
Sabrina de Figueirêdo Souto

ADDRESSING HIGH DIMENSIONALITY

AND LACK OF FEATURE MODELS

IN TESTING OF SOFTWARE PRODUCT LINES

Ph.D. Thesis

Federal University of Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE
2015

www.cin.ufpe.br/~posgraduacao

Sabrina de Figueirêdo Souto

ADDRESSING HIGH DIMENSIONALITY
AND LACK OF FEATURE MODELS

IN TESTING OF SOFTWARE PRODUCT LINES

A Ph.D. Thesis presented to the Center for Informatics of

Federal University of Pernambuco in partial fulfillment of

the requirements for the degree of Philosophy Doctor in

Computer Science.

Advisor: Marcelo d’Amorim

RECIFE
2015

Catalogação na fonte

Bibliotecária Joana D’Arc Leão Salvador CRB4-532

S728a Souto, Sabrina de Figueirêdo.

 Addressing high dimensionality and lack of feature models in testing of
software product lines / Sabrina de Figuerêdo Souto. – Recife: O Autor,
2015.

 104 f.: fig., tab.

 Orientador: Marcelo Bezerra d’Amorim.
 Tese (Doutorado) – Universidade Federal de Pernambuco. CIN,

Ciência da Computação, 2015.
 Inclui referências.

1. Engenharia de software. 2. Software - testes. 3. . I. Amorim,
Marcelo Bezerra d’ (Orientador). II. Titulo.

 005.1 CDD (22. ed.) UFPE-MEI 2015-094

Tese de doutorado apresentada por Sabrina de Figueirêdo Souto ao programa de Pós-Graduação
em Ciência da Computação do Centro de Informática da Universidade Federal de Pernambuco,
sob o título Addressing High Dimensionality and Lack of Feature Models in Testing of
Software Product Lines, orientada pelo Prof. Marcelo d’Amorim e aprovada pela banca
examinadora formada pelos professores:

———————————————————————–
Prof. Paulo Henrique Monteiro Borba

Centro de Informática/UFPE

———————————————————————–
Prof. Juliano Manabu Yoda

Centro de Informática/UFPE

———————————————————————–
Prof. Fernando José Castor de Lima Filho

Centro de Informática/UFPE

———————————————————————–
Prof. Marco Tulio Valente

Departamento de Computação/UFMG

———————————————————————–
Prof. Rohit Gheyi

Departamento de Sistemas e Computação/UFCG

RECIFE
2015

To my family.

Acknowledgements

Depois de mais de 200 mil quilômetros viajando entre Campina Grande e Recife durante
os 4 anos do doutorado, consegui concretizar mais um sonho. Porém, sem a ajuda de algumas
pessoas não teria conseguido chegar até aqui, seguem meus sinceros agradecimentos:

� Primeiramente a Deus, por me sustentar e me dar muito mais do que mereço, por me
capacitar a perseverar sempre, a Ele toda honra e toda glória;

� Ao meu marido (Roberto) e meu filho (Tiago), por me amarem o suficiente para
tolerar minhas ausências, por me encorajar e apoiar. Em especial, agredeço a Roberto
pela parceria e colaboração, sem as quais eu não teria conseguido;

� Aos meus pais, a vóvó Lála e a Preta, e aos meus sogros, por me encorajar e sempre
me proporcionar todas as condições necessárias para que eu pudesse terminar o
doutorado;

� Ao meu orientador, professor Marcelo d’Amorim, por me guiar e apoiar nesta difícil
caminhada, pela preocupação com a minha formação, e por todos os ensinamentos
que levarei pelo restante da vida. Agradeço ainda por ter me proporcionado preciosas
colaborações com alunos e professores de autoridade no assunto dessa pesquisa, em
especial com o professor Darko Marinov (Universidade de Illinois - EUA), por ter
fornecido motivações práticas para direcionar esse trabalho;

� Ao professor Vinicius Garcia, pelo apoio, acompanhamento e amizade, que me
auxiliaram em alguns momentos difíceis dessa caminhada;

� Aos membros da banca da proposta de tese que apresentei no dia 15 de Maio de
2014, composta pelos professores Alessandro Garcia, Paulo Borba, Juliano Iyoda, e
Fernando Castor, agradeço pelo excelente feedback que recebi;

� Aos amigos que fiz durante o Doutorado: Francisco Airton, Paulo Barros, Mateus
Araújo, Nancy Lira, Patricia Muniz, Liliane Fonseca, Leopoldo Teixeira, Márcio
Ribeiro, Paola Accioly, Neto Pires, Thaís Burity, Priscilla Machado, Francisco Soares,
Weslley Torres, Andreza Leite, Helaine Solange, Emanoel Barreiros, Fernando Kenji,
Elton Alves, João Paulo e Tiago Vieira. Sentirei saudade de todos vocês;

� A todos colegas e amigos do grupo de caronas, que fizeram parte da minha jornada,
viajando comigo durante o doutorado, vocês me ajudaram a aguentar o tédio e o
cançasso das viagens, e as tornaram mais interessantes e divertidas. Também sentirei
falta de vocês;

� Aos professores e funcionários do CIn-UFPE que, de alguma forma, ajudaram na
minha formação;

� A FACEPE, pelo apoio financeiro.

A mind that is stretched by a new experience can never go back to its old

dimensions.

—OLIVER WENDELL HOLMES, JR.

Resumo

Linhas de Produtos de Software (SPLs) permitem aos engenheiros sistematicamente
construirem famílias de produtos de software, definidos por uma combinação única de features —
incrementos de funcionalidade, melhorando tanto a eficiência do processo de desenvolvimento
de software quanto a qualidade do software desenvolvido. Porém, testar esse tipo de sistema é
uma tarefa desafiadora, pois requer a execução de cada teste em um número combinatorial de
produtos. Chamamos esse problema de Problema da Alta Dimensionalidade. Outro obstáculo
para o teste de linhas de produtos é a ausência de Modelos de Feature (FMs), dificultando a
descoberta das reais causas das falhas nos testes. Chamamos esse problema de Problema da

Falta de Modelo de Features.

O Problema da Alta Dimensionalidade está associado ao amplo espaço de possibilidades
de configurações que uma linha de produtos pode alcançar. Por exemplo, se uma linha de
produtos tem n features booleanas, então existem 2n possibilidades de combinações de features.
Desta forma, para testar esse tipo de sistema, de forma sistemática, pode ser preciso executar
cada teste em todas as possíveis combinações, no pior caso. Já o Problema da Falta de Modelo
de Features está relacionado à falta ou incompletude dos modelos de feature. Por esta razão,
a falta de FM representa um grande desafio para a descoberta das reais causas para falhas nos
testes.

Com o objetivo de resolver esses problemas, propomos duas técnicas leves: SPLat e
SPLif. SPLat é uma nova abordagem que ignora configurações irrelevantes: as configurações
a serem executadas pelo teste são determinadas durante a execução do teste, através do moni-
toramento do acesso às opções de configuração. Como resultado, SPLat reduz o número de
configurações a serem executadas. Consequentemente, SPLat é leve comparada a trabalhos
anteriores que usam técnicas de análise estática e execuções dinâmicas pesadas. SPLif é uma
técnica para testar linhas de produtos que não requer modelos de feature a priori. A ideia é usar a
taxa de execuções de teste que falham e que passam para rapidamente identificar falhas que são
indicativas de problemas (no teste ou código), ao contrário de uma falha referente à execução de
um teste em uma combinação inconsistente de features.

Resultados experimentais mostram que SPLat identifica configurações relevantes de
forma eficaz, e com uma sobrecarga baixa. Também aplicamos SPLat a dois sistemas con-
figuráveis de grande porte (Groupon e GCC), e ele escalou sem muito esforço de engenharia.
Resultados experimentais demonstram que SPLif é útil e eficaz para rapidamente encontrar
testes que falham para configurações consistentes, independente de quão incompleto é o modelo
de features. Além disso, ainda avaliamos SPLif com um sistema configurável de grande porte e
extensivamente testado, o GCC, onde SPLif ajudou a revelar 5 novas falhas, das quais 3 foram
corrigidas após nossos relatórios de falha (bug reports).

Palavras-chave: Linhas de Produtos de Software. Sistemas Configuráveis. Teste de Software e
Depuração. Feature Model.

Abstract

Software Product Lines (SPLs) allow engineers to systematically build families of
software products, defined by a unique combination of features — increments in functionality,
improving both the efficiency of the software development process and the quality of the software
developed. However, testing these kinds of systems is challenging, as it may require running each
test against a combinatorial number of products. We call this problem the High Dimensionality

Problem. Another obstacle to product line testing is the absence of Feature Models (FMs),
making it difficult to discover the real causes for test failures. We call this problem the Lack of

Feature Model Problem.
The High Dimensionality Problem is associated to the large space of possible config-

urations that an SPL can reach. If an SPL has n boolean features, for example, there are 2n

possible feature combinations. Therefore, systematically testing this kind of system may require
running each test against all those combinations, in the worst case. The Lack of Feature Model
Problem is related to the absence of feature models. The FM enables accurate categorization of
failing tests as failures of programs or the tests themselves, not as failures due to inconsistent
combinations of features. For this reason, the lack of FM presents a huge challenge to discover
the true causes for test failures.

Aiming to solve these problems, we propose two lightweight techniques: SPLat and
SPLif. SPLat is a new approach to dynamically prune irrelevant configurations: the config-
urations to run for a test can be determined during test execution by monitoring accesses to
configuration variables. As a result, SPLat reduces the number of configurations. Consequently,
SPLat is lightweight compared to prior works that used static analysis and heavyweight dynamic
execution. SPLif is a technique for testing SPLs that does not require a priori availability of
feature models. Our insight is to use a profile of passing and failing test runs to quickly identify
test failures that are indicative of a problem (in test or code) as opposed to a manifestation of
execution against an inconsistent combination of features.

Experimental results show that SPLat effectively identifies relevant configurations with
a low overhead. We also apply SPLat on two large configurable systems (Groupon and GCC),
and it scaled without much engineering effort. Experimental results demonstrate that SPLif
is useful and effective to quickly find tests that fail on consistent configurations, regardless of
how complete the FMs are. Furthermore, we evaluated SPLif on one large extensively tested
configurable system, GCC, where it helped to reveal 5 new bugs, 3 of which have been fixed
after our bug reports.

Keywords: Software Product Lines. Configurable Systems. Software Testing and Debugging.
Feature Model.

List of Figures

1.1 Example of code using dynamically bound features. 19

1.2 Example of test that was designed for an specific configuration: −O3 and
− f compare−debug . 20

1.3 Overview of the solution. 23

2.1 A possible feature diagram of the Graph Library SPL. Source (APEL et al., 2013). 27

2.2 Two compositional implementations of a stack example with three features.
Source (KASTNER., 2010). 29

2.3 Annotative implementation using conditional compilation for Graph Library
SPL. Source (APEL et al., 2013). 30

2.4 Variability Encoding implementation for Graph Library SPL, conditionally exe-
cuted code is highlighted. Source (APEL et al., 2013). 31

2.5 Variations intra-method. 32

2.6 Variations inter-method. 33

2.7 Sample SPL Code and Test. 34

2.8 An example test ext-4.c from GCC test suite. 34

3.1 Feature Model. 37

3.2 Notepad SPL and Example Test. 37

3.3 Feature Model Interface . 38

3.4 SPLat Algorithm . 39

3.5 The distribution of the number of reachable configurations per tests, Figure 3.6
details the distribution of the number of features per tests. 53

3.6 The distribution of the number of features accessed per tests. 53

4.1 Test of Notepad that checks the cut and paste functionalities. This test fills the
text area with a string, selects the text area, and presses the “cut” button. It then
asserts that the text area is indeed empty, presses the “paste” button twice, and
checks for the presence of the repeated string. 56

4.2 The SPLif Algorithm. 61

4.3 Target SPLs used in SPLif evaluation. 63

4.4 Tests and Reachable Configurations. Values in parentheses show the subset of
consistent configurations. 63

4.5 Distribution of number of consistent configurations (CCs) per number of failing
tests (FTs). 64

4.6 Counts of passing and failing executions per test and SPL. ti is the test id. Fi is
the number of failures of ti. Pi is the number of passing executions of ti. FCi is
the number of consistent configurations in which ti fails. We omit test entries
without failing runs. 64

4.7 Ranking of tests. Column R shows the rank of test ti from Figure 4.6; S shows
the suspiciousness score of ti. A row in gray color indicates a test for which at
least one failing configuration it reaches is consistent. 65

4.8 Progress inspecting tests and their failing configurations. 67
4.9 The total number of inspections for various techniques, and their reduction

compared to two baselines: the number of inspections considering all failures
(column Reduction All(%), and the number of inspections considering the Ran-

dom technique (column Reduction Random(%) 68

5.1 Example of GCC test using DejaGnu. 75
5.2 Test pr47684.c from gcc.dg test suite. 76
5.3 Artifacts used and produced during SPLat execution. 77
5.4 Statistics on Tests. In the left table, column R shows the rank of test ti from

Figure 5.4a; S shows the suspiciousness score of ti. A row in gray color indicates
a test that requires inspection; a test for which at least one failing configuration
it reaches is consistent. In the right table, ti is the test id; Fi is the number of
crashing failures of ti. Pi is the number of passing executions of ti; FCi is the
number of consistent configurations in which ti crashes. We omit test entries
without crashing runs. 79

5.5 Configuration inspection progress for GCC. 80
5.6 The total number of inspections for various techniques, and their reduction

compared to two baselines: the number of inspections considering all failures
(column Reduction All(%), and the number of inspections considering the Ran-

dom technique (column Reduction Random(%) 81
5.7 GCC bugs. Details at: https://gcc.gnu.org/bugzilla/show_bug.cgi?

id=. Bug ids are sorted by date the bug was confirmed as new. 82

7.1 Peace of Notepad code. 92
7.2 An example of a problem extracted from the documentation of optimization

module of GCC. This example can be find at: http://www.cin.ufpe.br/
~sfs/survey/first.php?question=1&user=10. 93

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=
http://www.cin.ufpe.br/~sfs/survey/first.php?question=1&user=10
http://www.cin.ufpe.br/~sfs/survey/first.php?question=1&user=10

List of Tables

3.1 Subject SPLs. 46
3.2 Experimental Results for Various Techniques 49

Contents

1 Introduction 17
1.1 Problem Overview . 19

1.1.1 High Dimensionality . 20

1.1.2 Lack of Feature Models . 21

1.2 Solution Overview . 22

1.2.1 High Dimensionality . 22

1.2.2 Lack of Feature Models . 22

1.2.3 SPLat and SPLif . 23

1.3 Contributions . 23

1.4 Collaboration . 24

1.5 Outline . 24

2 Background 26
2.1 Feature Models . 26

2.1.1 Graphical Representation . 27

2.1.2 Propositional Representation . 28

2.1.2.1 Modeling Incomplete Feature Models 28

2.2 Building Approaches . 29

2.2.1 Compositional . 29

2.2.2 Annotative . 30

2.2.3 Variability Encoding . 30

2.2.3.1 Translating an SPL code from Annotative to Variability En-
coding Format . 31

2.3 Product Line Testing . 33

2.3.1 Case: Testing GCC . 34

3 SPLat 36
3.1 Example . 36

3.2 Technique . 38

3.2.1 Feature Model Interface . 38

3.2.2 Main Algorithm . 39

3.2.3 Example Run . 41

3.2.4 Reset Function . 42

3.2.5 Potential Optimization . 43

3.2.5.1 Feature Expression . 43

3.2.6 Implementation . 44

3.3 Evaluation . 44

3.3.1 Subjects . 44

3.3.2 Tests . 46

3.3.3 Comparison Techniques . 48

3.3.4 Results . 48

3.3.5 Case Study: Groupon . 52

3.3.5.1 SPLat Application . 52

3.3.5.2 Results . 52

3.3.6 Threats to Validity . 54

4 SPLif 55
4.1 Illustrative Example . 55

4.1.1 Notepad . 55

4.1.2 A Notepad test (failure) . 55

4.1.3 SPLat . 56

4.1.4 SPLif in a nutshell . 56

4.1.5 SPLif on Notepad Tests . 57

4.2 Technique . 57

4.2.1 Test Exploration . 58

4.2.2 Test Ranking . 59

4.2.3 Configuration Ranking . 60

4.2.4 Algorithm . 60

4.3 Evaluation . 62

4.3.1 Subjects . 62

4.3.2 Setup . 63

4.3.2.1 Tests analyzed . 63

4.3.2.2 Initial Feature Model and Ground Truth 65

4.3.3 Ranking Tests Using Suspiciousness Score 65

4.3.4 Ranking Configurations . 66

4.3.4.1 Discussion . 68

4.3.5 Incremental Runs of SPLif . 69

4.3.6 Discussion of Test Failures . 70

4.3.6.1 Companies . 70

4.3.6.2 DesktopSearcher . 70

4.3.6.3 GPL . 71

4.3.6.4 Notepad . 72

4.3.6.5 ZipMe . 72

4.3.7 Threats to Validity . 73

16

5 Case Study: GCC 74
5.1 Research Questions . 74
5.2 General Infrastructure . 75

5.2.1 The GCC Testing Infrastructure . 75
5.2.2 Implementation . 75

5.2.2.1 Instrumentation . 75
5.2.2.2 Execution . 76

5.3 Setup . 78
5.3.1 Tests Execution . 78
5.3.2 Tests Analyzed . 78
5.3.3 Options Analyzed . 78
5.3.4 Initial Feature Model and Ground Truth 78

5.4 Results . 79
5.4.1 Ranking Tests and Configurations . 79
5.4.2 New Bugs Found . 81
5.4.3 New Configuration Constraints Found 82

5.5 Threats to Validity . 83

6 Related Work 85
6.1 SPLat . 85

6.1.1 Dynamic Analysis . 85
6.1.2 Static Analysis . 86

6.2 SPLif . 87
6.2.1 Product Line Testing . 87
6.2.2 Feature Model Extraction and Inference 88
6.2.3 Fault Localization . 89
6.2.4 Configuration Troubleshooting . 89

7 Conclusion and Future Work 91
7.1 Future Work . 91

7.1.1 Feature Model Inference . 92
7.1.1.1 Feature Model Inference from Code - SPLand 92
7.1.1.2 Feature Model Inference from Documentation - MIHCO . . 93

7.1.2 Regression Testing of Software Product Lines 94

References 96

171717

1
Introduction

In general, software engineering provides two traditional approaches to develop systems
focusing on customer needs: (1) including all possible functionalities that a customer might
ever need, or (2) producing a single purpose system by order of a single customer. The former
approach may be very general for the customers needs, in the latter there is a considerable
cost related to producing a tailor-made solution. For instance, in the development perspective,
having n distinct projects for developing n distinct software products may lead to both decreased
productivity and increased time-to-market. In addition, requirements are growing not only in
number, but also in complexity, to satisfy as many customers as possible in as little time as
possible.

Instead of having one project for each software product, one possible way to solve all
those observed problems would be having only one project containing all products. The idea
is to first focus on developing artifacts that are common to all products, and next, focusing on
developing different artifacts to satisfy specific customer requirements, represented by features

(increments in functionality). Those different features can be combined, resulting in different
products.

Configurable Systems (CSs) and Software Product Lines (SPLs)1 are systems that typi-
cally adopt those practices during their development. They can be defined as “a set of software-

intensive systems that share a common, managed set of features satisfying the specific needs of a

particular market segment or mission and that are developed from a common set of core assets

in a prescribed way” (CLEMENTS; NORTHROP, 2001). Core assets correspond to reusable
artifacts or resources that are used to specify or build different products2 that can be configured
through selection of features (or configuration variables).

In practice, SPLs or CSs can be adapted according to a set of features, represented by con-
figuration variables at the code level. For instance, the web browser Firefox, the GNU Compiler
Collection (GCC), and the Linux Kernel are examples of systems with such characteristics.

From market perspective, SPLs have been proposed as a way to increase productivity

1Configurable Systems and Software Product Lines are used as synonym in this work.
2For ease of exposition, we use the terms “program”, “product”, “combination of features” and “configurations”

interchangeably.

18 CHAPTER 1. INTRODUCTION

in developing highly-configurable software systems (POHL; BÖCKLE; LINDEN, 2005). The
underlying principle is that they can systematically reuse software artifacts, instead of developing
software systems from scratch, thus reducing time-to-market in an industrial scenario where
customers demand a different set of features for one existing application. Cases where the use of
SPLs has demonstrated benefits include operating systems, telecommunication software, and
mobile apps (BERGER et al., 2010; ZAVE, 1993; AHO; GRIFFETH, 1995; ALVES et al., 2005;
YOUNG, 2005).

Software Product Line Engineering (SPLE) is a methodology for developing families
of products through reuse of a common (commonality) and variable (variability) set of as-
sets (POHL; BÖCKLE; LINDEN, 2005). While commonality is represented by the common
assets found in all products, variability is expressed by features, that are included or excluded
from individual products. At the application level, variability is key to increase both flexibility
and reuse during development, by reducing software engineering costs. However, it moves those
costs to testing activities, by posing many challenges for testing SPLs.

Software testing is a popular approach used in industry to assure software quality.
Specifically, testing software means checking if the observed system behavior matches the
specified, through a controlled execution. The main objective of this task is to find faults before
they manifest as failures. In the context of SPLs, testing activities should consider, among other
practical considerations, the SPL variability (POHL; BÖCKLE; LINDEN, 2005), that represents
a great challenge for testing SPLs, in contrast to testing a single-system developed in a traditional
way.

One of the challenges for testing SPLs is the variability space that grows exponentially
with the number of features. For instance, if an SPL has n boolean features, there are 2n possible
feature combinations. Therefore, testing this kind of system is expensive as it may require
running each test against all those combinations. We call this problem the High Dimensionality

Problem.
Testing an SPL becomes further complicated by the unavailability or incompleteness

of the Feature Model (FM). An FM models variability, by documenting features and their
relationships, and also defines legal feature combinations or configurations, i.e., it can detect
inconsistent (illegal) configurations. For example, if a test fails in a scenario without a complete
FM, it is difficult to determine if there is a fault in the code or in the test, instead of a failure
due to inconsistent combinations of features. For this reason, the lack or incompleteness of FM
presents a great challenge to discover the true causes for test failures. We call this problem the
Lack of Feature Model Problem.

Considering both the High Dimensionality Problem and the Lack of Feature Model
Problem, we define the scope, assumption, and hypothesis of this thesis as follows:

� Scope. The scope of this work comprises software product lines and configurable
systems that build products through dynamically bound features, known as Variability

Encoding c.f., Section 2.2.3. In this methodology, features are represented as boolean

1.1. PROBLEM OVERVIEW 19

variables (feature variables) that guard portions of code that belong to them. These
feature variables are enabled and disabled during code execution. Figure 1.1 illustrates
a piece of code developed using this methodology, where T , T , and M are feature
variables.

Figure 1.1: Example of code using dynamically bound features.

In theory, the proposed solutions can be applied to all approaches to build SPLs. How-
ever in practice, the implemented solutions should be adapted to support other kinds
of SPLs’ implementation. The systems groupon.com website and GCC (GCC -
Test, 2014; GARVIN; COHEN, 2011) are developed according to this methodology;

� Assumption. We assume that tests can reveal errors when executed on multiple
configurations, even when they were developed for one specific configuration. The
tests for groupon.com website (KIM et al., 2013), GCC (GCC - Test, 2014;
GARVIN; COHEN, 2011) and Firefox (GARVIN; COHEN, 2011) are developed in
this manner. Figure 1.2 presents an example of GCC test designed for an specific
configuration, but, in practice, the GCC test infrastructure supports running this test
against several configurations, since they respect the features−O3 and− f compare−
debug;

� Hypothesis. Our hypothesis is that it is feasible to test SPLs on multiple configu-
rations in a systematic way at a low cost, and find errors even without documented
feature model.

1.1 Problem Overview

In this section, we detail both the High Dimensionality and the Lack of Feature Models
problems.

20 CHAPTER 1. INTRODUCTION

Figure 1.2: Example of test that was designed for an specific configuration: −O3 and
− f compare−debug .

1.1.1 High Dimensionality

Systematically testing configurable systems and SPLs is difficult because running each
test can, in principle, require many actual executions—one execution for each possible con-
figuration or feature combination. Thus, one test does not simply encode one execution of a
program; the cost of running a test suite is proportional to the number of tests times the number
of configurations.

Current techniques for handling this combinatorial problem can be divided into sampling
and exhaustive exploration. Sampling uses a random or sophisticated selection of configurations,
e.g., pair-wise coverage (COHEN; DWYER; SHI, 2007). However, such selections can run a
test on several configurations for which the test executions are provably equivalent (thus only
increasing the test time without increasing the chance to find bugs), or it can fail to examine con-
figurations that can expose bugs (APEL et al., 2013). Exhaustive exploration techniques consider
all configurations, but can use optimization approaches to prune redundant configurations that
need not be explored (APEL et al., 2013; D’AMORIM; LAUTERBURG; MARINOV, 2007;
KäSTNER et al., 2012; KIM; BATORY; KHURSHID, 2011; KIM; KHURSHID; BATORY,
2012; RHEIN; APEL; RAIMONDI, 2011). Such works use either static analysis (KIM; BA-
TORY; KHURSHID, 2011) or heavyweight dynamic analysis based on model checking (APEL
et al., 2013; D’AMORIM; LAUTERBURG; MARINOV, 2007; KäSTNER et al., 2012; KIM;
KHURSHID; BATORY, 2012; RHEIN; APEL; RAIMONDI, 2011). These techniques are safe,
i.e., they do not miss bugs. However, they may be heavy and, consequently, slow.

1.1. PROBLEM OVERVIEW 21

1.1.2 Lack of Feature Models

Feature models formally capture dependencies among features. They distinguish which
combinations of features are consistent from those that are not. If an SPL has n boolean features,
there are 2n possible combinations, called configurations. If the feature model can classify each
of the 2n configurations as consistent or inconsistent3, we consider this model as complete. On
the other hand, if the feature model cannot classify all of the 2n configurations as consistent or
inconsistent, this model is incomplete, i.e., it does not have the needed knowledge to distinguish
all combinations of features are consistent from those that are not. In the limit, this incomplete
model can be empty, i.e., it cannot classify any configuration (c.f., Section 2.1).

A relevant problem for testing SPLs (KIM et al., 2013; BORBA et al., 2013; APEL et al.,
2013; SHI; COHEN; DWYER, 2012; SONG; PORTER; FOSTER, 2012; KIM; KHURSHID;
BATORY, 2012; KIM; BATORY; KHURSHID, 2011; GARVIN; COHEN, 2011; CABRAL;
COHEN; ROTHERMEL, 2010) is to reduce the number of tests to run. In this context, feature
models play a key role by constraining the space of products to test and enables accurate
categorization of failing tests as failures of programs or the tests themselves, not as failures due
to inconsistent configurations. However, most cited prior work on testing SPLs assumes the
availability of a complete formally-specified feature model.

