

Pós-Graduação em Ciência da Computação

“Applying a Semantic Layer in a Source Code Retrieval Tool”

Por

Frederico Araujo Durão

Dissertação de Mestrado

 Universidade Federal de Pernambuco

 posgraduacao@cin.ufpe.br

 www.cin.ufpe.br/~posgraduacao

RECIFE, ABRIL/2008

 Universidade Federal de Pernambuco

CENTRO DE INFORMÁTICA

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Frederico Araujo Durão

“APPLYING A SEMANTIC LAYER IN A SOURCE CODE RETRIEVAL TOOL"

ESTE TRABALHO FOI APRESENTADO À PÓS-GRADUAÇÃO
EM CIÊNCIA DA COMPUTAÇÃO DO CENTRO DE
INFORMÁTICA DA UNIVERSIDADE FEDERAL DE
PERNAMBUCO COMO REQUISITO PARCIAL PARA
OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIA DA
COMPUTAÇÃO.

 ORIENTADOR: Silvio Romero de Lemos Meira

CO-ORIENTADOR: Eduardo Santana de Almeida

RECIFE, ABRIL/2008

Durão, Frederico Araujo

Applying a semantic layer in a source code

 retrieval tool / Frederico Araújo Durão. – Recife: O

 Autor, 2008.

 127 folhas : il., fig., tab.

Dissertação (mestrado) – Universidade Federal de

Pernambuco. CIn. Ciência da Computação, 2008.

 Inclui bibliografia e apêndice.

 1. Ferramenta de busca. I. Título.

 025.524 CDD (22.ed.) MEI2008-033

able of Contents

Acknowledgments ... 4

Resumo ... 5

Abstract ... 6

List of Acronyms ... 7

List of Figures .. 8

List of Tables ... 9

Chapter 1 - Introduction ... 10

1.1. Motivation ... 10

1.1.1. Source Code Search Engines ... 11

1.2. Problem Statement ... 12

1.3. Overview of the Proposed Solution .. 12

1.3.1. Context .. 12

1.3.2. Outline of the Proposal ... 13

1.4. Out of Scope .. 14

1.5. Statements of the Contribution .. 15

1.6. Organization of the Dissertation .. 16

Chapter 2 - The Software Reuse: An Overview................................. 18

2.1. Introduction .. 18

2.2. The Motivation and Benefits of Software Reuse ... 20

2.3. Software Reuse Impediments ... 21

2.4. Reusable Software Assets .. 23

2.4.1. Source Code Reuse ... 24

2.4.2. Accessing Reusable Software Assets ... 27

2.5. Chapter Summary ... 27

Chapter 3 - Information Retrieval .. 29

3.1. Introduction ... 29

3.2. Information Retrieval versus Data Retrieval ... 30

T

3.3. The Relevant Information ... 32

3.4. The Semantic Challenges of Information Retrieval Systems 33

3.5. Technical Support for Information Retrieval Systems 34

3.5.1 Techniques for Query Formulation Support ...35

3.5.2 Classification Schemes for Component Retrieval Support 36

3.6. Source Code Retrieval for Reuse Activity .. 38

3.7. Information Retrieval Systems for Component Reuse 39

3.8. Information Retrieval Discussion .. 42

3.9. Chapter Summary .. 43

Chapter 4 - The Semantic Web ... 44

4.1. Introduction ... 44

4.2. Ontology ... 45

4.3. Real-world Ontology Aspects... 46

4.4. Ontology Engineering ... 47

4.5. Ontology Levels .. 49

4.6. The Mark-up Ontology Web Languages .. 50

4.6.1. Resource Description Framework (RDF) ... 51

4.6.2. RDF Schema ... 52

4.6.3. Ontology Inference Layer (OIL) ... 52

4.6.4. Ontology Web Language (OWL) ...53

4.6.5. DARPA Agent Markup Language (DAML) .. 54

4.7. Outstanding Semantic Web Projects for Knowledge Management 54

4.8. Semantic Search Engines ... 59

4.8.1 Semantic Search Engines .. 61

4.9. Chapter Summary .. 62

Chapter 5 - Semantic Search Engine .. 63

5.1. Requirements ... 64

5.1.1. Functional Requirements ... 64

5.1.2. Non-Functional Requirements .. 66

5.2. System Architecture ... 70

5.2.1. B.A.R.T Client ... 70

5.2.2. B.A.R.T Server ... 71

5.3. The Semantic Components ... 73

5.3.1. Semantic Code Analyzer .. 73

5.3.1.1. Implementation Aspects.. 75

5.3.1.2. Source Code Analysis and Classification ... 76

5.3.1.3. Semantic Indexing .. 78

5.3.2. Semantic Query Reasoner ... 79

5.3.2.1. Implementation Aspects.. 81

5.3.2.2. The Ontology Model ... 82

5.4. Semantic Configuration at B.A.R.T Eclipse Plug-in .. 86

5.5. Reused Frameworks .. 87

5.6. Semantic Search In Action ... 89

5.7. Chapter Summary .. 93

Chapter 6 - Semantic Search Engine Evaluation 94

6.1. Methodology .. 94

6.1.1. Information Retrieval Evaluation .. 95

6.1.2. Evaluation of the Semantic Layer .. 96

6.1.3. Goal .. 96

6.1.4. Variables .. 97

6.2. Experiment Configuration and Instantiation .. 98

6.3. The Evaluation Results ... 102

6.3.1. Recall Results .. 102

6.3.2. Precision Results ... 103

6.3.3. F-Measure Results .. 104

6.4. Final Considerations and Discussion ... 105

6.5. Chapter Summary ... 109

Chapter 7 - Conclusion .. 110

7.1. Achieved Goals .. 110

7.2. Related Work and Research Foundations ... 111

7.2.1. Software Reuse .. 112

7.2.2. Information Retrieval ... 112

7.2.3. Semantic Web ... 114

7.3. Future Work .. 115

7.4. Concluding Remarks ... 117

References .. 118

Appendix .. 126

cknowledgments

I would like to thank everyone that in some way have contributed and guided

me to accomplish this important mission in my life.

There were so many people involved that I would not possibly be able to name

them all here, so please accept my sincere apologies and be sure that I will

always be grateful to all of you.

I certainly would not be able to complete this dissertation without entire

emotional support from my family and close friends, especially my parents and

brothers, outlining here, my grandmother Dona Maria Helena, for being a proof

of love in my life, my lovely girl Renata Matos for the constant support and

“patient” during the whole time of this research.

The RiSE staff, especially Alexandre Martins for the memorable technical

discussions, of course, my co-adviser and always friend Eduardo Almeida, the

reuse man who have found me in Bahia and my visionary and “out of the

ordinary” adviser Silvio Meira, that have also been of fundamental importance

with all the bright ideas and suggestions, guidance, valuable feedback and hard

work. Silvio seems to be a water mine that everyday get renewed of life and

youth.

Last but not least, I would like to C.E.S.A.R. software factory for providing all

infrastructure for my personal growth and basis of this research.

A

esumo

O reuso de software é uma área de pesquisa da engenharia de software que tem

por objetivo prover melhorias na produtividade e qualidade da aplicação através

da redução do esforço. Trata-se de reutilizar artefatos existentes, ao invés de

construí-los do zero a fim de criar novas aplicações. Porém, para obter os

benefícios inerentes ao reuso, alguns obstáculos devem ser superados como, por

exemplo, a questão da busca e recuperação de componentes. Em geral, há uma

lacuna entre a formulação do problema, na mente do desenvolvedor e a

recuperação do mesmo no repositório, o que resulta em resultados irrelevantes

diminuindo as chances de reuso. Dessa maneira, mecanismos que auxiliem na

formulação das consultas e que contribuam para uma recuperação mais

próxima à necessidade do desenvolvedor, são bastante oportunos para

solucionar os problemas apresentados.

Nesse contexto, este trabalho propõe a extensão de uma ferramenta de

busca por palavra-chave através de uma camada semântica que tem por objetivo

principal aumentar a precisão da busca e, conseqüentemente, aumentar as

chances de reuso do componente procurado. A criação da camada semântica é

representada basicamente por dois componentes principais: um para auxiliar o

usuário na formulação da consulta, através do uso de uma ontologia de

domínio, e outro para tornar a recuperação mais eficiente, através de uma

indexação semântica dos componentes no repositório.

Palavras-chave: Semântica, Reuso de Software, Engenhos de Busca,

Ontologias

R

bstract

The challenge for achieving a more efficient software engineering practice

comprises a vast number of obstacles related to the intrinsic complexity of

software systems and their surrounding contexts. Consequently, software

systems tend to fail in meeting the real needs they were developed to address,

consuming more resources, thus having a higher cost, and taking longer to

complete than anticipated. The software reuse field is often regarded as the

most promising discipline for closing these gaps, however, models and tools are

still immature to make its adoption on a systematic fashion.

To promote the development of practices, models and tools are welcome

activities to boost the reuse activity in most software development

organizations. The lack of knowledge about reusable assets and the use of

inappropriate tools are example of reasons for the low reuse activity. In this

sense, this work presents a semantic layer applied to a source code search tool

with the objective of bringing real relevant returns closer to user need, and,

consequently to increase the chance of reuse. Two new components are

proposed for the execution of the semantic activities and the resulting semantic

search engine is evaluated with a realistic environment configuration analogous

to projects from software organizations.

Keywords: Software Reuse, Information Retrieval, Semantic Web, Ontologies

A

ist of Acronyms

API : Application Programming Language

B.A.R.T :Basic Asset Retrieval Tool

CBD :Component Based-Development

CVS :Concurrent Version System

DAML :DARPA Agent Markup Language

GUI :Graphical User Interface

HTML :Hypertext Markup Language

IR :Information Retrieval

J2EE :Java Enterprise Edition

J2SE :Java Standard Edition

OIL :Ontology Inference Layer

OWL :Ontology Web Language

RDF :Resource Description Framework

RiSE :Reuse in Software Engineering

SVN :Support Vector Machine

SWT :Standard Widget Toolkit

URI : Uniform Resource Identifier

W3C :World Wide Web Consortium

WWW :World Wide Web

XML :Extensible Markup Language

L

ist of Figures

Figure 1.1. The RiSE framework .. 13

Figure 4.1. RDF diagram ... 51

Figure 4.2. Protégé Screenshot. ... 56

Figure 5.1. B.A.R.T. Architecture .. 71

Figure 5.2. Component communication .. 75

Figure 5.3. Source Code Classification ... 76

Figure 5.4. A feasible Java code for database domain 77

Figure 5.5. The metadata domain in the index structure 78

Figure 5.6. Semantic Code Analyze Viewer...................................... 79

Figure 5.7. Semantic Possibilities at Eclipse Plug-in 80

Figure 5.8. Component communication .. 81

Figure 5.9. Screenshot of the Ontology Model 83

Figure 5.10. Screenshot of the OWL document 84

Figure 5.11. Term View tab ... 85

Figure 5.12. B.A.R.T Configuration Screen 86

Figure 5.13. Query Reformulation .. 89

Figure 5.14. Screenshot of the B.A.R.T Eclipse plug-in 90

Figure 5.15. Query Expansion ... 91

Figure 5.16. Retrieval of Semantic Search 92

Figure 5.17. Final Search Results at B.A.R.T Search Plug-in 92

Figure 6.1. The evolution of B.A.R.T search mechanisms 106

L

ist of Tables

Table 3.1. Information Retrieval x Data Retrieval 31

Table 5.1. Summary of requirements ... 69

Table 6.1. Source Code Information ... 99

Table 6.2. Achieved Recall Rates ... 102

Table 6.3. Achieved Precision Rates .. 103

Table 6.4. Achieved F-Measure Rates .. 104

Table 6.5. Achieved Metrics .. 106

Table A.1. Queries utilized in the evaluation 126

L

Chapter 1 - Introduction

Introduction

A fundamental principle for reusing software assets is to provide ways for

accessing them. In this sense, information retrieval mechanisms combined with

semantic web technologies play a very important role in finding relevant

information. Software Reuse, Information Retrieval and the Semantic Web are

the main subjects of this work and their foundations were studied and applied

in the creation of a semantic search engine to promote the reuse activity by

reducing the efforts during the software development.

This chapter contextualizes the focus of this dissertation and starts by

presenting its motivation in Section 1.1 and a clear definition of the problem in

Section 1.2. A brief overview of the proposed solution is presented in Section 1.3

while Section 1.4 describes some related aspects that are not directly addressed

by this work. Section 1.5 presents the main contributions and, finally, Section

1.6 outlines the structure of the remainder of this dissertation.

1.1. Motivation

The dissemination of the Information Technology in the modern society jointly

with the advances in Computer Science has driven many organizations of most

different areas to adopt computational systems in order to become more

competitive and survive in the wild trade market. However, such systems

started to become more complex and this requires more qualified people

constantly updated with the new trends. In this scenario, it is not difficult to

imagine how similar applications have been developed independently, in

different parts of the world and in different times in history, without sharing or

reuse previously knowledge.

1

Chapter 1 - Introduction 11

In this context, Software Reuse has emerged to skirt the “redundant

development”, on the premise that, if accurately applied, assets previously built

might be reused instead of developed new ones from the scratch.

Moreover, reusing software assets might speed up the time-to-market with the

improvement of the productivity and reduce the costs of the final product

without decrease the quality. Software Reuse, in all its variances, is generally

regarded as one of the most important mechanisms for performing software

development more efficiently [McIlroy, 1968]. This belief has been

systematically enforced by empirical studies that have, over the years,

demonstrated the reuse effects on the software development in terms of quality,

time-to-market and costs [Devanbu et al., 1991] [Lim, 1994] [Basili et al., 1996]

[Frakes and Succi, 2001].

Nevertheless, in order to achieve such benefits, the adoption of a

systematic reuse program which includes, for example, investments in tools to

promote the reuse activity such as source code search tools remains

necessary [Rine, 1997]. Such tools allow software developers to efficiently

search, retrieve and reuse source code from many different repositories avoiding

the writing of brand new codes since the same solution may have been

implemented by somebody else [Morisio et al., 2002].

In spite of knowing that other tools such as reuse repositories [Burégio,

2006], tools for software reengineering [Brito, 2007], and systems for domain

analysis [Lisboa et al., 2007] offer some of the mentioned reuse benefits, this

dissertation concentrates its efforts on information retrieval tools dedicated to

source code retrieval.

1.1.1. Source Code Search Engines

Source code search engines can be seen as effective tools for promoting source

code reuse due to the amount of code spread over legacy systems in the

organizations or distributed in the repositories on the Internet. Keyword-based

search engines are example of tools employed for source code retrieval,

nevertheless, the effectiveness of the theses source code search engines depend

on the relevance of the query results. Therefore, efforts in the search quality can

be considered an essential requirement for their reputation and popularity.

Chapter 1 - Introduction 12

Based on these aspects, information retrieval techniques are useful in order to

provide means of somehow interpreting its contents in an intelligent way, and

retrieve the most relevant ones to the final user.

1.2. Problem Statement

In spite of contributing for reuse activity, keyword-based search engines utilized

in software development face the problem of low relevance on its asset returns

due the fact that a single keyword may not represent the desired functionality.

This happens because no code content is analyzed or the query utilized does not

represent clearly the user necessity [Ye and Fischer, 2002].

In a nutshell, traditional keyword-based search engines provide a user

interface to specify criteria about an item of interest and look for the occurrence

of the string pattern (or query) in source codes. There is no “query support” to

assist users to express their needs by means of natural language processing or

knowledge exploration about the repository content. For this reason, the

problem of locating relevant reusable source codes configures a key

point for an effective source code reuse. Therefore, semantic mechanisms

to enhance traditional keyword-base search engines are highly advisable in

order to improve the search efficiency as well as the software reuse.

1.3. Overview of the Proposed Solution

In order to accomplish the goal of this dissertation, a Semantic Layer Applied to

a Source Code Search Engine is proposed. This Section presents the context

where it is regarded and outlines the proposed solution.

1.3.1. Context

This work is part of a broader reuse initiative promoted by the Reuse in

Software Engineering (RiSE)1 research group [Almeida et al., 2004].

1
 http://www.rise.com.br

Chapter 1 - Introduction 13

Figure 1.1. The RiSE framework

Figure 1.1 shows the RiSE framework which embraces a wide range of

studies in areas such as reuse processes [Almeida et al., 2005a], domain

engineering [Almeida, 2007], component certification [Alvaro et al., 2006] and

repository system [Burégio, 2006]. Outstanding tools also are part of the RiSE

Software Reuse environment such as the Maracatu search engine [Garcia et al.,

2006b] which was enhanced with the facet-based and folksonomy mechanisms

[Vanderlei et al., 2007]; the Admire Environment [Mascena, 2006], the Basic

Asset Retrieval Tool (B.A.R.T) [Santos et al., 2006] and ToolDAy, a Domain

Analysis Tool [Lisboa et al., 2007]. These efforts are coordinated and will be

integrated in a full-fledged enterprise scale reuse solution. The role of the

semantic layer on the RiSE project is to provide improvements in the source

code retrieval of B.A.R.T search engine with the objective of improving the

search precision and as a consequence increase the chance of code reuse.

1.3.2. Outline of the Proposal

Aware of the problem of locating relevant source code, this dissertation presents

an extended version of the B.A.R.T search engine enhanced with a semantic

layer in order to improve the search precision and consequently the relevance of

Chapter 1 - Introduction 14

the codes returned. According to [Clarke and Willett, 1997], the search precision

provides an indication of the system relevance: the higher a search precision is,

the higher its relevance is.

The proposed semantic layer consists of two core components that work

in conjunction with existing architecture to provide the required semantic

features. The objective, therefore, is to combine the original keyword-

based search mechanism with the semantic features represented by

ontology reasoning for assistance in query construction and machine learning

technique for code comprehension for efficient search retrieval.

1.4. Out of Scope

Since the proposed solution aims to raise evidences about the benefits acquired

with semantic layer, a set of related aspects will be left out of its scope. Even

though the provided functionalities are based on well-founded aspects of quality

and performance, they do not discard future enhancements to answer more

efficiently its purpose. The aspects not directly addressed by this work are listed

in the following:

• Semantic Search of other Software Asset Types – Due to the focus

of this dissertation, the semantic layer was centered on source code

retrieval; however, other asset types such as requirement documents,

design architectural models and test plans may be considered in future

versions;

• Source Code Retrieval – One of the most important requirement of

the proposed solution is extensibility and, although any programming

language may be included to the environment, the initial implementation

only contemplates Java source files;

• Supporting Functionalities – Some of the functionalities proposed in

the entire solution, such as the Automatic Knowledge Base Population

and Optimization of Graphical Semantic Classification were not be

implemented in this initial version. These functionalities, although

important, consist on supporting operations for the core functionalities

and thus may be incrementally implemented in future versions;

Chapter 1 - Introduction 15

• Non Use of Formal Semantics - In the entire work, the statement

“semantic of source code” will be constantly mentioned, however, this

does not refer to formal semantics in which computer programs are

represented though mathematical functions [Nielson and Nielson, 1992].

Although the use of formal semantics are not discarded in future releases,

the semantics treated in this dissertation are in a higher level of

abstraction and correspond to the functionalities performed by the

source codes. A more detailed explanation about this is given in the

Chapter 5 which describes the entire implementation aspects.

In a general view, although this initial implementation corresponds to the

academic version and presents some limitations, the entire development primed

for important attributes of quality such as modularization, readability and

reusability by the fact that the results can be applied in a commercial version the

of B.A.R.T search engine.

1.5. Statements of the Contribution

As a result of the work presented in this dissertation, a list of contributions may

be enumerated:

• Creation of components to assist a keyword-based search engine to

recover source code more efficiently;

• Proposition of an ontology model comprising a set of technical terms and

infrastructure domains handled by source codes;

• Evolution of previous B.A.R.T architecture through the integration of the

new (semantic) modules with low coupling without decreasing the

system; and

• Implementation and evaluation of a reuse semantic layer based on the

requirements that prime for quality and performance of the search

engine. The provided implementation also is flexible enough to be reused

in other keyword-based search engines.

Besides the final contributions listed so far, some intermediate results of this

work have been reported in the literature, as shown in the following:

Chapter 1 - Introduction 16

• Garcia, V. C., Lucrédio, D., Durão, F. A., Santos, E. C. R., Almeida, E. S.,

Fortes, R. P. M., Meira, S. R. L., From Specification to Experimentation:

A Software Component Search Engine Architecture. The 9th

International Symposium on Component-Based Software Engineering

(CBSE 2006), Västerås, Sweden, Springer-Verlag, 2006;

• Vanderlei, T. A., Durão, F. A., Martins, A. C., Almeida, E. S., Meira, S. R.

L., A Classification Mechanism for Search and Retrieval Software

Components. 22nd Annual ACM Symposium on Applied Computing

(SAC), Information Retrieval Track, Seul, Korea, 2007; and

• Durão, F. A., Vanderlei, T. A., Almeida, E. S., Meira, S. R. L. Applying a

Semantic Layer in a Source Code Search Tool, 23nd Annual ACM

Symposium on Applied Computing (SAC), Information Retrieval Track,

Fortaleza, Ceará, Brazil, 2008. (To Appear).

1.6. Organization of the Dissertation

The remainder of this dissertation is organized as follows:

• Chapter 2 contains a comprehensive revision of the Software Reuse field

with the goal of presenting the main concepts and identifying the major

impediments for its diffusion besides some solutions adopted in previous

studies;

• Chapter 3 reviews the Information Retrieval field with an emphasis to

the instantiation of the information retrieval techniques in the software

reuse;

• Chapter 4 presents an overview of Semantic Web field listing its purpose,

ongoing projects, methodologies of application besides the benefits

acquired with the advent of the Semantic Web Markup Languages;

• Chapter 5 describes the proposed semantic layer applied to the B.A.R.T

search engine in details. The requirements, used technologies,

architecture and the whole implementation aspects of the solution are

discussed;

Chapter 1 - Introduction 17

• Chapter 6 reports the entire environment used for the execution of the

semantic search evaluation. In addition to the experiment environment,

this Chapter also presents the expected goals to be achieved, the

methodology adopted, the formal hypotheses analyzed, the final results

and a discussion about the findings and the problems found; and

• Chapter 7 concludes this dissertation by summarizing the findings of the

work and comparing it with some related studies. Future enhancements

to the proposed solution are also discussed and some concluding remarks

are presented.

Chapter 2 – The Software Reuse: An Overview

The Software Reuse:
An Overview

Considering that the main motivation of this work is to improve the reuse

activity, an appropriate revision of the Software Reuse concepts is necessary to

establish the foundations of this approach. This Chapter presents the key points

of the Software Reuse field and discusses the reasons why, in spite of its

promises, it is still not a widespread practice. The discussion is organized as

follows: Section 2.1 presents an introduction to the software reuse field from its

beginning to the current time, covering the reasons why it is still not widely

adopted. The motivation and benefits about software reuse are enumerated in

Section 2.2. Section 2.3 presents some impediments for software reuse adoption

and Section 2.4 discusses the reusable software assets focusing on source code

and means of its access. Finally, Section 2.5 summarizes the main concepts of

the software reuse.

2.1. Introduction

Since late 1940s software development has witnessed a continuous stream of

innovations from subroutines in the 1960s through to modules in the 1970s,

objects in the 1980s, and components in the 1990 [Clements and Northrop,

2002]. Along the time, software projects became more complex and exigent,

with constraints involving schedules, costs, and failures to meet the

requirements defined by the customers or third parties [Ezran et al., 2002].

In the first NATO Software Engineering Conference in 1968, McIlroy

[McIlroy, 1968], come up to the main concepts of the software reuse field,

2

Chapter 2 – The Software Reuse: An Overview 19

however, at that moment, software reuse was faced as a mean for overcoming

the current software crisis. McIlroy stated that a sub-industry of reusable

software components was necessary to make the software industry well

founded and able to tackle the running crisis in that decade. That was the first

breathing of software reuse field to a software community, which motivated the

rationale on how producing software from existing pieces of codes previously

built.

Since McIlroy [McIlroy, 1968], a set of definitions about software reuse

has been presented in the literature. For Frakes & Isoda [Frakes and Isoda,

1994] software reuse is defined as the use of engineering knowledge or artifacts

from existing systems to build new ones. More detailed, [Ezran et al., 2002]

state software reuse as the systematic practice of developing software from a

stock of building blocks, so that similarities in requirements and/or

architecture between applications can be exploited to achieve substantial

benefits in productivity, quality and business performance. For instance,

Krueger’s general view [Krueger, 1992] will be adopted in this dissertation:

“Software reuse is the process of creating software systems from existing

software rather than building them from scratch”.

