimento que forneça ferramentas e 

APIs capazes de aumentar a produtividade e permita o uso das mais recentes 

tecnologias. Plataformas como Java (JVM) e .NET, fornecem aos programadores 

tais ferramentas e APIs permitindo um enorme ganho em produtividade e uma 

rápida integração com os modelos e tecnologias de desenvolvimento mais 

recentes. Outra característica importante provida por estas plataformas é o uso de 

máquinas virtuais e código intermediário. Esta característica fornece uma maior 

abstração sobre a máquina alvo, permitindo que programas e compiladores sejam 

desenvolvidos sem se preocupar com o hardware ou sistema operacional onde irão 

trabalhar. 

O ambiente .NET destaca-se por prover suporte a múltiplas linguagens de 

programação, permitindo que programas sejam construídos utilizando qualquer 

uma das linguagens suportadas, podendo ainda, um programa ser constituído de 

módulos, escritos em linguagens diferentes, que interagem entre si. Além de já 

prover inúmeras linguagens (C#, J#, C++, VB .NET, etc.), o ambiente .NET permite 

fácil incorporação de novas linguagens, desde que, estas sigam as especificações 

do Common Language Runtime (CLR)2,3].  O CLR é a implementação da Microsoft 

para a Common Language Infrastructure (CLI)[ HYPERLINK \l "ECMA335" 4 ], a qual 

define um rico sistema de tipos e uma máquina virtual capaz de executar de forma 

eficiente códigos provenientes de diversas linguagens.  

Embora de forma não restritiva, o CLR foi desenvolvida com foco na 

implementação de linguagens que seguem os paradigmas imperativo e orientado 

a objetos. Desta forma, mapear características de linguagens funcionais, tais como: 

função de alta ordem, mecanismo lazy evaluation e polimorfismo paramétrico, na 

plataforma .NET representam um desafio. Diminuir este gap semântico através de 

estruturas que mapeiem, eficientemente, características comuns a linguagens 

funcionais na plataforma .NET é objetivo comum de diversos projetos, tais como: 

Haskell .NET5], ILX[ HYPERLINK \l "Syme2001" 6 ], Mondrian .NET7], Bigloo .NET[ 
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HYPERLINK \l "Bres2004a" 8 ] e Nemerle9]. Cada uma destas implementações define 

suas próprias estruturas de mapeamento, não havendo um consenso sobre qual a 

melhor forma de se representar tais características no ambiente .NET. De modo 

geral a implementação das estruturas propostas no ambiente gerenciado fornecido 

pela CRL não possui um bom desempenho, o que abre caminho para estudos de 

técnicas mais eficientes. 

Para mapear tais funcionalidades de forma eficiente é necessária uma série 

de experimentações e testes, de forma a obter estruturas que as represente com o 

melhor desempenho possível. O framework Phoenix [2], disponibilizado pela 

Microsoft, é uma ferramenta que tem como propósito facilitar a construção de 

compiladores e de ferramentas de teste e análise. Ele utiliza uma representação 

intermediária fortemente tipada para representar um programa e disponibiliza uma 

grande quantidade de classes e métodos para manipular esta representação. 

Dentre os recursos disponibilizados, temos o redirecionamento de código para 

diferentes arquiteturas e plataformas tais como: x86 e MSIL2 e mecanismo de plugin, 

o qual permite alterar o comportamento de um programa Phoenix sem ter de 

alterar diretamente seu código fonte. 

O presente trabalha faz uso do framework Phoenix para a criação e análise 

de estruturas que mapeiem, eficientemente, as características específicas de 

linguagens funcionais no ambiente .NET. Espera-se que os recursos disponibilizados 

pelo framework auxiliem na construção de um compilador que gere códigos mais 

expertos, ou seja, que usem menos recursos e sejam mais rápidos que os produzidos 

atualmente. O compilador gerado servirá ainda como ferramenta para 

experimentação e desenvolvimento de novas técnicas de compilação de 

linguagens funcionais no ambiente .NET. 

 

1.2 Organização da Dissertação 

Além da introdução esta dissertação conta com mais cinco capítulos e três 

apêndices, como segue: 

                                                 
2 Microsoft Intermediate Language 
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• O Capitulo 2 apresenta uma definição geral do paradigma funcional e do 

ambiente .NET, mostrando suas principais características. Após a 

apresentação das principais características são demonstradas possíveis 

abordagens de como implementar uma linguagem funcional no 

ambiente .NET. Por fim, é feito um resumo das principais implementações 

de linguagens funcionais existentes. 

• O Capítulo 3 discorre sobre o Framework Phoenix. Nele são apresentadas 

as principais características e recursos desta ferramenta, sempre que 

possível através de exemplos práticos. 

• O Capítulo 4 trata da implementação do protótipo. Nele é descrito a 

arquitetura do compilador, seu ambiente de execução e as decisões de 

projeto tomadas para geração do código. 

• O Capítulo 5 faz a análise do compilador e mostra o resultado das 

otimizações e testes realizados. Os primeiros resultados se referem a 

melhorias na transformação do código IR para MSIL e ao final são exibidos 

os resultados de otimizações no controle da pilha de execução e em 

instruções de desvios. 

• O Capítulo 6 aponta as contribuições deste trabalho, restrições e opções 

para trabalhos futuros.  

• O Apêndice A apresenta tabelas com as classes que representam as 

unidades de compilação do compilador PhxSTGCompiler. 

• O Apêndice B apresenta o código da ferramenta construída para gerar o 

perfil de consumo de memória dos programas analisados. 

• O Apêndice C mostra o código de um plugin, utilizado para substituir tail 

calls por desvios incondicionais em chamadas recursivas. 
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2 PROGRAMAÇÃO FUNCIONAL NA PLATAFORMA .NET 

 

Aliar a alta expressividade e o poder de abstração fornecidos por linguagens 

funcionais a plataformas de alta produtividade como o .NET não é uma tarefa 

simples. A plataforma .NET tem um modelo de compilação voltado para os 

paradigmas imperativo e orientado a objeto, o que dificulta o mapeamento de 

estruturas características de linguagens funcionais.  

Neste capítulo é feito uma introdução a linguagens funcionais e suas principais 

características, sendo, em seguida dada uma breve introdução sobre a plataforma 

.NET. Após discorrer sobre estes conceitos básicos são apresentadas técnicas que 

permitem mapear linguagens funcionais na plataforma .NET. Finalizando o capítulo, 

alguns projetos de mapeamento de linguagens funcionais são apresentados 

descrevendo algumas de suas decisões de projetos. 

 

2.1 Introdução a Linguagens Funcionais 

Linguagens funcionais se caracterizam por tratar funções como unidade 

fundamental de um programa. Desta forma, um programa é constituído por um 

conjunto de funções que representam sub-partes do problema a ser resolvido. 

Diferentemente de linguagens imperativas, nas quais funções são tratadas como 

uma série de instruções, em linguagens funcionais elas são tratadas como 

expressões matemáticas. Na programação funcional é evitado uso de estados ou 

dados mutáveis e a execução de uma função, quando submetida aos mesmos 

argumentos, sempre retorna o mesmo valor o que garante a ausência de efeitos 

colaterais e facilita o processo de provar a correção de um programa [ HYPERLINK 

\l "Hughes1989" 1 ]. 

Linguagens funcionais são caracterizadas por alta expressividade e grande 

poder de abstração, decorrentes de construções de alto nível tais como funções de 

alta ordem, aplicação parcial de funções, avaliação preguiçosa e polimorfismo 

paramétrico. Estas construções não só aumentam expressividade da linguagem, 
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como também a complexidade de sua compilação, especialmente em ambientes 

orientados a objetos como o .NET. Tais características são melhores especificadas a 

seguir. 

 

2.1.1 Funções de alta ordem  

Diferentemente de linguagens imperativas e orientadas a objetos, onde há 

uma clara distinção entre dados e funções, linguagens funcionais não fazem tal 

distinção, tratando funções como valores de primeira classe. Sendo assim, como 

qualquer outro valor, elas podem ser passadas como argumentos, retornadas como 

resultado de outra função, ou ainda armazenadas em estruturas de dados.  

Uma função é dita de alta ordem quando recebe outra função como um 

argumento ou computa outra função como seu resultado. Por exemplo, uma 

função de alta ordem pode atravessar uma lista aplicando uma função recebida 

como argumento em cada componente da lista10]. 

Em linguagens funcionais uma função pode ser criada em tempo de 

execução e referenciar variáveis visíveis apenas onde ela foi declarada. Tais 

variáveis são denominadas variáveis livres. Os valores referentes a estas variáveis 

fazem parte da definição da função e por isto a representação de uma função 

deve conter não só a expressão que a compõe, como também suas variáveis livres. 

A forma mais direta para esta representação é através de uma closure[ HYPERLINK 

\l "Minamide1996" 11 ], objeto alocado dinamicamente que encapsula um código 

a ser executado e um ambiente que pode ser acessado pelo código. Closure não é 

uma estrutura padrão em ambientes orientados a objetos como o .NET. Alternativas 

para sua representação serão apresentadas na Seção 2.4.1.  

 

2.1.2 Aplicação parcial de funções 

Linguagens funcionais permitem descrever funções com mais de um 

argumento como uma composição de funções de um argumento, de forma que 
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um argumento seja consumido por vez. Este processo, denominado currificação3 

em homenagem a Haskell Curry, altera a concepção, popularizada pelas 

linguagens imperativas, de que todos os argumentos de uma função devem ser 

passados ao mesmo tempo, como se fosse uma única estrutura de dados. 

Embora sua sintaxe favoreça a currificação de funções, Haskell permite a 

criação de funções sem seu uso, utilizando para isto o conceito de tupla. O 

exemplo a seguir descreve a mesma função com e sem currificação.  

1 multiply :: Int -> Int ->Int 
2 multiply x y = x*Y 
3  
4 multiplyUC :: (Int,Int) -> Int 
5 multiplyUC (x,y) = x*Y 

Código 1. Funções curry e não-curry 

A função multiplyUC só é executada ao receber os dois argumentos 

requeridos através de uma tupla. Já a função multiply permite sua aplicação 

mesmo passando a ela menos argumentos do que o requerido, obtendo assim, 

uma função parcial que armazena o argumento recebido e pode ter sua 

execução completada quando aplicada ao argumento restante. 

A técnica de executar uma função currificada utilizando menos argumentos 

do que o número máximo de parâmetros suportados é denominada aplicação 

parcial[10].  

 

2.1.3 Avaliação preguiçosa 

Uma função nem sempre requer que todos seus argumentos sejam avaliados. 

Algumas vezes o uso de um argumento depende da avaliação de outra expressão 

ou mesmo nunca é utilizado dentro do corpo da função. Sendo assim, a decisão de 

quando deve ser feita a avaliação dos argumentos pode influenciar não só no 

projeto de uma linguagem como também no seu desempenho. Segundo David 

Watt[10], quanto ao momento em que é feita esta avaliação, podemos distinguir 

dois mecanismos: 

                                                 
3 Embora tenha recebido este nome em Homenagem a Haskell Curry, esta técnica foi inventada por Moses 

Schönfinkel. 
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• Eager Evaluation – todos os argumentos são avaliados apenas uma vez, 

antes da chamada e o valor obtido é ligado a cada ocorrência do 

parâmetro formal no corpo da função.  

• Normal-order evaluation – os argumentos são avaliados após a chamada da 

função, apenas quando requisitados. Ou seja, cada ocorrência do 

parâmetro formal na função é substituída pela expressão não avaliada. 

O primeiro mecanismo ao requerer que todos os argumentos sejam avaliados 

antes da chamada pode gastar um tempo desnecessário em casos onde algum 

dos argumentos não é utilizado no corpo da função. Já o segundo é menos 

eficiente em funções onde um determinado parâmetro formal é utilizado mais de 

uma vez no corpo da função, necessitando que a mesma expressão seja avaliada 

mais de uma vez. 

Linguagens funcionais tais como Haskell[12], Mondrian[13] e Lazy ML[14] 

utilizam um aprimoramento do normal-order evaluation, denominado avaliação 

preguiçosa, onde cada argumento é avaliado apenas quando necessário e uma 

única vez. Tal mecanismo além de evitar avaliações desnecessárias permite a 

criação de estruturas de dados infinitas tais como lazy list[10], onde cada elemento 

é avaliado sob demanda. 

Quando uma função sempre usa um determinado argumento, dizemos que 

ela é estrita para aquele argumento. Sendo assim, linguagens que implementam 

avaliação preguiçosa ou normal-ordem evaluation são denominadas não estritas, 

pois podem possuir argumentos que não sendo utilizados nunca serão avaliados. 

 

2.1.4 Polimorfismo paramétrico 

Grande parte das linguagens funcionais dá suporte a polimorfismo 

paramétrico, onde uma função ou estrutura de dados pode ser definida para 

operar sobre diversos tipos. No polimorfismo ad-hoc, implementado por linguagens 

orientadas a objeto através de mecanismos de herança ou sobrecarga, os tipos 

suportados são restritos e devem ser previamente especificados. Já no polimorfismo 

paramétrico é permitido o uso de qualquer tipo, devendo a operação que o utiliza 

ser executada independente do formato do tipo. Como na prática muitas funções 
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são naturalmente polimórficas, o polimorfismo paramétrico eleva a expressividade 

da linguagem.  

Um exemplo clássico de uma aplicação de polimorfismo paramétrico é a 

função length, que calcula o número de elementos de uma lista. O código Haskell a 

baixo implementa a função length para o cálculo de uma lista de inteiros. 

1 length :: [Int]->Int 
2 length [] = 0 
3 length (x:xs) = 1 + (length xs) 

Código 2. Função length não polimórfica 

Embora funcione perfeitamente a função definida desta forma é restrita a 

listas de inteiros. Como as operações executadas em length são independentes do 

tipo dentro da lista podemos generalizar a função para qualquer tipo. 

1 length::[t]->Int 
2 length [] = 0 
3 length (x:xs) = 1 + (length xs) 

Código 3. Função length polimórfica 

Como veremos na Seção 2.1.5 polimorfismo paramétrico também pode ser 

utilizado para modelar uniões discriminadas, permitindo a construção de tipos de 

dados complexos que armazenam tipos polimórficos. 

 

2.1.5 Tipos algébricos 

Tipos de dados algébricos formam a base do sistema de tipos da maioria das 

linguagens funcionais modernas. Eles permitem a definição de tipos estruturados, 

uniões e tipos recursivos. Um tipo algébrico é um tipo de união discriminada 

etiquetada[10], onde novos tipos são definidos utilizando construtores (etiquetas) e 

os tipos dos argumentos.  

1 data ListInt = Cons Int List | Nil 
Código 4. Tipo algébrico ListInt 

No Código 4 é definido o novo tipo algébrico ListInt o qual pode conter dois 

tipos de dados, definidos pelos construtores Cons e Nil. Nil é um construtor vazio, pois 

não possui nenhum campo, já Cons carrega informações através de argumentos 

dos tipos Int e List. Desta forma Cons recebe um valor inteiro e um valor do tipo 

ListInt, ou seja é um tipo recursivo, pois recebe um valor que ele próprio define. 
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Da mesma forma mostrada com a função length, podemos generalizar tipos 

algébricos de forma que eles possam representar tipos de dados polimórficos. A 

definição de List fornecida no Código 5 cria uma lista que pode armazenar 

qualquer valor suportado pela linguagem. 

1 data List t = Cons t (List t) | Nil 
Código 5. Tipo algébrico genérico 

 

2.2 Plataforma .NET 

A plataforma .NET[15] é um ambiente de desenvolvimento e execução que 

permite diferentes linguagens de programação e bibliotecas trabalharem juntas na 

construção de aplicações. A portabilidade destas aplicações também é facilitada, 

pois um programa criado para a plataforma .NET deve rodar em qualquer 

dispositivo ou sistema operacional que possua uma implementação de seu 

ambiente de execução. Com objetivo de ampliar esta portabilidade em diferentes 

sistemas a Microsoft submeteu o projeto da máquina virtual, Common Language 

Infrastructure (CLI)[4], para padronização nos órgãos internacionais ECMA[16] e 

ISO[17]. Desta forma, desenvolvedores de diferentes sistemas operacionais e 

dispositivos podem construir sua própria versão da CLI capaz de executar 

aplicativos .NET independente de autorização ou suporte da Microsoft.  

 

2.2.1 CLR 

O CLR é a implementação da Microsoft para o padrão CLI, que define 

especificações para código executável e ambiente de execução da 

plataforma.NET. Este ambiente utiliza um compilador Just-In-Time (JIT) que permite a 

execução de programas traduzidos para uma linguagem intermediária comum 

(MSIL4[18]), carregando e compilando para código binário partes do código sobre 

demanda. Este modelo de compilação sobre demanda permite que otimizações 

sejam feitas de acordo com a plataforma na qual o código é executado. 
                                                 

4 A linguagem intermediária comum implementada na CLR é denominada Microsoft Intermediate Language 
(MSIL) e não Common Intermediate Language (CIL), como definido pela CLI. Desta forma sempre que for mencionado 
MSIL entenda linguagem intermediária comum implementada pela CLR. 
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O processo de compilação e execução de programas, como observado na 

Figura 1, pode ser descrito nos seguintes passos: 

1. O programa escrito em uma das linguagens suportadas pela plataforma 

(C#, VB.NET, C++, J#, Haskell, etc.) é compilado para uma linguagem 

intermediária, a Microsoft Intermediate Language (MSIL). 

2. Este código MSIL pode fazer chamadas a métodos e classes escritos em 

outras linguagens que também tenham sido compilados para MSIL, ou 

ainda para o conjunto de classes da biblioteca .NET. Desta forma o uso de 

uma linguagem intermediária facilita a interoperabilidade entre diferentes 

linguagens. 

3. O código MSIL é então submetido ao CLR para que seja feita a execução 

do programa. 

4. O CLR, inicialmente, busca por uma versão pré-compilada do código na 

cache. Caso não encontre ou detecte que a versão resgatada tenha sido 

alterada é feita a compilação através do JIT. 

5. O JIT compilará então cada classe à medida que um método pertencente 

a esta for requisitado. Isto vale também para métodos provenientes da 

biblioteca .NET. 

6. O código compilado é então executado dentro do ambiente gerenciado 

.NET, o qual verifica diretivas de segurança e acesso à memória. 
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2.2.2 Outras Implementações da CLI 

Ao padronizar a CLI a Microsoft possibilitou o surgimento de novas 

implementações desta para sistemas operacionais e arquiteturas diferentes, 

promovendo a portabilidade de programas .NET. Dentre as diversas 

implementações da CLI existentes duas se destacam: a Shared Source CLI (SSCLI ou 

projeto Rotor)[19] e o projeto MONO[20]. 

A SSCLI é uma versão de código livre da CLI e do compilador C# 

implementada pela própria Microsoft para execução no Windows, FreeBSD e Mac 

OS X5. Esta implementação tem cunho estritamente acadêmico, fornecendo um 

ambiente de estudo da plataforma .NET e das tecnologias nela empregadas tais 

como: gerenciamento de memória, coleta de lixo, compilação sob demanda, etc. 

                                                 
5 Apenas para versão 1.0 da SSCLI, a versão 2.0 não disponibiliza mais versões para FreeBSD e Mac OS X. 
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Por ser voltada para estudo não há uma preocupação quanto ao desempenho, o 

que foi confirmado em testes comparando o tempo de execução de programas na 

SSCLI e na CLR[21]. 

O projeto MONO, financiado pela Novell[22], provê implementações de 

código livre da CLI para sistemas operacionais Windows, Linux, Unix, Solaris e Mac OS 

X. É um projeto consistente, com uma grande comunidade de desenvolvedores que 

incrementa a portabilidade de programas .NET para além do ambiente Windows. 

 

2.3 Integração à Plataforma .NET 

Antes de definir como será feito o mapeamento das estruturas funcionais na 

plataforma .NET é necessário escolher uma estratégia através da qual será feita tal 

integração. Esta estratégia define se será utilizado algum mecanismo responsável 

pela comunicação entre a linguagem e a plataforma ou se será gerado 

diretamente código suportado por esta. 

 

2.3.1 Bridge 

Permitir a comunicação entre componentes escritos em diferentes linguagens, 

de forma que, possam trocar informações e acessar recursos uns dos outros é a 

função de uma bridge, ou “ponte”.  A bridge é responsável por intermediar as 

trocas de mensagens, fornecendo uma sintaxe comum, e pela tradução dos 

parâmetros e valores de retornos, processo este conhecido como marshalling6. 

Antes mesmo de se integrar linguagens funcionais a ambientes gerenciados, como 

.NET e Java, esta estratégia já era utilizada para permitir tal integração para código 

nativo, como é caso de HDirect[23] e GreenCard[24], que implementam a Foreign 

Function Interface7 (FFI). Em ambientes gerenciados, Hugs .NET[25] e Lambada[26] 

                                                 
6 Processo de transformação da representação na memória de um objeto em formato apropriado para 

armazenamento ou transmissão. O processo contrário no qual os dados são novamente transformados em objetos 
na memória é denominado unmarshalling.  

7 Definição da interface para funções externas para linguagem Haskell98.  
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são exemplos de integração para a linguagem Haskell, respectivamente para as 

plataformas .NET e Java.   

 Esta é uma estratégia interessante quando o objetivo é obter a integração 

sem a necessidade de grandes alterações no compilador ou na plataforma, pois 

toda a complexidade das operações de conversões de tipos e estruturas fica a 

cargo da bridge. Entretanto esta integração é superficial, no geral apenas 

chamada de funções, não disponibilizando o acesso a recursos avançados. Outra 

limitação desta estratégia é quanto ao desempenho, o processo de conversão de 

tipos é custoso e este overhead deve ser levado em consideração em um projeto 

de integração.   

