UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE CIÊNCIAS BIOLÓGICAS
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS

ENZIMAS DE ORGANISMOS AQUÁTICOS E SUAS
APLICAÇÕES FISIOLÓGICAS

PATRÍCIA FERNANDES DE CASTRO

RECIFE
2009
ENZIMAS DE ORGANISMOS AQUÁTICOS E SUAS
APLICAÇÕES FISIOLÓGICAS

PATRÍCIA FERNANDES DE CASTRO

Tese apresentada ao Programa de Pós-Graduação em Ciências Biológicas da Universidade Federal de Pernambuco, como parte dos requisitos para obtenção do título de Doutor em Ciências Biológicas, área de concentração Biotecnologia

Prof. Dr. Ranilson de Souza Bezerra
Orientador

Prof. Dr. Luiz Bezerra de Carvalho Júnior
Co-orientador

RECIFE - PE
Março de 2009
Castro, Patrícia Fernandes de

175 folhas: il., fig., tab.

Inclui bibliografia e anexo.

<table>
<thead>
<tr>
<th>Código</th>
<th>CDU</th>
<th>UFPE</th>
<th>Código</th>
<th>CDD</th>
<th>CCB – 2009- 079</th>
</tr>
</thead>
<tbody>
<tr>
<td>591.133.2</td>
<td>2.ed.</td>
<td>UFPE</td>
<td>573.347</td>
<td>22.ed.</td>
<td>CCB – 2009- 079</td>
</tr>
</tbody>
</table>

FICHA CATALOGRÁFICA
UNIVERSIDADE FEDERAL DE PERNAMBUCO
Programa de Pós-Graduação em Ciências Biológicas
Área de concentração: Biotecnologia

ENZIMAS DE ORGANISMOS AQUÁTICOS E SUAS APLICAÇÕES FISIOLÓGICAS

A comissão examinadora, composta pelos professores abaixo, sob a presidência do primeiro, considera APROVADA a candidata PATRICIA FERNANDES DE CASTRO

Recife, 04 de março de 2009

Prof. Dr. Ranilson de Souza Bezerra (Orientador - Presidente)
Departamento de Bioquímica - UFPE

Profª. Dra. Maria Tereza dos Santos Correia (Membro Interno)
Departamento de Bioquímica – UFPE

Dra. Karina Ribeiro (Membro Interno)
Departamento de Bioquímica – UFPE

Prof. Dr. Wagner Cotroni Valenti (Membro Externo)
Centro de Aquicultura da UNESP – Jaboticabal

Prof. Dr. Silvio Ricardo Maurano Peixoto (Membro Externo)
Departamento de Aquicultura e Pesca – UFRPE
SUMÁRIO

DEDICATORIA ... i
AGRADECIMENTOS .. ii
LISTA DE FIGURAS ... iv
LISTA DE TABELAS .. x
RESUMO .. xii
ABSTRACT ... xiv

1. INTRODUÇÃO ... 1
 1.1. Enzimas ... 2
 1.2. Camarões marinhos ... 3
 1.3. A tilápia-do-Nilo (Oreochromis niloticus Linnaeus, 1758) .. 14

2. OBJETIVOS .. 24
 2.1. Objetivo Geral ... 24
 2.2. Objetivos Específicos ... 24

3. REFERÊNCIAS BIBLIOGRÁFICAS .. 25

4. CAPÍTULO 1: FISIOLOGIA DIGESTIVA DE CAMARÕES MARINHOS ... 36
 4.1. Artigo 1: Comparative study of amylases from the midgut gland of three penaeid shrimps .. 37
 4.2. Artigo 2: Digestive peptidases and proteinases in the midgut gland of the pink shrimp Farfantepenaeus paulensis (Crustacea, Decapoda, Penaeidae) ... 60
 4.3. Artigo 3: Digestive proteinases and peptidases in the hepatopancreas of the southern brown shrimp (Farfantepenaeus subtilis) in two sub-adult stages .. 71

5. CAPÍTULO 2: FISIOLOGIA DIGESTIVA DE PEIXES .. 83
 5.1. Artigo 4: Utilization of shrimp protein hydrolysate in Nile tilapia (Oreochromis niloticus) feeds .. 84
 5.2. Artigo 5: Profile of digestive enzymes from Nile tilapia (Oreochromis niloticus) submitted to diets with different concentrations of shrimp protein hydrolysate and its correlation with growth parameters ... 111

6. CONCLUSÕES .. 147
7. ANEXOS.. 148

7.1. Normas do Periódico Aquaculture Research... 149
7.2. Normas do Periódico Aquaculture International... 160
7.3. Normas do Periódico Journal of Fish Biology... 165
7.4. Indicadores de Produção 2005 – 2009.. 172
DEDICATÓRIA

A meus pais, Yolando (in memoriam), Roberto (in memoriam) e Aliete, sempre abnegados e incansáveis em minha formação como pessoa e profissional.

A minhas irmãs, Laura e Chris, Jujuba, tia Maria e vovó Laura (in memoriam), pelo amor, incentivo e confiança.
AGRADECIMENTOS

À Empresa Brasileira de Pesquisa Agropecuária – Embrapa Meio-Norte, pela liberação e apoio durante a realização do Curso.

Aos amigos da Embrapa Meio-Norte que assumiram todas as minhas atividades de pesquisa para que eu pudesse ser liberada.

Ao Programa de Pós-graduação em Ciências Biológicas da Universidade Federal de Pernambuco (UFPE) e Professores das Disciplinas, pela oportunidade de um maior aprendizado.

Aos Professores Dr. Ranilson de Souza Bezerra e Dr. Luiz Bezerra de Carvalho Júnior, pela orientação, confiança e amizade.

À Banca Examinadora, composta pelos Doutores: Ranilson de Souza Bezerra (Orientador), Maria Tereza dos Santos Correia (UFPE - Membro), Karina Ribeiro (UFPE - Membro), Wagner Cotroni Valenti (CAUNESP - Membro) e Silvio Ricardo Maurano Peixoto (UFRPE - Membro), pelas críticas e sugestões.

À Poytara Indústria de Rações, na pessoa de Júnior, pela fabricação das dietas experimentais.

Aos amigos Eudes de Souza Correia e Lourinaldo Barreto Cavalcanti pelo inestimável apoio e amizade.

A grande família Labenz , Marina Marcuschi, Helane Costa, Werlayne Mendes, Juliana Santos, Karina Ribeiro, Renata França, Talita ESPósito, Karollina Lopes, Juliete, Suzan Diniz, Mirela Assunção, Caio Dias, Ian Porto, Fábio Marcel, Diego Buarque, Ricardo Abadie, Janilson, Thiago Cahú, Robson Coelho, Robson Liberal (in memoriam), Felipe César, Anderson Henriques, Gilmar Cezar e Vitor, pela amizade e convivência extremamente agradável e construtiva.

Meu agradecimento especial a Augusto Freitas Jr. (Gutinho), irmão, amigo e companheiro de dias incansáveis de pipetagens e géis.
Aos funcionários do Departamento de Bioquímica da UFPE, Ibérico, Neide, João, Miron, Djalma e D. Helena por todos os galhos quebrados.

A todos aqueles que de alguma forma contribuíram para a realização deste trabalho e que, por culpa do Alz, deixaram de ser citados.
LISTA DE FIGURAS

Figura 1: Desempenho da carcinicultura marinha brasileira no período de 1998 a 2007 (Fonte: ABCC, 2008)... 5

Figura 2: Camarão nativo Farfantepenaeus subtilis.. 6

Figura 3: Camarão nativo Farfantepenaeus paulensis.. 6

Figura 4: Camarão nativo Litopenaeus schmitti.. 7

Figura 5: Camarão exótico Litopenaeus vannamei... 7

Figura 6: Esquema da anatomia do aparelho digestório de camarões (adaptado de Ceccaldi, 1997).. 8

Figura 7: Filtro-prensa do estômago de Penaeus monodon (adaptado de Lin, 2000).. 9

Figura 8: Diagrama da circulação do fluido gástrico e alimento no estômago de decápodes. Linhas pontilhadas: fluxo do alimento sólido; Linha contínua: fluxo do fluido; OES: Esôfago; AC: Câmara anterio ou cardíada; O: ossículos do moinho gástrico; LG: sulcos laterais; VG: sulcos ventrais; PC: Câmara posterior ou pilórica; PCG: Sulcos dorsais da câmara pilórica; AD: Divertículo anterior ou cece anterior; DG: abertura da glândula digestiva; FP; filtro-prensa; MG: intestino médio (DALL e MORIARTY, 1983)... 11

Figura 9: Classificação das proteases: Endoproteases clivam ligações peptídicas dentro da proteína (1). Exoproteases, mais especificamente as aminopeptidases, clivam resíduos localizados na posição N-terminal da proteína (2). Figura modificada de Gonzales e Robert-Baudouy (1996).. 12

Figura 10: Tilápia-do-nilo, Oreochromis niloticus (Linnaeus, 1758). Foto:. Eudes de Souza Correia... 15

Figura 11: Sistema digestório de peixes com diferentes hábitos alimentares (SMITH, 1989b).. 16

Figura 12: Porção do estômago cardíaco de juvenis de linguado: a) camada serosa; b) camada muscular longitudinal externa; c) camada muscular circular interna; d) músculo estriado; e) submucosa; f) glândulas gástricas; g) lámina própria; h) epitélio da mucosa i) lúmen (Adaptado de Rust, 2002).. 18
Artigo 1: Comparative study of amylases from the midgut gland of three penaeid shrimps

Figure 1: Effect of pH on amylase activity of Litopenaeus vannamei 25g (○), L. vannamei 11g (●), L. schmitti (□) and Farfantepenaeus subtilis (■) using starch as substrate. Values are shown in mean of six crude extracts obtained from three hepatopancreas each. Values were expressed as percentages of the highest activity (100%).

Figure 2: Effects of temperature on amylase activity of Litopenaeus vannamei 25g (○), L. vannamei 11g (●), L. schmitti (□) and Farfantepenaeus subtilis (■), using starch as substrate. Values are shown in mean of six crude extracts obtained from three hepatopancreas each. Values were expressed as percentages of the highest activity (100%).

Figure 3: Effects of thermal stability on amylase activity of Litopenaeus vannamei 25g (○), L. vannamei 11g (●), L. schmitti (□) and Farfantepenaeus subtilis (■), using starch as substrate. Values are shown in mean of six crude extracts obtained from three hepatopancreas each. Values were expressed as percentages of the highest (100%). Thermal stability was determined by assaying enzyme activity (25°C) after pre-incubation for 30 min at the indicated temperatures. Values were expressed as percentages of the highest activity (100%).

Figure 4: Electrophoresis (SDS-PAGE) from the midgut gland of Farfantepenaeus subtilis, Litopenaeus schmitti, Litopenaeus vannamei 25g and L. vannamei 11g.

Figure 5: Zymogram of amylase activity from the midgut gland of Farfantepenaeus subtilis, Litopenaeus schmitti, Litopenaeus vannamei 25g and L. vannamei 11g. α-amylase from Bacillus subtilis was used just as reference.

Artigo 2: Digestive peptidases and proteinases in the midgut gland of the pink shrimp Farfantepenaeus paulensis (Crustacea, Decapoda, Penaeidae)

Figure 1: Regression between aminopeptidase activity in midgut gland extracts from Farfantepenaeus paulensis juveniles using aminobenzyl β-naphthylamide as substrates (Arg, Leu, Lys, Phe and Val) and recommended concentrations for these essential amino acids in penaeid shrimp diets (GUILLAUME, 1997). Values expressed as mean ± s.d. (n=5).
Figure 2: Effects of pH on proteolytic activity in midgut gland extracts from *Farfantepenaeus paulensis* juveniles using BAPNA (A) and SAPNA (B) as substrates. Values expressed as mean ± s.d. (n=5)..65

Figure 3: Effects of temperature on proteolytic activity in midgut gland extracts from *Farfantepenaeus paulensis* juveniles using BAPNA (A) and SAPNA (B) as substrates. Values expressed as mean ± s.d. (n=5)..65

Figure 4: Thermal stability of proteolytic activity in midgut gland extracts from *Farfantepenaeus paulensis* juveniles using BAPNA (A) and SAPNA (B) as substrates. Enzyme activity was evaluated by recording activity at 25 °C after pre-incubation for 30 min at test temperatures. Values expressed as mean ± s.d. (n=5)..66

Figure 5: Effect of CaCl2 concentration on tryptic activity in midgut gland extracts from *Farfantepenaeus paulensis* juveniles. CaCl2 and NaCl were added for final concentrations of 1 to 100 mM. Tryptic activity was determined using BAPNA as substrate. Values expressed as mean ± s.d. (n=5). Bars with asterisks are significantly different (p>0.05)..66

Figure 6: Thermal stability of digestive proteinases in midgut gland extracts from *Farfantepenaeus paulensis* juveniles in substrate-SDS-PAGE. Lanes - proteinase activity after incubating crude extract for 30 minutes at each respective temperature. White dashed arrow: less intense bands at 55 °C. White arrow: thermoresistant bands at 85 °C. Before electrophoresis the samples were previously dialyzed..66

Figure 7: Inhibition of proteinase activity in midgut gland extracts from *Farfantepenaeus paulensis* juveniles in substrate-SDS-PAGE using specific inhibitors. Lanes: 1 – control (without inhibitors); 2 – PMSF; 3 – TLCK; 4 – Benzamidine; 5 - TPCK. Thermoresistant bands inhibited by PMSF and TPCK (white dashed arrows). Band inhibited by PMSF and benzamidine, but not by TLCK (white arrow). Band with the lowest molecular weight not inhibited by PMSF (double white arrow). Before electrophoresis the samples were previously dialyzed..67
Artigo 3: Digestive proteinases and peptidases from the hepatopancreas of southern brown shrimp (*Farfantepenaeus subtilis*) in two sub-adult stages

Figure 1: Correlation between aminopeptidase activity of *F. subtilis* SAS6 (A) and SAS13 (B) using aminoacyl β-naphthlamide as substrates and recommended concentration of essential amino acids for Penaeid shrimp feed. Values are shown as mean ± SD of triplicates of four crude extracts obtained from five hepatopancreases each. Concentration of amino acids expressed in % of crude protein: Arginine (5.8), Leucine (5.4), Lysine (5.3), Phenylalanine (4.0), Valine (4.0). *Based on Guillaume (1997).*

Figure 2: Effects of pH on proteolytic activity of *F. subtilis* SAS6 (●) and SAS13 (○) using BAPNA (A), SAPNA (B) and Leu-p-Nan (C) as substrates. Values are shown as mean ± SD of triplicates of four crude extracts obtained from five hepatopancreases each. The crude extract was incubated with the above substrates in different assays at the indicated pH for 15 min and reactions were measured at 405 nm. Values are expressed as percentage of the highest (100%) and were 7.20 mU mg⁻¹ for SAS6 and 5.15 mU mg⁻¹ for SAS13 using BApNA as substrate; 8.51 mU mg⁻¹ for SAS6 and 4.96 mU mg⁻¹ for SAS13 using SAPNA; and 0.29 mU mg⁻¹ for SAS6 and 0.25 mU mg⁻¹ for SAS13 Leu-p-Nan as substrate, respectively. SAS6: approximately 6 g of wet weight. SAS13: approximately 13 g of wet weight.

Figure 3: Effects of temperature on proteolytic activity from *F. subtilis* SAS6 (●) and SAS13 (○) using BAPNA (A), SAPNA (B) and Leu-p-Nan (C) as substrates. Values are shown as mean ± SD of triplicates of four crude extracts obtained from five hepatopancreases each. The crude extract was incubated with the above substrates in different assays at the indicated temperatures for 15 min and reactions were measured at 405 nm. Values are expressed as percentage of the highest (100%) and were 7.41 mU mg⁻¹ for SAS6 and 5.49 mU mg⁻¹ for SAS13 using BApNA as substrate; 46.09 mU mg⁻¹ for SAS6 and 28.02 mU mg⁻¹ for SAS13 using SAPNA; and 0.46 mU mg⁻¹ for SAS6 and 0.42 mU mg⁻¹ for SAS13 Leu-p-Nan as substrate, respectively. SAS6: approximately 6 g of wet weight. SAS13: approximately 13 g of wet weight.
Figure 4: Effects of thermal stability on proteolytic activity from *F. subtilis* SAS6 (●) and SAS13 (○) using BAPNA (A), SAPNA (B) and Leu-p-Nan (B) as substrates. Values are shown as mean ± SD of triplicates of four crude extracts obtained from five hepatopancreases each. Thermal stability was determined by assaying its activity (25°C) after pre-incubation for 30 min at the indicated temperatures. Values are expressed as percentage of the highest (100%) and were 7.14 mU mg⁻¹ for SAS6 and 4.93 mU mg⁻¹ for SAS13 using BAPNA as substrate; 9.89 mU mg⁻¹ for SAS6 and 4.26 mU mg⁻¹ for SAS13 using SAPNA; and 0.28 mU mg⁻¹ for both sub-adult stages using Leu-p-Nan as substrate, respectively. SAS6: approximately 6 g of wet weight. SAS13: approximately 13 g of wet weight.

Figure 5: Electrophoresis of extract from *F. subtilis* SAS6 and SAS13. Lanes: MW – molecular weight markers - Ovoalbumin (46 kDa), glyceraldehyde 3-phosphate dehydrogenase (36 kDa), carbonic anhydrase (29 kDa), trypsinogen (24 kDa) and β-lactalbumin (14.2 kDa); 1 – crude extract of *F. subtilis* SAS6; 2 – crude extract of *F. subtilis* SAS13. SAS6: approximately 6 g of wet weight. SAS13: approximately 13 g of wet weight.

Figure 6: Thermal stability zymogram of digestive proteases of hepatopancreas tissue from *F. subtilis* SAS6 (A) and SAS13 (B). Lanes: 1-25°C; 2-35°C; 3-45°C; 4-55°C; 5-65°C; 6-75°C. White dashed arrow – extra band observed in SAS6 when compared to the protease pattern observed for SAS13. White arrow – thermostable band in *F. subtilis* SAS6. SAS6: approximately 6 g of wet weight. SAS13: approximately 13 g of wet weight.

Figure 7: Zymogram of proteolytic inhibition of hepatopancreas from *F. subtilis* SAS6 (A) and SAS13 (B) using specific inhibitors. Lanes: C – control (without inhibitors). Inhibition: 1 – PMSF; 2 – TLCK; 3 – Benzamidine. White dashed arrows (A and B) – bands not inhibited by trypsin inhibitors. White arrow (A) – thermostable band (observed in Figure 5) from SAS6. Black arrow (A) – extra proteolytic band inhibited by PMSF, TLCK and benzamidine in crude extract from SAS6. SAS6: approximately 6 g of wet weight. SAS13: approximately 13 g of wet weight.
Artigo 4: Utilization of shrimp protein hydrolysate in Nile tilapia (*Oreochromis niloticus*) feeds

Figure 1: Scheme of shrimp protein hydrolysate production.. 101

Figure 2: Mean weight evolution of Nile tilapia fed diets with increasing shrimp protein hydrolysate (SPH) inclusion levels and commercial diet (COM) over a 45-days feeding trial (*different superscript letters differ significantly, P<0.05*). Data obtained from commercial diet were not used in statistical analysis................................. ...102

Artigo 5: Profile of digestive enzymes from Nile tilapia (*Oreochromis niloticus*) submitted to diets with different concentrations of shrimp protein hydrolysate and its correlation with growth parameters

Figure 1: Hydrolysis profile of SPH in sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) using stacking gel at 4% (w/v) and separation gel at 17%...142

Figure 2: Zymogram of digestive proteases (3% casein as substrate) of intestine from *O. niloticus* fed different diets... 143

Figure 3: Inhibition zymogram of digestive proteases (3% casein as substrate) of intestine from *O. niloticus* fed SPH 0... 144

Figure 4: Relationship between trypsin activity (8mM BAP NA as substrate) and (A) final weight (potential); (B) weight gain (polynomial); (C) average daily gain (potential); (D) specific growth rate (potential); (E) feed conversion ratio (polynomial); (F) [Protein] (potential); (G) [Lipid] (exponential) of *O. niloticus* fed different diets. Error bars represent S.E. of the mean trypsin activity (n=3).... 145

Figure 5: Relationship between aminopeptidase activity (AA of arginine as substrate) and (A) final weight (potential); (B) average daily gain (polynomial); (C) specific growth rate (polynomial); (D) feed conversion ratio (polynomial); (E) [Protein] (polynomial); (F) [Lipid] (polynomial) of *O. niloticus* fed different diets. Error bars represent S.E. of the mean aminopeptidase activity (n=3)........ 146
LISTA DE TABELAS

Artigo 1: Comparative study of amylases from the midgut gland of penaeid shrimps

Table 1: Proteolytic and amylolytic activity in the hepatopancreas of *Farfantepenaeus subtilis*, *Litopenaeus schmitti* and *Litopenaeus vannamei*, using azocasein and starch as substrates. Amylase:protease ratio is also displayed............................... 53

Table 2: Effect of different concentrations of ions (mM) on amylase activity of *Farfantepenaeus subtilis*, *Litopenaeus schmitti* and *L. vannamei*................................. 54

Artigo 2: Digestive peptidases and proteinases in the midgut gland of the pink shrimp *Farfantepenaeus paulensis* (Crustacea, Decapoda, Penaeidae)

Table 1: Proteolytic activity in midgut gland extracts from *Farfantepenaeus paulensis* juveniles using different substrates.. 64

Table 2: Effect of specific inhibitors on protease activity in midgut gland extracts from *Farfantepenaeus paulensis* juveniles... 64

Artigo 3: Digestive proteinases and peptidases from the hepatopancreas of southern brown shrimp (*Farfantepenaeus subtilis*) in two sub-adult stages

Table 1: Proteolytic activity in the hepatopancreas of *F. subtilis* SAS6 and SAS13 using specific and non-specific substrates... 75

Table 2: Effect of specific inhibitors on proteases of the hepatopancreas of *Farfantepenaeus subtilis* SAS6 and SAS13... 76

Artigo 4: Utilization of shrimp protein hydrolysate in Nile tilapia (*Oreochromis niloticus*) feeds

Table 1: Composition of the experimental diets... 104

Table 2: Proximate analysis of the commercial and experimental diets.......................... 105

Table 3: Growth performance and nutrient utilization in Nile tilapia fed diets with increasing substitution of fish meal by shrimp protein hydrolysate (SPH) and a commercial diet (COM)... 106
Table 4: Parameters of the mathematical models (Wt = ФLt θ) adjusted to length-weight data of fish fed diets with increasing shrimp protein hydrolysate (SPH) inclusion levels and commercial diet (COM) over a 45-days feeding trial.............................. 107

Table 5: Initial and final proximate composition (g kg⁻¹ on as-fish basis) of whole body of Nile tilapia fed diets with increasing shrimp protein hydrolysate (SPH) inclusion levels and commercial diet (COM) over a 45-days feeding trial.............................. 108

Table 6: Amino acid (AA) composition of shrimp protein hydrolysate (SPH) and other ingredients used in aquatic feeds expressed as percentage of dietary protein............. 109

Table 7: Growth performance of fishes fed diets with different marine protein sources as fish meal replacers... 110

Artigo 5: Profile of digestive enzymes from Nile tilapia (Oreochromis niloticus) submitted to diets with different concentrations of shrimp protein hydrolysate and its correlation with growth parameters

Table 1: Centesimal composite and energy of lyophilized SPH (Litopenaeus vannamei) according to Silva (2006)... 137

Table 2: Total amino acids content of the SPH (Litopenaeus vannamei) according to Silva (2006).. 138

Table 3: Composition and proximate analysis of the experimental diets... 139

Table 4: Digestive enzymes activity from the crude extracts of O. niloticus submitted to diets containing increasing shrimp protein hydrolysate (SPH) levels... 141
RESUMO

Nos últimos anos, tem-se observado um aumento na demanda por produtos pesqueiros, seguido por um significativo incremento na produção mundial de organismos aquáticos. O crescimento da indústria pesqueira gera, como consequência, uma grande quantidade de resíduos e subprodutos ricos em biomoléculas, que são indevidamente descartados no ambiente. Esses resíduos podem ser usados em diversos estudos relacionados à fisiologia digestiva de espécies aquáticas de interesse comercial e ao desenvolvimento de ingredientes alternativos que possam ser usados como componentes de rações animais. O objetivo do presente trabalho foi investigar enzimas digestivas do hepatopâncreas de camarões penêdeos e avaliar o efeito de dietas com diferentes concentrações de hidrolisado protéico de camarão (HPC) sobre o crescimento, a composição corporal e a fisiologia digestiva de juvenis de Oreochromis niloticus. Amilases do hepatopâncreas dos camarões Farfantepenaeus subtilis (13g), Litopenaeus schmitti (23g) e L. vannamei (com 11 e 25g) e proteases do F. subtilis (6 e 13g) e F. paulensis (8g) foram caracterizadas a partir de estudos de atividade enzimática, incluindo pH e temperatura ótima, estabilidade térmica, efeito de íons metálicos e de inibidores, eletroforeses e zimogramas. Amilases de todas as espécies estudadas apresentaram atividade residual superior a 85% em pH alcalino (7,0 a 8,0), em temperatura entre 40 e 50°C e não foram termoestáveis em temperaturas superiores a 55°C. O íon Ca²⁺ ativou as amilases apenas na concentração de 1mM, mas inibiu a enzima nas concentrações de 5 e 10mM. Os demais íons empregados inibiram fortemente as enzimas independentemente da concentração utilizada. O inibidor Tipo I de α-amilase foi altamente eficiente sobre as enzimas de F. subtilis e L. schmitti, mas os mesmos resultados não foram observados para o L. vannamei. O zimograma de atividade revelou nove isoformas de amilases para o F. subtilis, oito para o L. schmitti e sete para o L. vannamei de 11 e 25g, respectivamente. Atividades de tripsina, quimotripsina e leucino aminopeptidase foram detectadas em F. subtilis e F. paulensis. As maiores atividades de todas as proteínases também ocorreram em pH alcalino (7,5 a 9,0) e temperatura de 45 a 55°C. O zimograma de atividade revelou oito bandas proteolíticas para F. paulensis e seis para F. subtilis. As atividades de aminopeptidases (Arg, Leu, Lys, Phe, Val) e os níveis recomendados desses aminoácidos essenciais em dietas de camarões penêdeos apresentaram correlação positiva (P<0,05). Os efeitos de diferentes níveis de inclusão de hidrolisado protéico de camarão (HPC) em dietas sobre a atividade de enzimas digestivas de juvenis da tilápia do Nilo foram avaliados e correlacionados com parâmetros de crescimento com a composição corporal. O HPC foi incluído nas dietas em concentrações de 0, 1,5, 3 e 6%. Uma dieta comercial foi usada como referência. Hemoglobina, azocaseína, BAPNA, SApNA, α-β naftilamidas e amido foram usados como substratos. Apesar de terem sido observadas algumas diferenças, não houve correlação entre atividade enzimática e as diferentes
concentrações de HPC das dietas. O zimograma de atividade foi realizado para analisar as mudanças no perfil das proteases digestivas causadas pela inclusão do hidrolisado protéico. Foram observadas 12 bandas proteolíticas, oito das quais responderam à incorporação do HPC. O zimograma de inibição indicou uma diminuição na atividade de três enzimas com atividade de tripsina quando o nível de inclusão do HPC aumentou, enquanto que o inverso ocorreu para uma aminopeptidase. Perfis distintos de proteases foram encontrados para cada tratamento, sugerindo uma alta adaptabilidade da tilápia do Nilo às diferentes dietas. Atividades de tripsina e de aminopeptidase tiveram correlação positiva com parâmetros de crescimento e com o teor de proteína da carcaça e correlação negativa com a taxa de conversão alimentar e com o teor de lipídeos da carcaça. Uma vez que a digestão envolve a ação conjunta de diferentes enzimas, a compreensão adequada das características das enzimas envolvidas é necessária para que a capacidade digestiva das diferentes espécies possa ser estabelecida. O estudo das enzimas pode gerar informações básicas importantes para futuras pesquisas sobre nutrição das espécies, bem como servir como ferramenta para análise de diferentes dietas.