Indeed, software reuse is a very active field where a great amount of

effort has been put in both industry and academy. Many case studies, research

reports and surveys have been published but the truth is that software reuse is

still considered in development given the absence of industrial large-scale

success cases in the literature, as stated by Almeida et al. in [Almeida et al.,

2005b]. Nowadays while some studies explore the possible reasons for the

failure others prefer to use the results to evidence their mistakes and then

propose improved mechanisms [Morisio et al., 2002] [Lucrédio et al., 2008].

The optimistic viewers outline the reuse benefits in terms of software

development aspects: for them especially quality, productivity and cost reducing

are key factors for achieving the level of success expected by the organizations

[Lim, 1994] [Basili et al., 1996] [Frakes and Succi, 2001].

 In the next Section the benefits and motivations for software reuse

adoption in organizations are discussed.

Chapter 2 – The Software Reuse: An Overview 20

2.2. The Motivation and Benefits of Software Reuse

As briefly discussed, the general benefits of software reuse are related to the

increased productivity and the saved cost. Productivity gain is achieved when

users are encouraged to reuse software assets instead of developing new ones,

consequently, it results in less time being required to develop a system and

hence an improved time-to-market.

In addition, the use of existing software assets may result in better

quality since the defect density of tested software assets is lower than what can

be expected in freshly created assets. This occurs naturally because error fixes

accumulate from reuse to reuse which increases the reliability of a software

system. Moreover, reusing existing software assets contribute to effort

reduction since it demands fewer personnel. In most cases, smaller team sizes

make projects easier to manage, leading to better communications and speed up

software development. Additionally, the chances of redundant work

decreases since developers get noticed about it previously built assets avoiding

new development [Basili et al., 1996] [Sametinger, 1997] [J.S.Poulin, 1997]

[Lim, 1998] [Sommerville, 2004].

Focusing on source code reuse, the literature has evidenced some reports

which show that 40% to 60% of code is reusable from one application to

another, 60% of design and code are reusable in business applications, 75%

of program functions are common to more than one program, and only 15%

of the code found in most systems is unique and new to a specific application

[Ezran et al., 2002] [Almeida et al., 2005a]. According to Mili et al. [Mili et al.,

1995] rates of actual and potential reuse range from 15% to 85%. With the

maximization of tested, certified and organized reusable software assets,

organizations can obtain improvements in cost, time and quality as will be

explained in next sections [Basili et al., 1996]. Software reuse, thus, provides

competitive advantage in terms of costs, time-to-market for a wide range of

projects by utilizing the available resources in a more efficient way. However,

this optimistic scenario is sometimes berried due to software reuse impediments

discussed in the next section.

Chapter 2 – The Software Reuse: An Overview 21

2.3. Software Reuse Impediments

Despite of its benefits, software reuse is not a common practice in most of

organizations. In fact, systematic reuse of software has not universally delivered

significant improvements in quality and productivity [Schmidt, 1999].

According to Sametinger [Sametinger, 1997], organizational, economical and

technical impediments are some factors that avoid reuse in large scale by

software organization.

Management impediments – The reuse infrastructure requires total

management involvement since it generates cost and demand investment to the

whole organization. Managers have to be in conformance with initial

investments and be up-to-date of future savings acquired with reuse activity. In

addition, managers must incentive the reuse practices through presentations,

training programs as well as salary incentives to developers concerned in spend

time in making components of a system reusable.

Organizational impediments – Systematic development, deployment

and support of reusable software assets requires a deep understanding of the

application developer needs and business requirements. Organizational

structures must consider different needs for the “new” paradigm in software

development, e.g., while a developer team consume assets previously built,

other team may be arranged to product the ones. As the number of developers

and projects employing reusable assets increases, it becomes hard to structure

an organization to provide effective feedback loops between these

constituencies.

Economic impediments – Achieving success in reuse activity leads

important economic saving by software organization, however, it requires

concrete investments in training, infrastructure, tools, process education

[Poulin, 1997]. These initial costs does not guarantee early payback, therefore

many organization avoid investments in a systematic reuse adoption. In

addition, Poulin [Poulin, 1997] states that developing assets for reuse is more

expensive than developing them for single use only because those requires

higher levels of quality, reliability, portability, maintainability, generality and

more extensive documentation are necessary.

Chapter 2 – The Software Reuse: An Overview 22

Psychological impediments – Application developers may also

perceive “top down” reuse efforts as an indication that management lacks

confidence in their technical abilities. In addition, the NIH (Not Invented Here)

syndrome is ubiquitous in many organizations, particularly among highly

talented programmers. However, empirical studies [Frakes and Fox, 1995] have

shown that developers are often willing to reuse if they know the right

components to be reused [Isoda, 1995]. The real problem might be associated

with the perception of the cost and the risks associated with reuse, including the

location, comprehension, and adaptation of the components to be reused [Ye

and Fischer, 2002].

In addition to non-technical impediments, reuse efforts also

frequently fail because developers lack technical skills and organizations lack of

competencies necessary to create and/or integrate reusable components

systematically. The technical obstacles for software reuse include issues related

to search and retrieval of components, legacy components and aspects involving

adaptation [Schmidt, 1999].

Tooling impediments – In general, software organization do not have

the necessary infrastructure tooling for cataloging, archiving, and retrieving

reusable assets across multiple business units. Although it is common to search

small classes or functions opportunistically from existing programs, developers

often find it hard to locate suitable reusable assets outside of their immediate

workgroups. This scenario invites the acquisition of information retrieval tools

as well as reuse repository for managing the access to reusable assets [Mili et al.,

1998].

Software Quality impediments – Not any asset is available for reuse,

bad quality assets usually requires strong modification, documentation

improvement and design enhancement as well. Assets focused on reuse are

carefully specified, designed, implemented, tested and well documented.

Instead of unprepared assets, they do not require complex modification when

reused. This problem is commonly evidenced in use of legacy software because

it entails preparation before be able to reuse, in addition, the efforts needed for

understanding and extraction should be regarded.

Chapter 2 – The Software Reuse: An Overview 23

Maintainability impediments – It is very difficult to find a

component that works exactly in the same way that the developer wants. In this

way, modifications are necessary and there should exist ways to determine their

effects on the component and its previous verification results.

2.4. Reusable Software Assets

A reusable software asset is, broadly speaking, "any cohesive collection of

artifacts that solve a specific problem or set of problems encountered in the

software development life cycle". A reusable asset, which provides a solution to

a problem for a given context, may have a variability point with a value provided

or customized by the asset consumer, and rules for usage which are the

instructions describing how the asset should be used [Lenz et al., 1987].

Artifacts are any work products from the software development lifecycle, such as

requirements documents, models, source code files, deployment descriptors,

test cases or scripts. In addition, software assets encapsulate business

knowledge and are of high value to a company which generally requires legal

terms of license [Ezran et al., 2002].

To produce reusable software assets, Domain Engineering play an

important role for later use in the development of applications family. Domain

Analysis, Domain Design and Domain Implementation are phases of Domain

Engineering and have different responsibilities to build the application families

[Almeida, 2007]. According to [Clements and Northrop, 1996], Domain

Analysis is the process of identifying, collecting, organizing, and representing

the relevant information in a domain, based upon the study of existing systems

and their development histories, Domain Design takes the raised information

and model family application considering its commonalities and variability so

that they could be instanced for different applications and Domain

Implementation embrace the whole process of identifying reusable asset

components based on the domain model and generic architecture from domain

knowledge gathered during domain analysis, and the generic architecture

developed during the domain design.

Chapter 2 – The Software Reuse: An Overview 24

In spite of the variety of the produced asset components, they are divided

in two main types [Almeida, 2007]:

• Vertical assets which are specific to an application domain, for

example, financial object models, algorithms and frameworks; and

• Horizontal assets which are straight to many different applications.

They can be reused independently of the application domain

answering to compatibility constraints. Examples of them include GUI

objects, database access libraries, authentication service, and network

communication libraries.

Besides these two kinds, assets may have different sizes and granularities

such as a function or a procedure, a class, a group of classes, a framework and

an application or a product. A reusable asset is potentially made up of many life-

cycle products including: requirements and architecture definition, analysis

model, design models, source code, test scenarios and test reports. Source code,

in particular has a great importance because it holds the entire business logic of

the software programs. In addition, source code has a high degree of reusability

so that the functionalities carried out by its methods may be reused by other

applications.

In the next Section, a special attention is given to the source code because

it comprehends one of the key points of this dissertation.

2.4.1. Source Code Reuse

The importance of the source code is evidenced as for its historical appealing

[McIlroy, 1968] as for being an indispensable artifact in any software

development cycle. Since 1968 when the idea of software reuse, source code has

gained particular attention in the reuse industry by the development of tools

such as IDEs, dedicated search engines and reuse repositories to provide an

environment in favor of code reuse.

In the software reuse industry, source codes tend to be encapsulated in

components together with all necessary documentation in favor of its reuse.

Ravichandran and Rothenberger [Ravichandran and Rothenberger, 2003]

Chapter 2 – The Software Reuse: An Overview 25

present three software component reuse strategies: white-box reuse, black-box

reuse, and black-box reuse with component markets:

• White-box reuse allows developers to modify the code to suit their

needs. This maximizes reuse opportunities, but it is also a source of reuse

problems due the fact that modifications in the code are not documented

and versioned;

• Black-box reuse avoids these problems by not allowing the developers

to modify the reusable components which they retrieve. This, however,

dramatically reduces the reuse rate; and;

• Black-box reuse with component markets (i.e. obtaining

components from a marketplace) can increase the reuse rate, as the

developers can search from a larger set of components and thereby are

more likely to find components fitting their requirements.

Ravichandran and Rothenberger [Ravichandran and Rothenberger,

2003] argue that the last strategy could be the “silver bullet solution” which

makes software reuse a reality and advances software development to a robust

industrial process. In spite of agreeing with them, the current scenario shows

that software organization is not prepared for that. Currently, the lack of

education on reuse obstructs the existence of teams exclusively turned to

development of black-box components. Thus, until the companies achieve a

maturity level on reuse, they have to concentrate its efforts with isolated

reusable software assets such as source codes, requirement documents and

design artifacts.

Some studies [Frakes and Fox, 1995] [Schmidt, 1999] [Glass, 2002] have

discussed interesting questions about source code reuse such as: NIH (Not

Invented Here) syndrome, programming languages paradigms and cost of

modification. Frakes & Fox [Frakes and Fox, 1995] gave an expressive

contribution by analyzing sixteen questions about software reuse using survey

data collected from organizations in the U.S and Europe. They surveyed

software engineers, managers, educators and others in the software

development and research community about their attitudes, beliefs, and

practices in reusing code and other lifecycle objects. The findings contributed to

Chapter 2 – The Software Reuse: An Overview 26

breaking some of the myths related to software reuse. In the following, it is

outlined a couple of question particularly related to source code:

• NIH (Not Invented Here) – The existence of the NIH syndrome

was analyzed because there is a belief that programmers avoid

working on third party codes. The research demonstrated that users

prefer reuse rather than coding from the scratch, vanishing then the

NIH syndrome;

• Paradigms of Programming Languages – The differences

among programming languages were analyzed to verify if they affect

reuse or not. Although OO languages prime for modularization, the

study showed up the paradigm does not influence on reuse at all; and

• Source Code Modification - It was verified if modification of

reused code is particularly error-prone, it is more efficient and

effective to rewrite it from scratch. Glass [Glass, 2002] considers this

idea has problem also, because of the complexity in maintaining

existing software, the difficulty of comprehending the existing

solution (even for the developer who originally built the solution) and

the hard task in maintaining the documentation updated. Schmidt

[Schmidt, 1999] credits this as a continuous problem considering the

heterogeneity of hardware architectures, the diversity of OS and

network platforms.

Despite still existing pros and cons positions about source code reuse,

software reuse area depends of systematic software development practice

[Ezran et al., 2002]. It is common to find solutions to aid the process of software

development such as code generators, code scavenging, reengineering

applications; however, this does not necessarily mean systematic reuse since

it is often done in an informal and opportunistic way. Software developers

usually know the exact location of codes with desired functionality when

working in a project. According to Ezran and Morisio [Ezran et al., 2002],

besides the management commitment and reuse education, the existence of a

technical reuse environment is necessary in order to practically promote

the reuse adoption throughout organization.

Chapter 2 – The Software Reuse: An Overview 27

2.4.2. Accessing Reusable Software Assets

According to Pietro-Diaz [Prieto-Díaz, 1991] “to access an asset, first you have

to find-it”, based on this, tools such as reuse repositories and information

retrieval tools integrated to the developer environment are practical examples

of effective tools for supporting the reuse activity.

Reuse repositories provide a wide range of assets useful for engineers

to reuse during the software development. Most current reuse repositories are

component-based; they provide a catalogue of software components categorized

by some scheme. Reuse repositories are key tools for support reuse activity since

developers may locate reusable components quickly and easily besides

managing the whole life the component while present in the repository. Reuse

repositories are expected to support some requirements such as searching,

browsing, versioning, certification, status reporting, metrics extraction,

notification and primarily asset maintained [Burégio, 2006].

Information retrieval systems provide effective means for accessing,

sharing and retrieval knowledge embedded in assets in an efficient way. The

facilities for accessing the asset information represent a potential mechanism to

reuse amount of information available spread over legacy systems in the

organizations or distributed in the Internet.

2.5. Chapter Summary

In this Chapter, the main concepts of software reuse were presented, discussing

the origins, motivation and benefits, impediment factors for software reuse,

types of reusable software assets with special attention to source code, in

addition to mean for accessing them the in order to guide companies towards

systematic software reuse.

Along the text it was observed that the development of a complete reuse

infrastructure involves high initial costs as it includes well-established reuse

processes, management engagement, education and tooling for supporting the

reuse activity. The Chapter also outlined the technical and none-technical

impediments for systematic reuse adoption. In addition, it was presented an

Chapter 2 – The Software Reuse: An Overview 28

overview of reusable software assets, its variances with focus on source code. It

was also discussed myths of source code reuse and the use of tools such as

repository systems and information retrieval tools. In the next Chapter, a review

on the information retrieval area with emphasis to mechanisms and

technologies useful for promoting the reuse activity will be presented.

Chapter 3 – Information Retrieval

Information Retrieval

Information retrieval (IR) mechanisms can be regarded as an effective mean for

promoting software reuse due to the amount of information available in the

organizations or distributed on the Internet. In the context of software

organizations, the available information is generally found in software assets

used during the software life cycle such as requirement documents, source code

and test cases. Information retrieval systems play a very important role by

providing access to the available assets in a structured manner.

This Chapter presents a review on the information retrieval field

outlining applications focused on the software reuse. It is organized as follows:

Section 3.1 presents an introduction of the information retrieval field. Section

3.2 outlines a comparison between information retrieval and data retrieval.

Section 3.3 discusses desirable aspects of search retrieval and preeminent

challenges of the area. Section 3.4 introduces semantic treatments for facing

information retrieval problems. Section 3.5 discusses technical support for

information retrieval systems. Section 3.6 presents search retrieval issues

focused on source code. Section 3.7 outlines the related works while Section 3.8

provokes a discussion about the works analyzed, and finally Section 3.9

summarizes the discussion on information retrieval and its application to the

software reuse context.

3.1. Introduction

At the beginning, information retrieval mechanisms appeared to supply limited

human capabilities in storage and retrieval [Baeza-Yates and Ribeiro-Neto,

1999].. In general, an user either does not have time or does not wish to spend

time reading the entire document collection, apart from the fact that it may be

3

Chapter 3 – Information Retrieval 30

physically impossible for him to do so. Unfortunately manipulating information

is not a trivial task; it requires support of technical mechanisms for structuring

the data in order to be accessed in a reasonable performance. Indexing is an

example of one of the most commons techniques for high speed in data

accessing [Clarke and Cormack, 1995]. Nowadays, the indexing feature is largely

applied over the information retrieval systems with complex algorithms;

however, the attention is also turned to the quality of information retrieved.

Relevant information credits the information retrieval systems and responds for

their success and popularity in the trade market [Baeza-Yates and Ribeiro-Neto,

1999].

In spite of information retrieval concepts seems to be common to

everyone, there are two distinct fields with particular characteristic that reveal

the real identity of existing retrieval systems: information retrieval and data

retrieval systems [Rijsbergen, 1979]. In the next Section, the dichotomy

between both subfields will be explored in order to understand the differences

and situate the proposed approach in one of those.

3.2. Information Retrieval versus Data Retrieval

The retrieval activity is distinguished between two models: information

retrieval (IR) and data retrieval (DR). In spite of the boundary between both is

small for some authors, there are clear concepts that differentiate existing

information retrieval systems.

According to Rijsbergen [Rijsbergen, 1979], data retrieval is normally

looking for an exact match while in information retrieval is more interested in

finding those items which partially match the query and then select from those a

few of the best matching ones. Consequently, data retrieval is more sensitive to

errors considering that a single erroneous returned item among a thousand

retrieved means total failure. In opposite, an information retrieval search might

be inaccurate and eventual errors do not comprise the search capability at all.

This happens because information retrieval usually deals with unstructured

natural language texts that can be semantically ambiguous while data retrieval

Chapter 3 – Information Retrieval 31

system deals with defined data structure such as relational database. Table 3.1

summarizes differences between both modes of retrieval.

Table 3.1. Information Retrieval x Data Retrieval

 Characteristic/ Methods IR DR

Exact Match x

High Error Sensitiveness x

Semantic Treatment x

Search in unstructured data x

Deductive Inference x

Inductive Inference x

Controlled Syntax Query x

Natural Language Query x

Commonly Academic Development x

Outstanding Commercial Products x

In fact, an information retrieval user is concerned more with retrieving

information about a subject than with a precise data to satisfy his query. To be

effective, IR systems must somehow “interpret” the contents of the information

items (documents) in a collection and rank them according to a degree of

relevance to the user query. This “interpretation” of the item content involves

extracting syntactic and semantic information in order to match the user

information need. Baeza-Yates and Ribeiro-Neto [Baeza-Yates and Ribeiro-

Neto, 1999] outlines the difficulty is not only knowing how to extract this

information but also knowing how to use it to decide relevance. Thus, the notion

of relevance is at the center of information retrieval. In fact, the primary goal of

an IR system is:

“…retrieve all the relevant documents at the same time retrieving as few of the

non-relevant as possible…” [Rijsbergen, 1979].

The inference used in data retrieval system is the simple deductive kind

while in information retrieval it is more common to use inductive inference;

here, to define relations it depends on the degree of certainty. This peculiarity

Chapter 3 – Information Retrieval 32

leads one to describe data retrieval as deterministic whereas information

retrieval as probabilistic. For that reason, is common to find information

retrieval systems that make use of probabilistic models [Sebastiani, 2002] to

carry out inferences to satisfy the entire search process.

One more distinction can be made in terms of query language, where in

data retrieval is normally done of artificial kind, with controlled and restricted

syntax and sometimes proprietary, e.g. the particular query syntaxes for

relational databases. On the other hand, in information retrieval favors to use

natural language although there are some exceptions, e.g. the keyword query

used in traditional web search engines. In addition, the query used for data

retrieval systems is more detailed when expressing what is wanted, in opposite,

information retrieval it is invariably incomplete. This fact justifies the high

sensitiveness to errors in data retrieval systems.

An “empirical” distinction is attributed to the great majority of automatic

information retrieval systems have great support of academy experiments

frequently developed in university laboratories, however, it does not mean that

not exist commercial solutions as well. Data retrieval systems, in general, have

a commercial propose with intuit of sell its advantages such as performance and

innovative functionalities.

The proposed solution in this dissertation will integrate an information

retrieval system due the fact it does not require any syntax control in query

formulation; the search is performed on a collection of unstructured documents;

its result relevance depends on semantic assistance; it makes use of probabilistic

model for augment item comprehension, and originally it comes from academic

initiative.

In the next Section it is emphasized how relevant information credits the

information retrieval systems and drives them to the success through the IR

community and trade market as well.

3.3. The Relevant Information

In a “perfect retrieval”, an information system search though a set of

documents reading all them, retaining the relevant ones and discarding all the

others. This envisioned solution reveals a truly and continuous “search for

Chapter 3 – Information Retrieval 33

treasures”; the great challenge is to distinguish the relevant documents from the

non-relevant ones. According to [Baeza-Yates and Ribeiro-Neto, 1999], this will

be the threshold to determine the success of an information retrieval tool which

intends to reach an outstanding position in the market.

To illustrate the importance of relevant returns, consider a company that

has invested a lot of money in a very fast search engine which answers a single

query in some milliseconds; now consider that after a search, the first 10 results

do not satisfy the current query and the information desired in encountered

only in the eleventh item. Analyzing the whole process, the user was obligated

to look for the information throughout the first 10 ten items until reach the

exact piece of information. The high performance achieved for answering the

input query became irrelevant when comparing with the time spent for

reaching the information desired. Moreover, it is not difficult to evidence that

occurred a duplication of effort considering the user had to seek information

again after the items browsed.

In the best case, an information retrieval system is supposed to extract

the information from the text (both syntactic and semantic) and use it to decide

whether each document is relevant or not to a particular request. While no

reference solution is showed up, much research has been carried out in the

academy as well as in the organization. Intelligence Artificial disciplines have

provided techniques such as automatic text categorization [Lam et al., 1999],

semantic inference and ontology reasoning [Bruijn, 2003] in order to apply

them in information retrieval systems aiming to augment the search relevance.

In a nutshell, these techniques try to overcome information retrieval problems

such as query formulation and code comprehension. Next Section depicts these

problems and presents some ongoing effort to solve them.

3.4. The Semantic Challenges of Information
Retrieval Systems

By analyzing the entire life cycle of search retrieval, two significant troubles are

quite clear: use of inappropriate words in query formulation and arbitrary

retrieval. For Rijsbergen [Rijsbergen, 1979], advances in these two main fields

may conduct information retrieval systems to achieve an search proficiency.

Chapter 3 – Information Retrieval 34

Undoubtedly, one of the most difficult parts of search strategy is deciding

upon the keywords to use. A common mistake is not providing enough

information that represents the realistic user request. Inappropriate keywords

increase the probability of unexpected results that mismatch the user intention

[Baeza-Yates and Ribeiro-Neto, 1999]. According to [Ye and Fischer, 2002],

such distance between user need and the computational understanding of the

query is called “Semantic Conceptual Gap”. More precisely, the Semantic

Conceptual Gap occurs when ambiguous formulation of a contextual knowledge

in a powerful language (e.g. natural language) is not properly traduced in a

computational representation in a formal language (e.g. programming

language).

Making an analogy to web search engines, ambiguous query formulation

such as “window" may return links to “house window store” as well as

“Microsoft Windows OS”. In fact, the semantics of a query depends on the

context it is regarded within. Therefore, it is rational to outline formal

representation of real world tasks require translation of the contextual

knowledge into understandable computer operations.

In addition to problems in query formulation, arbitrary retrieval is also

a significant issued under continuous worry [Lam et al., 1999]. It concentrates

its efforts in a creation of formal methods to enhancing retrieval effectiveness

such as the frequency of occurrence and co-occurrence of index terms in the

relevant and non-relevant documents.

In fact, users always wish the best returns independently of their query;

from that point, technologies have to evolve in order to supply such exigencies

[Harter, 1992]. From this premise, innovative search techniques have been

developed to provide additional search options in order to search effectiveness.

Next Section covers some functionalities shared by many applications provided

of some semantic assistance.

3.5. Technical Support for Information Retrieval
Systems

Many initiatives to overcome the semantic conceptual gap and arbitrary

retrieval have been proposed. In this Section is showed a range of techniques

Chapter 3 – Information Retrieval 35

utilized for query formulation as well as text comprehension methods for

augmenting semantics in the retrieval process.

3.5.1 Techniques for Query Formulation
Support

Specifically talking about the query formulation, the proposed techniques aim

to enhance the original query by adding relevant information which might be

useful or relevant to the user.

In [Devanbu et al., 1991], an information retrieval system that utilizes

hierarchical categories to identify components was presented; Prieto-Díaz

[Prieto-Díaz, 1991] in its proposal have applied the concept of multiple facets

which encapsulate aspects, properties and characteristics of a software

component. Belkin and Croft [Belkin and Croft, 1992] have applied

information filtering to remove redundant or unwanted information from

the returned collection. The query by reformulation mechanism was utilized

by Henninger [Henninger, 1993] in which the original query was expanded by

user to match additional software component. Components constraints, such as

signature matching and formal specification, were used by some reuse

repository systems for component retrieval [Podgurski and Pierce, 1993]

[Zaremski and Wing, 1995].