Na plataforma .NET outro fator deve ser considerado: este tipo de integração 

requer chamadas a código não gerenciado, pois o código gerado pelo 

compilador funcional gera código nativo, ou seja, não gerenciado pela plataforma 

. Embora seja permitido este tipo de chamada ela requer que uma série de 

operações como confirmação de permissões e importação de bibliotecas, que 

degradam seu desempenho. Há ainda que se considerar que implementações de 

linguagens funcionais, geralmente, inclui seu próprio ambiente de execução com 

coletor de lixo e gerenciamento de memória próprios, sendo assim teríamos um 

cenário onde dois ambientes de execução estariam rodando ao mesmo tempo e 

consumindo recursos do sistema. 

 

2.3.2 Compilação  

Gerar código suportado diretamente pela plataforma, através de um 

processo de compilação, é a forma mais direta de integração. Este processo pode 

tanto ser feito utilizando como destino uma linguagem de alto nível que possua um 

compilador para o ambiente, como diretamente, gerando código MSIL. A primeira 

abordagem é mais fácil, pois delega ao compilador da linguagem escolhida a 

responsabilidade de gerar corretamente o código para a plataforma, além de se 

valer de otimizações implementadas por esta. A segunda abordagem embora seja 

mais complexa e susceptível a erros, permite um maior controle sobre o código 

gerado e uso de instruções não contempladas pelas linguagens de alto nível. Para 
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auxiliar a geração direta de código podemos utilizar ferramentas tais como 

peverify8, ildasm9, ilasm10 e Phoenix. Esta última será detalhada no Capítulo 3. 

A integração utilizando compilação possui diversas vantagens em relação ao 

mecanismo de bridge. O compartilhamento de uma mesma representação facilita 

a comunicação com programas escritos em outras linguagens, reduzindo o 

overhead causado pelo processo de marshilling/unmarshalling e pela chamada a 

código não gerenciado. O uso de um mesmo ambiente de execução diminui o uso 

de recursos do sistema que antes teria que ser compartilhado por dois ambientes 

com coletores de lixo e gerenciamento de memória separados. 

  A maioria dos projetos de integração de linguagens funcionais à plataforma 

.NET utilizam a compilação como abordagem. Mondrian[13] e Making Haskell .NET 

Compatible [27] fazem uso de uma linguagem de alto nível para gerar código 

enquanto que Nemerle[9] e Haskell .NET[5] geram diretamente código MSIL. 

 

2.3.3 Estendendo a CLI   

Os tipos e a linguagem intermediária descritos pela Common Language 

Infrastructure (CLI) visam proporcionar um ambiente que suporte a implementação 

de diversas linguagens capazes de interagir entre si, entretanto seu foco é dado a 

linguagens imperativas e orientada a objetos. Desta forma, faltam a este ambiente 

estruturas básicas para a representação de funcionalidades comuns a linguagens 

funcionais.  Modificar a CLI adicionando extensões necessárias para representar 

estruturas funcionais facilitaria a compilação de linguagens funcionais para a 

plataforma .NET. O projeto ILX [28] utilizou esta abordagem, adicionando a CLI 

novas características como closures, polimorfismo paramétrico, uniões discriminadas 

e funções de alta ordem.  

Alterar a máquina virtual permite a implementação de linguagens funcionais 

com um ganho expressivo no desempenho, além de deixar um legado para futuras 
                                                 

8 Ferramenta, disponibilizada com o framework .NET, que verifica se o código MSIL esta de acordo com as 
especificações definidas pela CLI.  

9 MSIL disassembler. Gera código MSIL a partir de um arquivo PE (DLL ou EXE). 

10 MSIL assembler. Gera um arquivo PE (DLL ou EXE) a partir de código MSIL. 
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implementações. Entretanto, perde na portabilidade, pois requer que o novo 

ambiente seja distribuído junto com a linguagem, ou ainda que estas modificações 

sejam incorporadas a distribuição padrão, o CLR no caso da plataforma .NET . A CLI 

segue uma padronização, ECMA-335 [4], e a incorporação de novas características 

a este é dificultada, pois requer aprovação de um conselho de padronização.  

O projeto F#[29], desenvolvido pela mesma equipe que criou a ILX, faz uso 

desta última como linguagem alvo do processo de compilação. ILX, por sua vez, é 

posteriormente traduzido para MSIL, de forma a preservar a compatibilidade com o 

ambiente padrão de .NET.  

 

2.4 Mapeando Estruturas Funcionais em Ambientes OO 

Para que seja feito o mapeamento de linguagens funcionais em um ambiente 

OO, como o .NET, faz-se necessário o desenvolvimento de técnicas e estruturas 

capazes de diminuir o gap semântico entre estes dois mundos. Nesta Seção tais 

técnicas estruturas serão apresentadas e discutidas. 

2.4.1 Closures 

Closures são estruturas essenciais para a representação de linguagens 

funcionais. Sendo assim o modelo adotado para a representação desta influenciará 

todo o restante do projeto. Podemos definir uma closure como uma função que 

armazena todas as variáveis utilizadas por ela, mas que foram definidas fora dela. 

Tais variáveis são definidas na teoria do cálculo lambda[30] como variáveis livres.  

Através do exemplo mostrado no Código 6 podemos observar com mais detalhes 

tais conceitos. 

1 f1 :: Int -> t -> (Int -> Int) 
2 f1 x y = let f2 k = x + k in f2 

Código 6. Exemplo de closure 

 A função f2 definida dentro da função f1, utilizando o comando let, faz uso 

da variável x definida fora de seu escopo, ou seja, x é uma variável livre da função 

f2. Ou seja, f2 é uma closure que representa uma função que recebe um 

argumento k e faz uso de uma variável livre, a qual deve ser encapsulada dentro 

de sua representação. A função f1 também pode ser considerada uma closure, só 
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que sem variáveis livres, o que faz sentido para uma representação única para 

todas as funções. 

Em linguagens funcionais, além de representar funções, closures são 

comumente utilizadas para representar expressões não avaliadas, conhecidas 

como thunks. Em linguagens com mecanismo de avaliação preguiçosa (Seção 

2.1.3) onde a avaliação das expressões é feita apenas uma vez e somente quando 

necessária, closures são utilizadas para representar a expressão a ser avaliada, 

armazenando suas variáveis livres e o valor resultante após a avaliação.  

Closures são, normalmente, implementadas através de estruturas de dados 

especiais que contém um ponteiro para o código da função e o ambiente léxico 

da função (conjunto de variáveis livres)[28,31].  Esta abordagem é inviabilizada, ou 

ainda desestimulada, em ambientes com gerenciamento de memória, como o 

.NET, onde o uso de ponteiros embora permitido, gera código não verificável11. 

Ainda que, projetos como o ILX[6] tenham utilizado código não verificável para a 

construção de closures esta abordagem sofre de restrições de uso, uma vez que a 

execução de código não verificável requer permissões específicas e não pode se 

valer das garantias e funcionalidades fornecidas pela CLI. O próprio projeto ILX 

abandonou tal abordagem em implementações posteriores. 

Uma alternativa ao uso de ponteiro em código verificável é o uso de estruturas 

conhecidas como delegates. Delegate é a versão orientada a objetos de ponteiro 

para função, que permite a chamada de métodos, tanto de instância como 

estático, de forma segura e verificável. Na implementação 1.0 da CLR havia 

problemas de desempenho, o que justificou a utilização de ponteiros na ILX, 

entretanto testes realizados demonstraram que tais problemas foram solucionados a 

partir da versão 2.0 fazendo com que chamadas a métodos utilizando delegates 

tenham desempenho semelhante a chamadas a métodos virtuais ou de interface 

[21]. 

 

                                                 
11 Código não verificável, no ambiente .NET, significa que o código não segue as restrições de segurança 

impostas pela CLI não sendo gerenciado diretamente pelo ambiente. 



34 
 

 
 

2.4.1.1 Projetando uma closure 

Uma forma bastante direta de se representar closures em ambientes 

orientados a objetos é através da definição de uma classe abstrata Closure que 

possui um método Invoke, responsável pela execução da expressão. Neste modelo 

para cada closure deve ser criada uma nova classe que herda da classe Closure, 

armazena suas variáveis livres em campos da classe e sobrescreve o método Invoke 

de forma que ele execute o código correspondente a avaliação da closure.  O 

Código 7 demonstra como criar uma nova closure estendendo a classe abstrata.  

1 //Classe abstrata Closure 
2 public abstract class Closure 
3 { 
4      public abstract object Invoke(); 
5 } 
6  
7 // Criando uma nova closure 
8 class newClosure : Closure 
9 { 
10      // Campos representando variáveis livres 
11  
12      public override object Invoke() 
13      { 
14         //Código da closure 
15      } 
16 }   

Código 7. Representação de closures utilizando uma classe abstrata 

Para passagem de argumentos para a função Invoke poderia ser utilizado um 

array de objetos ou ainda uma pilha. F# [29] possui classes abstratas pré-definidas 

para até cinco argumentos e um valor de retorno, utilizando generics[32] para 

definição dos tipos. Funções com mais que cinco argumentos são tratadas 

utilizando aplicações parciais, mecanismo detalhado na Seção 2.5.4. Nemerle[9] 

utiliza mecanismo semelhante, entretanto possui classes abstratas pré-definidas para 

até vinte argumentos, além de permitir chamadas não currificadas utilizando para 

tanto uma tupla contendo todos os argumentos da função. É importante observar 

que embora hajam classes pré-definidas para cada nova closure definida deverá 

ser produzida uma nova classe que herde da classe correspondente, 

sobrescrevendo seu método Invoke e adicionando campos para suas variáveis 

livres. 

Tanto F# como Nemerle são linguagens estritas, o que reduz o número de 

closures geradas, uma vez que, não são necessárias novas closures para representar 

computações não avaliadas. Entretanto, a geração de uma classe por closure em 
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linguagens funcionais não estritas, como Haskell, resultaria em uma grande 

quantidade de classes. Segundo Don Syme [6], estima-se que seja encontrado na 

biblioteca padrão do GHC uma closure por linha de código Haskell. Como na 

plataforma .NET a cada classe são associados metadados que necessitam ser 

carregados e checados durante a execução do programa, uma enorme 

quantidade de classes causariam uma queda no desempenho do código 

produzido.  

Visando diminuir o número de classes geradas e conseqüentemente a queda 

de desempenho o projeto Haskell .NET [5] utilizou a abordagem da construção de 

classes pré-definidas para closures com n variáveis livres e adotou um mecanismo 

de pilha para a passagem dos argumentos. Neste, ao invés de ser gerada uma 

nova classe para representação de cada closure, todas as closures que possuem a 

mesma quantidade de variáveis livres serão representadas através de instâncias de 

uma mesma classe pré-definida no ambiente de execução da linguagem. O que 

diferencia as diversas instâncias da mesma classe será a função armazenada, 

correspondente ao código da closure. No projeto Haskell .NET para o 

armazenamento desta função é utilizada um delegate ao invés de um ponteiro ou 

método abstrato. 

O Código 8 mostra como criar uma closure para representar a função f2 

mostrada no Código 6. Nas linhas 2 e 3 é criado o delegate que armazena a 

função com o código de f2. Como será mostrado na Seção 2.4.2.1, utilizando o 

modelo push/enter o delegate não armazena diretamente a função com o código 

correspondente a expressão, mas sim, uma função auxiliar. As linhas 6 e 7 são 

responsáveis por construir a closure que representa a função. Pode-se observar que 

a classe utilizada para representar a closure possui um tipo genérico, este tipo 

genérico representa o tipo da variável livre armazenada pela closure, que neste 

caso é instanciado como sendo do tipo inteiro. Na linha 10 é configurado o valor da 

aridade da função. Este valor, como será visto na Seção 2.4.2 é útil para definir se a 

aplicação da função é saturada ou não. Por último, na linha 13, o valor da variável 

livre é adicionado a closure. 

1 //Delegate para a função 
2 NonUpdCloFunction_1_FV<int> funcDelegate =  
3     new NonUpdCloFunction_1_FV<int>(function); 
4  
5 //Criação da closure que recebe como argumento o delegate 
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6 NonUpdateableClosure_1_FV<int> closure =  
7     new NonUpdateableClosure_1_FV<int>(funcDelegate); 
8  
9 //Configura a aridade da função 
10 closure.arity = 1; 
11  
12 //Armazena o valor da variável livre 
13 closure.fv1 = x; 

Código 8. Representação de uma função utilizando closure e delegates 

 

2.4.2 Mecanismo de aplicação de funções 

A combinação de polimorfismo paramétrico, funções de alta ordem e 

aplicação parcial de funções gera um cenário onde em alguns momentos pode ser 

necessário efetuar a aplicação de uma função desconhecida em tempo de 

compilação. No Código 9, f representa uma função desconhecida, uma vez que 

não se sabe em tempo de compilação como se comportará tal função. Não é 

possível simplesmente aplicar f aos dois argumentos, pois não se pode afirmar 

quantos argumentos f espera receber e qual o retorno da aplicação. Esta pode ser 

uma função que recebe apenas um argumento, processa este e gera uma nova 

função que consumirá o argumento restante, ou mesmo, uma função que receba 

mais de dois argumentos e desta forma o resultado de zipwith é uma lista de 

funções. 

1 zipWith :: (a->b->c)-> [a] -> [b] -> [c] 
2 zipWith f [] [] = [] 
3 zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys 

Código 9. Exemplo de aplicação de uma função desconhecida 

Para tratar a aplicação de funções desconhecidas em linguagens funcionais 

existem dois modelos: eval/apply e push/enter. A diferença básica entre os dois 

modelos é quem será o responsável por tratar em tempo de execução a aplicação 

da função, se a própria função chamada ou o código que faz a chamada. O uso 

de um destes mecanismos deve ser efetuado apenas para funções desconhecidas 

em tempo de compilação, caso contrário a função deve ser chamada 

normalmente, evitando assim um overhead desnecessário. 
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2.4.2.1 Modelo push/enter 

No modelo push/enter a própria função será a responsável por, em tempo de 

execução, verificar a aridade12 da função, o número de argumentos recebidos e 

decidir como deverá ser feita a aplicação da função. Neste modelo para cada 

função definida na linguagem duas funções devem ser geradas após a 

compilação. Uma, denominada fast entry point (FEP), contendo o código 

correspondente da função original e outra, slow entry point (SEP), com o código 

responsável por verificar a aridade e o número de argumentos, decidindo que 

atitude tomar. O processo executado pode ser resumido em duas etapas: 

• Push: os argumentos passados para a função são empilhados (push) em uma 

pilha diferente da pilha de execução da CLR. 

• Enter: é feita a chamada a função SEP que avalia a aridade da função e o 

número de argumentos presente na pilha e baseado nestas informações 

determina se o próximo passo será a ou b. 

a. Caso o número de argumentos presentes na pilha sejam suficientes, estes 

são desempilhados e a função FEP é executada retornando o valor da 

avaliação. Argumentos excedentes são mantidos na pilha para que 

possam ser consumidos posteriormente, provavelmente pelo retorno de 

FEP. 

b. Caso o número de argumentos presentes na pilha seja inferior à aridade, 

estes são desempilhados e utilizados para criar uma aplicação parcial 

que é retornada como valor da avaliação. 

Haskell .NET utiliza esta abordagem criando pilhas diferentes para armazenar 

diferentes tipos de argumentos boxing e unboxing. 

 

2.4.2.2 Modelo eval/apply 

Neste modelo a responsabilidade sobre como tratar a chamada de uma 

função desconhecida fica a cargo do código que invoca a função (caller). Este 

código deve, primeiramente, avaliar (eval) a aridade e o número de argumentos e 

                                                 
12 Aridade pode ser entendido como o número de argumentos que uma função espera receber para realizar 

sua funcionalidade. 
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então decidir qual a aplicação (apply) deve ser feita: chamar diretamente a 

função, caso o número de argumentos seja maior ou igual à aridade, ou criação de 

uma aplicação parcial a ser retornada, caso contrário. 

Historicamente a grande maioria dos compiladores para linguagens funcionais 

lazy utilizam a abordagem push/enter, entretanto após estudos feitos por Marlow e 

Peyton Jones [33], que demonstraram uma ligeira vantagem do uso do modelo 

eval/apply em uma implementação do Glasgow Haskell Compiler (GHC), o modelo 

eval/apply tem ganhado espaço. Na plataforma .NET, ainda não existem estudos 

que apontem qual modelo apresenta melhor desempenho.  Nesta plataforma, o 

uso do eval/apply teria como vantagem o uso direto da pilha da CLR como 

mecanismo de passagem de parâmetros, o que não é possível no modelo 

push/enter devido a restrições na manipulação direta da pilha impostas pela CLR. 

Entretanto, o modelo eval/apply pode gerar aplicações parciais desnecessárias, 

não geradas utilizando o push/enter [33]. F# e Nemerle são exemplos de utilização 

de eval/apply na plataforma .NET. 

 

2.4.3 Representação de tipos algébricos 

Na plataforma .NET não existe o conceito de tipos algébricos como em 

linguagem funcionais. O mais perto que há são as enumerações que permitem que 

se descreva um tipo através de um conjunto de constantes, entretanto 

enumerações não permitem o uso de argumentos. O uso de uma classe abstrata 

para representar um tipo algébrico e subclasses destas para representar as possíveis 

construções é uma das abordagens mais utilizadas em ambientes orientados a 

objetos [34,35,36]. Utilizando tal abordagem ListInt (Código 4) teria a seguinte 

representação em código C#. 

1 public abstract class ListInt{} 
2 public class Nil : ListInt {} 
3 public class Cons : ListInt 
4 { 
5        public int val; 
6        public ListInt list; 
7 } 

Código 10. ListInt C# 
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Variações polimórficas como a mostrada em List (Código 5) seriam facilmente 

traduzida utilizando para isto generics. Esta representação permite um 

mapeamento fácil e direto, entretanto peca quanto ao desempenho em 

operações de casamento de padrões. Operações estas bastante comuns na 

manipulação de tipos algébricos em linguagens funcionais. Tal queda de 

desempenho se deve ao fato do uso da instrução isinst13 para testar se um objeto é 

da subclasse desejada.  

O uso de um número inteiro (tag) para diferenciar os construtores de um tipo 

algébrico como proposto por Jones e Lester[37] fornece uma maneira de otimizar 

operações de casamento de padrões com tipos algébricos. Sendo assim, a classe 

abstrata passaria a ter um campo inteiro que armazenaria a tag e o construtor de 

cada subclasse deve preencher este campo com um valor diferente dos demais. 

Casamentos de padrões poderiam ser executados utilizando instruções switch sobre 

a tag, com mostrado a seguir: 

1 switch (list.tag ) 
2 { 
3      case tagNil:   // código correspondente a opção Nil 
4      break; 
5      case tagCons:  // código correspondente a opção Cons 
6      break; 
7      default:       // código correspondente a opção default 
8      break; 
9 } 

Código 11. Casamento de padrão utilizando switch 

 

2.5 Implementações Existentes 

Tentativas de integração de linguagens funcionais a ambientes gerenciados 

tem sido feitas mesmo antes do surgimento da plataforma .NET. Projetos como 

Lambada[26], Pizza[36] são exemplos de tentativas de integração à Java Virtual 

Machine (JVM) que forneceram as bases para posteriores integrações com a 

plataforma .NET. Por ser multi-linguagens a plataforma .NET possui algumas 

características que favorecem esta integração, tais como um rico sistema de tipos e 

instruções que facilitam a implementação de outros paradigmas de linguagens, tais 

                                                 
13 Instrução IL, sua correspondente em C# é is. 
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como .tail que permite descartar o frame de execução em algumas chamadas 

recursivas, evitando desta forma o estouro da pilha de execução.  

Como o foco deste trabalho é a integração de linguagens funcionas à 

plataforma .NET, nesta Seção serão apresentados apenas projetos desenvolvidos 

para este ambiente, de forma a demonstrar como tais projetos tratam os problemas 

e desafios de mapear estruturas e características funcionais na plataforma .NET. 

 

2.5.1 Hugs for .NET 

Hugs98 for .NET[25] é uma extensão do interpretador Haskell, Hugs98, que 

provê uma boa interoperabilidade entre o mundo Haskell e o mundo do framework 

.NET. Esta extensão permite que sejam instanciados objetos .NET dentro de 

programas Haskell e, vice-versa, permitindo a chamada de funções Haskell a partir 

de qualquer linguagem provida pelo framework .NET. Com isto o Hugs98 for .NET 

incrementa o potencial dos programas Haskell permitindo que eles façam uso das 

funcionalidades presentes na biblioteca da plataforma .NET.   

Para fazer a interoperabilidade entre Haskell e a plataforma .NET, Hugs98 for 

.NET usa uma abordagem conhecida como bridge. Nesta abordagem o código 

Haskell não é compilado dentro de um assembly .NET contendo código MSIL o qual 

seria gerenciado pelo ambiente de execução .NET. O que ele faz é interpretar as 

instruções lado a lado com o ambiente de execução .NET, provendo o código para 

ambos os mundos através de chamadas de um mundo ao outro, utilizando uma 

biblioteca FFI . 