Unfortunately, in practice, feature models are not always available. Indeed, this absence
presents a great challenge for testing an SPL. For instance, during SPLat experiments we
realized that many tests for the codebase of the groupon.com website (KIM et al., 2013)
failed, and it was not possible distinguish if the failures were due to inconsistent configurations
or due to a bug in code or tests, because there is no formally-specified feature model.

There is a large body of work that mitigates that problem by inferring/extracting feature
models as complete as possible (CZARNECKI; WASOWSKI, 2007; ALVES et al., 2008; WE-
STON; CHITCHYAN; RASHID, 2009; SHE et al., 2011; RABKIN; KATZ, 2011; ANDERSEN
et al., 2012; LOPEZ-HERREJON et al., 2012; ACHER et al., 2012; HASLINGER; LOPEZ-
HERREJON; EGYED, 2013; DAVRIL et al., 2013; XU et al., 2013) that include: static analysis
to extract feature dependencies from code, information retrieval and data mining, evolutionary
search, and algorithms based on propositional logic. These approaches face some problems that
we can avoid, because it is not necessary to discover a whole feature model in order support the
testing of SPLs.

Our insight is to discover only the relevant part of the FM to check the consistency
of faulty revealing configurations. Thus, we can avoid some problems that approaches for
inferring/extracting feature models have to deal, for example: (1) the key constraints that
comprise a feature model need to be mined; (2) the relationships need to be arranged in a manner
that leads to an intuitive and understandable model; (3) a feature may have a range of values,

3An inconsistent configuration is a configuration that violates some rule of the FM. Otherwise, it is a consistent
configuration.

22 CHAPTER 1. INTRODUCTION

instead of being boolean; (4) the inferred/extracted information is harvested from a variety of
source code artifacts, makefiles, comments, and documentation.

1.2 Solution Overview

In this work, we propose two solutions to addresses both the High Dimensionality and
the Lack of Feature Models problems.

1.2.1 High Dimensionality

In order to solve the aforementioned problems related to the High Dimensionality
problem, we present SPLat, a new lightweight technique to reduce the cost of systematically
testing SPLs and highly configurable systems. Our intuition is that the configurations to run
against a test can be determined during test execution, rather than using an up-front static
analysis. SPLat minimizes the number of configurations for the tests. Experimental results
show that SPLat yields a reduction in testing time proportional to the reduction in the number
of configurations. Our insight into pruning configurations was inspired by the Korat algorithm
for test-input generation (BOYAPATI; KHURSHID; MARINOV, 2002), which introduced the
idea of execution-driven pruning for solving data-structure invariants written as imperative code.

Initially, SPLat requires a feature model4 to make it supporting constraints among
configuration variables, which delimit the space of configurations to explore. For an SPL, these
constraints are expressed through a feature model (KANG et al., 1990) that (1) provides a
hierarchical arrangement of features and (2) defines allowed configurations. SPLat uses SAT to
prune inconsistent configurations and in tandem uses execution-driven pruning to further remove
unnecessary consistent configurations for execution of each test. Moreover, SPLat is effective
because it monitors the accesses of configuration variables during test execution. Monitoring is
lightweight in terms of both its execution overhead and its implementation effort.

1.2.2 Lack of Feature Models

In order to solve this problem, we propose SPLif, a technique for testing SPLs that does
not require a priori availability of complete feature models. SPLif does not require the entire
model in order to validate fault-revealing configurations. Instead, SPLif guides the developer
in incrementally classifying configurations related to the parts of the model that are relevant for
failing test runs. Our insight is that by running each test against many configurations, we can
utilize information from failing and passing runs to help developers prioritize their inspection of
failures.

4SPLat only worked with an incomplete or absent feature model after SPLif, for more detail see Section 4.2.1.

1.3. CONTRIBUTIONS 23

1.2.3 SPLat and SPLif

The connection between SPLat and SPLif addresses both the High Dimensionality
and the Lack of Feature Models problems. Figure 1.3 provides an overview of our solution,
whose inputs are: the system source code, its tests, and optionally a feature model that can be
complete, incomplete, or empty5. From these inputs, SPLat executes the tests by exploring only
configurations that are touched during test execution. If the FM is not empty, SPLat prunes
inconsistent configurations during the exploration. As a result SPLat produces a profile of
passing and failing tests and respective explored configurations.

From that profile, SPLif produces a ranking of failing tests and configurations that
are indicative of a problem (in test or code). These failing configurations are inspected by the
user, with prior knowledge of the SPL being tested to classify it as consistent or inconsistent. If
the configuration is inconsistent, then it improves the existing incomplete FM or incrementally
builds an FM, if it is empty. If the configuration is consistent, it indicates a real problem in the
code or test, and the user can make a repair in the code or test.

SPLat	

Source	

code	

	

	

Tests	

	

	

Top failing
configuration

SPLif	
 Profile of passing/failing
tests and results for reached

configurations

Classifies
configuration

Infers	

constraints	

Repairs	
 the	
 test	

or	
 code	

Inconsistent

Consistent

	

	

Feature	

Model	

(op:onal)	

	

	

Figure 1.3: Overview of the solution.

1.3 Contributions

This work makes the following contributions:

� Approach. We introduce the idea of lightweight monitoring for highly configurable
systems to speed up test execution. SPLat instantiates this idea and can be easily
implemented in different run-time environments. We also present SPLif, a technique
that synergistically exploits tests and incomplete feature models (in the limit, starting

5Since we are presenting an overview of the solutions together, we are assuming that the FM may be optional,
but Chapter Section 3 considers a complete FM, except by Groupon, where SPLat ignored the FM exploration,
because this system does not have an FM. Chapter Section 4 considers the FM as optional, and the final solution
works in this manner.

24 CHAPTER 1. INTRODUCTION

from an empty feature model) to help users both (1) distinguish test failures caused
by problems in test or code from those caused by inconsistent configurations and (2)
build a more complete feature model, as a consequence.

� Implementation. It was developed three versions of SPLat (one for Java, one
for Ruby on Rails6, and one for C) for exploring SPL tests on various reachable
configurations. And we developed SPLif (SOUTO et al., 2015), that builds on the
SPLat tool (KIM et al., 2013), to speed up discovery of bugs in SPLs and CSs that
do not require a priori availability of feature models.

� Evaluation. We evaluate SPLat on 10 Java SPLs. Experimental results show that
SPLat effectively identifies relevant configurations with a low overhead. We also
apply SPLat on a large configurable system (with over 171KLOC in Ruby on Rails).
The system uses over 170 configuration variables and contains over 19K tests (with
over 231KLOC in Ruby on Rails), and SPLat scales to this size without much
engineering effort. SPLif has been evaluated on five SPLs. The results demonstrate
the utility of SPLif in automating testing of SPLs with incomplete feature models.
Furthermore, we evaluated SPLif on one large extensively tested configurable
system, GCC, where it helped to reveal 5 new bugs by running existing tests with
different configurations and inspecting failures in an order that allows to quickly find
the bugs, 3 of which have been fixed after our bug reports.

1.4 Collaboration

SPLat was developed in an independent manner and resulted in a publication together
with Chang Hwan Peter Kim, Don Batory and Sarfraz Khurshid from the University of Texas,
and Darko Marinov from the University of Illinois (USA). We joined our works (implementations
and experiments) and we had a camera ready version at the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE 2013 (KIM et al., 2013).

SPLif was designed, implemented, and evaluated in collaboration with Darko Marinov
from the University of Illinois (USA), Divya Gopinath, Sarfraz Khurshid and Don Batory
from the University of Texas at Austin (USA). Together, we published a paper in the ACM
International Conference on Software Product Lines, SPLC 2015 (SOUTO et al., 2015).

1.5 Outline

We organize this document as follows:

6The Ruby version of SPLat was developed and evaluated by professor Darko Marinov from the University of
Illinois (USA).

1.5. OUTLINE 25

� Chapter 2 reviews essential concepts used throughout this work;

� Chapter 3 presents SPLat, our approach to address high dimensionality. Firstly,
we discuss the general idea through an illustrative example. Then, we explain the
technique and its implementation. Finally, we detail the evaluation and discuss the
results;

� Chapter 4 presents SPLif, our approach to deal with the lack of feature model.
Firstly, we present some specific definitions, and discuss the general idea through an
illustrative example. Then, we explain the technique and its implementation. Finally,
we detail the evaluation, discuss the results and limitations;

� Chapter 5 presents a case study conduced with the aim of demonstrate SPLat and
SPLif with the GNU Compiler Collection (GCC);

� Chapter 6 discusses related work;

� Chapter 7 presents the final considerations of this work, and proposes future research
based on this work.

262626

2
Background

In this chapter we introduce essential concepts and terminology to support the discussion
of the remaining chapters. Firstly, we introduce some concepts related to Software Product

Lines in Section 2.1. In this context, we highlight the key elements used in this work: features,
configurations, and feature models. Then, in Section 2.2, we discuss the main approaches used
to build products1. Finally, in Section 2.3, we present the product line testing approach used in
this work.

SPLs have been proposed as a way to improve both the efficiency of the software
development process and the quality of the software developed, by allowing engineers to
systematically build families of products through the reuse of a common (commonality) and
variable (variability) set of core assets (CLEMENTS; NORTHROP, 2001; POHL; BÖCKLE;
LINDEN, 2005). While commonality is represented by the common assets found in all products,
variability is expressed by features, that are included or excluded from individual products.

Core assets correspond to reusable artifacts or resources that are used to specify or build
different products. A feature characterizes one distinct software capability. For example, the
capability of a game for rendering figures in 3D (ALVES et al., 2005). For our purposes, a
feature can simply be seen as a variable or an option whose value influences code selection. A
product (or configuration) is an n-digit boolean f 1... f n representing feature assignments for a
product line with n features.

2.1 Feature Models

In order to obtain the benefits of the SPL approach, it is necessary to model variability.
And there are a number of different techniques for modeling variability (KANG et al., 1990;
CZARNECKI; HELSEN; EISENECKER, 2005; BATORY, 2005; SCHOBBENS et al., 2007;
GHEYI; MASSONI; BORBA, 2008; WEISS et al., 2008; SCHMID; RABISER; GRüNBACHER,
2011), according to different focus and goals. The most popular form to model variability is

1For ease of exposition, we use the terms “program”, “product”, “combination of features” and “configurations”
interchangeably.

2.1. FEATURE MODELS 27

through feature models (FMs) and their graphical representation as feature diagrams. A feature
model documents the features of a product line and their relationships (APEL et al., 2013),
and also defines legal feature combinations or configurations. We focus on two different
representations for expressing FMs: (1) graphically as a tree, and (2) as propositional formulas.

2.1.1 Graphical Representation

A feature model can be graphically represented as a tree, where nodes correspond to
features and edges correspond to feature dependencies. The root of the tree often identifies the
subject application and other nodes describe features. Edges define feature hierarchy: if a node i

is an ancestral of j in the tree then any product that contains feature j also contains i. Edges of
the tree are decorated to indicate special kinds of relationships across features, see Figure 2.1.
The options of decoration are as follows:

Figure 2.1: A possible feature diagram of the Graph Library SPL. Source (APEL et al.,
2013).

� Filled circle (mandatory): An edge from feature A to feature B that terminates in a
filled circle denotes a mandatory feature. Feature B must be selected if A is selected.

� Empty circle (optional): Feature B may or may not be selected if A is selected.

� Empty arc (xor): An empty arc labeling the edges from feature A to features B1...Bn

indicate alternative (mutually-exclusive) features. Feature Bi can only be selected if
B j is not selected, for i 6= j and i, j : 1≤ j ≤ n. Additionally, one feature in the range
must be selected if feature A is selected.

� Filled arc (or): A filled arc labeling the edges from feature A to features B1...Bn

indicates or features. At least one feature in the range must be selected if feature A is
selected.

� No arc (and): No arc labeling the edges from feature A to features B1...Bn indicates
and features. All the features in the range must be selected.

28 CHAPTER 2. BACKGROUND

� Constraints: The propositional formulas under the tree represents the constraints
across features. For example, see the constraints in Figure 2.1.

2.1.2 Propositional Representation

Let φ be a set of boolean variables denoting SPL features. A configuration c : φ ⇀

{ f alse, true} is a partial function from variables to boolean values; c maps some (not necessarily
all) feature variables to values false or true. A configuration can be encoded as a boolean formula
fc =

∧
pi, where pi = (xi|¬xi) for xi ∈ φ . We denote with | fc| the number of variables referenced

in fc. We say that a configuration c is complete iff | fc|=|φ |; it is incomplete otherwise. An
incomplete configuration c represents a set of 2|φ |−| fc| complete configurations (we call them
extensions of fc), which map all variables to boolean values.

Example. Let φ = {A,B,C,D,E}. Configuration fc1=A∧B∧¬C∧D∧E is complete.
Configurations fc2=A∧¬B and fc3=A∧B∧¬C∧E are incomplete. c2 can be also written as
“10???”, where we assume a linear order over φ : A<.. .< E and use the numbers 1 and 0
to indicate, respectively, the presence or absence of a feature and the symbol “?” to indicate
“undefined”. It is important to note that “10***” extensions are: “10000”, “10001”, “10010”,
“10100”, “10101”, “10110”, “10011”, “10111”.

A feature model defines which configurations are legal for a given SPL. We use the label
“3” (for valid) to indicate that a complete configuration does not violate model constraints, while
the label “7” (for invalid) indicates that some constraint has been violated.

2.1.2.1 Modeling Incomplete Feature Models

Assuming that complete knowledge about SPL constraints is not available. In that
case, an incomplete feature model is a partial function M_ : 2φ ⇀ {3, 7} that maps complete

configuration c ∈ 2φ to a configuration label. If the label of a configuration is not in M_, it
is “unknown”. In one limit, the feature model is empty if it assigns an “unknown” label to
all 2|φ | configurations. In another, the feature model is complete if it assigns 3or 7 to every
configuration.

Analogous to the labels “X” and “×” used to indicate validity of complete configurations,
we use the labels “C” (for consistent) and “I” (for inconsistent) to indicate consistency of
incomplete configurations. An incomplete configuration c ∈ 2φ is inconsistent if it violates some
constraint in the feature model; it is consistent otherwise. We model an incomplete feature model
as a total function M : 2φ→{C, I}.

Example. Formula fM=(x→¬z)∧(¬y→ z) encodes an incomplete feature model M.
The configuration 1?1?? is inconsistent as it violates x→¬z whereas the configuration 11?11 is
consistent as it does not violate any constraint in M. Indeed, it is possible to obtain consistent
complete configuration (aka valid 3) in M from 11?11 with the assignment of 0 to z, however
the assignment of 1 to z produces an inconsistent complete configuration (aka invalid 7).

2.2. BUILDING APPROACHES 29

Note that similarity to consistent configurations does not imply consistency: when an
incomplete configuration is consistent, extensions of that configuration may or may not be
consistent. In contrast, when an incomplete configuration is inconsistent, all its extensions
must be inconsistent. Provided that one preserves this invariant, it is possible to augment fM

incrementally by reducing uncertainty associated with incomplete configurations.

2.2 Building Approaches

The build process of an SPL takes a selection of feature requests as input and outputs
a product that implements those features. Products share a common codebase and vary in the
set of features they implement. There are many different approaches to build products, such as
Compositional, Annotative, and Variability Encoding. In the following we detail each of these
approaches.

2.2.1 Compositional

class Stack{
 void push(Object o) {
 elementData[size++] = 0;
 }
}

1
2
3
4
5

Feature BASE

refines class Stack{
 void push(Object o) {
 Lock l = lock(o);
 Super.push(o);
 l.unlock();
 }
 Lock lock() {/*...*/}
}
class Lock {/*...*/}

6
7
8
9
10
11
12
13
14

Feature LOCKING

refines class Stack{
 void push(Object o) {
 Super.push(o);
 log(“added ” + o);
 }
 void log(String msg) {/*...*/}
}

14
15
16
17
19
20
21

Feature LOGGING

(a) Implementation with Jak.

class Stack{
 void push(Object o) {
 elementData[size++] = 0;
 }
}

1
2
3
4
5

Feature BASE

aspect Locking{
 around(Object o, Stack stack):
 execution(void Stack.pusk(..))
 && args(o) && this(stack)
 {
 Lock l = lock(o);
 proceed(o);
 l.unlock();
 }
 Lock Stack.lock(Object o) { ... }
 static class Lock {/*...*/}
}

6
7
8
9
10
11
12
13
14
15
16
17

Feature LOCKING

aspect Logging{
 after(Object o):
 execution(void Stack.push(..))
 && args(o)
 {
 log(“added ” + o);
 }
 void log(String msg) {/*...*/}
}

18
19
20
21
22
23
24
25
26

Feature LOGGING

(b) Implementation with AspectJ.
Figure 2.2: Two compositional implementations of a stack example with three
features. Source (KASTNER., 2010).

In compositional approaches features are implemented separately in distinct modules
(files, classes, packages, plug-ins, etc.). These modules can be composed in different combina-
tions in order to build products. The key challenge of composition-based approaches is to keep
the mapping between features and modules simple and tractable (KASTNER., 2010; APEL

30 CHAPTER 2. BACKGROUND

et al., 2013). Figure 2.2 shows an example of two compositional implementations of a simple
stack example that can be extended by two features LOCKING and LOGGING. The example
in Figure Figure 2.2a uses class refinements of the feature-oriented language Jak (BATORY;
SARVELA; RAUSCHMAYER, 2003). Figure Figure 2.2b represents the same application by
using the aspect oriented language AspectJ (KICZALES et al., 2001) to implement the same
features.

2.2.2 Annotative

A very popular (and old) implementation mechanism of an SPL appears in programs
that combine make files and conditional compilation, as provided by the C compiler pre-
processor (CZARNECKI; EISENECKER, 2000). In this approach, the user annotates the code
with #ifdef-like directives guarded by symbols that denote features and use make files to
generate a product with one selection of features enabled. Figure 2.3 illustrates this kind of code
representation. Annotative approaches are widely used in practice because they are easy to use.
Nevertheless, they are often criticized for a number of problems, such as lack of modularity,
reduced readability, and being error-prone (KASTNER., 2010; APEL et al., 2013).

1 class Node {
2 int id = 0;
3

4 //#ifdef NAME
5 private String name;
6 String getName() { return name; }
7 //#endif
8 //#ifdef NONAME
9 String getName() { return String.valueOf(id); }

10 //#endif
11

12 //#ifdef COLOR
13 Color color = new Color();
14 //#endif
15

16 void print(){
17 //#if defined(COLOR) && defined(NAME)
18 Color.setDisplayColor(color);
19 //#endif
20 System.out.print(getName());
21 }
22 //#ifdef COLOR
23 Class Color {
24 static void setDisplayColor(Color c) {*...*}
25 }
26 //#endif
27 }

Figure 2.3: Annotative implementation using conditional compilation for Graph Library
SPL. Source (APEL et al., 2013).

2.2.3 Variability Encoding

The Variability Encoding representation (POST; SINZ, 2008; APEL et al., 2013) delays
the binding time of code variations to execution time. Similar representations have been used

2.2. BUILDING APPROACHES 31

to assist automated code analysis of configurable systems (REISNER et al., 2010; APEL et al.,
2011; KäSTNER et al., 2012; KIM; KHURSHID; BATORY, 2012). More specifically, for
each feature, there is a feature variable, which is a static boolean field whose value, for one
configuration, is determined at the beginning of program execution and must remain fixed
throughout the execution. Figure 2.4 shows a possible variability encoding for the graph example
in Figure 2.3. The presence and absence of the features NAME, NONAME, and COLORED are
modeled by three corresponding Boolean variables, located in class Conf. Code that is specific to
particular features is executed conditionally based on the values of these variables (highlighted
in Figure 2.3) (APEL et al., 2013).

1 class Node {
2 int id = 0;
3 private String name;
4 String getName() {
5 if (Conf.NAME) return name;
6 if (Conf.NONAME) return String.valueOf(id);
7 throw VariabilityException();
8 }
9 Color color = new Color();

10

11 void print(){
12 if (Conf.COLOR && Conf.NAME)
13 Color.setDisplayColor(color);
14 System.out.print(getName());
15 }
16 }
17

18 Class Color {
19 static void setDisplayColor(Color c) {*...*}
20 }

Figure 2.4: Variability Encoding implementation for Graph Library SPL, conditionally
executed code is highlighted. Source (APEL et al., 2013).

Although the Annotative approach is widely used in practice and the Compositional one
is well-known, we decided to develop SPLat and SPLif to support SPLs implemented with
Variability Encoding approach, because it is more appropriate and practical for the types of code
analysis we need to do, i.e., each feature is modeled as a code variable and it allows checking
their states at execution time. Moreover, the real cases we studied, Groupon and GCC, adopt
this building approach. We could have been used Annotative or Compositional approaches with
some engineering effort would be needed, the next section details this effort.

2.2.3.1 Translating an SPL code from Annotative to Variability Encoding Format

Our goal is to translate from a format to the other without loose information. To achieve
that, we have to consider two kinds of variations (intra-method and inter-method). A variation
is a program member2 that belongs to a feature. Figure 2.5a illustrates this kind of variation.
On the other hand, variation intra-method represents method members that belong to feature(s),

2Examples of program member: variables, method declarations, inner classes, attribute declarations (global
variables), method parameters, return of methods/functions, or class extension/implementation.

32 CHAPTER 2. BACKGROUND

such as variable declarations, method calls. Variation inter-method represents program members
out of the method that belong to feature(s), for example: global variables, method parameters,
return of methods/functions, or class extension/implementation. Figure 2.6a illustrates this kind
of variation.

Our insight to translate from Annotative into Variability Encoding format is to find all
the definitions and uses for each variation, and:

� For (1) variations intra-method, we need to guard their definitions and uses. For
example, the code from Figure 2.5a is translated into the code of Figure 2.5b. In this
case, “Stack bu f f er” belongs to feature “A”, it means that this variable can only be
used when the feature “A” is enabled. So, when the code is translated the behavior
remains the same;

1 class Clazz {
2 void add(Object x){
3 //#ifdef A
4 Stack buffer;
5 //#endif
6 //...
7 //#ifdef A
8 buffer.add(x);
9 //#endif

10 //...
11 }
12 }

a A piece of code developed using the Annotative approach with a variation intra-method.

1 class Clazz {
2 void add(Object x){
3 if(A)
4 Stack buffer;
5 //...
6 if(A)
7 buffer.add(x);
8 //...
9 }

10 }

b A piece of code translated from Annotative (Figure 2.5a) to Variability Encoding approach with
a variation intra-method.

Figure 2.5: Variations intra-method.

� For (2) variations inter-method, we need to guard their uses and define default values
to avoid code repetition. For example, the code from Figure 2.6a is translated into
the code of Figure 2.6b. In this case, the variation in a parameter of the method m (at
At line 4 from Figure 2.6a) is moved to lines 15-17 from Figure 2.6b. The method
declaration have no apparently variation, but its calls have to be preceded by the
variation of that parameter. So, we set the variable x to its correct value if the feature
A is enabled. Otherwise, we define a default value. This artifice is used to avoid code
repetition, i.e., having two method definitions (one for each variation).

2.3. PRODUCT LINE TESTING 33

1 class Clazz {
2 void m(
3 //#ifdef A int x,//#endif
4 double y){
5 //...
6 //#ifdef A
7 x = 10;
8 //#endif
9 y = 1000;

10 //...
11 }
12 }

a A piece of code developed using the Annotative approach with a variation inter-method.

1 class Clazz {
2 void m(int x, double y){
3 //...
4 if(A)
5 x = 10;
6 y = 1000;
7 //...
8 }
9 }

10

11 class ClazzX {
12 Clazz c = new Clazz();
13 void mx(){
14 int x;
15 if(A)
16 x = 10;
17 else x = 0; //a default value
18 c.m(x, 5.0);
19 }
20 }

b A piece of code translated from Annotative (Figure 2.6a) to Variability Encoding approach with
a variation inter-method.

Figure 2.6: Variations inter-method.

However, even translating the SPL from the Annotative or the Compositional format to
the Variability Encoding format, we may have some cases where the variation is in the type of an
attribute or in the list of implements or extends. In these cases it would be necessary to have
more than one version of the code to support those variations, that means more combinations to
run. This may affect the performance of SPLat, and it may lead a combinatorial explosion, in
the worst case.

2.3 Product Line Testing

A test of a product line is simply a test that executes some methods, references some
code of the product line and produces a result that can be checked against the expected result.
Figure 2.7b shows a sample test that calls the method in Figure 2.7a. It is very important to
note that a feature variable can have different values depending on which configuration is being
executed for a test. Without analyzing the feature model or the code, the test must be executed
for every configuration of the feature model, i.e. for each configuration, feature variables’ values

34 CHAPTER 2. BACKGROUND

must be set using the configuration’s feature assignments and the test must be executed.

class Clazz{
 int value;
 //…
 int getValue() {
 //…
 if(A) {
 value = 1;
 }
 //…
 if(B) {
 value = 2;
 }
 //…
 return value;
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

(a) Sample SPL code using variability encoding.

Class Test{
 //…
 @Test
 void test() {
 Variables.setA(true);
 Clazz clazz = new Clazz();
 assertEquals(1, clazz.getValue());
 }
}

1
2
3
4
5
6
7
8
9

(b) Sample SPL Test.

Figure 2.7: Sample SPL Code and Test.

When necessary, the terms test suite, test, and test case are distinguished. A test suite is
a collection of tests. A test or a test case can have values assigned to feature variables.

2.3.1 Case: Testing GCC

In order to illustrate how a test of an industrial case is designed, we present GCC and
then we discuss a test example.

GCC (2014) is a compilation framework with front-ends for a variety of languages and
back-ends for a variety of platforms. We are using GCC version 4.8.2 that has 2.015 features,
also called configuration options (GCC Options, 2014). GCC has 164 test suites, where 15 are
specific for the C language, and the rest is related to other front ends. All test suites comprise
17,492 files of tests in total, each test containing an arbitrary number of assertions.

1 /*{ dg-do compile }*/
2 /*{ dg-options "-std=gnu89 -Wformat"}*/
3

4 #include format.h
5

6 void
7 foo (char **sp, wchar_t **lsp)
8

9 /*%a formats for allocation, only recognized in C90 mode, are a
10 GNU extension. Followed by other characters, %a is not treated
11 specially.
12

13 scanf("%as", sp);
14 scanf("%aS", lsp);
15 scanf("%a[bcd]", sp);
16 }

Figure 2.8: An example test ext-4.c from GCC test suite.

The test suite from GCC uses DejaGnu (DejaGnu, 2014) as a framework for testing.
DejaGnu provides directives (DejaGnu directives, 2014) to define:

� Actions: specify the type of a test: preprocess, compile, assemble, link, or run. See
Figure 2.8 line 1;

2.3. PRODUCT LINE TESTING 35

� Options: specify some specific configuration variables to run on a test, see Figure 2.8
line 2;

� Outcomes: specify the possible outputs: fail, pass, warning, error, etc.