In 2002, Ye and Fischer [Ye and Fischer, 2002] have utilized context-

based retrieval where the returned components took into account class syntax

structures while user coding. Sugumaran and Storey [Sugumaran and Storey,

2003] have used an domain ontology in a source code search engine to

correlate the domain-specific concepts with indexed classes in the repository.

Calado and Ribeiro-Neto [Calado and Ribeiro-Neto, 2003] have proposed an

approach for the formulation of approximate queries and raked the results

according to the user’s information need. This approach includes a new

algorithm for the calculation of semantic similarities among concepts that

represent attribute values in a database based on a vector space probabilistic

model. Oyama et al. [Oyama et al., 2004] have proposed a domain-specific

web search engine that is based on the idea of keyword spices: Boolean

expressions that are added to the user’s input query to improve the search

performance. In 2007, Vanderlei et al. have applied the folksonomy

Chapter 3 – Information Retrieval 36

[Vanderlei et al., 2007] mechanism in a source code search engine in order to

assist users to search codes through a tag cloud. Hotho et al. [Hotho et al.,

2006] have proposed a formal model and a new search algorithm for

folksonomy, called FolkRank, that exploits the structure of the folksonomy to

find out communities and ranking the search results.

As seen many techniques have been proposed to overcome the semantic

conceptual gap and arbitrary retrieval. In general, these initiatives are useful

when combined with classification schemes in order to augment the chances of

successful retrieval.

3.5.2 Classification Schemes for Component
Retrieval Support

The query capabilities can be combined with classification schemes in order to

augment the chances of successful retrieval [Ugurel et al., 2002]. Classification

(or categorization) schemes may be applied to automatically extract information

about the asset content and use this to increase its decision in the retrieval

process. Although manual categorization is possible, it is very expensive to

maintain and discouraged for dynamic systems, therefore automatic

classification techniques are useful instruments against arbitrary retrieval.

Automated classification of texts into topical categories has being

researched since the early ’60s, however, in ’90s, with advent of the internet

which promoted the booming in production and availability of on-line

documents, this technique has witnessed an increased and renewed interest.

From that time, automatic categorization began to be seen as the meeting point

of machine learning and information retrieval [Sebastiani, 2002] .

 In general, typical text classifiers learn from a knowledge base which

automatically builds a classifier (also called the rule, or the hypothesis), this

analyzes document characteristics and classify them in one or more predefined

categories. Information retrieval systems usually apply automatic text

classification to raise additional information about the text content. This meta-

information is useful to compose the index structure providing a higher degree

of semantics. The advantages of this approach are the considerable savings in

terms of expert manpower and domain independence. In the following, the

Chapter 3 – Information Retrieval 37

main approaches of automatic text categorization within the general machine

learning paradigm are described:

• SVM - Support Vector Machines (SVM) is based on a vector space

where the purpose is to find a decision surface that “best" separates the

data points in two classes which represent the categories. The objective is

to finding out the maximum separation (margin) between the two

classes, i.e., to pick the hyper plane so that the distance from the hyper

plane to the nearest data point is maximized [Lam et al., 1999];

• KNN - The k-nearest neighbor classification is based on the nearest

neighbor algorithm. Given a test document, the system finds the k

nearest neighbors among the training documents and uses the categories

of the k neighbors to weight the category candidates. By sorting the

scores of the candidate categories, a ranked list is obtained for the test

document [Lam et al., 1999];

• Neural Network (NNet) - Neural network techniques have been

applied successfully to speech recognition, image analysis and cluster

classification among others [Lam et al., 1999]. For classification, NNet

utilizes separate neural network per category, learning a non-linear

mapping from input words (or more complex features such as singular

vectors of a document space) to a category; and

• NB - Naive Bayes (NB) - Probabilistic classifiers are commonly

studied in machine learning [Lam et al., 1999]. The basic idea in NB

approaches is to use the joint probabilities of words and categories to

estimate the probabilities of categories given a document. The naive part

of NB methods is the assumption of word independence, i.e., the

conditional probability of a word given a category is assumed to be

independent from the conditional probabilities of other words given that

category. This assumption makes the computation of the NB classifiers

far more efficient than the exponential complexity of non-naive Bayes

approaches because it does not use word combinations as predictors.

A deep analyze of each method describing the robustness and performance

details including benchmarks results can be better explored in [Yang and Liu,

1999] and [Sebastiani, 2002].

Chapter 3 – Information Retrieval 38

The literature has shown some success cases that prime for code

comprehension and classification. Ugurel et al. [Ugurel et al., 2002] have

employed vector machines for source code classification in a two-phase process,

consisting of programming language classification followed by topic

classification. Lam et al. [Lam et al., 1999] have proposed an categorization

approach derived from a combination of machine learning technique and a text

retrieval technique known as retrieval feedback where the queries performed

are refined without user interference.

In agreement with the theory presented, this semantic proposal applies

text categorization for increasing source code comprehension. The goal is to use

machine learning technique in order to identify domains of technology handled

by source codes.

3.6. Source Code Retrieval for Reuse Activity

According to Henninger and Belkin [Henninger and Belkin, 1996] little

attention has been given to software components retrieval. Most research on

information retrieval systems has centered its effort in methods for effectively

retrieve relevant documents. However, specifically talking about source code,

there are arbitrary rules of grammar that are different from natural language as

well as semantic issues attributed to its functionalities. Therefore, information

retrieval systems away to those particularities will find difficult to search source

code precisely.

Unlike documents written in natural languages, source code is

unambiguous to the compiler and has exact syntactic structures [Ugurel et al.,

2002], however, it is not common to find code searchers equipped with a

compiler to help in query processing. Furthermore, the syntax itself does not

respond for semantic of a particular piece of code. The semantic outlined refers

to the functionalities covered by the class through its methods. Therefore, the

lack of “semantic analyze" represents a significant barrier to locate source

codes. To illustrate this problem, Ye and Fischer [Ye and Fischer, 2002]

plausibly observed that if a software developer wants to draw a circle, it is

necessary to know that the method “drawOval” in the Java class library perform

Chapter 3 – Information Retrieval 39

the functionality desired or at least recognize this method belongs to the

java.awt package. According to [Henninger and Belkin, 1996], a conventional

wisdom is that software components must be organized in some manner so they

can be found. One possible direction for augmenting source code representation

is to construct a classification scheme where the retrieval process can be

accomplished by choosing the right category. On the other hand, the negative

point of this approach is that finding the right category may be a difficult task

because it involves a detailed understanding of the classification scheme.

Be aware to these problems intrinsic to source code, it configures the first

advance towards effective source code search engines. Based on this, Garcia et

al. [Garcia et al., 2006a] have elaborated an review about the state-of-the-art of

code search engines. In this study, Garcia et al. outline essential aspects that

must be considered by any code searches towards an effective support of the

reuse activity. In addition Garcia et al. have presented commercial and non-

commercial search engines and how their techniques have evolving by the time.

Based on Garcia et al. [Garcia et al., 2006a] study and other

contributions, next Section presents a range of information retrieval tools which

make use of different mechanisms in order to perform searches more efficiently

and consequently improve the reuse activity.

3.7. Information Retrieval Systems for Component
Reuse

As previously mentioned in Chapter 1, an essential step in software reuse is to

find assets previously built. Source Code Search Engine has long been

contributing to reuse activity since early 90’s when the first works appeared

[Ezran et al., 2002]. Currently, such engines have gained attention and attracted

investments from giant software companies. This Section reviews outstanding

code searchers supported by different mechanisms in order to enhance its

search efficiency.

In 1991, Prieto-Díaz proposed the utilization of a facet-based scheme

to classify and consequently retrieve software components. The goal was to

manually describe components according to their different characteristics,

unlike the traditional hierarchical classifications, where a single node from a

Chapter 3 – Information Retrieval 40

tree-based scheme hide the component particularities [Prieto-Díaz, 1991].

However, researchers such as [Maarek et al., 1991] argue that classifying

components manually is susceptible subjective, so that two different people may

choose different keywords or facets to describe the same asset. In this sense,

Maarek et al. tackled the similarity problem by automatically clustering

artifacts from free-text descriptors, terms or phrases that best describes a

component. In 1994, Henninger [Henninger, 1994] presented the CodeFinder, a

code searcher that uses query-construction methods for assisting users to

define their needs when they do not know the exact terminology.

In late 90’s, the Software Engineering Institute at Carnegie Mellon

University developed an information retrieval system called by Agora. Search

and retrieval in Agora begins when a searcher enters keyword query and

optionally specifies the type of component. These terms and other criteria are

searched against the index collected by the search agents. The result set for the

query is sent back to the user for inspection. Each result includes meta-

information including the URL of the component and the searcher can then

refine or broaden the search criteria based on the number and quality of the

matches [Seacord et al., 1998].

In 2000, [Thomason et al., 2000] proposed the CLARiFi, a component-

based system that provides an classification schema that identifies component

properties important in the selection for a given task. In 2002, Ye and Fischer

[Ye and Fischer, 2002] presented the CodeBroker, a context-based code

searcher to retrieval source code in accordance with the developer environment.

They proposed a process called information delivery (or active search), which

consists in anticipating the software engineer’s needs for components. The

process is performed by monitoring the activities of the software engineer, e.g.

codification or documentation, and automatically searching for the components.

In 2003, Sugumaran and Storey [Sugumaran and Storey, 2003] presented A

Semantic-Based Approach to Component Retrieval to meet user’s requirement

taking account domain models containing the objectives, processes, actions,

actors, and, an ontology of domain terms, their definitions, and relationships

with other domain-specific terms. Holmes and Murphy [Holmes and

Murphy, 2005] proposed the Strathcona, an Eclipse plug-in that finds source

code examples through a search based in six different heuristics. The retrieval

Chapter 3 – Information Retrieval 41

takes account the code structure similarity between the developer codes

under writing against those indexed in the repository.

In 2005, Garcia et. al [Garcia et al., 2006b] presented a keyword and

facet-based component search engine called Maracatu. The client-server

architecture allowed a client Eclipse plug-in searches Java source code from

CVS repositories indexed in the server side. In 2006, Mascena et al. [Mascena,

2006] proposed a first evolution of Maracatu: an integrated reuse environment

called ADMIRE, that was based on the same concept of information delivery

proposed by Ye and Fisher [Ye and Fischer, 2002]. On its work a new reuse

metric also was proposed with the goal of monitoring the reuse activities and

allows the software engineer to make corrective actions across the development

process. The second evolution of Maracatu was developed by Vanderlei et al.

[Vanderlei et al., 2007]. In this version, Vanderlei et al. presented the use of

folksonomy, a tag-based mechanism where developers manually tag source

codes with related terms.

 After 2005, keyword-based web search engines focused on source code

retrieval also started to appear on the Internet. Koders web search engine

[Koders, 2006] automatically connects with different version control systems

(e.g., CVS and Subversion) to search source code, being able to recognize

approximately 30 programming languages and 20 software licenses. Likewise

Koders, Krugle [Krugle, 2006] helps professional developers solve their

programming problems by searching for many different types of programming

languages. With the same purpose, Merobase 2 was proposed to allow users to

find, remember and share components on the Internet. In contrast with first-

generation code search engines, Merobase treats source code modules as first

class abstractions rather than chunks of text. In particular, Merobase specializes

in finding components based on their interface (or API) rather than the strings

in their source code. Not different Google Code [Google, 2006] search public

source codes for function definitions and sample code in many types of

programming language types as well. In continuation, Google has recently

released the Google Code Search data API that allows developer to create client

and web applications to search public source code on the Internet. In addition,

Google Code allows users perform search through specific facets.

2
 http://www.merobase.com

Chapter 3 – Information Retrieval 42

In 2006, the RiSE group [Almeida et al., 2004] and C.E.S.A.R3 (Recife

Center for Advanced Studies and Systems) have sponsored the development of a

commercial version of Maracatu search engine [Garcia et al., 2006b]: B.A.R.T,

the Basic Asset Retrieval Tool. It is a robust information retrieval system with

three user interfaces [Almeida et al., 2004]: Eclipse and Ms/Word plug-ins and

a brand new Web Interface for searching software assets. The B.A.R.T agenda

envisages the addition of other search techniques - beyond the current keyword-

based - such as facet-based, folksonomy, context besides innovative

technologies related to data-mining and artificial intelligence. The semantic

layer proposed in this dissertation represents the continuation of RiSE research

agenda in favor of relevant search and retrieval. The complete description about

how introducing semantics in the B.A.R.T search engine is entirely detailed in

Chapter 5.

The search engines presented so far have employed their efforts in source

code retrieval without the use of semantic web benefits. Nevertheless, the next

Chapter outlines how semantic search engines have exploited ontologies to

increase the recall and precision of its results.

3.8. Information Retrieval Discussion

Although the effort for best retrieval introduced by Prieto-Díaz [Prieto-Díaz,

1991], the facets may vary according to the project context being useful for ones

but not for others. The main obstacle here is to choose the most adequate facets

to compose the scheme in accordance with the project nature. Maarak et al.

[Maarek et al., 1991] and the CLARiFi [Thomason et al., 2000], a try to solve

the Prieto’s dilemma by automatically clustering artifacts from free-text

descriptors, terms or phrases that best describes a component. These

mechanisms should be complemented by the CodeFinder [Henninger, 1994]

mechanism that uses query-construction methods for assisting users to define

their needs when they do not know the exact terminology. The combination of

the last techniques probably would result in a powerful search engine with

increases in the precision.

3
 http://www.cesar.org.br.

Chapter 3 – Information Retrieval 43

To complement the presented approaches, Sugumaran and Storey

[Sugumaran and Storey, 2003] introduces the use of ontologies that could be

combined with Henninger mechanism in order to user proper terms in the

query formulation. Proposals such as Maracatu [Garcia et al., 2006b] and

Strathcona [Holmes and Murphy, 2005] must have special attention by the fact

that they take advantage because were developed to be in the user environment

with facilitates their usage. The use of folksonomy technique as implemented by

Vanderlei et al. [Vanderlei et al., 2007] may be regarded as important step

towards free hand classification by use of tags. This feature has been appearing

with more frequency in many important information retrieval tools around the

world.

Web search engines such as Krugle, Merobase and Google never must be

ignored due the fact that they are available to everyone, however, all of the

techniques presented so far must be presented in order increase their

attractiveness in terms of relevance.

3.9. Chapter Summary

This Chapter introduced the information retrieval field and discussed its

relationship to software reuse. It was described the differences between data

retrieval and information retrieval system, some question about relevance

search, techniques for assisting searching and recovering and related works in

favor of software reuse. Next Chapter outlines how semantic web technologies

and ontology may be useful for supporting information retrieval systems with

semantic assistance.

Chapter 4 – The Semantic Web

The Semantic Web

With the advent of the Internet, vast amounts of knowledge was spread through

the web pages for human consume, however, the Semantic Web field has

explored means of how to make that information also machine-understandable

[Berners-Lee et al., 2001]. Planned to be an extension of current World Wide

Web, the Semantic Web aims to express the web content in a format that can be

read and used by software agents, thus permitting them to find, share and reuse

information easier. This Chapter makes a review of Semantic Web concepts,

technologies and outstanding projects that have been taking advantage of this

technology.

The Chapter is organized as follows: Section 4.1 presents an introduction

about the advent of semantic web as well as its purpose. Section 4.2 introduces

the ontological concepts which are important for the basis of the Semantic Web

field. Section 4.3 outlines the real-world ontology aspects such as building time

and costs. Section 4.4 depicts the ontology engineering process. Section 4.5

focus on ontology levels from different types of ontologies. Section 4.6 reports a

review about the most outstanding semantic markup web languages. Section 4.7

presents a set of successful semantic projects which employ ontologies to other

necessities. Section 4.8 outlines semantic search engines and discusses their

benefits to the information retrieval area and finally Section 4.9 finishes the

Chapter with a brief summary about what was presented.

4.1. Introduction

The World Wide Web has dramatically increased the availability of

electronically available information. From 2003, more than 500 million

computer users around the world access around 3 billion online documents

4

Chapter 4 – The Semantic Web 45

daily, and these numbers are expected to grow exponentially as organizations

become more geographically dispersed and organized around virtual teams

[Bruijn, 2003]. The web brings a huge volume of information available in

documents, images, and video - all forms that require human intelligence to

understand and process. To a computer, this information is just data, which can

be stored, displayed, compressed, and transmitted to other computers. No

understanding about the content is assured and therefore no logical relationship

may be inferred by computer. The Semantic Web activity at the World Wide

Web Consortium 4 aims to augment the current web with information that a

computer may process and understanding its meaning.

 Initially, the web was designed as an information space, with the goal

that it should be useful not only for human-human communication, but also

that machine would be able to participate and help. Nevertheless, the current

web is under an “unintelligent” structure where the pages are concerned only in

how to present the information and not for its self communication. According to

Lee [Berners-Lee et al., 2001], to achieve this stage, the web has to fulfill some

requirements, such as data structuring and semantic configuration in order to

become understandable by the computers. Appling domain ontologies to web

documents will allow data be shared and reused across application,

enterprise, and community boundaries. This semantic technology may then

become web documents “machine-understandable”.

4.2. Ontology

According to Webster’s Revised Unabridged Dictionary 5 the word “ontology”

means: "The department of the science of metaphysics which investigates and

explains the nature and essential properties and relations of all beings, as

such, or the principles and causes of being." In spite of such definition comes

from the field of philosophy, the term was adopted also by Artificial Intelligence

community. In computer science, a famous definition was introduced by

Gruber that said:

4
 http://www.w3.org

5
 http://machaut.uchicago.edu/websters

Chapter 4 – The Semantic Web 46

"Ontology is a formal and explicit specification of a shared conceptualization"

[Gruber, 2002]

This short statement reveals the great role of ontology: formalize and

establishing concepts and its relationships. To be “formal” means the ontology

should be machine understandable; “explicit” because all concepts and

constraints used are explicitly defined; “specification” because it represents the

conceptualization in a concrete form; “shared” indicates that the ontology

captures consensual knowledge and “conceptualization” means an abstract

simplified view of the world that is desired to represent for some purpose

[Gruber, 2002].

4.3. Real-world Ontology Aspects

In the late 1990s, with the advent of the Internet, the use of semantic markup

ontology languages became widespread in areas such as data integration,

knowledge management and information retrieval [Bruijn, 2003]. Behind its

use some social and technical issues are considered in the following:

• Human and machine link - According to Fensel [Fensel, 2001], the

main advantage about ontologies usage is the interlink between human

and machine understanding through formal, real-world semantics and

consensual terminologies, interweave human and machine

understanding. Edgington [Edgington et al., 2004] credits its usage due

to the capacity of knowledge sharing and reuse among both human and

computer agents;

• Empirical facts - A typical reason for constructing ontology is to

provide a common language for sharing and reusing knowledge about

phenomena in the world of interest. It is important clearly establish the

following distinction: on one hand, there is the ontology itself, which

specifies concepts used in a domain of endeavor, concepts whose

existence and relationships are true by definition or convention. On the

other hand, there are empirical facts about these concepts and

relationships. They are not part of the ontology, although creating a

Chapter 4 – The Semantic Web 47

general ontology characterizing the conduct of knowledge management

[Holsapple and Joshi, 2002];

• Cost – To build a domain ontology definitely is not a cheap activity,

Simperl et al. [Simperl et al., 2006] defend that the cost for applying

ontologies in commercial applications depends on the availability of

appropriate methodologies guiding the ontology development process

and the time allocated to requirement engineers for contributing on the

ontology validation. In addition, the money spent for training generally is

high once ontologies are recent and still far from the software engineers

knowledge. Moreover, the energy required to create, document and

maintain ontology sometimes can be an inhibitor factor depending on the

size and the complexity; and

• Building Time - An ontology seen as an artifact is under responsibility

of the requisition engineering, because during the phase the knowledge

of the context is well comprehended, thus the biggest effort for defining

ontology is applied during the first phase of software development cycle.

Developing a knowledge base has to respect some constraints, follows a

methodology, pass over some steps and refine it. Therefore, the ontology

creation is not supposed to be an ah-doc activity, thus, a methodology is

necessary to be followed and tools for supporting its process.

4.4. Ontology Engineering

Ontological engineering has gained increasing attention over the last few years,

as researchers have recognized ontologies are not just for knowledge-based

systems that need model desired entities of the world [Devedzić, 2002].

Ontological engineering encompasses a set of activities carried out during

conceptualization, design, implementation and deployment of

ontologies [Devedzić, 2002]. It provides the effective support of ontology

development and use during its life cycle-design, evaluation, validation,

maintenance, deployment, mapping, integration, sharing and reuse [Gomez-

Perez et al., 2004]. Nevertheless, building ontologies is difficult, time-

Chapter 4 – The Semantic Web 48

consuming, and expensive, particularly if the ontology design is formal enough

to support automated inference.

According to [Gomez-Perez et al., 2004], some methodological steps have

to be followed to create ontology:

• Purpose identification and requirements specification - in

this phase, the competence of the ontology is defined. To confirm that,

it is necessary the agreement by multiple parties (persons and

software systems) to adopt a particular domain of interest, even

though they do not necessarily have the same experiences, theories, or

prescription about that domain;

• Capture Ontology - the goal is to capture the conceptualization of

the domain based on the ontology competence. The relevant concepts

and relations should be identified and organized. In this phase, the

taxonomy starts to be raised;

• Formalize Ontology - this phase is responsible for explicitly

representing the conceptualization in a formal language. One of the

most used tools for supporting this task is Protégé6. [Noy et al., 2001]

present a graphical tool for ontology editing and knowledge

acquisition that can be adapted to enable conceptual modeling with

new and evolving Semantic Web languages like RDF and OWL;

• Integrate existing ontologies - during this phase occurs the

integration among the current ontology with existing ones, in order to

reuse established conceptualizations. Even though this activity is

conceptually useful, it may be skipped in cases when the ontology

subject if quite restrict to a very specific domain;

• Evaluate Ontology - at this point, the ontology is checked whether

it satisfies the specification requirements. The knowledge

management requires a continuous system of interaction and

iteration with the knowledge owners to validate existing knowledge

[Edgington et al., 2004]; and

6
 http://protege.stanford.edu

Chapter 4 – The Semantic Web 49

• Document Ontology - during this phase, the entire ontology

development must be documented, including purposes, requirements

and motivating scenarios, textual descriptions of the

conceptualization, the formal ontology and the adopted design

criteria.

All of the steps are strongly advisable to be accomplished in order to

formally build an ontology. These are the expected entailments to be fulfilled in

organization with desire to publish and share their ontologies; on the other

hand, this formal process may be tailored to adhere to organizational process of

software development. Therefore, it is fairly compressively that steps could be

added and more artifacts produced for documentation [Devedzić, 2002].

4.5. Ontology Levels

Ontology can embrace a range of knowledge since the most specific ones until

the more common shared by diverse communities. The stricter ontologies

usually describe specific concepts about a domain, in opposite, the top-level

ones describe general concepts that are common across different domains.

The generality means the extensiveness of the ontology, for example,

while some ontologies try to capture all terms in natural language, others are

very specific to certain domains. The expressiveness of ontology is measure by

the degree of explication of the (meta-) knowledge, which is captured. The more

constraints are, the more expressive it is, since it captures the knowledge of the

domain on a more detailed level [Devedzić, 2001]. In the following, the

ontology levels will be presented according to Guarino [Guarino, 1998] which

identifies three layers of knowledge, corresponding to three different types of

ontologies, based on their levels of generality, namely:

• Upper Ontologies or Top-level Ontologies - describe general

concepts, independent of any particular domain or task. Upper-level

ontologies capture mostly concepts that are basic for the human

understanding of the world such as “Thing” and “Behavior”. They are

Chapter 4 – The Semantic Web 50

“grounded” in (supported by, wired to) the common sense that makes it

difficult to formalize a strict definition for them;

• Domain ontologies and task ontologies - describe, respectively,

generic concepts for a particular domain and generic concepts for a

generic task. For example, in the natural sciences (Mathematics, Physics,

Chemistry, Biology, Medicine) the knowledge is easy to formalize because

it is more or less systematic — it could be expressed using well-defined

scientific terms [Bruijn, 2003]; and

• Application ontologies - describe concepts depending on both the

domain and the task [Bruijn, 2003].