Esta abordagem possui uma série de características que comprometem seu 

desempenho, dentre elas: 

• Durante a execução de um programa que possui código dos dois mundos 

são mantidos dois ambientes de execução: o interpretador Hugs e runtime 

.NET. Dentre outros custos, temos o de manter dois coletores de lixos, um em 

cada ambiente. 

• Para acessar o modelo de objetos .NET é utilizada a API de Reflexão. 

Trabalhos, como Rail[38], que utilizaram esta API relatam que ela possui 
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baixo desempenho. Outro problema decorrente de se utilizar esta API é que 

os objetos construídos por ela são acessados como componentes COM[39], 

que possuem certo custo para seu uso. 

• O acesso ao código Haskell é feito através de invocação de código não 

gerenciado, o que acarreta overhead na transição entre código 

gerenciado e código não-gerenciado. 

Embora com esta abordagem, o Hugs98 for .NET, consiga fazer uso das 

funcionalidades disponíveis na plataforma .NET em programas Haskell, inter-

operando entre os dois mundos, ele está longe do ideal no quesito desempenho. 

 

2.5.2 Mondrian 

Mondrian[35,7] é uma linguagem funcional não estrita especificamente 

projetada para ambientes orientados a objetos, possuindo uma versão para a 

plataforma .NET. Pode ser visto como uma versão light de Haskell, contendo uma 

sintaxe mista entre Haskell e C#.  Por ser uma linguagem criada especificamente 

para integração com ambiente OO, Java e .NET, possui comando nativos para 

criação de objetos, chamada a métodos e acesso a campos. 

Quanto a sua implementação na plataforma .NET suas principais 

características são: 

• Utiliza push/enter como modelo de aplicação de funções.  

• Sua representação de thunks utiliza exceções, onde o consumo de uma 

closure não avaliada gera uma exceção que é tratada avaliando a 

expressão e retornando o resultado desta avaliação. Este valor é 

armazenado na closure para futuras chamadas. 

• Sua compilação gera código C#, o qual é posteriormente compilado para 

código MSIL utilizando o compilador C# padrão da plataforma. 

O mesmo projeto que construiu Mondrian desenvolveu, também, um 

compilador Haskell para .NET[27]. Este compilador usa o GHC, como frontend, o 

qual é responsável por fazer o parser, a checagem de tipos e otimizações do 

código Haskell, gerando uma saída no formato GHC Core. Utilizando uma 



42 
 

 
 

ferramenta, o código GHC Core é, então, transformado em Mondrian Core que 

através do compilador Mondrian gera código .NET. 

 

2.5.3 Nemerle 

Baseada em ML, Nemerle[9] foi projetada para ser uma linguagem funcional 

estaticamente tipada voltada para a plataforma .NET. Outro objetivo levado em 

consideração no seu projeto foi permitir o uso de construções típicas de linguagens 

imperativas e orientadas a objetos de forma a promover uma boa transição de 

programadores destes paradigmas para linguagens funcionais. Esta característica 

também facilita a interoperabilidade com a plataforma .NET. Dentre suas 

funcionalidades se destaca o suporte a meta-programação que permite estender a 

linguagem através de macros. Embora seja estrita, permite criação de expressões 

com avaliação preguiçosa através do uso da palavra reservada lazy. 

Sua implementação na plataforma .NET faz uso das seguintes estratégias: 

• Adota o modelo de aplicação eval/apply utilizando para isto classes pré-

definidas para n argumentos de tipos genéricos.  

• Funções quando utilizada como valor de alta-ordem são representadas 

utilizando classes específicas. Esta classe deve estender da classe 

correspondente ao número de argumentos, dentre as classes pré-definidas 

no ambiente, e sobrescrever o método apply com o código 

correspondente, geralmente uma chamada para a uma função estática. 

• Caso a função tenha variáveis livres, é criada uma nova classe onde estas 

são armazenadas e uma instancia desta classe é adicionada a um campo 

da classe que representa a closure da função. 

• Funções não utilizadas como valor de alta ordem e que não possuam 

variáveis livres não geram closures sendo representadas diretamente como 

funções estáticas. 

• Tipos algébricos são representados utilizando mecanismo de herança e 

casamento de padrões através da verificação de tipos com uso da 

instrução isinst.  
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2.5.4 F#e ILX 

Assim como Nemerle, F# [6] é uma linguagem da família ML especialmente 

desenvolvida para integração com a plataforma .NET. Ela pode facilmente 

interoperar com qualquer linguagem .NET, bem como suas bibliotecas de classe. Ela 

também permite integração com Caml[40], possibilitando a importação de 

bibliotecas desta para a plataforma.NET. Por ter sido desenvolvida tendo como 

foco a integração com .NET, F# possui suporte sintático e semântico para a maioria 

das construções presentes no mundo .NET.  

F# utiliza a ILX como código destino de seu processo de compilação a qual é 

posteriormente convertida em código IL. Entretanto, diferentemente do descrito por 

Don Syme[6] no trabalho que apresenta a ILX e da versão baixada através do site 

do produto [41] o código gerado não faz uso de ponteiro para referenciar funções 

em sua representação de closure. O que demonstra que a ILX vem sendo evoluída 

em conjunto com o F#. Devido ao uso do ILX como código final as características 

aqui descritas, observadas através da utilização do compilador F#, provavelmente 

são providas pela versão atual da ILX e não diretamente pelo F#: 

• Modelo de aplicação eval/apply, com classes pré-definidas para aplicações 

otimizadas de até cinco argumentos de tipos genéricos.  

• Da mesma forma que Nemerle (Seção 2.5.3) funções de alta ordem estende 

de uma das classes pré-definidas sobrescrevendo o método Invoke com o 

código correspondente, geralmente com uma chamada para uma função 

estática.  

• Utiliza mecanismos de inline de código evitando a criação de novas closures 

e desta forma diminuindo o número de classes geradas. 

• Permite a execução de funções provenientes de outra linguagem como 

função de alta ordem, através de um mecanismo implementado utilizando 

delegates. 

• Caso a função tenha variáveis livres é criada uma nova classe onde estas 

são armazenadas e uma instancia desta classe é adicionada a um campo 

da classe que representa a closure da função. 
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• Funções não utilizadas como valor de alta ordem e que não possuam 

variáveis livres não geram closures sendo representadas diretamente como 

funções estáticas. 

• Tipos algébricos são representados utilizando mecanismo de herança e 

casamento de padrões através da verificação de tipos com uso da 

instrução isinst.  

A geração de código verificável, decorrente do abandono do uso de 

ponteiros, e outras características aqui apresentada demonstra um 

amadurecimento no projeto da ILX. A disponibilização desta nova versão facilitaria 

o surgimento de novas implementações de linguagens funcionais na plataforma 

.NET, bem como a interoperabilidade entre estas. O projeto ILX serviu como base 

para a prototipagem e testes da implementação de generics para a CLR, o que 

demonstra a importância deste dentro do projeto .NET sugerindo que novas 

características, tais como closures, possam vir a ser integradas em futuras versões da 

CLR.  

 

2.5.5 Haskell .NET 

O projeto Haskell .NET[5] faz alterações no compilador Glasgow Haskell 

Compiler (GHC)[42] criando um novo backend capaz de gerar código MSIL. Este 

backend tem como entrada uma representação intermediária do programa, 

produzido pelo frontend do GHC, na linguagem Spineless Tagless G-Machine 

(STG)[28,43]. Utilizar esta representação facilita o processo de compilação, pois 

toda a checagem de tipo fica a cargo do frontend e também se aproveita de 

otimizações feitas em etapas anteriores a sua produção.  

Sua implementação possui inúmeras peculiaridades que objetivam otimizar o 

mapeamento de uma linguagem funcional não estrita, como haskell na 

plataforma.NET: 

• Representa closures utilizando classes pré-definidas para n variáveis livres de 

tipo genéricos e delegates para fazer referência à função. A função 

referenciada pelo delegate corresponde ao slow entry point, o qual busca 

os argumentos na pilha de argumentos. Desta forma evita a geração de um 
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grande número de classes, como ocorre quando se utiliza a estratégia de 

uma classe por closure.  

• De forma a permitir que tipos unboxed sejam passados como argumentos, 

sua implementação para a pilha de argumentos é divida em quatro pilhas 

correspondente aos tipos inteiro, double, object e closure. Diferentes valores 

são convertidos para o tipo que mais se aproxima. 

• Para representação de tipos algébricos existem classes genéricas pré-

definidas no ambiente capazes de representar construtores com até nove 

tipos variáveis. 

• Utiliza um número inteiro como tag para identificar construtores e assim 

otimizar operações de casamento de padrões através de instruções switch. 

• Com objetivo de evitar a criação de várias instâncias de valores comuns em 

tempo de execução o próprio ambiente de execução pré-instancia alguns 

valores booleanos e inteiros e os compartilha sempre que necessários. 

O foco deste projeto foi dado à otimização do mapeamento das estruturas 

funcionais na plataforma .NET, desta forma, conversão de tipos e mecanismos que 

facilitassem a interoperabilidade com linguagens não funcionais, presentes no 

ambiente, não foram implementados. 

 

2.6 Considerações Finais  

Neste capítulo foram descritas algumas das principais construções 

características a linguagens funcionais, que ao mesmo tempo em que 

incrementam o poder de expressão destas dificulta a implementação em 

ambientes orientados a objetos como o .NET. Possíveis alternativas para o 

mapeamento de cada uma destas construções apresentadas e discutidas. Por fim, 

foram apresentados exemplos de implementações, explicitando a abordagem 

tomada por cada projeto. A Erro! Fonte de referência não encontrada. mostra um 

resumo das principais características encontradas nas implementações analisadas 

neste capítulo. 
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Tabela 1 - Comparação entre implementações 
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3 PHOENIX FRAMEWORK 

 

Phoenix[44] é um framework completo para construção de compiladores e de 

uma grande quantidade de ferramentas para análise, otimização e testes de 

programas. Sua estrutura é bastante flexível e está centrada na representação 

intermediária (IR) e na existência de diversos readers e writers que são capazes de 

ler e gerar código em diversos formatos. A função de um reader é ler de um 

formato específico (PE14, MSIL, CIL15) e gerar uma representação intermediária a ser 

manipulada com o Phoenix. De forma contrária, um writer é o responsável por gerar 

um arquivo específico (PE, MSIL, COFF, etc.) a partir da representação intermediária.  

Os compiladores atuais funcionam como caixas pretas, onde todo o processo 

interno é escondido do usuário e alterações em seu funcionamento não são 

permitidas. Tudo que o usuário pode fazer é fornecer o código fonte como entrada, 

passar algumas diretivas de compilação e aguardar a compilação do programa. 

Phoenix objetiva abrir esta caixa. Um compilador escrito utilizando Phoenix é 

formado por uma lista de fases, sendo cada fase responsável por uma etapa do 

processo de compilação. Através de um mecanismo, denominado plugins, Phoenix 

permite que seja alterado o comportamento do compilador acrescentando, 

retirando ou alterando fases. A existência de uma representação intermediária 

própria, bem como uma rica API para manipulação desta, facilitam a alteração do 

compilador e a construção de ferramentas de análise e otimização.  

A Figura 2 dá uma visão geral da plataforma Phoenix, apresentando seus 

principais componentes: readers, writers, Intermediate Representation (IR), Phases, 

API e ferramentas (análise, instrumentação e otimização).  Nela, podemos observar 

que o processo de manipulação da IR é feito durante as fases, utilizando 

ferramentas construídas com a API do framework. 

 

                                                 
14 Portable Executable [39]. Padrão para arquivos executáveis do Windows. 

15 C/C++ Intermediate Language.  
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Figura 2. Visão geral da plataforma Phoenix. Adaptada da documentação do Phoenix[45]. 

Desta forma, Phoenix fornece um rico ambiente capaz de atender as 

necessidades tanto de pesquisadores como desenvolvedores. Aos pesquisadores é 

fornecida uma sólida infra-estrutura que suporta um modular reuso de código e o 

fácil redirecionamento para diferentes arquiteturas e linguagens. Assim, 

pesquisadores podem desenvolver novas ferramentas e elementos de compiladores 

sem o custo usual de ter de desenvolver uma nova infra-estrutura. Já 

desenvolvedores podem facilmente criar ferramentas para análise e otimização de 

seus programas, bem como, alterar o comportamento de programas já compilados 

sem ter que alterar diretamente o código. 

 

3.1 Representação Intermediária (IR) 

Phoenix utiliza uma representação intermediária fortemente tipada e linear 

para representar o fluxo de instruções de uma função.  É sobre esta representação 

que é feita a manipulação de um programa utilizando a biblioteca de classes 

Phoenix. Para um programa ser reescrito utilizando o Phoenix, primeiramente, este 

deve ser convertido para a IR por um reader (readers para código nativo, MSIL e 
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AST16 já são fornecidos pelo Phoenix, e outros podem ser escritos para formatos não 

suportados). Após a conversão a IR pode ser manipulada por uma ferramenta 

Phoenix e ao final do processo convertida novamente em um programa utilizando o 

writer específico. Desta forma, entender como é estruturada a IR é essencial para a 

construção de ferramentas e compiladores utilizando Phoenix. 

A IR permite que uma função seja representada em diversos níveis de 

abstração, podendo representar uma função desde uma forma independente de 

máquina, alto nível, até uma forma dependente da máquina alvo, baixo nível, 

onde peculiaridades específicas como manipulação de registradores e pilha são 

descritas. Existem quatro níveis de representação providos por Phoenix, em ordem 

crescente de dependência: high-level IR (HIR), mid-level IR (MIR), low-level IR (LIR) e 

encoded IR (EIR). 

A IR pode ser dividida em conjunto de conceitos básicos, cada um sendo 

representado por uma classe na API do Phoenix:  

• Instruções e Operandos: representam respectivamente operações e recursos 

descritos através da IR. 

• Tipos e Símbolos: conceitos básicos para definir o armazenamento e a 

referência dos dados manipulados. 

• Unidades: são como containeres para o armazenamento dos demais 

elementos da IR. 

• Classes Auxiliares (Safety, Debug, Alias e Constant): auxiliam na construção e 

manipulação da IR e na análise do código gerado. 

As três primeiras categorias são essenciais para entender como construir um 

compilador utilizando o Phoenix e por isto serão detalhadas a seguir.  

 

3.1.1 Instruções 

Phoenix armazena a IR de uma função como uma lista de instruções 

duplamente ligadas, onde cada nó é uma instrução constituída de um operador 

(representado por um opcode) e duas listas de operandos: uma contendo os 

                                                 
16 Abstract Syntax Tree. 
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operandos de origem e a outra com os de destino, como mostrado na Figura 3. Esta 

representação mostra de forma explícita todos os efeitos colaterais possíveis de 

uma instrução, uma vez que, todos os recursos lidos aparecem na lista de origem e 

todos os recursos potencialmente alterados estão especificados na lista de destino, 

favorecendo a análise destas instruções. 

 

Figura 3. HIR da instrução x = add x, *p. Adaptada da documentação do Phoenix[45]. 

As instruções são classificadas em pseudo-instruções (label, pragma e data) e 

instruções reais (value, call, compare, etc.). Pseudo-instruções representam 

elementos tais como labels para fluxo de controle, pragma diretivas e alocação 

estática de dados. Embora pseudo instruções não sejam mapeadas para código 

de máquina elas são úteis para executar análise de código, passando diretivas 

para as unidades de compilação e identificando seções de dados.  

• LabelInstruction: cria labels definidos pelo usuário e pontos de ligação 

para o fluxo de controle. Pode ser usado para determinar locais do 

código úteis para a criação de ferramentas de análise. 

• PragmaInstrucion: representam diretivas e dados fornecidos pelo 

usuário. Pode ser usado para suprir informações do usuário para uma 

ferramenta ou compilador criado. 

• DataInstruction: cria dados estaticamente alocados. Pode representar 

qualquer coisa que pode ser codificado em formato binário, tal como 

dados do programa ou instruções. 

 

Instruções reais são as que modificam dados ou o fluxo de controle de um 

programa. Estas instruções são mapeadas diretamente para uma ou mais instruções 

de máquinas. São elas: 

• ValueInstruction: operação aritmética ou lógica que produz um valor. 
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• CallInstruction: procedimento de invocação, direto ou indiretamente de 

uma função. 

• CompareInstruction: instrução de comparação de dois operandos. 

Baseado neste resultado podem ser gerados códigos condicionais. 

• BranchInstruction e SwitchInstruction: instruções de controle de fluxo 

para desvios condicionais, incondicionais e de múltiplas alternativas. 

• OutlineInstruction: instrução para retirada do fluxo principal de 

instruções, tal como um bloco de assembly inline. 

Embora o tipo de instrução restrinja os possíveis tipos de operação, o que 

realmente determina a operação a ser executada é o opcode. Por exemplo: para 

fazermos o cálculo de uma expressão utilizamos uma ValueInstruction, mas é 

através do opcode que determinamos se será realizada uma soma (add), 

subtração (sub) ou outra operação qualquer para a qual exista um opcode 

correspondente. 

Para cada operação mapeada pelo Phoenix existe um opcode 

correspondente e este deve ser utilizado com a respectiva instrução. Na 

documentação do Phoenix[45] é fornecida uma lista com todos os opcodes 

existentes na IR. 

  

3.1.2 Operandos 

Operandos aparecem tanto na lista de origem quanto na de destino de uma 

instrução sendo que cada operando é associado a uma única instrução.  Uma vez 

que, todos os efeitos das instruções são representados explicitamente, operandos 

refletem todos os potenciais recursos usados. O que inclui registros, alocações de 

memória e códigos condicionais. Cada operando possui um tipo abstrato 

associado a ele, este tipo abstrato é, posteriormente, mapeado para um tipo de 

máquina quando a instrução que o contém for transformada em uma instrução LIR 

ou EIR. 

Existem diferentes tipos de operandos, cada um responsável por representar 

um determinado recurso. Por exemplo, para representar uma variável, seja ela 

temporária ou não, é utilizado um operador do tipo VariableOperand. Da mesma 

forma, existem operandos específicos para representar recursos armazenados na 
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memória (MemoryOperand), constantes (ImmediateOperand), labels 

(LabelOperand) e símbolos para funções (FunctionOperand). Tendo como exemplo 

a instrução descrita na Figura 3 “x” é referenciada utilizando um VariableOperand e 

“*p” através um MemoryOperand. 

 

3.1.3 Tipos 

Phoenix possui um sistema de tipos bastante abrangente capaz de suportar 

todos os tipos descritos no Common Language Runtime (CLR)[3], incluindo tipos 

genéricos, bem como herança simples e múltipla (C++). Por ser a IR fortemente 

tipada para cada símbolo ou operando criado seu tipo deve ser especificado. 

O sistema de tipos do Phoenix disponibiliza não só diferentes tipos como 

também a possibilidade de criar novos tipos e definir regras para a checagem 

destes tipos. Desta forma, um compilador ou ferramenta pode criar um conjunto de 

tipos e provê regras customizadas para sua checagem. É possível expressar tanto 

tipos de alto nível como tipos à nível de máquina, sendo permitida a checagem de 

tipos nos diversos níveis da representação intermediária (HIR, MIR e LIR). 

A classe abstrata Phx.Types.Type é a classe base para todos os tipos 

suportadas por Phoenix, compartilhando propriedades e métodos utilizados por 

estes. Um sistema de tipos Phoenix é representado por um conjunto de tipos 

armazenados em um objeto Phx.Types.Table e um conjunto de regras prescritas por 

um objeto Phx.Types.Check. Assim, ao criarmos um compilador ou ferramenta deve 

ser criada uma única tabela de tipos, a qual deve ser compartilhada por toda a 

ferramenta. Vale observar que esta tabela é particular para uma arquitetura alvo 

uma vez que cada arquitetura possui sua própria representação de tipos. Certos 

tipos, tais como tipos primitivos, são disponibilizados como propriedades da tabela, 

sendo criados automaticamente quando Phoenix gera a instância da tabela. 

Dentro do sistema de tipos Phoenix há uma classificação dos tipos, 

independentemente de estes serem padrão ou definidos pelo usuário devem se 

encaixar em uma das classes de tipos pré-existentes. Tais classes de tipos possuem 

atributos e métodos característicos de um determinado conjunto de tipos, 

facilitando a construção e a checagem de tipos. Desta forma Phoenix define 
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classes específicas para representar tipos primitivos, ponteiros, arrays, tipos variáveis, 

campos, tipos agregados e funções.   

O tipo função é peculiar, pois diferentemente do que possa parecer ele não é 

utilizado para representar um tipo função como o existente em linguagens 

funcionais. Ele é utilizado para descrever um protótipo de uma função definindo sua 

assinatura, ou seja, os tipos de seus argumentos e de seu valor de retorno. Este tipo é 

essencial para a construção de uma função na IR.  A tabela de tipos possui um 

método GetFunctionType, o qual facilita a criação de tipos função que possuam 

até quatro parâmetros. Para funções mais completas deve se utilizar a classe 

FunctionTypeBuilder. O Código 12 demonstra como criar um tipo para uma função 

que recebe um argumento do tipo inteiro e não retorna nenhum valor. 