Palavras-chave: Enzimas digestivas, fisiologia digestiva, camarões marinhos, hidrolisado protéico de camarões, rações, tilápia do Nilo.
ABSTRACT

In the last years, there has been a general increase in human demand for fishery products, followed by a significant increase in the world production of aquatic organisms. The growth of fishery industry generates, as consequence, large amounts of wastes and by-products rich in biomolecules, which are discharged into environment. Fishery wastes can be used in several physiological studies related to digestive physiology of marketable aquatic species and to the development of alternative ingredients which can be used as component of animal feeds. The aim of the present work was to investigate digestive enzymes from the hepatopancreas of some peneaid shrimps and evaluate the effects of diets with different shrimp protein hydrolysate (SPH) concentrations on growth, body composition and digestive physiology of Oreochromis niloticus juveniles. Amylases from the hepatopancreas of Farfantepenaeus subtilis (13g), Litopenaeus schmitti (23g) and L. vannamei (11 and 25g) and proteases from F. subtilis (6 and 13g) and F. paulensis (8g) were characterized according the following properties: optima pH and temperature, thermal stability, effect of inhibitors and metallic ions, electrophoresis and zymograms. Amylases from all species presented residual activity above 85% at alkaline pH (7.0 – 8.0) and at 40 – 50°C and were not thermostable at temperatures greater than 55°C. Amylases of all species were activated by calcium chloride at 1mM but were inhibited at 5 and 10mM. All other ions employed showed inhibitory effect at any employed concentration. A strong inhibition of alpha-amylase Type I inhibitor on enzyme activity was observed for F. subtilis and L. schmitti, but the same result was not observed for L. vannamei. The substrate SDS-PAGE zymograms revealed nine isoforms of amylase for F. subtilis, eight for L. schmitti and seven and ten for L. vannamei of 11 and 25g, respectively. Trypsin, chymotripsyn and leucine-aminopeptidase activity was detected for F. subtilis and F. paulensis. The greatest activity of all proteinases also occurred at alkaline pH (pH 7.5 – 9.0) and temperature from 45 to 55 °C. The substrate SDS-PAGE zymograms revealed eight proteinase bands for F. paulensis and six ones for F. subtilis. Aminopeptidase activity (Arg, Leu, Lys, Phe, Val) and recommended concentrations of these essential amino acids in penaeid shrimp diets were positively correlated (p<0.05). The effects of different dietary inclusion levels of shrimp protein hydrolysate (SPH) on digestive enzyme activity of Nile tilapia juveniles were evaluated and correlated with growth parameters and body composition. SPH was included in diets at concentrations of 0, 1.5, 3 and 6%. A commercial diet was used as reference. Hemoglobin, azocasein, BApNA, SAPNA, AA-β naphthylamide and starch were used as substrates. Despite some differences, there was no correlation between enzyme activity and different SPH concentrations in the diets. Substrate-SDS-PAGE zymogram was also performed for the analysis of changes in the profile of Nile tilapia digestive proteases caused by the inclusion of protein hydrolysate. Zymograms revealed 12 proteolytic bands, eight of which responded to incorporation of SPH. Inhibition zymograms
indicated that there was a decrease in the activity of three enzymes with trypsin activity as SPH increases, whereas the opposite occurred for one aminopeptidase. Distinct protease profiles were also found for each treatment, suggesting adaptability of the Nile tilapia to the different diets. Trypsin and aminopeptidase activity was positively correlated with growth parameters and carcass protein content and negatively correlated with feed conversion ratio and carcass lipid content. Since digestion involves the joint action of different enzymes, adequate comprehension of enzyme characteristics is required for the assessment of the digestive capability of the different species. Enzyme studies may provide basic information useful for further nutritional researches, as well as be an efficient tool for analysis of different diets.

Keywords: Digestive enzymes, digestive physiology, shrimps, shrimp protein hydolysate, feeds, Nile tilapia.
INTRODUÇÃO

O aumento na demanda por produtos pesqueiros para consumo humano tem resultado em um constante crescimento da produção aquícola mundial, a qual apresentou um aumento de aproximadamente 21,6%, no período de 1997 a 2006. Em 2006, foram produzidas 159 milhões de toneladas de pescado, das quais 93 milhões foram oriundas da pesca e 66 milhões, da aquicultura (FAO, 2008).

Embora em termos percentuais a captura de organismos aquáticos ainda seja responsável por cerca de 60% do total de pescado produzido, essa atividade vem apresentando sinais de estabilização desde a década de 80. De acordo com dados da FAO (2008), no período de 1997 a 2006, a captura diminuiu de 95 para 93 milhões de toneladas, enquanto que a aquicultura cresceu 86%, passando de 35 para 66 milhões de toneladas.

Com o aumento da produção pesqueira e, conseqüentemente, do volume de pescado processado mundialmente, grande quantidade de resíduos e de subprodutos tem sido gerada. Tal fato representa um grande desafio para empresários e comunidade científica interessados em buscar estratégias para que a produção de organismos aquáticos, seja oriunda do extrativismo, seja da aquicultura, torne-se uma atividade sustentável. Segundo Arruda (2004), cerca de 50% do pescado mundial produzido em 2000 transformou-se em resíduo. Supondo que esse percentual tenha se mantido ao longo dos anos, das 159 milhões de toneladas de pescado produzidas em 2006, 79,5 milhões teriam sido descartadas, constituindo-se em uma fonte significativa de desperdício de recursos e de contaminação ambiental.

Além de poder ser utilizado para a produção de hidrolisado protéico, de farinha e óleo de peixe, os resíduos da indústria pesqueira são uma importante fonte de biomoléculas de interesse comercial. Dentre elas podem-se destacar enzimas como proteases, lipases e carboidrases, passíveis de aplicação em diversos segmentos do setor industrial (GILDBERG e STENBERG, 2001; SHAHIDI e JANAKKAMIL, 2001; GUPTA, BEG et al., 2002; ESPOSITO, AMARAL et al., 2009a; ESPOSITO, AMARAL et al., 2009b). Estudos com vísceras de pescado podem ser direcionados ao conhecimento da fisiologia digestiva de organismos aquáticos. O entendimento da capacidade enzimática digestiva de um determinado organismo pode facilitar a elaboração de dietas adequadas ao bom desenvolvimento de espécies com potencial para o cultivo comercial (KUZ’MINA, GLATMAN et al., 2003), uma vez que o aproveitamento dos nutrientes dietários depende da capacidade do organismo de digerir o alimento consumido (CHISTY, HASHIM et al., 2008).
1.1. **ENZIMAS**

As enzimas são biomoléculas protéicas capazes de catalisar, ou seja, de acelerar a velocidade das reações químicas nos organismos, diminuindo o nível de energia de ativação das reações (HARVEY, CHAMPE *et al.*, 2009). Na ausência da catálise, a maioria das reações nos sistemas biológicos ocorreria de forma tão lenta que a formação de seus produtos não atenderia, em tempo hábil, às exigências ou necessidades de um determinado organismo (BERG, TYMOCZKO *et al.*, 2004). A eficiência das enzimas em catalisar reações é tal que a velocidade de uma reação pode ser aumentada em até 10^{20} vezes (CAMPBELL e FARRELL, 2007).

As enzimas não reagem quimicamente com as substâncias sobre as quais atuam, nem alteram o equilíbrio das reações. De uma maneira geral, uma enzima liga-se ao seu substrato formando um complexo Enzima-Substrato (ES), de caráter transitório. Essa ligação ocorre em uma região específica da enzima denominada sítio ou centro ativo localizada em uma fenda ou bolsão tridimensional formado por grupamentos que vêm de diferentes partes da sequência linear de aminoácidos da enzima (BERG, TYMOCZKO *et al.*, 2004).

A maioria dos substratos forma, pelo menos, três pontos de ligação com as enzimas através de ligações fracas não covalentes tais como, interações eletrostáticas, pontes de hidrogênio, força de van der Waals e interações hidrofóbicas. A partir da formação do complexo ES existem então dois caminhos a serem seguidos: ou ocorre a dissociação em E e S ou a formação do produto (P) e a liberação da enzima (MURRAY, GRANNER *et al.*, 2002).

A atividade catalítica de uma enzima se constitui em um meio sensível e específico para sua mensuração. Assim, para se medir a quantidade de uma enzima em uma amostra, mede-se a velocidade de reação catalisada pela enzima. Os resultados são geralmente expressos em unidades enzimáticas e as quantidades relativas de enzima em diferentes extratos podem ser então comparadas. Uma unidade de enzima pode ser definida como a quantidade de substrato que reage ou do produto formado por minuto (MURRAY, GRANNER *et al.*, 2002).

Alguns fatores como, por exemplo, a temperatura, a concentração dos reagentes e o pH, afetam a velocidade das reações alterando a atividade enzimática. A elevação da temperatura pode aumentar a velocidade de uma reação catalisada por uma enzima até o limite no qual essa temperatura seja responsável pelo rompimento das ligações fracas que conferem a estrutura secundária-terciária da enzima e cause sua desnaturação. Embora haja enzimas que trabalhem bem em pH alcalinos, neutros ou ácidos, valores extremos podem desnaturá-las ou causar alterações em sua carga elétrica, alterando sua atividade.

As enzimas podem ainda ter sua atividade alterada pela presença de inibidores. A inibição pode ser irreversível, quando o inibidor se liga ao sítio ativo da enzima causando alterações estruturais. Os inibidores reversíveis podem ser de dois tipos: competitivos e não
competitivos. O primeiro apresenta semelhança estrutural com o substrato e se liga ao sítio ativo, formando um complexo enzima-inibidor e impedindo a ligação da enzima ao substrato. Diferentemente do inibidor irreversível, não há alteração na estrutura da enzima. O inibidor não competitivo se liga a outra região da enzima provocando uma alteração em sua estrutura, principalmente em torno do sítio ativo, impedindo a reação de catálise mesmo quando o substrato está ligado a ela.

O estudo das enzimas tem uma grande relevância prática. A determinação da atividade enzimática no plasma sanguíneo ou em tecidos, por exemplo, é importante no diagnóstico de certas doenças, e muitas drogas exercem seu poder biológico através de interações com enzimas. Essas moléculas são importantes ferramentas práticas não só na medicina, mas também na indústria química, alimentícia, têxtil, do couro, do papel, na agricultura (MURRAY, GRANNER et al., 2002; NELSON e COX, 2005b; DAMHUS, KAASGAARD et al., 2008) e na pecuária (SOUZA, LINDEMANNN et al., 2007)

Segundo Fernández, Moyano et al. (2001), informações bioquímicas sobre o arsenal enzimático de um organismo podem ser úteis na seleção de ingredientes a serem usados em rações, uma vez que seu perfil enzimático tem estreita relação com hábitos alimentares e com a dieta a que estão submetidos.

1.2. CAMARÕES MARINHOS

1.2.1 Histórico da produção de camarões marinhos e as espécies estudadas

Segundo dados da FAO (2008), no ano de 2006 a produção global de camarões marinhos foi de 6,625 milhões de toneladas (52,23% provenientes da pesca e 47,77%, da aquicultura). Desse total, 45,82% referem-se à captura e cultivo de apenas duas espécies de peneídeos: o *Litopenaeus vannamei* e o *Penaeus monodon*, principais espécies das Américas e Ásia, respectivamente.

No Brasil a situação se inverte, sendo a carcinicultura responsável por 62,82% das 103,46 mil toneladas de camarões produzidas em 2006 (IBAMA, 2008). Na pesca extrativa, os maiores representantes são os camarões rosa (*Farfantepenaeus paulensis, Farfantepenaeus subtilis* e *Farfantepenaeus brasiliensis*), o branco ou vila franca (*Litopenaeus schmitti*) e o sete barbas (*Xiphopenaeus kroyeri*). Apesar da representatividade desses peneídeos nas estatísticas da pesca nacional (76,07% do total capturado), a espécie exótica *L. vannamei* (camarão cinza) responde pela quase totalidade dos camarões cultivados.

O desenvolvimento da carcinicultura marinha no Brasil pode ser dividido em três fases principais, que se baseiam no cultivo de diferentes espécies e na adoção de diferentes práticas de manejo e de tecnologias. A primeira etapa corresponde ao período de 1978 a 1984 e foi representada pelo cultivo da espécie exótica *Marsupenaeus japonicus* em sistemas extensivos
Apesar de resultados iniciais bastante promissores, a espécie mostrou-se susceptível às variações na qualidade da água decorrentes de períodos chuvosos, o que inviabilizou sua produção no Nordeste do País.

Técnicos e produtores envolvidos no setor passaram então a avaliar as espécies nativas *F. subtilis*, *F. paulensis*, *F. brasiliensis* e *L. schmitti*, caracterizando assim, a segunda fase da carcinicultura nacional (MAIA, 1993). Durante aproximadamente dez anos de trabalho para domesticação dessas espécies, foi constatada a viabilidade dos processos de maturação, reprodução e larvicultura, entretanto, as produtividades obtidas nos cultivos eram tão baixas que não justificavam o investimento financeiro necessário. Segundo Brasil (2001), as observações resultantes desses trabalhos indicaram que o principal fator limitante ao crescimento dos camarões nativos esteve relacionado à falta de informações sobre os requerimentos nutricionais das espécies e à inexistência de rações que atendessem a suas exigências. Nessa etapa, ficou evidenciada a necessidade de um programa de pesquisa básica e aplicada para investigar os aspectos biológicos, reprodutivos e nutricionais desses camarões.

A terceira fase é finalmente caracterizada pelo cultivo do *L. vannamei*, espécie encontrada no norte do Peru até o norte do México e introduzida no país ainda na década de 80 (BARBIERI JÚNIOR e OSTRENSKY NETO, 2001), mas que teve seu cultivo estabelecido apenas em meados dos anos 90. Na Figura 1 pode ser vista a evolução da carcinicultura brasileira nessa fase. Em apenas cinco anos (1998 a 2003), a atividade apresentou um crescimento de 1244%. A partir de 2004, no entanto, eventos como o surgimento do vírus da mionecrose infecciosa, a queda no câmbio do dólar e a ação antidumping movida pelos EUA contra o camarão brasileiro provocaram uma queda na produção (ABCC, 2008).

F. paulensis (Pérez-Farfante, 1967) encontra-se distribuído ao longo da costa atlântica da América do Sul, de Ilhéus, na Bahia, até Mar del Plata, na Argentina (D'INCAO, VALENTINI et al., 2002). Essa espécie, também conhecida como camarão-rosa (Figura 3) é um dos crustáceos de maior importância para as regiões sul e sudeste do Brasil. Assim como diversos outros penédeos, em ambiente natural apresentam-se como onívoros oportunistas (DALL, HILL et al., 1990), entretanto, quando em cativeiro, demonstram um comportamento altamente carnívoro (SOARES, PEIXOTO et al., 2008).
Patrícia Fernandes de Castro

Introdução

![Figura 1 - Desempenho da carcinicultura marinha brasileira no período de 1998 a 2007 (Fonte: ABCC, 2008).](image)

L. schmitti (Bukenroad, 1936) é conhecido no Brasil como camarão branco ou camarão Vila Franca (Figura 4). A espécie é comumente encontrada em fundos lamosos e às vezes com areia, em profundidades que variam de 2 a 47 metros, embora sejam mais abundantes dos 15 aos 30m. São indivíduos de grande porte, atingindo comprimento de 235mm, habitando o oceano atlântico, na região das Antilhas, e na costa das Américas Central e do Sul, de Honduras até o sul do Brasil (PÉREZ-FARFANTE, 1970; HOLTHUIS, 1980).

L. vannamei (Boone, 1931) é originária do oceano Pacífico (Figura 5), ocorrendo em fundos lamosos e profundidades de até 72m, de Sonora, no México, até o norte do Peru encontrando-se distribuída de Sonora, no México, até o norte do Peru, em profundidades máximas de aproximadamente 72m (HOLTHUIS, 1980). Embora seja endêmico dessa região, a espécie, de hábito alimentar onívoro, foi introduzida em países de todo o mundo, onde é cultivada em sistemas semi-intensivo e intensivo. *L. vannamei* apresenta hábito alimentar onívoro e é mundialmente conhecida como camarão branco do Pacífico, tendo recebido o nome de camarão cinza no Brasil.
Figura 2 – Camarão nativo *Farfantepenaeus subtilis*

Figura 3 – Camarão nativo *Farfantepenaeus paulensis* (Fonte: www.pesca.sp.gov.br/imagens/244)
Figura 4 – Camarão nativo *Litopenaeus schmitti*

Figura 5 – Camarão exótico *Litopenaeus vannamei*
1.2.2 Aparelho digestório dos camarões

A nomenclatura das estruturas que compõem o sistema digestório em crustáceos apresenta divergências. Denominações diferentes para as mesmas estruturas podem ser vistas em diversos trabalhos que descrevem a morfologia do aparelho digestório dos camarões peneídeos (DALL e MORIARTY, 1983; DALL, HILL et al., 1990; GUILLAUME e CECCALDI, 1999) Essa controvérsia se baseia no fato de que alguns termos derivam de analogia feita com vertebrados, entretanto, determinadas classificações não se aplicam aos crustáceos, pois algumas das estruturas não apresentam as mesmas funções (DALL e MORIARTY, 1983)

O aparelho digestório de crustáceos (Figura 6), de uma maneira geral, está dividido em três partes: o intestino anterior, que engloba, o esôfago e o estômago ou proventrículo; o intestino médio onde se encontra o hepatopâncreas ou glândula do intestino médio e o intestino posterior, constituído pelo reto e ânus. Tanto o intestino anterior quanto o posterior são revestidos por uma camada quitino-protéica renovada a cada ciclo de muda (GUILLAUME e CECCALDI, 1999). O intestino anterior tem início na boca formada por um labro rígido e circundada por vários pares de apêndices especializados na quimiorecepção e apreensão dos alimentos (maxilas, maxílulas, mandíbulas e maxilípedes).

Figura 6 - Esquema da anatomia do aparelho digestório de camarões (adaptado de Ceccaldi, 1997).
O esôfago constitui-se em um tubo curto, reto e contrátil, revestido por uma camada quitino-protéica (GUILLAUME e CECCALDI, 1999), cuja função básica é conduzir o alimento ao estômago. O estômago ou proventrículo é uma estrutura mais complexa e se apresenta dividido em uma porção anterior (câmara cardíaca) e uma posterior (câmara pilórica), separadas por uma válvula cardio-pilórica. As duas câmaras são providas por peças calcáreas articuladas movidas por músculos específicos localizados na parede externa. Essas peças possuem funções diversas, segundo sua localização. Algumas peças são mais fortes e mais calcificadas (ossículos, discos e dentes) e localizam-se na câmara cardíaca, formando o moinho gástrico, cuja função é triturar os alimentos. Na câmara pilórica, encontram-se peças menores e menos calcificadas, que participam do processo de filtração. A ação combinada dessas peças possibilita a maceração do alimento e impede a passagem de partículas grandes para o intestino médio. A câmara pilórica está, por sua vez, dividida em uma porção dorsal, com sulcos laterais, que levam ao intestino médio, e outra ventral, onde se localiza o filtro-prensa. Essa estrutura é composta por um sistema de inúmeras micro-cerdas que filtram as partículas que passam para a glândula digestiva (Figura 7). Somente partículas menores que 1µm e fluido gástrico passam por essa rede de cerdas.

Figura 7 – Filtro-prensa do estômago de Penaeus monodon (adaptado de Lin, 2000).

A glândula digestiva ou hepatopâncreas dos peneídeo é constituída por dois lóbulos simétricos e pode representar de 2 a 6% da massa corporal. Ela é formada por uma centena de túbulos cegos que desembocam em câmaras que se abrem na porção pilórica do
Introdução

estômago. No interior dos túbulos se distinguem zonas de diferenciação celular, zonas responsáveis pela secreção de enzimas e pela absorção de nutrientes. Segundo Ceccaldi (1997), o hepatopâncreas apresenta diversas funções biológicas que incluem síntese e secreção de enzimas digestivas, digestão e absorção dos nutrientes da dieta, manutenção de reservas minerais e substâncias orgânicas, metabolismo de lipídeos e carboidratos, distribuição das reservas estocadas durante o período de intermuda e catabolismo de alguns compostos orgânicos.

O intestino médio se estende dorsalmente do final do estômago pilórico ao longo dos segmentos abdominais, terminando no reto e ánus que compõem o intestino posterior. Suas paredes apresentam cecos ou divertículos volumosos, onde se distinguem células nervosas, hemócitos e células endócrinas. Nessa região são secretados o muco e a película de quitina que envolve as fezes, mas essa membrana não impede a absorção dos nutrientes residuais presentes nas fezes.

Na Figura 8 encontra-se um diagrama da circulação do fluido gástrico e alimento no estômago de decápodos. De maneira sintética, o alimento é capturado pelos apêndices que circundam a boca, passa pelo esôfago e entra na câmara anterior do estômago, onde imediatamente se mistura com o fluido gástrico liberado pela glândula digestiva. O alimento circula repetidamente pelo estômago, sendo triturado pelas placas, dentes e ossículos do moinho gástrico. Após a trituração, o bolo alimentar segue para os sulcos ventrais e passa pelo filtro-prensa que exclui partículas superiores a 1µm, entrando por fim no lúmen da glândula digestiva.

1.2.3 Enzimas digestivas

Os peneídeos têm sido descritos como onívoros oportunistas, assim, o tipo de alimento ingerido pode variar em função de fatores como idade, tamanho e disponibilidade dos itens alimentares (DALL, HILL et al., 1990). De uma maneira geral, os peneídeos alimentam-se de grande variedade de invertebrados, detritos e algas, justificando uma ampla diversidade enzimática constituída por proteases, carboidrases e lipases (DALL e MORIARTY, 1983).

A digestão tem sido uma das áreas mais intensamente estudadas na nutrição de camarões (FERNÁNDEZ GIMENEZ, GARCÍA-CARREÑO et al., 2001), pois as propriedades das enzimas associadas a informações fisio-morfológicas do trato digestivo podem ajudar no entendimento e na determinação da capacidade digestiva destes organismos (VEGA-VILLASANTE, NOLASCO et al., 1995). Por causa da importância das enzimas digestivas na utilização dos nutrientes (FERNÁNDEZ, OLIVA et al., 1997), a compreensão do modo como elas atuam podem fornecer subsídios para uma correta formulação de rações com os
componentes adequados para o cultivo de camarões marinhos (MUHLIA-ALMAZÁN, GARCIA-CARREÑO et al., 2003).

Segundo Rodriguez, Le Vay et al. (1994), há um relacionamento próximo entre o hábito alimentar e as enzimas digestivas produzidas nos crustáceos, sendo a presença e a concentração destas um indicador da importância relativa de cada componente na dieta. A atividade específica dessas enzimas do trato digestivo pode ser usada para ilustrar a capacidade dos crustáceos de explorar várias dietas, com o intuito de suprir suas exigências nutricionais (JOHNSTON e FREEMAN, 2005).

Geralmente, crustáceos que apresentam um hábito alimentar tendendo a carnívoria possuem enzimas proteolíticas em concentrações elevadas, que condizem com sua habilidade em digerir os elevados níveis de proteína de sua dieta (JOHNSTON, HERMANS et al., 1995; JOHNSTON e YELLOWLEES, 1998). Por sua vez, as espécies que possuem um hábito alimentar mais onívoro e herbívoro apresentam concentrações mais elevadas de carboidrases, consistentes com sua habilidade de digerir carboidratos de origem animal e vegetal (BÄRLOCHER e PORTER, 1996).

As proteases estão entre as enzimas de crustáceos que recebem maior atenção (FERNÁNDEZ GIMENEZ, GARCIA-CARREÑO et al., 2002), pois são responsáveis pela digestão de proteínas dos alimentos ingeridos, liberando os aminoácidos essenciais ao crescimento (SÁNCHEZ-PAZ, GARCIA-CARREÑO et al., 2003). Dentre as proteases de maior
importância encontram-se a tripsina, a quimotripsina e as aminopeptidases. A tripsina e a quimotripsina são endoproteases, ou seja, clivam as ligações peptídicas dentro da proteína, enquanto que as aminopeptidases são exoproteases (Figura 9), isto é, clivam resíduos de aminoácidos na posição N-terminal da proteína (GONZALES e ROBERT-BAUDOUY, 1996).

A tripsina é a protease mais abundante no sistema digestivo de crustáceos (FERNÁNDEZ GIMENEZ, GARCIA-CARREÑO et al., 2002). Alguns autores têm enfatizado a importância desta enzima em peixeídos e estimam que sua contribuição para a digestão protéica seja em torno de 60% (SÁNCHEZ-PAZ, GARCIA-CARREÑO et al., 2003). Ela é um membro da família das serino proteases, as quais são caracterizadas por um mecanismo catalítico comum, envolvendo a presença de uma tríade catalítica composta de resíduos específicos: serina, histidina e ácido aspártico. Esta enzima cliva as ligações peptídicas no lado carboxila de resíduos de aminoácidos carregados positivamente como arginina e lisina (KOMKLÃO, BENJAKUL et al., 2007), sendo importantes em muitos processos biológicos como: digestão protéica propriamente dita, ativação de zimogênios e mediação entre a ingestão do alimento e a assimilação dos nutrientes (SAINZ, GARCIA-CARREÑO et al., 2004). Vale também destacar a ampla aplicabilidade industrial de tripsinas (KLEIN, LE MOULLAC et al., 1996). Tais características têm feito das tripsinas as enzimas mais estudadas em organismos aquáticos.

A quimotripsina é considerada a segunda enzima mais abundante no sistema digestivo de crustáceos considerando a atividade proteolítica (GARCIA-CARREÑO, HERNÁNDEZ-CORTÉZ et al., 1994). Esta protease é uma endopeptidase solúvel em água que catalisa a hidrólise de ligações peptídicas de proteínas na porção carboxila de aminoácidos aromáticos como: fenilalanina, tirosina e triptofano e também substratos sintéticos, tais como SAPNA (DE VECCHI e COPPES, 1996; VIPARELLI, ALFANI et al., 2001; ABUIN, LISSI et al., 2004; CASTILLO-YAÑEZ, PACHECO-AGUILAR et al., 2006).
As aminopeptidases são enzimas geralmente inespecíficas que catalisam a hidrólise em ligações peptídicas na posição N-terminal de proteínas liberando pequenos peptídeos e aminoácidos livres (GONZALES e ROBERT-BAUDOY, 1996). Essas enzimas atuam também catalisando a hidrólise de substratos artificiais tais como aminoacil-β-naftilamida (AA-NA) e aminoacil-p-nitroanilida (AA-Nan). Elas estão amplamente distribuídas na natureza e apresentam importâncias biológicas e médicas por causa da sua função na degradação de proteínas (OLIVEIRA, FREITAS et al., 1999).

Os polissacarídeos de reserva mais importantes são o amido, nos vegetais, e o glicogênio, nos animais, ambos com alto peso molecular. São polímeros de glicose em ligações α(1,4) nas cadeias principais e ligações α(1,6) nos pontos de ramificação, sendo o glicogênio mais compacto por apresentar mais ramificações em sua molécula (KAUSHIK, 1999).

Os efeitos da inclusão de carboidratos em dietas sobre o desempenho zootécnico de camarões penêdeos vêm sendo estudados há algumas décadas. As pesquisas demonstram que esses animais são capazes de digerir melhor carboidratos na forma de dissacarídeos e amido, do que na forma de glicose (SICK e ANDREWS, 1973; PIEDAD-PASCUAL, COLOSO et al., 1983; SHIAU e PENG, 1992). Em sua forma direta, a ingestão da glicose provoca uma saturação imediata na hemolinfa resultante de sua rápida absorção ao longo do trato digestivo, reduzindo a ingestão de alimentos, e pode ainda inibir a absorção de aminoácidos no intestino (SANTOS e KELLER, 1993; SHIAU, 1998). Por essas razões, sugere-se a utilização de moléculas mais complexas, como o amido e seus derivados (amilose e amilopectina) na elaboração de rações, uma vez que a absorção da glicose produzida só acontece após a hidrólise enzimática (ROSAS, CUZON et al., 2001).

Uma vez ingerido, o amido sofre a ação de diversas enzimas. A α-amilase [EC 3.2.1.1] é uma endocarboxidrase encontrada na saliva e no trato digestivo de animais vertebrados (SALEH, AFAF et al., 2005), responsável pela hidrólise de ligações glicosídicas α(1,4), no amido e glicogênio. Nesse processo são produzidos oligossacarídeos, α-dextrinas e maltose (VAN WORMHOUDT e FAVREL, 1988), que são hidrolisados à glicose pela ação complementar da α-glicosidase [EC 3.2.1.20], da sacarase-isomaltase [EC 3.2.1.48] e da α-dextrinase [EC 3.2.1.20]. Dentre essas, a α-glicosidase está diretamente relacionada à exo-hidrólise de ligações glicosídicas α(1,4) da maltose e demais oligossacarídeos formados após a atuação da α-amilase (LE CHEVALIER e VAN WORMHOUDT, 1998; DOUGLAS, MANDLA et al., 2000; ROSAS, CUZON et al., 2000).

Ao contrário de mamíferos e outros vertebrados, os crustáceos decápodos não utilizam carboidratos e lipídeos como fonte primária de produção de energia. Entretanto, alguns trabalhos já revelam que a inclusão de carboidratos nas dietas de algumas espécies de camarão promove um bom crescimento e eficiência alimentar, indicando que essas moléculas
apresentam a característica de poupar a proteína ("protein sparing"), liberando-a para o crescimento (CRUZ-SUÁREZ, RICQUE-MARIE et al., 1994; ROSAS, CUZON et al., 2000).

Para a escolha adequada de ingredientes a serem utilizados nas dietas de camarões, informações sobre o arsenal enzimático das espécies alvo são necessárias. Estudos nutricionais específicos para camarões marinholos nativos são ainda escassos, embora o êxito no cultivo de organismos aquáticos dependa, em grande parte, de uma nutrição adequada e de um bom manejo alimentar. Se considerarmos que o gasto com alimentação pode chegar a 50% dos custos de produção, é importante estudar os processos fisiológicos do organismo que afetam sua capacidade de consumo e de digestão dos alimentos, entre os quais a atividade enzimática desempenha um papel de vital importância.

1.3. A TILAÍA-DO-NILÓ (Oreochromis niloticus Linnaeus, 1758).

As tilápias são peixes nativos da África, Jordânia e Israel, representados por aproximadamente 70 espécies e cultivados em todo o mundo. As de importância comercial estão divididas em três gêneros, distintos pelo comportamento reprodutivo: Tilapia (incubam seus ovos em substratos); Sarotherodon (os ovos são incubados na boca dos machos e fêmeas) e Oreochromis, cujos ovos são incubados na boca das fêmeas (TREWAVAS, 1982).

A ampla distribuição do gênero, principalmente nas regiões tropicais e subtropicais, está associada à alta tolerância que apresenta às variações das condições ambientais. Apontada como a principal espécie da piscicultura brasileira devido a características biológicas e mercadológicas relevantes (FARIA, HAYASHI et al., 2001), a tilápiá é produzida em diferentes sistemas de cultivo e escalas, com maior ou menor dependência de insumos, principalmente ração.