By default, tests from GCC can run on several configurations. However, the test code
must define, at the beginning of the test code, feature variables and values (options (GCC Options,
2014)) that must be respected by the configurations that will run with such test. For example,
dg-options “-std=gnu89 -Wformat”, at line 4 in Figure 2.8, determine that configurations for this
test must contain the two options: “-std=gnu89” and “-Wformat”. The configuration to run on
this test must follow this rule, otherwise, the test shall fail for this reason, i.e., the test must run
with any configuration that contains both these two options and any other option.

363636

3
SPLat

Many programs can be configured through dynamic and/or static selection of configura-
tion variables. A software product line, for example, specifies a family of programs where each
program is defined by a unique combination of features. Systematically testing SPL programs is
expensive as it may require running each test against a combinatorial number of configurations.
Fortunately, a test is often independent of many configuration variables and needs not to be run
against every combination. Configurations that are not required for a test can be pruned from
execution.

This chapter presents SPLat, a new way to dynamically prune irrelevant configurations:
the configurations to run for a test can be determined during test execution by monitoring
accesses to configuration variables. SPLat efficiently reduces the number of configurations
and is lightweight compared to prior works that used static analysis and heavyweight dynamic
execution. Experimental results on 10 SPLs written in Java show that SPLat substantially
reduces the total test execution time in many cases. Moreover, we demonstrate the scalability of
SPLat by applying it to a large industrial code base.

3.1 Example

In order to illustrate the testing process, we use a simple Notepad product line. Fig-
ure 3.1 shows the feature model of Notepad. This model has two mandatory features—the root
NOTEPAD and BASE, and three optional features—MENUBAR, TOOLBAR, and WORDCOUNT. A
mandatory feature is always true; it is present in every configuration. An optional feature may
be set to true or false. In this example, every Notepad configuration must have a MENUBAR
or TOOLBAR. For example, assigning false to both TOOLBAR and MENUBAR would violate
the disjunction constraint and therefore be invalid. In contrast, assigning false to one of these
two features and true to the other feature is valid.

For the SPLs we consider in this work, a feature is a boolean variable within the code.
Figure 3.2a shows the code for Notepad. BASE (clear color) represents the core functionality, i.e.,
constructing a Notepad with a JTextArea that the user types into. TOOLBAR (green) adds a

3.1. EXAMPLE 37

Notepad

ToolBarBase WordCountMenuBar

Feature Model

MenuBar  ToolBar

MENUBAR  TOOLBAR

NOTEPAD

TOOLBARBASE WORDCOUNTMENUBAR

Figure 3.1: Feature Model.

JToolBar to the frame. MENUBAR (red) sets a JMenuBar against the frame. WORDCOUNT
(blue) adds its toolbar icon if the toolbar is present or its menubar item if the menubar is present.

class Notepad extends JFrame {
Notepad() {

getContentPane().add
(new JTextArea());

}

void createToolBar() {
if(TOOLBAR) {

JToolBar toolBar =
new JToolBar();

getContentPane().add
("North", toolBar);

if(WORDCOUNT) {
JButton button = new

JButton("wordcount.gif");
toolBar.add(button);

}
}

}

void createMenuBar() {
if(MENUBAR) {

JMenuBar menuBar =
new JMenuBar();

setJMenuBar(menuBar);

if(WORDCOUNT) {
JMenu menu = new

JMenu("Word Count“);
menuBar.add(menu);

}
}

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

@Test
public void test() {

Notepad n = new Notepad();
n.createToolBar();

// Automated GUI testing
FrameFixture f = newFixture(n);
f.show();
String text = “Hello”;
f.textBox().enterText(text);
f.textBox().requireText(text);
f.cleanUp();

}

1
2
3
4
5
6
7
8
9
10
11
12
13

(a) Code (b) Test
Figure 3.2: Notepad SPL and Example Test.

Figure 3.2b shows an example test that instantiates the Notepad class and creates a
toolbar for it. Note that the test does not call the createMenuBar() method. To be able to
execute a test, each variable in the test, except the feature variables, must be given a value.

We use the automated GUI testing framework FEST (FEST, 2014) to run the test. The
helper method newFixture() is omitted for simplicity. The test execution launches the frame,
simulates a user entering some text into the JTextArea of the frame, checks that the text area
contains exactly what was entered, and closes the frame.

Without analyzing the feature model or the code, this test would need to be run on all 8
combinations of the 3 optional features, to check all potential test outcomes. However, some

38 CHAPTER 3. SPLAT

configurations need not be run. Analyzing the feature model, we note that two configurations are
invalid: MTW = 000 and MTW = 001, where M, T , and W stand for MENUBAR, TOOLBAR,
and WORDCOUNT respectively. Therefore, no more than 6 configurations need to be run.

SPLat further reduces that number by dynamically analyzing the code that the test
executes. For example, executing the test against the configuration c := MTW = 100 executes
the same trace as configuration c′ := MTW = 101. The reason is that the test only calls
createToolBar(), which is empty in both configurations c and c′ since TOOLBAR is false
in both configurations. Although the code in createMenuBar() is different in c and c′, the
test never executes it. Therefore, having executed c, execution of c′ is unnecessary. We will
show in Section 3.2.3 that SPLat runs this test for only three configurations (MTW = 010,
MTW = 011, MTW = 100).

3.2 Technique

Given a test for a configurable system and a complete feature model1, SPLat determines
all relevant configurations on which the test should be run. Each configuration run executes a
unique trace of the test. SPLat executes the test on one configuration, observes the values of
configuration variables, and uses these values to determine which configurations can be safely
pruned. SPLat repeats this process until it explores all relevant configurations or until it reaches
a specified bound on the number of configurations. As output it returns, for each test in the test
suite, the configurations explored by SPLat for them, and the respective results (pass or fail).
We first describe the feature model interface and then the core algorithm.

3.2.1 Feature Model Interface

Figure 3.3 shows the code snippet that defines the FeatureModel interface. The type
FeatureVar denotes a feature variable. An object of type Assign encodes an assignment of
boolean values to feature variables. An assignment can be complete, assigning values to all the
features, or partial, assigning values to a subset of the features. A complete assignment is valid

if it satisfies the constraints of the feature model. A partial assignment is satisfiable, meaning
consistent (see Section 2.1.2), if it can be extended to a valid complete assignment.

1 class FeatureVar {...}
2 class Assign { Map<FeatureVar, Boolean> state; Stack<FeatureVar> stack; ...}
3 interface FeatureModel {
4 Set<Assign> getValid(Assign a);
5 boolean isSatisfiable(Assign a);
6 boolean isMandatory(FeatureVar v);
7 }

Figure 3.3: Feature Model Interface

1SPLat only worked with an incomplete or absent feature model after SPLif, for more detail see Section 4.2.1.

3.2. TECHNIQUE 39

The FeatureModel interface provides queries for determining the validity of feature
assignments, obtaining valid configurations, and checking if particular informed features are
mandatory. Given an assignment α , the method getValid() returns the set of all complete
valid assignments that assign the values of the remaining feature variables to make a valid
complete assignment. Given an assignment α , the method isSatisfiable() checks if it is
satisfiable. The method isMandatory() checks if a feature is mandatory according to the
feature model. The existing models are written in the GUIDSL format (GUIDSL, 2013). We
used the GUIDSL tool to check consistency; internally, the tool translates the input model to
CNF format and uses the SAT4J SAT solver (SAT4J, 2013) to check satisfiability.

3.2.2 Main Algorithm

1 Map<FeatureVar, Boolean> state;
2 Stack<FeatureVar> stack;
3

4 // input, shared with instrumented code/
5 FeatureModel fm;
6

7 void SPLat(Test t) {
8 // Initialize features
9 state = new Map();

10 for (FeatureVar f: fm.getFeatureVariables())
11 state.put(f, fm.isMandatory(f));
12

13 // Instrument the code under test
14 instrumentOptionalFeatureAccesses();
15

16 do { // Repeatedly run the test
17 stack = new Stack();
18 t.runInstrumentedTest();
19 Assign pa = getPartialAssignment(state, stack);
20 print("configs covered: " + fm.getValid(pa));
21

22 while (!stack.isEmpty()) {
23 FeatureVar f = stack.top();
24 if (state.get(f)) {
25 state.put(f, false); // Restore
26 stack.pop();
27 } else {
28 state.put(f, true);
29 pa = getPartialAssignment(state, stack);
30 // it explores only satisfiable partial assignments
31 if (fm.isSatisfiable(pa))
32 break;
33 }
34 }
35 } while (!stack.isEmpty());
36 }
37

38 // called-back from test execution
39 void notifyFeatureRead(FeatureVar f) {
40 if (!stack.contains(f)) {
41 stack.push(f);
42 Assign pa = getPartialAssignment(state, stack);
43 if (!fm.isSatisfiable(pa))
44 state.put(f, true);
45 }
46 }

Figure 3.4: SPLat Algorithm

40 CHAPTER 3. SPLAT

Figure 3.4 lists the SPLat algorithm. It takes as input a test t for a configurable system
and a complete feature model fm. To enable exploration, the algorithm maintains a state that
stores the values of feature variables (line 1) and a stack of feature variables that are read
during the latest test execution (line 2).

SPLat performs a mostly stateless exploration of paths, that means, it does not store,
restore, or compare program states as done in stateful model checking (APEL et al., 2013;
D’AMORIM; LAUTERBURG; MARINOV, 2007; KäSTNER et al., 2012; KIM; KHURSHID;
BATORY, 2012; RHEIN; APEL; RAIMONDI, 2011); instead, SPLat stores only the feature
decisions made along one path and re-executes the code to explore different program paths,
which corresponds to valid and dynamically reachable configurations. To that end, SPLat needs
to be able to set the values of feature variables, to observe the accesses to feature variables during
a test run, and to re-execute the test from the beginning.

The algorithm first initializes the values of feature variables (lines 8–11) using the feature
model interface. Mandatory features are set to true (the only value they can have) and optional
features are initially set to false.

A careful reader may note that initial assignment may be invalid for the given feature
model. For example, initially setting feature variables to false would violate the constraint in
our Notepad example. We describe later how SPLat enforces satisfiability during execution
(in line 43). It adjusts the assignment of values to feature variables before test execution gets to
exercise code based on an invalid configuration. Such scenario could potentially lead to a “false
alarm” test failure as opposed to revealing an actual bug in the code under test. Note that the
calls to state.put() both in the initialization block and elsewhere not only map a feature
variable to a boolean value in the state maintained by SPLat but also set the value of the feature
variable referred to by the code under test.

SPLat then automatically instruments (line 14) the code under test to observe feature
variable reads. Conceptually, for each read of an optional feature variable (e.g., reading variable
TOOLBAR in the code if(TOOLBAR) from Figure 3.2), SPLat replaces the read with a call to
the notifyFeatureRead() method shown in Figure 3.4 (line 39). The reads are statically
instrumented so that they can be intercepted just before they happen during test execution.
Mandatory feature variable reads need not be instrumented because the accessed values remain
constant for all configurations.

SPLat next runs the test (line 18). The test execution calls the method notify-

FeatureRead whenever it is about to read a feature variable. When that happens, SPLat
pushes the feature variable being read on the stack if it is not already there, effectively recording
the order of the first reads of variables. This stack facilitates the backtracking over the values
of read feature variables.

An important step occurs during the call to notifyFeatureRead (line 43). The
initial value assigned to the reached feature variable may make the configuration unsatisfiable.
More precisely, at the beginning of the exploration, SPLat sets an optional feature value to

3.2. TECHNIQUE 41

false. When the code is about to read the optional feature, SPLat checks whether the false
value is satisfiable with the feature model, i.e., whether the partial assignment of values to
feature variables on the stack is satisfiable for the given feature model. If it is, SPLat leaves
the feature as is. If not, SPLat changes the feature to true. Recall that state.put() sets
the feature value both in the state map, which our algorithm uses, and in the actual boolean
feature variable used in the code under test.

Note that updating a feature variable to true ensures that the new partial assignment
is satisfiable. The update occurs before execution could have observed the old value which
would make the assignment unsatisfiable. This change of value keeps the assignment satisfiable
because it explores only satisfiable partial assignments (line 31), and it checks if the assignment is
satisfiable in every variable read (line 43); thus, if a partial assignment was satisfiable considering
all features on the stack, then it must be possible to extend that assignment with at least one
value for the new feature that was not on the stack but is being added. If the variable associated
to the new feature stores false at the moment execution accesses that variable, and if the partial
assignment including that feature variable is not satisfiable, then we can change the value to
true (line 44). Recall that optional feature variables are initialized to false.

After finishing one test execution for one specific configuration, SPLat effectively
covers a set of configurations. This set can be determined by enumerating every complete
assignment that (1) has the same values as the partial assignment specified by variables state
and stack (line 19), and (2) is valid according to the feature model (line 20).

SPLat then determines the next configuration to execute by backtracking on the stack
(lines 22–34). If the last read feature has value true, then SPLat has explored both values of
that feature, and it is popped off the stack (lines 24–27). If the last read feature has value false,
then SPLat has explored only the false value, and the feature should be set to true (lines
27–33). Another important step occurs now (line 31). While the backtracking over the stack
found a partial assignment to explore, it can be the case that this assignment is not satisfiable for
the feature model. In that case, SPLat keeps searching for the next satisfiable assignment to
run. If no such assignment is found, the stack becomes empty, and SPLat terminates.

The output of the algorithm is the set of configurations covered. The side effect of the
algorithm is that the test has been executed for all configurations that could lead to different
outcomes. If any of those outcomes is a test failure, it can be printed as such.

3.2.3 Example Run

We demonstrate SPLat on the example from Figure 3.2. According to the feature
model (Figure 3.1), NOTEPAD and BASE are the only mandatory features and are set to true.
The other three feature variables are optional and therefore SPLat instruments their reads
(Figure 3.2a, lines 8, 14, 23, and 28). Conceptually, the exploration starts from the configuration
MTW = 000.

42 CHAPTER 3. SPLAT

When the test begins execution, notifyFeatureRead() is first called when TOOLBAR
is read. TOOLBAR is pushed on the stack, and because its assignment to false is satisfiable
for the feature model, its value remains unchanged (i.e., stays false as initialized). Had the
feature model required TOOLBAR to be true, the feature’s value would have been set to true
at this point.

With TOOLBAR set to false, no other feature variables are read before the test execution
finishes. In particular, WORDCOUNT on line 14 is not read because that line is not executed when
TOOLBAR is false. Therefore, this one execution covers configurations MTW = *0*, where
∗ denotes an “unknown” value. However, configurations MTW = 00* are inconsistent for the
given feature model, so this one execution covers two valid configurations where TOOLBAR is
false (MTW=100 and MTW=101).

SPLat next re-executes the test with TOOLBAR set to true, as it is satisfiable for
the feature model. WORDCOUNT is encountered this time, but it can remain false, and the
execution completes, covering MTW=*10. SPLat then sets WORDCOUNT to true, and the
execution completes, covering MTW=*11. SPLat finally pops off WORDCOUNT from the stack
because both its values have been explored, and pops off TOOLBAR for the same reason, so the
exploration finishes because the stack is empty.

3.2.4 Reset Function

While a stateless exploration technique such as SPLat does not need to store and
restore program state in the middle of execution like a stateful exploration technique does, the
stateless exploration does need to be able to restart a new execution from the initial program
state unaffected by the previous execution.

Restarting an execution with a new runtime (e.g., spawning a new Java Virtual Machine

(JVM) in Java) is the simplest solution, but it can be both inefficient and unsound. It is inefficient
because even without restarting the runtime, the different executions may be able to share a
runtime and still have identical initial program states, e.g., if the test does not update any static
variables in the JVM state. It can be unsound because a new runtime may not reset the program
state changes made by the previous executions (e.g., previous executions having sent messages
to other computers or having performed I/O operations such as database updates).

We address these issues by sharing the runtime between executions and requiring the
user to provide a reset function that can be called at the beginning of the test. One possible
limitation related to this solution is the manual cost of writing a reset function, we detail this
discussion in Section 3.3.6.

Our sharing of the runtime between executions means that settings that would normally
be reset automatically by creating a new runtime must now be manually reset. For example, Java
static initializers must now be called from the reset function because classes are loaded only
once. However, we believe that the benefit of saving time by reusing the runtime outweighs the

3.2. TECHNIQUE 43

cost of this effort, which could be alleviated by a program analysis tool.

Moreover, for the Groupon code used in our evaluation, the testing infrastructure was
already using the reset function (developed independently and years before this research);
between subsequent test execution, the state (of both memory and database) is reset by rolling
back the database transaction from the previous test and overwriting the state changes in the
tearDown and/or setUp blocks after/before each test.

3.2.5 Potential Optimization

The algorithm in Figure 3.4 is not optimized in how it interfaces with the feature
model. The feature model is treated as a blackbox, read-only artifact that is oblivious to the
exploration state consisting of the state and stack. Consequently, the isSatisfiable
and getValid methods are executed as if the exploration state was completely new every time,
even if it just incrementally differs from the previous exploration state.

For example, when running the test from Figure 3.2, SPLat asks the feature model if
MTW = *1* is satisfiable (line 31 of the SPLat algorithm) after the assignment MTW = *0*.
The feature model replies true as it can find a configuration with the feature TOOLBAR set
to true. Then when WORDCOUNT is encountered while TOOLBAR=true, SPLat asks the
feature model if the assignment MTW = *10 (TOOLBAR=true and WORDCOUNT=false) is
satisfiable (line 43 of the SPLat algorithm). Note that the feature model is not aware of the
similarity between the consecutive calls MTW = *1* and MTW = *10. In principle, it could
only incrementally check the satisfiability of WORDCOUNT=false.

The change to the algorithm to enable this synchronization between the exploration state
and the feature model can be simple: every time a feature variable is pushed on the stack,
constrain fm with the feature’s value, and every time a feature variable is popped off the stack,
remove the corresponding feature assignment from the feature model. A feature model that
can be updated implies that it should support incremental solving, i.e., a feature model should
not have to always be solved in its entirety. Our current SPLat tool for Java does not exploit
incremental solving, which means that our timing results might be even better.

3.2.5.1 Feature Expression

Another way to optimize SPLat could be making it support feature expressions. For that,
it would be necessary to create a new type representing feature expressions FeatureExpression,
and make SPLat use it in its stack instead of a single feature. Now, this new type FeatureEx-

pression can represent an unary expression (a single feature), or a binary expression, where each
part of the expression can be another expression, allowing represent multiple expressions. The
evaluation of this expression can be true or f alse, but the entire expression is put in SPLat
stack if it is satisfiable (or has no unsat core) with the previous explored features, and SPLat
proceeds its execution normally.

44 CHAPTER 3. SPLAT

3.2.6 Implementation

We implemented two versions of SPLat, one for Java, and one for C. Our collaborators
also developed one version for Ruby on Rails. We selected the two languages Java and Ruby
motivated by the subject programs used in our experiments (Section 3.3). The version of SPLat
for C language is discussed in Chapter Section 5.

For Java, we implemented SPLat on top of the publicly available Korat solver for
imperative predicates (KORAT HOME PAGE, 2013). Korat already provides code instrumenta-
tion (based on the BCEL library for Java bytecode manipulation) to monitor field accesses, and
provides basic backtracking over the accessed fields. The feature variables in our Java subjects
were already represented as fields. The main extension for SPLat was to integrate Korat with a
SAT solver for checking satisfiability of partial assignments with respect to feature models. As
mentioned earlier in Section 3.2.1, we used SAT4J (SAT4J, 2013).

For Ruby on Rails, we have an even simpler implementation because Groupon does
not have feature model. So, SPLat does not prune invalid configurations, it only monitors
accesses to feature variables, that are already defined in the code. We did not integrate a SAT
solver, because the subject code did not have a formal feature model and thus we treated all
combinations of features as valid (similar to a feature model without constraints and with all
features being optional). This version of SPLat for Ruby on Rails was developed and applied
by professor Darko Marinov from the University of Illinois (USA).

3.3 Evaluation
Our evaluation addresses the following research questions:

RQ1 How does SPLat’s efficiency compare with alternative techniques for analyzing tests of
SPLs in terms of time and number of configurations explored?

RQ2 What is the overhead of SPLat?

RQ3 Does SPLat scale to real code?

In Section 3.3.1, we compare SPLat with related techniques using 10 SPLs. In Sec-
tion 3.3.5, we report on the evaluation of SPLat using an industrial configurable system
implemented in Ruby on Rails.

3.3.1 Subjects

We evaluate our approach with 10 SPLs listed in Table 3.1.2 A brief description for each
is below:

2All subjects except 101Companies have been used in previous studies on testing/analyzing SPLs, includ-
ing GPL (APEL et al., 2013; CABRAL; COHEN; ROTHERMEL, 2010), Elevator, Email, MinePump (APEL
et al., 2013), JTopas by (CHANDRA et al., 2011), Notepad (KIM et al., 2010; KIM; BATORY; KHURSHID,
2011), XStream (DANIEL; GVERO; MARINOV, 2010; SCHULER; DALLMEIER; ZELLER, 2009) Prevayler by
(THAKER et al., 2007; APEL; BEYER, 2011), and Sudoku (APEL; BEYER, 2011).

3.3. EVALUATION 45

� 101Companies (Human-resource management system, 2013) is a human-resource
management system. Features include various forms to calculate salary and to give
access to the users;

� Email (HALL, 2005) is an email application. Features include message encryption,
automatic forwarding, and use of message signatures;

� Elevator (PLATH; RYAN, 2001) is an application to control an elevator. Features
include prevention of the elevator from moving when it is empty and a priority service
to the executive floor;

� GPL (LOPEZ-HERREJON; BATORY, 2001) is a product line of graph algorithms
that can be applied to a graph. ;

� JTopas (Java tokenizer and parser tools, 2013) is a text tokenizer. Features include
support for particular languages such as Java and the ability to encode additional
information in a token;

� MinePump (KRAMER et al., 1983) simulates an application to control water pumps
used in a mining operation. Features include sensors for detecting varying levels of
water;

� Notepad (KIM et al., 2010) is a GUI application based on Java Swing that pro-
vides different combinations of end-user features, such as windows for saving/open-
ing/printing files, menu and tool bars, etc. It was developed for a graduate-level
course on software product lines;

� Prevayler (Library for object persistence, 2013) is a library for object persistence.
Features include the ability to take snapshots of data, to compress data, and to
replicate stored data;

� Sudoku (WEBSITE, 2013) is a traditional puzzle game. Features include a logical
solver and a configuration generator;

� XStream (Library to serialize objects to XML and back again, 2013) is a library for
serializing objects to XML and back. Features include the ability to omit selected
fields and to produce concise XML for readability. XStream was converted into an
SPL from an open-source Java program with the the same name.

Table 3.1 shows the number of optional features (we do not count the mandatory features
because they have constant values), the number of valid configurations, and the code size for
each subject SPL.

46 CHAPTER 3. SPLAT

SPL Features Confs LOC
101Companies 11 192 2,059

Elevator 5 20 1,046
Email 8 40 1,233
GPL 14 73 1,713

JTopas 5 32 2,031
MinePump 6 64 580

Notepad 23 144 2.074
Prevayler 5 32 2,844
Sudoku 6 20 853
XStream 7 128 14,480

Table 3.1: Subject SPLs.

3.3.2 Tests

We prepared three different tests for each subject SPL. The first test, referred to as LOW,
represents an optimistic scenario where the test needs to be run only on a small number of
configurations. The second test, referred to as MED (for MEDIUM), represents the average
scenario, where the test needs to be run on some configurations. The third test, referred to as
HIGH, represents a pessimistic scenario, where the test needs to be run on most configurations.

To prepare the LOW, MED, and HIGH tests, we modified existing tests, when available,
or wrote new tests because we could not easily find tests that could be used without modification.
Because some subjects were too simple, tests would finish too quickly for meaningful time
measurement if test code only had one sequence of method calls. Therefore, we used loops to
increase running times when necessary. Each test is a standard JUnit test that fixes all inputs
except the feature variables.

We give a brief description of tests for each subject. Note that certain tests, particularly
those for Email, Elevator and Mine, were run in a loop to increase the running time because they
finished too quickly for meaningful time measurement. Some of the tests modify tests written,
either by us or by other groups, for previously published papers. The following descriptions need
not be understood in detail to understand the results.

� 101Companies’s LOW test groups tests that exercise only one feature, each. MEDIUM
test groups tests that exercise two features, each. HIGH test groups all tests;

� Elevator’s LOW test checks the weight scale of an elevator is working correctly without
moving the elevator, which means that many features are not accessed. MEDIUM
test moves an elevator, but the test focuses on checking the maximum weight, so it
does not exercise all configurations. HIGH test moves an elevator and exercises all
configurations;

� Email’s LOW tests public/private key look up without sending an email. Because

3.3. EVALUATION 47

features are accessible only when an email is sent, this test only runs on one configu-
ration. MEDIUM and HIGH do send emails to test certain combinations of features;

� GPL’s LOW test only performs one algorithm, a cycle check, on the input graph,
which is influenced only by search features and therefore run only on a small number
of configurations. Its MEDIUM test also only performs one algorithm, Kruskal’s, but
prints the resulting graph, which accesses other feature variables and therefore runs
on more configurations. Its HIGH test performs most of the algorithms on the input
graph and therefore runs most of the configurations;

� JTopas’s LOW test tokenizes an input without any block or line comments, so the two
features that support these types of tokens are never even accessed (thus only 3 of the
5 features are accessed and only 8 configurations reachable). MEDIUM test uses an
input without line comments, making only 16 configurations reachable. HIGH test
tokenizes an input with both types of comments, making all configurations reachable;

� MinePump’s tests exercises different sequences of method calls that result in different
mine pump states and trigger varying numbers of feature variable accesses;

� Notepad’s LOW test uses FEST user interface testing framework (FEST, 2014) to
automatically launch a menuless GUI frame, simulate typing, and check that the text
area shows the entered text. MEDIUM test performs the same check against a GUI
frame with a tool bar from which different combinations of features can be exercised.
HIGH test performs the same check against a GUI frame with both a tool bar and a
menu bar, which allows two entry points to a feature and therefore exercises more
configurations;

� Prevayler’s LOW test groups tests that exercise only one feature, each. MEDIUM test
groups tests that exercise two features, each. HIGH test groups all tests;

� Sudoku’s LOW test groups tests that exercise only one feature, each. MEDIUM test
groups tests that exercise two features, each. HIGH test groups all tests;

� XStream’s LOW test constructs objects of a class without fields and serializes it to
XML using an alias for the class such that only the class aliasing feature is reachable.
MEDIUM test constructs objects of a class with fields and serializes it to XML with
all but one optional feature reachable, which requires the test be run on half of
the configurations. HIGH test is identical, except that it reaches the previously
unreachable optional feature, which requires running the test on all configurations.