The generality of the level is fundamental to determine its degree of

reuse: the higher level an ontology has, the higher its reuse is.

4.6. The Mark-up Ontology Web Languages

The current World Wide Web (WWW) contains large amount information

which is expanding at a rapid rate. Most of that information is represented

under Hypertext Markup Language (HTML), which is designed to allow web

developers display information in a format suitable for human viewing through

web browsers. On the other hand, the HTML format does not provide enough

infrastructure that enable software programs to “understand” the information

content. Then, the World Wide Web Consortium (W3C) has developed the

Extensible Markup Language (XML)7: a metadata-based format which allows

information be more accurately described. A XML document is more

meaningful than the HTML one with respect to the information objects

represented by text. The markup itself is a form of “metadata”, explaining what

the constituent elements are (by name), and how these information objects are

structured into larger coherent units. This markup structure allows computers

to navigate and query over the information content [Berners-Lee, 1996]

[Farrugia, 2003]

7
 http://www.w3.org/XML

Chapter 4 – The Semantic Web

In spite of the advances in relation to HTML, the X

capability to describe the relationships and probabilities with respect to

semantic of its objects. These characteristics, however, are naturally managed

by domain ontologies; based on this, the W3C community extended the XML to

address ontologies for displaying the semantics of the objects that are

defined. This initiative has promoted the advent of

Languages: a formal data model

well as allows applications to proce

1996] [Farrugia, 2003].

Next Section presents the most outstanding

Languages.

4.6.1. Resource Description Framework

The Resource Description Framework

representing information in the Web

model distinguishes between resources, which are object identifiers represented

by URIs, and literals, which are just strings. It is

statements about resources in the form of

called triples in RDF terminology. The subject denotes the resource, and the

predicate denotes traits or aspects of the resource and expresses a relationship

between the subject and the object. For example, one way to represent the

notion "The house has the color white

formatted strings: a subject denoting "the

color", and an object denoting "

resources are always drawn as ovals, and literals are drawn as boxes

Semantic Web

In spite of the advances in relation to HTML, the XML has a limited

capability to describe the relationships and probabilities with respect to

semantic of its objects. These characteristics, however, are naturally managed

by domain ontologies; based on this, the W3C community extended the XML to

tologies for displaying the semantics of the objects that are

This initiative has promoted the advent of Mark-up Ontology Web

data model which supports the semantics of the entities as

applications to process and manipulate its content

Next Section presents the most outstanding Mark-up Ontology Web

Resource Description Framework

Resource Description Framework or RDF is a general-purpose language for

representing information in the Web [McBride et al., 2004].

model distinguishes between resources, which are object identifiers represented

by URIs, and literals, which are just strings. It is based upon the idea of making

statements about resources in the form of subject-predicate-object

in RDF terminology. The subject denotes the resource, and the

predicate denotes traits or aspects of the resource and expresses a relationship

between the subject and the object. For example, one way to represent the

The house has the color white" in RDF is as a triple of specially

formatted strings: a subject denoting "the house", a predicate denoting "has the

color", and an object denoting "white". In RDF diagrams

resources are always drawn as ovals, and literals are drawn as boxes

Figure 4.1. RDF diagram

51

ML has a limited

capability to describe the relationships and probabilities with respect to

semantic of its objects. These characteristics, however, are naturally managed

by domain ontologies; based on this, the W3C community extended the XML to

tologies for displaying the semantics of the objects that are being

up Ontology Web

which supports the semantics of the entities as

its content [Berners-Lee,

up Ontology Web

Resource Description Framework (RDF)

purpose language for

 The RDF data

model distinguishes between resources, which are object identifiers represented

based upon the idea of making

object expressions,

in RDF terminology. The subject denotes the resource, and the

predicate denotes traits or aspects of the resource and expresses a relationship

between the subject and the object. For example, one way to represent the

in RDF is as a triple of specially

", a predicate denoting "has the

diagrams (Figure 2.1),

resources are always drawn as ovals, and literals are drawn as boxes.

Chapter 4 – The Semantic Web 52

In a sense, RDF is a practical and viable resource for establishing

interoperation between Web applications. Being object-oriented, it has a more

suitable data model for exchanging information than XML, and it is extremely

flexible for defining new vocabularies. According to Decker, RDF is a

promissory technology for the next phase in the development of the Web, when

vocabularies and vocabulary marketplaces will become more important [Decker

et al., 2000].

4.6.2. RDF Schema

RDF Schema8 is a semantic extension of RDF which provides mechanisms for

describing groups of related resources and the relationships between them.

These resources are used to determine characteristics of other resources, such

as the domains and ranges of properties. Classes in RDF Schema are like

conceptual classes in object oriented programming languages. This allows

resources to be defined as instances of classes, and subclasses of classes

[McBride et al., 2004].

4.6.3. Ontology Inference Layer (OIL)

The Ontology Inference Layer 9 is a proposed representation of machine-

accessible semantics [Connolly et al., 2001]. Designed to be compatible with

existing World Wide Web Consortium (W3C) standards, including XML and the

RDF, OIL exploits the modeling primitives of RDF Schema. OIL is a proposal

for a web-based representation and inference layer for ontologies, which

combines the widely used modeling primitives from frame-based languages

with the formal semantics and reasoning services provided by description logics.

OIL still offers some levels of complexity designed to different sorts of

descriptions; each level adds new functionalities and complexity to the one

8
 http://protege.stanford.edu/overview/protege-owl.html

9
 http://www.ontoknowledge.org/oil

Chapter 4 – The Semantic Web 53

below it. They are: Core OIL, Standard OIL, Instance OIL and Heavy OIL

[Fensel, 2002]. Some open-source projects contribute to OIL dissemination

such as OilEd that is a ontology editor which allows the user to build ontologies

using OIL. The intention behind OilEd is to provide a simple, freeware editor

that demonstrates the use of, and stimulates interest in, OIL. In the same way,

OntoEdit 10 is an Ontology Engineering Environment supporting the

development and maintenance of ontologies using graphical support [Sure et

al., 2003].

4.6.4. Ontology Web Language (OWL)

The Web Ontology Language (OWL) 11 is the most recent development in

standard ontology languages, endorsed by the World Wide Web Consortium

(W3C) to promote the Semantic Web activity [McGuinness and Harmelen,

2004]. OWL is more expressive than the RDF because it provides additional

vocabulary with formal semantics for describing properties and classes such as

disjointness, cardinality (e.g. exactly one), equality, symmetry, among others. In

a nutshell, OWL has three increasingly-expressive sub-languages: OWL Lite,

OWL DL, and OWL Full. OWL Lite supports those users primarily needing a

classification hierarchy and simple constraints. OWL DL supports those users

who want the maximum expressiveness while retaining computational

completeness and decidability. OWL Full is meant for users who want

maximum expressiveness and the syntactic freedom of RDF with no

computational guarantees. For example, in OWL Full a class can be treated

simultaneously as a collection of individuals and as an individual in its own

right. OWL Full allows ontology to augment the meaning of the pre-defined

(RDF or OWL) vocabulary [McGuinness and Harmelen, 2004].

In addition to W3C, the official institute which defines the OWL patterns

for the Semantic Web community; the Protégé-OWL Editor 12, an extension of

10

 http://www.ontoknowledge.org/tools/ontoedit.shtml
11

 http://www.w3.org/TR/owl-features/
12

 http://protege.stanford.edu/overview/protege-owl.html

Chapter 4 – The Semantic Web 54

Protégé ontology editor, contributes enormely for the OWL diffusion among

beginners [Noy et al., 2001].

4.6.5. DARPA Agent Markup Language (DAML)

The DARPA Agent Markup Language13 (DAML) program officially began in

August, 2000. The goal of the DAML effort is to develop a language and tools to

facilitate the concept of the Semantic Web. The DAML program has generated

the DAML+OIL markup language, which contains a defined syntax, layered on

RDF and XML, and can be used to describe sets of facts to build ontology.

DAML+OIL makes of RDF namespaces to organize and assist with integration

of different and incompatible ontologies. Current research into DAML is leading

toward the expression of ontologies and rules for reasoning and action.

Nowadays, DAML+OIL provides a basic infrastructure that allows a machine to

make the same sorts of simple inferences that human beings do [Connolly et al.,

2001].

This Section has described the most outstanding Mark-up Ontology Web

Languages built on top of Semantic Web trends, however, it is recognized that

these languages are originated from previous description logics languages such

as F-Loci, Cyc, Frame, KIF [Gomez-Perez et al., 2004]. In this dissertation, such

languages will not be detailed by the fact that they are not in scope of this study

and mainly because the Mark-up Ontology Web Languages can indirectly show

their roles for knowledge representation.

4.7. Outstanding Semantic Web Projects for
Knowledge Management

With the dissemination of the Semantic Web, some outstanding projects have

been started in the research community interested in explore the benefits

provided by the technology. Aware to the Semantic Web contribution at

13

 http://www.daml.org/

Chapter 4 – The Semantic Web 55

international conferences, this Section presents referenced projects in the

sphere of knowledge management.

The Ontolingua14 project provides a distributed collaborative

environment to browse, create and modify ontologies. The Ontolingua server

supports over 150 active users, working to the same ontology under broad

coordination supervision, extremely helpful for distributed teams which intend

work in cooperation [Farquhar et al., 1996]. Ontolingua is an academic project

of the Stanford University Knowledge Systems and is financially supported by

industrial organizations such as Defense Advanced Research Projects Agency

(DARPA), Department of the Navy, Rapid Knowledge Formation (RKF)

program and Boeing Corporation.

Jena 15 is Java framework for building Semantic Web applications. It is

widely referenced within the semantic web development and research

community due to the facilities for ontology handling and reasoning. The Jena

Framework includes a RDF API, reading and writing RDF in RDF/XML, N3 and

N-Triples, an OWL API, in-memory and persistent storage and the SPARQL

query engine. The World Wide Web Consortium (W3C), for example, runs an

RDF validation service that checks whether a document is valid RDF/XML,

translates the incoming document into an RDF graph, and displays the graph

both as a list of triples and as a diagram. The service uses ARP 16, a Jena’s

parser, to translate the incoming RDF/XML document into a stream of triples

[McBride, 2001]. Jena is open source and grown out of work with the HP Labs

Semantic Web Programme 17.

Protégé is a free, open source ontology editor and knowledge-base

framework that can be adapted to enable conceptual modeling with new and

evolving Semantic Web languages [Noy et al., 2001]. The Protégé platform

supports two main ways of modeling ontologies via the Protégé-Frames and

Protégé-OWL editors. Protégé ontologies can be exported into a variety of

formats including RDF(S), OWL, and XML Schema. Figure 2.2 shows the

14

 http://www.ksl.stanford.edu/software/ontolingua
15

 http://jena.sourceforge.net
16

 http://www.hpl.hp.com/personal/jjc/arp
17

 http://www.hpl.hp.com/semweb

Chapter 4 – The Semantic Web 56

“Classes Tab” where it possible define classes hierarchy, slots and slot-value

restrictions, relationships between classes and properties of these relationships.

Figure 4.2. Protégé Screenshot.

Protégé was developed by Stanford Center for Biomedical Informatics

Research at the Stanford University School of Medicine and yearly promotes its

International Protégé Conference where are discussed current and future

applications of the tool.

Protégé-OWL Api – An open-source Java library for the Web Ontology

Language and RDF Schema. The API provides classes and methods to load and

save OWL files, to query and manipulate OWL data models, and to perform

reasoning. The great aspect is that Protégé-OWL is tightly integrated with Jena

allowing total interactivity between the concurrent semantic web API’s.

Furthermore, the API is optimized for the implementation of graphical user

interfaces [Noy et al., 2001]. Like the Protégé editor, Protégé-OWL Api was

developed by Stanford Center for Biomedical Informatics Research at the

Stanford University School of Medicine.

Chapter 4 – The Semantic Web 57

The On-to-Knowledge 18 project is exploiting ontologies to develop a

methodology and tools for automatically acquiring, maintaining and accessing

weakly structured data sources. The projects intends to develop a tool suite for

efficiently processing large numbers of heterogeneous, distributed and semi

structured documents typically found in large company intranets and on the

Internet. The initial approach integrates Semantic Web search technology,

document exchange via transformation operators, automated information

extraction and systematic support for information maintenance and user-

specific views. The goal of the project is to provide some knowledge

management through guidelines, concepts and tools for enterprises, helping

knowledge providers to present their knowledge efficiently and effectively

[Fensel, 2002]. Nowadays, all activities of the On-t0-knowledge project have

migrated to the Digital Enterprise Research Institute 19 (DERI) whose mission is

to establish semantics as a core pillar of modern computer engineering. DERI

institute is financially supported by Enterprise Ireland, Information Society

Technologies and Science Foundation Ireland.

 OntoLearn is a methodology and a battery of software tools that use

text mining and statistical techniques to construct domain ontologies for

automatic semantic annotation. It uses available resources such as glossaries,

document archives, databases, etc., to identify the relevant domain concepts and

build formal definitions from informal ones. OntoLearn methodology is

expected to be applied during the ontology engineering to facilitate the task of

domain specialists who inspect and evaluate the newly acquired domain

ontology. The project has been used in national and international projects in

several domains, such as tourism, enterprise interoperability, computer

networks, and finance [Missikof et al., 2002].

 The industrial OntoClean project develops a methodology for ontology-

driven conceptual analysis that utilizes meta-properties to impose several

constraints on the taxonomic structure of the ontology in order to evaluate the

choices made. Other problem treated by the OntoClean is the polysemy in which

a term may be represent by multiple meanings. For example, "book" is a

polysemous term with at least two meanings: a bound volume with a size,

18

 http://www.ontoknowledge.org
19

 http://www.deri.ie

Chapter 4 – The Semantic Web 58

weight, position, and so forth; an abstract entity with an author, title, and

possibly many manifestations [Holsapple and Joshi, 2002]. The OntoClean is

financially supported by the Laboratory for Applied Ontology (LOA) 20 which

performs applied research on the ontological foundations of conceptual

modeling, and Ontology Works21 that is a product company offering a broad

suite of semantic technologies including deductive information repositories.

Simperl et al. [Simperl et al., 2006] has proposed the Ontology Cost

Model (ONTOCOM), a model to predict the costs arising in ontology

engineering processes. The work introduces a methodology to generate a cost

model adapted to a particular ontology development strategy, and an inventory

of cost drivers which influence the amount of effort invested in activities

performed during an ontology life cycle. This work has been partially supported

by the European Network of Excellence “KnowledgeWeb-Realizing the Semantic

Web”, as part of the KnowledgeWeb researcher exchange program T-REX, and

by the European project “Sekt-Semantically-Enabled Knowledge Technologies”

and “NeOn - Lifecycle Support for Networked Ontologies”.

In the process of building new ontologies, it is common to extending the

existing ontologies or combining knowledge from different smaller ontologies.

To support the ontology merging, Lambrix and Tan [Lambrix and Tan, 2007]

have proposed KitAMO: A tool for evaluating ontology alignment strategies. In

a nutshell, the tool calculates similarities between the terms from the different

ontology sources through linguistic matching strategies. This tool seems to be a

promising framework for OntoLearn and OntoClean methodologies described

previously.

As seen previously, the semantic web has called the attention of many

areas of software engineering particular to knowledge management. Nowadays,

tools and methodologies start to be mature in the way to be profitable business

for the organizations. In the next Section, the semantic search engines are in

evidence.

20

 http://www.loa-cnr.it
21

 http://www.ontologyworks.com

Chapter 4 – The Semantic Web 59

4.8. Semantic Search Engines

In addition to methodologies, ontology editors and frameworks, Semantic

Search Engines have been developed aiming to enhance their search

capabilities. This Section focuses on these tools and how ontologies have been

applied to improve their search quality.

Guarino et al. [Guarino et al., 1999] presents the OntoSeek, a system

designed for content-based information retrieval from online yellow pages and

product catalogs. Guarino et al. believe that structured content representations

coupled with linguistic ontologies can increase both recall and precision of

content-based retrieval. In spite of not focusing on source code retrieval,

Guarino’s approach focuses on solving semantic-match problems by using

linguistic ontologies such as WordNet and structured representation

formalisms. Similar to OntoSeek, the Semantic Web Search Engine

(SWSE)22 [Breslin et al., 2005] is a search engine for Semantic Web data that

utilizes vocabularies and ontologies to make it possible to apply powerful

inference techniques and perform relevant searches. SWSE is a research project

being carried out by DERI Galway23

 Swoogle is a crawler-based indexing and retrieval system for Semantic

Web documents in RDF or OWL. Swoogle reasons about these documents and

their constituent parts (e.g. terms and triples) and records and indexes

meaningful metadata about them in its database. It provides services to human

users through a browser interface and to software agents via web services.

Several techniques are used to rank query results inspired by the PageRank

24algorithm developed by Google but adapted to the semantics and use patterns

found in semantic web documents [Ding et al., 2004]. Swoogle is a research

project being carried out by the ebiquity research group in the Computer

Science and Electrical Engineering Department at the University of Maryland,

Baltimore County (UMBC). Partial research support was provided by DARPA

and by NSF institute.

22

 http://swse.deri.org
23

 http://www.deri.ie/teaching/invited-talks/archive
24

 http://www.google-watch.org/pagerank.html

Chapter 4 – The Semantic Web 60

Popov et al. [Popov et al., 2004] has developed KIM, a system that

allows semantic annotation, indexing, and retrieval of documents with respect

to real-world entities. For the end-user, a browser plug-in highlights existing

entities in KIM ontology and generates a hyperlink used for further exploring

the available knowledge to the entity. A semantic query web UI allows

specification of a search query that consists of entity type, name, attribute and

relation restrictions that are semantically annotated in the KIM index base. In

the KIM Knowledge Base are modeled 80.000 entities describing about its

specific type, aliases, expressing the (most probable) official name, attributes

(e.g. latitude of a Location), and relations. This is an academic project under

development at University of Sheffield, Sofia, Bulgaria.

Semantic-Based Approach to Component Retrieval is a system

that utilizes domain ontology for retrieving source components, using additional

semantic information to process user query. The authors assume the availability

of a domain ontology containing terms, relationships and constraints aiding

users to specify their requirements when using natural language (nominal or

imperative sentences). The ontology is used to expand the query with synonyms

to broaden the search, if needed. The search is centralized in a reuse repository

strict to an auction specific domain [Sugumaran and Storey, 2003].

Chen et al. [Chen et al., 2007] present an enterprise solution where they

extended the traditional keyword search engine mechanism to a ontology-based

search. The SRC Company uses a San Diego SuperComputer's Storage

Resource Broker: tera-byte size data grid which manages distributed data

collections such as source codes, documents, models, etc. The SRB search

methods involve keyword searching of the available metadata, however, this

approach has some limitations as organizations want to share or integrate data

sets. This problem lead the company to enhance the system’s search capabilities

by implementing semantic search engine and interface built on top of an OWL

ontology, RDF instance data and a Jena reasoning engine that enables easier

and more sophisticated searching of heterogeneous data stored using SRB.

As seen previously, Mark-up Web Semantic Ontology Languages have

been applied in traditional keyword search engines in order to improve the

search capability in spite of being originally they defined to be applied for web

Chapter 4 – The Semantic Web 61

development. Moreover, as discussed, source code search engines such as

Semantic-Based Approach to Component Retrieval and SRB semantic searcher

also utilize Mark-up Web Semantic Ontology Languages for enrich their search

precision and take advantages of the technology.

4.8.1 Semantic Search Engines

The main goal of the semantic assistance is to provide additional knowledge

about the user request in which user’s keywords are mapped into concepts of

the domain ontology which model a rich set of the semantic relationships

comprising subsumption, synonymy and business constraints. The use of

ontologies opens a range of meaningful around the object of interest which

contribute to reduce the chances of poor query construction and consequently

irrelevant search returns. The constraints (relationships and properties) of an

ontology aggregate value to the search by narrowing the scope of the request.

This benefit goes against the ambiguity problems where a single keyword can be

used in different senses and may lead search engines, for example, to retrieve

information from unsuitable domains. Therefore, combining information

retrieval technique with semantic web assistance, they possibly will configure a

promising solution for building robust search tools which prime for knowledge

support and relevant returns. Motivated by this premise and based on the

mentioned related search tools, this dissertation applies Semantic Web

resources in a source code search engine for ambiguity treatment in order to

improvements of the search precision. The next Chapter depicts the entire

implementation of the proposed solution as well as the benefits acquired with

the semantic support.

As seen, the use of domain ontologies have been shared among search

engines of different proposes. The OntoSeek, Swoogle, KIM and SWSE utilize

ontologies for searching web content on the Internet while Semantic-Based

Approach to Component Retrieval; SRC broker focuses their search over

software assets in specific repositories. Independent of the target, they utilize

ontology support to enhance the query construction.

Chapter 4 – The Semantic Web 62

4.9. Chapter Summary

In this Chapter, it was discussed how semantic web technologies have evolved in

favor of semantics in software applications. It was presented an overview about

ontology concepts and aspects of development. In addition, outstanding

semantic markup web languages were described as well as ongoing projects

developed around the world. Moreover, it was presented a couple of semantic

search engines and their benefits achieved when using ontologies to enhance

their search capabilities and a discussion how semantic assistance will evolve

towards robust information retrieval tools. In the next Chapter, the entire

proposal is detailed.

Chapter 5 – Semantic Search Engine

Semantic Search Engine

Information Retrieval is the interdisciplinary science which underlies computer-

based text search tools in order to facilitate the information access. As seen in

the Chapter 2, there are many different mechanisms to recover information

aiming for quality in the retrieval such as context awareness, facet-based and

folksonomy. Anchored in the theory studied so far which combines the benefits

acquired with semantic web activity, information retrieval techniques and

software reuse, a semantic layer to incorporate a source code retrieval tool,

aiming to increase the precision of the search results, is proposed.

The semantic layer was designed to be plugged-in any search engine,

however, this proposal takes place in the B.A.R.T (Basic Asset Retrieval Tool)

search engine (see Chapter 3) due the fact that this dissertation is part of the

RiSE framework. Moreover, this study makes part of an evolutionary agenda on

how different search techniques may assist developers to find reusable software

assets more efficiently. The benefits and improvements achieved in the final of

this study will be carefully analyzed and hopefully applied in commercial

releases of the search engine.

This Chapter is organized as follows: Section 5.1 describes the

requirements proposed for the semantic search and Section 5.2 presents the

system architecture as well as the modules which compose it. Section 5.3 details

the semantic core components which implement the semantic layer. Section 5.4

describes the improvements carried out for the proper use of the semantic

features. Section 5.5 lists the set of frameworks and technologies utilized during

the implementation. Section 5.6 simulates a semantic search in action to make

the clear the benefits of the proposal and, finally, provided, Section 5.7

summarizes the content presented in this Chapter.

5

Chapter 5 – Semantic Search Engine 64

5.1. Requirements

The requirements (functional and non-functional) proposed for the semantic

search engine are based on problems faced by outstanding search engines

analyzed so far [Prieto-Díaz, 1991], [Garcia et al., 2006b], [Vanderlei et al.,

2007], related work in the literature such as [Henninger, 1994], [Guarino et al.,

1999], [Ye and Fischer, 2002], [Sugumaran and Storey, 2003], and reviews of

the state-of-the-art [Lucrédio et al., 2004]. Adding to this, reuse practices and

discussions in the RiSE group. In this context, a set of functional and non-

functional requirements for the semantic layer are presented in the following

Subsections.

5.1.1. Functional Requirements

This subsection outlines the functional requirements for the development of the

semantic search engine. Initially, the primary requirements for effective search

and retrieval are described followed by the semantic requirements.

• Keyword Search and Retrieval - The search mechanism should be

performed through keywords usage, like most web search engines, in

order to avoid the learning of a new method. Thus, the search must

accept a string as the input, and must interpret logical operators such as

“AND” and “OR”;

• Query formulation - There is a natural information loss when the user

is formulating a query. As pointed out by [Ye and Fischer, 2002], there is

also the conceptual gap between the problem and the solution, since

usually components are described in terms of functionality (“how”), and

queries are formulated in terms of the problem (“what”). A search engine

must provide means to help the user to formulate the queries,

consequently reducing this gap;

Chapter 5 – Semantic Search Engine 65

• Search results presentation - The search result must be presented in

the developer’s environment, so he can more easily reuse the source code

into the project that he is currently working on;

• IDE Integration - Ideally, the source code search tool should be

integrated to the developer’s IDE, so that minimum overhead is required

in order to use it. A flexible idea is to use plug-in based integration, such

as in the Eclipse platform; and

• Filter Source Code - Although ideally all kinds of code should be

considered for reuse, an automatic mechanism depends on a certain level

of quality. In this sense, the search must not retrieve source code with

minimal documentation such as less than 30% (number extracted

through code metric tools). Thus, a qualitative analysis of the codes must

be performed, in order to eliminate low-quality asset that could prejudice

the understanding and reuse of the item returned.