No Brasil, a produção de tilápiá cultivada cresceu muito entre os anos de 2000 e 2006, passando de 32.459 para 71.253 toneladas, com um aumento médio de 19,92% ao ano no período (IBAMA, 2000; 2008). Embora ainda sejam encontrados cultivos com a tilápiá vermelha, híbridos de Oreochromis, a espécie mais cultivada no país é sem dúvida a tilápiá-do-niló, O. niloticus (Figura 10). De toda a produção da aquicultura continental brasileira em 2006, a tilápiá respondeu por 37,5% do volume produzido, sendo o peixe com maior representatividade. Sua importância se torna maior quando analisada sua participação na produção da Região Nordeste, onde correspondeu a 73,5% da produção da aquicultura continental, totalizando 26,4 mil toneladas.
1.3.1 Aparelho digestório de peixes

De uma forma geral, a compreensão da anatomia do sistema digestório dos organismos aquáticos facilita o entendimento de sua fisiologia digestiva. Os peixes podem ser classificados de acordo com o hábito alimentar em quatro categorias principais: detritívoros, herbívoros, onívoros e carnívoros. Em cada uma dessas categorias, os organismos podem ser eurímafagos (ingerem grande variedade de alimentos), estenómafagos (pequena variedade de itens alimentares) ou monómafagos (consomem apenas um tipo alimentar). A maioria dos peixes cultivados são carnívoros eurímafagos (salmão, linguado), herbívoros eurímafagos (carpas, milkfish) e onívoros eurímafagos, tais como bagre canal e tilápias (RUST, 2002). Embora haja exceções, a anatomia digestiva entre espécies de uma mesma classe é bastante similar, mas diferenças marcantes são observadas entre as classes (Figura 11).

As tilápias são peixes altamente oportunistas e sua alimentação pode variar em função de características como a idade, o sexo e a disponibilidade do alimento. Essa é uma característica chave para o enorme sucesso desses peixes na colonização de novos habitats (LOWE-MCCONNELL, 2000). As espécies do gênero *Oreochromis* são todas onívoras, alimentando-se de algas, plantas aquáticas, pequenos invertebrados, material detrital e bactérias associadas a biofilmes (FITZSIMMONS, 1997).

A digestão é uma ação coordenada de atividades físicas, químicas e enzimáticas que tem início tão logo o alimento entra na boca, e termina com a excreção das fezes. Incluídos nos processos físicos estão a apreensão, a trituração e amistura; o ácido clorídrico produzido pelo estômago é um processo químico que auxilia a hidrólise e quebra de compostos; os processos enzimáticos são mais específicos e envolvem um grande número de enzimas digestivas (RUST, 2002).

![Figura 11 – Sistema digestório de peixes com diferentes hábitos alimentares (SMITH, 1989b).](image-url)
Em geral, três processos são usados para a captura de alimentos pelas tilápias: a alimentação por sucção, na qual a presa é sugada para a cavidade bucofaringeal, com o peixe em estado estacionário; a mordida, no qual os dentes das mandíbulas superior e inferior são usados na captura, e a visual, no qual o peixe localiza e seleciona o alimento a ser ingerido. A alimentação por sucção e a visual são utilizadas para a ingestão de zooplânctons maiores, enquanto que a sucção sozinha, é usada na ingestão de bactérias livres, fitoplâncton e zooplâncton menores (BEVERIDGE e BAIRD, 2000). Para a mordida, as tilápias possuem de uma a cinco fileiras de dentes mandibulares utilizados na ingestão de alimentos como macrófitas, pequenos invertebrados, perifiton, detritos (LANZING e HIGGINBOTHAM, 1976; NORTHCOTT e BEVERIDGE, 1988; DEMPSTER, BEVERIDGE et al., 1993).

Independentemente do item alimentar a ser ingerido, o alimento é forçado através da cavidade bucofaringeal por fortes correntes de água geradas por áreas específicas da cavidade bucal, criando um mecanismo de transporte, posicionamento e reposicionamento da presa ou item alimentar, conhecido como língua hidrodinâmica (LIEM, 1991). O movimento de vai-e-vem dos ossos e dentes faringeanos permitem a quebra do alimento em fragmentos menores, a ruptura das paredes celulares de materiais de origem vegetal, aumentando a área superficial dos alimentos e facilitando a digestão (BOWEN, 1982).

Segundo Rust (2002), os órgãos digestivos em peixes são aqueles onde os alimentos são transformados em nutrientes e absorvidos pelos organismos. Esses órgãos incluem o esôfago posterior, o estômago (nas espécies gástricas) ou bulbo intestinal (nas agástricas), o intestino superior e inferior e os cecos pilóricos. Como órgãos de suporte encontram-se o pâncreas, a vesícula biliar e o fígado.

Após passar por um esôfago muito curto, o alimento entra no estômago, o qual apresenta três regiões distintas, correspondendo às porções cardíaca (initial), fúngica (mediana) e a pilórica (terminal) nos mamíferos. Quatro camadas de tecido distintas podem ser encontradas nos órgãos digestivos de peixes (CACECI, EL-HABBACK et al., 1998; RUST, 2002): partindo-se do lúmen distinguem-se a mucosa, a submucosa, a muscular e a serosa. A mucosa é composta por uma variedade de células colunares epiteliais que formam as rugosidades; a submucosa é composta por tecido conectivo que serve de suporte para a mucosa; a muscular é composta por duas camadas de músculo, uma longitudinal externa e outra circular interna, que ajudam no movimento do conteúdo do lúmen; a serosa é uma camada de células mesoteliais sobre tecido conectivo frouxo (Figura 12). Na mucosa, sobretudo da porção fúngica, encontram-se as glândulas gástricas formadas por células oxintopépticas responsáveis pela secreção de ácido clorídrico, enzimas digestivas, mucos e hormônios (RUST, 2002; ROTTA, 2003). A função do estômago é começar a transformação do alimento em digesta, liberando nutrientes solúveis. Seus músculos misturam o conteúdo
estomacal para facilitar o contato entre o bolo alimentar e o suco gástrico (BEVERIDGE e BAIRD, 2000).

O esfincter pilórico define o limite posterior do estômago, cuja função é controlar a taxa de passagem da digesta altamente ácida para a parte superior do intestino, o que é importante não só porque auxilia no controle do tempo de contato do alimento com o suco gástrico, como no controle da quantidade de material ácido que entra no intestino. Secreções produzidas no pâncreas e na vesícula biliar contendo bicarbonato de sódio entram no intestino, via ducto biliar, elevando o pH para níveis mais neutros ou ligeiramente alcalino (RUST, 2002).

![Figura 12 – Porção do estômago cardíaco de juvenis de linguado: a) camada serosa; b) camada muscular longitudinal externa; c) camada muscular circular interna; d) músculo estriado; e) submucosa; f) glândulas gástricas; g) lâmina própria; h) epitélio da mucosa i) lúmen (Adaptado de RUST, 2002)](image)

O intestino é um órgão relativamente simples e, embora nem sempre haja uma separação distinta como nos mamíferos, é considerado como tendo duas partes: uma porção anterior superior, denominada intestino ascendente ou delgado, e uma porção posterior inferior, conhecida por intestino descendente ou grosso (RUST, 2002). Possui glândulas digestivas e um suprimento abundante de vasos, onde se completa a digestão iniciada no estômago. No
Introdução

O intestino é onde ocorre a maior parte da absorção dos nutrientes, íons e água oriundos da dieta, sendo os produtos da digestão mantidos em solução, o que facilita a absorção. Nos peixes, além da função de digestão e absorção, o intestino pode desempenhar outras funções, como auxiliar na osmorregulação ou na respiração (ROTTA, 2003).

Histologicamente, o intestino superior difere do inferior na quantidade de células globet que são mais escassas e na camada muscular que é mais fina no intestino inferior. Há uma mudança de um epitélio colunar de células secretoras e de absorção para um epitélio cuboidal escamoso que secreta basicamente muco no intestino inferior (SMITH, 1989a).

Nos peixes, o pâncreas pode se apresentar como uma estrutura individualizada ou em forma difusa, com nódulos pancreáticos espalhados no tecido adiposo, mesentério, fígado, duto biliar, vesícula biliar, cecos pilóricos, intestino, etc (SMITH, 1989b).

As tilápias não apresentam os cecos pilóricos, que nos demais peixes, são circundados por tecido pancreático e são responsáveis pela produção de enzimas digestivas como proteases alcalinas, amilases e lipases e pela secreção de hormônios como a insulina, glucagon. Em contrapartida, possuem um intestino muito longo, (cerca de 7 a 14 vezes o comprimento padrão do corpo), o que pode compensar a ausência de cecos pilóricos (SHELTON e POPMA, 2006). As principais funções do intestino estão ligadas à secreção de enzimas e hormônios e à absorção de nutrientes.

1.3.2 Enzimas digestivas em peixes

a) Fluidos e enzimas gástricas

Segundo Rotta (2003), as secreções do estômago, produzidas na região fúndica, incluem água, sais inorgânicos, hormônios, muco (mucina), ácido clorídrico a 0,1 N, pepsinogênio e lipase gástrica. A secreção ácida nas tilápias pode ter um pH 1,0, o que parece auxiliar a ruptura das paredes celulares das algas. A secreção de muco e suco gástrico estão condicionadas à presença de alimentos na luz do estômago, a hormônios e a estímulos neurais do nervo vago. O muco, alcalino, protege a mucosa estomacal da ação do ácido clorídrico e também da irritação mecânica dos alimentos.

A pepsina é, sem dúvida, a principal protease ácida dos peixes, produzida na forma inativa de pepsinogênio (FÄNGE e GROVE, 1979). A enzima é ativada inicialmente em condições ácidas, através da remoção de um peptídeo de baixo peso molecular pelo ácido clorídrico e continua o processo de transformação por autocatálise. O ácido clorídrico estimula ainda a estimula a liberação do hormônio secretina, responsável pela descarga do suco pancreático rico em íons bicarbonato que irão auxiliar na neutralização do pH no intestino (ROTTA, 2003).
Algumas enzimas não proteolíticas como amilase, lipase, esterase, quitinase, celulase, têm sido registradas no estômago de peixes (FÄNGE e GROVE, 1979; GUILLAUME e CHOUBERT, 1999; RUST, 2002). As tilápia apresentam lipase e amilase gástrica, mas essa enzima hidrolisa apenas as gorduras de baixo ponto de fusão e já emulsificadas. A ação sobre as gorduras da dieta é mais completa e mais eficaz pela lipase pancreática (FÄNGE e GROVE, 1979; ROTTA, 2003).

b) Enzimas pancreáticas

O suco pancreático é rico em enzimas que atuam na digestão de proteínas, carboidratos, gorduras e nucleotídeos. Tripsina, quimotripsina, carboxipeptidases e elastase são armazenadas nas células pancreáticas na forma de zimogênios. Ao chegar ao lúmen intestinal, a tripsina é ativada pela enteroquinase produzida por células da mucosa intestinal e, em seguida, a própria tripsina ativa outras enzimas como quimotripsina, colagenase, elastase e lipase (RUST, 2002). Além das citadas anteriormente, as enzimas pancreáticas incluem: amilases, quitinases, lipases, esterases, aminopeptidases e ribonucleases (FÄNGE e GROVE, 1979; GUILLAUME e CHOUBERT, 1999; RUST, 2002).

c) Enzimas intestinais

Dados divergentes são encontrados na literatura sobre a secreção de enzimas digestivas por células intestinais. Fänge e Grove (1979) citam que enzimas intestinais são produzidas nas membranas da borda em escova do epitélio intestinal. Segundo Guillaume e Choubert (1999), o intestino de peixes não secreta enzimas digestivas. Os autores concordam, contudo, que a atividade enzimática detectada no fluido intestinal pode ser de origem alimentar, bacteriana, estomacal ou principalmente pancreática, visto que enzimas pancreáticas tendem a se ligar ao glicocálix das células epiteliais. As enzimas ditas como sendo produzidas pela mucosa intestinal incluem aminopeptidases, di e tripeptidases, nucleosidades alcalinas e ácidas, polinucleosidases, lectinases, lipases e outras esterases, amilases, maltase, isomaltase, sacarase, lactase, trealase e laminarinase.

1.3.3 Ingredientes alternativos em rações para peixes

A produção de organismos aquáticos em cativeiro requer rações de alta qualidade, com alto conteúdo protéico (LARA-FLORES, OLVERA-NOVOA et al., 2003) e a farinha de peixe ainda permanece como a principal fonte protéica, compreendendo entre 20 e 60% das rações para peixes (WATANABE, 2002). A farinha é uma excelente fonte de aminoácidos e ácidos
graxos essenciais, vitaminas, minerais e, geralmente, aumenta a palatabilidade da ração (El-SAYED, 1999; DAVIS e ARNOLD, 2000). Por ser uma “commodity” de oferta limitada e demanda crescente, a sua disponibilidade e a constante flutuação nos seus preços podem afetar seriamente a sustentabilidade e rentabilidade da aquicultura (FARIA, HAYASHI et al., 2001; OLVERA-NOVOA, OLIVERA-CASILLO et al., 2002). Em longo prazo, muitos países em desenvolvimento serão incapazes de manter a utilização da farinha de peixe como a principal fonte de proteína em rações aquáticas.

A determinação de fontes protéicas de menor custo e que promovam bom crescimento é vantajoso tanto para a indústria de rações como para os aquicultores (COYLE, MENGEL et al., 2004). Assim, pesquisas têm sido cada vez mais direcionadas a fontes protéicas alternativas que sejam de baixo custo e prontamente disponíveis, como substitutas para a farinha de peixe (WEE e WANG, 1987; WATANABE, 2002).

Diversos produtos têm sido utilizados com o propósito de substituir total ou parcialmente a farinha de peixe em rações aquáticas, incluindo subprodutos de pescado ou de animais terrestres, sementes oleaginosas, plantas aquáticas, concentrados protéicos, proteína de organismos unicelulares (single cell protein) e subprodutos de leguminosas e cereais (OLVERA-NOVOA, PEREIRA-PACHECO et al., 1997; PLASCÊNCIA-JATOMEA, OLVERA-NOVOA et al., 2002; EL-SAIDY e GABER, 2003; GABER, 2006).

O farelo de soja tem sido preconizado como a principal fonte protéica de origem vegetal em rações para peixes (FURUYA, HAYASHI et al., 2001a), por apresentar alto teor de proteína, um bom perfil de aminoácidos, preço razoável e composição e disponibilidade constantes. Entretanto, seu percentual de metionina é baixo e, além disso, esse farelo pode conter 30% de carboidratos indigestíveis e vários compostos ou fatores antinutricionais que podem prejudicar os processos digestivos (HERNÁNDEZ, MARTÍNEZ et al., 2006). Assim, a utilização desse ingrediente em rações animais exige um adequado processo de fabricação do produto, como o aquecimento para inativação dos fatores antinutricionais (FURUYA, PEZZATO et al., 2001b), ou a necessidade de suplementação de aminoácidos para complementar o seu perfil de aminoácidos (FURUYA, PEZZATO et al., 2001c).

De forma geral, a viabilidade da substituição da farinha de peixe por ingredientes vegetais estará condicionada ao hábito alimentar do animal que se pretende alimentar. Em oposição aos peixes carnívoros, os peixes onívoros possuem adaptações morfológicas e fisiológicas que possibilitam a utilização de rações com elevadas percentagens de ingredientes vegetais, pois utilizam melhor os carboidratos e a proteína (aminoácidos) dessas fontes (FURUYA, PEZZATO et al., 2001b).

O grau de inclusão de fontes protéicas vegetais em rações aquícolas parece ser limitado pela presença de fatores antinutricionais, a deficiências em aminoácidos essenciais (FRANCIS, MAKKAR et al., 2001) e à disponibilidade do fósforo. Nos alimentos de origem vegetal, cerca
de 70% deste mineral está complexado na forma de fitato, que não é utilizado pelos monogástricos e que promove também a redução na disponibilidade de outros elementos, como zinco, cálcio, ferro e manganês (FARIA, HAYASHI et al., 2001).

Além de fontes protéicas alternativas oriundas de vegetais, diversos subprodutos animais vêm sendo testados como ingredientes na composição de dietas para peixes. No processamento de camarões, por exemplo, são geradas grandes quantidades de resíduos na forma de cabeça, apêndices e carapaças, as quais têm sido descartadas no ambiente de forma inadequada. A farinha produzida a partir desses resíduos vem sendo identificada como uma fonte de proteína animal de grande potencial para a aquicultura (FANIMO, ODUGUWA et al., 2000).

O resíduo do processamento do camarão é rico em proteína e quitina. A fermentação deste resíduo por ácido lático tem sido relatada como uma técnica eficaz e econômica de proteger esta biomassa da decomposição bacteriana, formando uma silagem que contém um líquido rico em proteínas e uma fração lipídica e quitina insolúvel (LÓPEZ-CERVANTES, SÁNCHEZ-MACHADO et al., 2006). Entretanto, o uso destes subprodutos pode ser restringido devido aos altos conteúdos de fibras e cinzas, resultando na formação de peletes fracos, com baixa hidroestabilidade (CAVALHEIRO, SOUZA et al., 2007).

Fanimo, Oduguwa et al. (2000) determinaram a qualidade protéica de uma farinha de subprodutos de camarão (cabeça, apêndices e exoesqueleto) e demonstraram que o valor biológico da proteína é inferior ao da proteína da farinha de peixe; porém, sua qualidade protéica pode ser melhorada mediante suplementação com lisina e metionina. López-Cervantes, Sánchez-Machado et al. (2006) identificaram tirosina, treonina, leucina e glicina como os aminoácidos mais abundantes na fração protéica liofilizada do hidrolisado de resíduo de camarão. Estes autores afirmam, ainda, que aminoácidos livres são uma das mais importantes frações não-protéicas e alguns deles, como alanina, ácido glutâmico e glicina, são responsáveis pelo sabor e odor característicos destes produtos. Outros trabalhos relatam que produtos obtidos a partir do processamento de resíduos de camarão podem servir como uma adequada fonte de proteína e flavorizante em formulações alimentares, devido principalmente aos seus teores de aminoácidos livres (HEU, KIM et al., 2003).

Os resíduos do processamento da indústria camaroneira podem ser utilizados para a produção de hidrolisado protéico (HP). Esse produto é resultado da solubilização das proteínas do pescado que pode ser obtida através da utilização de ácidos e de solventes orgânicos ou ainda ser catalisada por enzimas proteolíticas endógenas, ou seja, presentes no próprio organismo (autólise enzimática) e/ou por enzimas de origem vegetal, animal ou microbianas adicionadas à matéria-prima (KRISTINSSON e RASCO, 2000; MARTONE, BORLA et al., 2005). O processo consiste da quebra de longas cadeias de moléculas protéicas e resulta em duas frações, uma contendo proteínas não hidrolisadas e outros materiais insolúveis (fração
insolúvel) e outra, rica em proteínas, peptídeos de cadeia curta e aminoácidos livres (fração solúvel). Além de ser um meio de reduzir a poluição ambiental causada pelo descarte indevido de resíduos a produção do HP pode ainda fornecer um alimento com propriedades funcionais e de alto valor nutritivo (SLIZYTE, DAUKSAS et al., 2005), uma vez que pode apresentar um perfil de aminoácidos similar ao da matéria-prima utilizada para sua produção.

Silva (2004) elaborou um hidrolisado protéico a partir de cabeças do camarão marinho Litopenaeus vannamei, por meio da trituração deste resíduo e da digestão por autólise (45°C), seguida por desativação enzimática (100°C), separação e centrifugação, o qual foi considerado como uma excelente fonte alimentar, sobretudo de aminoácidos, com ácido glutâmico, ácido aspártico, leucina, lisina, tirosina e arginina como os mais abundantes.

A obtenção de ingredientes alternativos, como farinhas ou hidrolisados protéicos obtidos de resíduos do processamento industrial de alimentos, que atuem como fontes de proteína e que sejam mais baratos e acessíveis que a farinha de peixe, pode resultar em rações aquícolas de menor custo, mantendo ou melhorando a qualidade nutricional das rações destinadas à alimentação animal. Entretanto, mudanças na origem e quantidade de nutrientes utilizados na elaboração de rações, podem modificar a atividade, concentração e o perfil enzimático no trato digestivo dos animais (LUNDSTEDT, MELO et al., 2004), que podem se traduzir em adaptações para uma melhor assimilação destes nutrientes (MORAES e BIDINOTTO, 2000).
2. OBJETIVOS

2.1. OBJETIVO GERAL

- Identificar e caracterizar enzimas provenientes de organismos aquáticos visando ao entendimento da fisiologia digestiva de espécies de interesse comercial, bem como à utilização dessas moléculas como indicadoras da qualidade de dietas.

2.2. OBJETIVOS ESPECÍFICOS

- Caracterizar as alfa-amilases presentes no hepatopâncreas das espécies *F. subtilis*, *L. schmitti* e *L. vannamei*, visando fornecer subsídios para o conhecimento da digestão de carboidratos em camarões peneídeos;
- Caracterizar proteinases e peptidases digestivas visando ao conhecimento da digestão protéica dos camarões nativos *F. subtilis* e *F. paulensis*;
- Investigar a utilização do hidrolisado protéico de camarão como fonte protéica em rações para juvenis da tilápia-do-nilo *O. niloticus*, avaliando-se o desempenho zootécnico dos peixes;
- Avaliar o perfil de enzimas digestivas da tilápia-do-nilo, submetida a dietas com diferentes concentrações de hidrolisado protéico de camarões, correlacionando-as com os parâmetros de crescimento e composição corporal.
3. REFERÊNCIAS BIBLIOGRÁFICAS

ESPOSITO, T. S. *et al.* Fish processing waste as a source of alkaline proteases for laundry detergent. *Food Chemistry* [S.I.], 2009b.

LIN, F. Y. Scanning electron microscopic observations on the gland filkers of the pyloric stomach of *Penaeus monodon* and *Metapenaeus ensis* (Decapoda, Penaeidae). *Crustaceana* [S.I.], v. 73, n. 2, p. 163-174, 2000.

MORAES, G.; BIDINOTTO, P. Induced changes in the amylolytic profile of the gut of *Piaractus mesopotamicus* (Holmberg, 1885) fed different levels of soluble carbohydrate: its correlation with metabolic aspects. *Revista de Ictiologia* [S.I.], v. 8, p. 47-51, 2000.

Patrícia Fernandes de Castro

Referências Bibliográficas

TREWAVAS, E. Generic groupings of Tilapiini used in aquaculture. Aquaculture [S.I.], v. 27, p. 79-81, 1982.

4. CAPÍTULO 1: FISIOLOGIA DIGESTIVA DE CAMARÕES MARINHOS
4.1 Artigo 1: Comparative study of amylases from the midgut gland of three penaeid shrimps
COMPARATIVE STUDY OF AMYLASES FROM THE MIDGUT GLAND OF THREE PENAEID SPECIES

Patrícia Fernandes Castro¹, Augusto Cézae Vasconcelos Freitas Jr.²; Werlayne Mendes Santana²; Luiz Bezerra Carvalho Jr², Ranilson Souza Bezerra²

¹Embrapa Meio-Norte, Caixa Postal 341, 64200-970, Parnaíba – PI, Brazil
²Laboratório de Enzimologia (LABENZ), Departamento de Bioquímica, and Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Cidade Universitária, 50670-420, Recife-PE, Brazil

Correspondence:
Ranilson S. Bezerra.
Laboratório de Enzimologia – LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco. Cidade Universitária, 50670-420, Recife-PE, Brazil,
Tel.: +55-81-21268540, Fax: +55-81-21268576
E-mail address: ransoube@uol.com.br

Running Title: Amylases from penaeid shrimps

Keywords: Amylase characterization; midgut gland; penaeid shrimp; Farfantepenaeus subtilis; Litopenaeus schmitti; Litopenaeus vannamei.
Abstract

Amylases and A/P ratio from the midgut gland of wild *Farfantepenaeus subtilis* and *Litopenaeus schmitti* and of farmed *Litopenaeus vannamei* were characterized. Total amylolitic activity of farmed shrimps was twice higher than that of wild specimens. Amylases of all species presented residual activity above 85% at alkaline pH (7.0-8.0) and optimal temperature between 40 and 50°C. The enzymes of all species were not thermal stable at temperatures greater than 55°C. Substrate zymograms revealed nine, eight, ten and seven amylolitic bands from *F. subtilis*, *L. schmitti*, adult (25g) and juvenile (11g) *L. vannamei*, respectively. Alpha-amylase activity of *F. subtilis* and *L. schmitti* was totally inhibited by inhibitor Type I at 50 and 100µg.mL\(^{-1}\) inhibitor concentrations, while adult *L. vannamei* enzymes retained 43.5±1.98 and 22.5±0.65% of its activity at the same concentrations, respectively. Ca\(^{2+}\) increased amylase activity of all species only at 1mM concentration, but inhibited the activity at 5 and 10mM. All other ions employed (Cd\(^{2+}\), Zn\(^{2+}\), Hg\(^{2+}\), Cu\(^{2+}\) and Al\(^{3+}\)) strongly inhibited amylase activity regardless the concentration used. The great number of isoforms observed in the midgut gland of all species suggests shrimp capability for carbohydrate digestion. Feeds with different concentrations of carbohydrate should be tested.

Keywords: Amylase characterization, midgut gland, penaeid shrimp, *Farfantepenaeus subtilis*; *Litopenaeus schmitti*; *Litopenaeus vannamei*.
Introduction

Penaeid shrimps are among the most cultured crustaceans in the world. In Brazil, fishery statistics revealed a total shrimp production of 103,460 tonnes in 2006, of which 62.82% were provided by aquaculture (IBAMA, 2008). Despite the existence of native shrimps with attractive market features, such as Farfantepenaeus subtilis, F. brasiliensis, F. paulensis and Litopenaeus schmitti, the exotic species L. vannamei responds for most of the farmed shrimp in the country.

In fact, years of study on reproduction, nutrition and feeding, genetics, physiology and diseases provided information used to develop complete diets, genetically improved postlarvae or even a growth-out technology package, which enabled the spreading out of L. vannamei outside the Eastern Pacific coast.

The lack of basic information about biology and more specifically about digestive physiology of Brazilian native shrimps have led to the adoption of improper feeds and management in growth-out systems which resulted in both poor feed conversion rates (2.88 to 3.44 for F. subtilis) and yields (Maia & Nunes, 2003). The formulation of specific diets depends upon information about nutritional requirements and digestive capability of the target species.

The study of digestive physiology in aquatic organisms is important since enzyme profile of a given species is closely related to its feeding habit and to its capability of digest a wide range of food items (Fernández et al., 2001). There are a number of works about nutrition and feeding of penaeid shrimps, but studies on Brazilian native species are limited. Some authors deal with semi-intensive culture and feeding studies of F. subtilis (Nunes et al., 1996; 1997; Nunes & Parsons, 2000) and F. paulensis (Abreu et al., 2007; Ballester et al., 2007; Fróes et al., 2007; Soares et al., 2008). Digestive enzyme studies are related to proteases of L. schmitti (Lemos et al., 2002) and of F. paulensis (Lemos et al., 1999; Buarque et al., 2009) but little is available about carbohydrases of these species.

Among carbohydrases of penaeid shrimps are alpha-amylases (Van Wormhoudt et al., 1995, Fernández et al., 1997), maltase (Omondi e Stark, 1995; Aguilar-Qualesma e Sugai, 2005), chitinase, laminarinase and cellulase (Guillaume e Ceccaldi, 1999). Studies on carbohydrate digestion are important because are often included in commercial diets for reducing feeding costs (Wigglesworth & Griffith, 1994; Aguilar-Quaresma & Sugai, 2005). Thus is necessary to understand the profile of enzymes involved in this process.

The aim of the present work was to characterize amylases present in the midgut gland of two native penaeid shrimps (F. subtilis and L. schmitti) and of the exotic species L. vannamei.
Materials and methods

Materials

Specimens of *F. subtilis* (12.77±0.78g) and *L. schmitti* (23.30±2.89g) were obtained from commercial fishery and *L. vannamei* (25.17±1.47 and 11.13±0.48g) from a commercial farm at Pernambuco State, Brazil. All reagents used in enzymatic assays were from analytical grade purchased from Sigma (St. Louis, MO, USA) and Merck (Darmstadt, Germany).

Enzyme extraction and total soluble protein determination

Eighteen shrimps of each species were transported alive to a commercial shrimp hatchery where they were weighed and sacrificed by thermal shock. The hepatopancreas were readily dissected out, weighed (0.59±0.16g – *L. schmitti*; 0.79±0.22g and 0.46±0.05g – *L. vannamei*; 0.39±0.04g – *F. subtilis*), placed in cryotubes and transported to the Laboratório de Enzimologia (LABENZ) of the Universidade Federal de Pernambuco. Six groups of three glands of each species were homogenized (40 mg mL\(^{-1}\)) in chilled 10mM Tris-HCl buffer, pH 7.5, with 0.15M NaCl, using a Potter-Elvehjen tissue homogenizer (Bodine Electric Company – Chicago, USA) at 40-50 rpm for 3 min at 4\(^{\circ}\)C. Homogenates were centrifuged at 10,000 xg for 25 min at 4\(^{\circ}\)C, to remove lipid and tissue debris, and supernatants (crude enzyme extract) were stored at −20\(^{\circ}\)C for further utilization. The total soluble protein was determined as described by Bradford (1976), using bovine serum albumin as standard protein.