48 CHAPTER 3. SPLAT

3.3.3 Comparison Techniques

We compared SPLat with different approaches for test execution. We considered
two naïve approaches that run tests against all valid configurations: NewJVM and ReuseJVM.
The NewJVM approach spawns a new JVM for each distinct test run. Each test run executes
only one valid configuration of the SPL. It is important to note that the cost of this approach
includes the cost of spawning a new JVM. The ReuseJVM approach uses the same JVM across
several test runs, thus avoiding the overhead of repeatedly spawning JVMs for each different
test and configuration. This approach requires the tester to explicitly provide a reset function
(Section 3.2.4). Because the tester likely has to write a reset function anyway, we conjecture that
this approach is a viable alternative to save runtime cost. For example, the tester may already
need to restore parts of the state stored outside the JVM such as files or database.

We also compared SPLat with a simplified version of a previously proposed static anal-
ysis (KIM; BATORY; KHURSHID, 2011) for pruning configurations. Whereas KIM; BATORY;
KHURSHID (2011) performs reachability analysis, control-flow and data-flow analyses, the sim-
plified version, which we call SRA (Static Reachability Analysis), only performs the reachability
analysis to determine which configurations are reachable from a given test. SRA builds a call
graph using inter-procedural, context-insensitive, flow-insensitive, and path-insensitive points-to
analysis and collects the features syntactically present in the methods of the call graph. Only the
valid combinations of these reachable features from a test need to be run for that test.

Finally, we compared SPLat with an artificial technique that has zero cost to compute
the set of configurations on which each test need to run. More precisely, we use a technique
that gives the same results as SPLat but only counts the cost of executing tests for these
configurations, not the cost of computing these configurations. We call this technique Ideal. It
gives a lower-bound for the runtime cost of SPLat; the overhead of SPLat is effectively the
difference between the overall cost of SPLat explorations and the cost of executing tests for
Ideal.

3.3.4 Results

Table 3.2 shows our results. We performed all Java experiments3 on a machine with
X86_64 architecture, Ubuntu operating system, 240696 MIPS, 8 cores, with each core having an
Intel Xeon CPU E3-1270 V2 at 3.50GHz processor, and 16 GB memory. All times are listed
in seconds. Our feature model implementation solves the feature model upfront to obtain all
valid configurations; because this solving needs to be done for every feature model (regardless
of using SPLat or otherwise), and because it takes a fraction of test execution time, we do not
include it.

The meaning of each column in Table 3.2 is:

� Test identifies different categories of tests.
3We performed all Java experiments ten times and calculated the average.

3.3. EVALUATION 49
All Valid SPLat Static Reachability (SRA)

Test NewJVM ReuseJVM Confs SPLatTime IdealTime Overhead Confs Overhead Time
101Companies (192 configs)

LOW 35.46 2.13 (6%) 32 (16%) 1.64 (77%) 0.72 0.92 (127%) 96 84.04 1.28
MED 49.37 3.9 (7%) 160 (83%) 6.84 (175%) 3.58 3.26 (91%) 192 82.54 3.99
HIGH 283.69 45.26 (15%) 176 (91%) 47.6 (105%) 41.59 6.01 (14%) 192 81.93 45.16

Elevator (20 configs)
LOW 10.74 5.17 (48%) 2 (10%) 1.33 (25%) 0.71 0.62 (87%) 2 23.29 0.76
MED 50.97 46.65 (91%) 10 (50%) 23.62 (50%) 23.14 0.48 (2%) 20 23.74 46.17
HIGH 62.57 59.48 (95%) 20 (100%) 60.71 (102%) 59.28 1.43 (2%) 20 24.38 60.43

Email (40 configs)
LOW 40.63 10.74 (26%) 1 (2%) 1.00 (9%) 0.87 0.13 (14%) 1 23.62 0.87
MED 57.56 48.87 (84%) 30 (75%) 36.99 (75%) 37.14 -0.15 (0%) 40 22.81 49.02
HIGH 58.02 48.93 (84%) 40 (100%) 48.96 (100%) 49.26 -0.31 (0%) 40 23.84 49.16

GPL (73 configs)
LOW 19.21 2.23 (11%) 6 (8%) 0.79 (35%) 0.29 0.49 (168%) 6 104.97 0.30
MED 190.53 171.62 (90%) 55 (75%) 130.87 (76%) 128.52 2.35 (1%) 55 99.41 128.69
HIGH 314.20 285.89 (90%) 70 (95%) 278.77 (97%) 277.48 1.29 (0%) 73 103.52 286.28

JTopas (32 configs)
LOW 26.59 16.83 (63%) 8 (25%) 6.29 (37%) 4.49 1.80 (40%) 32 86.87 16.44
MED 29.04 18.55 (63%) 16 (50%) 13.16 (70%) 9.71 3.46 (35%) 32 86.87 18.70
HIGH 28.92 18.93 (65%) 32 (100%) 25.31 (133%) 18.43 6.88 (37%) 32 86.87 18.48

MinePump (64 configs)
LOW 23.71 7.53 (31%) 9 (14%) 3.65 (48%) 1.90 1.75 (91%) 64 22.69 7.49
MED 59.72 14.78 (24%) 24 (37%) 10.43 (70%) 6.26 4.17 (66%) 64 22.38 15.35
HIGH 13.72 5.75 (41%) 48 (75%) 37.80 (657%) 4.81 32.99 (685%) 64 22.18 5.77

Notepad (144 configs)
LOW 398.22 135.60 (34%) 2 (1%) 3.06 (2%) 2.45 0.61 (24%) 144 80.40 135.47
MED 418.23 156.27 (37%) 96 (66%) 104.95 (67%) 104.91 0.04 (0%) 144 80.62 156.35
HIGH 419.99 153.39 (36%) 144 (100%) 153.11 (99%) 152.16 0.94 (0%) 144 81.29 151.94

Prevayler (32 configs)
LOW 65.34 40.23 (61%) 12 (37%) 22.49 (55%) 22.8 -0.31 (-1%) 32 205.54 45.39
MED 121.38 96.5 (79%) 24 (75%) 102.49 (106%) 105.86 -3.37 (-3%) 32 214.67 111.37
HIGH 149.08 120.7 (80%) 32 (100%) 127.17 (105%) 131.37 -4.2 (-3%) 32 290.66 135.61

Sudoku (20 configs)
LOW 51.11 48.1 (94%) 4 (20%) 42.72 (88%) 24.12 18.6 (77%) 10 31.87 24.28
MED 118.14 105.67 (89%) 10 (50%) 58.31 (55%) 54.16 4.15 (7%) 10 31.75 53.67
HIGH 489.6 334.82 (68%) 20 (100%) 316.47 (94%) 332.36 -15.89 (-4%) 20 31.74 338.48

Xstream (128 configs)
LOW 111.26 30.04 (27%) 2 (1%) 1.57 (5%) 1.08 0.49 (45%) 2 106.50 1.06
MED 105.10 9.04 (8%) 64 (50%) 5.77 (63%) 5.26 0.51 (9%) 64 109.22 5.14
HIGH 101.66 8.68 (8%) 128 (100%) 9.16 (105%) 8.59 0.57 (6%) 128 105.68 8.74

Table 3.2: Experimental Results for Various Techniques

� All Valid identifies the techniques that run the test against all valid configurations,
namely NewJVM and ReuseJVM. ReuseJVM shows time absolutely and as a
percentage of NewJVM duration.

� Columns under SPLat details information for SPLat:

� Confs shows the number of configurations that SPLat runs for a particular
test. The value in parentheses shows the percentage of configurations that
SPLat explores compared to the total;

� SPLatTime shows the runtime cost of SPLat. We use the same JVM for
running tests. The value in parentheses shows the percentage of the time
of ReuseJVM (not NewJVM);

� IdealTime shows the time in seconds for running SPLat without con-
sidering the cost to determine which configurations to run for the tests;
therefore, this number excludes instrumentation, monitoring, and con-
straint solving;

50 CHAPTER 3. SPLAT

� Overhead shows the overhead of SPLat, calculated by subtracting Ide-
alTime from SPLatTime, and dividing it by IdealTime.

� Columns under Static Reachability (SRA) show results for our static analysis:

� Confs shows the number of configurations reachable with such analysis;

� S.A.Overhead shows the time taken to perform the static reachability
analysis;

� S.A.Time shows the time taken to run the configurations determined by
this analysis.

Efficiency.
The ReuseJVM column shows that reusing JVM saves a considerable amount of time

compared to spawning a new JVM for each test run. For example, for half of the tests, reusing
JVM saves over 50% of the time, because running these tests does not take much longer than
starting up the JVM. For tests that take considerably longer than starting up the JVM, such saving
is not possible.

SPLat further reduces the execution time over ReuseJVM by determining the reachable
configurations. For example, for the LOW test for Notepad, reusing the JVM takes 34% of the
time to run without reusing the JVM, and with SPLat, it takes just 2% of the already reduced
time. In fact, the table shows that in most cases, as long as SPLat can reduce the number of
configurations to test (i.e., Confs is lower than the total number of configurations), it runs faster
than running each configuration (i.e., less than 100% of ReuseJVM).

Comparison with Static Reachability Analysis.
The Static Reachability Analysis yields less precise results compared to SPLat: the

number of configurations in the column Confs, in most cases, is larger than the corresponding
number of configurations in the corresponding column for SPLat. In some cases there is a
tie, but SRA is never better than SPLat. In fact, for JTopas, Notepad and MinePump, the
SRA reports all features as being accessed from the call graph, and therefore reports that all
valid configurations have to be tested. For example, for JTopas, this is due to its tests invoking
the main method of the SPL, from which all feature variable accesses may be reached using
different input values, which the analysis is insensitive to.

For Notepad, this is due to the the use of the FEST automated GUI testing framework,
which relies heavily on reflection. Because the method being invoked through reflection cannot
necessarily be determined statically, the analysis yields a conservative result. For MinePump,
each test happens to exercise a sequence of methods that together reach all feature variable
accesses.

Note that the SRA approach first statically determines the configurations to run (which
takes the time in column SRA Overhead) and afterwards dynamically runs them one by one

3.3. EVALUATION 51

(which takes the time in column SRA Time). Comparing just the static analysis time (SRA
Overhead) with the SPLat overhead (SPLat Overhead) shows that SRA has a considerably
larger overhead, in some cases two order of magnitudes longer.

Although the static analysis overhead can be offset by using the reachable configurations
it determines against tests that have the same code base but have different inputs, in general, it
would require a very large number of such tests for the approach to have a smaller overhead than
SPLat. Moreover, comparing just the time to execute the configurations computed by SRA
(column SRA Time with the time to execute the configurations computed by SPLat (column
IdealTime) shows that SRA again takes longer, typically proportional to the higher number of
configurations that it conservatively computes.

RQ1. Based on the comparison with NewJVM, ReuseJVM, and SRA, we conclude the
following:

In most cases, SPLat is more efficient than the techniques that run all valid config-
urations for tests or prune reachable configurations using static analysis. Moreover,
compared with static analysis, SPLat gives results faster and more precise in
most cases.

Overhead.

Table 3.2 also shows the overhead that SPLat has over the Ideal technique (column
SPLat Overhead). The overhead is generally small, except for the LOW tests and tests for several
subjects (e.g. JTopas and Mine). The overhead is high for the LOW tests because these tests
finish quickly (under 7 seconds, often under 1 second), meaning that instrumentation, monitoring
and feature model interaction take a larger fraction of time than they would for a longer executing
test. The overhead is high for JTopas because the feature variables are accessed many times
because they are accessed within the tokenizing loop. (A rewrite approach that would unroll the
loop could reduce this overhead.) The overhead is high for MinePump because feature accesses
and their instrumentation take relatively longer to execute for this particular test as the subject is
very small.

SPLat, due to its cost in monitoring feature variables, should not execute a test faster
than knowing the reachable configurations upfront and running the test only on those configura-
tions. Thus, the occasional small negative overheads for Email and Prevayler are due to the
experimental noise and/or the occasionally observed effect where an instrumented program runs
faster than the non-instrumented program. It is important to note that the efficiency and overhead
are orthogonal. As long as the reduction in time due to the reduction in configurations is larger
than the overhead, SPLat saves the overall time. To illustrate, the GPL’s LOW test incurs over
168% overhead, but the reduction in configurations outweighs the overhead, and SPLat takes
only 35% of running all valid configurations with the same JVM.

RQ2. Based on the discussion about overhead, we conclude the following:

52 CHAPTER 3. SPLAT

SPLat can have a large relative overhead for short-running tests, but the overhead
is small for long-running tests.

3.3.5 Case Study: Groupon

Groupon is a company that “features a daily deal on the best stuff to do, see, eat, and buy
in 48 countries” (http://www.groupon.com/about). Groupon PWA is the name of the
codebase that powers the main groupon.com website. It has been developed for over 4.5 years
with contributions from over 250 engineers. The server side is written in Ruby on Rails and has
over 171K lines of Ruby code.

Groupon PWA code is highly configurable with over 170 (boolean) feature variables. In
theory, there are over 2170 different configurations for the code. In practice, only a small number
of these configurations are ever used in production, and there is one default configuration for the
values of all feature variables.

Groupon PWA has an extensive regression testing infrastructure with several frameworks
including Rspec, Cucumber, Selenium, and Jasmine. The test code itself has over 231K lines of
Ruby code and additional code in other languages. (It is not uncommon for the test code to be
larger than the code under test (TILLMANN; SCHULTE, 2005).)

Groupon PWA has over 19K Rspec (unit and integration) tests. A vast majority of these
tests run the code only for the default configuration. A few tests run the code for a non-default
configuration, typically changing the value for only one feature variable from the default value.
Running all the Rspec tests on a cluster of 4 computers with 24 cores each takes under 10
minutes.

3.3.5.1 SPLat Application

Our collaborators implemented SPLat for Ruby on Rails to apply it to Groupon PWA.
We did not have to implement the reset function because it was already implemented by Groupon
testers to make test execution feasible (due to the high cost of re-starting the system). Moreover,
no explicit feature model was present, so feature model constraints did not need to be solved.

3.3.5.2 Results

We set out to evaluate how many configurations each test could cover if we allow
varying the values of all feature variables encountered during the test run. We expected that the
number of configurations could get extremely high for some tests to be able to enumerate all
the configurations. Therefore, we set the limit on the number of configurations to not more than
17 (10% from the total number of features), so that the experiments can finish in a reasonable
time4. This limit was reached by 2,695 tests. For the remaining 17,008 tests, Figure 3.5 shows

4Since this study of Groupon was performed by professor Darko Marinov, and he did not record the time the
experiments took to run, it is not possible to show the exact time, he only registered that was a reasonable time.

3.3. EVALUATION 53

the breakdown of how many tests reached a given number of configurations. We can see that the
most common cases are the number of configurations being powers of two, effectively indicating
that many features are encountered independently rather than nested (as in Figure 3.2 where the
read of WORDCOUNT is nested within the block controlled by the read of TOOLBAR).

Confs. Tests
1 11,711
2 1,757
3 332
4 882
5 413
6 113
7 19
8 902
9 207

Confs. Tests
10 120
11 29
12 126
13 6
14 32
15 10
16 349
17 2,695
- -

Figure 3.5: The distribution of the number of reachable configurations per tests,
Figure 3.6 details the distribution of the number of features per tests.

We also evaluated the number of features encountered. It ranges from 1 up to 43. We
found 43 is a high number in the absolute sense (indicating that a test may potentially cover 243

different configurations), 43 is also a relatively low number in the relative sense compared to the
total of over 170 features. Figure 3.6 shows the breakdown of how many tests reached a given
number of feature variables. Note that the numbers of configurations and feature variables may
seem inconsistent at a glance, e.g., the number of tests that have 1 configuration is larger than the
number of tests than have 0 feature variables. The reason is that some tests force certain values
for feature variables such that setting the configuration gets overwritten by the forced value.

Vars Tests
0 11,711
1 1,757
2 1,148
3 1,383
4 705
5 389
6 466
7 323
8 425
9 266

10 140
11 86
12 80
13 34

Vars Tests
14 28
15 54
16 62
17 1
19 14
20 260
21 109
22 45
23 19
24 22
25 9
26 2
27 14
28 17

Vars Tests
29 6
30 8
31 24
32 6
33 14
34 31
35 11
36 15
37 8
38 2
39 2
40 3
41 2
42 2

Figure 3.6: The distribution of the number of features accessed per tests.

In sum, these results show that the existing tests for Groupon PWA can already achieve
a high coverage of configurations, but running all the configurations for all the tests can be

54 CHAPTER 3. SPLAT

prohibitively expensive. We leave it as a future work to explore a good strategy to sample from
these configurations (COHEN; DWYER; SHI, 2006, 2007; MCGREGOR, 2001).

RQ3. Moreover, based on the fact that it was possible run SPLat on the codebase as
large as Groupon PWA in a reasonable time, we conclude the following:

Considering the results, SPLat scales to the setup of this experiment, providing
evidence that SPLat is able to scale to a large industrial code. The implementation
effort for SPLat is relatively low and the number of configurations covered by
many real tests is relatively low.

3.3.6 Threats to Validity

The main threat is to external validity: we cannot generalize our timing results to all SPLs
and configurable systems because our case studies may not be representative of all programs,
and our tests may be covering an unusual number of configurations. To reduce this threat, we
used multiple Java SPLs and one real, large industrial codebase. For SPLs, we designed tests
that cover a spectrum of cases from LOW to MED(IUM) to HIGH number of configurations,
even with this threat, these spectrum of cases and the modified tests may be insufficient or
inappropriate. For the Groupon codebase, we find that most real tests indeed cover a small
number of configurations.

Another threat is that SPLat does not support concurrent programs, because they lead
to many states in the program and, consequently, to non-deterministic test results. One way
to mitigate this threat would be, in addition to have a stack to monitor the global state of the
features, to add extra stacks in order to monitor each concurrent part of the program.

Our study has the usual internal and construct threats to validity. SPLat is a helpful
technique that can be used in practice to improve testing of SPLs. An important threat to this
conclusion is that our results do not take into account the manual cost of writing a reset function.
NewJVM, ReuseJVM, and SPLat all require the state outside of the JVM to be explicitly reset,
but NewJVM automatically resets JVM-specific state by spawning a new JVM for each test run.
We expect that the cost of writing the reset function can be amortized over multiple tests and test
runs.

555555

4
SPLif

Feature models capture dependencies among features and can (1) reduce the space of
programs to test and (2) enable accurate categorization of failing tests as failures of programs
or the tests themselves, not as failures due to inconsistent combinations of features. In practice,
unfortunately, feature models are not always available.

We introduce SPLif, the first approach for testing software product lines that does
not require a priori availability of feature models. Our insight is to use a profile of passing
and failing test runs to quickly identify test failures that are indicative of a problem (in test or
code) as opposed to a manifestation of execution against an inconsistent combination of features.
Experimental results demonstrate the effectiveness of our approach.

4.1 Illustrative Example

The main problem for testing SPLs with incomplete feature models (in the limit empty
models) is that if a test fails it is difficult to determine with absolute certainty if there is a bug
in the code, a bug in the test, or the bug manifests because of an inconsistent combination of
features. We propose SPLif to address this problem.

4.1.1 Notepad

To illustrate, we use Notepad, a simple visual text editor that has been previously used
in related research (KIM et al., 2010; KIM; BATORY; KHURSHID, 2011; KIM et al., 2013).
Notepad has 2,074 lines of code, 17 features, and 62 tests. While Notepad has a complete
feature model formally specified, for the sake of illustration, we assume here an empty model.

4.1.2 A Notepad test (failure)

Figure 4.1 shows a test for Notepad. This test is implemented using the GUI testing
framework FEST (FEST, 2014) and uses buttons available from the toolbars to cut and paste
a string written to the text area. To find these buttons, this test uses the auxiliary function

56 CHAPTER 4. SPLIF

getButtonByToolTip (line 15), which iterates over all buttons reachable from the parent window
of the text area until finding one that matches the given tooltip text, passed as parameter. This test
fails when the feature UNDOREDOTOOLBAR is enabled. That feature adds to the Notepad
window a new toolbar containing the buttons “undo” and “redo”; they become reachable in the
search for buttons. The failure manifests because this feature initializes the toolTipText field of
these buttons with null. Consequently, execution raises NullPointerException at line 20 when
trying to derreference this field from the “undo” button.

1 public void testEditToolBar() {
2 JTextComponentFixture textArea = window.textBox();
3 textArea.enterText("Hi");
4 JButtonFixture cutButton = getButtonByTooltip("Cut", window);
5 cutButton.requireVisible();
6 cutButton.requireEnabled();
7 textArea.selectAll();
8 cutButton.click();
9 assertThat(textArea.text()).contains("");

10 JButtonFixture pasteButton = getButtonByTooltip("Paste", window);
11 pasteButton.click();
12 pasteButton.click();
13 assertThat(textArea.text().contains("HiHi"); } }
14

15 private JButtonFixture getButtonByTooltip(String toolTipText, ContainerFixture frame){
16 GenericTypeMatcher<JButton> buttonMatcher =
17 new GenericTypeMatcher<JButton>(JButton.class){
18 @Override
19 protected boolean isMatching(JButton button){
20 return button.getToolTipText().equals(msg);
21 }
22 };
23 return frame.button(buttonMatcher); }

Figure 4.1: Test of Notepad that checks the cut and paste functionalities. This test fills
the text area with a string, selects the text area, and presses the “cut” button. It then

asserts that the text area is indeed empty, presses the “paste” button twice, and checks for
the presence of the repeated string.

4.1.3 SPLat

SPLif builds on SPLat (KIM et al., 2013), a technique that we previously developed,
to execute each test several times, once for each configuration that a test encounters during
execution. Failing tests are tests whose executions failed on at least one configuration. We call
such executions failing runs, and call configurations on which tests fail failing configurations.
With Notepad and an empty model, SPLat explores all given 62 tests, a total of 5,094 runs
(excluding time-outs) on distinct configurations. Out of these 5,094 runs, 300 were failing runs
that were attributed to 3 tests on different configurations. It is daunting to inspect all 300 failures
in order to find real problems. SPLif reduces the number of inspections to 10.

4.1.4 SPLif in a nutshell

SPLif takes as input an SPL with its test suite and incomplete feature model. It
explores each test with various configurations, and produces a ranked list of failing tests and

4.2. TECHNIQUE 57

configurations for the user to inspect. Inspired by Tarantula (JONES; HARROLD; STASKO,
2002), SPLif ranks tests based on the ratio of failing and passing configurations. SPLif also
ranks configurations using various strategies to prioritize the order in which they should be
inspected. An inspection can result in a repair of the test, a repair of the feature model, and/or
a repair of the code under test. If a test fails on a consistent configuration, a real problem is
revealed in the target source code or in the test itself.

If a test fails on an inconsistent configuration, the incomplete feature model can be
updated to incorporate the violated constraint, tests that pass for all the unknown or known
consistent configurations do not appear in the ranking that SPLif reports. The user proceeds
inspecting failing tests and configurations until a budget limit is reached; the goal is to quickly
find fault-revealing consistent configurations that cover (all) failing tests.

4.1.5 SPLif on Notepad Tests

With an empty feature model, SPLat explores all given 62 tests of Notepad and a total
of 5,094 runs. Out of these 5,094 runs, 300 were failing and were attributed to 3 tests (Figure 4.6)
on 265 distinct configurations.

Most failing runs can be attributed to illegal configurations. We want to find failing
configurations for legal configurations. If a user randomly inspected the 133 failed runs for
testEditToolBar, (s)he would examine 37 configurations (on average) before arriving at the
first consistent configuration. SPLif does better than this: by following its ranking, the
first consistent configuration is found in the first 10 inspections. By prioritizing tests and
configurations to inspect, SPLif makes users more productive.

Proceeding with this process until all failing tests have been inspected, a random ranking
would require a total of 90 inspections, and a ranking generated by SPLif would require no
additional inspection, because the same consistent configurations that SPLif reports for the
first test inspected is reachable by the other 2 failing tests as well. So, SPLif detects that all 3
tests expose a bug in the test code or in the source code by inspecting 10 configurations. This
result represents a reduction of 88.9% compared to random inspection, and a reduction of 96.7%
compared to inspect all 300 failing configurations (Figure 4.9), in the worst case.

4.2 Technique

SPLif takes as input a test suite and an incomplete feature model for an SPL and
reports as output a ranked list of failing tests sorted by their likelihood of containing consistent
failing configurations. For such test from the input test suite, SPLif reports a ranked list of
configurations for inspection by their likelihood of being consistent. These rankings expose real
problems in code or tests more quickly.

SPLif has three fully automated parts: Test Exploration (Section 4.2.1), Test Ranking

58 CHAPTER 4. SPLIF

(Section 4.2.2), and Configuration Ranking (Section 4.2.3). The overall approach consists of the
following steps:

1. Use SPLif to run a given test suite with an incomplete or empty feature model
(Section 4.2.1).

2. Use SPLif to rank tests (Section 4.2.2).

3. Pick the highest ranked test to inspect.

4. Use SPLif to rank failing configurations for that test (Section 4.2.3).

5. Pick the highest ranked configuration to inspect.

6. If the configuration is inconsistent, the user can provide that information about the
configuration to SPLif to make the feature model more complete.

7. If the configuration is consistent, the user should repair the test or the code under test.

8. Repeat steps 1-7 until running out of time budget or finishing the inspection of all
failing tests.

Note that we could have chosen to inspect a configuration that fails for multiple tests and
then sort tests to inspect. We prioritized tests and then configurations because we found it more
intuitive to focus on one test at a time and to reason about multiple configurations for that one
test.

4.2.1 Test Exploration

SPLif uses SPLat (KIM et al., 2013) to obtain, for each test, all (not known to be
inconsistent) configurations that have a unique trace during the test execution. We described
SPLat in detail in previous chapter, so we summarize it only briefly here, and then describe the
changes we made for SPLif.

Given an SPL code base, a test and a complete feature model (we discuss incomplete
models in the next paragraph), SPLat executes the test on one configuration, observes the
values of feature variables that have been accessed during the execution, and uses these values
to determine what other configurations should be considered in subsequent test executions.
For example, if a test execution accessed only one feature variable, f , with value f alse, then
SPLat re-executes the test with f set to true. If that second execution accesses no other feature
variables, the search stops. Otherwise, it continues to explore the combinations of values of the
other accessed variables. SPLat repeats this process until it explores all dynamically reachable
configurations or until it reaches a configurations.

In previous chapter, SPLat assumes that, in addition to the test, a complete feature
model is provided as input. This allows SPLat to substantially reduce the space of possible
configurations to explore. In contrast, SPLif assumes an incomplete feature model, so we had to
change SPLat to treat every unknown configuration as valid (3), if the model is complete, or as
consistent, if the model is incomplete. When SPLat runs now, it prunes test execution paths that

4.2. TECHNIQUE 59

correspond to definitely inconsistent configurations and explores all other paths. Additionally,
we changed SPLat to accept a time limit for each test execution, because executing inconsistent
configurations can take a long time or even lead to infinite loops.

4.2.2 Test Ranking

SPLif computes a ranking of tests for all executions with unknown configurations.
For inconsistent configurations, SPLif/SPLat does not even execute a test. For consistent
configurations, the situation is quickly resolved: if the test passes, the execution is ignored; if the
test fails, the execution immediately shows a real problem in the test or the code.