 The subsequent functional requirements are focused on the semantic

features and represent the core functionalities of the proposed solution.

• Development of a Domain Ontology – A domain ontology should be

created and completed with technological terms handle by source codes.

The ontology must identify technological domains and related terms

besides determine possible relationships among them. The domain

chosen is justified by the fact that nature of the searches focuses on

source codes;

• Management of Context in the Domain Ontology – The ontology

concepts and their relationships stated in the ontology are expected to be

universal; however, this is an utopist view since the semantics about

some concepts may vary according to regions and habits. In this sense,

the ontology must support the management of the context for the

concepts described in the ontology;

• Semantic Possibility Browsing - The inferred domains from the

ontology reasoning must be shown in the developer working set in order

to help the query contextualization. The semantic browsing must be

performed together with the returns of keyword query;

Chapter 5 – Semantic Search Engine 66

• Search by Semantic Possibilities - The search by source codes must

take into account the semantic possibility chosen by the developer. The

search engine must tackle the additional to retrieve codes into the

domain expected;

• Semantic Query Formulation – The search mechanism must expand

the keyword query as soon as the semantic domain is chosen. The final

query is formulated by the composition of the keyword input and the

related technical terms from semantic domain;

• Source Code Classification and Semantic Indexing – The source

codes of the reuse repository should be analyzed and classified into a

proper domain category. This classification must be utilized to compose

the index structure during the index process. The semantic indexing is

required to maximize the performance of the information retrieval

mechanism by focusing the search on classes of a given domain; and

• Visualization of the Source Code Classification – In general, the

effect of the source code classification is only perceived when semantic

search is well succeeded; therefore, in order to turn the classification

more visible for the system administrators, a graphic visualization of the

categorization might be useful for anticipating validation of the

classification.

In the following subsection the non-functional requirements are

described.

5.1.2. Non-Functional Requirements

The non-functional requirements are: reusability, extensibility, usability, high

precision and recall and interface with other search techniques.

• Reusability - the proposed semantic layer must be built under the

Component-Based Development in order to promote the reuse activity by

producing self-contained components instead of an integrated

application. Moreover, future applications which desire to reuse such

features only will plug such components in their environment;

Chapter 5 – Semantic Search Engine 67

• Extensibility - In general, any software application must take into

account future growth. The architecture constraints must presume the

addition of new functionalities and the level of effort required to

implement them without impacting to existing system functions. For this

reason, the proposed solution must be well-structured, with low coupling

modules to accommodate exactly maintenance and extension demanded.

This is a high priority requirement;

• Ubiquity - The proposed solution must provide the possibility of being

set up with existing environments and tools at the same time without

reducing its performance;

• Usability - Software application must be concerned with human

interaction due to the easiness of operating software implies on its

popularity and attractiveness. Therefore, the graphic interface of the tool

must be built-in with intuitive components to perform the functionalities.

This is a high priority requirement;

• High Precision and Recall - This is an essential requirement that

must be regarded in any search mechanism. The performance of an

information retrieval tool is measured taking into account the achieved

precision and recall rates. High precision is achieved when the most

relevant elements are returned in a search and high recall is achieved

when few relevant elements are left behind. Considering that irrelevant

information contributes for reducing the reuse activity;

• Interface to others search techniques - The new semantic

development must be flexible to be combined with other types of search

techniques like keyword matching, facet-based, and folksonomy

technique. Integration with others search techniques can be regarded as

important requirement once leads the proposal to be extensible;

• Performance - Performance is usually measured in terms of the

response time. In centralized systems, the involved variables are the

hardware processing power and the search algorithm complexity. In

distributed scenarios, however, other variables must be considered, such

as network traffic, geographical distance and the greater number of

components;

Chapter 5 – Semantic Search Engine 68

• Platform Independence – Organizations usually have heterogeneous

development platforms and, for that reason, an integrated reuse

environment must seamlessly integrate with all existing configurations in

order to maximize its user base and consequently provide more effective

results. The implementation of the environment functionalities must be

based on technologies that are easily portable across existing platforms;

Although the mentioned requirements are considered important for the

development of this proposal, some of them were not entirely or partially

accomplished due to time constraints and scope of the proposal. In this sense,

some requirements had more priority than others. Table 5.1 shows the expected

requirements against its situation of development according to its priority, thus,

in order to formalize the situation of each one, some priority criteria were

adopted:

• Essential – It represents the indispensable and high-priority

requirements that must be carried out. The lack of them turns the

application useless;

• Important – It represents the medium-priority requirements that are

strongly advisable for better usage of the tool; and

• Aimed - It represents the low-priority requirements that are required for

particular situations or enhancements for current development.

For the situation of realization, three criteria were adopted:

• Achieved – It means that the requirement was completely carried out

and tested;

• Partially Achieved – It means that the requirement was implemented

but there was not opportunity for testing or validation; and

• Not Achieved - It represents the requirements that were not definitely

implemented.

Table 5.1 summarizes the requirements showing the priority and the

situation of the proposed requirements.

Chapter 5 – Semantic Search Engine 69

Table 5.1. Summary of requirements

Requirement Priority Situation

Keyword Search and Retrieval Essential Achieved

Query formulation Essential Achieved

Search results presentation Essential Achieved

IDE Integration Important Achieved

Source Code Filtering Aimed Not Achieved

Development of a domain ontology Essential Achieved

Management of Context in the Domain

Ontology

Aimed Not Achieved

Semantic Possibility Browsing Essential Achieved

Search by Semantic Possibilities Essential Achieved

Semantic Query Formulation Important Achieved

Source Code Classification Essential Achieved

Visualization of the Source Code

Classification

Aimed Achieved

Reusability Important Achieved

Extensibility Important Partially Achieved

Ubiquity Important Not Achieved

Usability Important Partially Achieved

High Precision and Recall Essential Partially Achieved

Interface with others search techniques Aimed Achieved

Performance Important Partially Achieved

Platform Independence Important Achieved

Chapter 5 – Semantic Search Engine 70

Once presented the requirements for creation of the semantic layer, the

system architecture with the major modules which compose the B.A.R.T search

engine is presented in the next section.

5.2. System Architecture

The B.A.R.T. architecture was designed to be extensible providing the capacity

to add new features by including new components. In a nutshell, the B.A.R.T.

project is based on client-server architecture where the clients are represented

by IDE plug-ins and a Web Interface and the server is represented by business

modules responsible for managing the search and retrieval functionalities. The

semantic layer will be placed in the current B.A.R.T architecture in accordance

with the proposed requirements without comprising the existing development.

5.2.1. B.A.R.T Client

The front-end of the B.A.R.T search engine varies according to the user

environment. In this context, in addition to a common Web interface, the

B.A.R.T front-end includes an Eclipse and Ms/Word plug-ins which focuses

their search on codes and documents respectively. The objective is to put the

B.A.R.T capabilities into the user environment taking into account its specific

particularities.

Particularly to this dissertation, the semantic proposal will only affect the

Eclipse plug-in because it genuinely handles operations over source codes.

Nevertheless, it is absolutely guaranteed its deployment on the Web interface

and other front-ends employed in source code retrieval.

 The bridge between the client and server sides is managed through a

communication layer that is implemented by Web Services. This

implementation strategy allows the B.A.R.T services to be available anywhere on

the Internet, or even on corporative Intranet, in scenarios where the

components are proprietary.

Chapter 5 – Semantic Search Engine 71

5.2.2. B.A.R.T Server

The B.A.R.T architecture is composed by business modules that, in general,

perform search and retrieval tasks. The architecture is composed by the

following modules: searcher, reasoner (new), retriever, analyzer (new),

indexer, filter and repository manager. The semantic layer is represented

by the analyzer and reasoner modules. Figure 5.1 shows the current B.A.R.T.

architecture and after a brief description of each module.

Figure 5.1. B.A.R.T. Architecture

• Repository Manager – this module checkouts assets from Concurrent

Version System (CVS) repositories on the Internet and maintains the

reuse repository of the B.A.R.T system. It manages the whole

infrastructure for storing the repository assets as well as the index base.

Moreover, through this module it is possible to schedule updates from

previous checkouts in order to capture brand new assets;

• Filter – this module filters those assets which do not satisfy some

constraints such as unnecessary extension and lack of documentation

(particularly applied to source codes);

Chapter 5 – Semantic Search Engine 72

• Analyzer – It is a brand new module that compounds the semantic

layer. This module feeds the indexer one with the semantic classification

from the source code analysis. It encapsulates the Semantic Code

Analyzer component detailed in Section 5.4. Nowadays, only source code

analysis is supported, however, in the future releases, this feature will be

extended to documents written in natural language;

• Indexer - This module indexes the reuse repository and creates the

index base essential for the search execution. It works in conjunction

with analyzer module when performing the semantic indexing;

• Reasoner – It is also a new module that compound of the semantic

layer. In this module, all the ontology management is processed as well

as the tasks associated with reasoning and inference. The reasoner

module is responsible for providing the domain terms related with a

given query in order to help end users to contextualize its keyword query.

It encapsulates the Semantic Query Reasoner component detailed in the

Section 5.4;

• Searcher - This module is responsible for processing the user query

and process the search over the index base. It works in conjunction with

reasoner module when performing the semantic search; and

• Retriever - After a successful search, the user has the possibility of

downloading the assets browsed in the B.A.R.T client application. This

module is responsible for transferring them to the user directory.

To effectively build the semantic layer in the B.A.R.T search engine, the

semantic modules had to be integrated with existing development in order to

transparently provide users additional resources to maximize the reuse activity.

Both reasoner and analyzer modules were included in the architecture with

low coupling without cause side-effect to existing development.

In the server side, the new modules had to be incorporated with

minimum impact in the previous architecture without decreasing the system

performance. The searcher module was slightly updated to understand the

semantic information attached to the keyword query without compromising

ordinary queries. Equally, the indexer module has suffered vaguely

modifications by adding a domain field in the index structure without

Chapter 5 – Semantic Search Engine 73

compromising the regular indexing process as well. In the front-end, only the

Eclipse plug-in had the graphical interface updated to make visible the semantic

assistance during query construction (see 5.3.2).

In this Section, a higher level of abstraction about the proposed solution

was presented to provide an architectural overview of the system, however, in

the next Section the semantic components that implement the reasoner and

analyzer modules are detailed under a more technical view.

5.3. The Semantic Components

A general definition of the architecture of the proposed solution was presented

in the last subsection. Moreover, it was possible to visualize how the analyzer

and reasoner communicate with exiting modules in order to satisfy the set of

requirements defined in first Section.

As previously stated, both modules have their functionalities

implemented by two components respectively: Semantic Code Analyzer and

Semantic Query Reasoner. The first is engaged of creating the semantic

indexes while the second is instanced for contextualizing the user query into a

proper domain. The following Subsection details both components as well as

discusses how they can evolve to deal with other asset types beyond source

codes.

5.3.1. Semantic Code Analyzer

The Semantic Analyzer component answers for source code analysis, domain

classification and semantic annotations. Basically, it classifies source code in

infrastructure domains and annotates such information in the index structure to

provide additional information about the code purpose. Such information helps

search mechanisms to retrieve codes taking into account their area of

application and not merely by keyword matches. As a consequence, it is

expected that codes which share the same keywords but belong to distinct

domains are not retrieved during the semantic search.

Chapter 5 – Semantic Search Engine 74

 Although the main task of the component is classifying source codes into

infrastructure categories, it performs prior tasks for augmenting the analysis

efficiency such as code filtering and cleaning. Therefore, to characterize the

component as a single classifier is not the most adequate denomination.

Through the filtering functionality, the Semantic Code Analyzer limits the

classification for the files types exclusively determined by user, ignoring other

distinct extensions. Through the cleaning functionality, the filtered files have

the comments cleaned in order to improve the classification accuracy. Although

comments are used for giving contextual information about the program

behavior, it is speculated they may puzzle the categorization since no control is

assured about the text content.

 All this process is performed before the indexing because it is the entry

point to fill in the index structure with the additional semantic information. The

component responsible for indexing receives the outcome from the semantic

analysis and tag the indexes with the classification achieved. The final result is

an index base semantically built.

 For convenience, the source code analysis is expected to run in a

background activity, considering that the size of repository may require some

machine effort. On the other hand, for this component, performance is a

requirement less important than the classification accuracy.

For categorization, the component has instanced a naive Bayes classifier,

a probabilistic model with strong (naive) independence of assumptions [Lam et

al., 1999]. Its use is justified by the fact the method is usually applicable for

unstructured text documents, including to this: the source code. In spite of

being using a naive Bayes probabilistic model, the existence (so far not

experimented) of other probabilistic models are recognized such as Supported

Vector Machines, Decision Tree, Best Neighbor among others as discussed in

Chapter 3. The component architecture was designed to allow easy modification

in the algorithm utilized; therefore, the substitution of the categorization

method does not require too much effort [Atkinson et al., 1989].

Chapter 5 – Semantic Search Engine

5.3.1.1. Implementation Aspects

According to the B.A.R.T architecture (see Section 5.2) the

communicates with the analyzer

is represented by the communication between the

Semantic Code Analyzer

Figure

The Semantic Code Analyzer

components/applications can

• Parameter Interface

up some parameters such as

language type. This parameter makes the component entirely

configurable allowing users specify their own preferences during

classification; and

• Semantic Analysis

defined it is ready to execute the semantic analysis. The external

application which reuse this component just need then to make a call for

startSemanticAnalysis()

Internally, the core architecture was thought to be l

the business modules may

other part of the system. I

are instanced though late binding

Semantic Search Engine

Implementation Aspects

According to the B.A.R.T architecture (see Section 5.2) the indexer module

analyzer module. In a component view this relationship

is represented by the communication between the Indexer Component

Semantic Code Analyzer (Figure 5.2).

igure 5.2. Component communication

Semantic Code Analyzer provides two main interfaces in which other

components/applications can be plugged such as:

Parameter Interface - For running properly, the component must set

meters such as knowledge base path, repository

. This parameter makes the component entirely

configurable allowing users specify their own preferences during

classification; and

Semantic Analysis Interface - Once the component parame

defined it is ready to execute the semantic analysis. The external

application which reuse this component just need then to make a call for

startSemanticAnalysis() method.

the core architecture was thought to be loosely coupled

the business modules may change without affecting or requiring change in any

tem. In order to achieve this requirement, the core classes

late binding pattern in which no binding

75

indexer module

. In a component view this relationship

Indexer Component and the

. Component communication

provides two main interfaces in which other

For running properly, the component must set

repository path and

. This parameter makes the component entirely

configurable allowing users specify their own preferences during

Once the component parameters are

defined it is ready to execute the semantic analysis. The external

application which reuse this component just need then to make a call for

oosely coupled where

change without affecting or requiring change in any

requirement, the core classes

pattern in which no binding between the

Chapter 5 – Semantic Search Engine 76

operation names and implementation classes is established at compile time

[Atkinson et al., 1989].

5.3.1.2. Source Code Analysis and Classification

For classifying text documents using probabilistic classifiers makes necessary

the existence of a knowledge base (or training data) used as reference during the

categorization [Rennie, 2001]. As the Semantic Code Analyzer is employed to

classify source codes, the knowledge base (KB) with the reference data was

assembled with source codes whose scope enclosed technological domains

representing the categories (Figure 5.3).

Figure 5.3. Source Code Classification

Exclusively for this study, the domain categories chosen were: xml,

database, security, GUI, network, math and i/o. These categories were

chosen by the fact that they are cross platforms domains used in a wide range of

applications and consequently may be found in the greater part of the

repository. Despite of being working only with seven domains, others may be

added on demand with punctual changes in current development. Nevertheless,

the limited number of domains is regarded enough to confirm the classification

usefulness.

 For building the knowledge base, 15 reference codes for each domain

(category) have been selected approximately. In the current stage, this process

is done manually; on the other hand it can be done automatically by means of

intelligent agents or web crawlers for example. This functionality, however,

makes part of our negative scope (see Section 5.7) and will not be implemented

in the current release. Although the knowledge base is formed with hundreds of

Chapter 5 – Semantic Search Engine 77

reference files, the Semantic Code Analyzer is able to compact it into a single file

providing, therefore, portability on its deployment and reuse.

 The classification accuracy depends on the knowledge base quality;

therefore, it is strongly advisable that the persons involved on this activity must

be familiar with program languages and codification. Choosing the best codes

configures the key point for having an efficient knowledge base. Figure 5.4

shows an example of a feasible source code to compose the knowledge base

specific to the database domain.

Figure 5.4. A feasible Java code for database domain

Figure 5.4 shows a code whose content presents methods from “java.sql”

(line 3) library that throws the “SqlException” (line 13) besides the existing

keywords related with database domain such as “sql”, “update” and

Chapter 5 – Semantic Search Engine 78

“connection” (line 25). Source codes like this with such clear evidences of the

domain are expected in the knowledge base. Thus, considering that this piece of

code belongs to the knowledge base, if an ordinary source code to be classified

contains such methods, imports or attributes, then, it probability will be

categorized in the database domain.

In this current version, the knowledge base is being populated manually

without any automatic support; however, for future versions it is quite advisable

the existence of graphical user interface where experts could contribute with the

knowledge base improvement. The profile of the contributors is another point

that must be concerned with so that this impacts directly in the classification

accuracy. It is prudent that such activity could be performed by software

developers or people able to effectively identify the correct code domain and

mainly distinguish which code can be elected to compound the knowledge base.

5.3.1.3. Semantic Indexing

In general, the main contribution of this component is to provide the domain

classification about the codes that will be indexed. Such information will be

used as another filter option when retrieving codes by domain. For achieving

this, the index structure had to be updated with the new metadata field. Figure

5.5 shows the index structure with the domain field.

 Figure 5.5. The metadata domain in the index structure

Figure 5.5 shows the fields which compose the index structure; besides the

contents, filename, file path, loc, module and repository fields, it was added the

domain field to accommodate the semantic classification of each source code

analyzed. In order to turn the classification more visible for users, it was

provided a graphic visualization of the codes categorized. Figure 5.6 shows the

“i/o” domain with its respective codes.

Chapter 5 – Semantic Search Engine 79

Figure 5.6. Semantic Code Analyze Viewer

The Semantic Code Analyze Viewer was placed in the B.A.R.T Server to

allow administrators have a graphical view of the result of the source code

classification. According to Figure 5.6, the source codes FtpInputStream.java,

FileCodeWriter.java and FileAccess.java were classified in the input/output

(IO) domain. This feature also presents a significant limitation that is not

covered in this version: the visualization is harmed when number of classes per

domain is higher than 200. It is speculated that the change of the framework

which provides the exhibition could be a feasible solution.

5.3.2. Semantic Query Reasoner

The Semantic Query Reasoner is the component responsible for enhancing the

user query with related terms in order to match more relevant source codes. The

objective is to contextualize the keyword (query) in a specific domain in order to

avoid ambiguity in the search return. In consequence, it is expected to increase

the search efficiency since it will be focused on a set of codes instead of entire

repository.

 In order to provide the appropriate related terms, the component reasons

over a domain ontology while the ordinary keyword search is performed. As a

consequence, in addition to the codes returned, related domain terms are

suggested for placing the query into a specific context. Once a domain term is

chosen, the search is focused on codes which belong to the domain selected.

This initiative reflects Henninger’s claim [Henninger, 1994], which state that

Chapter 5 – Semantic Search Engine 80

constructing queries is as important as (or more than) the retrieval algorithm

used. The Semantic Query Reasoner required some improvements in the

Eclipse B.A.R.T plug-in. Figure 7 shows the Eclipse IDE environment, with the

B.A.R.T plug-in on the right side and the semantic outcome highlighted.

Figure 5.7. Semantic Possibilities at Eclipse Plug-in

According to Figure 5.7, in addition to the query field and the code result

frame, the semantic possibility view was added. The semantic possibilities (or

domain terms) are provided from a domain ontology that maps possible user

queries in technical terms. Thus, it is expected to bridge the user’s need in

technological terms handled by source codes to avoid the semantic conceptual

gap in the query formulation. Historically ontologies have been employed to

achieve better precision and recall in text retrieval systems since they may

precisely describe collections of concepts and their interrelationships regarding

a specific domain (Chapter 4). Consequently, this benefit naturally avoids

possible anomalies such as synonymy and polysemy. According to Golder and

Huberman [Golder and Huberman, 2006] synonymy happens when two words

have the same meaning while polysemy occurs when the same words have

Chapter 5 – Semantic Search Engine

different meanings. In the following Subsection, the component architecture is

showed.

5.3.2.1. Implementation Aspects

According to the B.A.R.T arc

communicates with searcher module. In a component view

represented by the communication between the

the Searcher Component

Figure

The Semantic Query Reasoner

components/applications can

• Parameter Interface

up some parameters such as

component entirely configurable allowing users specify their own

preferences for specialized reasoning; and

• Semantic Inference

defined it is ready to execute the semantic reasoning. The exte

application which reuse this component just need then to make a call for

startSemanticInference()

Similar to the Semantic Code Analyzer, this component architecture was

loosely coupled built and have used late binding pattern. In the followin

Semantic Search Engine

different meanings. In the following Subsection, the component architecture is

Implementation Aspects

According to the B.A.R.T architecture (see Section 5.2.2) the reasoner module

communicates with searcher module. In a component view, this relationship is

represented by the communication between the Semantic Query Reasoner

Searcher Component (Figure 5.8).

igure 5.8. Component communication

Semantic Query Reasoner provides two main interfaces in which other

components/applications can be plugged:

Parameter Interface - For running properly, the component must set

up some parameters such as ontology path. This parameter makes the

component entirely configurable allowing users specify their own

preferences for specialized reasoning; and

Semantic Inference Interface - Once the component parameters are

defined it is ready to execute the semantic reasoning. The exte

application which reuse this component just need then to make a call for

startSemanticInference() method.

the Semantic Code Analyzer, this component architecture was

loosely coupled built and have used late binding pattern. In the followin

81

different meanings. In the following Subsection, the component architecture is

5.2.2) the reasoner module

this relationship is

Semantic Query Reasoner and

onent communication

provides two main interfaces in which other

For running properly, the component must set

parameter makes the

component entirely configurable allowing users specify their own

Once the component parameters are

defined it is ready to execute the semantic reasoning. The external

application which reuse this component just need then to make a call for

the Semantic Code Analyzer, this component architecture was

loosely coupled built and have used late binding pattern. In the following

Chapter 5 – Semantic Search Engine 82

Subsection, the ontology building process model as well as the ontology

constraints is depicted.

5.3.2.2. The Ontology Model

In the process of ontology building, an intense Semantic Web commitment had

to be employed in order to establish the ontology vocabulary. In accordance

with the search focus, the terms had to comprise a technical terminology

encountered in source code or associated with it. This motivated the

investigation of similar ontology models on the Internet through existing

semantic web search engines such as Swoogle25. This phase was important for

reusing previous knowledge already raised in other ontologies so that it could

collaborate to enhance and validate the proposed model. The objective was to

follow the ontological engineering process described by Guarino [Guarino,

1998] and Gruber [Gruber, 2002], which encourages systematic development by

knowledge reuse.

The ontology model was created using the Ontology Web Language

(OWL), an expressive Mark-up Ontology Web Language highly diffused among

the Semantic Web community and broadly utilized among Semantic web

applications as seen in Chapter 3. The current ontology is available at

http://cin.ufpe.br/~fad2/infra.owl and contains 130 classes, 640 individuals

and 2 DataType properties: hasKeywordAssociated and hasInfraTerm. This

numbers of the ontology model are based on last update on 6th January, 2008,

therefore, slight variation may be evidenced in future dates. Figure 5.9 shows

some ontology classes (representing the domains), e.g., “Security” and its

subclasses “Authentication”, “Authorization” and “Cryptography” in the

Protégé Editor.