Amylase and proteinase assays

Total amylase activity was determined based on the method of Bernfeld (1955) using 2% (w/v) starch solution as substrate. The reaction consisted of 60µL of crude extract, 375µL of starch solution and 375µL of 10mM phosphate buffer pH 7.5. After 10 min of incubation at 37\(^{\circ}\)C, 100µL of this mixture were added to 1mL of 3.5-dinitrosalicylic acid (DNSA) solution and kept in a boiling water bath for 10 min in order to stop the reaction. The absorbance was recorded at 570nm. A blank of substrate and another of enzyme were similarly prepared, except that 10mM phosphate buffer replaced substrate or enzymatic extract, respectively. All assays were carried out in quadruplicate. One unity of amylase activity was expressed as mg of maltose released at 37\(^{\circ}\)C per min per mg of protein.

Total proteinase activity was assayed using azocasein as substrate in a microcentrifuge tube. Triplicate samples of each enzyme extract (30µL) were incubated with 10gL\(^{-1}\) azocasein (50µL) dissolved in 0.1M Tris-HCl, pH 8.0, for 60 min at 25\(^{\circ}\)C (Bezerra, Lins et al., 2005). Following, 100gL\(^{-1}\) trichloroacetic acid (240µL) was added to stop the reaction and the mixture was centrifuged at 8000 xg for 5 min. The supernatant (70µL) was mixed with 1M NaOH (130µL) and absorbance was measured in a microtiter plate reader (Bio-Rad 680) at 450nm against a similarly prepared blank (0.1M Tris-HCl, pH 8.0, in place of the crude extract).
Protease activity was expressed as units per mg of protein. One unit (U) of enzyme activity was defined as the amount of enzyme required to hydrolyze azocasein and produce a change in absorbance of 0.001 mL\(^{-1}\) min\(^{-1}\).

The effect of pH and temperature on amylase activity

The effects of pH and temperature on amylase activity were evaluated as described above, using a series of different 10mM buffers (Citrate-phosphate: pH 5 – 7.5; Tris-HCl: pH 7.5 – 9.0 and Glycine-NaOH: pH 9.0 – 11.5) and temperatures ranging from 25 to 70°C, respectively. Thermal stability was evaluated by assaying enzyme activity at 25°C after pre-incubation for 30 min at temperatures ranging from 25 to 70°C at 5 ºC intervals (Bezerra et al., 2005).

Inhibition assays

The effect of α-amylase inhibitor Type I (Sigma A1520) from *Triticum aestivum* on amylase activity was recorded. Equal volumes (60 µL) of enzyme extract and inhibitor in different concentrations (50 and 100 µg.mL\(^{-1}\)) were incubated at 25°C for 20 min. Following, 375 µL of 2% starch solution and 315 µL 10mM phosphate buffer pH 7.5 were added and the mixture was incubated for 10min at 37°C. The amylase activity was evaluated as previously described and the results expressed as percentage of the activity recorded in control tubes without inhibitor. Commercial α-amylase from *Bacillus subtilis* was also submitted to the inhibitor.

Effect of ions

The effect of metallic ions on amylase activity was evaluated according to method adapted from Souza et al. (2007). The methodology followed the same steps described in inhibition assays except that inhibitor was replaced by different ion solutions (1, 5 and 10mM). The ions employed were Ca\(^{2+}\), Cd\(^{2+}\), Hg\(^{2+}\), Al\(^{3+}\), Cu\(^{2+}\) and Zn\(^{2+}\).

Electrophoresis SDS-PAGE and zymograms

Crude enzyme extracts from shrimps were studied by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) using a 4% (w/v) stacking gel and a 15% (w/v) separating gel (Laemmli, 1970). Enzyme preparations (150 µg of protein) and 10 µL of molecular weight marker (8–233kDa) were applied to tracks of a vertical electrophoresis device (BIO-RAD). The gel was stained for protein overnight in 1,8gL\(^{-1}\) Comassie Brilliant Blue R250 prepared in water, acid acetic and methanol (65:10:25) and the background of the gel was distained in the same solution without dye. Electrophoresis was performed at a constant current of 15mA per gel.
Substrate SDS-PAGE Zymograms were carried out following methodology described by Garcia-Carreño et al. (1993). Enzyme preparations (50 µg of protein) and 0.006 U of α-amylase of *Bacillus subtilis* (used as reference) were applied to a 13.5% (w/v) separating gel. After electrophoresis performed at 4 °C, the gel was immersed in 2.5% (100 mL) Triton X-100 in 0.1M Tris-HCl pH 8.0 for 30 min at 4 °C to remove the SDS. The Triton X-100 was removed by washing the gel three times with 100mL of 0.1M Tris-HCl buffer, pH 8.0. Then, the SDS-free, Triton X-100 free gel was incubated with starch solution (2% w/v) containing 10mM phosphate buffer pH 8.0 and 1mM CaCl$_2$ for 60min at 37 °C, to allow the digestion of starch by the active fractions. Finally, the gel was washed with distilled water and stained with an iodine/KI solution (10%) for 5 minutes. Gel was washed with distilled water to stop the reaction and then with an acetic acid solution (13%).

Statistical analysis

Data of enzyme activity were analyzed using one-way analysis of variance (ANOVA) complemented with Tukey’s test. Differences were reported as statistically significant when $P<0.05$, using the Jandel Scientific SigmaStat software program (version 2.0).

Results

Table 1 displays the proteolytic activity, amylase activity and amylase:protease ratio of the *Farfantepenaeus subtilis*, *Litopenaeus schmitti* and *L. vannamei* specimens. *F. subtilis* showed the greater protease activity ($p<0.05$) while *L. vannamei* the greater amylase activity.

Please, insert Table 1 here

Assays about the effects of pH on enzyme activity revealed that amylases of all species showed maximal activity at pH ranging from 7.0 to 8.0 (Fig. 1). Figure 2 displays the effect of temperature on amylase activity. The enzyme activity reached maximal values at 40 °C for *L. schmitti* and *L. vannamei* 11g, 45 °C for *F. subtilis*, and 50 °C for *L. vannamei* 25g, respectively. *F. subtilis* and *L. vannamei* presented residual activity upper to 85% from 30 to 55 °C, while for *L. schmitti* this range was narrower (35 to 45 °C). Thermal stability of amylases of the three species is displayed in Fig. 3. Enzymes of *L. vannamei* showed no remarkable change (residual activity \geq 80%) up to 45 °C. Amylase activity of *L. schmitti* and *F. subtilis* increased even after the 30 min heat treatment up to 40 – 45 °C. Enzyme from *F. subtilis* showed great activity (75%) at 55 °C but all shrimps were extremely affected after this temperature.
A strong inhibition of amylase Type I inhibitor on enzyme activity was observed for *F. subtilis* and *L. schmitti* at concentrations of 50 and 100 µg inhibitor mL\(^{-1}\). Adult *L. vannamei* amylase retained 43.5±1.98 and 22.5±0.65 of its activity at the same concentrations, respectively. Commercial α-amylase of *Bacillus subtilis* showed 41.3±1.79 at 50µg.mL\(^{-1}\) and no activity at 100µg.mL\(^{-1}\).

The effect of ions on activity of amylases is displayed in Table 2. Enzymes of all species were activated by calcium chloride at 1mM but were inhibited at 5 and 10mM. All other ions showed inhibitory effect at any employed concentration.

Crude enzymatic extracts of the three species were studied through SDS-PAGE electrophoresis (Fig. 4). Adult *L. vannamei* showed 19 bands ranging from 8 to 118 kDa while *L. schmitti* and *F. subtilis* presented 11 (8 to 42kDa) and 13 bands (8 to 233kDa), respectively. Substrate zymograms revealed 9 bands with amylase activity for *F. subtilis*, 8 bands for *L. schmitti*, 10 bands for adult *L. vannamei* and 7 bands for juvenile *L. vannamei* (Fig. 5).

Discussion

Specific amylase activity of reared *L. vannamei* hepatopancreas was twice greater than that observed for wild *L. schmitti* and *L. subtilis*. The proteic profile of crude extract of the hepatopancreas shrimps also exhibited a great number of protein bands for reared *L. vannamei* when compared to wild species. In farmed conditions pond are fertilized for stimulating natural productivity and shrimps are commonly fed diets with 30-37% crude protein content. This fact, allied to probable genetic characteristic of species could explain the observed differences.

According to Johnston & Freeman (2005), digestive enzyme activity is closely related to dietary components. Thus, high proteinase, carbohydrase and lipase activity reflects a diet rich in protein, starch or cellulose and lipid, respectively (Johnston & Yellowlees, 1998; Johnston, 2003).

In the present work, the amylase:protease ratio were the same for *L. schmitti* and *L. subtilis* and twice higher for *L. vannamei*. Even though all shrimps species exhibited an omnivorous opportunistic habit, *F. subtilis* and *L. schmitti* show preference for animal protein (Dall *et al.*, 1990; Nunes and Parsons, 2000). Researches about digestive enzymes of aquatic organisms postulate that amylase activity depends on the natural diet of the species,
herbivorous and omnivorous animals presenting greater activity than carnivorous (Hidalgo et al., 1999; Jonhston & Freeman, 2005).

Crustacean hepatopancreas is responsible for synthesis of enzymes as well as food digestion and nutrient absorption. The synthesized enzymes are released into the midgut gland lumen and flows to stomach to initiate the hydrolysis of the ingested food (Guillaume & Ceccaldi, 1999; Verri et al., 2001). Dall & Moriarty (1983) and Bickmeyer et al. (2008) reported that pH in the gastric fluid and midgut gland of crustaceans ranges from 5.0 to 7.0 and from 4 to 5.5, respectively. Regardless the enzyme, if proteases (Fernández Gimenez et al., 2001; 2002), carbohydrates (Omondi & Stark, 1995; Figueiredo et al., 2001; Pavasovic et al., 2004) or lipases (López-López et al., 2003), crustacean digestive enzymes generally show optimum activity close to this range or at pH more alkaline as it was observed for amylases of the three species studied in the present work.

Amylase in the hepatopancreas of Farfantepenaeus subtilis, Litopenaeus schmitti and L. vannamei showed maximal activity at 40-50°C, as recorded for other crustaceans and fishes (Mayzaud, 1985; Fernández et al., 2001; Pavasovic et al., 2004). Despite the peak of amylase activity has been observed at this temperature range, enzyme from F. subtilis and L. vannamei maintained over 80% of its activity at 30-55°C. Enzyme from L. schmitti seemed to be more thermal sensitive since at 30 and 55°C, residual activity was about 40 and 60% respectively. Omondi & Stark (1995) studied the simultaneous effect of pH and temperature on amylase activity of Penaeus indicus and found an enhancement of about 50% at pH 6.8 when temperature increased from 22 to 37°C, while the inverse was recorded in P. vannamei.

Regarding thermal stability, amylase from F. subtilis were more resistant and maintained 75% of its activity at 55°C. At this temperature, none or very low activity was recorded for the other two species, suggesting that enzymes must have been denaturated.

The commercial inhibitor Type 1 from Triticum aestivum (Sigma A1520) has been used as α-amylase inhibitor of fishes (Fernández et al., 2001) and its effectiveness seems to change according to the species. The authors described inhibition rates ranging from “not detected” to 61% of α-amylases of five sparid fishes. Product information released by Sigma-Aldrich (product manufacturer) states that inhibition concentration of 200 and 50µg.mL-1 mL support inhibition rates from 40 to 60% against porcine and salivary human α-amylases, respectively. Shrimp α-amylase of the shrimp species herein studied seemed to be more sensitive. The enzymes of the wild species F. subtilis and L. schmitti were totally inhibited even at 50µg.mL-1 mL concentrations, while farmed species L. vannamei retained 43% of enzyme activity at the same concentration.

Some enzymes require other chemical groups besides their amino acid residues for catalytic activity. These groups should be complex organic or metallorganic molecules (coenzymes) or simply additional chemical component (cofactor) such as inorganic ions (Nelson
& Cox, 2005a). According to Wigglesworth & Griffith (1994), calcium ions are necessary to maintain the secondary and tertiary stability of \(\alpha \)-amylase molecules of penaeid shrimps. A number of metallic ions, such as \(\text{Ca}^{2+}, \text{Ba}^{2+}, \text{Ag}^{3+}, \text{Mn}^{2+}, \text{Hg}^{2+}, \text{Cu}^{2+} \) are important because their presence or absence may regulate enzyme activity (Dutta et al., 2006).

Amylases from the penaeid shrimps studied in the present work were strongly inhibited by \(\text{Zn}^{2+}, \text{Cd}^{2+}, \text{Hg}^{2+}, \text{Cu}^{2+} \) and \(\text{Al}^{3+} \) at 1, 5 or 10 mM concentrations. Calcium enhanced amylase activity only at 1 mM concentration. It seems that the effect of metallic ions on enzyme is species-specific since results in literature are sometimes diverse. While \(\text{Zn}^{2+} \) herein inhibited more than 50% of shrimp amylase activity, it had no effect on \text{Heliodiaptomus viidus}, a Crustacea Copepoda (Dutta et al., 2006). Figueiredo et al. (2001) reported an enhancement of 342% in amylase activity of redclaw crayfish \text{Cherax quadricarinatus} when enzyme was incubated with CaCl\(_2\) 15 mM. These studies are important because some ions are commonly included in mineral and vitaminic mixtures, what may interfere with food digestion.

Substrate SDS-PAGE zymogram is an interesting tool for analysis of differences in digestive enzymes of different species, allowing the identification of active enzyme forms. Herein, a great number of isoforms were identified for all shrimp species (\textit{L. vannamei} 25 g – 10; \textit{L. vannamei} 11 g – 7; \textit{L. schmitti} – 8 and \textit{F. subtilis} – 9). Polymorphism of \(\alpha \)-amylase is a common subject among vertebrates, insects and was already related for crustaceans (Van Wormhoudt & Favrel, 1988; Le Moullac et al., 1996; Perera et al., 2008), fishes (Fernández et al., 2001), mollusks (Huvet et al., 2008). Differences in number of crustacean isoforms have been associated with differences between populations or in gene expression during intermoult cycles. Some authors suggest that production of amylase is not related to food but is family-specific (Chakrabarti et al., 1995). Others suggest that amylase activity is at some extent influenced by diet composition. In fact, the ability for digesting different food items is related to the enzyme profile of a given species. The presence of numerous amylases isoforms may represent an ecological advantage and may indicate that species are able to better beneficiate from carbohydrate in the diets.

Acknowledgements

The authors would like to express their thanks to Mr. Otaviano Tavares da Costa, Rafael Padilha, Albérico Espírito Santo and João Virgínio for their technical assistance. This study was supported by Financiadora de Estudos e Projetos (FINEP/RECARCINE), Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Secretaria Especial de Aquicultura e Pesca – (SEAP/PR), Conselho Nacional de Pesquisa e Desenvolvimento Científico (CNPq), Fundação de Apoio à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) and Petróleo do Brasil S/A (PETROBRAS).
References

Figure legends

Figure 1: Effects of pH on amylase activity of *Litopenaeus vannamei* 25g (○), *L. vannamei* 11g (●), *L. schmitti* (□) and *Farfantepenaeus subtilis* (■) using starch as substrate. Values are shown in mean of six crude extracts obtained from three hepatopancreas each. Values were expressed as percentages of the highest activity (100%).

Figure 2: Effects of temperature on amylase activity of *Litopenaeus vannamei* 25g (○), *L. vannamei* 11g (●), *L. schmitti* (□) and *Farfantepenaeus subtilis* (■), using starch as substrate. Values are shown in mean of six crude extracts obtained from three hepatopancreas each. Values were expressed as percentages of the highest activity (100%).

Figure 3: Effects of thermal stability on amylase activity of *Litopenaeus vannamei* 25g (○), *L. vannamei* 11g (●), *L. schmitti* (□) and *Farfantepenaeus subtilis* (■), using starch as substrate. Values are shown in mean of six crude extracts obtained from three hepatopancreas each. Values were expressed as percentages of the highest (100%). Thermal stability was determined by assaying enzyme activity (25°C) after pre-incubation for 30 min at the indicated temperatures. Values were expressed as percentages of the highest activity (100%).

Figure 4: Electrophoresis (SDS-PAGE) from the midgut gland of *Farfantepenaeus subtilis*, *Litopenaeus schmitti*, *L. vannamei* 25g and *L. vannamei* 11g.

Figure 5: Zymogram of amylase activity from the midgut gland of *Farfantepenaeus subtilis*, *Litopenaeus schmitti*, *L. vannamei* 25g and *L. vannamei* 11g. α-amylase from *Bacillus subtilis* was used just as reference.
Table 1: Proteolytic and amilolytic activity in the hepatopancreas of *Farfantepenaeus subtilis*, *Litopenaeus schmitti* and *Litopenaeus vannamei*, using azocasein and starch as substrates. Amylase:protease ratio is also displayed.

<table>
<thead>
<tr>
<th></th>
<th>Farfantepenaeus subtilis</th>
<th>Litopenaeus schmitti</th>
<th>Litopenaeus vannamei (11g)</th>
<th>Litopenaeus vannamei (25g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteolytic activity</td>
<td>6.26±0.67 <sup>a</sup></td>
<td>4.60±0.75 <sup>b</sup></td>
<td>5.47±0.15 <sup>ab</sup></td>
<td>5.38±0.71 <sup>ab</sup></td>
</tr>
<tr>
<td>Amylolytic activity</td>
<td>0.62±0.05 <sup>c</sup></td>
<td>0.51±0.08 <sup>c</sup></td>
<td>1.03±0.09 <sup>b</sup></td>
<td>1.28±0.07 <sup>a</sup></td>
</tr>
<tr>
<td>Amylase:protease ratio</td>
<td>0.10±0.01 <sup>c</sup></td>
<td>0.12±0.03 <sup>c</sup></td>
<td>0.19±0.02 <sup>b</sup></td>
<td>0.24±0.02 <sup>a</sup></td>
</tr>
</tbody>
</table>

Values are shown as mean ± Standard Deviation (SD) of triplicates of six crude extracts obtained from three hepatopancreases each. Different italic letters (in lines) denotes statistical differences (p<0.05). Enzyme activity is expressed as U mg-1 of protein.
Table 2: Effect of different concentrations of ions (mM) on amylase activity of *Farfantepenaeus subtilis*, *Litopenaeus schmitti* and *L. vannamei*.

<table>
<thead>
<tr>
<th>Ions</th>
<th>F. subtilis</th>
<th></th>
<th>L. schmitti</th>
<th></th>
<th>L. vannamei</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>5</td>
<td>10</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>1 +</td>
<td>1 -</td>
<td>2 -</td>
<td></td>
<td>2 +</td>
</tr>
<tr>
<td>Zn²⁺</td>
<td>3 -</td>
<td>4 -</td>
<td>4 -</td>
<td></td>
<td>4 -</td>
</tr>
<tr>
<td>Cd²⁺</td>
<td>1 -</td>
<td>3 -</td>
<td>3 -</td>
<td></td>
<td>2 -</td>
</tr>
<tr>
<td>Al³⁺</td>
<td>4 -</td>
<td>4 -</td>
<td>4 -</td>
<td></td>
<td>4 -</td>
</tr>
<tr>
<td>Hg²⁺</td>
<td>4 -</td>
<td>4 -</td>
<td>4 -</td>
<td></td>
<td>4 -</td>
</tr>
<tr>
<td>Cu²⁺</td>
<td>4 -</td>
<td>4 -</td>
<td>4 -</td>
<td></td>
<td>4 -</td>
</tr>
</tbody>
</table>

Activation: 1 + (1-25%); 2 + (26-50%)
Inhibition: 1 – (1-25%); 2 - (26-50%); 3 – (51-75%); 4 – (76-100%)
Figure 1
Figure 2
Amylase activity (%) vs Temperature (°C)

- L. vannamei 25g
- L. vannamei 11g
- L. schmitti
- F. subtilis

Figure 3
Figure 4
Figure 5
4.2 Artigo 2: Digestive peptidases and proteinases in the midgut gland of the pink shrimp *Farfantepenaeus paulensis* (Crustacea, Decapoda, Penaeidae)
Digestive peptidases and proteinases in the midgut gland of the pink shrimp *Farfantepenaeus paulensis* (Crustacea, Decapoda, Penaeidae)

Diego Souza Buarque, Patricia Fernandes Castro, Fábio Marcel Silva Santos, Daniel Lemos, Luiz Bezerra Carvalho Júnior & Raúlson Souza Bezerra

1Laboratório de Entomologia (LABENZ), Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife-PE, Brazil
2Laboratório de Imunologia, Keizo Asanumi (LIAK), Universidade Federal de Pernambuco, Recife-PE, Brazil
3Embrapa Meio Norte, Parnuiba, PI, Brazil
4Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil

Correspondence: R S Bezerra, Laboratório de Entomologia (LABENZ), Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife-PE, CEP 50670-420, Brazil. E-mail: r souza@uel.com.br

Abstract

Proteases from the midgut gland of the *Farfantepenaeus paulensis* juveniles were assessed. Enzyme activity was determined using protease substrates and inhibitors. The effect of pH, temperature and calcium on proteolytic activity was assayed. Caseinolytic activity was assayed in substrate-sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Trypsin, chymotrypsin and leucine aminopeptidase activity was detected. Proteolytic activity was strongly inhibited by the specific trypsin inhibitors, Tosyl-phenylalanine chloromethylketone inhibited 99.1% of chymotrypsin activity. The greatest trypsin-like activity occurred at pH 8.0 and 45 °C. Chymotrypsin-like activity reached maximal values at alkaline pH (7.2-9.0) and 55 °C. CaCl₂ did not increase trypsin-like activity, but rather inhibited it at concentrations of 30 (20%) and 50 (20%) and 100 mM (50%). The substrate-SDS-PAGE zymogram revealed eight proteinase bands. Two possibly thermal-resistant (85 °C, 30min) chymotrypsin isoenzymes were found, which were inhibited by phenyl-methyl-sulphonyl fluoride. Aminopeptidase activity of enzyme extracts (Arg, Lys, Gln, Phe and Val) and the recommended concentrations of these essential amino acids in penaeid shrimp diets were positively correlated (P<0.05). Because protein digestion involves the combined action of different enzymes, adequate knowledge of shrimp digestion and enzyme characteristics is required for the assessment of the digestive potential of different feed sources and development of in vitro digestibility protocols.

Keywords: trypsin, chymotrypsin, aminopeptidase, protein digestion, substrate-SDS-PAGE, *Farfantepenaeus paulensis* subtilis

Introduction

Shrimp use energy and monomers obtained from their diet to synthesize the molecules needed for growth, survival, reproduction, tissue repair and defense. Ingested food is subjected to enzymes that break it down into compounds, which are absorbed by cells in the gut (Shih 1998; Gordoa-Muñoz, García-Carrero & Navarrete del Toro 2003).

Digestion is a rather well-studied subject in the field of shrimp nutrition (Fernández-Gimenez, Garcia-Carrero, Navarrete del Toro & Fenacci 2001), and is mainly focussed on enzyme properties that help determine digestive capabilities (Vega-Vilasante, Nolasco & Civera 1995). An understanding of digestive enzymes is important for the rational use of feed resources in shrimp farming (Fernández, Oliva, Carrillo & Van Wormhoudt 1997; Muhlau-Almazán, García-García, Sánchez-Parra, Pérez-Ploescuencio & Peregirino-Unarre 2005). Proteases are the most assessed digestive enzymes in crustaceans and play a key role in the overall assimilation of nutrients (Fernández-Gimenez, García-Carrero, Navarrete del Toro, 2003).

© 2009 The Authors
Journal Compilation © 2009 Blackwell Publishing Ltd
Patrícia Fernandes de Castro

Proteases in *Farfantepenaeus paulensis* D.S. Bourque et al.

Aquaculture Research, 2009, 40, 861–870

Toro & Fennaci 2002). These enzymes are also very important for the metabolism and growth of penaeids due to their fundamental role in providing essential amino acids. Thus, the release of essential amino acids may be dependent on the effective hydrolysis of proteins by digestive proteases (Sánchez-Paz, García-Correio, Mahlia Almazán, Hernandez-Saavedra & Yepiz-Plascencia 2003).

The pink shrimp *Farfantepenaeus paulensis* is a highly valued fishery resource on the southern coast of Brazil (Peixoto, Soares, Wasielewski, Cavalli & Jensen 2004). Reproduction and hatchery techniques are rather well established for seed production (Vinaterra & Andreatto 1997). The species is considered to be a potential alternative for the currently cultured species *Litopenaeus vannamei* in sub-tropical and temperate areas. However, *F. paulensis* farming has been restricted by a lack of information on nutrition and feeds for sustaining suitable growth at the commercial level (Lemos, Navarrete del Toro, Córdova-Martueza & García-Correio 2004). The aim of the present study was to assess the basic functional characteristics of proteases in the midgut gland of *F. paulensis* juveniles, which is essential information for further application of enzymes in nutritional studies.

Materials and methods

Materials

All reagents were of analytical grade and purchased from Sigma (St Louis, MO, USA) and Merck (Darmstadt, Germany).

Organisms and sampling

Farfantepenaeus paulensis postlarvae were obtained from a public hatchery and reared for 190 days until reaching 6–10 g of live weight. The shrimp were raised at a temperature of 24–28 °C and fed a commercial feed with 35% crude protein. Following sacrifice, midgut glands were excised from healthy individuals predominantly in intermolt (Dall, Hill, Rothlisberg & Staples 1990). The glands (0.12–0.2 g wet weight) were pooled and immediately stored in liquid nitrogen (−190 °C). Recovery of enzyme extracts began with homogenization of the midgut glands (40 mg/mL) in chilled 0.15 M NaCl using a Potter–Elvehjem tissue homogenizer (Bodine Electric, Chicago, IL, USA) at 40–50 rpm for 3 min at 4 °C. Crude enzyme extracts were obtained from superna-

tants after centrifugation at 10000 × g for 25 min at 4 °C and lipid removal, followed by storage at −20 °C for later use. The total soluble protein content of the enzyme extracts was determined using bovine serum albumin as the standard protein (Bradford 1976).

Enzyme activity assays

The total protease activity was assayed through hydrolysis of 1% azocasein dissolved in 0.1 M Tris-HCl buffer, pH 8.0 (Garcia-Correio 1992). Triplicate samples (30 μL) of enzyme extract were incubated with substrate solution (30 μL) for 60 min at 25 °C in a microtube (Brezza, Lins, Alencar, Paiva, Chavez, Coelho & Carvalho Jr 2005). The reaction was stopped with the addition of 10% trichloroacetic acid (240 μL) and the mixture was centrifuged at 8000 × g for 5 min. Unhydrolysed substrate was sedimented and the supernatant was recovered and then further mixed (70 μL) with 1 M NaOH (130 μL). The absorbance of supernatants was measured in a microtitre plate reader (Bio-Rad 680, Japan) at 490 nm. Changes in absorbance over time were calculated by the difference from reactions stopped at zero (blank controls) and after 10 min. One unit of total protease activity was expressed as the amount of enzyme required to hydrolyse azocasein and produce a 0.001 change in absorbance per millilitre per minute. Specific protease activity was expressed in units per milligram of protein.

Trypsin activity was determined using benzoyl-

nitropeptidase activity was determined using l-arginine-**p*-nitroanilide (BAPNA). Chymotrypsin activity was measured using either succinyl-alanine-alanine-p-nitroanilide (SAPPN) or N-succinyl-l-phenylalanine-p-nitroanilide (Suc-Phe-p-Na) as specific substrates. Leucine aminopeptidase activity was detected using leucine-**p*-nitroanilide (Leu-p-Na). All substrates were dissolved in dimethylsulphoxide (DMSO) to a final concentration of 0.6 mM (Brezza et al. 2005). The change in absorbance at 405 nm was recorded for 15 min using a microtitre reader (Bio-Rad 680). One unit of activity was defined as the amount of enzyme required to produce 1 μmol of **p*-nitroaniline per minute (ε = 9400 M−1 cm−1). Specific activity was expressed as units per milligram of protein.

Aminopeptidase activity was also evaluated using aminocaproyl **β*-naphthylamide (AANA) with the following substrates: Arg, Leu, Phe, Val and Lys. The procedure adapted from Oliveira, Freitas Jr and Alves (1999) was carried out by incubating 4.2 mM

C © 2009 The Authors

862 Journal Compilation C © 2009 Blackwell Publishing Ltd. Aquaculture Research, 40, 861–870
substrate (50 µL), 50 mM sodium phosphate buffer, pH 7.0 (600 µL) and dionized H₂O (50 µL) at 37 °C. After temperature equilibration, the enzyme extract (50 µL) was added. After 120 min, the reaction was stopped by adding 1 mg mL⁻¹ fresh Garnet reagent (250 µL) prepared in 0.2 M sodium acetate buffer, pH 4.2, containing 10% v/v Tween 20. Absorbance was measured at 525 nm and the amount of β-naphthylamine was determined using a standard β-naphthylamine curve. Activity was expressed as protease milliunits per milligram of protein. One unit of enzyme activity was defined as the amount of enzyme required to hydrolyse 1 µmol β-naphthylamine/min⁻¹.

Inhibition assays

To determine the effect of specific inhibitors on protease activity, equal volumes (25 µL) of crude extract and inhibitor were incubated for 30 min at 25 °C before the determination of residual activity. Phenyl-methyl-sulphonyl-fluoride (PMSF) was used as an inhibitor for serine proteases; tosyl-lysine chloromethyl ketone (TLCK) and benzamidine were used as inhibitors for trypsin; and tosyl-phenylalnine chloromethyl ketone (TPCK) was used as an inhibitor for chymotrypsin. Volumes were then adjusted to 170 µL with 0.1 M Tris-HCl buffer, pH 8.0, and the respective substrate (30 µL). Trypsin assays: BAPNA with PMSF, TLCK or benzamidine. Chymotrypsin assays: SAPNA with PMSF and TPCK. All inhibitors were prepared in DMSO to a final concentration of 1 mM (Bezerra, Santos, Paiva, Coelho, Vieira & Curvalho. Jr 2001). The change in absorbance at 405 nm was recorded for 15 min using a microtitre reader (Bio-Rad 680). Inhibitory effects on enzyme activity were expressed in relation to controls (without specific inhibitors).