For each test t, we define the following terms:

� Pt
def.
= number of passing unknown configurations of t,

� Ft
def.
= number of failing unknown configurations of t,

� FCt
def.
= number of consistent configurations for which t fails,

� St
def.
= suspiciousness rating or fraction of failed unknown configurations.

(i.e., St =
Ft

(Ft+Pt)
).

Ranking is obtained by lexicographically sorting the triples 〈FCt , St , Ft〉 associated with
each test t. Spectrum-based fault localization algorithms (e.g., Tarantula (JONES; HARROLD;
STASKO, 2002) and Barinel (ABREU; ZOETEWEIJ; GEMUND, 2009)) use a similar criterion
to classify suspicious statements.

Tests that appear higher in this ranking are considered more likely to contain a consistent
configuration FCt > 0 . Note that if a test fails for a consistent configuration, we know it has
a bug (in code or test) and that test needs inspection irrespective of the number of consistent
configurations it succeeds or fails.

The metrics St and Ft differentiate tests in the middle of the ranking. In case of ties on
metric FC, test t1 will be ranked higher than t2 if St1 > St2. The rationale for using St is that there
is a higher chance of finding a failing consistent configuration when SPLat reaches a relatively
high number of failing configurations. Finally, if the first two metrics do not differentiate t1 and
t2, SPLif uses the third metric as a tie-breaker (Ft1>Ft2).

SPLif can rank tests once at the beginning of its execution (option STATIC) or rerank
tests after every test inspection (option DYNAMIC). Intuitively, reranking could help SPLif to
better categorize the tests remaining for inspection: after the user labels the configurations from
one test, the feature model becomes more complete. So if inspecting one test determines that
some configuration is inconsistent, then the same configuration can be ignored for all other tests.
Likewise, if inspecting one test determines that some configuration is consistent, and another test
fails for that configuration, then that other test immediately shows a real problem and goes to the
top of the ranking.

60 CHAPTER 4. SPLIF

4.2.3 Configuration Ranking

The previous section explains how SPLif ranks tests. Now, we explain how SPLif

ranks configurations associated with a given test. SPLif has two options to rank configu-
rations, namely MEMORY and WEIGHTED. If no option is selected, SPLif randomly orders
configurations for inspection. If MEMORY is set, SPLif uses previously labeled configurations
(configurations classified by the user as consistent or inconsistent) to update the incomplete
feature model that SPLif maintains, such that configurations whose labels can be inferred
from the model are not inspected again (lines 27–32 of Figure 4.2), they are removed from the
configuration ranking. Note that MEMORY does not define an explicit order of configurations. If
WEIGHTED is set, SPLif sorts the configurations according to three different criteria.

For each configuration c, we define the following terms:

� ?c
def.
=number of undefined feature variables in c,

� Fc
def.
=number of failing tests that execute c, and

� SCc
def.
=boolean that indicates if c is similar to some previously seen consistent config-

uration.

If the option WEIGHTED is set, the ranking of configurations is obtained by lexicograph-
ically sorting the triples 〈?c, Fc, SCc〉 associated with each configuration c. Configurations that
appear higher in the ranking are considered more helpful to improve overall performance of
SPLif.

The first element of the triple helps to rank higher those configurations that could be
obtained with instantiations of undefined variables, and the second element helps to rank higher
those configurations that occur in yet-to-be-inspected tests. The rationale for these metrics
is to optimize future labelings (C or I) of configurations. For example, if a configuration is
inconsistent, all complete extensions of it must be inconsistent; hence it is beneficial to label
such configurations quickly as they label more complete configurations.

The third element ranks higher those configurations that look similar to consistent
configurations. Similarity is determined by checking if fc is satisfiable with MC, which suggests
that the configuration is in accordance with the current feature model learned from the previously
labeled consistent configurations. Note, however, that similarity to consistent configuration does
not imply consistency (see Example from Section 2.1). In case of ties in the ranking SPLif
uses random ordering.

4.2.4 Algorithm

Figure 4.2 shows the pseudo-code of SPLif. It takes as input a test suite T for a software
product line and its incomplete feature model.

We represent the feature model as two sets of configurations, one encoding consistent
configurations (MC) and one encoding inconsistent configurations (MI). We can view each set

4.2. TECHNIQUE 61

1 /* summary of SPLat execution for a test */
2 class TestInfo { Test, Set<Conf> pass, fail; }
3

4 /* models and test suite */
5 INPUTS: MC, MI, T
6

7 SPLif()
8

9 /* collect test profiles */
10 Set<TestInfo> Π = ∅
11 foreach ti in T do
12 Π = Π ∪ {SPLat(MI,ti)/*test info*/}
13 R = list(Π)
14

15 /* rank tests by their execution profiles */
16 if (STATIC) R = rankTests(R)
17

18 attest:
19 while R 6= ∅ do
20

21 /* dynamically (re)rank tests */
22 if (DYNAMIC) R = rankTests(R)
23 t = head(R); R = tail(R)
24

25 /* inspect test t if c has been previously
26 inspected and labeled as consistent */
27 if ({c : t.fail |MC ∩{c}} 6= ∅)
28 break /* inspect test! */
29

30 /* fk is the logical encoding of configuration k */
31 Set<Conf> ∆ = {k : t.fail | isSAT (fk ∧¬MI)}
32 if (∆ = ∅) continue /* ignore test! */
33

34 /* ranking confs. with unknown labels */
35 while ∆ 6= ∅
36 c = head(rankConfs(∆))
37 ∆ = ∆ - {c}
38 switch ulabel(c) /* user labels c */
39 case V:
40 if (MEMORY)
41 MC = MC ∨ fc
42 break attest /* inspect test! */
43 case I:
44 if (MEMORY)
45 MI = MI ∨ fc
46 /* update set of unknown configurations */
47 ∆ = {k : ∆ | isSAT (fk ∧¬MI)}
48 break
49 update(c,T);
50

51 /* ranking tests*/
52 List<TestInfo> rankTests(List<TestInfo> R)
53 return sortLexicographically(R, λ t :Test.〈FCt ,St ,Ft〉)
54

55 /* ranking configurations*/
56 List<Conf> rankConfs(Set<Conf> ∆)
57 if (WEIGHTED)
58 return sortLexicographically(∆, λc :Conf.〈?c,Fc,SCc〉)
59 else return randomOrder(∆)

Figure 4.2: The SPLif Algorithm.

as a formula, a disjunction of the (conjunctive) formulas that represent each configuration in the
set. A well-formed feature model should have no overlap between consistent and inconsistent
sets of configurations, i.e., MC∧MI should be unsatisfiable. A feature model is empty if both
MC and MI are empty, and a feature model is complete if MC∨MI is equivalent to true.

At line 12 the algorithm calls SPLat, which returns results for each test in the test suite.

62 CHAPTER 4. SPLIF

For example, it outputs the results (pass or fail) for each configuration that SPLat explores on a
given test. The algorithm proceeds by iteratively choosing the top ranked test and then focusing
on the failing configurations for each selected test.

There are two strategies for resorting the ranking of tests. The basic mode (option
STATIC) sorts all the tests at the beginning of execution whereas the adaptive mode (option
DYNAMIC) resorts the remaining tests after each test is inspected.

If any failing configuration is already in the consistent set, then the test shows a real
problem that should be repaired (lines 27–28). If that does not hold but all configurations are
in the inconsistent set, then the test should be ignored (line 32). Otherwise, the algorithm
iterates through the set of still unknown configurations (lines 19–49). The algorithm sorts these
configurations using one of the strategies discussed in Section 4.2.3.

Finally, the algorithm picks the highest ranked configuration and asks the user to label
it. If the configuration is consistent, this scenario reveals a real problem, and the user should
stop the inspection of additional configurations to address the problem. If the configuration
is inconsistent, it is added to the set of inconsistent configurations, and the inspection for this
test proceeds to the next configuration. Note that the set of failing unknown configurations (∆)
is updated accordingly. The inspection finishes after the user finds a consistent configuration
(as that is a clear indication of a real problem in code or test) or inspects all the inconsistent
configurations for each failing test.

The call to update (line 49) updates the counts of passing and failing configurations
(i.e., Pt and Ft for each test t from T) after every configuration labeling. In DYNAMIC mode, this
update can potentially modify the relative ranking of each test in R.

4.3 Evaluation

The primary goal of SPLif is to provide better support for testing SPLs. Based on that
goal we pose the following research questions:

RQ1 How does SPLif rank faulty tests for inspection?

RQ2 How does SPLif rank configurations (of selected tests) for inspection?

4.3.1 Subjects

We initially evaluated SPLif using five small subjects (size range: 1.7–3.6KLOC) that
were used to test SPLs previously. Figure 4.3 tabulates, for each subject, the source of the subject,
the number of feature variables, the number of valid (complete) configurations, and the code
size.

4.3. EVALUATION 63

Subject Source #Features #Valid Confs. LOC
Companies Human-resource management system (2013) 10 192 2,059

DesktopSearcher LENGAUER et al. (2013) 16 462 3,779
GPL LOPEZ-HERREJON; BATORY (2001) 13 73 1,713

Notepad KIM et al. (2010) 17 256 2,074
ZipMe APEL; BEYER (2011) 13 24 3,650

Figure 4.3: Target SPLs used in SPLif evaluation.

4.3.2 Setup

4.3.2.1 Tests analyzed

Since we do not have good feature coverage with the existing tests, and existing tools1

generates tests with a poor feature coverage, we asked 5 students, with experience in testing, to
create tests. We assigned two subjects per student and two students per subject, and provided
instructions on how to create tests. In summary, we instructed students to aim for creating a test
suite that achieves maximum feature coverage. Detailed instructions that students received for
creating tests can be found elsewhere (Instructions to students on generating new tests for SPLs.,
2014). We provided support to students on how to use the FEST framework citepfest to create
GUI tests for DesktopSearcher and Notepad.

Figure 4.4 shows, for each SPL, the number of tests and the number of configurations that
those tests dynamically reach. Column “All” shows the total number of reachable configurations
and column “>1 Failing” shows the number of reachable configurations that cause at least
one test to fail. Values in parentheses denote the number of consistent configurations in the
corresponding set. Figure 4.5 shows the distributions of consistent configurations (column
“CCs”) vs number of failing tests (column “FTs”).

Reachable Confs.
Subject # Tests All >=1 Failing

Companies 19 152 (64) 72 (4)
GPL 25 1,268 (137) 497 (49)

Notepad 62 3,273 (66) 265 (6)
DesktopSearcher 44 254 (160) 125 (83)

ZipMe 62 2,431 (153) 261 (12)
Figure 4.4: Tests and Reachable Configurations. Values in parentheses show the subset

of consistent configurations.

For example, 14 configurations of GPL fail in only one test (but not necessarily the same
test). Figure 4.6 shows, for each SPL and test, the number of configurations that make the test
run fail (column “F”), the number of configurations that the test passes (column “P”), and the
number of consistent configurations that produce failure (column “FC”; FC≤F). Each table

1For example, Randoop (https://code.google.com/p/randoop/) and Evosuite
(http://www.evosuite.org/).

https://code.google.com/p/randoop/
http://www.evosuite.org/

64 CHAPTER 4. SPLIF

contains two sections: the first section includes entries where FC=0 and the second where FC6=0.
We omit test entries that only pass, i.e., entries where F = 0. It is worth noting that in this
experiment we initialize SPLif with an empty feature model; the purpose of existing models is
to validate configurations.

Companies
CCs FTs

4 1

GPL
CCs FTs
14 1
35 2

Notepad
CCs FTs

5 1
1 3

DesktopSearcher
CCs FTs
66 1
9 2
7 3
1 4

ZipMe
CCs FTs
12 1

Figure 4.5: Distribution of number of consistent configurations (CCs) per number of
failing tests (FTs).

Companies
ti Fi Pi FCi
13 16 16 0
14 24 8 0
15 48 16 0
16 48 16 0
17 1 1 1
18 7 5 1
19 12 4 2

GPL
ti Fi Pi FCi
18 4 4 0
19 4 4 0
20 33 78 0
21 192 64 0
22 7 1 1
23 26 26 2
24 248 8 35
25 256 256 46

Notepad
ti Fi Pi FCi
29 67 62 1
30 100 138 4
31 133 94 3

DesktopSearcher
ti Fi Pi FCi
10 1 4 0
11 1 8 0
12 1 8 0
13 1 2 0
14 1 8 0
15 1 8 0
16 1 8 0
17 1 8 0
18 1 32 0
19 1 8 0
20 1 32 0
21 1 4 0
22 1 8 0
23 1 32 0
24 1 0 0
25 1 0 0
26 2 8 0
27 3 8 0
28 3 8 0
29 3 2 0
30 3 8 0
31 1 25 1
32 3 1 3
33 3 1 3
34 3 1 3
35 4 0 3
36 5 0 4
37 7 1 7
38 7 1 7
39 14 0 8
40 14 1 13
41 15 2 14
42 17 1 16
43 28 3 27

ZipMe
ti Fi Pi FCi
30 1 1 0
31 1 1 0
32 1 3 0
33 1 3 0
34 1 8 0
35 1 2 0
36 1 3 0
37 1 3 0
38 1 3 0
39 1 3 0
40 1 3 0
41 1 2 0
42 1 1 0
43 1 3 0
44 1 3 0
45 2 12 0
46 2 8 0
47 2 6 0
48 2 2 0
49 4 33 0
50 5 7 0
51 10 38 0
52 11 43 0
53 12 12 0
54 31 201 0
55 32 198 0
56 61 399 0
57 61 1244 0
58 1 2 1
59 3 1 1
60 3 3 2
61 4 5 2
62 136 132 6

Figure 4.6: Counts of passing and failing executions per test and SPL. ti is the test id. Fi

is the number of failures of ti. Pi is the number of passing executions of ti. FCi is the
number of consistent configurations in which ti fails. We omit test entries without failing

runs.

4.3. EVALUATION 65

4.3.2.2 Initial Feature Model and Ground Truth

In the experiments, we initialized SPLif with an empty feature model, i.e., the execution
of SPLat at line 12 had no inconsistent configuration. To classify configurations (and hence
model the user), we used pre-existing feature models as reference to label consistency of
configurations.

4.3.3 Ranking Tests Using Suspiciousness Score

The purpose of test ranking is to speed up discovery of bugs through the prioritization of
tests that fail on consistent configurations. Figure 4.7 shows, for each SPL, the ranking of tests
from Figure 4.6. Column R shows the rank of test Ti. The suspiciousness score Si for that test is
computed by: Si = Fi/(Fi +Pi).

Recall that Section 4.2.2 states that the ranking of tests is obtained by lexicographically
sorting the triples 〈FCi, Si, Fi〉. However, at this stage no configurations are known to be
(il)consistent. For this reason, we used the pair 〈Si, Fi〉 and reported only Si.

Companies
R ti S
1 15 0,75
2 16 0,75
3 19 0,75
4 14 0,75
5 18 0,58
6 13 0,50
7 17 0,50

GPL
R ti S
1 24 0,97
2 22 0,88
3 21 0,75
4 18 0,50
5 19 0,50
6 25 0,50
7 23 0,50
8 20 0,30

Notepad
R ti S
1 31 0,59
2 29 0,52
3 30 0,42

DesktopSearcher
R ti S
1 24 1,00
2 25 1,00
3 39 1,00
4 35 1,00
5 36 1,00
6 42 0,94
7 40 0,93
8 43 0,90
9 41 0,88

10 37 0,88
11 38 0,88
12 32 0,75
13 33 0,75
14 34 0,75
15 29 0,60
16 13 0,33
17 27 0,27
18 28 0,27
19 30 0,27
20 10 0,20
21 26 0,20
22 21 0,20
23 11 0,11
24 12 0,11
25 14 0,11
26 15 0,11
27 16 0,11
28 17 0,11
29 19 0,11
30 22 0,11
31 31 0,04
32 18 0,03
33 20 0,03
34 23 0,03

ZipMe
R ti S
1 59 0,75
2 62 0,51
3 30 0,50
4 31 0,50
5 60 0,50
6 42 0,50
7 53 0,50
8 48 0,50
9 61 0,44

10 50 0,42
11 58 0,33
12 35 0,33
13 41 0,33
14 32 0,25
15 33 0,25
16 36 0,25
17 37 0,25
18 38 0,25
19 39 0,25
20 40 0,25
21 47 0,25
22 43 0,25
23 44 0,25
24 51 0,21
25 52 0,20
26 46 0,20
27 45 0,14
28 55 0,14
29 54 0,13
30 56 0,13
31 34 0,11
32 49 0,11
33 57 0,05

Figure 4.7: Ranking of tests. Column R shows the rank of test ti from Figure 4.6; S
shows the suspiciousness score of ti. A row in gray color indicates a test for which at least

one failing configuration it reaches is consistent.

According to Figure 4.7, we observed that for the cases with a relatively small number of
failing tests (Companies, GPL, and Notepad) the classification of tests is not very helpful.

66 CHAPTER 4. SPLIF

Although the first tests with consistent configuration appear high in the ranking (positions 3, 1,
and 1, respectively), overall other tests that do not fail on consistent configurations are also highly
ranked. For the cases with relatively many failing tests (DesktopSearcher and ZipMe), we
found that ranking tests was helpful: most tests that fail on consistent configurations appear at
top positions in the ranking.

RQ1. Based on these results we conclude the following:

The use of a suspiciousness score based on pass-fail ratios of test runs is a good
predictor for labeling tests that fail on consistent configurations when the number
of failures is relatively high.

4.3.4 Ranking Configurations

Once a test is selected, the tester needs to identify the configurations which are more
likely to be consistent out of those that trigger a failure. Such task can be overwhelming: a test
run can expose many distinct failures and there could be other tests for inspection. We considered
4 prioritization techniques for inspecting configurations, defined as follows.

� Random is our comparison baseline. It randomly orders failing configurations
associated to a test.

� Memory is a variation of Random that memoizes previously labeled configurations.

� Weighted is a variation of Memory that ranks the configurations for inspection
according to their weights.

� Adaptive is a variant of Weighted that re-ranks tests on-the-fly.

We obtain these techniques by setting the option flags (STATIC, MEMORY, WEIGHTED, and
DYNAMIC) in the SPLif algorithm.

When the tester finds a legal configuration for a failing test, SPLif skips to the next test,
and when he/she finishes inspecting all tests, he/she repairs the test/code for all recognized bugs,
i.e., for failures of pairs of consistent configuration and test. Section 4.3.5 discusses another
scenario where the tester stops to repair the test/code after finding a failure of a pair of legal
configuration and test.

The Figure 4.8 presents the results for these four techniques. It shows the progress
in number of consistent configurations found with the progress in number of configurations
inspections needed to find the first legal configuration for each test. A datapoint in the plot marks
an inspected test. The quicker the plot gets to the top the better; it means more tests are labeled
quicker. The narrower the plot the better; it means less configurations require inspection.

The Figure 4.9 summarizes these numbers of configuration inspections and compares
them to two baselines: the number of inspections considering all failures (column Reduction

4.3. EVALUATION 67

Plot Explanation

first valid configuration

Dot indicates an

1

...

top

are possible.

inspected test. Overlaps

First valid con−
figuration found.

Only inconsistent

configurations

inspected.

N
u

m
b

er
 o

f
V

a
li

d
 C

o
n

fi
g
u

ra
ti

o
n

s

Number of Configuration Inspections

Number of inspections to find
0 50 100 150

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

companies

● ●●●

●

● ●

●

● ●

●

●

● ●●●

●
●

 Random
+Memory
+Weighted
+Adaptive

0 50 100 150 200 250

0
1

2
3

4

gpl

●

●

● ●●

●●●●

●

●●

● ●

●●●●

●
●

 Random
+Memory
+Weighted
+Adaptive

0 20 40 60 80

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

notepad

●

●●●

●

●●●

●
●

 Random
+Memory
+Weighted
+Adaptive

0 10 20 30 40

0
2

4
6

8
10

12

desktopsearcher

●

●

●●●●●

●

●

●

●

●●●● ●● ● ● ●●●●●●●●●●●●

●●●●

●

●

●●● ● ●

●

●

●

●

●●●● ● ● ● ● ●● ●● ● ● ● ●●●●●

●●●●

●
●

 Random
+Memory
+Weighted
+Adaptive

0 50 100 150 200 250

0
1

2
3

4
5

zipme

●

●

●●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●●●

●

●●●●●●● ●●●●●●●●●●●●●●●●●

●
●

 Random
+Memory
+Weighted
+Adaptive

Figure 4.8: Progress inspecting tests and their failing configurations.

All(%), and the number of inspections considering the Random technique (column Reduction

Random(%). Considering all failures (the rows All), the number of inspections is higher than the
Random mode. In Random mode, this number is higher than the remaining modes. In the other
modes, the numbers are smaller because SPLif recognizes already inspected configurations.

68 CHAPTER 4. SPLIF

If they appear again, SPLif skips to the next test. Thus, SPLif is useful to speed up the bug
discovery. Using the technique Memory it is possible to achieve a reduction from 17.9% up to
88.9% in the number if inspections compared to Random mode.

Mode #Inspections Reduction All (%) Reduction Random (%)
Companies

All 156 - -
Random 146 6.4% -
Memory 69 55.8% 52.7%

Weighted and Adaptive 69 55.8% 52.7%
DesktopSearcher

All 151 - -
Random 44 70.8% -
Memory 30 80.1% 31.8%

Weighted and Adaptive 34 77.5% 22.7%
GPL

All 770 - -
Random 257 66.6% -
Memory 211 72.6% 17.9%

Weighted and Adaptive 223 71% 13.2%
Notepad

All 300 - -
Random 90 70% -
Memory 40 86.7% 55.6%

Weighted and Adaptive 10 96.7% 88.9%
ZipMe

All 397 - -
Random 269 32.2% -
Memory 45 88.6% 83.3%

Weighted and Adaptive 49 87.6% 81.8%
Figure 4.9: The total number of inspections for various techniques, and their reduction
compared to two baselines: the number of inspections considering all failures (column
Reduction All(%), and the number of inspections considering the Random technique

(column Reduction Random(%)

From the results, we recommend two techniques be used to inspect configurations,
depending on the scenario the tester may have:

1. Memory is more appropriate when there is a considerable number of tests failing on
inconsistent configurations that are common among them; and

2. Weighted and Adaptive are more appropriate when there is a considerable number of
tests failing on consistent configurations that are common among them.

4.3.4.1 Discussion

Results indicate that for DesktopSearcher, GPL and Notepad the use of variant
Random revealed more consistent configurations than any other variant. Recall that Random

only uses SPLif to rank tests. This is expected as Random does not memoize already-labeled
configurations, increasing the number of inspections (of consistent configurations or not). The
other variants record already-labeled configurations (to detect bugs in other failing tests faster)
and hence may not visit all failing configurations. However, for all subjects, the total number of

4.3. EVALUATION 69

configuration inspections necessary to inspect all tests was much higher in Random compared to
other variants. This highlights the importance of SPLif to filter out tests that fail on consistent
reachable configurations.

Memory is the simplest variant of SPLif that ranks both tests and configurations. In this
variant, SPLif memoizes configuration labelings in symbolic models. Intuitively, this enables
faster classification of other buggy tests that fail for consistent configurations and helps to ignore
failures on inconsistent configurations (lines 27–32 in Figure 4.2). We found that this variant
helps to speed up classification of buggy tests when a large number of configurations repeat
across tests.

Weighted and Adaptive also use memory (Memory) of previous labelings. Results indicate
that Memory performs better compared to these variants for most of the subjects. The reason
for this can be attributed to the observation that when there is a considerable number of tests
failing on common inconsistent configurations, then it helps if these inconsistent configurations
are identified soon. Such a characteristic appears in ZipMe (27 tests failing on inconsistent
configurations vs. just 5 tests failing on consistent configurations), in DesktopSearcher
(30 tests failing on inconsistent configurations vs. 13 tests failing on consistent configurations),
and in Companies. The large number of common inconsistent configurations bring about the
difference for GPL (see Figure 4.7).

In contrast, for Notepad, all failing tests have failures due to consistent configurations.
Furthermore, there is 1 consistent configuration common amongst all failing tests. The Weighted

(which performs heuristic ranking of configurations based on the configurations previously
labeled) and Adaptive (which re-ranks tests after every labeling) variants help detect this common
consistent configuration in just 10 configuration inspections. This leads to the detection of the
other buggy tests without requiring any further inspection of configurations. Memory, which
randomly ranks configurations brings to the top a different consistent configuration (unique to
a single test), and then ranks the consistent configuration common to the other tests after 40
inspections.

RQ2. Based on these results we conclude the following:

The overall number of inspections needed to find problems in tests or source code
is fewer when SPLif uses an inferred feature model (Memory) as opposed to
randomly selecting configurations (Random). Re-ranking of tests (Adaptive) and
ranking of configurations (Weighted) seem to help when the number of tests failing
on common consistent configurations is high.

4.3.5 Incremental Runs of SPLif

Re-execution of SPLif for one test (or the entire test suite) after every repair in test
(or code) can be expensive, and potentially wasteful if the repair had corrected all faults in the
inspected test and the change did not impact any other test. One approach to deal with this cost

70 CHAPTER 4. SPLIF

is to optimistically assume that the repair in the test corrects all its related faults and, in such a
case, not re-execute SPLif. Instead, this approach removes the repaired test from the list and
control proceeds to the next test in the ranking. The rationale for this approach is to inspect tests
quicker looking for new faults.

After all failing tests have been inspected once, SPLif is re-started to run on the new
version of the repaired tests alone. Note that all configurations for the other tests must have been
inspected in previous runs of SPLif. This incremental pass acts as a validation phase for the test
repairs and also helps to identify other faults that could have been exposed by other consistent
configurations. This is exactly what we did in our experiments. The plot in Figure 4.8 is for the
first pass. We elaborate on the subsequent passes in the following. We observed that, except for
GPL, none of the repairs modified the application code.

For all subjects, except DesktopSearcher, SPLif did not reveal any other faults
in the second pass. For DesktopSearcher, the first pass discovered 13 tests failing on
consistent configurations (out of 34 reported in SPLif’s ranking). The second pass found 6 of
the 13 repaired tests to fail again. These tests failed for unseen consistent configurations that had
not been explored earlier. The third pass again revealed a fault in one of the 6 tests for another
unseen configuration.

4.3.6 Discussion of Test Failures

This section discusses the cases where the use of SPLif guided the user to make repairs.
Recall that a failure on a consistent configuration indicates a problem in test or code.

4.3.6.1 Companies

Only three tests failed for consistent configurations in this subject. Test 19 displays a
window for a company having 2 departments under it, each with employees with respective
salaries. The test run execution depresses the cut button in the GUI in order to reduce the
cumulative salary of the company and asserts if the cumulative value displayed has been halved.
However, when the PRECEDENCE feature is set, it enforces certain constraints on how the
salaries of the employees in the company can be updated and thus the cumulative salary is not
halved, which results in test failure. This represents a consistent bug in the test code which was
too restrictive, the test code was updated to guard the assertion with a check on the PRECEDENCE
feature being set or not. Tests 18 and 17 fail for a similar reason; they both require guards based
on the use of the PRECEDENCE feature.