25

 http://swoogle.umbc.edu

Chapter 5 – Semantic Search Engine 83

Figure 5.9. Screenshot of the Ontology Model

As previously said, the ontology is also composed with two DataType

properties: “hasKeywordAssociated” which associates ontology classes

(representing the technical domains) with keywords and the “hasInfraTerm”

property that associates ontology classes with infra terms:

• hasKeywordAssociated - This property associates ontology classes

with the most feasible terms that could be used as keyword in the query.

Thus, it is possible to state the following relation: “Security

hasKeywordAssociated authentication” considering “Security” as the

Subject, “hasKeywordAssociated” as the property and “authentication”

as the literal value. As a consequence, if the user query is

Chapter 5 – Semantic Search Engine 84

“authentication”, then likely “Security” will be returned as one of the

available semantic possibilities to augment the efficiency of the query.

• hasInfraTerm - This property associates ontology classes with the most

common infrastructure terms of a given domain. This allowed the

following relation to be established: “Security hasInfraTerm JAAS”

considering “Security” as the Subject, “hasInfraTerm” as the property

and “JAAS” as the literal value. The “JAAS” technology corresponds to

the set of APIs that enable services to authenticate and enforce access

controls upon users. Through this “hasInfraTerm” property, if the user

chooses the “Security” domain, among the semantic possibilities

available, the query will be enhanced with the “JAAS” term.

Figure 5.10 shows a part of the generated OWL document that associates

“Cryptography” and “Math” domains with their respective keyword terms.

Figure 5.10. Screenshot of the OWL document

Given that the ontology model acquired a satisfactory taxonomy, the

design of the ontological queries was started in order to tackle the OWL model

and retrieve the semantic possibilities. The queries were constructed under

SPARQL26 syntax anchored in the fact that too much and easy support is

provided on the web besides being broadly applied among semantic web

applications. Two initial queries were developed: Domain Query and Infra

Query, one for each DataType property:

26

 http://www.w3.org/TR/rdf-sparql-query/

Chapter 5 – Semantic Search Engine 85

• domainQuery – this query is employed for seeking domains terms

related to the user’s keyword through the property

hasKeywordAssociated. This query reveals possible polysemy anomalies,

since it come up with different domains related to the same keyword; and

• infraQuery – it is a complementary query of domainQuery so that it

retrieves infra terms related to a given domain. Basically, this query

makes use of the property “hasInfraTerm” to retrieve technical terms

encountered in an associated API specification.

In parallel to domainQuery, rules were applied for identifying distinct

domains that eventually could satisfy a particular proposition. The objective was

to retrieve domains initially isolated but frequently evidenced during the code

development. As an example, codes originally from the GUI domain usually

require Math functionalities. Thus, if the GUI domain is returned to compound

the semantic possibilities, the Math domain must be retrieved as well according

to the rule. In this way, it is intended to provide associated domains in which

the user may need requisite in further searches. Although not many rules have

been written, at least the necessary infrastructure to this was implemented. The

creation of new rules is envisioned to be happened in an automatic way by

means of association rules: a data mining technique employed to extract

patterns by usage. This interface with data mining technique makes part of the

future works and can be deeper seen in the Chapter 7.

Although the population depends on formal approval of experts which

manage the ontology, an interface for user interaction was provided. In the

B.A.R.T Eclipse plug-in a Term View tab was provided in which users could

suggest keywords or technical terms of a given domain (Figure 5.11).

Figure 5.11. Term View tab

Chapter 5 – Semantic Search Engine 86

In current development, the terms are only saved in local user machine

and sent to the B.A.R.T Server. The objective it that the ontology manager could

evaluate the suggestions and decide if such terms will compound the ontology

vocabulary or not. Nevertheless, this process deserves further discussion and

may vary according to the project business. The objective of this feature was to

provide an extra channel of populating the ontology, but the decision about

what to do with the contributions remain opens.

In the next Section, improvements in the B.A.R.T Configuration Window

are described.

5.4. Semantic Configuration at B.A.R.T Eclipse
Plug-in

Once the components were integrated in the B.A.R.T search engine, additional

improvements in the front-side were made in order to make the semantic

assistance configurable. The B.A.R.T configuration window used to allow users

to specify the B.A.R.T Server location and authentication inputs. With the

semantic features new configurations were added to B.A.R.T configuration

window (Figure 5.12).

Figure 5.12. B.A.R.T Configuration Screen

Chapter 5 – Semantic Search Engine 87

Through the “Enable Semantic Search” checkbox, the user may active or

not the semantic assistance; when turned off the semantic possibilities are not

showed in the B.A.R.T Search perspective. Through the “Allow Query

Expansion” option the user may configure the semantic search to be expanded

with other related terms or keep only with the current keyword; through the

“Extended Search” option the user may configure the semantic search to reach

D.N.I files or not.

By default all of the options are checked to lead the user to take

advantage of all functionalities provided by the semantic search, however, to

provide them configurable goes in favor to the usability requirement.

5.5. Reused Frameworks

The modules which comprise the B.A.R.T architecture have used open-source

components to achieve the functionalities desired. This Section outlines the

frameworks and libraries used to each module in particular.

The searcher and indexer modules perform their tasks using the Lucene

27 search engine – a high-performance, full-featured text search engine library

maintained by the Apache Group; to checkout source codes from remote

repositories, the CVS Checkout Task from Apache Ant Framework28 was

utilized. The Ant Framework is a Java-based build tool which encompasses a set

of projects entailed in resolving a wide range of tasks such as generation of

build, documentation, report besides giving support to automate tasks such as

unit tests, checkout, validation, etc.

The Jena 29 framework was utilized in the reasoner module for rule

inference and for whole semantic operations. Jena is a framework for ontology

handling commonly utilized in semantic web applications supported by HP Labs

where. Though Jena framework is possible to load ontology, access its

properties, list classes and individuals, fire rules, write and update an ontology

27

 http://lucene.apache.org
28

 http://ant.apache.org
29

 http://jena.sourceforge.net

Chapter 5 – Semantic Search Engine 88

model. To build the ontology, the Protégé 3.2 30 ontology editor was utilized due

the facilities offered as for visualization as for manipulation. In means of 2006,

Protégé has released the Protégé-Owl API 31 - a competitor of Jena framework -

which provides classes and methods to load and save OWL files, to query and

manipulate OWL data models, and to perform reasoning. This library could be

used instead of Jena framework, however, when this dissertation stated to be

implementation more information about the Jena utilization was available and

this favored the choice of Jena. Today Protégé-Owl API has gained many of

fellows mainly because of the Protégé marketing and because this API has

worked in cover gaps unresolved in Jena API.

 The analyzer module uses the LingPipe Framework 32: a suite of Java

libraries for the linguistic analysis and subsequent text classification. In current

approach, this framework was applied to categorize source code but this

framework could be used to classify texts written in natural language as well.

This flexibility permits that the Semantic Code Analyzer component to be

extended to other types of software assets such as use case documents for

example. The jSVM (Java Support Vector Machine) is an alternative classifier

employed also in text categorization which utilizes the SVM technique. During

the investigation about the technologies to be used, the jSVM presented

unsatisfactory documentation and lack of support about its correct usage.

Nowadays, the project has no official web site and seems to be discontinued.

For displaying the semantic annotation in the index base, the

TouchGraph 33 framework was utilized. TouchGraph provides a set of interfaces

for graph visualization using force-based layout and focus + context techniques.

In addition the open-source version, Google has sponsored the commercial

activity of the framework. Competitors of this framework are Jung 34(Java

Universal Network/Graph Framework) and Prefuse35, both were tested and

could utilized instead. The preference for TouchGraph was done due the fact

that this was ranked easier to be handled with better documentation besides the

Google approval.

30

 http://protege.stanford.edu
31

 http://protege.stanford.edu/plugins/owl/api
32

 http://www.alias-i.com/lingpipe
33

 http://www.touchgraph.com
34

 http://jung.sourceforge.net
35

 http://prefuse.org

Chapter 5 – Semantic Search Engine

 In the front-end, the semantic imp

plug-in were made by use of the

libraries, both are rich client Eclipse project

been utilized even before than semantic contribution. Further details

frameworks usage will not be found in this dissertation from the fact that such

information can me better detailed in the respective web sites.

5.6. Semantic Search In Action

In order to facilitate understanding of the proposed solution, this Sectio

simulates the use of B.A.R.T search engine with the extended semantic features.

Before starting, however, the reuse repository must have already been

semantically indexed by the

Figure

In the first scenario (Figure

contain the keyword “connection”. At this point is not possible to know the exact

domain that the user desire to place his query, therefore, codes that perform

network or database connection are expected to be returned in the search

including other domains not expected yet. As soon as the search is performed,

the codes which answer the query are returned as well as the related semantic

36

 http:// www.eclipse.org/swt
37

 http://wiki.eclipse.org/JFace

Semantic Search Engine

end, the semantic improvements in the Eclipse B.A.R.T

in were made by use of the Standard Widget Toolkit (SWT)

rich client Eclipse projects for GUI development and had

been utilized even before than semantic contribution. Further details

frameworks usage will not be found in this dissertation from the fact that such

information can me better detailed in the respective web sites.

Search In Action

In order to facilitate understanding of the proposed solution, this Sectio

simulates the use of B.A.R.T search engine with the extended semantic features.

Before starting, however, the reuse repository must have already been

semantically indexed by the Semantic Code Analyzer as seen in Figure

Figure 5.13. Query Reformulation

In the first scenario (Figure 5.13), the user searches for codes which

contain the keyword “connection”. At this point is not possible to know the exact

domain that the user desire to place his query, therefore, codes that perform

database connection are expected to be returned in the search

including other domains not expected yet. As soon as the search is performed,

the codes which answer the query are returned as well as the related semantic

89

rovements in the Eclipse B.A.R.T

 36 and JFace 37

development and had

been utilized even before than semantic contribution. Further details about the

frameworks usage will not be found in this dissertation from the fact that such

In order to facilitate understanding of the proposed solution, this Section

simulates the use of B.A.R.T search engine with the extended semantic features.

Before starting, however, the reuse repository must have already been

as seen in Figure 5.13.

), the user searches for codes which

contain the keyword “connection”. At this point is not possible to know the exact

domain that the user desire to place his query, therefore, codes that perform

database connection are expected to be returned in the search

including other domains not expected yet. As soon as the search is performed,

the codes which answer the query are returned as well as the related semantic

Chapter 5 – Semantic Search Engine 90

possibilities (domain terms) “Database” and “Connection”. At this moment, the

user has extra information to drive his query in a specific domain that likely will

bring codes closer to his need.

Internally the B.A.R.T server receives the query and redirects it to

searcher and reasoner modules respectively. The searcher module retrieves all

codes which contain the keyword “connection” while the reasoner module,

utilizing the Semantic Query Reasoner component loads the infrastructure

ontology and retrieves all technological domains that are associated with user

query. Figure 5.14 shows a screenshot of the B.A.R.T Eclipse plug-in with the

semantic possibilities.

Figure 5.14. Screenshot of the B.A.R.T Eclipse plug-in

The present scenario exemplifies a polysemy case where the input

keyword is associated with more than one domain. This problem may be

characterized by ambiguous results among the codes returned that may lead the

user to perform a “second” and “manual” search throughout the return

collection selecting only those codes that belongs to the expected domain. With

the semantic assistance, the possible domains are automatically showed helping

Chapter 5 – Semantic Search Engine 91

his to focus the search. Then by choosing a specific domain, the polysemy is

overcome and the search is focused on the desired domain.

Figure 5.15. Query Expansion

In the second scenario (Figure 5.15), the “Database” domain is chosen,

the current keyword “connection” is expanded with infra terms associated with

the database domain, such as “sql”, “resultSet”. Besides that, the selected

domain is kept for filtering the retrieval by those codes whose classification

matches with the domain chosen. Internally, the B.A.R.T server receives the

expanded query and redirects it to the searcher module which retrieves the

codes which match with the expanded query and answer the semantic

constraint.

It is important to state that the expanded query is a Boolean query e.g.

“sql OR insert OR resultSet” that does not reduce the search performance

because it carries out only over a fraction of the repository. This fraction is

represented by codes which belong to the domain chosen and the D.N.I codes

(those codes that do not have any classification associated). On the other hand,

the retrieved codes which are classified receive a boost (value 2) on its score in

order to augment its relevance over the D.N.I ones (Figure 5.16). The value 2 is

anchored in the fact that the D.N.I files did not reached the minimal mark for

being classified in any domain analyzed and hardly will answer the user need.

The boost is a number which multiplies the original score achieved by index

engine during the regular indexing process. As a result, the items which suffer

the boost tent to appear firstly in list of retrieved files presented to user once

they are ranked higher. Nevertheless, the value chosen for boosting the original

Chapter 5 – Semantic Search Engine 92

score must be chosen in a rationale according to the business logic of the

program. Arbitrary boost definition may result in incoherent retrieval and

unsuccessful search outcome. Figure 5.16 shows the retrieval process and boost

value of the proposed solution.

Figure 5.16. Retrieval of Semantic Search

 Finally, after resolving the “semantic” retrieval the results are showed in

the B.A.R.T Eclipse Plug-in ranked according to the relevance score. At this

point, the probability of finding codes which deal with the functionality required

is increased. Figure 5.17 shows the B.A.R.T Eclipse Plug-in with the codes which

belongs to the “Database” domain.

Figure 5.17. Final Search Results at B.A.R.T Search Plug-in

Chapter 5 – Semantic Search Engine 93

This Section presented a real scenario where the benefit acquired with

the semantic assistance is evidenced; in the next Section the summary of this

Chapter is presented.

5.7. Chapter Summary

This Chapter presented the main aspects of the Semantic Layer applied to the

B.A.R.T search engine. The requirements, architecture and the set of

technologies employed during its construction were discussed. Moreover, two

new components which integrate the semantic layer were depicted: Semantic

Code Analyzer and Semantic Query Reasoner and finally a simulation of the

semantic search were detailed. The next Chapter presents the experiment

performed to evaluate the semantic search engine with a set of real Java

programs.

Chapter 6 – Semantic Search Engine Evaluation

Semantic Search
Engine Evaluation

Once the semantic layer was described and its initial implementation detailed, a

experiment was performed in order to evaluate the benefits of the proposed

solution. In this sense, some open source projects have been selected from

remote repositories on the Internet in order to evaluate if this proposal is

suitable for practical usage. This Chapter is organized as follows: Section 6.1

presents the methodology of the experiment, the questions that must be

answered by its results and the variables to be analyzed. The projects used

during the experiments are described in Section 6.2 as well as the formal

hypotheses to be analyzed. Section 6.3 presents and analyzes the results of the

experiments in terms of recall, precision and f-measure. Finally, Section 6.4

draws some conclusions on the findings of the evaluation.

6.1. Methodology

As stated in Chapter 5, the main goal of the semantic layer is to improve the

search precision of the B.A.R.T search engine and consequently augment the

relevance of the search returns. This achievement raises the chances of reuse

because likely the codes returned will answer the user need.

 In order to properly validate the proposed solution, the experiments

must then reflect as closely as possible the proper environment where the

proposed solution will be utilized out of the domestic test environment created

during the construction of the tool.

6

Chapter 6 – Semantic Search Engine Evaluation 95

In the best scenario the experiments should be performed on a set of real

projects under development in order to raise appropriated feedbacks close from

the reality. On the other hand, empirical evaluation would be unfeasible due the

fact that such projects usually span across months respecting deadline and

productivity marks. The inclusion of a trial tool in a real project would inhibit

development teams since it would be seen as risk for the project schedule. Based

on these reasons, an alternative and suitable scenario was set up with source

codes from remote repositories available on the Internet able to be repeated by

everybody else.

The methodology utilized for the evaluation, therefore, was to compare

the previous search mechanisms (keyword and facet-based) of B.A.R.T search

engine against the semantic one in terms of precision and recall. The

folksonomy mechanism was not regarded due the fact that it depend on massive

interaction of users to tag the classes in the repository beyond other variables

particular to folksonomy such as the tag relevance.

To compare this semantic proposal with other related source code search

engines presented in Chapter 5 might be another possible methodology;

however, in general, the search engines analyzed did not let their test

environment available or even have mentioned about. In spite of not performing

the comparison, this methodology will not be forgotten and will be rethought for

future works.

The following Subsection details the traditional information retrieval

approach used for evaluating the semantic layer in the B.A.R.T search engine.

6.1.1. Information Retrieval Evaluation

The usual approach for evaluating the performance of information retrieval

systems is based in terms of the precision and recall metrics by utilizing a large

dataset along with a set of queries and expected responses [Baeza-Yates and

Ribeiro-Neto, 1999].

According to this approach, to know the expected source code results is

indispensable for calculating desired metrics, therefore, instead of randomly

picking up codes from unknown projects, known projects with good

documentation that help to identify and separate the relevant codes from the

Chapter 6 – Semantic Search Engine Evaluation 96

ordinary ones are quite advisable. In addition, being familiar with the expected

source codes it is easier to create appropriate queries and faster to realize

possible faults.

To compare the overall results, this evaluation regards values close to

50% for recall and 20% for precision as satisfactory rates because are referenced

from other authors [Frakes and Pole, 1994] [Ye and Fischer, 2002]. On the

other hand, the achieved values will not be considered in the formal hypotheses

of the experiments since they are exclusively values for reference. The formal

hypotheses will be detailed in the following Subsection.

6.1.2. Evaluation of the Semantic Layer

This Section describes in details the goal, the variables, the experiment

environment, the hypotheses and the results achieved in the evaluation of the

semantic layer of the B.A.R.T search engine. It is important to stress that the

methodology adopted, is strongly inspired by existing methodologies for

information retrieval [Baeza-Yates and Ribeiro-Neto, 1999].

6.1.3. Goal

The goal of this section is to evaluate the semantic search engine from the point

of view of the proposal uncertainties. In order to overcome the doubts about the

proposed solution, some specific questions were raised:

1. “Does the semantic layer have contributed for increasing the recall of

B.A.R.T search engine?”

2. “Does the semantic layer have contributed for increasing the precision

of B.A.R.T search engine?”

3. “Is the semantic proposal a viable and practical mechanism to be part

of the B.A.R.T search engine?”

After the test execution, it is expected to have all of the questions

properly answered; however, independent of the findings, they will not be

regarded as conclusive considering that more experiments must be performed

Chapter 6 – Semantic Search Engine Evaluation 97

to proof its validity. The achieved responses will in fact indicate if the efforts of

the RiSE group in search mechanisms are in the right direction.

6.1.4. Variables

Experiments usually employ a set of variables that link causes and effects [Perry

et al., 2000], for this experiment independent and dependent variables were

taken into account:

• Independent variables are attributes actively manipulated when

comparing different situations.

• Dependent variables are the outputs whose values are expected to

change according to changes to the independent variables.

 In the context of this experiment, the independent variables refer to the

search mechanisms evaluated in the experiment such as: keyword-based, facet-

based, the combination between keyword and facet, and semantic. The results

from previous search mechanism (keyword and facet-based) will be compared

against the semantic one to compare the evolution of them. Thus, the

independent variables are: keyword, facet-based, keyword + facet-based,

semantic.

The dependent variables are the precision, recall and f-measure that

correspond to the harmonic mean of precision and recall. In the following, each

metric is detailed as well as the formula for its calculus:

• Precision is the fraction of a search output that is relevant for a

particular query. Its calculation, hence, requires knowledge of the

relevant and non-relevant hits in the evaluated set of documents [Clarke

and Willett, 1997]. Thus it is possible to calculate absolute precision of

search engines which provide an indication of the relevance of the

system. In the context of the present study precision is defined as:

 Sum of the scores of codes retrieved by a search engine

Precision = ---

 Total number of results evaluated

Chapter 6 – Semantic Search Engine Evaluation 98

• Recall is the ability of a retrieval system to obtain all or most of the

relevant documents in the collection. Thus it requires knowledge not just

of the relevant and retrieved but also those not retrieved [Clarke and

Willett, 1997]. The recall value is thus defined as:

 Total number of codes retrieved by a search engine

Recall = ---

 Total number of results evaluated

• F-measure is the weighted harmonic mean of precision and recall. As

the alpha value increases, the weight of recall increases in the measure.

The formula of F-measure is as follows:

 (1+ alpha) * precision * recall

F-Measure alpha = ---

 ((alpha *precision) + recall)

To this experiment, the precision and recall rates have the same factor of

importance, then, the closer a search mechanism is of 1.0, better it is. However,

this only happens if both precision and recall are high. In case of high disparity

between precision and recall rates, f-measure tends to zero, indicating that this

mechanism does not play one of these criteria very well.

6.2. Experiment Configuration and Instantiation

Previous search and retrieval experiments of the RiSE group such as [Garcia et

al., 2006b] and [Vanderlei et al., 2007] have definitely collaborated to this one.

In addition to the important points such as structure and the required issues to

be analyzed, the other points to be improved were also observed and tried to be

overcame in this instantiation. Both experiments shared a common dataset (or

test database) what, in fact, this is positive because they can show the evaluation

of the search mechanisms with more confidence; on the other hand, over than

1000 Java files were utilized without total knowledge of the dataset. By this

Chapter 6 – Semantic Search Engine Evaluation 99

reason, for this experiment the number of classes in the dataset was reduced to

100 with the condition that each class should be properly analyzed, classified

and catalogued in standard dataset for future reuse.

In terms of precision and recall, the amount of class does not represent

valuable information because this metrics are concerned in revealing if the

search engine returns the relevant items or not. Therefore, for big or small

datasets, the expected items have necessarily to be known and this process

logically will be more expensive for the big ones [Clarke and Willett, 1997].

Thus, for this experiment the number of classes was drastically reduced aiming

to recognize minimally each class and then to perform a more accurate

evaluation.

In this sense, the scenario used for the experiment was formed with 100

Java classes from 10 distinct open-source projects on the Internet (Appendix

presents the projects utilized). The project choices are justified by the fact they

cover a broad range of domains and all of them are written in the Java

programming language besides being open-source which allows repetition of

the experiment. The whole classes were carefully analyzed in order to extract its

domain, keywords and facets to be utilized as filter for the search mechanism

evaluated in the experiment (independent variables). The entire commitment

since the dataset creation until the query definition was tackled by 6 RiSE

members in the period between October, 1st and October, 30th 2007 with

common agreement about the information raised. The objective of this

approach was to avoid the addicted test environment used during the software

development.

The information extracted from the dataset analyze as well as the

expected results were placed in a spreadsheet to document the entire statistics

of the evaluation. Table 6.1 shows part of the information extracted from the

source code analysis.

Table 6.1. Source Code Information

Class Name
Host
Project Repository Domain Technology Keyword

Painter.java SoapUI SourceForge.net GUI J2SE paint area

XmlUtils.java SoapUI SourceForge.net XML J2EE xml parse

Chapter 6 – Semantic Search Engine Evaluation 100

During the tests, the domain information is consumed by the semantic

mechanism, technology facet is used as filter for the facet-based mechanism

and the keywords for the traditional keyword search mechanism. The following

step after having the entire dataset documented was to determine the queries

and their respective expected results. The appendix of this dissertation outline

the queries utilized during the test execution.

6.2.1. Experiment Hypotheses

In order to formalize the experiments some hypotheses were raised. The null

hypotheses (Ho), i.e. the hypotheses intended to be rejected will indicate if the

semantic approach or its combination with other search mechanisms do not

have contributed for increasing the precision and recall of the B.A.R.T search

engine.

Recall Hypotheses

• H0a: the keyword-based mechanism has higher recall than the semantic;

• H0b: the facet-based mechanism has higher recall than the semantic;

• H0c: the facet-based + keyword mechanisms have higher recall than the

semantic.

Precision Hypotheses

• H0d: the keyword-based mechanism has higher precision than the

semantic;

• H0e: the facet-based mechanism has higher precision than the semantic;

• H0f: the facet-based + keyword mechanisms have higher precision than

the semantic;

F-measure Hypotheses

Chapter 6 – Semantic Search Engine Evaluation 101

• H0g: the keyword-based mechanism has higher f-measure than the

semantic;

• H0h: the facet-based mechanism has higher f-measure than the

semantic;

• H0i: the facet-based + keyword mechanisms have higher f-measure than

the semantic;

By rejecting these hypotheses, the following alternative hypotheses (H1) are

favored:

Recall Hypotheses

• H1a: the semantic mechanism has higher recall than the keyword-based;

• H1b: the semantic mechanism has higher recall than the facet-based;

• H1c: the semantic mechanism has higher recall than the facet-based +

keyword;

Precision Hypotheses

• H1d: the semantic mechanism has higher precision than the keyword-

based;

• H1e: the semantic mechanism has higher precision than the facet-based;

• H1f: the semantic mechanism has higher precision than the facet-based

+ keyword;

F-measure Hypotheses

• H1g: the semantic mechanism has higher f-measure than the keyword-

based;

• H1h: the semantic mechanism has higher f-measure than the facet-

based;

• H1i: the semantic mechanism has higher f-measure than the facet-based

+ keyword;

Chapter 6 – Semantic Search Engine Evaluation 102

In the optimistic view, H1g, H1h and H1i hypotheses are expected to be

favored, besides the entire null hypotheses being rejected. However it is known

that the semantic mechanism tends to decrease the recall since the search

focuses on classes with belong to a specific domain instead of the entire

repository. Therefore a bad classification could prejudice the recall and

consequently put the f-measure rate down. In the following Section, the results

achieved in the experiments are described.