The effects of pH, temperature and concentration of calcium on enzyme activity

To evaluate the effects of pH and temperature on proteolytic activity, crude extracts were assayed with Tris-HCl buffer, with pH ranging from 7.2 to 9.0 and temperature ranging from 25 to 85 °C. Enzyme activity was determined as described above, using specific substrates. Thermal stability was evaluated by recording enzyme activity at 25 °C after pre-incubation for 30 min at temperatures ranging from 25 to 95 °C.

The effect of calcium on trypsin activity of the midgut gland extract was determined. CaCl₂ was added to the standard reaction assay to obtain final concentrations ranging from 1 to 100 mM. Residual activity was determined as described above, using BAPNA as the substrate. The effect on enzyme activity was expressed in relation to the control (without CaCl₂).

Enzyme characterization in substrate-sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)

Zymograms were prepared according to Garcia-carreno, Dimes and Haard (1993). Crude enzyme extracts were dialysed and loaded onto gels at 10 µg protein per lane, corresponding to 60–80 U of enzyme activity following electrophoresis of crude extracts in SDS-PAGE (12% acrylamide, 0.1% SDS), gels were immersed in 0.1 M buffer Tris–HCl, pH 8.0 containing 2.5% Triton X-100 (100 mL) for 30 min at 4 °C to remove the SDS. The Triton X-100 buffer was removed by washing the gels three times with 100 mL of 0.1 M Tris-HCl buffer, pH 8.0. The SDS-free and Triton X-100-free gels were then incubated with 100 mL of 3% casein (w/v) in 0.1 M Tris-HCl buffer, pH 8.0, for 30 min at 4 °C. The temperature was raised to 25 °C and maintained for 90 min to allow the digestion of casein by active enzyme fractions. Gels were then stained with 0.18% (w/v) Coomassie brilliant blue and destained in 10% (v/v) acetic acid and 25% (v/v) methanol. For the determination of enzyme thermal stability in the zymogram, samples of enzyme extract were incubated for 30 min at temperatures ranging from 25 to 85 °C before loading onto the gel. For the enzyme inhibition zymogram, enzyme extracts were pre-incubated with specific inhibitors of serine proteases, trypsin and chymotrypsin, as described above (inhibition assays). These enzyme inhibition zymograms were compared with those with no inhibitor (control).

Statistics

Data (mean ± standard deviation) were processed using the MICROCAL OLIPIAN (A) software program. Differences between means (effect of CaCl₂) were analysed using one-way ANOVA followed by Tukey’s multi-comparison test and considered to be significant when P<0.05 (Zar 1984).
Table 1 Proteolytic activity in midgut gland extracts from *Farfantepenaeus paulensis* juveniles using different substrates

<table>
<thead>
<tr>
<th>Substrates</th>
<th>Enzyme activity (mU mg⁻¹ protein ± SD; n = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azocasein</td>
<td>6.49 ± 0.20</td>
</tr>
<tr>
<td>BAPNA</td>
<td>5.13 ± 0.56</td>
</tr>
<tr>
<td>SAPNA</td>
<td>12.20 ± 1.29</td>
</tr>
<tr>
<td>Suc-Phe-p-Nan</td>
<td>Not detected</td>
</tr>
<tr>
<td>Leu-p-Nan</td>
<td>0.20 ± 0.02</td>
</tr>
</tbody>
</table>

BAPNA: benzoyl arginine p-nitroanilide; SAPNA, succinylalalnine-alamine-proline-phenylalanine-p-nitroanilide; Suc-Phe-p-Nan: N-succinyl-L-phenylalanine-p-nitroanilide; Leu-p-Nan: leucine p-nitroanilide.

Table 2 Effect of specific inhibitors on protease activity in midgut gland extracts from *Farfantepenaeus paulensis* juveniles

<table>
<thead>
<tr>
<th>Inhibitors</th>
<th>Activity inhibition (% SD; n = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMSE</td>
<td>37.3 ± 0.43</td>
</tr>
<tr>
<td>PMSE</td>
<td>27.1 ± 0.94</td>
</tr>
<tr>
<td>TLCK</td>
<td>85.3 ± 0.06</td>
</tr>
<tr>
<td>Benzamidine</td>
<td>89.9 ± 0.14</td>
</tr>
<tr>
<td>TPCK</td>
<td>89.3 ± 0.60</td>
</tr>
</tbody>
</table>

Maximal specific proteolytic activity (100%) was 5.46 mU mg⁻¹ protein and 11.65 mU mg⁻¹ using BAPNA and SAPNA as substrates, respectively.

*PMSF inhibition using BAPNA as substrate.
**PMSF inhibition using SAPNA as substrate.
PMSF: phenylmethylsulphonyl fluoride; serine protease inhibitor; TLCK: tosyl l-lysine chloromethyl ketone, trypsin inhibitor; TPCK: tosyl phenylalalnine chloromethylketone, chymotrypsin inhibitor; BAPNA, benzoylarginine p-nitroanilide; SAPNA, succinylalalnine-alamine-proline-phenylalanine-p-nitroanilide.

Results

Table 1 displays the activity of digestive proteases in *F. paulensis*. Trypsin-like activity (BAPNA) was observed in midgut gland extracts whereas no activity was detected using Suc-Phe-p-Nan as the specific chymotrypsin substrate. However, enzyme activity was verified with the SAPNA chymotrypsin substrate, which contains more than one amino acid. Table 2 displays the effects of four different inhibitors on digestive proteases in the midgut gland of *F. paulensis*. Proteolytic activity using BAPNA was 37.3% and was inhibited by PMSE, which is a serine protease inhibitor. Tosyl-lysine chloromethyl ketone and benzamidine (both synthetic trypsin inhibitors) demonstrated a strong inhibitory effect (85.1% and 89.9% respectively) using the same substrate. Phenylmethylsulphonyl-fluoride was also capable of inhibiting chymotrypsin activity by 27.1%, as determined by SAPNA hydrolysis. Proteolytic activity was also inhibited by TLCK (50.3%), which is a specific bovine chymotrypsin inhibitor, using SAPNA as the substrate. Activity with the Leu-p-Nan substrate revealed the presence of leucine aminopeptidase-like enzymes (Table 1). Furthermore, plotting aminopeptidase activity using specific AA-NA (Arg, Leu, Lys, Phe and Val β-naphthylamide) versus recommended concentrations of respective essential amino acids in penaeid shrimp diets resulted in a significant positive correlation (*P* ≤ 0.05) (Fig. 1).

The effect of pH on enzyme activity revealed the most trypsin-like activity at pH values ranging from 8.0 to 9.0 (Fig. 2a), whereas chymotrypsin-like activity was greatest at a slightly lower pH range (7.5–8.0) (Fig. 2b). Temperature exerted pronounced effects on the proteolytic activity of *F. paulensis* enzyme extracts (Fig. 3). Enzyme activity reached maximal values at 45 °C (A) and 55 °C (B) in assays with BAPNA (trypsin-like activity) and SAPNA (chymotrypsin-like activity) respectively. Trypsin-like activity was ≥ 60% of maximal activity between 25 and 65 °C, whereas chymotrypsin-like activity was ≥ 60% of maximal activity between 45 and 65 °C. Figure 4a shows the influence of heat treatment for 30 min on trypsin-like stability. The activity exhibited no marked change up to 35 °C, but was drastically re-
duced after 45 °C, with nearly no activity detected at temperatures above 55 °C. Chymotrypsin-like activity demonstrated lesser stability in comparison with trypsin (Fig. 4b). However, overall higher thermal stability was noticed at temperatures between 5 and 65 °C. No significant difference (\(P > 0.05 \)) was observed in trypsin activity between 1 and 10 mM CaCl\(_2\). At these concentrations, activity remained between 80% and 110% of controls. Decreasing activity was recorded at concentrations of 30, 50 and 100 mM (\(P < 0.05 \)) (Fig. 5).

The caseinolytic activity of F. puellaads midgut gland extracts revealed eight active bands in substrate-SDS-PAGE at 25 °C (Fig. 6). The activity of heat-treated extracts (35–55 °C) exhibited a band pattern similar to the control (25 °C). However, there was a less intense band at 55 °C (Fig. 6, lane 4, white dashed arrow). Surprisingly, two bands remained active at temperatures up to 85 °C (Fig. 6, white arrow). Enzyme extracts demonstrated specific inhibition in substrate-SDS-PAGE (Fig. 7). Proteolytic bands were strongly or slightly inhibited by PMSE, with the exception of bands with a lower molecular weight (Fig. 7, lane 2, double white arrow). Tosyl-lysine chloromethyl ketone (Fig. 7, lane 3) and benzamidine (Fig. 7, lane 4) were responsible for inhibiting five and three proteolytic bands, respectively. The band with the lowest molecular weight was only inhibited by TLCK (Fig. 7, lane 3). In contrast, TLCK was unable to inhibit a band previously affected by PMSE (Fig. 7).
Figure 4 Thermal stability of proteolytic activity in midgut gland extracts from *F. patens* juvenile. CaCl₂ and NaCl were added for final concentrations of 1–300 mM. Proteolytic activity was determined using BAPNA as substrate. Values expressed as mean ± SD (n = 5). BAPNA, benzoyl arginine p-nitroanilide; SAPNA, succinyl-alanine-alanine-proline-phenylalanine-p-nitroanilide.

Figure 5 Effect of CaCl₂ concentration on tryptic activity in midgut gland extracts from *F. patens* juveniles. CaCl₂ and NaCl were added for final concentrations of 1–100 mM. Trypsin activity was determined using BAPNA as substrate. Values expressed as mean ± SD (n = 5). BAPNA, benzoyl arginine p-nitroanilide.

Figure 6 Thermal stability of digestive proteinases in midgut gland extracts from *F. patens* juvenile. Proteinase activity after incubating crude extract for 30 min at each respective temperature. White dashed arrow: less intense bands at 55°C. White arrow: thermoresistant bands at 85°C. Blue arrow: Thermoresistant bands at 55°C. Before electrophoresis the samples were previously dialyzed. SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

Discussion

Studies on digestive physiology and enzyme activity provide important basic knowledge for the assessment of nutritional status in farmed shrimp (Jones, Kumlu, LeVay & Fletcher 1995). The digestion of feed tested in vitro with specific enzyme extracts may indicate differences in the digestive potential of feed.
Figure 7 Inhibition of protease activity in midgut gland extracts from *Eirfanophyton paulensis* juveniles in substrate-SDS-PAGE using specific inhibitors. Lanes: 1 – control (without inhibitors); 2 – PMSE; 3 – TLCK; 4 – Ben- zamidine; 5 – TPCK. Thermoresistant bands inhibited by PMSE and TPCK (white dashed arrows). Band inhibited by PMSE but not by TLCK (white arrow). Band with the lowest molecular weight not inhibited by PMSE (double white arrow). Before electrophoresis the samples were previously dialysed. TLCK, tosyl-phenylalanine chloromethyl ketone; PMSE, phenylmethyl-sulphonyl-fluoride; TLCK, tosylyl lysine chloromethyl ketone; SDE-PAGE, sodium dodecyl sulphate-polyacrylamide gel electrophoresis.

between species (Lemos, Ezquerro, & García-Carreño, 2000; Lemos et al., 2004). Most digestive proteases from decapods are reported to be serine proteases (more recently called serine endopeptidases), including trypsin and chymotrypsin, which seem to be the most important crustacean digestive enzymes (García-Carreño, Hernández-Cortés, & Haard, 1994; Fernández et al., 1997). Trypsin- and chymotrypsin-like enzyme activity has been reported previously throughout the ontogenetic development of *E. paulensis* (Lemos, Hernández-Cortés, Navarrete del Toro, Garcia-Carreño, & Phan, 1999). The present study indicates that the midgut gland of *E. paulensis* juveniles contains trypsin, chymotrypsin and aminopeptidases. The presence of proteinases and peptidases in the same compartment is an important adaptive advantage. In fact, it makes the protein digestion more efficient. Following hydrolysis of proteins by proteases into long-chained peptides, peptidases such as aminopeptidases further degrade it into smaller peptides and free amino acids, thus enhancing the absorption of these nutrients. It is also important to note that a better understanding of the digestive physiology of this species is essential for an adequate shrimp feed formulation, a central topic in aquaculture. Also, a misplanned dietary management may lead to excessive feed loss and metabolic excretion, therefore generating environmental pollution.

Considering the inhibition of trypsin and chymotrypsin for protein digestion in penaeid shrimp, these findings may have nutritional relevance regarding the use of less complex molecules such as protein hydrolysates (Zambonino-Infante & Calu, 2007). Proteases from the midgut gland of *E. paulensis* exhibited properties from the serine class. These proteases were inhibited by PMSE, which is consistent with the presence of serine and histidine residues at the catalytic site (Salin, García-Carreño, & Hernández-Cortés, 2004) and agrees with previous findings on the inhibition of decapod crustacean serine proteases by PMSE (Lemos, García-Carreño, Hernández & Navarrete del Toro, 2002). The inhibition of three trypsin isoforms from the Pacific white shrimp *L. vannamei* has been reported with TLCK and benzamidine when BAPNA was used as the substrate (Salin et al., 2004). Despite inhibiting 68% of the chymotrypsin activity in *E. paulensis* in the present study, TPCK has not proven effective on chymotrypsin activity in other penaeid species (Tsai, Liu, & Chung, 1986; García-Carreño et al., 1994; Lemos et al., 1999).

The greatest trypsin-like activity in *E. paulensis* was found in the pH range 8.0–9.0 for the hydrolysis of BAPNA, thereby indicating a slightly higher optimal pH for the species (Jang, Moody, & Chen, 1991) found optimal pH values of 7.0–8.0 for three trypsins from the midgut gland of *Penaeus monodon* using p-toluenesulphonyl-L-arginine methyl ester as substrate. The highest hydrolysis of trypsin in other decapods, such as crayfish, has also been found to be at pH values between 7.0 and 8.0 (Dionysius, Hoek, Milne, & Slattery, 1993). The highest chymotrypsin-like activity in *E. paulensis* at pH values between 7.5 and 8.0 are also in contrast to values of around 7.0 and between 8.0 and 8.5 reported for this enzyme in the gastric fluid of the marine crab *Cancer pagurus* (Saborowski, Sahling, Navarrete del Toro, Walter, & García-Carreño, 2004) and the gut of *Diphipus* (Ebert, Agiawul, Gebauer, Jareusch, Bauer, & Zitz, 2004) respectively. In view of such specificities in enzyme functioning, the determination of the optimal pH is fundamental to the assessment of the digestive capacity of different feeds (e.g. degree of protein hydrolysis) in assays considering the relationship between
peptide bond breakage and changes in pH values (Enquerra, García-Carreño, Čivera & Haard 1997). Trypsin-like activity exhibited the greatest BAPNA hydrolysis at 45°C, which is a lower optimal temperature than that found for other crustacean species, such as the digestive tract of P. monodon (55-65°C) (Jiang et al. 1991); L. vannamei (50°C) (Sainz et al. 2004); and Triops sp. (50-60°C) (Mendoza-Martínez, Obregón-Barboza, Navarrete del Toro, Obregón-Barboza & García-Carreño 2000). The thermostability of trypsin in F. paedensis at temperatures higher than 45°C contrasts trypsin from C. pagurus, which is reported to retain 70% of its initial activity after 60 min at 50°C (Saborowski et al. 2004). On the other hand, chymotrypsin in F. paedensis had the highest activity at 55°C, but lost 75% of this activity after incubation at this temperature for 30 min. Although the literature reports chymotrypsin-like activity in the digestive system of shrimp (Vega-Villanueva et al. 1998; Fernandez et al. 1997; Fernandez-Gaume et al. 2003; Cervera-Morente, García-Carreño & Navarrete del Toro 2004), information on its physicochemical characterization remains scarce. A similar study has reported chymotrypsin activity in the gastric fluid of C. pagurus extinguished after incubation at 60°C for 20 min (Saborowski et al. 2004).

Thermal effects on proteolytic enzymes were also determined in substrate gel electrophoresis. All bands remained active up to a pre-treatment of 55°C, although the enzymatic tube assay of proteolytic activity was reduced at this temperature. Indeed, the zymogram method seems to be more sensitive than the quantitative assay when using soluble substrates (Lemos et al. 2000). The fact that only one caseolidetic band (with the lowest molecular weight) was not inhibited by PMSF indicates that most of the proteases belong to the serine class. The protease with the lowest molecular weight in F. paedensis was inhibited by TLCK, which is a specific trypsin inhibitor, but was not inhibited by benzamidane, which is also a trypsin inhibitor. This suggests that its activity centre may not be homologous to the mammal trypsin (benzamidane-sensitive). On the other hand, a caseolidetic band (Fig. 7, lane 3, white arrow) that was inhibited by PMSF and benzamidane, but not by TLCK, possibly represents a trypsin-like enzyme. It is noteworthy that two bands (Fig. 7, lane 2, white dashed arrow) were only inhibited by PMSF. By exclusion, this finding suggests the presence of a thermal-stable chymotrypsin. Through inhibition by PMSF, chymotrypsin isoforms have been reported previously in early and juvenile stages of F. paedensis (Lemos et al. 1999).

Calcium chloride is used in different concentrations as an enzyme stabilization factor for the determination of trypsin and chymotrypsin activity in protocols developed for mammal enzymes (Erlander, Kokowsky & Cohen 1964). Trypsin activity in F. paedensis seemed to be sensitive to concentrations usually used in conventional assays (>20 mM CaCl2), exhibiting significantly reduced enzyme activity. On the other hand, although the effect of certain calcium concentrations on enzyme activity may be non-significant, the hydrolytic potential of the activity of standardized enzyme extracts may be improved at some Ca2+ concentrations, as observed in assays for protein hydrolysis (Pedersen & Eggum 1983). This may be particularly relevant to the formulation of shrimp feed, considering the variety of ingredients with different mineral contents and their potential effects on the digestive capacity in shrimp (Lemos 2004).

The significant correlation found between aminopeptidase activity (Arg, Leu, Lys, Phe and Val) and the recommended concentrations of these essential amino acids in shrimp diets (Guillaume 1997) possibly indicates a physiological response to protein hydrolysis based on the required concentrations of essential amino acids. To some extent, the data from the present study corroborate reported recommended concentrations for shrimp, with arginine and lysine requiring relatively high concentrations (Fox, Lawrence & Li-Chan 1995). Thus, increased hydrolytic efficiency is dependent on the composition of essential amino acids in commercial shrimp diets (Lemos & Nunes 2008). Further determination of aminopeptidase activity with additional essential AA-NA substrates (e.g. methionine, cystine and threonine) may contribute towards an understanding of the relationships between digestive enzyme activity, hydrolytic potential and diet composition in terms of nutrient requirements.

Enzyme technology has been useful in the development of specific in vitro methods for the quality control of diets and ingredients in the livestock feed industry (Fuller 1991). However, the different nature in the functioning, affinity and catalytic performance of enzymes from terrestrial versus aquatic animals entails the development of methods based on specific enzymatic digestion features (Dimes, Haard, Dong, Rasco, Forster, Fairgrieve, Arndt, Hardy, Barrows & Higgs 1994). The set-up of in vitro assay conditions for proper hydrolysis is mostly dependent on basic
conditions such as pH and temperature. Thus, the characterization of the functional properties of digestive enzymes in aquatic animals is a necessary starting point for further use of enzyme extracts as tools in the search for the proper nutrient sources in aquaculture.

Acknowledgments

The authors would like to thank to Dr. Kaethly Bisun Alves and Sonia Maria de Oliveira-Montanaro for the determination of aminopeptidase activities, and to Mr. Otaviano Tavares da Costa, Rafael Padilha, Albérico Espírito Santo and João Virgônio for their technical assistance. This study was supported by FINEP/ RUC/ECARNE/SER/PL-CNpq, FAPESC and PETROBRAS. L. D. Lemus acknowledges grant supports by FAPESP (05/50578-2; 07/0751-9), CNpq/SEAP (90/1031/2003-1) and a CNpq fellowship (308444/2006-9) under the National Research System (Brazil).

References

Proteases in *Farfantepenaeus paulensis* D S Basque et al.

Aquaculture Research. 2009. 40, 861–870

© 2009 The Authors
4.3 Artigo 3: Digestive proteinases and peptidases in the hepatopancreas of the southern brown shrimp (*Farfantepenaeus subtilis*) in two sub-adult stages
Digestive proteinases and peptidases in the hepatopancreas of the southern brown shrimp (*Farfantepenaeus subtilis*) in two sub-adult stages

D.S. BUARQUE¹, P.F. CASTRO², F.M.S. SANTOS¹, I.P.G. AMARAL¹, S.M. OLIVEIRA³, K.B. ALVES¹, L.B. CARVALHO JR¹ & R.S. BEZERRA¹

¹ Laboratório de Eczmologia (LABENZ), Departamento de Bioquímica; Laboratório de Imunopatologia Keizo Asami (LIKAI), Universidade Federal de Pernambuco, Cidade Universitária, Recife – PE, Brazil; ² Estação Meio-Norte, Parque – PI, Brazil; ³ Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo – SP, Brazil

Abstract

The aim of this study was to examine proteinases and peptidases from the hepatopancreas of two sub-adult stages of *Farfantepenaeus subtilis*: SAS₁ (5.93 ± 0.69 g wet weight) and SAS₂ (13.26 ± 0.60 g wet weight). Trypsin and chymotrypsin activity was higher in the extract from the SAS₁ individuals (*P* < 0.05). The highest activity among aminoacyl-β-naphthylamide substrates was found using alanine-, arginine-, leucine- and lysine-β-naphthylamide. There was a positive correlation between the recommended concentration of essential amino acids in penaeid shrimp feed and aminopeptidase activity in both sub-adult stages. Proteolytic activity of *F. subtilis* was strongly inhibited by specific trypsin inhibitors. The optimal temperature for trypsin, chymotrypsin and leucine aminopeptidase activity was between 45 and 55 °C. Six and seven bands were found in caseinolytic zymograms for SAS₁ and SAS₂, respectively. All bands were inhibited by phenylmethyldesulfonyl fluoride in both sub-adult stages. The use of tosyl-lysine-chloromethyl-ketone and benzamidine caused strong inhibition of the proteolytic bands. Trypsin and chymotrypsin activity was the main difference observed between the protease pattern of SAS₁ and SAS₂ *F. subtilis*.

KEY WORDS: aminopeptidases, chymotrypsin, digestive enzymes, *Farfantepenaeus subtilis*, southern brown shrimp, trypsin

Introduction

The southern brown shrimp, *Farfantepenaeus subtilis*, is native to the Atlantic coast of Central and South America, from Cuba down to Rio de Janeiro, and was one of the first species to be farmed in Brazil, along with *Farfantepenaeus brasiliensis*, *Farfantepenaeus paulensis* and *Litopenaeus schmittii*. The southern brown shrimp exhibits benthic omnivorous opportunistic feeding habits under semi-intensive conditions, although polychaetes and calanoid copepods seem to be favoured during all growth stages (Nunes & Parsons 2000).

Despite its farming potential and attractive market features, the culture of *F. subtilis* in semi-intensive conditions in Brazil has failed mainly due to low yields. Studies carried out by Brazilian farmers report a food conversion ratio ranging from 2.88 to 3.44 and an atypical growth performance, thus generating low productivity. The growth rate slows after the shrimp reach 6 g of body weight. This suggests that the poor results may be related to nutritional problems and ontogenetic changes in the digestive enzyme metabolism (Maia & Nunes 2003).

Comprehension of digestion physiology and nutrient digestibility remains a problem for the culture of *F. subtilis*. Knowledge concerning the digestive system of this species can provide information applicable to food utilization. Thus, the identification and characterization of digestive enzymes during shrimp growth is an important step towards understanding the digestive mechanisms and formulating diets that promote better growth responses, as feed can be designed according to the digestion capacity (López-Lopez et al. 2005).

A number of studies have indicated properties of digestive enzymes in shrimp and other crustaceans, such as proteases, carbohydrates, lipases and the digestibility of
feed ingredients (Lemos et al. 2000, 2004; Córdova-Murucutu et al. 2003; Mathia-Almazán et al. 2003; Gaxiola et al. 2005; López-López et al. 2005). However, synthesis regulation and enzyme activity are species-specific (Fernández Giménez et al. 2002) and it is therefore not possible to extrapolate characteristics from one species to another. This study describes the investigation of proteases and peptidases as well as certain properties of these digestive proteases from the hepatopancreas of the southern brown shrimp, *F. subtilis*, in two sub-adult stages. These findings provide basic information on protein digestion and will be useful in further nutritional research.

Materials and methods

Materials

Farfantepenaeus subtilis specimens were obtained from a commercial fishery on the coast of Barra de Sirinhaem (8°36'S; 35°11'W), 100 km from the city of Recife in the state of Pernambuco, Brazil. All reagents used in the enzyme assays were of analytical grade, purchased from Sigma (St. Louis, MO, USA) and Merck (Darmstadt, Germany).

Enzyme extraction and determination of total soluble protein

The specimens were transported alive to the Enzymology Laboratory of the Universidade Federal de Pernambuco. Sixty-litre plastic bags were used for temporary storage at a density of two specimens per bag in 12 L of salt water. The water was saturated with oxygen and a ratio of one-third water to two-thirds oxygen. The shrimp were classified in two sub-adult stages: SAS, (approximately 6 g of wet weight) and SAS1 (approximately 13 g of wet weight). The hepatopancreas from 20 SAS, (5.93 ± 0.69 g wet weight) and 20 SAS1 (13.26 ± 0.60 g wet weight) specimens were dissected immediately after killing by decapitation. For each sub-adult stage, four sets of five hepatopancreases were homogenized (40 mg mL⁻¹) in chilled 0.15 M NaCl, using a Potter-Elvehjem tissue homogenizer (Bodine Electric Company, Chicago, IL, USA) at 30–50 rpm for 3 min at 4 °C. Homogenates were centrifuged at 10 000 g for 25 min at 4 °C to remove lipid and tissue debris, and supernatants (crude enzyme extract) were stored at −20 °C for further use. The total soluble protein was determined following the procedure described by Bradford (1976), using bovine serum albumin as the standard protein.

Non-specific enzyme assays

Non-specific proteolytic activity was assayed using azocasein as substrate in a microcentrifuge tube. Triplicate samples of each enzyme extract (30 μL) were incubated with 10 g L⁻¹ azocasein (50 μL) dissolved in 0.1 m Tris-HCl, pH 8.0, for 60 min at 25 °C (Bezerra et al. 2005). Next, 100 g L⁻¹ trichloroacetic acid (120 μL) was added to stop the reaction and the mixture was centrifuged at 9000 g for 5 min. The supernatant (70 μL) was mixed with 1 m NaOH (130 μL) and absorbance was measured in a microplate reader (Bio-Rad 680) at 450 nm against a similarly prepared blank (with 9 g L⁻¹ of NaCl in place of the crude extract). Precautions demonstrated that, for the first 60 min, the reaction carried out under the above-mentioned conditions follows first-order kinetics. Protease activity was expressed as units per mg of protein. One unit (U) of enzyme activity was defined as the amount of enzyme required to hydrolyze azocasein and produce a change in absorbance of 0.001 mL⁻¹ min⁻¹.

Specific enzyme assays

Trypsin, chymotrypsin and leucine aminopeptidase activity was determined in a 96-well microtiter plate, using benzoyl-DL-arginine-p-nitroanilide (BAPNA), succinyl-alanine-alanine-proline-phenylalanine-p-nitroanilide (SAPNA) and leucine-p-nitroanilide (Leu-p-Nan) as specific substrates respectively (Bezerra et al. 2005). Triplicate samples of enzyme extracts (30 μL) were incubated with either 4 mm of BAPNA, SAPNA or Leu-p-Nan (30 μL) dissolved in dimethylsulphoxide (DMSO) and 0.1 m Tris-HCl (140 μL), pH 8.0. The reactions occurred at 25 °C for 15 min and were recorded at 405 nm using a microplate reader. Activity was expressed as protease mU mg⁻¹ of protein. One unit (U) of activity was defined as the amount of enzyme required to produce 1 μmol p-nitroaniline min⁻¹.

Aminopeptidase activity was also evaluated using aminoacyl-β-naphthylamide as substrate. The substrates used were Ala, Arg, Leu, Phe, Val, Ser, Glu, Ile, Tyr, His, Lys and Gln. The procedure was carried out by incubating 4.2 mm of substrate (50 μL), 50 mm of sodium phosphate buffer, pH 7.0, (600 μL) and H₂O (50 μL) at 37 °C. After temperature equilibration, the enzyme (50 μL) was added. After 120 min, the reaction was stopped by adding fresh Garnett reagent (250 μL) prepared in 0.2 m of sodium acetate buffer, pH 4.2, containing 100 mL⁻¹ of Tween 20. Absorbance was measured at 225 nm and the amount of β-naphthylamide was determined using a standard β-naphthylamide curve. Activity
was expressed as protease mU mg⁻¹ of protein. One unit of enzyme activity was defined as the amount of enzyme required to hydrolyze 1 μmol of β-naphthylamine min⁻¹ (Oliveira et al. 1999).