4.3.6.2 DesktopSearcher

This subject provides a visual interface where often related components are enabled
with the setting of corresponding feature variables. We observed that even a small change in
configuration causes a significant change in the interface. For instance, test 42 makes a specific

4.3. EVALUATION 71

assertion on the number of files that have been indexed. This test passes for a configuration
where only the features SINGLE_DIR, NORMAL_VIEW and TXT are enabled while the rest are
disabled. However, when the features HTML and/or LATEX are also enabled, it leads to failures.
This happens because the interface changes as it now includes HTML and/or LATEX files in
addition to TXT files, which in turn changes the number of indexed files. This was repaired by
using different values for the number of indexed files in the assertions conditional to the features
being enabled.

All the other failures were similar to test 42; occurring due to the assertions being
specific to the respective default configuration settings and were repaired by making them more
general, conditioned to the features being enabled. Since the tests are very specific to certain
configurations, there are many consistent configurations that expose failures in more than one
test or are common amongst the tests (refer Figure 4.5). Hence memory of previous labelings
significantly reduces the number of inspections required to detect all buggy tests. Owing to
the cross-feature constraints, most of the configurations that the tests fail on are inconsistent
configurations. This explains why Memory mode does better than Weighted and Adaptive for
this subject.

4.3.6.3 GPL

As indicated in Table 4.7, SPLif ranked 2 of the 4 tests that fail on consistent configu-
rations at the top of the list. The test with the highest ranking (test 24) was the first one to be
detected to fail on a consistent configuration. This test invokes the display method of the vertex
class. It explicitly sets the WEIGHTED feature variable to true and checks if the appropriate
message has been displayed. However, inspection revealed that the message used in the assertion
check was inadequate when other features (e.g., CONNECTED and CYCLE) are enabled, leading
to assertion errors. This represents a case of a bug in the test code and was detected within 9
inspections using SPLif in Memory mode. The next test for which a consistent configuration
was detected was for test 22. The test code constructs a graph with 3 vertices and checks if it is
strongly connected. However, it fails to assign weights to the edges of the graph. When executed
with the WEIGHTED feature set to true, the test throws an IndexOutOfBoundsException
when the weights of the edges are accessed.

The bug was corrected in the test by assigning weights to the edges when the WEIGHTED
feature is enabled. The consistent configuration detected for test 24 is in common with test
25, which is recorded in Consistent (in the Memory, Weighted, and Adaptive modes). Hence,
test 25 is detected to be erroneous without requiring additional user inspections to label the
configuration as consistent (refer to line 24 of Figure 4.2. The test code contained an assertion
that did not behave correctly when the SEARCH feature was set to true. The repair was to modify
it to a conditional assertion that restricted its behavior.

Test 23 has a subtle error which gets exposed only on certain configurations, leading to a
low suspiciousness score. It tests the method Graph.run that exercises different functionalities

72 CHAPTER 4. SPLIF

of a graph such as calculation of the shortest path, checking for cycles, calculation of spanning
trees using Kruskal and Prim algorithms so on. It conditionally invokes the relevant methods
based on the values of the respective feature variables. The Kruskal and Prim algorithms
access the weights of the edges and throw an IndexOutOfBoundsException when the
WEIGHTED feature is enabled but weights have not been set. This is an example of a bug in
the code of the run method, wherein the calls to methods for Kruskal and Prim, in addition
to being guarded by a check on whether the MSTKRUSKAL and MSTPRIM feature variables
are set to true, should be guarded by a condition that checks that when the WEIGHTED feature
is enabled, the weights of the edges have been set appropriately. The method should return
without executing the algorithms otherwise. On resolving this unexpected uncaught exception,
the same configuration exposed another error in the test. The assertions were not correct when
the spanning tree algorithms were not executed. They were repaired by making the assertions
conditional to the MSTKRUSKAL, MSTPRIM and WEIGHTED features being set.

4.3.6.4 Notepad

As illustrated in Table 4.7, Notepad has only 3 tests failing for 6 consistent configu-
rations, in total. All these 6 configurations have the feature UNDOREDOTOOLBAR set to true,
which result in the addition of buttons Undo and Redo to the tool bar. These buttons are disabled
in their creation, causing their toolTipText attribute to be null. The 3 failing tests use the same
code to find a specific button, by iterating over all buttons until finding the one that matches
with a given toolTipText. All three tests pass through the Undo and Redo buttons on their search
path, which leads to NullPointerException. In sum, all the tests from Notepad fail for
the same reason. There is a single configuration that exposes this fault in all 3 tests, which is
detected as the first consistent configuration in the Weighted and Adaptive modes.

The repair is to check whether the toolTipText attribute of the buttons in the search path
are null, and if so, making the test skip to the next button until finding the searched one. We
elaborate on test testEditToolBar (see Figure 4.1) as it topped the ranking. When this test runs
with a configuration that has the feature UNDOREDOTOOLBAR enabled, a null pointer exception
is thrown when the isMatching method accesses the REDO button.

4.3.6.5 ZipMe

Test 59 is the first test in the rank to be analyzed. It checks the functionality of
the deflation operation of an input array. After invoking the deflate method on an ar-
ray, it checks if method finished returns true, which indicates that the output stream
has ended and no more additional output bytes are available. However, when the feature
DERIVATIVE_COMPRESS_ADLER32CHKSUM is enabled, additional checksum (CRC) bytes
are added after the compression. This checks consistency of the assertion on the finished

4.3. EVALUATION 73

method. We repaired the test by making the assertion conditional on the above mentioned
checksum feature.

Test 62 invokes compression and deflation algorithms on zip and gz files, performs file
updates, and validates the computed checksum. The failures occur when the checksum feature is
not enabled, which was corrected by enforcing that the ADLER32CHECKSUM feature is set at
the beginning of the test.

Test 60 invokes a method to compute the CRC32 data checksum of a compressed data
stream. It then ensures that the zipped file is not yet available by asserting that the return value is
-1. However, when this test is performed with the EXTRACT feature being enabled, the return
value is 1 or 0 (not -1), depending on whether the zip file has been extracted fully or not. We
repaired the assertion on this test to consider the variation due to EXTRACT.

Test 61 is a similar test that explicitly updates the checksum of a zip file and then
adds a new zip entry. It asserts that the CRC of the new zip entry is 0. However, when
DERIVATIVE_COMPRESS_CRC is enabled, the previous CRC is passed onto the new entry,
which leads to assertion failure. The bug which was corrected by adding a conditional assertion.

Failure for test 58 was also a bug in the test code resolved by adding a conditional
assertion on the ARCHIVE_CHECK feature.

4.3.7 Threats to Validity

As usual one threat to external validity is that our case studies may not have be representa-
tive of all programs. To mitigate this threat we considered not only open-source previously-used
SPLs but also one real configurable system (GCC, see Chapter 5) that has been under active
development for almost three decades and is tested by a wide community.

The selection of tests is another threat to generalization, the tests may be insufficient or
inappropriate. We tried to reduce this threat by using tests requirements (Instructions to students
on generating new tests for SPLs., 2014) to ensure good coverages of: code, functionality, and
feature..

Other threat is the potential high number of variables in incomplete configurations that
testers may need to inspect. To mitigate this problem we ran our techniques on large code and
observed that many variables appear undefined in several configurations to inspect, confirming
our expectations (as discussed in the previous chapter) that not all variables are accessed in every
path. It is also important to note that SPLif favors configurations with more undefined variables
for inspection (see “?c” in Section 4.2.3).

Finally, another threat to generalization is the assumption that the labeling provided by
the user is accurate. SPLif allows the user to skip the labeling of a configuration that he/she is
not sure of. This problem could also be mitigated by checking the consistency of each labeling
with the feature model learned until that point.

747474

5
Case Study: GCC

In this chapter we describe a case study conduced with the aim of illustrating SPLat and
SPLif with the GNU Compiler Collection (GCC) (GCC, 2014), a large system with more than
7 million KLOCs, more than 17k tests, with hundreds of configuration options (GCC Options,
2014), 2,015 features. It has been developed for almost three decades by over 500 contributors.

First, we introduce the goals and the research questions. Next, we describe the general
infrastructure. And finally, we discuss the results.

5.1 Research Questions

Our main goals are twofold: (1) to provide better support for testing a large configurable
system and what kind of failures SPLif could find; (2) to observe how SPLat and SPLif
could scale to such a large system. Based on those goals we pose the following research questions:

RQ1 How does SPLif rank faulty tests and configurations (of selected tests)
for inspection?

RQ2 How does SPLat and SPLif scale to real code?

With the recent work on testing GCC (YANG et al., 2011; CHEN et al., 2013; LE;
AFSHARI; SU, 2014), we did not expect to find new bugs. However, the use of SPLif did
reveal new bugs. Since we do not have extensive GCC knowledge to properly classify general
failures, we focused our inspection of failures on crashes, which provide a stronger indication of
a real bug in code. Other kinds of failures although also interesting typically manifest because of
overly specific assertions (i.e., fragile tests). In fact, the crashes we observed occurred prior to
the execution of the test assertions.

5.2. GENERAL INFRASTRUCTURE 75

5.2 General Infrastructure

5.2.1 The GCC Testing Infrastructure

The GCC testing infrastructure runs each test for only one configuration; we used SPLat
to run each test for multiple configurations, reachable from tests, and then we applied SPLif to
rank both the failing tests and configurations, as we did in Section 4.3.

We briefly introduce DejaGnu (DejaGnu, 2014), the GCC testing framework. The code
snippet in Figure 5.1 shows an example DejaGnu test:

1 /*{ dg-do compile }*/
2 /*{ dg-options "-std=gnu89 -Wformat"}*/
3 #include format.h
4 void foo(char **sp, wchar_t **lsp) { ... }

Figure 5.1: Example of GCC test using DejaGnu.

This test is for the C front-end of GCC. The directive dg-do instructs DejaGnu to only
compile the function foo. Other directives can run other tasks (e.g., preprocess, assemble, link,
and run) on this test and combine these tasks. The directive dg-options instructs DejaGnu
to override the default option values with the assignments that follow. In this example, the
code will be compiled according to two options: “-std=gnu89” (uses ANSI C dialect) and
“-Wformat”(checks format of string arguments of several functions). DejaGnu determines test
verdicts by matching specified regular expressions with the outputs of test runs.

5.2.2 Implementation

The two versions of SPLat (for both languages Java and Ruby on Rails) were not able
to run GCC code, because (1) these two versions of SPLat were written in the same language of
the subject programs used, therefore they do not work for GCC, that is written in the C language;
(2) these versions only consider boolean values (true/false or 0/1) for the feature variables, and
in GCC they may have multiple values as we will see forward.

In order to avoid developing another version of SPLat in C language, we decided to
monitor the feature variables (exercised during the test execution) using log files containing the
values that feature variables assume during execution. This Resulted on a new version of SPLat
for C and probably other languages, developed in Java, that supports those files and feature
variables with multiple values.

5.2.2.1 Instrumentation

It is important to distinguish input option from feature variable. Input options correspond
to the configuration parameters passed to the system, typically on the command line (e.g.,

76 CHAPTER 5. CASE STUDY: GCC

“-O1”). Feature variables are the program variables that reflect these options in code (e.g.,
“optimize”).

To enable execution of SPLat on GCC (see Figure 4.2, line 12), we instrumented GCC
to monitor all accesses to feature variables by replacing every feature variable access by a
function that logs both the name and value of the feature, and return the feature value for the
code, as expected by the original code. The execution of each test on instrumented GCC produces
a log file containing both the name and the values that feature variables assume during execution.
We did not model all options (see Section 5.3.3) but we did monitor all feature variables. It is
important to note that this process can be automated, by using a tool for that, such as Pin1 a
dynamic binary instrumentation tool.

5.2.2.2 Execution

Considering the execution of the test code in Figure 5.2, it was produced a log file
illustrated in Figure 5.3a with the feature variables exercised and corresponding values observed
during the execution. Note that not all feature variables and values were reported due to the great
amount of lines in the log file.

1 /* PR debug/47684 */
2 /* {dg-do compile} */
3 /* {dg-options "-O3 -fcompare-debug"} */
4 /* {dg-xfail-if "" {powerpc-ibm-aix*} {"*"} {""} } */
5
6 int in[8][4];
7 int out[4];
8
9 void

10 foo (void)
11 {
12 int sum = 1;
13 int i, j, k;
14 for (k = 0; k < 4; k++)
15 {
16 for (j = 0; j < 4; j++)
17 for (i = 0; i < 4; i++)
18 sum *= in[i + k][j];
19 out[k] = sum;
20 }
21 }

Figure 5.2: Test pr47684.c from gcc.dg test suite.

To determine new input vectors from variable accesses we manually constructed a map to
express the correspondence between each feature (and respective values) and options, Figure 5.3b
shows a sample of this map. Although the construction of such map can be automated (XU et al.,
2013), the GCC input options can enable (or disable) multiple feature variables (not only boolean
values), and those relationships (feature - options - values) are defined in both the compiler
source code and special option definition files, making it difficult to extract automatically.

For instance, the feature variable “optimize” can assume one of these four values:
“0”, “1”, “2” or “3” inside the GCC code. The map (in Figure 5.3b) expresses the correspondence

1https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

5.2. GENERAL INFRASTRUCTURE 77

[splat] pedantic : 0
[splat] align_loops : 1
[splat] align_jumps : 1

[splat] align_functions : 1
[splat] optimize : 3

[splat] flag_unroll_loops : 0
[splat] flag_pic : 0
[splat] flag_asan : 0

[splat] flag_tree_vectorize : 0
...

(a) Log file.

Feature Vars. Values Options
flag_asan 0, 1 −fno−sanitize=address −fsanitize=address
optimize 0, 1, 2, 3 −O0, −O1, −O2, −O3

flag_unroll_loops 0, 1 −fno−unroll−loops, −funroll−loops
flag_ipa_cp 0, 1 −fno−ipa−cp, −fipa−cp

flag_tree_vectorize 0, 1 −fno−tree−vectorize, −ftree−vectorize
flag_schedule_insns 0, 1 −fno−schedule−insns, −fschedule−insn

...
(b) A sample of the feature-value-option map.

−O3/−fno−unroll−loops/−fno−sanitize=address/−fno−tree−vectorize
−O3/−fno−unroll−loops/−fno−sanitize=address/−ftree−vectorize
−O3/−fno−unroll−loops/−fsanitize=address/−fno−tree−vectorize
−O3/−fno−unroll−loops/−fsanitize=address/−ftree−vectorize
−O3/−funroll−loops/−fno−sanitize=address/−fno−tree−vectorize
−O3/−funroll−loops/−fno−sanitize=address/−ftree−vectorize
−O3/−funroll−loops/−fsanitize=address/−fno−tree−vectorize
−O3/−funroll−loops/−fsanitize=address/−ftree−vectorize

(c) Options generated.

Figure 5.3: Artifacts used and produced during SPLat execution.

between each feature (and respective values) and options: optimize=0 with the option -O0,
optimize=1 with the option -O1, optimize=2 with the option -O2, and optimize=3
with the option -O3.

From the log file (in Figure 5.3a) of accessed variables produced with the test run (in
Figure 5.2) and the variable-value-option map (in Figure 5.3b), SPLat is able to generate new
test inputs (i.e., option vectors). SPLat starts execution with the configuration obtained from
the options declared with the directive dg-options (line 3); feature variables not related to
referred options assume default values.

Since we did not model all feature variables in our map (c.f., Section 5.3.3), SPLat
only explores a subset of those observed during the execution (see the log file in Fig-
ure 5.3a) that were modeled in the map (Figure 5.3b), resulting on these four feature
variables and options: optimize=3 flag_unroll_loops=0, flag_asan=0, and
flag_tree_vectorize=0. From them, SPLat can explore up to eight option vectors
as showed in Figure 5.3c, this is the maximum number of vectors (combinations) for this exam-

78 CHAPTER 5. CASE STUDY: GCC

ple, because the option -O3 is constant due to the line 3 in Figure 5.2, and if one consider an
initial feature model, this amount may be lower.

5.3 Setup

5.3.1 Tests Execution

Test execution in GCC is time-consuming. For example, it takes ∼45min to run all
2,608 tests from the dg-gcc test suite considering 1 configuration per test and our running
environment. This corresponds to roughly 1s per test run. To deal with the high cost of test
execution, we focused on a selection of test suites, ran SPLat using a limited number of options,
limited the number of configurations per test to 50, and randomized the execution of SPLat to
sample different configurations, but reachable from the test runs.

5.3.2 Tests Analyzed

Overall, we analyzed a total of 4,108 tests from three different test suites: 2,608 from
gcc-dg, 548 from dg-torture, and 952 from tree-ssa. We focused on these suites for
this experiment because we observed from bug-reports that the incidence of bugs revealed with
these suites was higher.

5.3.3 Options Analyzed

To make the runtime reasonable, we restricted the number of options that SPLat
considers (see GCC Options (2014)). From a total of 400 most frequently cited options in
the GCC bug reports from the month of July 2014, we used the 40 (10%) most frequent. The
rationale was that more bugs could be found close to where some bugs have been recently
reported (we noticed that the top options do not change much across different months).

5.3.4 Initial Feature Model and Ground Truth

In this experiment we initialized SPLif with an empty feature model (i.e., the execution
of SPLat at line 12 is unconstrained) and used an existing feature model of GCC (GARVIN; CO-
HEN; DWYER, 2013) as the ground truth to model developer knowledge during for classifying
configurations. Other choices of initial model and ground truth are possible.

For the ground truth we built on the work of Garvin et al. (GARVIN; COHEN; DWYER,
2013) that documented 110 constraints from GCC. We augmented this model with constraints
that we manually extracted from the online documentation of GCC (GCC Documentation, 2014);
we found a total of 136 new constraints. For example, we found that the option -fsel-sched-

pipelining enables software pipelining of the innermost loops during selective scheduling and

5.4. RESULTS 79

has no effect unless the options -fselective-scheduling or -fselective-scheduling2 are turned
on. We modeled these constraints using the Z3 as a SAT solver (Z3 THEOREM PROVER,
2014), because it has a function of unsat-core, that will be used to discover new constraints in
Section 5.4.3.

5.4 Results

5.4.1 Ranking Tests and Configurations

ti Fi Pi FCi

. . .

4028 7 43 0
4029 13 36 0

4030 1 47 1
4031 2 44 1
4032 6 44 3
4033 6 43 4
4034 7 33 3
4035 7 43 4
4036 8 20 4
4037 9 41 4
4038 9 39 5
4039 10 28 2
4040 10 40 3
4041 10 40 4
4042 10 40 10
4043 11 36 8
4044 12 27 6
4045 12 34 7
4046 12 38 11
4047 12 38 12
4048 12 38 12
4049 13 37 13
4050 13 37 13
4051 14 36 2
4052 14 36 5
4053 14 35 6
4054 14 36 6
4055 16 34 4
4056 16 34 6
4057 16 34 7
4058 16 34 7
4059 17 33 6
4060 18 32 3
4061 18 32 13
4062 20 27 6
4063 20 30 12
4064 21 20 3
4065 21 29 8
4066 22 26 5
4067 22 28 8
4068 25 25 7
4069 25 0 12
4070 27 23 12

(a) Passing and crashing failure executions per test.

GCC
R ti S

1 4069 1,00
2 4070 0,54
3 4064 0,51
4 4068 0,50
5 4066 0,46
6 4067 0,44
7 4062 0,43
8 4065 0,42
9 4063 0,40

10 4060 0,36
11 4061 0,36
12 4059 0,34
13 4055 0,32
14 4056 0,32
15 4057 0,32
16 4058 0,32
17 4044 0,31
18 4036 0,29
19 4053 0,29
20 4051 0,28
21 4052 0,28
22 4054 0,28
23 4029 0,27
24 4039 0,26
25 4045 0,26
26 4049 0,26
27 4050 0,26
28 4046 0,24
29 4047 0,24
30 4048 0,24
31 4043 0,23
32 4040 0,20
33 4041 0,20
34 4042 0,20
35 4038 0,19
36 4037 0,18
37 4034 0,18
38 4028 0,14
39 4035 0,14
40 4033 0,12
41 4032 0,12
42 4031 0,04
43 4030 0,02

(b) Ranking of tests.

Figure 5.4: Statistics on Tests. In the left table, column R shows the rank of test ti from
Figure 5.4a; S shows the suspiciousness score of ti. A row in gray color indicates a test
that requires inspection; a test for which at least one failing configuration it reaches is

consistent. In the right table, ti is the test id; Fi is the number of crashing failures of ti. Pi

is the number of passing executions of ti; FCi is the number of consistent configurations
in which ti crashes. We omit test entries without crashing runs.

80 CHAPTER 5. CASE STUDY: GCC

The main goal of ranking both tests and configurations is to get a consistent configuration
that fails quickly. In the following we present some statistics related to the ranking of tests:

� Recall that we focused only on crash failures. From the total of 4,108 tests that we
analyzed, 497 tests failed (either due to crash or not). In total, 3,986 pairs of tests and
configurations failed (either due to crash or not). Recall that we ran each test against
50 reachable configurations;

� Considering only crashes, a total of 43 tests manifested crashes (∼8.65% of the total
number of failing tests and <2% of the total number of tests) in 268 pairs of test and
configurations (∼6.73% of the total number of failing pairs);

� According to Figure 5.4, from the total of 43 crashing tests, only 2 tests had all
crashing configurations inconsistent. These bad cases ranked lower, at positions 23
and 38 positions.

Figure 5.5 illustrates the progress in the number of consistent configurations found with
the progress in number of configurations inspected, considering the four alternatives modes
presented in Section 4.3.4. From a total of 268 failing configurations (218 distinct), only
49 configurations needed inspection (26 of which were consistent), considering Weighted (or
Adaptive) mode. This indicates that with a relative low number of configuration inspections
SPLif is enabled to find a consistent failing configuration in all 43 crash revealing tests.

gcc

●●
●●
●●
●●●
●●

●●
●●●●●●
●●●● ●●

●●
●●●●
●●●●
●●●●●●

●●
●

●
●●

●
●
●●●●●●
●●●
●●

●
●

●
●●●
●
●●
●
●● ●

●
●
●
●●
●●
●
●
●●

●
●
●
●

0 20 40 60 80 100

0
10

20
30

40

Number of Configuration Inspections

N
um

be
r

of
 C

on
si

st
en

t C
on

fig
ur

at
io

ns

●
●

 Random
+Memory
+Weighted
+Adaptive

Figure 5.5: Configuration inspection progress for GCC.

5.4. RESULTS 81

The Figure 5.6 summarizes these numbers of configuration inspections and compares
them to two baselines: the number of inspections considering all failures (column Reduction

All(%), and the number of inspections considering the Random technique (column Reduction

Random(%). This result represents a reduction of 55.8% compared to random inspection, and a
reduction of 58.6% compared to inspect all 268 failing configurations.

GCC
Mode #Inspections Reduction All (%) Reduction Random (%)
All 268 - -

Random 111 58.6% -
Memory 81 69.7% 27%

Weighted and Adaptive 49 81.7% 55.8%.

Figure 5.6: The total number of inspections for various techniques, and their reduction
compared to two baselines: the number of inspections considering all failures (column
Reduction All(%), and the number of inspections considering the Random technique

(column Reduction Random(%)

RQ1. Based on these results we conclude the following:

SPLif ranked tests that fail in consistent configurations in higher positions. The
overall number of inspections required to identify bugs is much fewer when
SPLif uses Adaptive or Weighted modes to rank configurations, because the
number of tests failing on common consistent configurations is higher than the
number of tests failing on common inconsistent configurations. From a total of 49
configurations inspected, 26 configurations were labeled as consistent.

5.4.2 New Bugs Found

We found a total of 5 bugs in the source code, distributed over 268 pairs of tests and
configurations (see Figure 5.7). To provide informative bug reports to the GCC team we needed
to simplify observed failures. For that we grouped failing pairs (of tests and configurations)
in clusters and minimized configurations (from each pair) inside clusters. We clustered failing
pairs according to the GCC error message and the code location responsible for the failure/crash,
when it is available. For example, all crashes with the message “int_cst_value” corresponding to
location tree.c:10625 were grouped in one cluster. Figure 5.7 shows all clusters defined
according to these heuristics, and lists the crashes we found in the main trunk of GCC. Column
“Name” presents the clusters, column “Tests” shows the number of crashing tests, column “Pairs”
lists the number of pairs (test, configuration) that crashes, column “Id” denotes the id of the bug
as reported in the GCC bug-tracking system, column “Date Confirmed” shows the date the team
confirmed the bug as new. A bug report is initially given the status “UNCONFIRMED”. Column
“Current Status” shows the current status of the bug, and finally column “Date Fixed” shows the
date the GCC team fixed the bug.

Unfortunately, there may be configuration options that do not contribute to reproducing

82 CHAPTER 5. CASE STUDY: GCC

Name Id #Tests #Pairs
compute_affine_dependence, tree-data-ref.c: 4233 61980 34 223

int_cst_value, tree.c: 10625 62069 4 34
verify_ssa failed, tree-ssa.c: 1056 62070 1 6

build2_stat, tree.c: 4265 62140 1 4
Segmentation fault: 11 62141 1 1

(a) Clusters of crash-revealing failures.

Id Date Confirmed Current Status Date Fixed
61980 Aug.1,2014 RESOLVED FIXED Jul.18,2015
62069 Aug.8,2014 NEW -
62070 Aug.8,2014 RESOLVED FIXED Aug.11,2014
62140 Aug.14,2014 RESOLVED FIXED Oct.16,2014
62141 Aug.14,2014 RESOLVED FIXED Nov.19,2014

(b) Bug report ids.

Figure 5.7: GCC bugs. Details at:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=. Bug ids are sorted

by date the bug was confirmed as new.

the crash. For that reason, we manually applied delta-debugging (ZELLER, 1999) to simplify
configurations inside each bucket. More specifically, we selectively removed options from the
input configuration and re-executed the test in separate. We repeated this process until the test
would no longer reveal the crash.

We applied these simplification mechanisms as follows. For each cluster we randomly
picked one pair of test and configuration and minimized the configuration to reproduce the
crash at the same location. Then we re-run all tests from the same cluster with the minimized
configuration to confirm that we would be able to reproduce the crash. The average number of
options before minimization was 7. With minimization we found that only 1 or 2 options were
relevant to reproduce crashes.

With the minimized configuration at hand, we filed a bug-report, one per cluster. When
we observe that the GCC team fixed 3 of the reported bugs (case of bugs: 62070, 62140, 62141)
we validated the fix by re-running all pairs of tests and configurations inside the corresponding
cluster for the updated version of GCC. If this validation fails it would likely indicate a different
problem which would demand the split of the cluster and the report of a new bug. That did not
happen for those 3 bugs, i.e., apparently, the fixes were effective. According to the bug reports of
the remaining bugs, they have not been fixed because they explores a problematic feature, that
should have already been removed, and no one wants to touch this code, apparently.