1 // Criando o tipo utilizando o método GetFunctionType 
2 typeTable.GetFunctionType(CallingConventionKind.ClrCall,  
3       typeTable.VoidType, typeTable.Int32Type, null, null, null);  
4  
5 // Criando o tipo utilizando FunctionTypeBuilder 
6 FunctionTypeBuilder builder = FunctionTypeBuilder.New(); 
7 builder.Begin(); 
8 builder.CallingConventionKind = CallingConventionKind.ClrCall; 
9 builder.AppendArgumentType(typeTable.Int32Type); 
10 builder.AppendReturnType(typeTable.VoidType); 
11 // Retorna o typo função criado 
12 builder.GetFunctionType(); 

Código 12. Criação do tipo função 

Tipos que possuem membros tais como classe, interfaces e estruturas são 

representados através da classe AggregateType. Para representar os diferentes 

tipos agregados são utilizados meta-propriedades que especificam as diferenças 

funcionais entre tipos diferentes. Ou seja, a combinação de meta-propriedades é 

que descrevem qual tipo esta sendo modelado diferenciando, por exemplo, uma 

interface de uma classe ou mesmo a representação de uma classe em linguagens 

diferentes como C++ e as linguagens .NET.  O Código 13 demonstra como criar um 

tipo agregado que representa uma classe MSIL. 

1 Phx.Name classTypeName = Phx.Name.New(lifetime, strClassTypeName); 
2 Phx.Symbols.MsilTypeSymbol classTypeSym =  
3     Phx.Symbols.MsilTypeSymbol.New(peModuleUnit.SymbolTable,   
4        classTypeName, 0); 
5  
6 AggregateType classType =  
7     AggregateType.NewDynamicSize(typeTable, classTypeSym); 
8  
9 // Configurando metapropriedades 
10 classType.IsPrimary = true; 
11 classType.IsSelfDescribing = true; 
12  
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13 // Adição de métodos e campos. 
14 classType.AddMethod(methodSymbol); 
15 classType.AddField(fieldSymbol); 

Código 13. Criando uma classe MSIL 

A um tipo agregado podem ser adicionados campos e métodos. Campos 

são criados através da classe FieldType e possuem propriedades específicas como 

tamanho e deslocamento (offset). 

Para representar tipos variáveis, Phoenix disponibiliza a classe VariableType, a 

qual foi criada especificamente para representar tipos genéricos MSIL. Tipos 

variáveis são sempre associados a funções ou classes as quais definem o escopo 

dentro do qual ele pode ser acessado, sendo este escopo o tipo genérico ou 

método genérico que introduz o tipo variável. 

 

3.1.4 Unidades 

Unidades representam containeres lógicos para o armazenamento da IR. Além 

de outras unidades, estas unidades armazenam fluxos de instruções, tabelas de 

símbolos e variáveis inicializadas.  

• GlobalUnit - Unidade de compilação mais externa, contém uma lista de 

objetos ProgramUnits. Criada quando inicializamos a infra-estrutura Phoenix, 

armazena, entre outras coisas, as tabelas de símbolos e de tipos globais. 

• ProgramUnit - Unidade de compilação correspondente a uma imagem 

executável, podendo ser um arquivo EXE ou DLL. Contém uma lista de 

AssemblyUnits e uma lista de ModuleUnits. A razão para conter duas listas é 

que arquivos Win32 não são formados por assembly e desta forma um 

objeto ProgramUnit pode conter diretamente módulos que não estejam 

dentro de assemblies. 

• AssemblyUnit - unidade de compilação de um assembly do Framework .NET. 

Contém uma lista de objetos ModuleUnits. Menor unidade de re-uso, 

segurança e versionamento. 

• ModuleUnit – coleção de funções (FunctionUnits), que normalmente 

representam um programa ou um arquivo fonte. Pode conter DataUnits. 
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• PEModuleUnit – tipo especial de ModuleUnit que representa um arquivo PE, 

pode ser um arquivo executável Windows (EXE) ou uma biblioteca de link 

dinâmico (DLL). 

• FunctionUnit – representa uma função e com seu fluxo de instruções. Unidade 

alvo da maioria das transformações proporcionadas pela lista de fases. 

• DataUnit – coleção de dados relacionados tal como um conjunto de 

variáveis inicializadas ou o resultado da codificação de FunctionUnit. Provê 

dados necessários para processar uma unidade. 

Estas unidades podem ser aninhadas formando uma estrutura hierárquica, 

onde o a unidade mais externa é a GlobalUnit (Figura 4). 

 

Figura 4. Hierarquia de unidades. Adaptada da documentação do Phoenix[45]. 

 

3.1.5  Símbolos 

Símbolos Phoenix são associados a entidades tais como variáveis, labels, tipos, 

nomes de funções, endereços, entidades de metadados e módulos, fornecendo 

um nome para cada instância destes elementos. É o mecanismo através do qual 

tais entidades são referenciadas na IR. Estes símbolos são mantidos em tabelas que 

por sua vez são armazenados em unidades (Seção 3.1.4), devendo haver apenas 
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uma tabela de símbolos por unidade. Desta forma, a união de unidades e tabela 

de símbolos proporciona um controle sobre o escopo de um símbolo. 

Para cada entidade a ser referenciada há um tipo correspondente e estes 

podem ser agrupados em: 

• Símbolos básicos – símbolos que referenciam variáveis (locais e globais), 

funções, constantes, tipos, campos, labels, etc. 

• Símbolos que representam aspectos de módulos no formato PE – módulos e 

variáveis importadas ou exportadas. 

• Símbolos para elementos de metadados da CLR – assemblies, recursos, 

atributos, permissões, etc. 

Uma tabela de símbolos não possui, por si só, nenhum mecanismo de busca. 

Para realizar uma busca numa tabela devemos associar a ela um mapeamento 

através de um objeto Symbol.Map, que permitirá fazer a busca na tabela utilizando 

como chave uma das propriedades do símbolo. Toda tabela possui pelo menos um 

mapeamento do tipo IdMap, o qual permite a busca na tabela através da 

propriedade LocalId, que é única para cada símbolo contido na tabela.  

ExternIdMap e NameMap são outros exemplos de mapeamento permitidos por 

Phoenix, sendo o último bastante útil pois permite a busca pelo nome do símbolo. A 

criação de uma tabela de símbolos e um mapeamento por nome pode ser 

observado no Código 14. 

1 // Cria uma nova tabela de símbolos e associa a uma unidade 
2 Phx.Symbols.Table funcSymTable = 
3                 Phx.Symbols.Table.New(functionUnit, TABLESIZE, false); 
4  
5 // Cria um mapeamento por nome e o adiciona a tabela de símbolos 
6 functionSymbolTable.AddMap(NameMap.New(funSymTable, TABLESIZE)); 

Código 14. Criação de tabela de símbolos e adição de um mapeamento por nome 

É importante ressaltar que o tamanho tanto da tabela de símbolos como do 

mapeamento são fixadas no momento de sua criação, devendo estes ser grandes 

o suficiente para armazenar todos os símbolos que a ferramenta venha a necessitar 

ou deve ser feito um esquema que proporcione a expansão de seus tamanhos 

através da criação de uma nova tabela e novo mapeamento, de maior 

capacidade, e a cópia dos símbolos.  O tamanho do mapeamento deve ser igual 

ou superior ao da tabela, para que este possa mapear corretamente todos os 

elementos desta. 
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3.1.5.1  Proxy 

Proxy é um símbolo especial que permite que um mesmo símbolo apareça em 

mais de uma tabela de símbolo. Por exemplo, uma variável estática que é definida 

dentro de uma função usa um proxy para indicar que é tanto, logicamente, um 

membro do escopo da função como, fisicamente, uma variável global. 

Um exemplo de quando se deve utilizar um proxy é quando uma instrução em 

uma FunctionUnit faz referência a uma variável global. Sabendo-se, que os 

operandos de uma instrução só podem referenciar símbolos na tabela de símbolos 

da unidade da função, para acessar uma variável global será necessário criar um 

proxy para esta variável na tabela de símbolos da função. 

 

3.2 Fases e Plugins 

Fases e plugins são estruturas que trabalham em conjunto, permitindo alterar o 

comportamento de ferramentas e compiladores, construídos com o Phoenix, sem 

que seja necessário alterar o código fonte destes.  

Phoenix utiliza o conceito de fases para o processo de transformação de sua 

representação intermediária. Desta forma, um programa Phoenix é constituído por 

uma lista de fases, onde cada fase é responsável por uma característica específica 

do processo de compilação: transformação da IR, geração de código, otimização, 

alocação de registradores, etc. Uma fase atua sobre uma unidade, geralmente 

uma FunctionUnit, a qual representa uma função armazenando todos os símbolos e 

fluxo de instruções que compõem esta. 

Plugins são módulos externos criados utilizando código gerenciado e 

armazenado em arquivos dll, os quais podem ser adicionados a programas 

construídos utilizando o Phoenix. Através deste mecanismo é possível modificar a 

lista de fases que compõe um programa Phoenix substituindo, alterando ou 

inserindo fases. Esta funcionalidade permite a modificação destes programas após 

sua compilação sem alterar seu código fonte. 
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A Figura 5 demonstra a utilização do plugin MyPlugin.dll que atua modificando 

o comportamento do compilador cl (compilador para código C/C++ construído 

utilizando o Phoenix). O compilador cl é dividido em dois módulos, o frontend 

(C1.exe) e o backend (C2.exe). O C2 é responsável pela geração de código final e 

foi construído utilizando o framework Phoenix. O plugin altera a lista de fases que 

compõem o backend c2, modificando assim seu funcionamento, o que pode ser 

refletido no programa gerado pelo compilador (App.exe). 

 

 

Figura 5. Funcionamento de um plugin Phoenix. Adaptada da documentação do Phoenix[45]. 

 

Com o uso de plugins fica fácil adicionar novas funcionalidades a um 

compilador. Para isto, basta identificar qual fase do processo de compilação 

proporciona representação e informações adequadas e através de um plugin 

inserir uma nova fase que execute a funcionalidade. O SDK17 do Phoenix vem com 

um compilador C/C++ e um leitor de arquivos PE (PEReader), utilizando plugins é 

possível alterar o comportamento destes programas de forma a modificar o 

processo de compilação de códigos C/C++ ou obter informações de arquivos PE. 

A construção de um plugin é bem simples, consistindo basicamente por duas 

etapas: construção de uma fase responsável por realizar a funcionalidade desejada 

e definição de uma posição na lista de fases onde esta será inserida. Para construir 

uma nova fase basta estender da classe Phase, criar um método construtor e 

sobrescrever o método Execute com o código correspondente ao trabalho a ser 

                                                 
17 Software Development Kit.   
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realizado. O Código 15 demonstra a criação de uma fase (MyPhase), a qual 

descarrega o fluxo de instruções de uma função, fornecendo informações como 

opcode e operandos que compõem estas instruções. 

1 public class MyPhase : Phx.Phases.Phase 
2 { 
3     public static MyPhase New(Phx.Phases.PhaseConfiguration config) 
4     { 
5         MyPhase phase = new MyPhase(); 
6         phase.Initialize(config, "Minha fase. Dump de instruções"); 
7         return phase; 
8     } 
9  
10     protected override void Execute(Unit unit) 
11     { 
12         if (unit.IsFunctionUnit) 
13         { 
14             FunctionUnit funcUnit = unit.AsFunctionUnit; 
15             foreach (Instruction instr in funcUnit.Instructions) 
16             { 
17                 instr.Dump(); 
18             } 
19         } 
20     } 
21 } 

Código 15. Construindo uma fase 

Após a construção da fase, o plugin pode ser criado estendendo a classe 

PlugIn e sobrescrevendo os métodos RegisterObjects e BuildPhases, sendo este 

último o responsável por definir onde a nova fase será inserida. No Código 16 é 

exemplificada a construção de um plugin, o qual insere a fase MyPhase na lista de 

fases de um programa Phoenix após a fase de criação da IR. A implementação do 

método RegisterObjects é opcional, servindo para registrar controles que modificam 

o comportamento do plugin. É ainda necessário sobrescrever a propriedade 

NameString a qual deve retornar o nome do plugin criado. 

1 public class MyPlugIn : Phx.PlugIn 
2 { 
3     public override void RegisterObjects() { } 
4     public override void BuildPhases( 
5         Phx.Phases.PhaseConfiguration config) 
6     { 
7         Phx.Phases.Phase encodingPhase; 
8         Phx.Phases.Phase myPhase; 
9         encodingPhase = config.PhaseList.FindByName("RaiseIR"); 
10         myPhase = MyPhase.New(config); 
11         encodingPhase.InsertAfter(myPhase); 
12     } 
13     public override string NameString 
14     { 
15         get {return "MyPlugin"; } 
16     } 
17 } 

Código 16. Construindo um Plugin 
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Utilizando o pereader, programa para leitura de arquivos PE fornecido junto 

com o SDK do Phoenix, é possível testar o funcionamento do plugin criado. Basta 

para isto executar o seguinte comando, descrito abaixo, substituindo <arquivoPE> 

por qualquer programa ou biblioteca .NET sobre o qual se deseja executar o plugin. 

Com isto é feita uma alteração na lista de fases do programa pereader, passando 

este a executar a fase MyPhase, logo após a fase RaiseIR. 

pereader –plugin:myplugin.dll <arquivoPE> 

A Figura 6 mostra o resultado obtido aplicando o plugin, com auxílio do 

pereader, sobre o clássico programa HelloWorld. 

 

Figura 6. Dump HelloWorld 

 

3.3 Gerando Código 

O framework Phoenix é estruturado de forma a permitir a fácil geração de 

código para diversas arquiteturas (x86, x64 e CLR) por padrão e, também, facilitar a 

geração para novas arquiteturas através da Grand Unified Retargeting Language 

(GURL). A GURL é uma linguagem declarativa para descrição de instruções de 

máquinas utilizada, atualmente, apenas pela equipe de desenvolvimento interno 

do Phoenix. Entretanto, segundo Andy Ayers, gerente do projeto Phoenix, futuras 

versões do SDK devem incorporá-la. 

O processo de geração de código é composto por diversas fases, com uma 

pequena variação para diferentes arquiteturas. Estas fases são responsáveis por 

transformar a representação intermediária de alto nível, adicionando 
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gradativamente informações da arquitetura alvo, até que seja gerada a 

representação codificada (EIR). A EIR pode então ser escrita em um arquivo 

utilizando o writer (PE ou COFF18) correspondente ao formato de arquivo a ser 

gerado. 

 

3.3.1 Gerando código MSIL 

Diferentemente da IR onde as instruções recebem diretamente os operandos 

sobre os quais a operação deve ser executada, as instruções MSIL operam 

utilizando uma pilha de execução. Phoenix faz esta conversão automaticamente 

durante o processo de transformação da HIR para EIR.  

A fase StackAllocation é a responsável por fazer esta transformação nos 

operandos de forma que eles referenciem posições na pilha MSIL. Neste processo 

são utilizados pseudo-registradores que representam locais específicos na pilha. Por 

exemplo, o Código 17 demonstra como seria a representação de uma subtração 

em alto nível em baixo nível para uma máquina .NET.  Na representação HIR SR0 e 

SR1 são pseudo-registradores onde a numeração representa a posição na pilha, 

sendo zero seu topo. 

1 // Representação HIR  
2 A.i32 = Subtract B.i32, C.i32 
3  
4 // Representaçõ LIR MSIL 
5 T1.i32(SR0) = ldsfld B.i32 
6 T2.i32(SR0) = ldsfld C.i32 
7 T3.i32(SR0) = sub T1.i32(SR1), T2.i32(SR0) 
8 A.i32 = stsfld T3.i32(SR0) 

Código 17. Transformação HIR para LIR em máquina .NET 

Além desta transformação a fase StackAllocation é responsável por: 

• Calcular o tamanho máximo da pilha, informação esta necessária para a 

construção do cabeçalho de um método em código MSIL. 

• Alocar espaço para variáveis locais e temporárias 

• Gerar metadados com informações relacionadas às variáveis. 

A geração automática de código MSIL pelo Phoenix permite que todas as 

otimizações feitas na IR sejam repassadas de forma consistente ao código final.  

                                                 
18 Common Object File Format. 
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Desta forma, técnicas de otimização e ferramentas de análise podem ser criadas 

sem se preocupar em que arquitetura serão utilizadas. 

 

3.4 Análise e Otimização 

Phoenix fornece diversas bibliotecas que facilitam a criação de ferramentas 

de análise e otimização de programas. Estas bibliotecas tanto podem ser utilizadas 

dentro de fases do processo de compilação como na construção de novas 

ferramentas focadas na análise e otimização. 

• DataFlow – implementa técnicas de análise de fluxo de dados que operam 

sobre a IR, tais como: liveness e reaching definitions.  

• Graphs – fornece uma infra-estrutura para a construção de grafos que 

podem ser utilizados para representar fluxos de controle ou dados. Os grafos 

são direcionados (cada aresta possui um nó de origem e um de destino) e 

cada nó pode ser ligado a outro por mais de uma aresta.  

• Static Single Assignment (SSA) – possui um conjunto de classes que facilitam a 

criação de representações SSA de um programa, bem como a análise e 

otimização baseada nestas representações. Dependências são modeladas 

utilizando um grafo SSA, onde as dependências são representadas como 

arestas entre operandos da IR.  

• Alias – utilizado para rastrear o uso de memória feito pelas variáveis de um 

programa e modificações ocorridas nestas áreas decorrentes da execução 

das instruções de um programa.  

O manual do Phoenix[45] fornece diversos exemplos práticos de como utilizar 

estas bibliotecas.  

 

3.5 Considerações Finais 

Os conceitos aqui apresentados dão uma visão geral de como construir um 

compilador utilizando o Phoenix e sua representação intermediária. Para tanto, 

inicialmente, é definida a hierarquia de módulos, a começar pela GlobalUnit a qual 
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conterá a tabela de símbolos globais e a tabela contendo os tipos a serem utilizado 

pelo compilador. Cria-se uma ModuleUnit, ou uma PEModuleUnit, caso se deseje 

gerar um arquivo PE, na qual serão adicionadas as FunctionUnits que representarão 

as funções presentes no programa a ser compilado. As variáveis criadas, utilizando 

símbolos e tipos correspondentes, deverão ser armazenadas no devido escopo, 

definido através da união entre tabela de símbolos e hierarquia de unidades. As 

instruções que compõem o programa poderão então fazer uso destas variáveis 

através dos operandos. Para finalizar, estas unidades serão submetidas a uma lista 

de fases responsáveis por tornarem a representação intermediária mais próxima da 

máquina alvo e por fim gerar o código. 

Por fim, plugins e um conjunto de bibliotecas de análise de código como 

DataFlow, Graph, SSA e Alias fornecem uma rica infra-estrutura para análise e 

otimização do código gerado. 
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4 PROJETO E IMPLEMENTAÇÃO 

 

O compilador aqui proposto busca, com auxílio da ferramenta Microsoft 

Phoenix, criar uma implementação de um compilador de uma linguagem funcional 

para a plataforma .NET que facilite o estudo e o desenvolvimento de novas 

técnicas de mapeamento de linguagens funcionais nesta plataforma. Neste 

capítulo serão descritos detalhes da implementação do compilador, bem como 

problemas e decisões de projetos. 

 

4.1 Objetivos 

Este projeto visa, com auxílio da ferramenta Microsoft Phoenix, criar uma 

implementação de um compilador de uma linguagem funcional .NET, que facilite o 

estudo e o desenvolvimento de técnicas de mapeamento de linguagens funcionais 

nesta plataforma. Com esta implementação objetiva-se, além de demonstrar a 

viabilidade de tal abordagem, desenvolver uma representação de um ambiente 

que contemple estruturas capazes de mapear características comuns a diversas 

linguagens funcionais na plataforma .NET. Com base nestes objetivos, ficam claros 

os seguintes requisitos: 

• Gerar código MSIL a partir de uma linguagem representativa que contemple 

características mais relevantes de uma linguagem funcional. 

• Compilar um prelúdio básico contendo funções necessárias para execução 

dos aplicativos selecionados para fazer a avaliação de desempenho. 

• Facilitar a análise e otimização das estruturas responsáveis pelo mapeamento 

das características funcionais na plataforma .NET. 

 

4.2 Arquitetura 

O foco da implementação aqui proposta é dado à geração de código, 

análise e otimização (backend), desta forma preocupações quanto à análise léxica 
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e semântica do código são delegadas ao frontend a ser utilizado. O compilador 

desenvolvido tem como base a máquina abstrata Spineless Tagless G-Machine 

(STG)[28], a qual foi projetada para dar suporte a linguagens funcionais de alta 

ordem não estritas.  Sua escolha se deve ao fato de fornecer estruturas semânticas 

simples capazes de representar as mais diversas construções características de uma 

linguagem funcional e por esta representação já ter sido amplamente testada e 

utilizada como formato intermediário em compiladores reais.  

Como frontend será utilizada o Glasgow Haskell Compiler (GHC)[42], o qual é 

capaz de gerar, dentre outros formatos, código STG e CORE19. Embora 

internamente o GHC possua uma representação STG que contém informações 

sobre o uso e definição de tipos, o código gerado não as possui. Como tais 

informações são essenciais para uma implementação baseada em um ambiente 

fortemente tipado como .NET, o uso do código STG gerado foi descartado. Utilizar a 

representação STG interna, como feito em Haskell .NET, requer o uso de código 

Haskell o que dificultaria a abordagem proposta nesse trabalho que é utilizar 

framework Phoenix, uma biblioteca .NET, na construção do compilador. A 

alternativa encontrada foi o uso do arquivo CORE gerado, o qual mantém as 

informações de tipos necessárias. O uso da linguagem CORE seja como backend 

para novos compiladores [27,46] ou como alvo de transformações e 

otimizações[47,48] é bastante comum e tem seu uso sugerido pela equipe de 

desenvolvimento do GHC. 