Inhibition assays

The following inhibitors prepared in DMSO at a final concentration of 1 mM were used: phenylmethanesulfonyl fluoride (PMSF – serine protease inhibitor), tosyl-lysyl-chloromethyl ketone (TLCK) and benzamidine (both trypsin inhibitors); Tosyl-phenylalanine chloromethyl ketone (TPCK – chymotrypsin inhibitor; and bestatin (aminopeptidase inhibitor) (Bezerra et al. 2005). Triplicate samples of enzyme extract (25 μL) and inhibitors (25 μL) were placed in a well of a microtitrate plate and incubated at 25 °C for 15 min. Volumes were then adjusted to 170 μL with 0.1 M Tris- HCl, pH 8.0, and the respective substrate (BAPNA – PMSF, TLCK and benzamidine; SAPNA – PMSF and TPCK; Leu-p-Nan – bestatin) and the proteolytic activity were determined as described above. The enzyme and substrate blank were similarly assayed without enzyme and substrate solution respectively. The 100% values were established using DMSO without inhibitors.

Physical chemical properties

The effects of pH and temperature on proteolytic activity of the F. subtilis enzyme extract were evaluated as described above, using 0.1 M Tris- HCl buffer, with pH ranging from 7.2 to 9.0 and temperature ranging from 25 to 85 °C. Thermal stability was evaluated by assaying enzyme activity at 25 °C after pre-incubation for 30 min at temperatures ranging from 25 to 85 °C (Bezerra et al. 2005).

Electrophoresis sodium dodecyl sulphate polyacrylamide gel electrophoresis and zymograms

Proteases from F. subtilis were studied by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), using a 4% (w/v) stacking gel and 12.5% (w/v) separating gel (Laemmli 1970). Enzyme preparations and molecular weight markers (15 μL) (ovovalbumin – 46 kDa, glyceraldehyde 3-phosphate dehydrogenase – 36 kDa, carbonic anhydrase – 29 kDa, trypsinogen – 24 kDa and α-lactalbumin – 14.2 kDa) were applied to each track of a vertical electrophoresis device (Bio-Rad). The gels were stained for protein overnight in 1.8 g L⁻¹ Coomassie Brilliant Blue R250 prepared in water, acetic acid and methanol (65 : 10 : 25) and the background of the gel was de-stained in the same solution without dye. Electrophoresis was performed at a constant current of 15 mA per gel at 4 °C.

Zymograms were also carried out, following the procedure described by Garcia-Carrasco et al. (1993). After electrophoresis, the gels were immersed in 2.5 mL L⁻¹ (100 mL) Triton X-100 in 0.1 M Tris- HCl, pH 8.0, for 30 min at 4 °C to remove the SDS. The Triton X-100 was removed by washing the gels three times with 100 mL of 0.1 M Tris- HCl buffer, pH 8.0. The SDS-free, Triton X-100-free gels were then incubated with 100 mL of 3 g L⁻¹ casein in 0.1 M Tris- HCl, pH 8.0, for 30 min at 4 °C. The temperature was raised to 25 °C and maintained for 90 min to allow the digestion of casein by the active fractions. Finally, the gels were stained and de-stained as described previously. Thermal stability was also determined using the caseinolytic zymogram. The same methodology described above was employed, except that samples were pre-incubated at temperatures ranging from 25 to 75 °C. For the zymogram of enzyme inhibition, samples were pre-incubated with serine protease and trypsin inhibitors as described above (inhibition assays). Samples incubated with proteinase inhibitors were compared with control (without inhibitors). Decrease of the intensity or evanishment of the bands indicated inhibition of proteolytic activity, identifying the type of enzyme.

Statistical analysis

Data (mean ± standard deviation) processing was carried out using the MICROCAL ORIGIN 6.0 software program. Differences between mean values were analysed using the Student’s t-test. Differences were considered significant when P < 0.05 (Zar 1984).

Results

Table 1 displays the proteolytic activity of the SAS8 and SAS13 F. subtilis specimens. Total proteolytic activity (azocasein as substrate) did not differ (P > 0.05) between SAS8 and SAS13. The use of specific substrates revealed the presence of trypsin-, chymotrypsin- and leucine aminopeptidase-like enzymes. Trypsin-like (BAPNA) and chymotrypsin-like (SAPNA) activity was significantly higher (P < 0.05) in SAS8 than SAS13. Chymotrypsin-like activity was almost twice higher in SAS8 than SAS13. The presence of aminopeptidases was more evident with β-naphthylamide substrates (Table 1). Higher activity was found for basic (Arg-, Lys-) and non-polar (Ala-, Leu-) substrates. Lower activity occurred with aromatic (Tyr), uncharged polar (Ser-) and
Table 1: Proteolytic activity in the hepatopancreas of *Furunculus officinalis* SAS₆ and SAS₇ using specific and non-specific substrates

<table>
<thead>
<tr>
<th>Substrates</th>
<th>SAS₆ (µU mg⁻¹)</th>
<th>SAS₇ (µU mg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-specific substrate</td>
<td>12.20 ± 0.63</td>
<td>11.97 ± 0.74</td>
</tr>
<tr>
<td>Azocasein</td>
<td>5.13 ± 0.08</td>
<td>4.41 ± 0.19</td>
</tr>
<tr>
<td>p-Nitroanilide</td>
<td>6.82 ± 0.14</td>
<td>4.04 ± 0.07</td>
</tr>
<tr>
<td>BAPNA</td>
<td>0.33 ± 0.02</td>
<td>0.28 ± 0.02</td>
</tr>
<tr>
<td>Leu-P-Nan</td>
<td>100.34 ± 12.01</td>
<td>100.25 ± 5.40</td>
</tr>
<tr>
<td>β-Naphthylamide</td>
<td>100.97 ± 10.01</td>
<td>100.42 ± 8.61</td>
</tr>
<tr>
<td>Alanine</td>
<td>60.04 ± 5.68</td>
<td>60.17 ± 4.01</td>
</tr>
<tr>
<td>Arginine</td>
<td>60.08 ± 8.08</td>
<td>56.68 ± 7.95</td>
</tr>
<tr>
<td>Lysine</td>
<td>20.33 ± 2.24</td>
<td>19.56 ± 1.93</td>
</tr>
<tr>
<td>Serine</td>
<td>20.28 ± 1.62</td>
<td>18.08 ± 2.16</td>
</tr>
<tr>
<td>Glycine</td>
<td>10.35 ± 1.06</td>
<td>9.98 ± 1.12</td>
</tr>
</tbody>
</table>

BAPNA, benzoyl-α-arginine-p-nitroanilide — trypsin-specific substrate; SAPNA, succinyl-alanine-alanine-proline-phenylalanine-p-nitroanilide; Leu-P-Nan, leucine-p-nitroanilide — leucine aminopeptidase-specific substrate. SAS₆ approximately 6 g of wet weight; SAS₇, 13 g of wet weight. Values shown are mean ± standard deviation (SD) of triplicates of four crude extracts obtained from five hepatopancreases each. Different italic superscript letters denote statistical differences (P < 0.05).

Non-polar (Gly-) substrates. However, activity was observed for all aminocetyl-β-naphthylamide substrates used, some of which (Glu, Ile, Phe, His and Val-β-naphthylamide) revealed negligible activity and were not listed. There were no statistical differences in the proteolytic activity (P ≥ 0.05) between SAS₆ and SAS₇, using aminocetyl-β-naphthylamide as substrates. A positive correlation between the recommended concentration of essential amino acids for penaeid feed and aminopeptidase activity was detected in both sub-adult stages, using aminocetyl-β-naphthylamide as substrates (Fig. 1).

Digestive proteases were partially inhibited by PMSF (using BAPNA and SAPNA as substrates) in both sub-adult stages (Table 2). TLCK and benzamidine exhibited a strong effect of trypsin-like activity inhibition on SAS₆ (91.70 ± 0.58% and 89.81 ± 0.21% respectively) and SAS₇ (92.20 ± 0.21% and 89.91 ± 0.15% respectively) specimens. TPCK inhibited chymotrypsin activity in both sub-adult stages. Leucine aminopeptidase activity was inhibited by bestatin at a rate of 81.49 ± 0.02% for SAS₆ and 85.21 ± 0.01% for SAS₇.

The highest trypsin-like activity was obtained in a pH range from 8.0 to 9.0; optimal pH was 8.5 for both SAS₆ and SAS₇. Maximum chymotrypsin-like activity was observed at pH 8.5 for SAS₆ and 8.0 for SAS₇. Optimal pH for leucine aminopeptidase was 8.0 in both sub-adult stages (Fig. 2).

Figure 1: Correlation between aminopeptidase activity of *Furunculina annulifera* SAS₆ (a) and SAS₇ (b) using aminocetyl-β-naphthylamide as substrates and recommended concentration of essential amino acids for penaeid shrimp feed. Values are shown as mean ± SD of triplicates of four crude extracts obtained from five hepatopancreases each. Concentration of amino acids expressed in % of crude protein: arginine (5.8), leucine (5.4), lysine (5.3) and phenylalanine (4.0), valine (4.0). *Based on Guillaume (1997).
Table 2 Effect of specific inhibitors on proteases of the hepatopancreas of *Farfantepenaeus subtilis* SAS₆ and SAS₁₃

<table>
<thead>
<tr>
<th>Inhibitors</th>
<th>Enzyme inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAS₆</td>
</tr>
<tr>
<td>PMSF¹</td>
<td>52.35 ± 0.34</td>
</tr>
<tr>
<td>PMSF²</td>
<td>55.23 ± 0.72</td>
</tr>
<tr>
<td>TLCK</td>
<td>91.73 ± 0.58</td>
</tr>
<tr>
<td>Benzamidine</td>
<td>85.54 ± 0.21</td>
</tr>
<tr>
<td>TPCK</td>
<td>42.40 ± 0.48</td>
</tr>
<tr>
<td>Bestatin</td>
<td>81.49 ± 0.02</td>
</tr>
</tbody>
</table>

PMSF, phenylmethylsulphonyl fluoride; TLCK, tosyl lysine chloromethyl ketone; TPCK, tosyl phenylalanyl chloromethylketone; SAS₆, approximately 6 g of wet weight; SAS₁₃, approximately 13 g of wet weight.

Values are shown as mean ± SD of triplicates of four crude extracts obtained from five hepatopancreases each. Different italic superscript letters denote statistical differences (P < 0.05). Maximal specific proteolytic activity (100%) was 7.03 μM mg⁻¹ for SAS₆ and 6.09 μM mg⁻¹ for SAS₁₃ using BAPNA as substrate. 100% was 4.40 μM mg⁻¹ for SAS₆ and 4.94 μM mg⁻¹ for SAS₁₃ using SAPNA as substrate. 100% was 0.89 μM mg⁻¹ for SAS₆ and 0.23 μM mg⁻¹ for *F. subtilis* adults using Leu-β-Nan as substrate.

1 PMSF inhibition using BAPNA as substrate.
2 PMSF inhibition using SAPNA as substrate.

Residual trypsin-like activity was reduced to 15% after a 30-min heat treatment at 55 °C (optimal temperature) in both SAS₆ and SAS₁₃ (Fig. 4a). A similar profile was obtained for the thermal stability of leucine aminopeptidase activity in both SAS₆ and SAS₁₃ specimens (Fig. 4c). Chymotrypsin-like enzymes demonstrated higher heat resistance than trypsin- and leucine aminopeptidase-like enzymes (Fig. 4b). No significant loss of activity appeared up to 35 °C. At 60 °C, activity decreased to 60% of the initial value.

Proteins from the hepatopancreas of SAS₆ and SAS₁₃ *F. subtilis* were analysed by electrophoresis (Fig. 5). A common pattern was observed concerning the number of bands in both sub-adult stages. Six bands ranging from 15.3 to 42.2 kDa were detected. Three bands were found to have molecular weights higher than 45 kDa and one band had a molecular weight lower than 14.2 kDa.

© 2009 The Authors
Journal compilation © 2009 Blackwell Publishing Ltd. Aquaculture Nutrition
Figure 3. Effects of temperature on proteolytic activity from *Fusarium oxysporum* subtilis SAS1 (●) and SAS3 (○) using BAPNA (a), SAFNA (b) and Leu-p-nitroanilide (c) as substrates. Values are shown as mean ± SD of triplicates of four crude extracts obtained from five hepatopancreases each. The crude extract was incubated with the above substrates at different temperatures for 15 min and reactions were measured at 405 nm. Values are expressed as percentage of the highest (100%) and were 7.41 mU mg⁻¹ for SAS1 and 2.49 mU mg⁻¹ for SAS3 using BAPNA as substrate; 40.69 mU mg⁻¹ for SAS1 and 28.02 mU mg⁻¹ for SAS3 using SAFNA; and 0.26 mU mg⁻¹ for SAS1 and 0.42 mU mg⁻¹ for SAS3 using Leu-p-nitroanilide as substrate, respectively. SAS1: approximately 6 g wet weight; SAS3: approximately 13 g wet weight.

Dashed arrow, Fig. 6a, lane 1). This proteolytic band is also evident in Fig. 7a (black arrow, lane C). From 35 to 55 °C, the number and intensity of bands were similar for both subadult stages. One band remained active in SAS1 even at temperatures as high as 65 °C (white arrow, Fig. 6a, lane 5).

Figure 7 displays the enzyme inhibition zymogram. All proteolytic bands were either totally or partially inhibited by PMSF (lane 1) in the SAS1 and SAS3 extracts, indicating that most bands must be serine proteases. No reaction was recorded in two bands using TLCK (lane 2) and in three bands using benzamidine (lane 3), suggesting a strong presence of trypsin-like activity in the *F. subtilis* enzyme extract. By comparing these results to those recorded in Fig. 6, it is evident that the thermostable proteolytic band in SAS1 (white arrow, Fig. 7a, lane C) was inhibited by PMSF, TLCK and benzamidine. The proteolytic bands that were not inhibited by trypsin inhibitors exhibited greater intensity (white dashed arrows, Fig. 7a, b, lanes 2 and 3).

Discussion

Studies on the characterization of digestive enzymes in shrimp are important to understanding their digestive physiology in comparative studies and represent basic information for further use of enzyme extracts as tools in the search for the proper nutrient sources in aquaculture (Buarque et al. in press). The fact that proteases and peptidases are present in the hepatopancreas of *F. subtilis* is a relevant physiological advantage. Following hydrolysis of proteins by proteases, peptidases such as aminopeptidases break long-chain peptides down into smaller peptides and free amino acids, thereby enhancing the absorption of these nutrients. According to Zaumbebaio-Ino et al. (2007), the activity of peptidases facilitates the assimilation of amino acids in the larvae of marine fishes. A better understanding of the digestive physiology of this species is essential to the formulation of an adequate shrimp feed (Buarque et al. in
Digestive proteases in *Farfantepenaeus subtilis*

Figure 4. Effects of thermal stability on proteolytic activity from *Farfantepenaeus subtilis* SAS (○) and SAS₂ (■) using BAPNA (a), SAPNA (b) and Leu-p-Nan (c) as substrates. Values are shown as mean ± SD of triplicates of four crude extracts obtained from five hepatopancreases each. Thermal stability was determined by assaying its activity (25 °C) after pre-incubation for 30 min at the indicated temperatures. Values are expressed as percentage of the highest (100%) and were 7.14 μU mg⁻¹ for SAS, and 4.93 μU mg⁻¹ for SAS₂ using BAPNA as substrate, 9.89 μU mg⁻¹ for SAS, and 4.26 μU mg⁻¹ for SAS₂ using SAPNA, and 0.28 μU mg⁻¹ for both sub-adult stages using Leu-p-Nan as substrate respectively. SAS: approximately 6 g of wet weight, SAS₂: approximately 13 g of wet weight.

Digesting protein from diets with a high concentration of basic or aromatic amino acid.

The structure and morphology of digestive systems of decapod crustaceans are generally similar. However, differences are often observed on the biochemical level, two of which are related to the cell pH of the midgut gland and enzyme expression (Szamowietz et al. 2008). According to these authors, while crustaceans with a lower pH produce cysteine and aspartic proteases, those with a higher pH (such as penaeid shrimp) predominantly express serine proteases.

Trypsin- and chymotrypsin-like enzymes were identified in both sub-adult stages of *F. subtilis*. The higher trypsin- and chymotrypsin-like activity in the SAS₂ specimens may be related to the faster metabolism of younger organisms. The crustacean digestive system generally exhibits a high concentration of serine proteases, mainly trypsin and chymotrypsin (Fernández et al. 1997). Trypsin also plays an important role in digestion through the activation of zymogens of both itself and other endopeptidases (Natalia et al. 2004).

In this study, aminopeptidases were also observed in both sub-adult stages. As little information is available on aminopeptidases in shrimp, Leu-p-Nan and aminocetyl-β-naphthylamide substrates were used to provide a greater understanding of these enzymes. Aminopeptidases in the hepatopancreas of *F. subtilis* SAS, and SAS₂ were capable of strongly hydrolyzing alanine, arginine, leucine, lysine- and serine-β-naphthylamide substrates. Greater hydrolysis of substrates containing amino acids was required at greater concentrations in the shrimp diets, such as arginine, leucine and lysine. According to Guillaume (1997), the requirements of these amino acids for penaeids are 5.8%, 5.4% and 5.3% of crude protein respectively. These amino acids correlated with the aminopeptidase activity using some β-naphthylamide substrates (Arg-, Leu-, Lys-, Phe- and Val-). The results of this study corroborate the requirements reported in literature.
as lysine and arginine are described as the most limiting essential amino acids in commercial shrimp feeds (Fox et al. 1995). The correlation between recommended concentrations of some dietary components, such as lysine and arginine, and high aminopeptidase activity may be related to the efficient digestion and incorporation of these key nutrients (Lemos & Nunes 2008). This interesting correlation has also been observed for _F. panulirus_ (Buarque et al. in press).
The most important proteases in decapod crustaceans belong to the serine class and are inhibited by PMSF (Lemos et al., 2002), as observed with the proteases in hepatopancreatic tissue of *F. subtilis* in this study. The strong inhibition by TLCK and benzamidine (trypsin inhibitors) on the proteolytic activity in both sub-adult stages indicates classical trypsin activity (traditional mammalian trypsin). However, TPCK was not efficient in inhibiting chymotrypsin activity in the crude extract of both sub-adult stages. This inhibitor has also demonstrated a low effect on chymotrypsins in other crustaceans (García-Carreño et al., 1994; Lemos et al., 1999; Fernández Giménez et al., 2002).

Classical protease inhibitors, such as PMSF, TLCK, TPCK and benzamidine, are generally synthesized based on the mammalian enzyme mechanism. However, some studies have found a low inhibitory effect by these molecules on crustacean proteases (García-Carreño et al., 1994; Lemos et al., 1999; Fernández Giménez et al., 2002). This is a strong evidence of the low compatibility of these enzymes with mammalian proteases. According to Dall & Moriarty (1983), the digestive system of crustaceans is so different from that of mammals that differences in the activity of their enzymes are to be expected. This may be important information for aquaculture, mainly because the quality of shrimp feeds is commonly evaluated using digestibility assays employing mammalian enzymes (i.e. pepsin test). In fact, these results reinforce the advantage of the use of methodologies such as pH-STAT, which evaluates digestibility by employing enzyme extracts from the target shrimp species.

Crustacean proteases generally exhibit the greatest activity in the pH range from 5.5 to 9.0; trypsin activity is greatest between pH 7.0 and 9.0 (Jiang et al., 1991; Maeda-Martínez et al., 2000) and chymotrypsin activity is greatest between pH 7.0 to 10.0 (Saborowski et al., 2004; Von Elert et al., 2004). The optimal pH for trypsin enzymes in *F. subtilis* falls within this interval. Chymotrypsin-like enzymes also exhibited maximal proteolytic activity in the alkaline range. According to Dall & Moriarty (1983), pH in gastric fluid during feeding may fluctuate around neutrality and all digestive enzymes may be active enough in this range for adequate digestion to occur.

Trypsin-like enzymes in the hepatopancreas of both *F. subtilis* SASb and SASa exhibited the highest proteolytic activity at similar temperatures: 55 °C at pH 8.0. These values correspond to those recorded for other crustaceans (from 30 to 60 °C) (Jiang et al., 1991; Maeda-Martínez et al., 2000). However, trypsin-like enzymes in *F. subtilis* SASa and SASb retained about 15% of their activity after incubation for 30 min at 55 °C (Fig. 4). Although trypsin exhibited maximal activity at 55 °C in both sub-adult stages, its thermal stability was low at the same temperature, suggesting that most of this enzyme must have been denatured.

There is little information concerning the heat treatment and temperature resistance of chymotrypsins from crustaceans. Chymotrypsin activity from the gastric fluid of the crab *Cancer pagurus* was extinguished after incubation at 60 °C for 20 min (Saborowski et al., 2004). Therefore, chymotrypsin of *C. pagurus* seems to be less thermostable than the same enzyme in *F. subtilis* (about 40% of initial value after a 30-min heat treatment at 60 °C).

A number of authors have studied aminopeptidases in fish (Refstie et al., 2006). This demonstrates the importance of understanding the role of aminopeptidases in the protein digestion of aquatic organisms. Galgani et al. (1984) report the presence of leucine aminopeptidase in crude extract from *Penaeus kerathurus*. However, there is a lack of information on aminopeptidases in shrimp with regard to their physicochemical characterization. Further studies are required to compare the physicochemical effects on aminopeptidases in different shrimp species. Regarding the properties of leucine aminopeptidase in the hepatopancreas of *F. subtilis* SASb, and SASa, optimal pH and temperature were 8.0 and 30–55 °C, respectively, and indicate a similar temperature denaturation profile being completely inactivated at 80 °C.

In the electrophoresis (SDS-PAGE) of the extracts from the hepatopancreas of *F. subtilis* SASb, and SASa, a similar pattern was observed in both samples (Fig. 5). Two bands were well visualized in the molecular weight range from 24 to 29 kDa, which is equivalent to the trypsin enzyme molecular weight reported in the literature for other aquatic animals (Kolodziejka & Sikorski, 1998).

The thermal stability of proteolytic enzymes from *F. subtilis* is also shown in zymograms and the results demonstrated a similar band profile in both sub-adult stages studied. However, one slight band with proteolytic activity at 65 °C was observed in SASa (white arrow, Fig. 6), suggesting that this enzyme remains active even under adverse temperature conditions. Moreover, an extra band was also observed in the crude extract from SASa specimens, indicating the presence of one more protease in the hepatopancreas of *F. subtilis* (white dashed arrow, Fig. 6). This band was inhibited by PMSF, TLCK and benzamidine (white arrow, Fig. 7), suggesting that it is a trypsin enzyme. All bands remained active until 55 °C in both sub-adult stages, even though the quantitative determination of proteolytic activity was low at the same temperature. In fact, the zymogram technique is more sensitive than the quantitative assays using soluble substrates (Lemos et al., 2000).

Proteolytic bands inhibited by both PMSF (serine protease inhibitor) and TLCK or benzamidine (trypsin inhibitors)
D. S. Buarque et al.

correspond to trypsin, which is a key enzyme in proteolytic digestion. Inhibition by PMSF alone indicates the presence of chymotrypsin, another proteolytic enzyme present in the hepatopancreases of penaeids (Lemos et al. 2002).

Conclusions

This study demonstrated a large diversity of proteases in the hepatopancreas of *F. subtilis*, with the presence of trypsin, chymotrypsin and aminopeptidases. The presence of a high content of proteases and proteinases renders protein digestion more efficient. The most striking difference between sub-adult stages was the greater chymotrypsin activity in the crude extract of SAS. In wild animals, however, it was not possible to associate the protease metabolism with the previously observed slowdown in the growth rate in cultured specimens (after reaching 6 g of body weight). Moreover, a considerable large diversity of aminopeptidase was found in both sub-adult stages. The highest aminopeptidase activities were observed using alanine, arginine, lysine and leucine-β-naphthylamide as substrates. The proteolytic enzymes studied revealed optimal pH within the expected range for decapod crustaceans, as described in the literature. While the trypsins and leucine aminopeptidases found in this study exhibited an optimal temperature of about 55 °C, they were not thermostable at this temperature. These findings provide additional relevant information and could help to elucidate the relationship between diet and digestive potential of *F. subtilis*. This study may be used as a comparative reference for further feeding and nutrition studies on this species under farming conditions.

Acknowledgements

The authors would like to express their thanks to Mr Otaviano Tavares da Costa, Rafael Padilha, Albérico Espírito Santo and João Virgílio for their technical assistance. This study was supported by Financiadora de Estudos e Projetos (FINEP/RECERCINE), Secretaria de Agricultura e Pesca (SEAP/PR), Conselho Nacional de Desenvolvimento Científico (CNPq), Fundação de Apoio à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) and Petróleo do Brasil S/A (PETROBRAS).

References

Digestive proteases in *Farfantepenaeus subtilis*

5. CAPÍTULO 2: FISIOLOGIA DIGESTIVA DE PEIXES
5.1. Artigo 4: Utilization of shrimp protein hydrolysate in Nile tilapia (*Oreochromis niloticus*) feeds
Shrimp protein hydrolysate in tilapia feed

Utilization of shrimp protein hydrolysate in Nile tilapia

Oreochromis niloticus, L. feeds

Albino Luciani Gonçalves Leal¹, Patrícia Fernandes de Castro², João Paulo Viana de Lima¹, Eudes de Souza Correia¹, Ranilson de Souza Bezerra²*

¹ Laboratório de Sistemas de Produção Aquícola, Departamento de Pesca e Aquicultura, UFRPE, Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife-PE, 52171-900, Brazil.
² Embrapa Meio-Norte, Caixa Postal 341, Parnaíba, PI, 64200-970, Brazil.
³ Laboratório de Enzimologia, Departamento de Bioquímica, UFPE, Cidade Universitária, Recife-PE, 50670-420, Brazil.

* Corresponding Author:
Ranilson S. Bezerra
Laboratório de Enzimologia, Departamento de Bioquímica da Universidade Federal de Pernambuco, Cidade Universitária, 50670-420, Recife-PE, Brazil.
Telephone number: + 55 81 21268540, Fax: + 55 81 21268576
Email: ransoube@uol.com.br
Abstract

A 45-day feeding trial was carried out to evaluate the use of shrimp protein hydrolysate (SPH) in diets to Oreochromis niloticus, L. SPH was included in isonitrogenous diets at levels of 0, 5, 10 and 20% of fish meal protein replacement and offered to juvenile Nile tilapia (1.7±0.4g) stocked in 40-L glass aquaria. The inclusion of SPH did not produce significant differences (P≥0.05) on final weight, survival, weight gain (WG), average daily gain (ADG), specific growth rate (SGR), feed conversion ratio (FCR), protein efficiency ratio (PER) and apparent net protein utilization (ANPU). The inclusion of SPH in diets for Nile tilapia significantly affected (P<0.05) the final fish body composition. Protein and ash contents decreased and fat content increased slightly with SPH inclusion levels. This study has demonstrated that SPH could be included up to 6% in diets for Nile tilapia without adverse effects on growth and nutrient utilization.

Keywords: growth, protein utilization, shrimp protein hydrolysate, tilapia.
Introduction

Aquaculture requires high-quality feeds with high protein content. In general, protein is the most expensive nutrient in aquafeeds. Marine protein sources (mainly fish and by-products meals) generally enhance aquafeeds palatability and are excellent sources of essential amino acids and fatty acids, vitamins and minerals (Sudaryono et al 1995, El-Sayed 1999, Hardy et al 2007).

At present, fish meal still remains as the major dietary protein source, comprising between 20 and 60% of fish feed (Watanabe 2002). On the long-turn, many developing countries will be unable to depend on fish meal as a major protein source in aquafeeds. The determination of less-expensive sources of protein which provide good growth is advantageous for diet manufacturer and aquaculture producers alike (Coyle et al 2004).

Nile tilapia, Oreochromis niloticus, Linnaeus (1758) is one of the most cultured fish in tropical and subtropical regions of the world. Tilapia is an omnivorous species that has a digestive system that differs both from those of carnivorous and from many herbivorous fish: utilize a wide spectrum of foods (Sklan et al 2004a) use dietary carbohydrate efficiently (Boscolo et al 2002) and has a great ability to digest plant protein (Olvera-Novoa 2002, Shelton and Popma 2006, Gatlin III et al 2007).

Hence, many products has been tested as protein source to tilapia: soybean meal; Leucaena leaf meal (Wee and Wang 1987); feather meal (Bishop et al 1995); shrimp, blood, meat and bone and poultry by-product meals (El-Sayed 1998); cottonseed meal (Mbahinzireki et al 2001); sunflower cakes, anchovy meal and wheat bran (Maina et al 2002); a mix of soybean meal, cottonseed meal, sunflower meal and linseed meal (El-Saidy and Gaber 2003); distillers dried grains with solubles (Coyle et al 2004); corn gluten, rapeseed meal, sorghum and barley (Sklan et al 2004b); soybean meal, maize gluten meal, dehulled flax, pea and canola protein concentrates (Borgeson et al 2006). Despite of this, the inclusion of plant protein sources in aquafeeds is limited by antinutritional factors, associated to amino acids imbalances (Francis et al 2001), and fiber levels (Olvera-Novoa et al 1997).

Stimulated by increasing shrimp production from catches and farming, the shrimp waste meal has been identified as an animal protein source with great potential (Fanimo et al 2000), and
could reduce environmental problems as a result of improper deposition of inedible parts of shrimp, such as heads, shells and tails (Heu et al 2003). Nevertheless, the use of shrimp waste meal could be restricted due to its high fiber and ash contents (Cavalheiro et al 2007). Accordingly, ash and fiber contents reduced crustacean meal digestibility in tilapia (Koprucu and Ozdemir 2005), decreased lipid absorption and increased water content in Atlantic salmon *Salmo salar* L. feces (Olsen et al 2006).

Silva (2004) produced a shrimp protein hydrolysate (SPH) from Pacific white shrimp, *Litopenaeus vannamei*, Boone (1931) heads, which was considered an excellent protein source due to its amino acids profile and low fiber content. Products obtained from shrimp processing wastes may serve as an useful source of protein and flavorings in food formulations, mainly due to its free amino acids levels (Heu et al 2003, Ruttanapornvapeesakul et al 2005). The present study aimed to evaluate the nutritional quality of SPH by assessing growth performance and protein utilization of juvenile Nile tilapia.