6.3. The Evaluation Results

This Section presents and discusses the results of the experiment achieved with

the configurations of the search mechanisms described in the Section 5.1.1. The

Quantitative Evaluation was divided in three independent analyses: recall,

precision and f-measure. For each analysis, it was calculated the arithmetic

average, the standard deviance and the variance for the total of queries

performed.

• Standard Deviance: the semantic mechanism has higher f-measure

than the keyword-based;

• Variance: the semantic mechanism has higher f-measure than the facet-

based.

6.3.1. Recall Results

Table 6.2 shows the independent variables against the arithmetic average of

recall, standard deviance and variance.

Table 6.2. Achieved Recall Rates

Search Mechanism Recall Standard Deviance Variance

keyword 0,81 0,21 0,04

facet-based 0,49 0,33 0,09

keyword + facet-based 0,41 0,29 0,06

semantic 0,76 0,15 0,02

Chapter 6 – Semantic Search Engine Evaluation 103

According to Table 6.2, the keyword mechanism has achieved the highest

recall followed by the semantic, facet-based and the facet-based + keyword

mechanism. The recall of the keyword and semantic mechanisms was higher

than the reference value obtained by other authors (50% for the recall) [Ye and

Fischer, 2002] [Frakes and Pole, 1994] which are regarded as satisfactory. On

the other hand, the facet-based and its combination with the keyword

mechanism need to improve their recall since their values are below the

satisfactory average. In general, the whole search mechanisms had 35% of

standard deviance and very low variance which means that their findings were

close to the recall average and not disparity was evidenced. Although the recall

of the semantic mechanism is worse than the keyword one, the difference

between both is low which indicates that semantic mechanism even with the

restriction of the domain did not left many source codes behind. From this

perspective, high precision is expected since the search is focused on a specific

set of classes.

According to the results obtained and formal hypotheses which analyze

the recall, both null hypotheses H0b and H0c are rejected and as a

consequence the alternative hypotheses H1b and H1c are privileged.

6.3.2. Precision Results

Table 6.3 shows the independent variables against the arithmetic average of

the precision, the standard deviance and the variance.

Table 6.3. Achieved Precision Rates

Search Mechanism Precision Standard Deviance Variance

keyword 0,57 0,17 0,044

facet-based 0,36 0,27 0,11

keyword + facet-based 0,76 0,22 0,08

semantic 0,79 0,14 0,02

Chapter 6 – Semantic Search Engine Evaluation 104

According to Table 6.3, the semantic mechanism achieved the highest

precision followed by the facet-based + keyword, keyword and facet-based

mechanism. Hopefully the whole mechanisms have overcome the reference

value obtained by other authors (20% for precision), even although the facet-

based value (36%) was very close to this. Nevertheless when comparing the

facet-based mechanism with the other ones, it is realized that improvements are

urgently needed. Either the facets available or those used in the evaluation

might not be quite representative for the dataset utilized. Once again, the whole

search mechanisms had low standard deviance (no more than 27%) and very

low variance which means that the findings were close to the precision average

and not disparity among the obtained results was evidenced.

The belief of high precision by the semantic mechanism is happily

evidenced supported by the lowest standard deviance and variance jointly.

Though this, it is seem when the search is focused on the specific domain the

results in fact are closer to user necessity, however, to achieve such optimistic

result an efficiency classification must have been performed.

According to the results obtained and formal hypotheses which analyze

the precision, the null hypotheses H0d, H0e and H0f are rejected and as a

consequence the alternative hypotheses H1d, H2e and H3f are privileged.

6.3.3. F-Measure Results

Table 6.4 shows the independent variables (search mechanisms) against the

arithmetic average of the f-measure, the standard deviance and the variance.

Table 6.4. Achieved F-Measure Rates

Search Mechanism F-Measure Standard Deviance Variance

keyword 0,65 0,15 0,02

facet-based 0,28 0,16 0,02

keyword + facet-based 0,45 0,19 0,03

semantic 0,75 0,09 0,01

Chapter 6 – Semantic Search Engine Evaluation 105

According to Table 6.4, the semantic mechanism achieved the highest f-

measure rate followed by the keyword, facet-based + keyword and facet-based

mechanism. The main reason for this may be regarded by the balance in recall

and precision findings of the semantic mechanism. In addition to the pleasing

values achieved for the recall and precision, the low discrepancy between them

has contributed for the highest f-measure rate. In opposite, the same cannot be

said to the keyword + facet-based which had low recall (41%) and high precision

(76%); certainly such difference pulls the f-measure down.

Although no reference value is used to compare with the obtained values,

both keyword and semantic mechanism has achieved values above 50% of the

maximum expected and then may be considered as satisfactory. Again, for the

whole mechanisms, the low standard deviance and variance was observed which

means that no disparity between the f-measure findings and its average has

happen.

According to the results obtained and formal hypotheses which analyze

the f-measure, the null hypotheses H0g, H0h and H0i are rejected and as a

consequence the alternative hypotheses H1g, H1h and H1i are privileged.

6.4. Final Considerations and Discussion

Among the hypotheses analyzed, the H0a which states that the keyword-based

mechanism has higher recall than the semantic was the unique null hypothesis

privileged. On the other hand, the whole alterative hypotheses were favored,

except for the H1a which states that the semantic mechanism has higher recall

keyword-based mechanism. Although the recall of the semantic mechanism had

been inferior to keyword mechanism, the disparity between them was minimally

what does not guarantee the null hypothesis H0a.

Table 6.5 summarizes the mean of recall, precision and f-measure

achieved during the experiment evaluation. If looking at only the precision

value, it is pleasing to see the semantic approach has reached the highest

precision rate among the mechanisms compared. On the other hand the recall of

the semantic mechanism was below the keyword which means that adjustment

in the components of the semantic layer must be done.

Chapter 6 – Semantic Search Engine Evaluation 106

Table 6.5. Achieved Metrics

Search Mechanism Recall Precision F-Measure

keyword 0,81 0,57 0,65

facet-based 0,49 0,36 0,28

keyword + Facet-based 0,41 0,76 0,45

semantic 0,76 0,79 0,75

In a general overview, the recall and precision of the semantic approach

rates have reached reference values obtained by other authors (50% recall and

20% for precision) [Frakes and Pole, 1994] [Ye and Fischer, 2002]. This

indicates that the semantic layer place the B.A.R.T search engine in the same

level of others search engines allowing be comparable in terms of recall and

precision. Although the comparison with other search engines can give a real

feedback about the B.A.R.T search engine effectiveness in the trade market or in

the research community, first the ongoing mechanisms like this (semantic)

must be more explored until obtain the status of “releasable”.

Moreover, in spite of achieving optimistic results, it is not safe to affirm

which mechanism is the best or that the semantic mechanism excludes the

usage of other mechanism which had less performance in the experiment.

Indeed, further experiments with other dataset (with different projects, domains

and size) and other queries are needed in order to provide more concrete

information about the tool evolution. Only the average of continuous

evaluations could then express the true effectiveness of the tool. On the other

hand, the results so far indicate the research is on the right track.

Figure 6.1. The evolution of B.A.R.T search mechanisms

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Keyword Facet Keyword + Facet Semantic

B.A.R.T Search Mechanisms

Recall

Precision

F-Measure

Chapter 6 – Semantic Search Engine Evaluation 107

Figure 6.1 shows line graphic that outlines the evolution of search

mechanisms of B.A.R.T search engine in terms of recall, precision and f-

measure. The B.A.R.T evolution has been evidenced since the search

mechanisms have been incorporated, except for the facet-based mechanism

(and its combination) that played the initial evolution down. This motivated the

RiSE group to allocate some members only to research about the facet-based

approach. Alike the keyword mechanism, the semantic approach has

contributed to converge recall and precision rates which elevates consequently

the f-measure.

6.4.1. Problems Found

By analyzing the final test results, the semantic approach was ranked higher

than the keyword and facet-based mechanisms; however, the evaluation has

revealed some problems:

• Low recall – The recall of semantic mechanism was lower than the

keyword mechanism which favored the null hypothesis H0a: “the

keyword-based mechanism has higher recall than the semantic”. Two

causes might have contributed for this: bad classification accuracy and

poor query expansion. In the first case, some classes not or wrongly

classified might have been ignored during the search; for the second

cause, the expanded query might have been constructed with

inappropriate terms so that classes were not retrieved. Although the

“High precision and recall” requirement (Chapter 6.1) had been fulfilled

partially, special attention must be given to the knowledge base

construction and the ontology vocabulary.

• Amount of terms that composes the expanded query – As

described in Chapter 5, once the user chooses a domain, the initial query

is expanded with other related terms. However, to achieve the best

retrieval with better recall, not necessarily whole terms of a given domain

must be elected to compose the expanded query. In this sense, some

rationale must be followed taking into account the user context, the

chosen domain and previous queries.

Chapter 6 – Semantic Search Engine Evaluation 108

• D.N.I (Domain not Identified) size – The fraction between D.N.I

size and remain classes of the repository classes must be considered in

the situation when the D.N.I size is higher. In this scenario, the semantic

search depends massively on the query expansion that correspond to a

Boolean query e.g. “term 1 OR term 2 OR term 3” and if applied to the

largest part of the repository may considerably affect the search

performance. One possible solution for this problem could be to change

the Boolean query to other arrangements that could preserve search

performance. On the other hand, when the D.N.I size is lower than the

remain classes of the repository; the semantic search tends to work

properly.

The next Section answers the questions posed in Section 6.4.1.

6.4.2. Goal Questions

Section 6.1.1 posed some questions about possible benefits achieved with

semantic layer in the B.A.R.T search engine.

• The first question asked: “Does the semantic layer have contributed

for increasing the recall of B.A.R.T search engine?” According to the

obtained results the semantic search did not presented expressive

contribution for increasing the recall, indeed, a slight decrease was

observed in spite of the results achieved were considered satisfactory.

• The second question asked: “Does the semantic layer have

contributed for increasing the precision of B.A.R.T search engine?”

According to the obtained results the semantic search presented

improvements in the precision. In fact, the semantic layer achieved its

goal by retrieving relevant source codes closer to user need.

• The third question asks: “Is the semantic proposal a viable and

practical mechanism to be part of the B.A.R.T search engine?”

According to the general evaluation of the proposed solution, the

semantic proposal may be regarded as a viable and practical

mechanism to make part of the B.A.R.T search engine. Although

improvements are required, the semantic mechanism configures

Chapter 6 – Semantic Search Engine Evaluation 109

another mean to assist the developers to find codes more relevant and

consequently increases the chances of reuse.

Next Section summarizes this Chapter presenting all aspects involved in

the evaluation process.

6.5. Chapter Summary

This Chapter presented the experiments conducted to evaluate the semantic

version of the B.A.R.T search engine in terms of the precision and recall on a set

of real projects. The results showed that although some tuning for the

information retrieval engine is still needed, the proposed approach consists on a

valuable resource for increasing the precision of B.A.R.T search engine and

consequently in achieving a higher reuse activity level.

Next Chapter concludes this dissertation by summarizing the analysis

performed on this Chapter, reviewing some related works, pointing directions

for future enhancements to the environment and presenting some final

considerations.

Chapter 7 – Conclusion

Conclusion

Once the semantic layer has been defined, implemented and evaluated based on

the research of software reuse, information retrieval and semantic web areas,

some conclusions and comparisons can be drawn and directions to future work

pointed out.

This Chapter is organized as follows: Section 7.1 summarizes the achieved

goals of the work and Section 7.2 presents a comparison with some related

works. Section 7.3 points out some directions for future works unexplored by

this work and, finally, Section 7.4 contains a closing discussion on the topics

covered in this dissertation.

7.1. Achieved Goals

The main contribution of this dissertation is the proposed a semantic layer

applied to a keyword-based search engine in order to increase the precision of

search returns. The proposed solution utilizes a domain ontology for enhancing

the construction of the query with related terms and a machine learning

technique for source code classification. The implemented proposal configures a

viable and practical solution for being utilized in an industrial scenario in

favor of source code reuse. Through the real experiment, it was evidenced the

increase of precision during the code searches and this finding goes against the

semantic conceptual gap between user needs and machine understanding.

In addition, other specific findings after getting the work concluded are:

• Integration among different areas such as Software Reuse, Information

Retrieval and Semantic for developing comprehensive solution intended

for practical usage in software development factories;

7

Chapter 7 – Conclusion 111

• Use of semantic technologies such as ontologies to overcome the process

of asset location and semantic conceptual gap. The ontology vocabulary

was used to expand the user query and then increase the precision of the

search;

• Extension of a source code information retrieval tool (B.A.R.T search

engine) with a semantic layer built under component-based development

in favor of reuse of new development. The proposed semantic layer

primes for two main non-functional requirements: reusability, so that

the proposed semantic components built under the Component-Based

Development can be reused by other applications and extensibility so

that the architecture proposed for the semantic components can be easily

expanded with other functional modules;

• The proposed semantic layer of the B.A.R.T search engine was built

based on the reuse of existing technologies, with the goal of closing the

gaps identified during the research phase;

• The evaluation results show that although some fine tuning is still

needed, the semantic version of the B.A.R.T search engine have increased

the precision of the tool. This feature indicates that the B.A.R.T search

engine under semantic assistance increases the chance of code reuse

since the developers will retrieve source codes closer to their needs; and

• Evaluation of the proposed solution based on a formal experiment that

can be repeated and extended with other dataset in terms of content and

size.

7.2. Related Work and Research Foundations

The products of this work are a result of a careful research on three interrelated

fields: Software Reuse, Information Retrieval and Semantic Web. The semantic

version of B.A.R.T search engine have concentrated its efforts on these three

pillars to provide an integrated set of functionalities aiming to increase the reuse

activity in organizations. This Section discusses some related works and

concerning on these three fields that have in some way inspired the definition of

the proposed solution.

Chapter 7 – Conclusion 112

7.2.1. Software Reuse

Since the first breathing of software reuse [McIlroy, 1968], this field has gained

attention among the research community as well as in the industry. The

rationale on how producing software from existing pieces of codes previously

built sounds like favorable financial savings for CEOs. The dissemination of

reuse initiatives have encouraged software developers to reuse existing software

assets instead of developing new ones, consequently, it results in less time

needed to develop a system and then speed up the time-to-market.

Motivated by these premises, a process for the reuse startup have being

proposed based on three main directions such as Component-Based

Development Process [Heineman and Council, 2001] [Neto et al., 2004],

Domain Engineering [Frakes et al., 1998, Almeida, 2007] and Software

Product Lines [Atkinson et al., 2000]. In addition, a set of tools in promoting

for facilitating the creation and accessing to the reusable software assets also

have being developed such as Component Search Engines [Garcia et al., 2006b]

[Ye and Fischer, 2002], Reuse Repositories [Burégio, 2006], Reengineering

Tools [Brito, 2007], Domain Analysis Tools [Lisboa et al., 2007].

All of these contributions appears jointly with systematic politics, reuse

best practices and certification process [Alvaro et al., 2006] in order fit with

traditional process of software development.

7.2.2. Information Retrieval

Because of the synergy of software reuse and information retrieval, the last has

been the focus of many works involving software reuse [Henninger, 1994]

[Thomason et al., 2000] [Ye and Fischer, 2002] [Sugumaran and Storey, 2003].

Is spite of not showing all of them, a set of the most influent is described in the

following.

The CodeFinder proposed by Henninger (Henninger 1994) is a code

searcher that uses query-construction methods for assisting users to define their

needs when they do not know the exact terminology. The main concerning

behind the Henninger’s tool is that locating software items is difficult, even for

Chapter 7 – Conclusion 113

well-informed software designers, when searching in large, complex, and

continuously growing libraries. Similarly to the CodeFinder, the semantic

version of B.A.R.T search engine tries to help users to narrow its search on the

specific context through semantic suggestions about the domains which better

fit with query input.

In 2000, (Thomason, Brereton et al. 2000) proposed the CLARiFi, a

component-based system that provides an classification schema that identifies

component properties important in the selection for a given task. Classification

schemes implemented by automated categorization techniques are practical

instruments for augmenting the knowledge about what is retrieved. Equally to

Thomason et al., this dissertation has utilized an automatic text categorization

employed to identify the technological domain handled by the source code. Such

information is useful to identify cluster of domains and focus the search on

specific areas of large reuse repositories.

Other very influent code search engine was the CodeBroker (Ye and

Fischer 2002): a context-based retrieval tool based on user environment where

the components returned took into account class syntax structures while user

coding activity. The main concerning behind the CodeBroker is the distance

between user need and the computational understanding of the query or

“Semantic Conceptual Gap”. Following this premise, this semantic proposal

has utilized a domain ontology to properly reformulate the original user queries

in other that may better represent the user need.

In 2003, Sugumaran and Storey (Sugumaran and Storey 2003) presented

A Semantic-Based Approach to Component Retrieval to meet user’s

requirement taking into account a domain ontology which included domain

terms, definitions, and relationships besides other domain-specific terms.

Sugumaran and Storey have utilized ontology semantics for improving the

precision of its source code search engine. They have modeled the auction

domain ontology that was utilized to find methods and attributes of classes that

matched with the ontology vocabulary. The use of a domain ontology converges

Sugumaran and Storey’s proposal to this one at the point that it tries to

eliminate the semantic conceptual gap between the subjective user queries and

the machine understanding about the request. Although the ontologies of

Sugumaran's work and this proposal were modeled for different domains, the

Chapter 7 – Conclusion 114

purpose was the same: to improve the source search engines with the use of

domain ontologies. The use of ontologies has been significantly possible thanks

to the advances of the Semantic Web field discussed in the following.

7.2.3. Semantic Web

The semantic web was designed as an information space, with the goal that it

should be useful not only for human communication, but also for machine

participation and help [Berners-Lee et al., 2001]. This belief has motivated the

development of Markup Ontology Web Languages: a formal data model which

supports the semantics of the business entities and allows software applications

to process and manipulate its content [Bruijn, 2003]. Although not only restrict

to web development, the Markup Ontology Web Languages were employed to

build different-purpose applications such as the semantic search engines.

In this context, outstanding related works have inspired this dissertation

such as OntoSeek [Guarino et al., 1999], a system designed for content-based

information retrieval from online yellow pages and product catalogs. Guarino et

al. believe that representations of structured content coupled with linguistic

ontologies can increase both recall and precision of search engines. Guarino’s

approach is concerned with solving semantic-match problems by using

linguistic ontologies such as WordNet38 and structured representation

formalisms. Similarly to the approach proposed, OntoSeek provides means of

semantic matching between queries and resource descriptions by making use of

ontology.

Like OntoSeek, the Semantic Web Search Engine (SWSE) uses ontologies

to provide categories around the input query in order to contextualize the

search. Parallel to this semantic proposal, SWSE also employs ontology

reasoning in order to enhance the information retrieval capabilities. Another

very important related work is the Semantic Search Engine for the Storage

Resource Broker [Jeffrey and Hunter, 2006], a semantic version of an keyword-

based Storage Resource Broker (SRB) system utilized for retrieving distributed

data collections of software assets such as source code, documents, models, etc.

38

 http://wordnet.princeton.edu

Chapter 7 – Conclusion 115

In its original version, the keyword-based SRB search method had some

limitations because the users had to have a precise knowledge of the metadata

schema and vocabularies used by a particular scientific community. This

problem lead the company to enhance the system’s search capabilities by

implementing a semantic layer built on top of an OWL ontology, RDF instance

data and a Jena reasoning engine to enable easier and more sophisticated

searching of heterogeneous data stored using SRB. In the same sense, this

proposal also has utilized OWL ontology for augmenting the search capabilities

of the keyword-based mechanism.

The next Section outlines future works proposed for the current

development.

7.3. Future Work

In spite of the intense commitment to develop the semantic version of the

B.A.R.T search engine, some enhancements are visualized, since the initial goal

was to demonstrate the viability of this approach in an academic level. In this

fashion, some important aspects that were left out of this version are

enumerated:

• Knowledge Base Feeding – To provide an user interface that enables

domain specialists to extend and maintain the knowledge base with

others technical domains handled by source code. This feature will allow

quick refinement and population of the knowledge base whenever

improvements are necessary for the search;

• Semantic and Folksonomy Matching - A very promising feature is

that the Folksonomy mechanism could be applied to populate the

ontology vocabulary in a controlled mode where the suggested tags could

be validated by a domain specialist and then inserted in the current

ontology model. Through this functionality, the user tags would be placed

in a specific domain following the taxonomic hierarchy respecting the

semantic constraints. At that point, the tool already provides an interface

for tagging the (provided) semantic possibilities; however, no assessment

in done;

Chapter 7 – Conclusion 116

• Artifact Types Support - New artifact types and formats must be

supported in order to provide the search with a broader coverage range.

Documents written in natural language, in particular, certainly will

necessity the extension of the ontology structure considering that new

ontology properties will be required;

• Data Mining for Rules Suggestion – The most powerful Web

Ontology Mark-up Languages such as RDF, OWL and DAML-OIL

execute inference over predefined rules written in text files. For

performing the inference properly, the content of the rule must respect

the ontology model and, in general, vary according to formal business

constraints or empirical awareness. Data mining techniques, such as

Association Rules, permit to extract patterns of relationships between

entities within a specific context [Agrawal and Srikant, 1998]. The

repetition of such patterns is necessary to the establishment of well-

founded rules. Based on this, such rules under a specialist assessment

may configure an opportunistic mechanism to the creation of new rules

without human interference [Agrawal and Srikant, 1998];

• Use of Other Text Categorization Technique - In the current

version, the semantic classification takes place through the Nayve

Probabilistic Method, nevertheless, other mechanisms such as Supported

Vector Model or Latent Semantic Analysis should be used instead. The

objective is to continuously being enhancing the efficiency of the source

code categorization and consequent search accuracy;

• Semantic Granularity - The semantic level managed by this

dissertation refers to technological domains handle by source codes

similar to the Java packages such as math, network and security.

Although this domain information is useful for the improvement of the

search, the next step can be done in the direction of methods and

attributes. By increasing the granularity of the code analysis, the

information about the code functionalities will be more precise,

increasing, therefore, knowledge about what is required; and

• New Experiments - New experiment configurations for further

evaluation may be tacked: repetition of the experiment with new dataset

Chapter 7 – Conclusion 117

through the use of new projects or comparing the semantic search engine

against related tools by sharing a common experiment environment.

7.4. Concluding Remarks

The products of this work are a result of a careful research on three interrelated

fields: software reuse, information retrieval and semantic web. The semantic

layer was built on these three pillars to provide source code search more precise

and consequently increase the chance of reuse by the user. In this Section, the

findings of the studies in these three fields were presented, although no existing

solution is integrally equivalent to the proposed solution, this Section also

discussed some related works that in some way have inspired the development

of the semantic layer and finally introduced the future works planned to be

realized in the future versions.

References

eferences

[Agrawal and Srikant, 1998] Agrawal, R. and Srikant, R. (1998). Fast
algorithms for mining association rules. San Francisco, Morgan
Kaufmann Publishers.

[Almeida, 2007] Almeida, E. S. (2007), RiDE: The RiSE Process for
Domain Engineering, Informatic Center, Federal University of
Pernambuco (sandwich period at Universität Mannheim), Recife,

[Almeida et al., 2004] Almeida, E. S., Alvaro, A., Lucrédio, D., Garcia, V. C. and
Meira, S. R. L. (2004). RiSE Project: Towards a Robust
Framework for Software Reuse. IEEE International Conference on
Information Reuse and Integration (IRI), Las Vegas, USA, IEEE/CMS, p.
48-53.