O uso do GHC como frontend não só garante que o código está correto 

como também permite a aplicação de uma série de otimizações, tais como 

inlining[49,48] e strictness analysis[50]. O processo de compilação do GHC (Figura 7) 

descrito por Peyton Jones et al. [51] pode ser resumido nos seguintes passos: 

1. É feito o parser do código Haskell, gerando uma árvore sintática abstrata a 

qual em seguida tem seus tipos checados. 

2. A árvore sintática é então simplificada (desugaring), gerando uma 

representação em linguagem CORE. 

                                                 
19 CORE é uma pequena linguagem funcional produzida pelo compilador GHC que tem com intuito servir 

como linguagem alvo para novos backends e ferramentas de otimização que desejam utilizar o GHC como frontend. A 
definição da gramática e informações mais detalhadas sobre sua sintaxe é dada por Andrew Tolmach[52]. 
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3. Otimizações opcionais, quando solicitadas através de linha de comando 

são feitas sobre a representação CORE. 

4. A representação CORE é convertida para linguagem Shared Term Graph 

(STG). 

5. A representação STG é convertida em uma representação interna 

denominada Abstract C, a qual pode gerar código C (quando solicitado 

código otimizado), ou código assembly. 

6. Código nativo é então gerado utilizando um compilador C ou o Assembler. 

O compilador aqui proposto, em destaque na Figura 7, não altera diretamente 

o GHC, ao invés disto utiliza como arquivo de entrada a representação CORE 

produzida utilizando a diretiva de compilação -fext-core. 

 

 

 

Figura 7. Inserção do PhxSTGCompiler 
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4.2.1 STG 

A máquina STG fornece um conjunto de estruturas que, facilitam a 

representação de uma linguagem funcional de alto nível e que ao mesmo tempo 

são facilmente mapeadas para código nativo ou .NET. Seu modelo de execução é 

baseado na técnica conhecida como graph reduction, onde um programa é 

representado através de um grafo (neste caso uma árvore) e sua execução é feita 

reduzindo suas expressões a Weak Head Normal Form (WHNF)20. Os nós que 

compõem um grafo STG são os seguintes: 

• Progam ou module – nó principal do grafo STG é composto por um 

conjunto binds.  

• Bind – ligação entre uma variável, que identifica o bind, e uma 

abstração lambda (lambda-form).  

• Lambda-form – representa uma função ou uma expressão atualizável. 

Explicita suas variáveis livres e argumentos. 

• Expression – pode ser uma expressão binária sobre tipos primitivos, uma 

aplicação de funções e/ou construtores, uma expressão de casamento 

de padrões ou uma criação de binds locais através de uma instrução 

let ou letrec. Tais expressões são os alvos principais da redução. 

Segundo Peyton Jones[28], criador da linguagem e da máquina STG, as 

principais características desta são: 

• Todos os argumentos de funções e construtores são variáveis ou 

constantes. Esta restrição reflete a realidade operacional de chamadas 

de função onde seus argumentos devem ser preparados (seja 

construindo uma closure ou avaliando eles) antes da chamada. Esta 

restrição pode ser resolvida adicionando novas instruções let para a 

ligação de argumentos não triviais, como descrito na Seção 4.2.2. 

• A aplicação de construtores e operadores primitivos (built-in) são 

sempre saturadas, ou seja, o número de argumentos esperado pelo 

construtor ou operador aplicado deve ser igual ao de argumentos 

fornecido.  

                                                 
20 Termo criado por Peyton Jones[37] para explicitar a diferença entre Head Normal Form (HNF) e o que é 

produzido através da graph reduction. 
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• Casamentos de padrões são sempre executados através de expressões 

case e é permitido apenas padrões de um único nível.  

• Existe uma forma especial de ligação (binding). Sua forma geral é:  

f = {v1,...,vn} \π {x1,...,xn} -> e 

Através deste binding f é ligado a uma closure, que armazena as 

variáveis livres v1,...,vn e a função (λx1,...,xn.e). O lado direito do binding 

é denominado lambda-form e é o único lugar onde uma abstração 

lambda pode aparecer. A flag π determina se a closure é atualizável, 

caso sua flag seja igual u, ou não atualizável caso seu valor seja n. O 

fato de a lambda-form permitir que as variáveis livres de uma 

abstração lambda sejam explicitadas faz com que não seja necessário 

o uso de técnicas de lambda lifting21. 

• Dá suporte a valores unboxed. Na STG, embora com algumas 

restrições, valores unboxed podem ser ligados a variáveis, passados 

como argumentos bem como serem retornos de uma função, 

armazenados e estruturas de dados, etc. Esta abordagem diminui o uso 

de boxing/unboxing durante operações de tipos primitivos.  

 

 

4.2.2 Core to STG 

A linguagem Core é facilmente traduzida para a STG de forma a ser utilizada 

na máquina abstrata STG. Algumas diferenças são apenas sintáticas, não 

necessitando grandes conversões, abaixo estão descritas apenas diferenças que 

exigiram modificações na máquina STG ou alguma análise prévia para 

identificação de informações relevantes. 

1. Na STG os argumentos das funções devem ser atômicos (literais ou 

variáveis), diferentemente da linguagem Core, a qual permite que 

expressões sejam passadas como argumentos.  

2. Aplicação de construtores e operadores primitivos tem de ser saturados. 

Embora a linguagem Core não possua nenhuma restrição quanto à 

                                                 
21 Lambda lifting é uma técnica onde todas as definições locais de funções são elevadas para o nível definições 

globais transformando suas variáveis livres em argumentos extras [87]. 
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aplicação não saturada destes elementos em sua especificação[52] é 

sugerido o uso de um pré-processador que torne tais aplicações 

saturadas.  

3. Cada ligação (bind) é feita entre uma variável e uma lambda-form, a 

qual fornece explicitamente sua lista de variáveis livres. Core liga 

variáveis diretamente a expressões, sem se preocupar em explicitar suas 

variáveis livres. 

A restrição 1 é resolvida, como proposto por Peyton Jones[28], adicionando 

novos binds através de uma instrução let responsável por ligar a expressão a uma 

variável a qual é utilizada para referenciar a expressão. Tomando como exemplo o 

Código 18, testCore é definido como a aplicação da função f1 que recebe uma 

expressão como argumento. Na STG isto não é permitido e por isto testSTG faz uso 

de uma expressão let a qual cria um bind ligando t à expressão f2 2 e então aplica 

a função f1 recebendo como argumento a variável ligada, no caso t.  

1 testCore = f1 (f2 2) 
2 testSTG = {} \u {} -> let t = f2 2 in f1 

Código 18. Transformando uma expressão em um argumento atômico utilizando let 

Para argumentos que correspondam à aplicação de operadores primitivos 

uma otimização pode ser conseguida utilizando expressões case, como definido em 

Peyton Jones e Launchbury [53]. Uma vez que tais aplicações resultam em tipos 

primitivos o qual não podem ser armazenados como thunks, a melhor abordagem é 

avaliar a expressão dentro de case e então retornar o resultado da avaliação 

através da alternativa default (Código 19). A mesma abordagem deve ser utilizada 

para aplicações de funções que retornam tipos unboxed. 

1 testeSTG = {} \u {} ->  
2       case 2+3 of var  
3       { 
4   default -> var 
5       } 

Código 19. Transformando uma expressão em um argumento atômico utilizando case 

  

A forma direta para resolver a restrição 2 é utilizar o pré-processador Core, 

entretanto o pré-processador disponibilizado não condiz com a Core gerada pela 

atual versão do compilador GHC (6.8.2). Tim Chevalier, colaborador do projeto 

GHC, tem se esforçado em atualizar não só o pré-processador, como toda a 

linguagem Core gerada pelo GHC, de forma, a facilitar e ampliar o uso desta 
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linguagem. Entretanto, tais alterações só estarão presentes na próxima versão do 

GHC, ainda sem data prevista para lançamento. Uma possível alternativa é aplicar 

uma expansão-n, como sugerido por Peyton Jones[28], o que consiste em 

transformar aplicações não saturadas, de construtores ou operadores primários, em 

funções onde os valores fornecidos são considerados variáveis livres desta. A 

fórmula geral é dada abaixo, onde c é um operador interno ou um construtor de 

aridade n + m. 

c {e1, ..., en}  => λy1 ... ym . c {e1, ..., em, y1, ..., ym} 

Entretanto, para aplicar tal expansão é necessário que os módulos compilados 

guardem informações a respeito da aridade dos construtores, o que não era 

necessário para a compilação a partir da STG. A solução encontrada foi gerar para 

cada construtor uma função com código para aplicação do construtor, a qual 

guarda informações sobre sua aridade. Esta função não possui nenhuma variável 

livre e segue o mesmo modelo de avaliação de funções definidos na 

implementação do compilador, o que permite a geração de aplicações parcial 

quando aplicada a menos argumentos que o requerido. Para proporcionar melhor 

desempenho, a utilização desta técnica só é empregada quando observado o uso 

de aplicações não saturadas. Quando saturada, é feita a aplicação direta, criando 

um construtor ou aplicando a operação. Outro ganho obtido com esta conversão 

é permitir que construtores possam ser passados como parâmetros de uma função, 

uma vez que estes podem ser representados como uma função qualquer da 

linguagem.  

O fato de não ter sido observada nenhuma aplicação não saturada de 

operadores primários na linguagem Core leva a crer que, na atual versão do GHC, 

tais aplicações são previamente expandidas. Desta forma, aplicações não 

saturadas de operadores primitivos não são tratadas na implementação aqui 

proposta. 

Por fim, a transformação do lado direito dos binds em lambda-forms requer 

que duas operações sejam executadas: identificação das variáveis livres da 

expressão e adição da flag de atualização. 

Uma variável é considerada livre se é mencionada no corpo de uma 

abstração lambda e não pertence nem ao seu conjunto de argumentos e nem ao 
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conjunto de binds globais do programa. Em nossa implementação tal identificação 

é feita ainda no parser da linguagem Core. Todas as variáveis referenciadas dentro 

da expressão, lado direito de um bind, são guardadas e posteriormente verificadas 

se pertencem ao conjunto de argumentos ou de binds globais, as que não 

correspondem são adicionadas ao conjunto de variáveis livres da lambda-form. 

Quanto à flag de atualização, como descrito na própria definição da STG, é 

seguro configurar toda lambda-form como sendo não atualizável. Entretanto, tal 

atitude contradiz a definição da avaliação lazy, que diz que cada expressão deve 

ser avaliada somente quando necessária e apenas uma vez. Marcar toda lambda-

form como não atualizável acarretaria em um gasto excessivo de processamento 

ao avaliar, desnecessariamente, uma mesma expressão mais de uma vez. Como 

definido pela STG, funções, aplicações parciais e construtores são consideradas não 

atualizáveis, sendo, apenas, thunks consideradas atualizáveis e mesmo estas, em 

alguns casos, podem ser não atualizáveis. Como regra geral, em nossa 

implementação consideramos thunks como sendo atualizável e separamos, ainda 

no parser, as expressões lambdas com e sem argumentos, sendo que as expressões 

com argumentos (funções e construtores) são sempre consideradas não 

atualizáveis. Já as sem argumentos são classificadas durante a compilação, onde 

se a expressão de for identificada como uma aplicação não saturada esta é 

tratada como uma closure não atualizável, caso contrário, será uma closure 

atualizável. 

A fim de organizar e dividir melhor as responsabilidades, as transformações 

explicitadas nesta Seção deveriam ser delegadas a um pré-processador, o qual 

transformaria a linguagem Core numa STG enxertada com informações de tipos 

capaz de ser executada diretamente pelo compilador proposto. Entretanto, 

inicialmente, não foi cogitado o uso da linguagem Core como linguagem fonte. 

Esta só foi viabilizada na fase de integração com o compilador GHC, onde foi 

observado que a linguagem STG produzida não possui informações suficientes e a 

dificuldade em utilizar a representação STG interna em conjunto com o Phoenix. 

Com isto tal responsabilidade foi dividida entre o parser e o próprio compilador, 

cabendo ao primeiro a maior parte. 
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4.3 PhxSTGCompiler 

O processo de compilação efetuado pelo PhxSTGCompiler pode ser 

observado na Figura 8. Inicialmente a linguagem Core fornecida pelo GHC é lida 

através de um parser, este gera uma representação abstrata do programa em 

forma de árvore a qual é convertida na representação intermediária IR, necessária 

para o uso do Phoenix. Utilizando uma lista de fases, construídas utilizando a API 

Phoenix, esta IR é sucessivamente manipulada e transformada em uma 

representação correspondente a requerida pela máquina alvo, neste caso a CLR. A 

última etapa deste processo de compilação corresponde à emissão do código 

final, a qual é feita através de um writer para arquivos PE, gerando uma biblioteca 

de link dinâmico (dll) ou arquivo executável (EXE). 

 

 

 

 A implementação aqui proposta permite que seu processo de compilação 

seja alterado por programas externos, denominados plugins, os quais podem 

modificam a lista de fases do compilador. Este mecanismo será utilizado para 

produzir otimizações no código gerado, como demonstrado no Capítulo 5. 
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Figura 8. Processo de compilação 
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Internamente o PhxSTGCompiler é formado por um conjunto de classes 

responsáveis por representar estruturas de compilação, gerar a IR e pelo processo 

de compilação. Tais classes, representadas graficamente na Figura 9, são 

detalhadas a seguir:  

• Compiler: responsável por inicializar e gerenciar a infra-estrutura Phoenix e as 

classes que compõem o compilador. Solicita o parser do arquivo fonte e a 

geração de código IR, o qual é então transformado em código MSIL através 

da execução da lista de fases definida no compilador. Ao final do processo 

de compilação emite o assembly .NET, podendo este ser um arquivo 

executável (EXE) ou biblioteca de classes (DLL). 

• CompilationEnvironment: representa o ambiente de compilação, 

armazenando informações úteis ao processo de geração de código IR, tal 

como escopo e contagem de identificadores.  

• CompilationUnits: coleção de classes que representam as estruturas básicas 

de compilação presentes na descrição da STG. Cada objeto desta classe 

armazena uma referência para um mesmo objeto da classe IRBuilder, 

compartilhado por todas as unidades do programa, a qual é utilizada para 

gerar o código IR. Todas as classes deste pacote herdam da classe 

CompilationUnit, unidade básica de compilação, que define um método 

abstrato o qual deve ser implementado em cada classe de forma a gerar, 

com auxílio do IRBuilder, a representação correspondente em código IR. 

Detalhes sobre a geração de cada uma das unidades pode ser observado 

no Apêndice A, de forma geral tais unidades podem ser classificadas em: 

o BasicUnits: unidades básicas de compilação (module, bind, 

dataUnit e lambda-form). Utilizam Generate para gerar seu 

código IR. 

o ExpressionUnits: representam as expressões disponíveis na 

máquina STG (let, case e aplicação de funções, construtores e 

operações sobre tipos primitivos). Disponibilizam o método 

Evaluation, responsável não só por gerar o código IR da 

expressão, como também retornar operando de destino da 

expressão.  

o AtomUnits: expressões atômicas (variáveis, construtores e tipos 

primitivos). Através do método Evaluation geram código IR, 
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quando necessário, e retornam um operando correspondente a 

sua representação na IR. 

o AlternativeUnits: alternativas possíveis em uma expressão case. 

Podem operar sobre tipos algébricos ou primitivos. Possuem dois 

campos, um que armazena o valor da alternativa e outro para 

armazenar a expressão a ser executada caso seu valor seja 

selecionado. O código IR para a execução de sua expressão é 

gerado através do método Evaluation. 

• IRBuilder: possui métodos responsáveis por gerar código IR, utilizando a API 

Phoenix. Disponibiliza um método GetInstance, o qual retorna sempre a 

mesma instância da classe, e deve ser utilizado sempre que se desejar obter 

uma instância desta classe. A utilização de uma única instância permite 

que informações sobre o código que está sendo gerado estejam sempre 

disponíveis aos métodos da classe. 

• Parser: responsável por percorrer o arquivo fonte e gerar uma representação 

deste utilizando as unidades de compilação (CompilationUnits). Tal 

representação é semelhante a uma árvore onde cada nó é constituído por 

uma CompilationUnit. 

• Util: possui funções que através de reflexão permitem obter informações de 

métodos e classes em bibliotecas .NET. 

Compiler

IRBuilder

CompilationEnvironment

Parser

CompilationUnits

Util

 

Figura 9. Arquitetura do compilador 

 Tendo como base o Código 20, uma representação da árvore gerada 

utilizando as unidades de compilação (objetos CompilationUnits) pode ser 
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observada na Figura 10. O processo de geração de código IR se inicia pelo nó raiz 

(ModuleUnit) o qual gera seu código e solicita aos nós filhos que façam o mesmo. 

1 module Teste 
2 func1 = {} \n {x,y} -> x+y 

Código 20. Exemplo unidades de compilação 

 

 

Figura 10. Árvore de compilação 

 

4.3.1 Lista de fases 

Efetuar a conversão da IR para código MSIL é um trabalho efetuado por uma 

lista de fases. Tais fases são responsáveis por gradativamente transformar uma IR de 

alto nível (HIR), independente da máquina alvo, para uma representação de baixo 

nível (LIR), dependente da máquina alvo, no caso em questão a CLR. 

A lista de fases é construída dentro da classe Compiler, através do método 

BuildPhaseList. O mais usual é construir uma lista fases que opere sobre FunctionUnits, 

uma vez que estas unidades é que armazenam as listas de instruções. Entretanto, a 
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fim de permitir um maior controle sobre todo o código do compilador, neste projeto 

a lista de fases produzida opera também sobre a ModuleUnit. Para permitir que a 

lista de fases criadas operasse ao mesmo tempo sobre a ModuleUnit e sobre todas 

as FunctionUnits presentes nesta foi criada um tipo de lista de fases que opera 

especificamente sobre as FunctionUnits. Tal informação é importante para a 

construção de plugins, uma vez que, se estes desejarem operar sobre as 

FunctionUnits, deverão percorrer a primeira lista até encontrarem a outra lista e 

então atuar sobre esta.  

A lista de fases criada pode ser observada na Figura 11. Ela é composta por 

três listas: a primeira que atua sobre ModuleUnits, a segunda que adentra a 

ModuleUnit e executa sobre as unidades existentes nesta e a terceira 

(FuncUnitListPhaseList) criada para selecionar apenas as FunctionUnits. Todas as 

fases padrão do compilador são adicionadas a esta última, pois elas atuam sobre 

as FunctionUnits transformando suas listas de instruções em código MSIL. Apenas a 

fase VariableLocationPhase não é implementada por padrão pelo Phoenix, esta foi 

codificada com objetivo de processar corretamente a assinatura das variáveis 

locais de um método, o que não era feito pelas fases fornecidas pelo Phoenix. 

 

Figura 11. Lista de fases 

Na fase de testes e otimizações (descrita na Seção 5) esta lista de fases é 

alterada, adicionando novas funcionalidades ao compilador, tanto diretamente 

como indiretamente, através de plugins. 
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4.3.2 Estratégia de compilação 

Embora, utilizando o Phoenix não seja necessário manipular código .NET 

diretamente, e sim uma representação intermediária (IR), escolhas quanto à 

representação de cada uma das estruturas da linguagem devem ser feitas tendo 

em mente seu desempenho no código final. Aqui serão apresentadas quais 

estratégias foram utilizadas para a construção deste compilador, selecionada 

dentre as descritas na Seção 2.4. 

Seguindo o modelo definido por Monteiro [5], o qual visa evitar a geração de 

um grande número de classes por programa, uma única classe é gerada por 

módulo, seja este um programa executável ou biblioteca de funções. Nesta 

abordagem para cada módulo compilado é gerado uma nova classe e o conjunto 

de binds presentes neste são compilados para funções estáticas e objetos de 

classes pré-definidas, os quais são armazenados em campos estáticos. Tais classes 

pré-definidas são utilizadas para representar closures com n variáveis livres, além de 

construtores com n argumentos. 

Em linguagens funcionais closures são estruturas essenciais para a 

representação de objetos como funções e thunks na heap. Sendo assim, a forma 

como tal estrutura é definida influencia todo o restante do projeto do compilador. 

Na implementação aqui apresentada closures são construídas através de classes 

pré-definidas que utilizam delegates para referenciar a função correspondente a 

expressão e possui um conjunto de campos de tipos genéricos para armazenar as 

variáveis livres. Tendo como objetivo evitar a criação de uma classe por closure, 

estratégia utilizada por F# e Nemerle, é pré-definido um conjunto de classes para n 

variáveis livres, permitindo que novas closures sejam criadas através de novas 

instâncias da classe correspondente ao número de variáveis livres. O ambiente de 

compilação prevê a criação de closures com até nove variáveis livres. Embora nos 

testes realizados não tenha sido observado nenhum exemplo onde este número foi 

superado, closures com número superior a este são instanciadas utilizando uma 

classe especial onde as variáveis livres são armazenadas em um array de objetos do 

tipo closure. O uso desta classe deve ser evitado devido a custos no acesso aos 

valores do array e por não permitir o armazenamento de tipos unboxed. Uma 

representação das closures presentes nesta implementação pode ser observada na 

Figura 12. 
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O modelo de avaliação de funções adotado é o push/enter, o qual permite 

uma fácil representação de linguagens estritas na plataforma .NET. Embora, estudos 

realizados por Peyton Jones et al. [33] tenham demonstrado uma pequena 

vantagem a favor do modelo eval/apply na geração de código para uma 

linguagem estrita em ambientes não gerenciados, não foi encontrado nenhuma 

implementação que o mesmo ocorre no ambiente .NET ou em qualquer outro 

ambiente gerenciado. Dentre as implementações observadas apenas linguagens 

não estritas, como F# e Nemerle, implementam tal modelo na plataforma .NET. A 

implementação do modelo eval/apply na plataforma .NET permitiria o uso da pilha 

de argumentos da CLR como mecanismo de passagem de parâmetros, o que 

poderia acarretar um ganho no desempenho, entretanto aumentaria 

enormemente o número de classes pré-definidas pois seriam necessárias classes que 

combinassem um número n de argumentos a um número m de variáveis livres, o 

que resultaria em n x m classes. 