Materials and Methods

Shrimp Protein Hydrolysate (SPH)

The shrimp protein hydrolysate (SPH) was produced by enzymatic autolysis, according to Bezerra (2000) Firstly, the raw material (shrimp heads) was washed and ground in distilled water (1:1). The blend was submitted to digestion in water-bath (45±2°C, 3 hours and slight agitation), with posterior temperature elevation (100°C, 10 minutes) for enzymatic deactivation. The solid and liquid fractions are separated by filtration (1mm² mesh) and then centrifuged at 10,000 *x*g for 40 minutes. The obtained supernatant was defined as shrimp protein hydrolysate (SPH) (Figure 1). The product was sent to Centro de Química de Proteínas of Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil, for amino acid profiles, and to the Empresa Pernambucana de Pesquisa Agropecuária for proximate composition.
Diets

Four isonitrogenous (37% crude protein) and isocaloric (440 kcal 100 g⁻¹) experimental diets were formulated to feed *Oreochromis niloticus* juvenile (Tables 1 and 2). SPH was included in the diets at 0 (as control), 1.5, 3 and 6% inclusion levels, which corresponded to 0, 5, 10 and 20% of fish meal protein replacement. The SPH was incorporated to soybean meal and the dough was dried (65°C for 24h).

The ingredients were mixed and the diets prepared by extrusion under industrial conditions to obtain 1-mm diameter pellets. A commercial diet (COM, 36% crude protein) was used as a reference.

Animals and Experimental Conditions

Juvenile sex-reversed Nile tilapia were obtained from Universidade Federal Rural de Pernambuco Aquaculture Station. Groups of eight fish were stocked in each of fifteen 40-L glass aquaria equipped with biological filter and continuous aeration. After a 7-day acclimatization period, diets were randomly assigned to three groups of fish. Fish were individually weighed (1.7±0.4 g) and measured (4.7±0.4 cm) before the onset of feeding trial. Diets were offered four times a day (800, 1100, 1400 and 1700 h) at an initial feeding rate of 15% of aquaria biomass. As it is generally recognized that younger or smaller fish consume more feed on a percent weight bases than larger one (Lim, Webster et al 2006), feeding rate was gradually reduced from 15 to 6% of biomass. A sample of five fish per aquarium was weighed each nine days for adjusting feeding rates.

Despite no significant feed scrap had been observed, aquaria were siphoned twice daily and submitted to a 66% water exchange due to faeces accumulation and turbidity of water. Water temperature, dissolved oxygen, pH, ammonia and nitrite were monitored and averaged 28.7±0.59°C (mean±sd), 3.5±0.92 mg L⁻¹, 8.1±0.19, 0.14±0.22 mg L⁻¹ and 0.08±0.02 mg L⁻¹, respectively.
Growth and Nutrient Utilization

Fish performance was evaluated through weight gain rate (WG), average daily gain (ADG), specific growth rate (SGR), feed conversion ratio (FCR), protein efficiency ratio (PER) and apparent net protein utilization (ANPU), according to the following formulae:

\[
\begin{align*}
\text{WG} (g) &= \text{BW}_f - \text{BW}_i \\
\text{ADG} &= \frac{\text{WG} (g)}{\text{time (days)}} \\
\text{SGR} &= \frac{100}{\text{time (days)}} \left(\ln \text{BW}_f - \ln \text{BW}_i \right) \\
\text{FCR} &= \frac{\text{dry feed offered (g)}}{\text{wet weight gain (g)}} \\
\text{PER} &= \frac{\text{wet weight gain (g)}}{\text{protein fed (g)}} \\
\text{ANPU} &= \frac{100}{\text{TF} \times \text{CP}} \left(\text{BW}_f \times \text{BCP}_f - \text{BW}_i \times \text{BCP}_i \right)
\end{align*}
\]

where \(\text{BW}_i \) and \(\text{BW}_f \) = average initial and final body weight (g) of fish, respectively; \(\text{BCP}_i \) and \(\text{BCP}_f \) = initial and final body crude protein (g 100g\(^{-1}\)) respectively; \(\text{TF} \) = total amount of diet fed (g), and \(\text{CP} \) = crude protein of diet (g 100g\(^{-1}\)).

Fish length and weight data were plotted (X and Y, respectively) to allow analysis of length-weight relationship, using the mathematical model \(W_t = \Phi \text{Lt}^\theta \) to adjust the tendency of these plots (Santos 1978).

Analytical methods

At the end of trial, all fish were weighed and two fish from each aquarium were sampled and frozen for determination of body composition. Initial body composition analyses were performed on a pooled sample of eight fish which was frozen prior to the study. Moisture, lipid, protein and ash contents were determined using standard methods (AOAC 1990).

Statistical Analysis

A one-way analysis of variance (ANOVA) was used to test the effects of SPH inclusion in the diets on fish performance. Tukey’s test was used at \(\alpha = 0.05 \) to test for differences among treatment means when \(F \)-values from the ANOVA were significant. The models of length-weight relationship were confronted using the statistic \(W \), which was compared to chi-square distribution at \(\alpha = 0.05 \) (Mendes 1999). Data obtained from commercial diet were not used in statistical analysis.
Results

Shrimp protein hydrolysate resulted in a product with 9.7% moisture, 43.63% crude protein, 6.25% ether extract, 7.32% ash and 3,633 kcal/kg gross energy, and a total amino acids content of 46.79 g/100g (41.2% essential and 58.8% non-essential), mainly glutamate, aspartate, leucine, lysine, tyrosine and arginine.

The effects of SPH inclusion on tilapia performance and nutrient utilization are given on Table 3. The level of SPH incorporated on diets (0, 1.5, 3 or 6%) did not affect (P≥0.05) final fish weight (27.18, 29.46, 26.02 and 25.19 g), weight gain (25.51, 27.73, 24.29 and 23.39g), average daily gain (0.57, 0.62, 0.54 and 0.52 g day⁻¹) and specific growth rate (7.15, 7.38, 6.85 and 6.73% day⁻¹). Feed conversion ratio (1.15, 1.09, 1.13 and 1.17), protein efficiency ratio (2.26, 2.33, 2.20 and 2.14) and apparent net protein utilization (39.31, 40.39, 38.57 and 34.72) also were not affected by SPH inclusion.

Fish fed actively on all diets. Even though diets had been offered four times a day, it was observed a territorial behavior related to feeding competition, but no mortality was recorded during feeding trial.

The parameters of the mathematical models to evaluate length-weight relationships of fish fed different diets are shown in Table 4. Evaluation of these models revealed statistical differences (P<0.05) on fish growth. Fish fed SPH5 (1.5% inclusion rate) presented the best length-weight relationship. Higher SPH inclusion levels (3 and 6%) did not contribute for fish growth, resulting in similar or worse growth performance to that provided by the SPH0 diet.

The evolution of mean weight of Nile tilapia fed diets containing 0, 5, 10 and 20% of SPH protein as partial substitute for fish meal protein and commercial diet is presented in Figure 2. Mean weight of fish linearly enhanced throughout feeding trial. The experimental diets provided equal (P≥0.05) growth performances among themselves.

Initial and final body compositions of whole fish are shown in Table 5. The inclusion of SPH in diets for Nile tilapia significantly affected (P<0.05) final fish body composition. Protein content decreased (p<0.05) when SPH replaced 20% of fish meal. Fish fed SPH 10 and SPH 20 presented greater fat contents (58.4 and 59.8 g kg⁻¹, respectively) than fish fed diets without (51.2 g
kg\(^{-1}\)) or with the lowest SPH inclusion level (50.3 g kg\(^{-1}\)). Fish fed the diet with no SPH presented higher ash content (40.5 g kg\(^{-1}\)) than the others ones (P<0.05).

Discussion

A number of authors described the feasibility of using fishery by-catch and by-product as sources of animal protein for aquatic feeds (Goddard et al 2003, Li et al 2004, Goddard and Perret 2005, Whiteman and Gatlin III 2005). It was reported by Plascencia-Jatomea et al (2002) that shrimp protein hydrolysate produced by fermentative silage could be included in tilapia diets at concentrations as high as 15%, improving fish growth rate. The present study demonstrated that 6% of SPH produced by autolysis can be included in diets for Nile tilapia without reducing growth performance.

In fact, there is a remarkable difference between these two methods of production of the shrimp silage used by the authors above cited and the shrimp protein hydrolysate used in the present study. Herein, SPH was produced by autolysis, without introduction of any chemical or biological exogenous additive, what is common in silage process. Plascencia-Jatomea et al (2002) reported that the acidic conditions in which shrimp hydrolysate by fermentative silage is produced causes loss of labile nutrients such as tryptophan, what was not observed in the present study. Although the two products have a similar essential amino acid (EAA) composition, the SPH herein produced proved to be an interesting source of tryptophan, showing 3.5, 3.5 and 1.75 to 2.4 fold higher levels of tryptophan than fish, shrimp and soybean meals, respectively (Table 6). At the same way, SPH seemed to be a good source of other EAA, with emphasis to lysine, leucine, arginine, phenylalanine and valine. Methionine levels (an important limiting amino acid for fishes) showed to be 4.5 to 5.7, 3 and 1.5 to 2.5 fold higher than soybean, shrimp and fish meals, respectively (Table 6). Results concerning methionine and lysine levels are particularly important in aquaculture because most of times, a supplementation of diets with these amino acids is required when alternative sources of protein are used for fish meal replacement (Cheng et al 2003, Alam et al 2005, Forster et al 2006, Sardar et al 2008). The inclusion of only 6% of SPH in the diet (Table 6) can supply 6 to 13% of EAA tilapia requirement described by Santiago and Lovell (1988).
The separation of shrimp carapaces promoted by filtration step during SPH production (Fig 1) removes the chitin, a significant anti-nutritional factor associated to poor fish growth, which is present in large amounts in products derived from crustacean and insects (Shiau and Yu 1999, Ogunji et al 2008). The supernatant provided after filtration and centrifugation steps (SPH) contains high levels of small peptides (unpublished data) which render the product highly soluble. It is possible that high loss of protein by lixiviation process could happen at inclusion levels of SPH in the diets greater than 6%. This concentration of SPH corresponds to about 20% of fish meal replacement in the diets which is important since fish meal is a limiting ingredient in aquatic feeds, while SPH is produced from shrimp processing waste.

Nutrient utilization and growth performance of fish fed the experimental feeds were not significantly different (P≥0.05), meaning that the four experimental diets had enough quality to assure good growth of the fish. The maximum percentage of survival registered also reflected adequate handling and experimental conditions. Even though data obtained from commercial diet were not used in statistical analysis, the experimental diets produced evident better results of growth and feed utilization. Comparing these results to those reported by Plascencia-Jatomea et al (2002), and Nwanna et al (2004), who worked with shrimp head silage as fish meal replacer in Nile tilapia and *Clarias gariepinus* diets, respectively (Table 7), it was observed the better performance of fingerlings fed SPH in the present work. These authors also found that shrimp silage can replace 20% of fish meal without adverse effects on growth and feed efficiency. Even when the protein source is fish meal produced from fisheries by-catch and fish processing waste (Goddard et al 2008), the same results could be observed.

Fish feeds should be formulated based on the nutritional requirement of the target species, but this characteristic is not the only one to be followed. Feed acceptance depends upon other important aspects such as appearance, particle size and organoleptic properties related to smell, taste and texture (Jobling et al 2001) and these characteristics can be influenced by the choice of feed ingredients and processing conditions. According to Higuera (2001), the feeding stimulants that cause the greatest behavioral responses in fishes are those composed of free amino acids, nucleotides and nucleosides and quaternary ammonium bases. Stimulant products should present
properties like: low molecular weight, nitrogen-containing, non-volatile, amphoteric, water-soluble, stable to heat treatment and broad biological distribution. Alanine, glycine, proline, valine, tryptophan, tyrosine, phenylalanine, lysine and histidine appear to be major components of feeding stimulants for many fish species. Based on amino acid composition of shrimp protein hydrolysate (Table 6) and on fish behavior when SPH based diets were offered (diets were avidly consumed), it was concluded that SPH could also be used as flavoring in tilapia feeds.

The territorial behavior observed in all treatments could have caused heterogeneous growth of tilapia. Fernandes and Volpato (1993) reported that increase in heterogeneous growth as a result of grouping in Nile tilapia can be associated to social stress imposed by the dominant fish on the subordinates. Such stress may decrease energy available for growth. Social hierarchy generally induces to a different access of individual fish to available feeds (Alanärä and Brännäs 1996, Hakoyama and Iguchi 1997). According to Kestemont and Baras (2001) better competitors usually have early access to food, digest their first meal and feed again before the end of feeding period, whereas subordinate fish do not have this opportunity, resulting in growth heterogeneity.

Although SPH inclusion has resulted in carcass fat deposition (Table 5), even the greatest values (59.8 g kg\(^{-1}\)) was smaller than that observed in fish fed the commercial diet. These results are similar to those reported by Plascencia-Jatomea et al (2002) who found body crude lipid content ranging from 53.6 to 67.2 in Nile tilapia fed diets containing shrimp head hydrolysate by fermentative silage. Whole body composition reflected diet composition only regarding ash contents. As SPH inclusion increased in experimental diets, the ash body contents decreased. It is a result of combined effects of low ash content in SPH and gradual reductions on amounts of fish meal employed.

Conclusion

Results of shrimp protein hydrolysate amino acid composition and growth data suggest that shrimp protein hydrolysate is a promising protein feedstuff for Nile tilapia and could be included up to 6% in the diets for juvenile Nile tilapia (20% of fish meal replacement) without adverse effects on
growth and nutrient utilization. Further research will be required to evaluate higher shrimp protein hydrolysate inclusions and its influence on digestive enzyme profile and economical values.

Acknowledgments

We express our thanks to Poytara Indústria e Comércio de Rações Ltda. for the manufacturing of the experimental diets and to Laboratório de Análise de Plantas & Rações (LAPRA) of the Empresa Pernambucana de Pesquisa Agropecuária (IPA) for proximate composition determinations. Recognition is given to all the technical staff of the Laboratório de Enzimologia for their assistance in conducting the feeding trial.

References

Bezerra R S (2000) Proteases digestivas no tambaqui (Colossoma macropomum, Cuvier, 1818). Tese (Doutorado), Universidade Federal de Pernambuco

Embrapa Centro Nacional de Pesquisa de Suínos e Aves – CNPSA (1989) Tabela de composição química e valores energéticos de alimentos para suínos e aves. 3 ed Concórdia: Embrapa - CNPSA (Embrapa - CNPSA-Documentos, n° 19)

Hakoyama H, Igushi K (1997) Why is competition more intense if food is supplied more slowly? Behav Ecol Sociobiol 40:159-168

Santos E P (1978) Dinâmica de populações aplicada à pesca e piscicultura. HUCITEC-EDUSP, São Paulo

SHRIMP HEADS
WASHING
GRINDING
DIGESTION
ENZYMATIC DEACTIVATION
FILTRATION

SOLID FRACTION

LIQUID FRACTION

CENTRIFUGATION

SPH (SUPERNATANT)

PRECIPITATE
Time (days)

SPH5 a*
SPH10 a
SPH20 a
COM
Figure 1. Scheme of shrimp protein hydrolysate production (modified from Bezerra, 2000).

Figure 2. Mean weight evolution of Nile tilapia fed diets with increasing shrimp protein hydrolysate (SPH) inclusion levels and commercial diet (COM) over a 45-days feeding trial (*different superscript letters differ significantly, P<0.05). Data obtained from commercial diet were not used in statistical analysis.
Table 1. Composition of the experimental diets.

<table>
<thead>
<tr>
<th>Ingredients (%)</th>
<th>Diets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPH0</td>
</tr>
<tr>
<td>Fish meal (57% CP)</td>
<td>23.0</td>
</tr>
<tr>
<td>Shrimp protein Hydrolysate (SPH)</td>
<td>0.0</td>
</tr>
<tr>
<td>Soybean meal (40.4% CP)</td>
<td>47.0</td>
</tr>
<tr>
<td>Wheat meal</td>
<td>16.0</td>
</tr>
<tr>
<td>Corn starch</td>
<td>10.5</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>1.0</td>
</tr>
<tr>
<td>Dicalcium phosphate</td>
<td>1.0</td>
</tr>
<tr>
<td>Mineral and vitamin mix<sup>1</sup></td>
<td>1.0</td>
</tr>
<tr>
<td>Salt</td>
<td>0.5</td>
</tr>
<tr>
<td>Antioxidant BHT</td>
<td>0.02</td>
</tr>
</tbody>
</table>

CP = crude protein. BHT = butylated hydroxytoluene.

¹ Mineral and vitamin mix (quantity kg⁻¹ premix): vitamin A (20,000 UI), vitamin D₃ (5,000UI), vitamin E (250 mg), vitamin K₃ (25 mg), vitamin B₁ (37.5 mg), vitamin B₂ (37.5 mg), vitamin B₆ (25 mg), vitamin B₁₂ (0.053 mg), vitamin C (250 mg), niacin (200 mg), pantothenic acid (100 mg), biotin (1,25 mg), choline (1,000 mg), inositol (250 mg), Fe (100 mg), Cu (12 mg), Zn (125 mg), Mn (37,5 mg), Se (0,25 mg), I (1,25 mg), Co (0,25 mg).
Table 2. Proximate analysis of the commercial and experimental diets.

<table>
<thead>
<tr>
<th>Proximate analysis (as-fed basis, g kg(^{-1}))</th>
<th>Diets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COM</td>
</tr>
<tr>
<td>Dry matter</td>
<td>918.0</td>
</tr>
<tr>
<td>Crude protein</td>
<td>345.6</td>
</tr>
<tr>
<td>Ether extract</td>
<td>65.0</td>
</tr>
<tr>
<td>Crude fibre</td>
<td>34.9</td>
</tr>
<tr>
<td>Ash</td>
<td>67.5</td>
</tr>
<tr>
<td>Nitrogen-free extract</td>
<td>487.0</td>
</tr>
<tr>
<td>Calcium</td>
<td>14.3</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>11.3</td>
</tr>
<tr>
<td>Gross energy (kcal 100 g(^{-1}))(^1)</td>
<td>461.5</td>
</tr>
<tr>
<td>P/GE ratio (mg kcal(^{-1}))</td>
<td>74.9</td>
</tr>
</tbody>
</table>

\(^1\) Estimative based on 5.65, 4.2 and 9.5 kcal g\(^{-1}\) for protein, carbohydrate and lipid, respectively.
Table 3. Growth performance and nutrient utilization in Nile tilapia fed diets with increasing substitution of fish meal by shrimp protein hydrolysate (SPH) and a commercial diet (COM).

<table>
<thead>
<tr>
<th>Diets</th>
<th>SPH0</th>
<th>SPH5</th>
<th>SPH10</th>
<th>SPH20</th>
<th>COM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial weight (g)</td>
<td>1.67±0.14</td>
<td>1.73±0.07</td>
<td>1.73±0.09</td>
<td>1.80±0.06</td>
<td>1.57±0.07</td>
</tr>
<tr>
<td>Final weight (g)</td>
<td>27.17±2.43<sup>a</sup></td>
<td>29.46±1.05<sup>a</sup></td>
<td>26.02±3.07<sup>a</sup></td>
<td>25.09±2.49<sup>a</sup></td>
<td>16.40±1.10</td>
</tr>
<tr>
<td>Survival (%)</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>WG (g)<sup>1</sup></td>
<td>25.51±2.57<sup>a</sup></td>
<td>27.73±1.11<sup>a</sup></td>
<td>24.29±3.04<sup>a</sup></td>
<td>23.39±22.49<sup>a</sup></td>
<td>14.83±1.12</td>
</tr>
<tr>
<td>ADG (g day<sup>-1</sup>)<sup>2</sup></td>
<td>0.57±0.06<sup>a</sup></td>
<td>0.62±0.03<sup>a</sup></td>
<td>0.54±0.07<sup>a</sup></td>
<td>0.52±0.06<sup>a</sup></td>
<td>0.33±0.03</td>
</tr>
<tr>
<td>SGR (% day<sup>-1</sup>)<sup>3</sup></td>
<td>7.15±0.34<sup>a</sup></td>
<td>7.38±0.06<sup>a</sup></td>
<td>6.85±0.39<sup>a</sup></td>
<td>6.73±0.33<sup>a</sup></td>
<td>5.29±0.22</td>
</tr>
<tr>
<td>FCR<sup>4</sup></td>
<td>1.15±0.13<sup>a</sup></td>
<td>1.09±0.09<sup>a</sup></td>
<td>1.14±0.06<sup>a</sup></td>
<td>1.17±0.07<sup>a</sup></td>
<td>1.28±0.03</td>
</tr>
<tr>
<td>PER<sup>5</sup></td>
<td>2.26±0.23<sup>a</sup></td>
<td>2.33±0.21<sup>a</sup></td>
<td>2.21±0.11<sup>a</sup></td>
<td>2.14±0.13<sup>a</sup></td>
<td>2.08±0.05</td>
</tr>
<tr>
<td>ANPU<sup>6</sup></td>
<td>39.31±6.75<sup>a</sup></td>
<td>40.39±6.31<sup>a</sup></td>
<td>38.57±3.19<sup>a</sup></td>
<td>34.72±3.61<sup>a</sup></td>
<td>32.08±1.27</td>
</tr>
</tbody>
</table>

Values are mean ± standard error of mean. Within a row, means with different superscript letters differ significantly (P<0.05) by Tukey test. Data obtained from commercial diet were not used in statistical analysis.

¹Weight gain rate; ²Average daily gain; ³Specific growth rate; ⁴Feed conversion ratio; ⁵Protein efficiency ratio; ⁶Apparent net protein utilization.
Table 4. Parameters of the mathematical models ($Wt = \Phi Lt^\theta$) adjusted to length-weight data of fish fed diets with increasing shrimp protein hydrolysate (SPH) inclusion levels and commercial diet (COM) over a 45-days feeding trial.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Φ</th>
<th>θ</th>
<th>R^2</th>
<th>n</th>
<th>C.S.¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPH0</td>
<td>0.0134</td>
<td>3.1035</td>
<td>0.9919</td>
<td>129</td>
<td>b</td>
</tr>
<tr>
<td>SPH5</td>
<td>0.0132</td>
<td>3.1163</td>
<td>0.9950</td>
<td>126</td>
<td>a</td>
</tr>
<tr>
<td>SPH10</td>
<td>0.0142</td>
<td>3.0682</td>
<td>0.9924</td>
<td>128</td>
<td>b,c</td>
</tr>
<tr>
<td>SPH20</td>
<td>0.0149</td>
<td>3.0412</td>
<td>0.9933</td>
<td>125</td>
<td>c</td>
</tr>
<tr>
<td>COM</td>
<td>0.0163</td>
<td>2.9995</td>
<td>0.9889</td>
<td>127</td>
<td>-</td>
</tr>
</tbody>
</table>

¹Comparative statistic using statistic W, compared to χ^2 distribution at $\alpha = 0.05$. Data obtained from commercial diet were not used in statistical analysis.
Table 5. Initial and final proximate composition (g kg\(^{-1}\) on as-fish basis) of whole body of Nile tilapia fed diets with increasing shrimp protein hydrolysate (SPH) inclusion levels and commercial diet (COM) over a 45-days feeding trial.

<table>
<thead>
<tr>
<th>Fish</th>
<th>Dry matter</th>
<th>Protein(^{1})</th>
<th>Fat(^{1})</th>
<th>Ash(^{1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial body composition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>260.4</td>
<td>150.4</td>
<td>45.3</td>
<td>34.3</td>
</tr>
<tr>
<td>Final body composition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPH0</td>
<td>270.3</td>
<td>163.2±0.2(^{a})</td>
<td>51.2±0.1(^{a})</td>
<td>40.5±0.1(^{b})</td>
</tr>
<tr>
<td>SPH5</td>
<td>266.2</td>
<td>161.9±0.0(^{a})</td>
<td>50.3±0.0(^{a})</td>
<td>37.4±0.0(^{a})</td>
</tr>
<tr>
<td>SPH10</td>
<td>274.0</td>
<td>163.0±0.5(^{a})</td>
<td>58.4±0.0(^{b})</td>
<td>35.9±0.0(^{a})</td>
</tr>
<tr>
<td>SPH20</td>
<td>272.3</td>
<td>153.7±0.0(^{b})</td>
<td>59.8±0.0(^{b})</td>
<td>36.2±0.0(^{a})</td>
</tr>
<tr>
<td>COM</td>
<td>282.5</td>
<td>142.8±0.1</td>
<td>89.0±0.2</td>
<td>30.5±0.1</td>
</tr>
</tbody>
</table>

\(^{1}\)Each value is the mean (± standard error of mean) of two replicates. Mean with common superscript in the same column are not significantly different (P<0.05). Data obtained from commercial diet were not used in statistical analysis.
Table 6 - Amino acid (AA) composition of shrimp protein hydrolysate (SPH) and other ingredients used in aquatic feeds expressed as percentage of dietary protein

<table>
<thead>
<tr>
<th>Essential amino acids</th>
<th>Fish Meal a</th>
<th>Soybean meal a</th>
<th>Shrimp meal b</th>
<th>Shrimp head silage c</th>
<th>SPH e</th>
<th>Tilapia AA requirement f</th>
<th>% DV g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arginine</td>
<td>3.78</td>
<td>4.45</td>
<td>3.05</td>
<td>3.11</td>
<td>2.79</td>
<td>6.26</td>
<td>7.50</td>
</tr>
<tr>
<td>Histidine</td>
<td>1.40</td>
<td>1.21</td>
<td>1.25</td>
<td>1.12</td>
<td>1.07</td>
<td>2.33</td>
<td>1.61</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>2.15</td>
<td>1.84</td>
<td>1.75</td>
<td>2.42</td>
<td>1.86</td>
<td>3.16</td>
<td>2.64</td>
</tr>
<tr>
<td>Leucine</td>
<td>3.77</td>
<td>3.55</td>
<td>2.91</td>
<td>2.85</td>
<td>2.98</td>
<td>6.65</td>
<td>4.11</td>
</tr>
<tr>
<td>Lysine</td>
<td>3.98</td>
<td>4.03</td>
<td>2.57</td>
<td>2.67</td>
<td>2.41</td>
<td>7.36</td>
<td>7.35</td>
</tr>
<tr>
<td>Methionine</td>
<td>1.80</td>
<td>1.10</td>
<td>0.47</td>
<td>0.60</td>
<td>0.91</td>
<td>1.86</td>
<td>2.62</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>1.81</td>
<td>1.93</td>
<td>1.91</td>
<td>2.33</td>
<td>1.76</td>
<td>4.20</td>
<td>2.35</td>
</tr>
<tr>
<td>Threonine</td>
<td>1.99</td>
<td>2.32</td>
<td>1.51</td>
<td>1.88</td>
<td>1.58</td>
<td>6.30</td>
<td>2.13</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>0.39</td>
<td>-</td>
<td>0.80</td>
<td>0.58</td>
<td>0.40</td>
<td>-</td>
<td>0.96</td>
</tr>
<tr>
<td>Valine</td>
<td>2.59</td>
<td>2.47</td>
<td>1.90</td>
<td>2.24</td>
<td>2.03</td>
<td>4.23</td>
<td>2.98</td>
</tr>
</tbody>
</table>

* a - Halver (1995) (from INFIC data base)
 b - Embrapa (1989) (from Brazilian feedstuffs)
 f - Santiago and Lovell (1988), based in a 28% crude protein diet
 g – Percent daily values of amino acid tilapia requirement with the inclusion of 6% of SPH in the diet
Table 7 – Growth performance of fishes fed diets with different marine protein sources as fish meal replacers

<table>
<thead>
<tr>
<th>Parameters</th>
<th>SPH 1</th>
<th>SHS 2</th>
<th>SHS 3</th>
<th>FM 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight Gain (g)</td>
<td>23.4 – 27.7</td>
<td>-</td>
<td>16.5 – 20.7</td>
<td>-</td>
</tr>
<tr>
<td>Weight Gain (%)</td>
<td>1,301 – 1,624</td>
<td>429 - 616</td>
<td>-</td>
<td>534 - 659</td>
</tr>
<tr>
<td>Average Daily Gain (g day-1)</td>
<td>0.52 – 0.62</td>
<td>0.22 – 0.37</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Specific Growth Rate (% day-1)</td>
<td>6.7 – 7.4</td>
<td>1.3 – 1.5</td>
<td>1.0 – 1.2</td>
<td>2.7 – 3.1</td>
</tr>
<tr>
<td>Feed Conversion Ratio</td>
<td>1.1 – 1.2</td>
<td>1.9 – 2.2</td>
<td>2.5 – 2.8</td>
<td>1.3 – 1.4</td>
</tr>
<tr>
<td>Protein Efficiency Ratio</td>
<td>2.1 – 2.3</td>
<td>1.6 – 1.9</td>
<td>0.4 – 0.52</td>
<td>1.8 – 1.9</td>
</tr>
<tr>
<td>Survival (%)</td>
<td>100</td>
<td>93 - 100</td>
<td>-</td>
<td>97 - 99</td>
</tr>
</tbody>
</table>

1 Shrimp protein hydrolysate: Present study
2 Shrimp head silage: as fish meal replacer in Nile tilapia diet (Plascencia-Jatomea et al 2002)
3 Shrimp head silage: as fish meal replacer in Clarias gariepinus diet (Nwanna et al 2004)
4 Fisheries by-catch and processing waste meals in Nile tilapia diet (Goddard et al 2008)
5.2. Artigo 5: Profile of digestive enzymes from Nile tilapia (Oreochromis niloticus) submitted to diets with different concentrations of shrimp protein hydrolysate and its correlation with growth parameters

SUBMETIDO AO PERIÓDICO
JOURNAL OF FISH BIOLOGY
Artigo em revisão
Title: Digestive enzyme activity in Nile tilapia (Oreochromis niloticus L.) submitted to diets with different inclusion levels of shrimp protein hydrolysate and its correlation with growth parameters and body composition

Short Title: Effects of SPH on tilapia digestive enzymes

Article Type: Regular paper

Keywords: Nile tilapia, shrimp protein hydrolysate, growth parameters, digestive enzymes, SDS-PAGE zymograms.