[Almeida et al., 2005a] Almeida, E. S., Alvaro, A., Lucrédio, D., Garcia, V. C. and
Meira, S. R. L. (2005a). A Survey on Software Reuse Processes.
IEEE International Conference on Information Reuse and Integration
(IRI), Las Vegas, Nevada, USA, p. 66-71.

[Almeida et al., 2005b] Almeida, E. S., Alvaro, A. and Meira, S. R. L. (2005b).
Key Developments in the Field of Software Reuse. 15th PhDOOS
Workshop, Glasgow, Scotland, p. 10-12.

[Alvaro et al., 2006] Alvaro, A., Almeida, E. S. and Meira, S. R. L. (2006). A
Software Component Quality Model: A Preliminary Evaluation.
32nd IEEE EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA), Component-Based Software Engineering
Track, Cavtat/Dubrovnik, Croatia, p. 28-35.

[Atkinson et al., 2000] Atkinson, C., Bayer, J. and Muthig, D. (2000).
Component-Based Product Line Development: The KobrA
Approach. First Product Line Conference (SPLC), Kluwer International
Series in Software Engineering and Computer Science, Denver, Colorado,
USA, p. 19.

[Atkinson et al., 1989] Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K.,
Maier, D. and Zdonik, S. (1989). The object-oriented database
system manifesto. 1st International Conference on Deductive and
Object-Oriented Databases, Kyoto, Japan, Elsevier Science, p. 40-57.

[Baeza-Yates and Ribeiro-Neto, 1999] Baeza-Yates, R. and Ribeiro-Neto, B.
(1999). Modern Information Retrieval, ACM Press / Addison-
Wesley.

R

References 119

[Basili et al., 1996] Basili, V. R., Briand, L. C. and Melo, W. L. (1996). How
Reuse Influences Productivity in Object-Oriented Systems.
Communications of the ACM Vol.(39), No. 10, p. 104--116.

[Belkin and Croft, 1992] Belkin, N. and Croft, B. (1992). Information
Filtering and Information Retrieval. Communications of the ACM
Vol.(35), No. 12, p. 29-37.

[Berners-Lee, 1996] Berners-Lee, T. (1996). WWW:Past, Present and
Future. IEEE Computer Vol.(29), No. 10, p. 69 - 77.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J. and Lassila, O. (2001).
The Semantic Web. Scientific American Vol.(284), No. 5, p. 34-43.

[Breslin et al., 2005] Breslin, J. G., Harth, A., Bojars, U. and Decker, S. (2005).
Towards Semantically Interlinked Online Communities. 2nd
European Semantic Web Conference, Heraklion, Greece, Springer-
Verlag, p. 500-514.

[Brito, 2007] Brito, K. d. S. (2007), LIFT - A Legacy InFormation retrieval
Tool, M.Sc. Dissertation, Federal University of Pernambuco, September,
2007.

[Bruijn, 2003] Bruijn, J. d. (2003). Using Ontologies - Enabling
Knowledge Sharing and Reuse on the Semantic Web. Austria,
Digital Enterprise Research Institute (DERI).

[Burégio, 2006] Burégio, V. A. A. (2006), Specification, Design, and
Implementation of a Reuse Repository, Federal University of
Pernambuco, August, 2006.

[Calado and Ribeiro-Neto, 2003] Calado, P. P. and Ribeiro-Neto, B. (2003). An
Information Retrieval Approach for Approximate Queries.
IEEE Transactions on Knowledge and Data Engineering Vol.(15), No. 1,
p. 237-240

[Chen et al., 2007] Chen, L., Shadbolt, N. R. and Goble, C. A. (2007). A
Semantic Web-Based Approach to Knowledge Management for
Grid Applications. IEEE Transactions on Software Engineering
Vol.(19), No. 2, p. 283-296.

[Clarke and Cormack, 1995] Clarke, C. and Cormack, G. (1995). Dynamic
Inverted Indexes for a Distributed Full-Text Retrieval System.
MT-95-01, T. R.

[Clarke and Willett, 1997] Clarke, S. and Willett, P. (1997). Estimating the
recall performance of search engines. ASLIB Proceedings Vol.(49),
No. 7, p. 184-189.

[Clements and Northrop, 1996] Clements, P. and Northrop, L. (1996).
Software Architecture: An Executive Overview, Carnegie Mellon
University, Software Engineering Institute.

[Clements and Northrop, 2002] Clements, P. and Northrop, L. (2002).
Software Product Lines: Practices and Patterns, Addison-Wesley.

[Connolly et al., 2001] Connolly, D., Harmelen, F. v., Horrocks, I., McGuinness,
D. L., Patel-Schneider, P. F. and Stein, L. A. (2001). DAML+OIL
(March 2001) Reference Description. W3C Note

[Decker et al., 2000] Decker, S., Mitra, P. and Melnik, S. (2000). Framework
for the Semantic Web: An RDF Tutorial IEEE Internet Computing
Vol.(4), No. 6, p. 68-73.

[Devanbu et al., 1991] Devanbu, P., Brachman, R. J., Selfridge, P. G. and
Ballard, B. W. (1991). LaSSIE: A Knowledge-Based Software

References 120

Information System. Communications of the ACM Vol.(34), No. 5, p.
34-49.

[Devedzić, 2001] Devedzić, V. (2001). Knowledge Discovery and Data
Mining in Databases. Handbook of Software Engineering and
Knowledge Engineering. Singapore: 615-637.

[Devedzić, 2002] Devedzić, V. (2002). Understanding ontological
engineering. Communications of the ACM Vol.(45), No. 4, p. 136 - 144

[Ding et al., 2004] Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R. S., Peng, Y.,
Reddivari, P., Doshi, V. and Sachs, J. (2004). Swoogle: a search and
metadata engine for the semantic web. 13th ACM international
conference on Information and knowledge management, Washington,
D.C., USA ACM Press, p. 652-659.

[Edgington et al., 2004] Edgington, T., Choi, B., Henson, K., Raghu, T. S. and
Vinze, A. (2004). Adopting ontology to facilitate knowledge
sharing. Communications of the ACM Vol.(47), No. 11, p. 85-90.

[Ezran et al., 2002] Ezran, M., Morisio, M. and Tully, C. (2002). Practical
Software Reuse, Springer-Verlag.

[Farquhar et al., 1996] Farquhar, A., Fikes, R. and Rice, J. (1996). The
Ontolingua Server: A Tool for Collaborative Ontology
Construction. Knowledge Systems.

[Farrugia, 2003] Farrugia, J. (2003). Model-theoretic semantics for the
web 12th International Conference on World Wide Web Budapest,
Hungary, ACM Press, p. 29-38.

[Fensel, 2001] Fensel, D. (2001). Ontologies: A Silver Bullet for
Knowledge Management and Electronic Commerce, Springer.

[Fensel, 2002] Fensel, D. (2002). Ontology-Based Knowledge
Management Computer Vol.(35), No. 11, p. 56-59.

[Frakes et al., 1998] Frakes, W., Prieto-Diaz, R. and Fox, C. (1998). DARE:
Domain Analysis and Reuse Environment. Annals of Software
Engineering Vol.(5), No. 1, p. 125-141.

[Frakes and Succi, 2001] Frakes, W. and Succi, G. (2001). An Industrial
Study of Reuse, Quality, and Productivity. Journal of Systems and
Software Vol.(57), No. 2, p. 99-106.

[Frakes and Fox, 1995] Frakes, W. B. and Fox, C. J. (1995). Sixteen Questions
About Software Reuse. Communications of the ACM Vol.(38), No. 6,
p. 75-87.

[Frakes and Isoda, 1994] Frakes, W. B. and Isoda, S. (1994). Success Factors
of Systematic Software Reuse. IEEE Software Vol.(11), No. 01, p. 14-
19.

[Frakes and Pole, 1994] Frakes, W. B. and Pole, T. P. (1994). An Empirical
Study of Representation Methods for Reusable Software
Components. IEEE Transactions on Software Engineering Vol.(20),
No. 8, p. 617-630.

[Garcia et al., 2006a] Garcia, V. C., Lucrédio, D., Almeida, E. S., Fortes, R. P. M.
and Meira, S. R. L. (2006a). Towards a Code Search Engine based
on the State-of-the-Art and Practice. 13th IEEE Asia-Pacific
Software Engineering Conference (APSEC), Component-Based
Development Track, Bangalore, India, p. 61-68.

[Garcia et al., 2006b] Garcia, V. C., Lucrédio, D., Durão, F. A., Santos, E. C. R.,
Almeida, E. S., Fortes, R. P. M. and Meira, S. R. L. (2006b). From
Specification to Experimentation: A Software Component

References 121

Search Engine Architecture. The 9th International Symposium on
Component-Based Software Engineering (CBSE 2006), Västerås,
Sweden, Springer-Verlag, p. 82-97.

[Glass, 2002] Glass, R. L. (2002). Facts and Fallacies of Software
Engineering, Addison-Wesley Professional.

[Golder and Huberman, 2006] Golder, S. and Huberman, B. A. (2006). Usage
patterns of collaborative tagging systems. Journal of Information
Science Vol.(2), No. 32, p. 198 - 208.

[Gomez-Perez et al., 2004] Gomez-Perez, A., Corcho, O. and Fernandez-Lopez,
M. (2004). Ontological Engineering: with examples from the
areas of Knowledge Management, e-Commerce and the
Semantic Web, Springer.

[Google, 2006] Google. (2006). Google Code Search,
http://www.google.com/codesearch/. Retrieved January, 6, 2007

[Gruber, 2002] Gruber, T. (2002). What is an Ontology? Retrieved
January, 6, 2007, from http://www-ksl.stanford.edu/kst/what-is-an-
ontology.html

[Guarino, 1998] Guarino, N. (1998). Formal Ontology and Information
Systems. International Conference on Formal Ontologies in
Information Systems Trento, Italy, IOS Press, p. 3-15.

[Guarino et al., 1999] Guarino, N., Masolo, C. and Vetere, G. (1999).
OntoSeek: Content-Based Access to the Web. IEEE Intelligent
Systems Vol.(14), No. 3, p. 70-80.

[Harter, 1992] Harter, S. P. (1992). Psychological relevance and
information science. Journal of American Society for Information
Science Vol.(43), No. 9, p. 600-615.

[Heineman and Council, 2001] Heineman, G. T. and Council, W. T. (2001).
Component-Based Software Engineering: Putting the Pieces
Together. USA, Addison-Wesley.

[Henninger, 1993] Henninger, S. (1993), Locating Relevant Examples for
Example-Based Software Design, University of Colorado, Boulder,

[Henninger, 1994] Henninger, S. (1994). Using Iterative Refinement to
Find Reusable Software. IEEE Software Vol.(11), No. 5, p. 48-59.

[Henninger and Belkin, 1996] Henninger, S. and Belkin, N. J. (1996). Interface
issues and interaction strategies for information retrieval
systems. CHI '96: Conference companion on Human factors in
computing systems, Vancouver, British Columbia, Canada, ACM Press, p.
352-353.

[Holmes and Murphy, 2005] Holmes, R. and Murphy, G. C. (2005). Using
structural context to recommend source code examples. 27th
International Conference in Software Engineering, St. Louis, MO, USA,
ACM Press, p. 117--125.

[Holsapple and Joshi, 2002] Holsapple, C. W. and Joshi, K. D. (2002). A
collaborative approach to ontology design. Communications of the
ACM Vol.(45), No. 2, p. 42 - 47.

[Hotho et al., 2006] Hotho, A., Jäschke, R., Schmitz, C. and Stumme, G. (2006).
Information Retrieval in Folksonomies: Search and Ranking.
European Semantic Web Conference, Budva, Montenegro, Springer, p.
411-426.

[Isoda, 1995] Isoda, S. (1995). Experiences of a Software Reuse Project.
Journal of Systems and Software Vol.(30), No. 3, p. 171-186.

References 122

[J.S.Poulin, 1997] J.S.Poulin (1997). Measuring Software Reuse, Addison
Wesley.

[Jeffrey and Hunter, 2006] Jeffrey, S. and Hunter, J. (2006). A Semantic
Search Engine for the Storage Resource Broker. 3rd Semantic
Grid Workshop, Athens, p. 1.

[Koders, 2006] Koders. (2006). Koders - Source Code Search Engine.
Retrieved 06 January 2006, from http://www.koders.com

[Krueger, 1992] Krueger, C. W. (1992). Software Reuse. ACM Computing
Surveys Vol.(24), No. 02, p. 131-183.

[Krugle, 2006] Krugle. (2006). Krugle: Source Code Search Engine.
Retrieved January, 6, 2007, from http://www.krugle.com

[Lam et al., 1999] Lam, W., Ruiz, M. E. and Srinivasan, P. (1999). Automatic
Text Categorization and Its Application to Text Retrieval. IEEE
Transactions on Software Engineering Vol.(11), No. 6, p. 865-879.

[Lambrix and Tan, 2007] Lambrix, P. and Tan, H. (2007). A Tool for
Evaluating Ontology Alignment Strategies Journal on Data
Semantics VIII Vol.(4380/2007), No. 8, p. 182-202.

[Lenz et al., 1987] Lenz, M., Schmid, H. A. and Peter F. Wolf, A. L. (1987).
Software reuse through building blocks. IEEE Software Vol.(4),
No. 4, p. 34-42.

[Lim, 1994] Lim, W. C. (1994). Effects of Reuse on Quality, Productivity
and Economics. IEEE Software Vol.(11), No. 5, p. 23-30.

[Lim, 1998] Lim, W. C. (1998). Managing Software Reuse, Prentice Hall.
[Lisboa et al., 2007] Lisboa, L. B., Garcia, V. C., Almeida, E. S. and Meira, S. R.

d. L. (2007). ToolDAy A Process-Centered Domain Analysis
Tool. 21st Brazilian Symposium on Software Engineering, Tools Session.
João Pessoa, Brazil.

[Lucrédio et al., 2004] Lucrédio, D., Almeida, E. S. and Prado, A. F. (2004). A
Survey on Software Components Search and Retrieval. 30th
IEEE EUROMICRO Conference, Component-Based Software
Engineering Track, Rennes - France, IEEE/CS Press, p. 152-159.

[Lucrédio et al., 2008] Lucrédio, D., Brito, K., Garcia, V. C., Almeida, E. and
Meira, S. R. d. L. (2008). Software Reuse: The Brazilian Industry
Scenario. Journal of Systems and Software Vol.(81), No. 4.

[Maarek et al., 1991] Maarek, Y. S., Berry, D. M. and Kaiser, G. E. (1991). An
Information Retrieval Approach for Automatically
Constructing Software Libraries. IEEE Transactions on Software
Engineering Vol.(17), No. 8, p. 800-813.

[Mascena, 2006] Mascena, J. C. C. P. (2006), ADMIRE: Asset Development
Metric-based Integrated Reuse Environment, M.Sc. Dissertation,
Federal University of Pernambuco, May.

[McBride, 2001] McBride, B. (2001). Jena: Implementing the RDF Model
and Syntax Specification. Semantic Web Workshop, Hewlett Packard
Laboratories.

[McBride et al., 2004] McBride, B., Brickley, D. and Guha, R. V. (2004). RDF
Vocabulary Description Language 1.0: RDF Schema. W3C
Recommendation, from http://www.w3.org/TR/rdf-schema/

[McGuinness and Harmelen, 2004] McGuinness, D. L. and Harmelen, F. v.
(2004). OWL Web Ontology Language Overview

[McIlroy, 1968] McIlroy, M. D. (1968). Software Engineering: Report on a
conference sponsored by the NATO Science Committee. NATO

References 123

Software Engineering Conference, NATO Scientific Affairs Division, p.
138--155.

[Mili et al., 1998] Mili, A., Mili, R. and Mittermeir, R. (1998). A Survey of
Software Components Storage and Retrieval. Annals of Software
Engineering. J.C. Baltzer AG, S. P. Ontario, Canada, University of
Ottawa: 349--414.

[Mili et al., 1995] Mili, H., Mili, F. and Mili, A. (1995). Reusing Software:
Issues and Research Directions. IEEE Transactions on Software
Engineering Vol.(21), No. 6, p. 528--562.

[Missikof et al., 2002] Missikof, M., Navigli, R. and Velardi, P. (2002).
Integrated Approach to Web Ontology Learning and
Engineering. Computer Vol.(35), No. 11, p. 60-63

[Morisio et al., 2002] Morisio, M., Ezran, M. and Tully, C. (2002). Success
and Failure Factors in Software Reuse. IEEE Transactions on
Software Engineering Vol.(28), No. 04, p. 340-357.

[Neto et al., 2004] Neto, R. M. d. S., Lucrédio, D., Cunha, J. R. D. D., Bossonaro,
A. A., Prado, A. F. d., Catarino, I. C. S. and Souza, A. M. d. (2004).
Component-Based Software Development Environment
(CBDE). 6th ICEIS - International Conference on Enterprise
Information Systems, Porto - Portugal, p. 338-343.

[Nielson and Nielson, 1992] Nielson, H. R. and Nielson, F. (1992). Semantics
with Applications: A Formal Introduction, Wiley.

[Noy et al., 2001] Noy, N. F., Sintek, M., Decker, S., Crubzy, M., Fergerson, R.
W. and Musen, M. A. (2001). Creating Semantic Web Contents
with Protege-200. IEEE Intelligent Systems Vol.(16), No. 2, p. 60-71.

[Oyama et al., 2004] Oyama, S., Kokubo, T. and Ishida, T. (2004). Domain-
Specific Web Search with Keyword Spices. IEEE Transactions on
Software Engineering Vol.(16), No. 1, p. 17-27.

[Perry et al., 2000] Perry, D., Porter, A. and Votta, J. L. (2000). Empirical
studies of Software Engineering: A roadmap. Proceedings of the
22nd International Conference on Software Engineering (ICSE'2000).
Future of Software Engineering Track, Limerick Ireland, p. 345-355.

[Podgurski and Pierce, 1993] Podgurski, A. and Pierce, L. (1993). Retrieving
Reusable Software By Sampling Behavior. ACM Transactions on
Software Engineering and Methodology Vol.(2), No. 3, p. 286--303.

[Popov et al., 2004] Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D. and
Kirilov, A. (2004). KIM - A semantic platform for information
extraction and retrieval Natural Language Engineering Vol.(10), No.
3-4, p. 375-392.

[Poulin, 1997] Poulin, J. S. (1997). Measuring Software Reuse, Addison
Wesley.

[Prieto-Díaz, 1991] Prieto-Díaz, R. (1991). Implementing faceted
classification for software reuse. Communications of the ACM
Vol.(34), No. 5, p. 88--97.

[Ravichandran and Rothenberger, 2003] Ravichandran, T. and Rothenberger,
M. A. (2003). Software Reuse Strategies and Component
Markets. Communications of the ACM Vol.(46), No. 8, p. 109--114.

[Rennie, 2001] Rennie, J. (2001). Improving multi-class text
classification with naive Bayes, M.I.T.

[Rijsbergen, 1979] Rijsbergen, C. J. (1979). Information Retrieval. London,
Butterworths.

References 124

[Rine, 1997] Rine, D. C. (1997). Success factors for software reuse that
are applicable across Domains and businesses. ACM Symposium
on Applied Computing, San Jose, California, USA, ACM Press, p. 182--
186.

[Sametinger, 1997] Sametinger, J. (1997). Software Engineering with
Reusable Components. Berlin Heidelberg, Springer-Verlag.

[Santos et al., 2006] Santos, E. C. R., Durão, F. A., Martins, A. C., Mendes, R.,
Melo, C. d. A., Garcia, V. C., Almeida, E. S. and Meira, S. R. d. L. (2006).
Towards an Effective Context-Aware Proactive Asset Search
and Retrieval Tool. Sixth Workshop on Component-Based
Development (WDBC), Recife, Brazil, p. 105--112.

[Schmidt, 1999] Schmidt, D. (1999). Why Software Reuse has Failed and
How to Make It Work for You. C++ Report: 46-52.

[Seacord et al., 1998] Seacord, R. C., Hissam, S. A. and Wallnau, K. C. (1998).
Agora: A Search Engine for Software Components. Dynamic
Systems. Pittsburg, PA, CMU/SEI - Carnegie Mellon University/Software
Engineering Institute.

[Sebastiani, 2002] Sebastiani, F. (2002). Machine learning in automated
text categorization. ACM Computing Surveys: 1-47.

[Simperl et al., 2006] Simperl, E. P. B., Tempich, C. and Sure, Y. (2006).
ONTOCOM: A Cost Estimation Model for Ontology
Engineering. International Semantic Web Conference, p. 625-639.

[Sommerville, 2004] Sommerville, I. (2004). Software Reuse, in Software
Engineering.

[Sugumaran and Storey, 2003] Sugumaran, V. and Storey, V. C. (2003). A
semantic-based approach to component retrieval Vol.(34), No. 3,
p. 8-24.

[Sure et al., 2003] Sure, Y., Angele, J. and Staab, S. (2003). OntoEdit:
Multifaceted Inferencing for Ontology Engineering Journal on
Data Semantics Vol.(2800), No. 1, p. 128-152.

[Thomason et al., 2000] Thomason, S., Brereton, P. and Linkman, S. (2000).
CLARiFi: An Architecture for Component Classification and
Brokerage. International Workshop on Component-Based Software
Engineering (CBSE 2000). Limerick, Ireland.

[Ugurel et al., 2002] Ugurel, S., Krovetz, R., Giles, C. L., Pennock, D. M., Glover,
E. J. and Zha, H. (2002). What is the code? Automatic
Classification of Source Code Archives. International Conference
on Knowledge and Data Discovery, p. 623–638.

[Vanderlei et al., 2007] Vanderlei, T. A., Durão, F. A., Martins, A. C., Garcia, V.
C., Almeida, E. S. and Meira, S. R. L. (2007). A Cooperative
Classification Mechanism for Search and Retrieval Software
Components. 22nd Annual ACM Symposium on Applied Computing,
Information Access and Retrieval (IAR) Track, Seoul, Korea, ACM Press,
p. 866-871.

[Yang and Liu, 1999] Yang, Y. and Liu, X. (1999). A Re-Examination of Text
Categorization Methods Proceedings of the 22nd annual
international ACM SIGIR conference on Research and development in
information retrieval ACM Press.

[Ye and Fischer, 2002] Ye, Y. and Fischer, G. (2002). Supporting Reuse By
Delivering Task-Relevant and Personalized Information. ICSE

References 125

2002 - 24th International Conference on Software Engineering, Orlando,
Florida, USA, p. 513--523.

[Zaremski and Wing, 1995] Zaremski, A. M. and Wing, J. M. (1995). Signature
Matching: A Tool for Using Software Libraries. ACM Transactions
on Software Engineering and Methodology (TOSEM) Vol.(4), No. 2, p.
146--170.

ppendix

As previously stated in Chapter 6, each search mechanism had a specific filter

query during the test execution. Table A1 presents 10 queries utilized during the

tests for each search mechanism: keyword-based, semantic and facet-based. In

addition, the objective of each query was established with the purpose of

avoiding eventual ambiguity about the expected functionalities.

 The choice of the queries was based on common needs shared among

developers; however, it is already thought to raise run queries derived from

statistic analysis from the most frequent ones.

Table A.1. Queries utilized in the evaluation

Keyword
Query Objective

Semantic
Domain Facet

file To return source code that
performs reading, writing,
compressing, file stream
transference and byte

handling.

i/o J2SE/infrastructure

resultSet To return source code that
performs database operations

such as insert, update or
select.

database J2EE/datasource

dialog To return source code that
builds a comprehensive dialog

box to be used as a user
graphical interface.

gui J2SE/interface

connection To return source code that
performs database connection

and catch applicable
exceptions for that.

database J2SE/datasource

request To return source code that
handle network request and

session management.

network J2EE/web

A

Appendix 127

hash To return source code that
performs any hash calculus
with security purpose.

security J2SE/infrastructure

parsing To return source code that
performs parse operation over

xml files to access and
manipulate its content.

xml J2SE/ infrastructure

decode To return source code that
performs calculus for
decoding messages.

math J2SE/infrastructure

buffer To return source code that
performs buffering of file

stream.

io J2SE/infrastructure

http To return source code that
manipulates the protocol for
establishing a connection and

exchange information
through a network.

network J2EE/web

Although Table A.1 does not show the “expected results” column, this

information was carefully analyzed in order to compare it with returned source

codes after the test execution.

The open-source projects accessed to extract the classes which compound

the dataset are: SoapUI, MvCase, Jackrabbit, Java Pilot-DB, RIFE, Protomatter,

Ostermiller, Jeeves, Maracatu e Ganttproject.