Utilizando o modelo push/enter cada função definida é representada através 

de uma closure e dois métodos estáticos: fast entry point (FEP) e slow entry point 

(SEP). FEP possui o código real da função e é chamado sempre que todos os 

argumentos necessários estão presentes. SEP possui o código responsável por 

avaliar se todos os argumentos necessários à aplicação da função estão presentes 

na pilha, em caso positivo os desempilha e chama diretamente o FEP, caso 

contrário instancia uma aplicação parcial e armazena nesta os argumentos 

presentes na pilha. A closure instanciada referencia através de um delegate o 

método SEP o qual é executado através do método Enter presente na closure. A 

closure quando pertencente ao conjunto de binds globais do módulo é 

armazenada em um campo estático da classe e quando é instanciada através de 

uma expressão let é armazenada como variável local da função que engloba a 

expressão let. 

Diferentemente de funções, thunks necessitam de apenas um método o qual 

armazena diretamente a expressão a ser executada. Esta expressão é avaliada 

apenas uma vez através do método Enter da closure, o qual verifica se a closure já 

foi avaliada, caso tenha sido retorna o valor armazenado, caso contrário chama a 

função referenciada pelo delegate e armazena o valor resultante para evitar 

futuras avaliações. 
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Tipos algébricos são representados utilizando classes pré-definidas, que 

herdam da classe Pack, e possuem n argumentos genéricos. A classe Pack possui 

um campo tag, o qual armazena um valor inteiro que é utilizado para identificar 

diferentes construtores. Para evitar que em um mesmo módulo existam dois objetos 

Pack com a mesma tag, este campo é preenchido utilizando o valor obtido através 

do método GetHashCode da string correspondente ao nome do construtor, o qual 

retorna um valor inteiro correspondente a hash do objeto. Casamento de padrões é 

implementado utilizando uma instrução switch que opera sobre a tag do construtor, 

o que é bem mais eficiente que através da verificação de tipos dos objetos. Na 

maioria dos casos novos construtores são instanciados diretamente, entretanto, em 

casos onde construtores são passados como argumento ou são aplicados 

parcialmente uma função responsável por gerar o construtor é criada e possíveis 

argumentos fornecidos são aplicados a esta.  

Embora, a CLR permita a criação de funções polimórficas utilizando generics 

esta opção não foi utilizada para a representação de polimorfismo paramétrico no 

compilador aqui apresentado. Tal escolha se deve ao fato do GHC não permitir 

que tipos primitivos (unboxed) sejam utilizados como argumentos de funções 

polimórficas. Desta forma, o uso de generics não traria grandes benefícios, sendo 

tipos polimórficos representados através do uso da classe base Closure, a qual é a 

classe base para todos os demais tipos. 

 

4.3.3 Ambiente de execução 

Devido ao fato deste trabalho fazer parte do mesmo projeto, o ambiente de 

execução utilizado neste compilador segue, com algumas poucas alterações, o 

utilizado no projeto Haskell .NET. A descrição a seguir é fortemente baseada na feita 

por Monique Monteiro em sua dissertação: Integrando Haskell a Plataforma .NET[5], 

devendo esta ser consultada para um maior aprofundamento. 

 O ambiente de execução do PhxSTGCompiler consiste das classes pré-

definidas que representam os diversos tipos de closures e das pilhas para passagem 

de parâmetros. Como mostrado no diagrama UML (Figura 12) a classe Closure é a 

classe base para a maioria das outras classes. Apenas PAP não herda de Closure, 

pois PAP por si só não representa um objeto manipulado diretamente pela STG, 



80 
 

 
 

devendo este ser associada a uma closure que representa uma função. Closure 

possui um método abstrato Enter o qual deve ser implementado por cada uma das 

classes que herdam desta com o código responsável por sua avaliação.  As closures 

presentes no ambiente de compilação podem ser divididas em: 

• Closures não atualizáveis (funções): mantém campos de tipos genéricos 

para o armazenamento de suas variáveis livres, um campo inteiro para 

o armazenamento da aridade e um campo PAP com valor null. Sua 

avaliação retorna uma chamada para o método SEP correspondente. 

• Aplicações parciais: são closures não atualizáveis (funções) cujo campo 

PAP possui um objeto que armazena argumentos previamente 

recebidos. Sua avaliação, assim como de uma função, se dá através 

da chamada ao método SEP. 

• Closures atualizáveis (thunks): expressões não avaliadas, as quais 

mantêm campos para o armazenamento de suas variáveis livres e um 

para armazenar o valor resultante de sua avaliação. Seu método Enter 

verifica se a closure já foi atualizada, em caso positivo apenas retorna o 

valor armazenado. Caso contrário é feita a avaliação e o valor 

resultante é armazenado. 

• Construtores de dados: mantém campos genéricos para armazenar 

seus argumentos. Seu método Enter retorna ele próprio como resultado, 

uma vez que este se encontra na Weak Normal Form (WHNF), ou seja, 

na forma objetivada pela avaliação sob demanda[37]. 

No diagrama UML é possível observar os delegates responsáveis pela 

chamada dos métodos englobados por cada closure. Todos eles herdam da classe 

MultiCastDelegate e determinam a assinatura do método suportado. Existem 

delegates de dois tipos: UpdCloFunction utilizados para closures atualizáveis e 

NonUpdCloFunction para as não atualizáveis. Tal distinção se deve ao fato de 

delegates restringirem os métodos sobre os quais operam através de sua assinatura. 

Desta forma, um delegate do tipo UpdCloFunction suporta métodos que recebem 

como argumento um UpdatableClosure e retorna uma closure e um 

NonUpdCloFunction suporta métodos com um argumento do tipo 

NonUpdatableClosure retornando, também, uma closure. Assim como para as 

closures atualizáveis e não atualizáveis, são pré-definidos no ambiente variações 

destes para n variáveis livres. 
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Figura 12. Ambiente de execução 

  Para a passagem de parâmetros, necessárias ao modelo push/enter, são 

utilizadas quatro pilhas que armazenam closures, inteiros, double e object. A razão 

para existência de mais de uma pilha é evitar operações de boxed/unboxed de 

tipos primitivos, permitindo que tipos primitivos sejam passados como parâmetros 

diretamente, otimização esta implementada pelo GHC seguindo a descrição dada 

por Peyton Jones et al.[53]. Outros tipos para os quais não haja pilha específica 

devem ser mapeados para uma das pilhas existentes, por exemplo: caracteres são 

armazenados na pilha de inteiros e tipos float na pilha de double. 

 



82 
 

 
 

4.4 Considerações Finais 

Neste capítulo foi apresentada a arquitetura do PhxSTGCompiler, bem como, 

problemas e decisões de projetos enfrentados durante sua implementação. A idéia 

inicial de utilizar o código STG gerado pelo GHC como entrada se mostrou inviável e 

por isto uma alternativa foi apresentada: o uso da representação CORE. O uso 

desta representação requisitou que modificações fossem feitas tanto no parser 

como no próprio gerador de código. 

A implementação atual possui um prelúdio reduzido, o qual é suficiente 

apenas para a compilação dos testes executadas no Capítulo 5. Outra restrição da 

implementação diz respeito à compilação direta a partir do código CORE. Por não 

estar disponível uma gramática atualizada da CORE gerada pela versão atual do 

compilador, eventualmente, foram necessárias intervenções manuais para que o 

código pudesse ser entendido pelo compilador. 

O uso do Phoenix para geração do código final mostrou ser uma boa 

abordagem, pois permitiu que código .NET fosse gerado diretamente, sem a 

necessidade de manipulação de código MSIL. Pequenos problemas observados no 

código gerado pelo Phoenix serão discutidos na Seção 5.2. 
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5 ANÁLISE E OTIMIZAÇÃO 

 

Neste capítulo serão apresentadas avaliações de desempenho do compilador 

construído, bem como otimizações implementadas utilizando o mecanismo de 

plugins e a API de análise e manipulação de código do Phoenix. Ao final as 

otimizações que obtiveram melhores resultados serão adicionadas ao compilador e 

o código gerado por este será comparado ao gerado pelos compiladores Haskell 

.NET e GHC. 

 

5.1 Metodologia 

Na avaliação do desempenho dos programas gerados, pelo compilador aqui 

apresentado, foi utilizado um subconjunto dos programas presentes no benchmark 

NoFib[54]. Mais especificamente, um conjunto de programas pertencentes ao 

grupo Imaginário22. Embora na documentação do NoFib seja sugerido o uso dos 

programas pertencentes ao grupo dos Reais, uma vez que este possui programas 

mais complexos que representam problemas reais, esta opção foi descartada 

devido a restrições do prelúdio compilado nesta implementação. Contudo, os 

programas do grupo Imaginário, embora menos complexos, representam 

problemas específicos e facilmente escaláveis, permitindo não só a validação do 

processo de compilação como a descobertas de possíveis gargalos que venham a 

denegrir o desempenho dos programas gerados. 

O NoFib sugere, para os programas do grupo Imaginário, dois possíveis valores 

de entrada, bem como, os respectivos resultados esperados. Um valor para uma 

execução mais demorada e outro para uma execução mais rápida. Entretanto 

estes valores não correspondem à capacidade de processamento das máquinas 

atuais, o que resultou em baixos tempos de execução, mesmo para o valor que 

gera um maior processamento. Desta forma, os valores de entrada utilizados para 

                                                 
22 Os códigos dos exemplos utilizados podem ser obtidos através do endereço 

http://darcs.haskell.org/nofib/imaginary/ 
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os testes aqui apresentados são diferentes dos sugeridos e foram selecionados de 

forma a evitar tempos de execução demasiadamente curtos, onde o tempo de 

inicialização e carga do programa predomine sobre o de execução. Para 

comparação com o Haskell .NET e com gerador de código nativo do GHC foram 

utilizados os seguintes valores: 

• Tak: 12, 1, 25 
• Primes: 4500 
• Queens: 13 
• Exp3: 9 
• DigitsE1: 2000 
• WheelSieve1: 400000 
• WheelSieve2: 80000 

 
Em alguns exemplos foi necessário o uso de valores diferentes destes, quando 

isto ocorrer o valor utilizado será especificado entre parênteses. 

A Tabela 2 mostra a configuração do ambiente utilizado nos testes realizados. 

Tabela 2. Configuração do Ambiente 

Característica Valor 

Processador  Intel®  Core™ 2 - 7200 (2 x 2.0 

GHZ) 

Memória 2 GB 

Sistema Operacional Windows™ XP Professional 

Versão da CLR .NET™ Framework 2.0 

Versão do GHC GHC 6.8.2 

 

Para obtenção dos tempos de execução foi utilizado o comando time 

presente no utilitário cygwin23. Os valores apresentados correspondem à média 

obtida a partir da execução de cada exemplo 10 vezes, retirados possíveis outliers24, 

tendo seu valor expresso em segundos. Os outliers são removidos, pois, 

                                                 
23 Emula um ambiente Linux no sistema operacional Windows. Pode ser obtido através do endereço: 

http://www.cygwin.com/ 

24 Valores destoantes do conjunto de dados. Para o cálculo é utilizada a fórmula: 
onde  e corresponde, repectivamente, ao primeiro 

e terceiro quartil. 
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possivelmente, representam momentos onde foi necessária alguma compilação em 

tempo de execução ou consumo de recursos do computador por algum outro 

processo. Nas comparações entre os valores (impacto da otimização), onde são 

apresentadas porcentagens, valores positivos indicam uma melhora, enquanto que, 

valores negativos indicam piora. 

Para análise do consumo de memória foram testadas diversas ferramentas, tais 

como o CLR Profiler, Performance Monitor, AQTime 5, entre outras. Entretanto, com 

exceção do Performance Monitor, todas as ferramentas requisitaram um enorme 

tempo para análise do código, mesmo para valores de entrada pequenos. Em 

muitos casos todo o espaço em disco foi consumido antes que fosse retornado 

qualquer resultado. Isto se deve ao grande detalhamento das análises executadas 

por estas ferramentas e ao intenso consumo de memória feito pelos programas 

testados. O Performance Monitor, embora não tenha apresentado problemas 

quanto ao tempo de execução ou uso de recurso da máquina, mostra resultados 

que correspondem a uma média de um curto intervalo de tempo, atualizado 

constantemente durante a execução do programa, não refletindo o perfil 

completo do programa. 

A solução encontrada para traçar um perfil do consumo de memória foi a 

construção de uma ferramenta específica, utilizando contadores de desempenho 

fornecidos pela plataforma .NET. Esta solução permitiu que apenas os recursos 

desejados fossem monitorados, evitando uma demora excessiva para análise dos 

programas. O código da ferramenta de análise pode ser observado no Apêndice B. 

Os valores monitorados correspondem ao número máximo de bytes alocados 

dinamicamente, porcentagem do tempo gasto com a coleta de lixo e número de 

coletas em cada geração.   

 

5.2 Código .NET Gerado Com o Uso do Phoenix 

Os primeiros testes com o conjunto de programas compilados demonstrou 

algumas deficiências do código gerado. Nesta Seção serão apresentadas as 

deficiências resultantes de restrições na geração de código .NET com o Phoenix. 

Após uma breve explanação sobre o porquê de cada problema será apresentado 
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uma alternativa para resolução deste e os resultados obtidos após a 

implementação da solução. 

 

5.2.1 Variáveis temporárias 

O uso de variáveis temporárias para o armazenamento de valores resultantes 

de operações é uma técnica comum no desenvolvimento de um compilador. 

Utilizando o Phoenix há uma série de instruções, denominada ExpressionIntructions, 

que fazem uso desta técnica, tendo como operando de destino uma variável 

temporária. Estas variáveis temporárias, entretanto, devem, durante a geração de 

código, ser removidas ou substituídas por variáveis reais. Como exemplo, uma soma 

de dois valores e o posterior armazenamento do resultado em uma variável local é 

feita, utilizando o Phoenix, através do Código 21. Neste, a remoção da variável 

temporária poderia ser feita passando como operando de retorno da instrução 

instAdd o operando varOpZ. 

1 // Instrução soma dois operandos e retorna uma variável temporária 
2 Instruction instAdd =  
3     Instruction.NewBinaryExpression(FuncUnitListPhaseList,  
4        Phx.Common.Opcode.Add, varOpX, varOpY); 
5  
6 // Armazena o valor da variável temporária na variável real  
7 // representada por varOpZ 
8 Instruction instStore = 
9     Instruction.NewUnary(FuncUnit, Phx.Common.Opcode.Store, varOpZ,  
10        instAdd.DestinationOperand); 

Código 21. Variáveis temporárias 

O código MSIL utiliza uma pilha para armazenamento temporário de valores, 

não necessitando de variáveis temporárias para executar tal função. Desta forma, o 

processo de geração de código ao transformar da representação HIR para LIR 

deveria remover as variáveis livres, substituindo seu uso pelo uso da pilha. Entretanto 

a geração de código MSIL padrão do Phoenix não realiza esta substituição, 

fazendo com que algumas variáveis temporárias que deveriam ser removidas 

acabem sendo promovidas a variáveis reais no código gerado. A não remoção 

destas variáveis resulta em um código sujo, cheio de instruções desnecessárias.  O 

Código 22, mostra as instruções MSIL geradas para o exemplo anterior, sem a 

remoção da variável temporária que armazena o resultado da adição. 

1 // Código gerado com variável temporária desnecessária 
2 ldloc.0 // varOpx 
3 ldloc.1 // varOpY 
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4 add 
5 stloc.2 // variável temporária 
6 ldloc.2  
7 stloc.3 // varOpZ 

Código 22. MSIL sem remoção de variáveis temporárias 

Além de um maior consumo de memória, necessário para o armazenamento 

das variáveis temporárias, as instruções geradas para armazenamento e leitura 

destas variáveis intermediárias dificultavam, a implementação de algumas 

otimizações no código, como a inserção de instruções tail (Seção 5.3.1). Para 

minimizar tais problemas foi inserida uma nova fase no processo de compilação. 

Esta fase é responsável por identificar variáveis temporárias na representação LIR, 

bem como as instruções que a manipulam, e as removê-las. Com o uso desta nova 

fase as instruções stloc.2 e ldloc.2, presentes no Código 22, seriam removidas, bem 

como a variável local correspondente. 

Tabela 3. Impacto da remoção de variáveis temporárias 

Programa Número 
de 

variáveis 
removida

s 

S/ Fase de 
remoção 

C/ Fase de 
remoção 

Impacto da 
remoção 

  Tamanh
o 

Temp
o 

Tamanh
o 

Temp
o 

Tamanh
o 

Temp
o 

Tak 32  6.144  17,71  5.632  17,70 8,33% 0,05% 

Primes 123  9.728  16,37  9.216  16,33 5,26% 0,24% 

Queens(12) 155 12.288  02,82 11.264  02,78 8,33% 1,42% 

Exp3 443 22.016  32,58 19.968  32,64 9,30% -0,20% 

DigitsE1 
(1500) 330 23.040  30,43 20.992  30,65 8,89% -0,72% 

WheelSieve
1 

(50000) 
747 40.960  

00,87 
40.960  

00,87 
8,16% 

0,03% 

WheelSieve
2 

(50000) 
626 35.328  

12,20 
31.232  

12,17 
8,13% 

0,03% 

Média      8,02% 0,16% 
 

A Tabela 3 mostra o impacto da remoção das variáveis temporárias 

promovidas pela nova fase, inserida no processo de compilação. Em todos os 

exemplos foi observada uma redução do tamanho (em megabytes) do programa, 

que ficou em média 8,02% menor. Esta diminuição no tamanho se deve 
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principalmente à remoção de instruções que, desnecessariamente, liam e 

armazenavam valores nestas variáveis. Quanto ao tempo de execução, foram 

observadas pequenas variações para mais e para menos, ficando na média 

praticamente inalterado. Resultados mais precisos poderiam ser observados para 

valores de entrada maiores, principalmente para programas que fazem grande uso 

de memória, como DigitsE1 e Queens e WheelSieve 1 e 2. Entretanto, neste estágio 

do desenvolvimento do compilador a questão do estouro da pilha de chamadas 

recursivas e vazamentos de memória ainda não haviam sido resolvidos por 

completo, ocasionando estouro da pilha para valores maiores que os utilizados.  

A contribuição desta nova fase vai além da redução no tamanho do 

programa e do ganho de desempenho em alguns programas. Ela removeu 

instruções que dificultavam a identificação de chamadas recursivas e pontos de 

inserção para instruções tail (Seção5.3.1), essências para o controle da pilha de 

chamadas em programas funcionais. 

 

5.2.2 Casamento de padrões aninhados 

No compilador aqui proposto expressões de casamento de padrões são 

implementadas utilizando instruções switches. Tais instruções são úteis para 

selecionar entre diferentes blocos de instruções, entretanto estas foram 

desenvolvidas com foco em linguagens imperativas onde tais blocos são compostos 

por um conjunto de comandos os quais podem alterar estados das variáveis, mas 

não retornam um valor. Já em linguagens funcionais este bloco corresponde a uma 

expressão, a qual após sua avaliação retorna um valor. Embora, pensando 

diretamente na CLR seja possível passar este valor através da pilha de execução, 

utilizando o Phoenix, mais precisamente a HIR, esta opção não é valida, pois não é 

permitido o manuseio da pilha diretamente. 

A solução encontrada para contornar tal restrição foi adicionar para cada 

expressão de casamento de padrões uma variável responsável por armazenar o 

resultado da avaliação das alternativas. Como apenas a alternativa selecionada é 

executada, o valor armazenado na variável corresponderá à expressão 

selecionada. Esta abordagem funciona bem para a maioria dos casos, entretanto 

ao observar o código gerado para o conjunto de programas de testes foi 
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observado que em casamento de padrões aninhados eram gerados desvios e 

alocações desnecessárias. Neste cenário era comum aparecer uma seqüência de 

instruções que armazenavam um valor em uma variável e em seguida fazia o 

desvio para outra seqüência, a qual armazenava o valor da variável anterior em 

uma nova e tornava a fazer um desvio, como observado no Código 23. Este 

conjunto de instruções redundantes também dificultava a identificação de pontos 

de inserção da instrução tail.  

1      call       int32 sum(int32,int32) 
2       stloc.1 
3       br         IL_01d5 
4           ... 
5 IL_01d5:  ldloc.1 
6      stloc.2 
7           br    IL_01b8 
8        ... 
9 IL_01b8:  ldloc.2 
10      ret 

Código 23. Instruções desnecessárias em casamento de padrões aninhados 

A fim de verificar o impacto da remoção destes desvios foi construído um 

plugin que percorre a lista de instruções a procura de instruções de desvio 

incondicional. Ao encontrar, é verificado se uma possível variável armazenada 

antes do desvio é re-armazenada após o desvio. Em caso positivo ele guarda a 

última variável armazenada e continua verificando se há novos desvios e 

armazenamentos. Ao final ele substitui a variável de destino da primeira instrução 

de armazenamento pela última variável guardada e apaga todas as instruções e 

variáveis percorridas no caminho.  Como resultado desta transformação é obtido o 

Código 24, o qual não só é mais enxuto como permite a inserção de uma instrução 

tail, inviável no código anterior. 