5.4.3 New Configuration Constraints Found

Although our goal is not to infer feature models, in the process of analyzing failures, we
encounter inconsistent configurations, which we documented to accelerate the inspection process.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=

5.5. THREATS TO VALIDITY 83

We used the GCC online documentation (GCC Documentation, 2014) to classify configurations
as consistent or not.

For example, we found that the options -fsched-spec-load and -fsched-spec-load-

dangerous allow speculative motion of some load instructions, and can be only applied when
scheduling instructions before register allocation, i.e., with -fschedule-insns or at -O2 or higher.
We also found that the option -fsel-sched-pipelining enables software pipelining of the innermost
loops during selective scheduling and has no effect unless -fselective-scheduling or -fselective-

scheduling2 is turned on.

Considering both modes Weighted and Adaptive (see Figure 5.5), we inspected a total
of 49 configurations. Out of these, 19 were inconsistent and led to the discovery of 5 distinct
constraints. Considering all inspection modes, we found a total of 6 constraints in addition to
the Garvin et al. (GARVIN; COHEN; DWYER, 2013) model. We used the unsat-core function
from the SAT solver in order to check if the new constrains were new, and therefore detect the
new constraints.

RQ2. Based on these results we found the following:

Considering the number of inspections to find bugs, our proposed technique helped
to quickly reveal new bugs on GCC, a large configurable system that has been
under active development for almost three decades.

5.5 Threats to Validity

The selection of tests is one important threat to generalization, for GCC, we used all
test suites (hundreds of tests) related to the features we tested. Other important threat is that
our selection of feature options to analyze in GCC may introduce bias. It is possible that on a
larger set of options more configurations would fail, creating a different scenario for SPLif.
We remain to evaluate how different heuristics (for selecting feature options) influences SPLif
results.

Another threat is the selection of 50 configurations, mentioned in Section 5.3.1, where
we randomized the execution of SPLat to sample different configurations, instead of picking
the first fifty explored configurations. However, this sampling can be done in different ways,
resulting on different configurations, and creating a different scenario with different failures
(more or less). We leave it as a future work to explore a good strategy to sample from these
configurations (COHEN; DWYER; SHI, 2006, 2007; MCGREGOR, 2001).

Although our techniques to rank configurations and decrease the number of inspections
seem to work well, they could further reduce the amount of inspections. For instance, we only
discovered 5 constraints from 19 inconsistent configurations inspected, because the user only
labels configurations instead of violated constraints. Consequently, the inferred model (MI) will
only be able to check if a configuration is inconsistent when it is more complete, leading to some

84 CHAPTER 5. CASE STUDY: GCC

unnecessary inspections. One way to mitigate this threat could be asking for the user to inform
the constraint violated by the configuration inspected, adding the constraint to the model instead
of the inconsistent configuration.

Finally, the degree of incompleteness of the feature model may impact the results,
increasing or decreasing the number of inspections. To alleviate this threat, we used one existing
feature model (incomplete) as an initial model to avoid exploration of known inconsistent
configurations.

858585

6
Related Work

This chapter discusses the related work regarding to SPLat and SPLif.

6.1 SPLat

6.1.1 Dynamic Analysis

Korat. SPLat was inspired by Korat BOYAPATI; KHURSHID; MARINOV (2002), a
test-input generation technique based on Java predicates. Korat instruments accesses to object
fields used in the predicate, monitors the accesses to prune the input space of the predicate, and
enumerates those inputs for which the predicate returns true. Directly applying Korat to the
problem of reducing the combinatorics in testing configurable systems is not feasible because
the feature model encodes a precondition for running the configurable system, which must be
accounted for. In theory, one could automatically translate a (declarative) feature model into an
imperative constraint and then execute it before the code under test, but it could lead Korat to
explore the entire space of feature combinations (up to 2N combinations for N features) before
every test execution. In contrast, SPLat exploits feature models while retaining the effectiveness
of execution-driven pruning by applying it with SAT in tandem. Additionally, SPLat can change
the configuration being run during the test execution (line 44 in Figure 3.4), which Korat did not
do for data structures.

Shared execution. Starting from the work of d’Amorim et al. D’AMORIM; LAUTER-
BURG; MARINOV (2007), there has been considerable ongoing research on saving testing time
by sharing computations across similar test executions APEL et al. (2013); AUSTIN; FLANA-
GAN (2012); CLASSEN et al. (2010); D’AMORIM; LAUTERBURG; MARINOV (2007);
HOSEK; CADAR (2013); KäSTNER et al. (2012); KIM; KHURSHID; BATORY (2012); KOL-
BITSCH et al. (2012); RHEIN; APEL; RAIMONDI (2011); TUCEK; XIONG; ZHOU (2009).
The key observation is that repeated executions of a test have much computation in common.
For example, Shared Execution KIM; KHURSHID; BATORY (2012) runs a test simultaneously
against several SPL configurations. It uses a set of configurations to support test execution,

86 CHAPTER 6. RELATED WORK

and splits and merges this set according to the different decisions in control-flow made along
execution. The execution-sharing techniques for testing SPLs differ from SPLat in that they
use stateful exploration; they require a dedicated runtime for saving and restoring program
state and only work on programs with such runtime support. Consequently, they have high
runtime overhead not because of engineering issues but because of fundamental challenges in
splitting and merging state sets at proper locations. In contrast, SPLat uses stateless explo-
ration GODEFROID (1997) and never merges control-flow of different executions. Although
SPLat cannot share computations between executions, it requires minimal runtime support
and can be implemented very easily and quickly against almost any runtime system that allows
feature variables to be read and set during execution.

Sampling. Sampling exploits domain knowledge to select configurations to test. A tester
may choose features for which all combinations must be examined, while for other features, only
t-way (most commonly 2-way) interactions are tested COHEN; DWYER; SHI (2006, 2007);
MCGREGOR (2001). Our dynamic program analysis safely prunes feature combinations, while
sampling approaches can miss problematic configurations APEL et al. (2013).

Spectrum of SPL testing techniques. Kästner et al. KäSTNER et al. (2012) define a
spectrum of SPL testing techniques based on the amount of changes required to support testing.
On the one end are black-box techniques that use a conventional runtime system to run the test
for each configuration; NewJVM is such a technique. On the other end are white-box techniques
that extensively change a runtime system to make it SPL-aware; shared execution is such a
technique. SPLat, which only requires runtime support for reading and writing to feature
variables, is a lightweight white-box technique that still provides an optimal reduction in the
number of configurations to consider.

6.1.2 Static Analysis

Kim et al. KIM; BATORY; KHURSHID (2011) developed a static analysis that performs
reachability, data-flow and control-flow checks to determine which features are relevant to the
outcome of a test. The analysis enables one to run a test only on (all valid) combinations of
these relevant features that satisfy the feature model. SPLat is only concerned with reachability,
so even if it encounters a feature whose code has no effect, it will still execute the test both
with and without the feature. But a large portion of the reduction in configurations in running
a test is simply due to the idea that many of the features are not even reachable. Indeed, as
Section 3.3 shows, SPLat determines reachable configurations with much greater precision and
is likely to be considerably faster than the static analysis because SPLat discovers the reachable
configurations during execution. Static analysis may be faster if its cost can be offset against
many tests (because it needs only be run once for one test code that allows different inputs), and
if a test run takes a very long time to execute (e.g. requiring user interaction). But such situations
do not seem to arise often, especially for tests that exercise a small subset of the codebase.

6.2. SPLIF 87

6.2 SPLif

6.2.1 Product Line Testing

Testing software product lines is an active area of research KIM et al. (2013); BORBA
et al. (2013); APEL et al. (2013); SHI; COHEN; DWYER (2012); SONG; PORTER; FOS-
TER (2012); KIM; KHURSHID; BATORY (2012); KäSTNER et al. (2012); KIM; BATORY;
KHURSHID (2011); GARVIN; COHEN (2011); CABRAL; COHEN; ROTHERMEL (2010);
UZUNCAOVA. (2008); QU; COHEN; ROTHERMEL (2008). The main focus of prior work
is to optimize test execution. Two approaches have been considered: (1) detection of relevant
products to test and (2) optimization of execution of sets of products.

For the first part the focus is to find the set of products that a test must be run against. Kim
et al. KIM; BATORY; KHURSHID (2011) proposed a static analysis to compute a conservative
approximation for the set of relevant products to run a given test. SPLat KIM et al. (2013) also
computes a sound estimate for the set of relevant products to test but it uses a low-overhead dy-
namic analysis, specifically execution-driven monitoring BOYAPATI; KHURSHID; MARINOV
(2002), to determine relevant products.

For the second part the focus is to reduce the cost of running a test against the products
that must be executed. Kim et al.’s shared execution KIM; KHURSHID; BATORY (2012)
allows sharing the results of computations that are common across different tests, thereby
allowing certain results, which under traditional execution would be computed multiple times,
to be computed just once. Kästner et al. KäSTNER et al. (2012) propose to model variability
as non-deterministic choices and then using a model checker to run the tests – which shares
computations common to different products and avoids the need to enumerate products for a
test. Nguyen et al. NGUYEN; KäSTNER; NGUYEN (2014) extends that work by applying
the technique proposed by Kästner et al. KäSTNER et al. (2012) to applications that build on
top of plugins. SPLif can benefit from test execution optimization by computing its results
more quickly. Moreover, SPLif’s output could be used to guide the selection of subsequent
configurations for execution.

Qu et. al. QU; COHEN; ROTHERMEL (2008) focus on regression testing of evolving
configurable software systems. They present an empirical study about the impact of configuration
selection heuristics used in regression testing on fault-detection capability. Their results highlight
that a number of bugs may be missed if certain configurations are not tested and that prioritizing
configurations allows for more effective testing. It is natural to consider the context of regression
testing for applying SPLif; this context would allow failing and passing runs across different
program versions to be compared and analyzed to more accurately identify causes of test failures
and inconsistent configurations.

Uzuncaova’s incremental approach UZUNCAOVA. (2008) addresses the test input
generation problem for product lines. The approach generates input for a product by augmenting

88 CHAPTER 6. RELATED WORK

previously generated inputs for other products. Test input generation techniques can directly
enhance the usefulness of SPLif, by providing it more passing and failing runs to analyze.

Al-Hajjaji et al. AL-HAJJAJI et al. (2014) propose a technique to speedup sampling
based on configuration dissimilarity. The rationale of this strategy is that dissimilar test cases
are likely to detect more defects than similar ones. Although SPLif uses similarity to rank
configurations, the goal is different SPLif uses similarity to speedup discovery of consistent
failing configurations whereas Al-Hajjaji et al. use dissimilarity to speedup sampling. We plan
to investigate how dissimilarity can improve SPLif even further.

6.2.2 Feature Model Extraction and Inference

There is a large body of work on inferring/extracting feature models CZARNECKI;
WASOWSKI (2007); ALVES et al. (2008); WESTON; CHITCHYAN; RASHID (2009); SHE
et al. (2011); RABKIN; KATZ (2011); LOPEZ-HERREJON et al. (2012); ACHER et al. (2012);
HASLINGER; LOPEZ-HERREJON; EGYED (2013); DAVRIL et al. (2013); XU et al. (2013)
that include: static analysis to extract feature dependencies from code, information retrieval and
data mining, evolutionary search, and algorithms based on propositional logic. She et al. SHE
et al. (2011), Rabkin and Katz RABKIN; KATZ (2011), and Xu et al. XU et al. (2013) use
static analysis to extract feature dependencies from code. Alves et al. ALVES et al. (2008)
and Davril et al. DAVRIL et al. (2013) use information retrieval/data mining. For example,
Davril et al. DAVRIL et al. (2013) use text mining to build a product-by-feature matrix, use AI’s
association rule learning to mine feature associations, and use a mix of specialized algorithms
and data mining to build diagrams. They assume there is an input list of consistent configurations.

Lopez-Herrejon et al. LOPEZ-HERREJON et al. (2012) use evolutionary search.
Haslinger et al. HASLINGER; LOPEZ-HERREJON; EGYED (2013) provide custom algo-
rithms, they assume that the user provides a list of all consistent configurations. Czarnecki
and Wasowski CZARNECKI; WASOWSKI (2007) extract feature models from propositional
formulas. Acher et al. ACHER et al. (2012) synthesize feature models by merging sets of
product descriptions. Weston et al. WESTON; CHITCHYAN; RASHID (2009) proposed a
guided process to generate feature models, based on natural-language requirements documents,
and represented these models in a way which details their semantic composition. None of the
above cited works exploit tests and their executions. SPLif uses test failures from inconsistent
configurations to infer incomplete feature models to support testing, which is intrinsically in-
complete. The techniques above can complement SPLif by making initial feature models more
complete; hence reducing effort in user inspection.

Recent techniques have been proposed to analyze and validate feature models. Segura et

al. SEGURA et al. (2010) propose using metamorphic testing for the automated generation of
test data for the analyses of feature models. Henard et al. HENARD et al. (2013) propose an
automated approach to find and fix inconsistencies between system and re-engineered feature

6.2. SPLIF 89

model, such as: (1) system configurations derived from the FM are incorrect with respect to the
system, and (2) existing valid configurations do not satisfy the feature model formula. After
finding those inconsistencies, they try to automatically fix them, so that the FM reflects its system.
Any further development to improve feature models will benefit SPLif.

6.2.3 Fault Localization

In this context, suspiciousness metrics have been proposed to rank code entities in terms
of their likelihood of containing faults JONES; HARROLD; STASKO (2002); RENIERIS;
REISS (2003); DALLMEIER; LINDIG; ZELLER (2005); ABREU; ZOETEWEIJ; GEMUND
(2006, 2007, 2009); CAMPOS et al. (2013). For example, Tarantula JONES; HARROLD;
STASKO (2002) is a tool that marks a statement as possibly faulty if it is primarily executed
by failing runs than by passing runs. It associates with each statement a suspiciousness metric
that indicates the likelihood of the statement being faulty based on the proportion of failing runs
executing it versus passing runs.

The Ochiai metric ABREU; ZOETEWEIJ; GEMUND (2006) is a more recently proposed
measure of the suspiciousness of a statement to be faulty, with its roots in biological study.
Campos et al. CAMPOS et al. (2013) recently proposed the use of information gain (in particular,
the entropy in the coverage profiles of test runs) to guide test generation so to obtain better fault
localization. In contrast with these approaches, SPLif ranks tests based on the ratio of failing
and passing configurations instead of ranking statements based on the ratio of failing and passing
test runs.

Ghandehari et al. GHANDEHARI et al. (2013) generate failure-inducing configurations –
for which they run existing tests – in an attempt to better localize faulty statements in code.
SPLif also discover faulty configurations, but consider constraints among features unlike then,
moreover it does not focus on faulty statements.

6.2.4 Configuration Troubleshooting

Some techniques have been recently proposed to deal with problematic configurations
in configurable systems GARVIN; COHEN; DWYER (2013); ZHANG; ERNST (2013, 2014);
SWANSON et al. (2014).

For instance, ConfDiagnoser ZHANG; ERNST (2013) and ConfSuggester ZHANG;
ERNST (2014) propose a technique to troubleshoot configuration errors caused by configurable
systems’ evolution. They use dynamic profiling, execution trace comparison, and static analysis
to link the undesired behavior to its root cause, a configuration option whose value can be
changed to produce desired behavior from the new software version.

Garvin et al. GARVIN; COHEN; DWYER (2013) try to predict future failure-prone
configurations in configurable system based on the history of this kind of failure; they use
configuration similarity to make this prediction. Swanson et al. SWANSON et al. (2014)

90 CHAPTER 6. RELATED WORK

builds on Garvin et al.’s approach, they propose an automated approach to detect failure and
its workaround (the features that led to failure), and thus to reconfigure configurable systems
in order to avoid future failures. These techniques complements SPLif, whose focus is on
classifying tests and configurations for inspection.

919191

7
Conclusion and Future Work

Software Product Lines (SPLs) are emerging as an important design and implementation
principle for controlling variability in families of related software products. Testing SPLs is
essential, and considerable recent research focuses on that topic. In the first part of this research,
SPLat assumes that SPLs come equipped with complete, formally specified feature models.
Unfortunately, this assumption does not always hold in practice. Thus, we proposed SPLif in
order to solve the problems related to the lack (or incompleteness) of FMs.

Firstly, we proposed SPLat, a new technique for reducing the combinatorics in testing
configurable systems. SPLat dynamically prunes the space of configurations that each test must
be run against. SPLat minimizes the number of configurations and does so in a lightweight way
compared to previous approaches based on static analysis and heavyweight dynamic execution.
Experimental results on 10 software product lines written in Java show that SPLat substantially
reduces the total test execution time in most cases. Moreover, our application of SPLat on a
large industrial code written in Ruby on Rails shows its scalability.

Lastly, presented SPLif, a new approach for testing SPLs with incomplete feature
models, or even no feature model at all. SPLif helps the user prioritize failing tests and
configurations for inspection. Our experiments showed that SPLif is promising and can scale
to large systems, such as GCC. In the near future, we plan to apply SPLif to other large
configurable systems and to optimize execution by leveraging the similarities across multiple
similar states D’AMORIM; LAUTERBURG; MARINOV (2008); KIM; KHURSHID; BATORY
(2012); NGUYEN; KäSTNER; NGUYEN (2014).

7.1 Future Work

We have discussed many improvements in sections of threats to validity (3.3.6, 4.3.7 and
5.5) that deserve to be deeply investigated and implemented in future. In general, it is possible
to improve the evaluation by applying SPLif to other large configurable system. It is also
possible to optimize SPLat execution by leveraging the similarities across multiple similar
states D’AMORIM; LAUTERBURG; MARINOV (2008); KIM; KHURSHID; BATORY (2012);

92 CHAPTER 7. CONCLUSION AND FUTURE WORK

NGUYEN; KäSTNER; NGUYEN (2014). More specifically, there are two main research lines
related to this work: feature model inference and regression testing of SPLs. The following we
detail some possible works that we started to invest in these lines, but requires more research and
development.

7.1.1 Feature Model Inference

Although substantial research has been done in inferring FM constraints, the problem
is still under active investigation mainly due to the limitations of existing techniques. One way
to complement this work would be inferring FM constraints from code by using static analysis.
Another, and complementary, way would be inferring FM constraints from documentation,
in order to face current limitations. This activity is fundamental to check the impact of the
incompleteness of the FM in results.

7.1.1.1 Feature Model Inference from Code - SPLand

The main goal of this approach is to quickly identify tests that fail to consistent products.
In this context, SPLand is similar to SPLif, but operates statically. The idea is that SPLand
could provide support for SPLif, extracting constraints or relations between features, from
source code, resulting in an initial model to serve as input to SPLif, instead of SPLif starting
its execution using an empty model. Optimizing thus SPLif execution and reducing user effort
both to validate products and to inspect code/test. And consequently, this process may result on
a more complete feature model, resulting from SPLand and SPLif.

This approach intends to use static analysis techniques to extract relations between
code members that are guarded by features, in order to infer constraints that will compose or
complement the feature model. As an example, from the code in Figure 7.1, it is possible to ex-
tract the following constraint: TOOLBAR∧WORDCOUNT =⇒ featureOf (wordCountButton),
based on the control-flow, where featureOf indicates that feature wordCountButton belongs
to features TOOLBAR and WORDCOUNT . Therefore, these features imply the feature that
wordCountButton belongs to, that means, the variable wordCountButton can only be accessed if
the features TOOLBAR and WORDCOUNT are enabled.

1 if(TOOLBAR){
2 if(WORDCOUNT){
3 wordCountButton.setToolTipText(Word count);
4 }
5 }

Figure 7.1: Peace of Notepad code.

7.1. FUTURE WORK 93

7.1.1.2 Feature Model Inference from Documentation - MIHCO

The purpose of this approach is to uses the crowd to infer configuration constraints from
existing documentation. As other crowd solving problems such as protein folding1 and character
recognition2, this approach proposes to formulate problems/questions which are relatively simple
for a large audience to solve but can be challenging for computers to solve. For that, MIHCO
would require input from a diverse community of users to infer configuration constraints from
short snippets of text original from existing documentation.

This proposal builds on the observation that long-standing popular configurable systems
provide rich documentation on how to use configuration options for customization; documen-
tation that has been scrutinized over time, certainly receiving feedback from a critical mass
of users. Our assumption is that documentation becomes more complete and more precise
as the system evolves with the active participation of a large community. For instance, the
following popular configurable systems has been under active development for at least a decade:
ApacheHTTP DOCUMENTATION (2014a), Firefox DOCUMENTATION (2014b), GCC DOC-
UMENTATION (2014c), and MySQL DOCUMENTATION (2014d).

The general idea is that MIHCO would work by extracting short snippets of text from
existing documentation. Where, each snippet of text corresponds to a description of a feature
option. If this description contains references for other options, we consider it as a question, that
is given for a large audience which should infer the relationship between the options contained
in the problem.

To illustrate how constraints can be inferred with this approach, we used GCC, which
contains 227 feature options in the Optimization module, from which we could formulate 149
problems. Figure 7.2 illustrates a problem elaborated from the existing GCC documentation. This
problem is given for crowd individuals that should infer a constraint like this: - f indirect-inlining

⇒ (- f inline- f unctions ∨ - f inline-small- f unctions) ∧ -O2.

From the following paragraph, write a propositional formula to
characterize (possible) option relationships:
-findirect-inlining: Inline also indirect calls that are discovered
to be known at compile time thanks to previous inlining. This
option has any effect only when inlining itself is turned on by the
-finline-functions or -finline-small-functions options.
Enabled at level -O2.

Figure 7.2: An example of a problem extracted from the documentation of optimization
module of GCC. This example can be find at: http:

//www.cin.ufpe.br/~sfs/survey/first.php?question=1&user=10.

It is important to note that documentation suffers from limitations (incompleteness and
imprecision). Nevertheless, we highlight that: (1) documentation may contain constraints which

1http://folding.stanford.edu
2http://recaptcha.net

http://www.cin.ufpe.br/~sfs/survey/first.php?question=1&user=10
http://www.cin.ufpe.br/~sfs/survey/first.php?question=1&user=10

94 CHAPTER 7. CONCLUSION AND FUTURE WORK

require specialized analysis for a particular language for detection or just can’t be detected
through static analysis at all NADI et al. (2014); (2) documentation is the amalgamating software
artifact that has the potential to unite a diversity of people – end users, managers, and developers –
around the key aspects of a configurable system. Learning from documentation can complement
existing reverse-engineering techniques and also make the documentation itself better (once
inferred models become useful).

7.1.2 Regression Testing of Software Product Lines

Automated tests are typically written to be used in regression testing, where they are
run not only once but multiple times on evolving versions of the code under test. An important
question is how to further speed up SPLat for regression testing. When we run a test for the
first time, we can record which configurations were relevant for this test. We can compactly
encode all these configurations as a decision tree for each test. Moreover, a number of tests can
share these trees. Then, when the code under test (or the test code itself) is changed, we need not
run the full SPLat() but can reuse the configuration tree from the previous run and execute only
those configurations.

However, note that there is a challenge here that the change (in the code under test or
the test itself) could have invalidated the set of relevant configurations. More precisely, there
can be (1) configurations that are not encoded in the tree but became relevant after the change,
and/or (2) configurations that are encoded in the tree but are not relevant any more after the
change. One way to solve this problem would be to produce a new version of SPLat algorithm
(RegressionSPLat) adapted for regression testing that can take an old tree, execute it on the new
code, and do the following:

1. If the tree remained a precise encoding of all the relevant configurations, then Re-
gressionSPLat finishes faster than SPLat;

2. If the tree is not precise any more, then RegressionSPLat can determine that change is
required (i.e., new configurations should be added and/or some existing configurations
should be removed) and can build a new tree, while running only a bit slower than
SPLat.

Since the case where the tree remains the same is much more common in the evolution of
real code, the speedup gain from case 1 significantly outweighs the slowdown loss from case 2.

The intuition is that the algorithm RegressionSPLat could minimally instrument the
accesses to feature variables in order to check that the variables accessed in the current exploration
actually match what is in the tree from the previous exploration. If RegressionSPLat find
any deviation, it can make all the SPLat exploration from scratch, or even better it could
incrementally only run the SPLat exploration on the subtrees where RegressionSPLat found
some change.

7.1. FUTURE WORK 95

In general, the idea is to extend SPLat and SPLif to support the evolution of SPLs and
configurable systems. The purpose is to speed up SPLat for regression testing, in order to avoid
re-executing all tests at every system version or after changes. And SPLif can use information
of regression test results to further avoid inspections. However, this last idea needs to be further
investigated.

969696

References

ABREU, R.; ZOETEWEIJ, P.; GEMUND, A. J. C. v. An Evaluation of Similarity Coefficients
for Software Fault Localization. In: PACIFIC RIM INTERNATIONAL SYMPOSIUM ON
DEPENDABLE COMPUTING, 12. Proceedings. . . [S.l.: s.n.], 2006. p.39–46. (PRDC ’06).

ABREU, R.; ZOETEWEIJ, P.; GEMUND, A. J. C. v. Spectrum-Based Multiple Fault
Localization. In: ASE ’09. 24TH IEEE/ACM INTERNATIONAL CONFERENCE ON
AUTOMATED SOFTWARE ENGINEERING. Anais. . . [S.l.: s.n.], 2009.

ABREU, R.; ZOETEWEIJ, P.; GEMUND, A. van. On the Accuracy of Spectrum-based Fault
Localization. In: TESTING: ACADEMIC AND INDUSTRIAL CONFERENCE PRACTICE
AND RESEARCH TECHNIQUES - MUTATION, 2007. TAICPART-MUTATION 2007.
Anais. . . [S.l.: s.n.], 2007. p.89–98.

ACHER, M. et al. On Extracting Feature Models from Product Descriptions. In: SIXTH
INTERNATIONAL WORKSHOP ON VARIABILITY MODELING OF
SOFTWARE-INTENSIVE SYSTEMS. Proceedings. . . [S.l.: s.n.], 2012. p.45–54. (VaMoS
’12).

AHO, A. V.; GRIFFETH, N. D. Feature Interactions in the Global Information Infrastructure. In:
ACM SIGSOFT SYMPOSIUM ON FOUNDATIONS OF SOFTWARE ENGINEERING, 3.
Proceedings. . . [S.l.: s.n.], 1995. p.2–4. (SIGSOFT ’95).

AL-HAJJAJI, M. et al. Similarity-based Prioritization in Software Product-line Testing. In:
SPLC. Anais. . . [S.l.: s.n.], 2014. p.197–206.

ALVES, V. et al. Extracting and Evolving Mobile Games Product Lines. In: INTERNATIONAL
CONFERENCE ON SOFTWARE PRODUCT LINES, 9. Proceedings. . . [S.l.: s.n.], 2005.
p.70–81. (SPLC’05).

ALVES, V. et al. An Exploratory Study of Information Retrieval Techniques in Domain
Analysis. In: INTERNATIONAL SOFTWARE PRODUCT LINE CONFERENCE, 2008. SPLC
’08., 12. Anais. . . [S.l.: s.n.], 2008. p.67–76.