1     call       int32 sum(int32,int32) 
2     ret 

Código 24. Código após a remoção dos desvios e variáveis desnecessárias 

A Tabela 4 mostra os resultados obtidos, comparando os tempos de 

execução de cada programa gerado com e sem a remoção dos desvios e 

variáveis desnecessárias. Embora, a inserção desta nova fase no processo de 

compilação tenha causado, diretamente, pouco impacto, apenas 5,43% na média, 

indiretamente o impacto foi bem maior. Ela permitiu que novos pontos para 

inserção de instrução tail ou de recursão fosse identificados, melhorando o 

tratamento de memória através das técnicas descritas na Seção 5.3. A pequena 

melhoria se deve a diminuição da quantidade de instruções, tendo sido observado 
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pouca ou nenhuma alteração no consumo de memória após a remoção das 

instruções de desvios.  

Tabela 4. Remoção de desvios e variáveis desnecessárias 

 Sem remoção Com remoção Impacto da 

remoção 

Tak 17,70 17,86 -0,90% 

Primes 16,33 16,32 0,10% 

Queens(12) 02,78 02,44 12,27% 

Exp3 32,64 32,53 0,35% 

Digitse1 02,14 02,09 0,08% 

Wheelsieve1(50000) 00,87 00,65 25,67% 

Wheelsieve2(50000) 12,17 12,12 0,43% 

Média   5,43% 

 

Esta otimização demonstra como é fácil identificar padrões de códigos e 

alterá-los utilizando o Phoenix, o que abre um grande horizonte de possíveis 

otimizações a serem implementadas.  

 

5.3 Análises e Otimizações 

Após a resolução dos problemas ocasionados pela a conversão da IR para 

MSIL, discutidos na Seção anterior, novos plugins foram construídos para testar 

alternativas para resolução do estouro da pilha de chamada e para otimizar o 

código gerado. 

 

5.3.1 Tail call 

Como descrito na Seção 2.1, uma das principais características das 

linguagens funcionais é o uso de recursão ou invés de estruturas de repetição. Este 

forte uso da recursão faz com que a pilha de chamadas cresça excessivamente, o 

que acarreta não só em um grande consumo de memória, como também, na 
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possibilidade de um estouro da memória. Para evitar este estouro de memória é 

necessário utilizar algum mecanismo que descarte o frame de atualização de 

chamadas recursivas.  

A CLR disponibiliza a instrução tail a qual descarta o frame de atualização de 

uma chamada a um método desde que esta seja precedida por uma instrução de 

retorno. Este seria o mecanismo ideal para solucionar o problema de chamadas 

recursivas, entretanto sua implementação na CLR requer melhorias, uma vez que 

seu uso penaliza o desempenho do programa25. Esta penalidade, entretanto, ocorre 

apenas na implementação da CLR para máquinas com arquitetura x86, na 

implementação para x64 este problema foi corrigido, o que acarreta ganho de 

desempenho ao utilizar a instrução tail nesta última. Detalhes sobre diferenças de 

implementação da instrução tail para máquinas x86 e x64 e explicações sobre o 

desempenho desta são fornecidas por Shri Borde[55].   

A fim de avaliar o desempenho do uso da instrução tail em diferentes 

implementações da CLR, foi utilizado o Código 2526, o qual foi executado, através 

de um loop, 10.000 vezes. Após a compilação foi feita uma cópia, a qual teve seu 

código IL alterado, sendo adicionada uma instrução tail antes da chamada 

recursiva. Os dois programas foram então executados tanto em um sistema x86 

como em um x64. Como esperado no ambiente x86 houve uma grande queda no 

desempenho, com tempo de execução em média 79% maiores para o código com 

a instrução tail. Já para a máquina x64 o mesmo código apresentou uma melhora 

no desempenho com tempo de execução em média 44% menor.  

1 static double OriginalFunction(double d, int k) 
2 { 
3     if (k > 1) return OriginalFunction(d * (k + 1) / k, k - 1); 
4     else return d; 
5 } 

Código 25. Função recursiva para teste de tail-calls 

No compilador a inserção desta instrução é feita através de duas fases, a 

primeira (MarkTailCallPhase) responsável por marcar as instruções de chamadas 

que devem ser modificadas e outra (ApplyTailCallPhase) responsável pela inserção. 

                                                 
25 Explicações para esta queda no desempenho no uso da instrução tail. em sistemas x86 podem ser 

encontradas no endereço http://blogs.msdn.com/shrib/archive/2005/01/25/360370.aspx 

26 Retirado do endereço http://www.jelovic.com/weblog/e59.htm 
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Esta separação se faz devido a uma restrição do Phoenix, que só permite a inserção 

da instrução tail após a fase de construção da pilha (StackAllocatePhase). São 

marcadas para inserção da instrução tail todas as instruções de chamada a um 

método que precedam uma instrução de retorno.  

Como o descarte da pilha de execução é essencial para o não estouro da 

pilha de chamadas em alguns programas funcionais a inserção da instrução tail é 

habilitada por padrão no compilador, entretanto ela pode ser desligada através da 

diretiva de compilação –notail, caso o usuário identifique que esta inserção seja 

desnecessária para o código a ser compilado. 

A Tabela 3 mostra os tempos de execução antes e após a inserção de 

instruções tail. Diferente do esperado, apenas para Tak, Queens e WheelSieve1 a 

inserção da instrução tail causou um aumento do tempo de execução 

considerável, respectivamente: 54,63%, 12,39% e 12,89% mais lento. O grande 

aumento no tempo de execução de Tak se deve ao fato deste programa ser 

altamente recursivo e sem alocação dinâmica de memória, como pode ser 

observado na Tabela 6. Desta forma, não há ganho com a redução do tempo 

gasto em coleta de lixo, o qual poderia compensar o tempo perdido com o uso da 

instrução tail. Para os demais exemplos o tempo de execução diminui, devido à 

diminuição no tempo gasto com coletas de lixo, sendo que para  DigitsE1, 

programa que requer muita memória, este ganho foi bastante expressivo. 

Tabela 5. Impacto da inserção de instrução tail 

Programa Sem Tail Com Tail Impacto da 

Inserção 

TAK 17,86 27,62 -54,63% 

PRIMES 16,32 15,14 7,19% 

Queens(12) 02,44 02,74 -12,39% 

EXP3 32,53 30,71 5,60% 

DigitsE1 02,09 36,75 40,82% 

WheelSieve1(50000) 00,65 00,73 -12,89% 

WheelSieve2(50000) 12,12 09,45 7,70% 

Média   -2,95% 
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A fim de buscar uma explicação sobre o porquê do comportamento 

observado, foi traçado um perfil do uso de memória destes programas através da 

observação do comportamento do coletor de lixo, os resultados podem ser 

observados na Tabela 6. Para Tak e WheelSieve1 não ocorreu nenhum diminuição 

do tempo em coleta de lixo, uma vez que para estes foram realizadas poucas ou 

nenhuma coleta de lixo tanto antes como após inserção da instrução tail. Para os 

demais programas houve a diminuição do tempo gasto pelo coletor de lixo, o que 

ajudou a compensar as perdas impostas pela inserção da instrução tail. Como 

pode se observar o número de coleta de lixos praticamente não se alterou o que 

demonstra que a diminuição do tempo de coleta não se deve a uma diminuição 

do número de coletas, e sim a diminuição do número de frames a serem percorridos 

pelo coletor de lixo, promovida pela instrução tail ao descartar frames 

desnecessários. 

Tabela 6. Informações sobre o coletor de lixo após a inserção de instruções tail 

Sem Tail Com Tail 

Programa 
% Tempo 

em coleta 

de lixo 

Total de 

coletas 

% Tempo 

em coleta 

de lixo 

Total de 

coletas 

Tak 0,0% 0 0,0% 0 

Primes 63,9% 231 60,7% 231 

Queens(12) 21,0% 65 17,9% 65 

Exp3 70,2% 1644 64,6% 1644 

DigitsE1 71,1% 2985 44,7% 3124 

WheelSieve1(50000) 0,0% 3 0,0% 3 

WheelSieve2(50000) 70,3% 159 50,1% 159 

 

  

5.3.2 Desvios em chamadas recursivas 

Como demonstrado anteriormente o uso de instruções tail não apresenta 

bom desempenho em implementações da CLR para sistemas x86. Outra técnica 

que pode ser utilizada para evitar que a pilha de chamadas estoure em chamadas 

recursivas é através da inserção de uma instrução de desvio incondicional para o 
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início da função. Esta técnica, entretanto, só pode ser utilizada para chamadas 

recursivas à própria função, não contemplando chamadas mutuamente recursivas, 

onde duas funções diferentes fazem chamadas recursivas entre si, como a 

mostrada no Código 26. Neste código a função foo chama boo, que por sua vez 

chama foo. Desta forma, instruções tail ainda são necessárias para este tipo de 

recursão. 

1 foo = boo 
2 boo = if ({-condição de parada-}) 1 else foo 

Código 26. Chamadas mutuamente recursivas 

Para promover esta otimização foi criado um plugin, o qual faz uso das 

marcações feitas na fase MarkTailCallPhase e substitui a fase ApplyTailCallPhase por 

uma nova que verifica se a instrução marcada corresponde a uma chamada a 

própria função na qual ela esta inserida e se este for o caso ao invés de adicionar 

uma instrução tail salva os argumentos e faz um desvio para o início da chamada. 

O código deste plugin pode ser conferido no Apêndice C. 

O resultado da aplicação deste plugin pode ser observado na Tabela 7. O 

maior impacto foi observado nos programa Tak e Queens que tiveram seus tempos 

de execução drasticamente reduzidos, respectivamente, 45,48% e 30,19% menor. 

Outro programa beneficiado por esta substituição foi WheelSieve1 que obteve um 

tempo 25,23% menor. Os demais programas variaram pouco, obtendo variações 

menores que 1% para mais e para menos.  

É importante observar que a melhoria ocorre nos exemplos onde a inserção 

da instrução tail, Seção 5.3.1, gerou uma grande queda de desempenho. Desta 

forma, a substituição de instruções tail por instruções de desvio permite o 

tratamento de chamadas recursivas sem os efeitos colaterais no desempenho 

gerados pela instrução tail. 

Tabela 7. Recursão através de desvio para o inicio da função 

Programa Com Tail Com desvio Impacto 

Tak 27,62 15,06 45,48% 

Primes 15,14 15,23 -0,56% 

Queens 16,47 11,50 30,19% 

Exp3 30,71 30,62 0,29% 
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DigitsE1 36,75 36,70 0,13% 

WheelSieve1 12,93 09,67 25,23% 

WheelSieve2 20,70 20,71 -0,04% 

Média   14,39% 

 

Por ter apresentado na média um bom desempenho (14,39%) e uma grande 

melhora (acima de 25%) para programas extremamente recursivos, como o Tak, 

Queens e WheelSieve1, o uso de desvios em chamadas recursivas para a própria 

função foi incorporado ao compilador. Entretanto, este pode ser desabilitado pelo 

usuário através da diretiva –nobranchrecursion. 

 

5.3.3 Casamento de padrões com valores booleanos 

Desvios condicionais, como instruções if em haskell, são traduzidas para a 

linguagem Core como instruções de casamento de padrões de valores booleanos. 

Uma vez que, na Core, valores booleanos são representados utilizando tipos 

algébricos, a avaliação da expressão condicional e a escolha da alternativa 

requerem uma série de operações, que degradam seu desempenho. O Código 27 

mostra em C# como é feito tal mapeamento. Inicialmente, a condição é avaliada 

e de acordo com o resultado é gerado o construtor correspondente, linhas 1 a 5. 

Através de uma instrução switch a tag deste construtor é verificada e é feito o 

desvio para o código da alternativa correspondente, linhas 7 a 15. 

1 //Avaliação da expressão e instanciação do Construtor correspondente 
2 if (ExpCondição) 
3     pack = RuntimeSystem.TRUE; 
4 else 
5     pack = RuntimeSystem.FALSE; 
6 //Casamento de padrão utilizando o valor resultante da avaliação da condição 
7 switch (((Pack) pack).tag) 
8 { 
9     case 0: 
10          //Alternativa condição falsa 
11          break; 
12  
13     case 1: 
14          //Alternativa condição verdadeira 
15          break; 
16 } 

Código 27. Representação de desvios condicionais com construtores para valores booleanos. 
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Este código pode facilmente ser otimizado, eliminando se o uso de um 

construtor para representar o valor booleano. Uma vez que a avaliação da 

expressão de comparação retorna sempre um valor inteiro (zero para falso e um 

para verdadeiro), é possível substituir a avaliação da tag na instrução switch pela 

avaliação da expressão condicional, resultando no Código 28.  

1 switch (ExpCondição) 
2 { 
3     case 0: 
4          //Alternativa condição falsa 
5          break; 
6  
7     case 1: 
8          //Alternativa condição verdadeira 
9          break; 
10 } 

Código 28. Representação de desvios condicionais otimizada 

Com auxílio de um plugin, tal otimização foi adicionada ao compilador. O 

impacto desta adição pode ser observado na  Tabela 8. Três programas tiveram 

grande melhoria de desempenho: Tak (16,46%), Queens (11,77%) e WheelSieve1 

(18,21%). Para os demais o impacto foi pequeno, ou ainda irrelevante (variação 

menor que 0,1%).  

Tabela 8. Impacto da remoção de construtores em desvios condicionais. 

Programa Com Tail Com desvio Impacto 

Tak 15,06 12,58 16,46% 

Primes 15,23 15,22 0,07% 

Queens 11,50 10,15 11,77% 

Exp3 30,62 30,64 -0,07% 

DigitsE1 36,70 36,01 1,89% 

WheelSieve1 09,67 07,91 18,21% 

WheelSieve2 20,71 20,58 0,65% 

Média   7,00% 

 

 

5.4 Análise Final do Compilador 

Após os testes utilizando plugins, descritos nas seções anteriores, foram 

selecionadas as otimizações que obtiveram melhores resultados, as quais foram 
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adicionadas como fases do compilador final. De modo a quantificar o desempenho 

do código gerado por este compilador, nesta Seção, este será comparado com 

outros compiladores Haskell.  

 

5.4.1 Versus Haskell .NET     

O compilador Haskell .NET[5], representou o modelo de compilação utilizado 

neste trabalho e é o único dentre os compiladores analisados na Seção 2.5 que 

gera código .NET a partir de uma linguagem funcional estrita. Desta forma, foi o 

melhor exemplo encontrado para mensurar a qualidade do código gerado pelo 

PhxSTGCompiler, tendo como base uma implementação anterior. 

 Como pode ser observado na Tabela 9 na média o PhxSTGCompiler obteve 

tempos 1,70% menores que o Haskell .NET. Tak e Queens obtiveram uma grande 

melhoria, acima de 20%, decorrente principalmente da otimização dos desvios 

condicionais, descrita na Seção 5.3.3. Apenas em dois exemplos: Exp3 (-2,2%) e 

DigitsE1 (-44,8%), ocorreu uma queda no desempenho, sendo esta bastante 

expressiva para o último. 

Tabela 9. PhxSTGCompiler x Haskell .NET 

Programa Haskell .NET  PhxSTGCompiler PhxSTGCompiler/Haskell 

.NET 

Tak 15,10 12,58 20,00% 

Primes 15,24 15,22 0,13% 

Queens 13,54 10,15 33,45% 

EXP3 29,97 30,64 -2,20% 

DigitsE1 19,86 36,01 -44,83% 

WheelSieve1 08,29 07,91 4,77% 

WheelSieve2 20,70 20,58 0,60% 

Media   1,70% 

 

Buscando identificar o porquê de DigitsE1 ter tido uma queda de 

desempenho tão grande, foi feito um vasto estudo tanto no código Core como no 

STG gerados para este. Tal estudo demonstrou a ausência, no código Core, de 



99 
 

 
 

algumas otimizações e informações importantes. Foi observado que na STG de 

DigitsE1 algumas expressões ao invés de gerarem thunks, para avaliação posterior, 

eram avaliadas imediatamente através de expressões case. Este tipo de otimização 

era previsto na transformação Core para STG (Seção 4.2.2), mas apenas para tipos 

Unboxed, o que não é o caso. Outra informação, ausente, que demonstrou alta 

relevância foi a presença da flag de atualização /r (reentrant) em alguns binds, que 

informa que a closure não necessitava ser atualizada. O uso desta última 

informação causou grande impacto no programa WheelSieve2.  

Tais informações não são obtidas através da Core, desta forma, a fim de 

comprovar a importância destas, alterações manuais foram feitas no processo de 

compilação. Estas alterações não se estendem a compilação em geral sendo 

específicas para comprovar a influência destas informações em DigitsE1 e 

WheelSieve2. Como observado na Tabela 10, a grande queda no desempenho 

observado em DigitsE1, praticamente, não existe mais (-0,5%) e WheelSieve2 obteve 

uma grande melhoria, passando a ser 224% mais rápido que a versão compilada 

com o Haskell .NET.  

Tabela 10. Compilação com informações ausentes na CORE 

Programa PhxSTGCompiler(Alt) Haskell .NET PhxSTGCompiler/Haskell 

.NET 

DigitsE1 19,97 19,86 -0,5% 

WheelSieve2 6,39 20,58 224,0% 

 

Com estes novos valores, com exceção de Exp3, o PhxSTGCompiler obtém 

melhores resultados para todos os códigos analisados e passa a ser na média 

39,95% mais veloz que o Haskell .NET, vide Tabela 11. Como mencionando na Seção 

4.2.2, a Core gerada pelo GHC está sendo, atualmente, modificada. Espera-se que 

em futuras versões estas informações possam estar presentes, auxiliando na 

geração de um código mais veloz. 

Tabela 11 - PhxSTGCompiler* x Haskell .NET. *Com alterações manuais 

Programa Haskell .NET  PhxSTGCompiler PhxSTGCompiler/Haskell 

.NET 
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Tak 12,58  15,10  20,00%  

Primes 15,22  15,24  0,13%  

Queens 10,15  13,54  33,45%  

EXP3 30,64  29,97  -2,20%  

DigitsE1 19,97 19,86  4,77%  

WheelSieve1 07,91  08,29 -0,5%  

WheelSieve2 06,39 20,58  223,98%  

Media   39,95%  

 

 

5.4.2 Versus GHC nativo 

Por ser considerado o compilador estado da arte para Haskell, a 

comparação com o gerador de código nativo do GHC é essencial para qualquer 

implementação de um compilador Haskell. A Tabela 12 resume os resultados desta 

comparação. Como esperado, os tempos obtidos com GHC foram menores, 

havendo uma diferença superior a uma ordem de magnitude apenas para Primes e 

Exp3. Para os demais a variação foi bem menor, sendo bastante semelhante para 

Tak (1,21) e praticamente igual para WheelSieve2 (1,02).  

Tabela 12. PhxSTGCompiler x GHC 

Programa PhxSTGCompiler GHC PhxSTGCompiler/GHC 

Tak 12,58 10,43 1,21 

Primes 15,22 00,46 33,08 

Queens 10,15 03,29 3,09 

Exp3 30,64 01,74 17,58 

DigitsE1* 19,97 02,01 9,95 

WheelSieve1 07,91 02,38 3,32 

WheelSieve2* 06,39 06,26 1,02 

Média   9,89 

*Valores obtidos com modificações manuais explicadas na Seção anterior. 

A explicação para uma diferença tão grande para Primes e Exp3 se deve ao 

alto tempo gasto com coleta de lixo realizados durante a execução destes 
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programas, onde a porcentagem de tempo gasto com coleta de lixo em relação 

ao tempo total de execução ficou acima de 55% (Tabela 13). Como o GHC tem um 

coletor de lixo especificamente criado para lidar com uma linguagem funcional 

estrita, em programas onde o consumo de memória exige um grande trabalho por 

parte do coletor de lixo o GHC tende a se destacar. 

Tabela 13. Perfil do consumo de memória (PhxSTGCompiler) 

Programa Bytes alocados na 

Heap 

% Tempo em coleta 

de lixo 

Tak 0 0,00% 

Primes 549.341.700 55,34% 

Queens 729.656 18,66% 

Exp3 12.138.600 65,29% 

DigitsE1* 6.657.824 53,36% 

WheelSieve1 33.458.150 11,48% 

WheelSieve2* 14.589.090 22,28% 

*Valores obtidos com modificações manuais explicadas na Seção anterior. 

A comparação com GHC demonstrou que com exceção dos programas 

onde o consumo de memória é algo crítico o compilador implementado é capaz 

de gerar programas com desempenho semelhante. Mostra ainda onde está o 

gargalo do mapeamento de uma linguagem funcional na plataforma .NET, 

gerenciamento de memória, apontando a direção para a qual futuras pesquisas 

nesta área devem ser voltadas.  

 

5.5 Considerações Finais 

Neste capítulo foram efetuadas diversas alterações no código utilizando o 

modelo de plugins, fornecido pelo Phoenix. Este recurso em conjunto com a 

biblioteca de manipulação de código IR demonstrou ser bastante útil, facilitando a 

identificação de padrões de códigos e sua manipulação. O conjunto de 

otimizações permitiu que o compilador final gerasse um código com desempenho 

satisfatório.  
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Ficou evidente que o maior problema no mapeamento de linguagens 

funcionais na plataforma .NET é o gerenciamento de memória. Por este motivo a 

maioria das otimizações realizadas tiveram como objetivo diminuir o consumo de 

memória dos programas gerados. Entretanto, melhorias maiores não foram possíveis 

devido à inviabilidade da manipulação do coletor de lixo da CLR e da opção por 

gerar código verificável. 



103 
 

 
 

 



104 
 

 
 

6 CONCLUSÕES E TRABALHOS FUTUROS 

 

Neste trabalho, após um amplo estudo de técnicas de implementações de 

linguagens funcionais na plataforma .NET, foi apresentada uma nova abordagem 

para construção de um compilador .NET para uma linguagem funcional. O 

compilador foi construído utilizando o framework Phoenix, que é uma ferramenta 

para construção de compiladores e de ferramentas para análise e otimização de 

código.  

O uso do framework Phoenix, inicialmente, representou uma dificuldade a 

mais, pois por ser uma ferramenta recente, havia pouco material de referência para 

estudo. Entretanto, passado esta etapa inicial seu uso facilitou, bastante, a 

construção do compilador, ao abstrair o processo de geração de código .NET, 

evitando a manipulação de código MSIL diretamente. A maior contribuição do 

Phoenix, entretanto, foi permitir que uma série de otimizações fossem realizadas, 

melhorando o desempenho do código gerado.  

O uso de plugins permitiu que diversas otimizações fossem testadas 

gradualmente, sem que fosse necessário alterar diretamente o código do 

compilador. O teste individual de cada otimização permitiu avaliar, isoladamente, o 

impacto de cada uma das otimizações e assim escolher uma melhor configuração 

para o compilador. 

Por fim, a comparação com outros compiladores demonstrou que o código 

gerado possui um bom desempenho, produzindo códigos mais velozes que os 

gerados pelo Haskell .NET e valores satisfatórios quando comparado ao código 

gerado pelo GHC  nativo.  

 

6.1 Resumo das Contribuições 

A seguir é descrito um resumo das principais contribuições deste trabalho: 
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• apresentação do estado da arte de implementações de linguagens 

funcionais na plataforma .NET, onde foram descritas as principais técnicas 

de mapeamento e comparação entre projetos reais; 

• estudo detalhado do framework Phoenix, com descrição das principais 

funcionalidades, sempre que possível através de exemplos práticos; 

• apresentação de uma nova abordagem para construção de um 

compilador funcional, capaz de gerar código .NET para programas 

Haskell. Este compilador além de validar a abordagem escolhida serve 

como ferramenta para auxílio de pesquisas na área de otimização de 

código, uma vez que novas técnicas podem facilmente ser incorporadas 

a ele; 

• descrição e implementação de técnicas de otimização de código. 

Podendo algumas destas técnicas ser implementadas mesmo em 

compiladores não funcionais.  

 

6.2 Limitações e Trabalhos Futuros  

O prelúdio compilado representa apenas uma pequena parte do real. 

Apenas as funcionalidades básicas requeridas pelos exemplos utilizados nos testes 

foram contempladas. A compilação completa de toda a especificação Haskell 98 

[12] e das bibliotecas do GHC, embora bastante trabalhosa, permitiria que qualquer 

programa Haskell pudesse ser diretamente compilado para .NET através desta 

implementação. Com a compilação completa do prelúdio, melhores testes 

poderiam ser efetuados utilizando os grupos Espectral e Real do NoFib. O que pode 

apontar novas possibilidades de otimização do código. 

Neste projeto foi utilizada a versão de julho de 2007 do Phoenix SDK. Esta 

versão possui diversas limitações quanto à geração de código .NET. Algumas destas 

limitações foram contornadas, seguindo orientações obtidas através do fórum da 

ferramenta, outras foram contornadas utilizando plugins, como especificado na 

Seção 5.2. Pouco antes do fim deste trabalho uma nova versão do Phoenix foi 

lançada, trazendo, dentre outras novas funcionalidades, diversas correções e 

melhorias na geração de código MSIL. Foram feitas algumas tentativas de atualizar 

o código para esta nova versão do SDK, entretanto devido a restrições de tempo 
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esta atualização foi deixada de lado. A atualização para a nova versão por si só já 

corrige uma série de deficiências na geração de código MSIL e pode resultar na 

geração de códigos mais velozes. 

O framework Phoenix fornece uma grande quantidade de facilidades para 

execução de análises e otimizações de código. As otimizações aqui implementadas 

utilizaram apenas uma parte destes recursos, o que já foi suficiente para um ganho 

considerável no desempenho. Dentre os diversos projetos que podem ser 

desenvolvidos utilizando o compilador aqui implementado em conjunto com a API 

Phoenix, são sugeridos: 

• Adição de labels que permitam identificar trechos do código IR 

responsáveis pelo mapeamento das estruturas funcionais. A identificação 

destes trechos de código poderia ser utilizada para permitir que novas 

formas de mapeamentos fossem testadas utilizando o modelo de plugins.

  

• Utilizar as bibliotecas de análise, tais como: Graph e Alias, para identificar 

trechos de código que executam tarefas desnecessárias ou passíveis de 

otimização. A identificação destes trechos de código pode ser 

adicionada a plugins que alterariam o funcionamento do compilador 

permitindo a otimização do código gerado.  

Embora o PhxSTGCompiler permita chamadas a métodos estáticos escritos 

em outras linguagens .NET, como foi feito em algumas das bibliotecas do prelúdio, a 

implementação aqui proposta teve como objetivo principal melhorar o 

desempenho do mapeamento de estruturas funcionais no ambiente .NET, não 

investindo muito na interoperabilidade. Sem dúvida esta interoperabilidade foi 

facilitada uma vez que após mapeadas na CLR todas as linguagens compartilham 

o mesmo conjunto de tipos. Entretanto, a construção de bibliotecas que 

encapsulem as diferenças existentes entre as estruturas funcionais e as estruturas OO 

permitiria uma comunicação mais direta. 
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APÊNDICE A    ‐ UNIDADES DE COMPILAÇÃO 

 

As unidades de compilação representam estruturas presentes na máquina 

STG e contém código responsável por gerar sua respectiva representação IR. São 

divididas em unidades básicas, expressões, unidades atômicas e alternativas. 

A Tabela 14 descreve classes que representam as unidades básicas de 

compilação, as quais correspondem aos nós principais da STG. Utilizam o método 

Generate para gerar seu código IR e delega às unidades que as compõem a 

geração de seus próprios códigos. 

Tabela 14. Unidades básicas 

Classe Campos Geração da IR (método Generate) 

ModuleUnit • name:String 
• binds:List<Bind> 

Constrói a classe correspondente ao 

módulo e adiciona um método .cctor para 

inicialização dos campos estáticos 

correspondentes aos binds globais. Através 

de um loop é chamado o método 

Generate de cada um dos binds 

armazenados em sua lista. 

Bind • var:AtomVariable 
• lambda:LambdaForm 

Verifica se a ligação (bind) é global ou 

local e cria o local correspondente para o 

armazenamento da closure. Caso seja 

global é criado um campo estático na 

classe e um método para sua inicialização, 

o qual é adicionado a uma lista de 

métodos de inicialização a serem 

chamados no método .cctor da classe. 

Caso o bind seja local a closure é 

armazenada como variável local da 

função FEP, criada a partir da lambda-form.  

Lambda-

Form 

• freeVars:List<AtomVari
ble> 

• arg:List<AtomVarible> 

Verifica a flag de atualização para 

identificar se é necessário criar a SEP e 
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 • flag:Bool 
• expression:Expression 

decidir o tipo de closure a ser instanciado. 

A SEP é criada apenas quando o valor da 

flag for falso (closure não atualizável). O 

método Generate da lambda-form gera o 

esqueleto da FEP e chama o método 

Evaluation da expressão armazenada, a 

qual gera o código correspondente da 

função. 

DataUnit • listTvs:List<String> 
• listConsDef:List<Constr

uctorDefUnit> 

Cria lambda-forms que instanciam 

construtores. Tais lambda-form são 

necessárias para aplicações parciais de 

construtores e passagem de um construtor 

como argumento de uma função. Após a 

criação das lambda-forms, estas são 

ligadas a variáveis através de um bind e 

cada um destes binds tem seu método 

Generate executado.  

 

As unidades de compilação que representam expressões correspondem às 

expressões presentes na STG. Geram código IR através do método Evaluation, o 

qual além de gerar sua representação IR retorna um operando que armazena o 

resultado da expressão. 

Tabela 15. Unidades de compilação que representam expressões 

Classe Campos Geração da IR (método Evaluation)  

ExpLet • binds:List<Bind> 
• expression:Expressi

on 

Casa bind presente tem seu método 

Generate executado. Após a geração do 

código dos binds a expressão é avaliada, 

retornando o operando que armazena o 

resultado. 

ExpLetRec • binds:List<Bind> 
• expression:Expressi

on 

Semelhante a ExpLet, porém antes de efetuar 

o bind cada variável é adicionada a lista de 

variáveis livres da lambda-form, permitindo 

que a expressão possa fazer referência 
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recursiva. 

ExpCase • expression:Expressi
on 

• alts:List<Alternative
> 

Cria uma instrução switch onde para um case 

é gerado para cada objeto AlternativeUnit. 

Para tipos algébricos os valores presentes no 

construtor geram variáveis locais, para 

poderem ser acessados pela expressão. É 

criada uma variável para o armazenamento 

da expressão selecionada, a qual consiste no 

retorno da avaliação de uma expressão case. 

ExpLiteral • lit:AtomLiteral Retorna a avaliação do AtomLiteral 

armazenado. 

ExpApplicati

on 

• var:AtomVariable 
• args:List<Atom> 

Utiliza Reflection e informações armazenadas 

no ambiente de compilação para decidir se a 

função pode ser chamada diretamente. Se a 

aridade é conhecida em tempo de 

compilação e a aplicação é saturada é 

gerado código para a chamada direta da 

função estática correspondente. Caso 

contrário os argumentos são empilhados na 

pilha de argumentos e é feita a chamado ao 

método Enter da closure correspondente. 

ExpConstruct

or 

• const:Constructor 
• args:List<Atom> 

Utilizando as informações coletadas através 

de funções criadas a partir da DataUnit 

correspondente é verificado se a aplicação 

do construtor é saturada. Se a aplicação for 

satura é gerada a classe Pack 

correspondente ao construtor e seus 

argumentos, caso contrário a aplicação do 

construtor é tratada como uma aplicação 

parcial da função do construtor. 

ExpBuiltIn • op:PrimitiveOperat
or 

• args:List<Atom> 

Gera uma instrução que aplica dois 

operandos e retorna o resultado da 

aplicação. A operação a ser executada é 

definida pelo PrimitiveOperator, o qual é 
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mapeado para uma operação básica 

presente na CLR. 

 

Unidades de compilação atômicas representam os elementos atômicos da 

STG. Estes elementos pode ser variáveis, literais, construtores ou ainda expressões 

entre parênteses. Seu método Evaluation retorna o operando correspondente a 

unidade atômica que pode ser uma variável ou uma constante. Não gera 

instruções IR diretamente, no geral, apenas retorna operandos criados em outras 

unidades de compilação. 

Tabela 16. Unidades de compilação atômicas 

Classe Campos Geração da IR (método Evaluation) 

AtomVariable • moduleName:String 
• varName:String 
• type:STGType 

Faz a busca, primeiramente, na tabela 

de símbolos da função, caso não 

encontre nesta faz a busca na tabela de 

símbolos do módulo. A partir do símbolo 

localizado é retornado um 

VariableOperand que representa ou 

uma variável local da função ou um 

campo estático da classe, neste último 

caso quando o símbolo é localizado na 

tabela de símbolos do módulo (bind 

global).   

AtomLiteral<T> • value:T Retorna um ImmediateOperand com o 

valor correspondente ao literal. 

Constructor • moduleName:String 
• constName:String 

Utilizado apenas para armazenar o 

nome do construtor. Não é avaliado 

diretamente. 

AtomExpression • expression:Expression Retorna a avaliação da expressão 

armazenada. 

  

Esta última classe de unidades de compilação representa possíveis 

alternativas de uma expressão case. Não geram código IR diretamente, apenas 

armazenam a expressão, que caso selecionada, será executada. 
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Tabela 17. Unidades de compilação que representam alternativas 

Classe Campos Geração da IR (método Evaluation) 

AltPrimitive • literal:Interger Sua avaliação retorna avaliação da 

expressão armazenada. 

AltAlgebraic • const:Constructor 
• vars:List<Atomvariabl

e> 
• expression:Expression 

Armazena variáveis que devem ser 

preenchidas antes da avaliação da 

expressão. Sua avaliação retorna avaliação 

da expressão armazenada. 

AltDefault • expression:Expressio
n 

Sua avaliação retorna avaliação da 

expressão armazenada. 
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APÊNDICE B    ‐ PROFILER DE MEMÓRIA 

 

O Código 29 cria uma ferramenta que gera o perfil de consumo de memória 

de um programa. Utiliza, para tanto, contadores de desempenho disponibilizados 

pelo framework .NET.  São retornados cinco valores, que corresponde, 

respectivamente, ao máximo de memória heap alocado, a média das 

porcentagens de tempo gasto em coleta de lixo e o número de coletas realizadas 

nas gerações 0, 1 e 2. 

1 class MemoryProfiler 
2 { 
3     static float maxMem; 
4     static float totalGCTime; 
5     static int numGCTime; 
6     static int ger0; 
7     static int ger1; 
8     static int ger2; 
9     private static PerformanceCounter gcTimerCounter; 
10     private static PerformanceCounter heapBytesCounter; 
11     private static PerformanceCounter ger0Counter; 
12     private static PerformanceCounter ger1Counter; 
13     private static PerformanceCounter ger2Counter; 
14     static void Main(string[] args) 
15     { 
16         if (File.Exists(args[0])) 
17         { 
18             string instanceName = args[0].Remove(args[0].Length-4); 
19  
20             // Cria contadores 
21             gcTimerCounter =  
22                 new PerformanceCounter(".NET CLR Memory", "% Time in GC"); 
23             gcTimerCounter.InstanceName = instanceName; 
24             heapBytesCounter =  
25                 new PerformanceCounter(".NET CLR Memory", "# Bytes in all  
26                    Heaps"); 
27             heapBytesCounter.InstanceName = instanceName; 
28             ger0Counter =  
29                 new PerformanceCounter(".NET CLR Memory", "# Gen 0  
30                    Collections"); 
31             ger0Counter.InstanceName = instanceName; 
32             ger1Counter =  
33                 new PerformanceCounter(".NET CLR Memory", "# Gen 1  
34                    Collections"); 
35             ger1Counter.InstanceName = instanceName; 
36             ger2Counter =  
37                 new PerformanceCounter(".NET CLR Memory", "# Gen 2  
38          Collections"); 
39             ger2Counter.InstanceName = instanceName;                 
40              
41             //Cria thread para monitorar execução do programa 
42             ThreadStart memoryOperation = new ThreadStart(GetMemoryCount); 
43             Thread memoryThread = new Thread(memoryOperation); 
44             memoryThread.Start(); 
45  
46             //Executa o programa e espera pelo seu final 
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47             Process p = Process.Start(args[0]); 
48             p.WaitForExit(); 
49             memoryThread.Abort(); 
50  
51             //Imprime valores obtidos 
52             Console.Write("{0:N0}\t", maxMem); 
53             if (numGCTime > 0) 
54             { 
55                 Console.Write(totalGCTime / numGCTime + "\t");  
56             } 
57             else 
58                 Console.Write("0"); 
59             Console.Write("{0:N0}\t", ger0); 
60             Console.Write("{0:N0}\t", ger1); 
61             Console.Write("{0:N0}\n", ger2); 
62         } 
63         else 
64             Console.WriteLine("Programa não existe: " + args[0]); 
65     } 
66  
67     static void GetMemoryCount() 
68     { 
69         while (true) 
70         { 
71             try 
72             { 
73                 float totalmemory = heapBytesCounter.NextValue(); 
74                 if (maxMem < totalmemory) 
75                     maxMem = totalmemory; 
76                 Thread.BeginCriticalRegion(); //Inicio operação unária 
77                 totalGCTime += gcTimerCounter.NextValue(); 
78                 numGCTime++; 
79                 Thread.EndCriticalRegion(); //Fim operação unária 
80       //Armazena os ultimos valores para cada geração 
81                 ger0 = (int)ger0Counter.NextValue(); 
82                 ger1 = (int)ger1Counter.NextValue(); 
83                 ger2 = (int)ger2Counter.NextValue(); 
84             } 
85             catch (Exception){} 
86             //Aguarda 10 milisegundos 
87             Thread.Sleep(10); 
88         } 
89     } 
90 } 

Código 29. Ferramenta de profiler de memória. 
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APÊNDICE C    ‐ PLUGIN DE RECURSÃO ATRAVÉS DE DESVIOS 

 

Plugin responsável por substituir chamadas recursivas por desvios 

incondicionais para o início da função. De forma a evitar redundância, no Código 

30 é apresentado, apenas,  o método Execute do plugin, o qual contém a parte 

funcional deste. Instruções de como construir o restante do plugin podem ser vistas 

na Seção 3.2. 

A função Execute verifica se a instrução marcada se chama recursivamente 

(linhas 18 e 19), se este for o caso cria a instrução de desvio (linhas 53 a 102), caso 

contrário apenas adiciona uma instrução tail antes da chamada (linhas 23 a 43). 

1 protected override void Execute(Phx.Unit unit) 
2 { 
3     if (!unit.IsFunctionUnit) 
4         return; 
5      
6     Phx.FunctionUnit functionUnit = unit.AsFunctionUnit; 
7     foreach (Phx.IR.Instruction instruction in                                        
8      functionUnit.Instructions) 
9     { 
10         if (instruction is Phx.IR.CallInstruction) 
11         { 
12             TailCallExtensionObject extObj = 
13                TailCallExtensionObject.Get(instruction); 
14             if (extObj != null) 
15             { 
16                 //Verifica se função chamada tem o mesmo nome da função que a  
17                 //contém 
18                 if (instruction.AsCallInstruction.FunctionSymbol !=  
19                     functionUnit.FunctionSymbol) 
20                 { 
21                     //Se não tiver o mesmo nome é inserido uma instrução tail               
22  
23                     Phx.IR.Instruction tailInstruction = 
24                         Phx.IR.ValueInstruction.New(functionUnit,                           
25                            Phx.Targets.Architectures.Msil.Opcode.TAILPREFIX); 
26  
27                     instruction.InsertBefore(tailInstruction); 
28  
29                     //Remove a instrução que armazena o valor de  
30                     //retorno da função 
31                     if (instruction.Next.Opcode ==  
32                        Phx.Targets.Architectures.Msil.Opcode.st) 
33                         instruction.Next.Remove(); 
34  
35                     //Busca a instrução de retorna da função 
36                     Phx.IR.Instruction returnInstruction =  
37                       instruction.Next; 
38                     while (!returnInstruction.IsReturn) 
39                         returnInstruction = returnInstruction.Next; 
40                     instruction.InsertAfter(returnInstruction.Copy()); 
41  
42                     //Desmarca a instrução 
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43                     instruction.RemoveExtensionObject(extObj); 
44                 } 
45                 else 
46                     //Chama método responsável por gerar desvio   
47                     InsereBranch(instruction, functionUnit); 
48             } 
49         } 
50     } 
51 } 
52 //Método responsável por criar instruções de desvio 
53 void InsereBranch(Instruction instruction,FunctionUnit functionUnit) 
54 { 
55     Operand varOp =  
56         functionUnit.FirstEnterInstruction.DestinationOperandList; 
57     Phx.Symbols.FunctionSymbol funcSym = instruction.FunctionSymbol; 
58  
59     //Cria lista com os argumentos passados à função 
60     List<Operand> argsOpAux = new List<Operand>(); 
61     while (varOp!=null) 
62     { 
63         if (varOp.IsVariableOperand) 
64         { 
65             argsOpAux.Add(varOp);  
66         } 
67         varOp = varOp.Next; 
68     } 
69  
70     //Inverte a lista de argumentos para que sejam armazenados corretamente 
71     List<Operand> argsOp = new List<Operand>(); 
72     for (int i = 1; i <= argsOpAux.Count; i++) 
73     { 
74         argsOp.Add(argsOpAux[argsOpAux.Count - i]); 
75     } 
76  
77     //Armazena os valores passados para a função  
78     foreach (Operand op in argsOp) 
79     { 
80         if (op.IsVariableOperand) 
81         { 
82             Operand sourceOp =  
83                 Operand.NewRegister(functionUnit, op.Type,  
84                    Phx.Targets.Architectures.Msil.Register.SR0); 
85             Instruction storeInstr = 
86                 Instruction.NewUnary(functionUnit,  
87                    Phx.Targets.Architectures.Msil.Opcode.st, op, sourceOp); 
88             instruction.InsertBefore(storeInstr); 
89         } 
90     } 
91     //Cria instrução de desvio p/ inicio da função 
92     Instruction branchInstruction = 
93         Instruction.NewBranch(functionUnit,    
94            Phx.Targets.Architectures.Msil.Opcode.br,             
95               functionUnit.FirstEnterInstruction.AsLabelInstruction); 
96     instruction.InsertBefore(branchInstruction); 
97  
98     //Remove a instrução que armazena o valor de retorno da função 
99     if (instruction.Next.Opcode == Phx.Targets.Architectures.Msil.Opcode.st) 
100         instruction.Next.Remove(); 
101     instruction.Remove(); 
102 } 

Código 30. Plugin que substitui recursão por desvios incondicionais. 
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