ANDERSEN, N. et al. Efficient Synthesis of Feature Models. In: INTERNATIONAL
SOFTWARE PRODUCT LINE CONFERENCE - VOLUME 1, 16. Proceedings. . . [S.l.: s.n.],
2012. p.106–115. (SPLC ’12).

APEL, S.; BEYER, D. Feature Cohesion in Software Product Lines: An Exploratory Study. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 33. Proceedings. . .
[S.l.: s.n.], 2011. p.421–430. (ICSE ’11).

APEL, S. et al. Detection of Feature Interactions Using Feature-Aware Verification. In:
AUTOMATED SOFTWARE ENGINEERING (ASE), 2011 26TH IEEE/ACM
INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2011. p.372–375.

APEL, S. et al. Strategies for Product-Line Verification: case studies and experiments. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 2013. Proceedings. . .
[S.l.: s.n.], 2013. p.482–491. (ICSE ’13).

REFERENCES 97

APEL, S. et al. Feature-Oriented Software Product Lines: Concepts and Implementation.
Berlin/Heidelberg: [s.n.], 2013. 308 pages, ISBN 978-3-642-37520-0.

AUSTIN, T. H.; FLANAGAN, C. Multiple Facets for Dynamic Information Flow. In: ACM
SIGPLAN-SIGACT SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES,
39., New York, NY, USA. Proceedings. . . ACM, 2012. p.165–178. (POPL ’12).

BATORY, D. Feature Models, Grammars, and Propositional Formulas. In: INTERNATIONAL
CONFERENCE ON SOFTWARE PRODUCT LINES, 9. Proceedings. . . [S.l.: s.n.], 2005.
p.7–20. (SPLC’05).

BATORY, D.; SARVELA, J. N.; RAUSCHMAYER, A. Scaling Step-Wise Refinement. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 25., Washington, DC,
USA. Proceedings. . . IEEE Computer Society, 2003. p.187–197. (ICSE ’03).

BERGER, T. et al. Variability Modeling in the Real: A Perspective from the Operating Systems
Domain. In: IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE
ENGINEERING. Proceedings. . . [S.l.: s.n.], 2010. p.73–82. (ASE ’10).

BORBA, P. et al. Analysis, Test and Verification in the Presence of Variability (Dagstuhl
Seminar 13091). Dagstuhl Reports, Dagstuhl, Germany, v.3, n.2, p.144–170, 2013.

BOYAPATI, C.; KHURSHID, S.; MARINOV, D. Korat: Automated Testing Based on Java
Predicates. In: ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING
AND ANALYSIS, 2002. Proceedings. . . [S.l.: s.n.], 2002. p.123–133. (ISSTA ’02).

CABRAL, I.; COHEN, M. B.; ROTHERMEL, G. Improving the Testing and Testability of
Software Product Lines. In: INTERNATIONAL CONFERENCE ON SOFTWARE PRODUCT
LINES: GOING BEYOND, 14. Proceedings. . . [S.l.: s.n.], 2010. p.241–255. (SPLC’10).

CAMPOS, J. C. de et al. Entropy-Based Test Generation for Improved Fault Localization. In:
AUTOMATED SOFTWARE ENGINEERING (ASE), 2013 IEEE/ACM 28TH
INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2013. p.257–267.

CHANDRA, S. et al. Angelic Debugging. In: INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING, 33. Proceedings. . . [S.l.: s.n.], 2011. p.121–130. (ICSE ’11).

CHEN, Y. et al. Taming Compiler Fuzzers. In: ACM SIGPLAN CONFERENCE ON
PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION, 34. Proceedings. . .
[S.l.: s.n.], 2013. p.197–208. (PLDI ’13).

CLASSEN, A. et al. Model Checking Lots of Systems: Efficient Verification of Temporal
Properties in Software Product Lines. In: ND ACM/IEEE INTERNATIONAL CONFERENCE
ON SOFTWARE ENGINEERING - VOLUME 1, 32. Proceedings. . . [S.l.: s.n.], 2010.
p.335–344. (ICSE ’10).

CLEMENTS, P.; NORTHROP, L. M. Software Product Lines: practices and patterns. [S.l.]:
Addison-Wesley, 2001. (Professional).

COHEN, M. B.; DWYER, M. B.; SHI, J. Coverage and Adequacy in Software Product Line
Testing. In: ISSTA 2006 WORKSHOP ON ROLE OF SOFTWARE ARCHITECTURE FOR
TESTING AND ANALYSIS. Proceedings. . . [S.l.: s.n.], 2006. p.53–63. (ROSATEA ’06).

98 REFERENCES

COHEN, M. B.; DWYER, M. B.; SHI, J. Interaction testing of highly-configurable systems in
the presence of constraints. In: ISSTA ’07: PROCEEDINGS OF THE 2007 INTERNATIONAL
SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS, New York, NY, USA. Anais. . .
ACM, 2007. p.129–139.

CZARNECKI, K.; EISENECKER, U. Generative programming: methods, tools, and
applications. [S.l.]: Addison-Wesley, 2000.

CZARNECKI, K.; HELSEN, S.; EISENECKER, U. W. Formalizing Cardinality-Based Feature
Models and Their Specialization. Software Process: Improvement and Practice, [S.l.], v.10,
n.1, p.7–29, 2005.

CZARNECKI, K.; WASOWSKI, A. Feature Diagrams and Logics: There and Back Again. In:
INTERNATIONAL SOFTWARE PRODUCT LINE CONFERENCE, 11. Proceedings. . .
[S.l.: s.n.], 2007. p.23–34. (SPLC ’07).

DALLMEIER, V.; LINDIG, C.; ZELLER, A. Lightweight Defect Localization for Java. In:
EUROPEAN CONFERENCE ON OBJECT-ORIENTED PROGRAMMING, 19.
Proceedings. . . [S.l.: s.n.], 2005. p.528–550. (ECOOP’05).

D’AMORIM, M.; LAUTERBURG, S.; MARINOV, D. Delta Execution for Efficient State-space
Exploration of Object-oriented Programs. In: INTERNATIONAL SYMPOSIUM ON
SOFTWARE TESTING AND ANALYSIS, 2007. Proceedings. . . [S.l.: s.n.], 2007. p.50–60.
(ISSTA ’07).

D’AMORIM, M.; LAUTERBURG, S.; MARINOV, D. Delta Execution for Efficient State-Space
Exploration of Object-Oriented Programs. IEEE TSE, [S.l.], v.34, n.5, p.597–613, 2008.

DANIEL, B.; GVERO, T.; MARINOV, D. On Test Repair Using Symbolic Execution. In:
INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS, 19.
Proceedings. . . [S.l.: s.n.], 2010. p.207–218. (ISSTA ’10).

DAVRIL, J.-M. et al. Feature Model Extraction from Large Collections of Informal Product
Descriptions. In: JOINT MEETING ON FOUNDATIONS OF SOFTWARE ENGINEERING,
2013. Proceedings. . . [S.l.: s.n.], 2013. p.290–300. (ESEC/FSE 2013).

DejaGnu. DejaGnu.
http://www.gnu.org/software/dejagnu/.

DejaGnu directives. Syntax and Descriptions of test directives.
http:
//gcc.gnu.org/onlinedocs/gccint/Directives.html#Directives.

DOCUMENTATION, F.
http://preferential.mozdev.org/preferences.html.

DOCUMENTATION, G.
https://gcc.gnu.org/onlinedocs/gcc/Option-Index.html.

DOCUMENTATION, h.
http://httpd.apache.org/docs/current/mod/directives.html.

http://www.gnu.org/software/dejagnu/
http://gcc.gnu.org/onlinedocs/gccint/Directives.html#Directives
http://gcc.gnu.org/onlinedocs/gccint/Directives.html#Directives
http://preferential.mozdev.org/preferences.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Index.html
http://httpd.apache.org/docs/current/mod/directives.html

REFERENCES 99

DOCUMENTATION, M.
http://dev.mysql.com/doc/refman/5.0/en/dynindex-option.html.

FEST. FEST: fixtures for easy software testing.
http://fest.easytesting.org/.

GARVIN, B.; COHEN, M. Feature Interaction Faults Revisited: An Exploratory Study. In:
IEEE 22ND INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY
ENGINEERING (ISSRE). Anais. . . [S.l.: s.n.], 2011. p.90–99.

GARVIN, B.; COHEN, M.; DWYER, M. Failure Avoidance in Configurable Systems through
Feature Locality. In: Assurances for Self-Adaptive Systems. [S.l.: s.n.], 2013. p.266–296.
(Lecture Notes in Computer Science, v.7740).

GCC - Test. Preparing Testcases.
http://gcc.gnu.org/wiki/HowToPrepareATestcase.

GCC. GCC, the GNU Compiler Collection.
http://gcc.gnu.org/.

GCC Documentation. Options That Control Optimization.
gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#
Optimize-Options.

GCC Options. Option Summary.
http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html.

GHANDEHARI, L. et al. Fault Localization Based on Failure-Inducing Combinations. In: IEEE
24TH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING
(ISSRE). Anais. . . [S.l.: s.n.], 2013. p.168–177.

GHEYI, R.; MASSONI, T.; BORBA, P. Algebraic Laws for Feature Models. Journal of
Universal Computer Science, [S.l.], v.14, n.21, p.3573–3591, 2008.

GODEFROID, P. Model Checking for Programming Languages Using VeriSoft. In: ACM
SIGPLAN-SIGACT SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES,
24. Proceedings. . . [S.l.: s.n.], 1997. p.174–186. (POPL ’97).

GUIDSL.
http://www.cs.utexas.edu/~schwartz/ATS/fopdocs/guidsl.html.

HALL, R. Fundamental Nonmodularity in Electronic Mail. Automated Software Engineering,
[S.l.], v.12, n.1, p.41–79, 2005.

HASLINGER, E. N.; LOPEZ-HERREJON, R. E.; EGYED, A. On Extracting Feature Models
from Sets of Valid Feature Combinations. In: INTERNATIONAL CONFERENCE ON
FUNDAMENTAL APPROACHES TO SOFTWARE ENGINEERING (FASE). Proceedings. . .
[S.l.: s.n.], 2013. p.53–67.

HENARD, C. et al. Towards Automated Testing and Fixing of Re-engineered Feature Models.
In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 2013.
Proceedings. . . [S.l.: s.n.], 2013. p.1245–1248. (ICSE ’13).

http://dev.mysql.com/doc/refman/5.0/en/dynindex-option.html
http://fest.easytesting.org/
http://gcc.gnu.org/wiki/HowToPrepareATestcase
http://gcc.gnu.org/
gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
http://www.cs.utexas.edu/~schwartz/ATS/fopdocs/guidsl.html

100 REFERENCES

HOSEK, P.; CADAR, C. Safe Software Updates via Multi-version Execution. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2013). Anais. . .
[S.l.: s.n.], 2013.

Human-resource management system. 101Companies.
http://101companies.org/index.php/101companies:Project.

Instructions to students on generating new tests for SPLs.
http://www.cin.ufpe.br/~sfs/splif/experiments.html.

Java tokenizer and parser tools. JTopas.
http://jtopas.sourceforge.net/jtopas/index.html.

JONES, J. A.; HARROLD, M. J.; STASKO, J. Visualization of test information to assist fault
localization. In: ICSE. Anais. . . [S.l.: s.n.], 2002.

KANG, K. et al. Feature-Oriented Domain Analysis (FODA) Feasibility Study. [S.l.]:
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1990. Technical
Report. (CMU/SEI-90-TR-21).

KASTNER., C. Virtual Separation of Concerns: toward preprocessors 2.0. 2010. Tese
(Doutorado em Ciência da Computação) — Otto-von-Guericke-Universitat Magdeburg.

KäSTNER, C. et al. Toward Variability-Aware Testing. In: INTERNATIONAL WORKSHOP
ON FEATURE-ORIENTED SOFTWARE DEVELOPMENT, 4. Proceedings. . . [S.l.: s.n.],
2012. p.1–8. (FOSD ’12).

KICZALES, G. et al. An Overview of AspectJ. In: EUROPEAN CONFERENCE ON
OBJECT-ORIENTED PROGRAMMING, 15. Proceedings. . . [S.l.: s.n.], 2001. p.327–353.
(ECOOP ’01).

KIM, C. H. P.; BATORY, D. S.; KHURSHID, S. Reducing C in Testing Product Lines. In:
TENTH INTERNATIONAL CONFERENCE ON ASPECT-ORIENTED SOFTWARE
DEVELOPMENT. Proceedings. . . [S.l.: s.n.], 2011. p.57–68. (AOSD ’11).

KIM, C. H. P. et al. Reducing Configurations to Monitor in a Software Product Line. In: RV.
Anais. . . [S.l.: s.n.], 2010. p.285–299.

KIM, C. H. P. et al. SPLat: Lightweight Dynamic Analysis for Reducing Combinatorics in
Testing Configurable Systems. In: FOUNDATIONS OF SOFTWARE ENGINEERING, 2013.
Proceedings. . . [S.l.: s.n.], 2013. p.257–267. (ESEC/FSE 2013).

KIM, C.; KHURSHID, S.; BATORY, D. Shared Execution for Efficiently Testing Product Lines.
In: SOFTWARE RELIABILITY ENGINEERING (ISSRE), 2012 IEEE 23RD
INTERNATIONAL SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2012. p.221–230.

KOLBITSCH, C. et al. Rozzle: De-cloaking Internet Malware. In: IEEE SYMPOSIUM ON
SECURITY AND PRIVACY, 2012. Proceedings. . . [S.l.: s.n.], 2012. p.443–457. (SP ’12).

KORAT Home Page.
http://mir.cs.illinois.edu/korat/.

KRAMER, J. et al. CONIC: an integrated approach to distributed computer control systems.
Computers and Digital Techniques, IEE Proceedings E, [S.l.], v.130, n.1, January 1983.

http://101companies.org/index.php/101companies:Project
http://www.cin.ufpe.br/~sfs/splif/experiments.html
http://jtopas.sourceforge.net/jtopas/index.html
http://mir.cs.illinois.edu/korat/

REFERENCES 101

LE, V.; AFSHARI, M.; SU, Z. Compiler Validation via Equivalence Modulo Inputs. In: ACM
SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND
IMPLEMENTATION, 35. Proceedings. . . [S.l.: s.n.], 2014. p.216–226. (PLDI ’14).

LENGAUER, P. et al. Where Has All My Memory Gone?: Determining Memory Characteristics
of Product Variants Using Virtual-machine-level Monitoring. In: EIGHTH INTERNATIONAL
WORKSHOP ON VARIABILITY MODELLING OF SOFTWARE-INTENSIVE SYSTEMS.
Proceedings. . . [S.l.: s.n.], 2013. p.1–8. (VaMoS).

Library for object persistence. Prevayler. [S.l.: s.n.], 2013.
http://prevayler.org/.

Library to serialize objects to XML and back again. XStream.
http://xstream.codehaus.org/.

LOPEZ-HERREJON, R. E.; BATORY, D. S. A Standard Problem for Evaluating Product-Line
Methodologies. In: THIRD INTERNATIONAL CONFERENCE ON GENERATIVE AND
COMPONENT-BASED SOFTWARE ENGINEERING. Proceedings. . . Springer, 2001.
p.10–24. (GCSE ’01).

LOPEZ-HERREJON, R. E. et al. Reverse Engineering Feature Models with Evolutionary
Algorithms: An Exploratory Study. In: INTERNATIONAL CONFERENCE ON SEARCH
BASED SOFTWARE ENGINEERING, 4. Proceedings. . . [S.l.: s.n.], 2012. p.168–182.
(SSBSE’12).

MCGREGOR, J. Testing a Software Product Line. [S.l.]: CMU/SEI, 2001. Available from
http://www.sei.cmu.edu/pub/documents/01.reports/pdf/01tr022.pdf.
(CMU/SEI-2001-TR-022).

NADI, S. et al. Mining Configuration Constraints: static analyses and empirical results. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 36. Proceedings. . .
[S.l.: s.n.], 2014. p.140–151. (ICSE 2014).

NGUYEN, H. V.; KäSTNER, C.; NGUYEN, T. N. Exploring Variability-aware Execution for
Testing Plugin-based Web Applications. In: INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING, 36. Proceedings. . . [S.l.: s.n.], 2014. p.907–918. (ICSE 2014).

PLATH, M.; RYAN, M. Feature Integration Using a Feature Construct. Sci. Comput.
Program., [S.l.], v.41, n.1, p.53–84, 2001.

POHL, K.; BÖCKLE, G.; LINDEN, F. van der. Software Product Line Engineering:
foundations, principles and techniques. [S.l.]: Springer, 2005.

POST, H.; SINZ, C. Configuration Lifting: Verification Meets Software Configuration. In:
IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE
ENGINEERING, 2008. Proceedings. . . [S.l.: s.n.], 2008. p.347–350. (ASE ’08).

QU, X.; COHEN, M. B.; ROTHERMEL, G. Configuration-aware Regression Testing: An
Empirical Study of Sampling and Prioritization. In: INTERNATIONAL SYMPOSIUM ON
SOFTWARE TESTING AND ANALYSIS, 2008. Proceedings. . . [S.l.: s.n.], 2008. p.75–86.
(ISSTA ’08).

http://prevayler.org/
http://xstream.codehaus.org/
http://www.sei.cmu.edu/pub/documents/01.reports/pdf/01tr022.pdf

102 REFERENCES

RABKIN, A.; KATZ, R. Static Extraction of Program Configuration Options. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 33. Proceedings. . .
[S.l.: s.n.], 2011. p.131–140. (ICSE ’11).

REISNER, E. et al. Using Symbolic Evaluation to Understand Behavior in Configurable
Software Systems. In: ND ACM/IEEE INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING - VOLUME 1, 32. Proceedings. . . [S.l.: s.n.], 2010. p.445–454. (ICSE ’10).

RENIERIS, M.; REISS, S. P. Fault Localization With Nearest Neighbor Queries. In:
INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE).
Anais. . . [S.l.: s.n.], 2003. p.30–39.

RHEIN, A. V.; APEL, S.; RAIMONDI, F. Introducing Binary Decision Diagrams in the
Explicit-State Verification of Java Code. In: JPF WORKSHOP. Anais. . . [S.l.: s.n.], 2011.
Available from
http://babelfish.arc.nasa.gov/trac/jpf/attachment/wiki/events/
events/workshop2011/RheinBdd_sub.pdf.

SAT4J.
http://www.sat4j.org/.

SCHMID, K.; RABISER, R.; GRüNBACHER, P. A Comparison of Decision Modeling
Approaches in Product Lines. In: WORKSHOP ON VARIABILITY MODELING OF
SOFTWARE-INTENSIVE SYSTEMS, 5. Proceedings. . . [S.l.: s.n.], 2011. p.119–126.
(VaMoS ’11).

SCHOBBENS, P.-Y. et al. Generic Semantics of Feature Diagrams. Comput. Netw., [S.l.], v.51,
n.2, p.456–479, 2007.

SCHULER, D.; DALLMEIER, V.; ZELLER, A. Efficient Mutation Testing by Checking
Invariant Violations. In: EIGHTEENTH INTERNATIONAL SYMPOSIUM ON SOFTWARE
TESTING AND ANALYSIS. Proceedings. . . [S.l.: s.n.], 2009. p.69–80. (ISSTA ’09).

SEGURA, S. et al. Automated Test Data Generation on the Analyses of Feature Models: A
Metamorphic Testing Approach. In: THIRD INTERNATIONAL CONFERENCE ON
SOFTWARE TESTING, VERIFICATION AND VALIDATION (ICST). Anais. . . [S.l.: s.n.],
2010. p.35–44.

SHE, S. et al. Reverse Engineering Feature Models. In: INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING, 33. Proceedings. . . [S.l.: s.n.], 2011. p.461–470. (ICSE ’11).

SHI, J.; COHEN, M. B.; DWYER, M. B. Integration Testing of Software Product Lines Using
Compositional Symbolic Execution. In: INTERNATIONAL CONFERENCE ON
FUNDAMENTAL APPROACHES TO SOFTWARE ENGINEERING (FASE). Proceedings. . .
[S.l.: s.n.], 2012. p.270–284.

SONG, C.; PORTER, A.; FOSTER, J. S. iTree: Efficiently Discovering High-Coverage
Configurations Using Interaction Trees. In: INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING, 34. Proceedings. . . [S.l.: s.n.], 2012. p.903–913. (ICSE ’12).

SOUTO, S. et al. Faster Bug Detection for Software Product Lines with Incomplete Feature
Models. In: INTERNATIONAL CONFERENCE ON SOFTWARE PRODUCT LINES, 19.
Proceedings. . . [S.l.: s.n.], 2015. p.to–appear. (SPLC’15).

http://babelfish.arc.nasa.gov/trac/jpf/attachment/wiki/events/events/workshop2011/RheinBdd_sub.pdf
http://babelfish.arc.nasa.gov/trac/jpf/attachment/wiki/events/events/workshop2011/RheinBdd_sub.pdf
http://www.sat4j.org/

REFERENCES 103

SWANSON, J. et al. Beyond the Rainbow: Self-adaptive Failure Avoidance in Configurable
Systems. In: ND ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF
SOFTWARE ENGINEERING, 22. Proceedings. . . [S.l.: s.n.], 2014. p.377–388. (FSE 2014).

THAKER, S. et al. Safe Composition of Product Lines. In: INTERNATIONAL CONFERENCE
ON GENERATIVE PROGRAMMING AND COMPONENT ENGINEERING, 6.
Proceedings. . . [S.l.: s.n.], 2007. p.95–104. (GPCE ’07).

TILLMANN, N.; SCHULTE, W. Unit Tests Reloaded: Parameterized Unit Testing with
Symbolic Execution. Redmond, Washington: Microsoft Research, 2005. Technical Report.
(MSR-TR-2005-153).

TUCEK, J.; XIONG, W.; ZHOU, Y. Efficient Online Validation with Delta Execution. In:
ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING
SYSTEMS, 14. Proceedings. . . [S.l.: s.n.], 2009. p.193–204. (ASPLOS ’09).

UZUNCAOVA., E. Efficient Specification-based Testing Using Incremental Techniques.
2008. Tese (Doutorado em Ciência da Computação) — Department of Electrical and Computer
Engineering, University of Texas at Austin.

WEBSITE, S. P. L. Puzzle game. [S.l.: s.n.], 2013.
https://code.launchpad.net/~spl-devel/spl/default-branch.

WEISS, D. M. et al. Decision-Model-Based Code Generation for SPLE. In: INTERNATIONAL
SOFTWARE PRODUCT LINE CONFERENCE, 2008. SPLC ’08., 12. Anais. . . [S.l.: s.n.],
2008. p.129–138.

WESTON, N.; CHITCHYAN, R.; RASHID, A. A Framework for Constructing Semantically
Composable Feature Models from Natural Language Requirements. In: INTERNATIONAL
SOFTWARE PRODUCT LINE CONFERENCE, 13. Proceedings. . . [S.l.: s.n.], 2009.
p.211–220. (SPLC ’09).

XU, T. et al. Do Not Blame Users for Misconfigurations. In: TWENTY-FOURTH ACM
SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES. Proceedings. . . [S.l.: s.n.], 2013.
p.244–259. (SOSP ’13).

YANG, X. et al. Finding and Understanding Bugs in C Compilers. In: ND ACM SIGPLAN
CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION, 32.
Proceedings. . . [S.l.: s.n.], 2011. p.283–294. (PLDI ’11).

YOUNG, T. Using AspectJ to Build a Software Product Line for Mobile Devices. 2005.
Dissertação (Mestrado em Ciência da Computação) — University of British Columbia, British
Columbia, Canada.

Z3 Theorem Prover.
http://research.microsoft.com/en-us/um/redmond/projects/z3/.

ZAVE, P. Feature Interactions and Formal Specifications in Telecommunications. Computer,
[S.l.], v.26, n.8, p.20–28, Aug 1993.

ZELLER, A. Yesterday, My Program Worked. Today, It Does Not. Why? In: EUROPEAN
SOFTWARE ENGINEERING CONFERENCE HELD JOINTLY WITH THE 7TH ACM
SIGSOFT INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF SOFTWARE
ENGINEERING, 7. Proceedings. . . [S.l.: s.n.], 1999. p.253–267. (ESEC/FSE-7).

https://code.launchpad.net/~spl-devel/spl/default-branch
http://research.microsoft.com/en-us/um/redmond/projects/z3/

104 REFERENCES

ZHANG, S.; ERNST, M. D. Automated Diagnosis of Software Configuration Errors. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 2013. Proceedings. . .
[S.l.: s.n.], 2013. p.312–321. (ICSE ’13).

ZHANG, S.; ERNST, M. D. Which Configuration Option Should I Change? In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 36. Proceedings. . .
[S.l.: s.n.], 2014. p.152–163. (ICSE 2014).

	Introduction
	Problem Overview
	High Dimensionality
	Lack of Feature Models

	Solution Overview
	High Dimensionality
	Lack of Feature Models
	SPLat and SPLif

	Contributions
	Collaboration
	Outline

	Background
	Feature Models
	Graphical Representation
	Propositional Representation
	Modeling Incomplete Feature Models

	Building Approaches
	Compositional
	Annotative
	Variability Encoding
	Translating an SPL code from Annotative to Variability Encoding Format

	Product Line Testing
	Case: Testing GCC

	SPLat
	Example
	Technique
	Feature Model Interface
	Main Algorithm
	Example Run
	Reset Function
	Potential Optimization
	Feature Expression

	Implementation

	Evaluation
	Subjects
	Tests
	Comparison Techniques
	Results
	Case Study: Groupon
	SPLat Application
	Results

	Threats to Validity

	SPLif
	Illustrative Example
	Notepad
	A Notepad test (failure)
	SPLat
	SPLif in a nutshell
	SPLif on Notepad Tests

	Technique
	Test Exploration
	Test Ranking
	Configuration Ranking
	Algorithm

	Evaluation
	Subjects
	Setup
	Tests analyzed
	Initial Feature Model and Ground Truth

	Ranking Tests Using Suspiciousness Score
	Ranking Configurations
	Discussion

	Incremental Runs of SPLif
	Discussion of Test Failures
	Companies
	DesktopSearcher
	GPL
	Notepad
	ZipMe

	Threats to Validity

	Case Study: GCC
	Research Questions
	General Infrastructure
	The GCC Testing Infrastructure
	Implementation
	Instrumentation
	Execution

	Setup
	Tests Execution
	Tests Analyzed
	Options Analyzed
	Initial Feature Model and Ground Truth

	Results
	Ranking Tests and Configurations
	New Bugs Found
	New Configuration Constraints Found

	Threats to Validity

	Related Work
	SPLat
	Dynamic Analysis
	Static Analysis

	SPLif
	Product Line Testing
	Feature Model Extraction and Inference
	Fault Localization
	Configuration Troubleshooting

	Conclusion and Future Work
	Future Work
	Feature Model Inference
	Feature Model Inference from Code - SPLand
	Feature Model Inference from Documentation - MIHCO

	Regression Testing of Software Product Lines

	References