Corresponding Author: Dr. Ranilson de Souza Bezerra, Dr

Corresponding Author's Institution: Universidade Federal de Pernambuco

First Author: Juliana F. Santos, MSc

Order of Authors: Juliana F. Santos, MSc; Patricia F. Castro, Dr; Albino L. Leal, MSc; Daniel Lemos, Dr; Luiz B. Carvalho Jr, Dr; Ranilson de Souza Bezerra, Dr

Abstract: The effects of different dietary inclusion levels of shrimp protein hydrolysate (SPH) on digestive enzyme activity of Nile tilapia juveniles were evaluated and correlated with growth parameters and body composition. SPH was included in diets at concentrations of 0, 1×5, 3 and 6%. A commercial diet was used as reference. Hemoglobin, azocasein, BApNA, SApNA, AA-β naphthylamide and starch were used as substrates. Despite some differences, there was no correlation between enzyme activity and different SPH concentrations in the diets. Substrate-SDS-PAGE zymogram was also performed for the analysis of changes in the profile of Nile tilapia digestive proteases caused by the inclusion of protein hydrolysate. Zymograms revealed 12 proteolytic bands, eight of which responded to incorporation of SPH. Inhibition zymograms indicated that there was a decrease in the activity of three enzymes with trypsin activity as SPH increases, whereas the opposite occurred for one aminopeptidase. Distinct protease profiles were also found for each treatment, suggesting adaptability of the Nile tilapia to the different diets. Trypsin and aminopeptidase activity was positively correlated with growth parameters and carcass protein content and negatively correlated with feed conversion ratio and carcass lipid content.
Digestive enzyme activity in Nile tilapia (*Oreochromis niloticus* L.) submitted to diets with different inclusion levels of shrimp protein hydrolysate and its correlation with growth parameters and body composition

1. Laboratório de Enzimologia (LABENZ), Departamento de Bioquímica and Laboratório de Immunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Cidade Universitária, 50670-420, Recife-PE, Brazil.

2. Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Dois Irmãos, 52171-900, Recife-PE, Brazil.

3. Embrapa Meio-Norte, Caixa Postal 341, 64200-970, Parnaíba-PI, Brazil.

4. Companhia Hidrelétrica do São Francisco (CHESF), Rua Delmiro Gouveia, 333, Bongi, 50761-901, Recife-PE, Brazil.

5. Laboratório de Aquicultura Marinha, Instituto Oceanográfico, Universidade de São Paulo, Cidade Universitária, 05508-120 São Paulo-SP, Brazil.

Running headline: Effects of SPH on tilapia digestive enzymes

Ranilson S. Bezerra.

Laboratório de Enzimologia – LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco. CEP 50670-420, Cidade Universitária, Recife-PE, Brazil.

Tel.: + 55-81-21268540; Fax: + 55-81-21268576

E-mail address: ransoube@uel.com.br
ABSTRACT

The effects of different dietary inclusion levels of shrimp protein hydrolysate (SPH) on digestive enzyme activity of Nile tilapia juveniles were evaluated and correlated with growth parameters and body composition. SPH was included in diets at concentrations of 0, 1.5, 3 and 6%. A commercial diet was used as reference. Haemoglobin, azocasein, BApNA, SApNA, AA-β naphthilamide and starch were used as substrates. Despite some differences, there was no correlation between enzyme activity and different SPH concentrations in the diets. Substrate-SDS-PAGE zymogram was also performed for the analysis of changes in the profile of Nile tilapia digestive proteases caused by the inclusion of protein hydrolysate. Zymograms revealed 12 proteolytic bands, eight of which responded to incorporation of SPH. Inhibition zymograms indicated that there was a decrease in the activity of three enzymes with trypsin activity as SPH increases, whereas the opposite occurred for one aminopeptidase. Distinct protease profiles were also found for each treatment, suggesting adaptability of the Nile tilapia to the different diets. Trypsin and aminopeptidase activity was positively correlated with growth parameters and carcass protein content and negatively correlated with feed conversion ratio and carcass lipid content.

Keywords: Nile tilapia, shrimp protein hydrolysate, growth parameters, digestive enzymes, SDS-PAGE zymograms.
INTRODUCTION

Tilapia production has increased significantly on a global scale in the last decade. This development has been followed by an increase in feed consumption and has stimulated the search for new ingredients for use in diet formulas (Schulz et al., 2007). The growth of the aquaculture industry has generated large amounts of waste and by-products, which represents a challenge to the sustainability of the activity (Bezerra et al., 2001). Shrimp processing waste, for instance, is discharged into the environment and is a significant source of water and land pollution. One possible solution to this problem is the transformation of waste into suitable ingredients for use as components in animal feeds. Shrimp processing waste has been identified as an animal protein source of great potential (Fanimo et al., 2000). A simple protocol for producing protein hydrolysate from white shrimp Litopenaeus vannamei (Boone) processing waste through autolysis has recently been designed at the Universidade Federal de Pernambuco. This method renders a protein concentrate that is considered to be an excellent nutrient source of amino acids, with high levels of glutamate, aspartate, leucine, lysine, tyrosine and arginine (Silva, 2004). In fact, crustacean protein silage and hydrolysate has been used in fish feeds both as a new protein source (Plascência-Jatomea et al., 2002) and, in small amounts, as flavouring to enhance the attractiveness of feeds (Kolkovski et al., 2000).

Variations in the quality and quantity of nutrients used in diet formulation may modify the enzymatic profile and activity in the digestive tract of animals (Lundstedt et al., 2004). Thus, feed composition could induce biological adaptations, including an increase in nutrient absorption (Morais & Bidinotto, 2000). Digestive enzymes have been investigated for many years as a way of understanding nutritional requirements and the effects of diet composition on enzyme activity in order to reduce feeding costs in fish farms (Caruso et al., 1996). Most studies thus far have evaluated the effect of feeds with different concentrations of protein,
carbohydrates and lipids, correlating these results with enzyme activity. Combined with
growth parameters, such results may contribute to the establishment of the appropriate
quantities of nutrients to be included in newly developed feeds. Moreover, differences in
enzyme quality profile may be related to nutrient levels in the diet (Fountoulaki et al., 2005).
The present survey focuses on the following hypotheses: a) the inclusion of shrimp
protein hydrolysate at different concentrations in tilapia feeds could promote detectable
changes in the activity of the main digestive enzymes; b) the use of substrate-SDS-PAGE
zymograms could be an effective tool for improving the analysis of these changes; and c)
there is a correlation between digestive enzyme activity and growth parameters and body
protein and fat contents.

MATERIALS AND METHODS

MATERIALS
All reagents were of analytical grade and purchased from Sigma (St. Louis, MO, USA)
and Merck (Darmstadt, Germany). The diets were prepared in Poytara LTDA (Araraquara –
São Paulo – Brazil).

DIET PREPARATION
Four isonitrogenous (37% crude protein - CP) and isocaloric (1,842 kJ 100 g⁻¹)
experimental diets were formulated to feed Nile tilapia (Oreochromis niloticus L.) juveniles.
Shrimp protein hydrolysate (SPH) was included in the diets at concentrations of 0 (control –
SPH0), 1.5 (SPH1.5), 3 (SPH3) and 6% (SPH6). A 1:2 animal:plant protein ratio in the diets
was established. SPH was incorporated to soybean meal and the dough was dried at 65°C for 24 h. The ingredients were then mixed and extruded under industrial conditions. A commercial diet for omnivorous fish (36% CP) was used as reference.

SPH used in experimental diets was produced according to a methodology adapted from Bezerra (2000) for tambaqui, Colossoma macropomum (Cuvier). Approximately 20 kg of L. ramosei heads were collected, weighed, washed and crushed in distilled water (1:1 w/v). The mix was placed in a water bath at 45 ± 2°C for 150 min under agitation. The solution was then submitted to 100°C for 10 min in order to deactivate the enzymes and the solid portion was strained through a 1.0mm sieve. The resulting material was centrifuged at 10,000 x g for 10 min and the supernatants (SPH) were stored in plastic bottles at -20°C until the preparation of the diets. Tables I and II display the proximate composition and total amino acid content of the shrimp hydrolysate, respectively. Table III displays the formulation and proximate composition of the experimental diets.

Please insert tables I, II and III here

ANIMALS AND CULTURE CONDITIONS

Juvenile sex-reversed Nile tilapias were obtained from the Aquaculture Station of the Universidade Federal Rural de Pernambuco. The fish were stocked in fifteen 40-L glass aquaria (8 ind. per aquarium) equipped with a biological filter and continuous aeration and were submitted to a 7-day acclimatization period both for diets and experimental conditions in a completely randomized design, with five treatments and three replicates. Prior to the feeding trial, the fish were weighed (1.7±0.4g) and measured (4.7±0.4cm). The fish were fed four
times a day at rates ranging from 15% to 6% of biomass, adjusted every nine days over a 45-

day period.

The aquaria were siphoned twice daily, with 66% water exchange. Temperature,

dissolved oxygen, pH, ammonia and nitrite were monitored and averaged (mean ± SD)

28.7±0.59°C, 3.5±0.92 mg L⁻¹, 0.1±0.19, 0.14±0.22 mg L⁻¹ and 0.08±0.02 mg L⁻¹,

respectively.

DIGESTIVE ENZYME EXTRACTION

At the end of trial, six individuals from each replicate aquarium were removed after

fasting for 24 hours and sacrificed in an ice bath for biometric measurements and tissue

removal. Stomach and intestines were immediately collected and homogenized (40 mg

tissue/mL) in 0.01M Glycine-HCl pH 3.0 and 0.01M Tris-HCl pH 8.0 buffers, respectively,

containing 0.15M NaCl, using a tissue homogenizer. The resulting preparations were

centrifuged at 10,000 x g for 10 min at 4°C to remove cell debris and nuclei. The supernatants

(crude enzyme extracts) were frozen at -20°C and used in further assays (Bezerra et al., 2005).

Protein concentration was determined according to Bradford (1976) using bovine serum

albumin (BSA) as the standard and reported as mg protein equivalent to BSA.

ENZYMATIC ASSAY

Acid proteolytic activity

Acid protease activity was evaluated using haemoglobin (Hb) as the substrate as follows:

In microcentrifuge tubes, 100 μL of 2% Hb in 0.06M Glycine-HCl buffer pH 3.0 was mixed

with 50 μL stomach crude extract and 350 μL 0.5M Glycine-HCl buffer pH 3.0 for 60 min at
25°C. Five hundred µL of 10% trichloroacetic acid (TCA) were then added to stop the reaction. After 15 min, centrifugation was carried out at 8,000 x g for 10 min. The absorbance of supernatant (70 µL) was measured at 280 nm (Bio-Rad SmartSpec 3000, USA) against a similarly prepared blank in which 0.01M Glycine-HCl buffer pH 3.0 replaced the crude extract sample, based on a methodology adapted from Díaz-López et al. (1998). Previous experiments showed that, for the first 60 min, the reaction carried out under the conditions described above followed first order kinetics. One unit (U) of enzyme activity was defined as the amount of enzyme capable of hydrolyzing haemoglobin to produce a 0.001 change in absorbance per minute per milligram of protein.

Alkaline proteolytic activity

In a microcentrifuge tube (performed in triplicate), 1% azocasein prepared in 0.1M Tris-HCl buffer pH 8.0 was incubated with intestine crude enzyme extract (30 µL) for 60 min at 25°C. Two hundred forty µL of 10% trichloroacetic acid (TCA) was then added to stop the reaction. After 15 min, centrifugation was carried out at 8,000 x g for 5 min. The supernatant (70 µL) was added to 1 M NaOH (130 µL) in a 96-well microtiter plate and the absorbance of this mixture was measured in a microtiter plate reader (Bio-Rad 680, Japan) at 450 nm against a similarly prepared blank in which 0.01M Tris-HCl pH 8.0 replaced the crude extract sample. One unit (U) of enzyme activity was defined as the amount of enzyme capable of hydrolyzing azocasein to produce a 0.001 change in absorbance per minute per milligram of protein (Bezerra et al., 2005).

Trypsin and chymotrypsin activity

The activity of trypsin and chymotrypsin was determined using 8mM BApNA (Nα-benzoyl-DL-arginine-p-nitroanilide) and 8mM SApNA (Suc-Ala-Ala-Pro-Phe p-nitroanilide)
in DMSO (Dimethyl sulfoxide), respectively. Intestine crude enzyme extract (30 µL) was incubated with 0.1M Tris-HCl buffer pH 8.0 (140 µL) and respective substrates (30 µL) in a microtiter plate reader (Bio-Rad 680, Japan). The absorbance was measured at 405 nm against a similarly prepared blank in which 0.1M Tris-HCl pH 8.0 replaced the crude extract sample. Enzyme activity was determined in triplicate. Trypsin and chymotrypsin units of activity were expressed as a change in absorbance per minute per milligram of protein.

Aminopeptidase activity

Aminopeptidase activity was evaluated using aminoacyl of β-naphthylamide (AA of arginine) as substrate. The procedure adapted from Oliveira et al. (1999) was carried out in triplicate, by incubating 4.2mM substrate (50 µL), 50mM sodium phosphate buffer pH 7.0 (600 µL) and deionised H2O (50 µL) at 37 °C. After temperature equilibration, the crude enzyme extract (50 µL) was added and 30 minutes later, the reaction was stopped by adding 1mg mL⁻¹ fresh Garnet reagent (250 µL) in 0.2M sodium acetate buffer pH 4.2 containing 10% Tween 20 (v/v). After 10 minutes, absorbance was measured at 525 nm (Bio-Rad SmartSpec 3000, USA) and the amount of β-naphthylamine was determined using a standard β-naphthylamine curve. Activity was expressed as protease mU mg⁻¹ of protein. One unit of enzyme activity was defined as the amount of enzyme required to hydrolyze one µmol of p-nitroaniline per minute per milligram of protein.

Amylase activity

Amylase activity was evaluated according to Bernfeld (1955) using 2% starch as substrate: 60 µL intestine crude extract were incubated with 375 µL starch solution and 375 µL 10mM phosphate buffer pH 8.0 containing 15mM NaCl at 25 °C. After 20 minutes, 3.5-dinitro salicylic acid (DNSA) was added and the solution was submitted to 100 °C for 10 min.
After temperature equilibration, absorbance was measured at 570 nm (Bio-Rad SmartSpec 3000, USA) against a similarly prepared blank in which 10 mM phosphate buffer replaced the crude extract sample. Enzyme activity was determined in triplicate. One unit of enzyme activity was defined as the amount of enzyme required to hydrolyze 1 mg of maltose per milligram of protein per min.

HYDROLYSIS PROFILE OF SPH

The hydrolysis profile of shrimp hydrolysate was evaluated in sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), using stacking gel at 4% (w/v) and separation gel at 17% (Laemmli, 1970). SPH was produced as previously described and enzymatic hydrolysis was followed at sampling times of 0, 30, 60, 90, 120, 150 and 180 minutes.

ENZYME CHARACTERIZATION IN SUBSTRATE-SDS-PAGE

Proteases from intestine crude extract of O. niloticus were studied in sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) using stacking gel at 4% (w/v) and separation gel at 12.5% (Laemmli, 1970). Zymograms were carried out based on García-Carreño et al. (1993). After electrophoresis, the gels were immersed in 2.5% Triton X-100 dissolved in 0.1 M Tris-HCl buffer pH 8.0 to remove the SDS and incubated with 3% casein (w/v) in 0.1 M Tris-HCl buffer pH 8.0 for 30 min at 4°C. The temperature was raised to 37°C and maintained for 90 min to allow the digestion of casein by the active fractions. Finally, the gel was stained overnight for protein in 0.18% (w/v) Coomassie Brilliant Blue R250 prepared in acid acetic and methanol (10:25% v/v) and the background of the gel was distained in
acetic acid and methanol (10:25% v/v). Clear bands in blue background denoted protease bands by digestion of casein substrate.

INHIBITION ASSAYS

The following inhibitors prepared in DMSO at a final concentration of 2 mM were used: Tosyl phenylalanine chloromethyl ketone (TPCK - chymotrypsin inhibitor); Phenyl-methyl-sulfonyl-fluoride (PMSF - serine proteases inhibitor); benzamidine and tosyl-lysine chloromethyl ketone (TLCK), both trypsin inhibitors; and bestatin (leucine aminopeptidase inhibitor) (Bezerra et al., 2005). Samples of enzyme extract and inhibitors were incubated at 25°C for 30 min and zymogram was performed as described above. The 100% values (control) were established using DMSO without inhibitors.

GROWTH PARAMETERS

Fish performance was evaluated through final mass (FM), average daily gain (ADG), specific growth rate (SGR), feed conversion ratio (FCR) and protein efficiency ratio (PER), based on the following formulae: MG (Mass gain) = 100 (final mass - initial mass) / initial mass; ADG = mass gain (g) / time (days); SGR = 100 (Ln Mf − Ln Mi) / time (days); FCR = dry feed offered (g) / wet mass gain (g); PER = wet mass gain (g) / protein fed (g).

PROXIMATE BODY COMPOSITION

Compositional analyses were performed on individuals at the end of the experiment. Pooled samples of fish were frozen before and after the feeding trial (two fish from each
aquarium). Lipid and protein content of whole fish were determined using standard methods (AOAC, 1984).

STATISTICAL ANALYSIS

Data on enzyme activity were analyzed using one-way analysis of variance (ANOVA) complemented with Tukey’s test. Chymotrypsin and acid proteolytic activity data, which failed normality or equal variance test, were transformed (ln) and submitted to parametric ANOVA. Correlations were tested using Pearson’s Product Moment Correlation following regression analysis. Differences were reported as statistically significant when P < 0.05, using the Jandel Scientific SigmaStat software program (version 2.0).

RESULTS

Figure 1 displays the hydrolysis profile of SPH. Enzymatic autolysis visibly promoted the digestion of proteins with the greatest molecular weight over time. At Time 0, most proteins had molecular weight between 25 and 100 kDa, but there were also proteins with weight greater than 220 kDa. At 150 min most proteins were smaller than 25 kDa.

Table IV displays the enzyme activity in the crude extracts. Acid proteolytic activity was the only enzyme activity assayed in crude extract from stomach tissues. Statistical differences (P<0.05) between animals fed the experimental diets (SPH0, SPH1.5, SPH3 and SPH6) were observed for chymotrypsin, trypsin and total alkaline proteases, but the greatest differences
were always between the experimental and commercial diets. Lower enzymes values were
always related to the commercial diets (Table IV).

The zymograms revealed caseinolytic activity in crude extracts of fish from all
treatments (Fig. 2). Twelve caseinolytic bands were found in animals fed SPH0: P1, P2, P3,
P4, P5, P6, P7, P8, P9, P10, P11 and P12. In all treatments, the proteins P1 to P4 were not
significantly affected by the inclusion of the protein hydrolysate, but P5 to P12 underwent
alterations in the caseinolytic pattern. As the concentration of hydrolysate increased, there
was a slowdown in the activity of proteases P6, P7 and P8. The opposite occurred for P5, P9,
P10, P11 and P12, in which the caseinolytic bands proved more intense.

Figure 3 displays the inhibition of alkaline proteases performed with the SPH0 crude
extract. SPH0 without inhibitors (control) revealed 12 caseinolytic bands, as also
demonstrated in Fig 2. TPCK did not significantly affect the caseinolytic activity of O
niloticus enzymes except for P11 that was the only enzyme inhibited. PMSF revealed high
inhibition of P9 and P11 caseinolytic bands. Benzanidine completely inhibited P6 and P8
bands. One band between P5 and P6 enzymes (white arrow) revealed activity in the presence
of benzanidine, but did not appear in the control. TLCK strongly inhibited P3, P4, P6, P7, P8
and P11. Bestatin totally inhibited seven digestive enzyme bands of O. niloticus (P3, P4, P5,
P6, P7, P8 and P9). Inhibitors have no effect on P1, P2, P10 and P12 caseinolytic bands.

No correlation was found between growth parameters (FM, MG, ADG, SGR, FCR,
PER), body composition (protein, and lipid contents), acid proteolytic activity, chymotrypsin,
amylase and total alkaline proteases. Positive correlations were found between growth parameters (FM, MG, ADG and SGR), body protein content and trypsin activity (Figure 4). Aminopeptidase activity was positively correlated with all the above-listed parameters, except with MG (Fig. 5). FCR and body lipid content were negatively correlated with both trypsin and aminopeptidase (Figures 4 and 5).

Please, insert Figs 4 and 5 here.

DISCUSSION

The nutritional quality of protein hydrolysate may be related to the high concentration of small peptides and essential amino acids as well as compounds that stimulate immune response in fish, thereby promoting growth and resistance to disease (Gildberg & Stenberg, 2001). These peptides are also accepted as attractive food due to chemical stimulation in larvae and juveniles, which contributes to the consumption of artificial diets in fish hatcheries.

A number of authors have analyzed digestive enzyme activity in aquatic organisms and dietary composition, reporting divergent results. Nagase (1964) and Kohla et al. (1992) found enhanced trypsin activity, corresponding to an increase in feeding rates for the species Mozambique tilapia, Oreochromis mossambicus (Peters) and C. macropomum, respectively. Papoutsoglou & Lyndon (2006) found an increase in chymotrypsin activity in Spotted wolfish, Anarhichas minor (Olafsen), when the protein concentration was reduced, indicating the adaptation of this species to low protein concentrations as a way to better absorb nutrients from the diet.

There is little information available in the literature regarding the specific effects of hydrolysate protein inclusion in diets on digestive enzymes, growth parameters and body
composition in fish. In the present study, no correlation was found between different concentrations of hydrolysate in the diets and the activity of any of the enzymes studied. Evaluating amylase and trypsin activity in European seabass, *Dicentrarchus labrax* (L.) larvae fed diets with 10 and 19% protein hydrolysate, Kotsamanis *et al.* (2007), also found no statistical differences between treatments. However, aminopeptidase activity was greater at a concentration of 10% protein hydrolysate.

Although there were differences in enzyme activity (total alkaline proteases, trypsin and chymotrypsin) between the fish fed different experimental diets in the present work, the greatest differences were between the commercial and experimental diets, which must be related to the content of fish meal in the formulated diets (about 20%), as its concentration in commercial feeds for tilapia is generally lower than 5% in Brazil. Quantitative studies on digestive enzymes appeared not be helpful in distinguishing the effects of different concentrations of shrimp protein hydrolysate (SPH) in diets. However, the use of substrate-SDS-PAGE revealed interesting results. This is a biochemical tool several times more sensitive than other methods for detecting the protease composition of crude extracts from tissues and allows the determination of enzyme activity zones caused by protease inhibitors (García-Carreño *et al.*, 1993).

Through analyses of inhibition zymograms (Fig. 3), it was possible to determine the following: one aminopeptidase-like inhibited only by Bestatin (P5) and probably another aminopeptidase (P9) inhibited by Bestatin and by PMSF; P3, P4, P6, P7, P8 and P11 seemed to be proteases of low specificity, with trypsin/aminopeptidase activity (P3, P4, P6, P7 and P8 which were inhibited by trypsin inhibitors and by Bestatin) and chymotrypsin/trypsin activity (P11 which was inhibited by PMSF, TPCK and TLCK). It was not possible to identify P1, P2, P10 and P12, as none of the inhibitors had an inhibitory effect over these proteases. Comparing the inhibition zymogram to Fig. 2, with the increase in the concentration of
shrimp protein hydrolysate, there was a slowdown of proteases with trypsin activity (P6, P7 and P8). On the other hand, aminopeptidase activity identified in P5 and P9 was increased with the increase in SPH. Moreover, proteases P10 and P12 (not identified) and P11 (with chymotrypsin-like/trypsin-like activity) also exhibited an increase in activity with the inclusion of SPH. Cahu et al. (2004) found that trypsin secretion was high in larvae of the D. labrax fed diets with 14% protein hydrolysate and was reduced at high concentrations (46%).

According to zymograms (Figs. 2 and 3) it was observed that the classical protease inhibitors herein employed were not effective over some enzymes (P1, P2, P10 and P12), and over other ones the inhibitory effect was not conclusive (P3, P4, P6, P7, P8, P9 and P11), which suggests a low compatibility of these enzymes with mammalian proteases. In fact, these commercial inhibitors are generally synthesized based on the mammalian enzyme mechanism and as the digestive system of fishes are different from that of mammals, probably there are also differences in the mechanisms of their enzymes. Even thought in the present work classical trypsin inhibitors were not enough effective on enzymes of tilapia crude extract, Bezerra et al. (2005) showed that purified Nile tilapia trypsin was strongly inhibited by TLCK and Benzanidrine. On the other hand, PMSF was able to inhibit only about 50% of the trypsin activity.

Fish use energy and monomers obtained from their diets for the synthesis of functional proteins and muscle growth. Ingested food is subjected to enzymes that break it down into compounds, which are absorbed by cells in gastrointestinal tract. Thus, it is very tempting to think that there may be a correlation between digestive enzyme activity and fish growth parameters or body composition. Indeed, the present study found that the activity of trypsin and aminopeptidase was correlated with growth parameters (final mass, mass gain, average daily gain, feed conversion ratio and specific growth rate) and body protein content. The results indicate the important role of these enzymes in the regulation of tilapia growth and
incorporation of proteins. Similar results were found by Lemieux et al. (1999), who describe positive correlations of trypsin and chymotrypsin with growth rates in the Atlantic cod, Gadus morhua (L.). Trypsin and aminopeptidase were negatively correlated with body fat content. As muscle growth (synthesis of protein) increases the energy demand in the cell, there may be a decrease in the concentration of precursors of endogenous lipid synthesis (Nelson & Cox, 2005), which could be related to the low concentration of lipids in the body.

Although there were differences in digestive enzyme activity between fish fed different experimental diets, there was no logical correlation between enzyme activity and different concentrations of shrimp protein hydrolysate in these diets. Substrate-SDS-PAGE zymogram proved to be an efficient tool for the detection of changes in enzyme activity in fish submitted to different diets. Through this method, different protease profiles were determined for each experimental diet. These data reinforce the known ability of tilapia to adapt to different food sources. Actually, as an omnivorous opportunistic fish, tilapia is able to assimilate nutrients from different sources, like benthic algae, phytoplankton, macrophytes, zooplankton, small invertebrates, detritus, cyanobacteria. The feed choice is mainly related to the availability of food items in the environment (Bowen, 1982, Fitzsimmons, 1997, Stickney, 1997, Beveridge & Baird, 2000, Lowe-McConnell, 2000). To benefit from all these sources, the enzyme arsenal of tilapia should be diverse enough to digest the wide range of ingested food. The activity of trypsin and aminopeptidase in the fish fed the experimental diets was significantly positively correlated with some growth parameters and body protein content, which demonstrates the importance of these enzymes in growth regulation.

ACKNOWLEDGEMENTS

The authors would like to thank Albérico Espírito Santo and João Virginio for their technical assistance and Poytara Ltda for the preparation of the diets. This study was
supported by the Financiadora de Estudos e Projetos (FINEP/RECARCIEN), Secretaria
Especial de Aquicultura e Pesca – (SEAP/PR), Empresa Brasileira de Pesquisa Agropecuária
(EMBRAPA), Conselho Nacional de Pesquisa e Desenvolvimento Científico (CNPq),
Fundação de Apoio à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), Petróleo do
Brasil S/A (PETROBRAS) and the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES). D. Lemos received funding from FAPESP (05/50578-2; 07/07015-9) and
CNPq/SEAP (504031/03-1; 308444/06-0; 474222/07-1).
REFERENCES

525 Figure legends

526
527 Fig. 1. Hydrolysis profile of shrimp protein hydrolysate (SPH) in sodium dodecyl sulphate
528 polyacrylamide gel electrophoresis (SDS-PAGE) using stacking gel at 4% (w/v) and
529 separation gel at 17%. Lanes correspond to: molecular weight marker (MW), 0, 30, 60, 90,
530 120, 150 and 180 minutes of enzymatic hydrolyze. SPH was produced through autolysis of
531 Litopenaeus vannamei heads.

532
533 Fig. 2. Zymogram of digestive proteases (3% casein as substrate) of intestine enzyme extracts
534 from Nile tilapia Oreochromis niloticus fed different diets. Lanes correspond to: commercial
diet, SPH 0, SPH 1.5, SPH 3 and SPH 6. Further details in Material and Methods.

536
537 Fig. 3. Inhibition zymogram of digestive proteases (3% casein as substrate) of intestine
enzyme extracts from Nile tilapia Oreochromis niloticus fed SPH 0 diet. Lanes correspond to:
control without inhibitors, TPCK, PMSF, Benzamidine, TLCK and Bestatin. Further details in
Material and Methods.

540
541 Fig. 4. Relationship between trypsin activity (8mM BAPNA as substrate) and (A) final mass,
potential regression \(y = 0.0067x^{1.364}; R^2 = 0.9754; P = 0.0042\); (B) mass gain, polynomial
regression \(y = -4E-06x^2 + 0.0128x - 7.5996; R^2 = 0.864; P = 0.0325\); (C) average daily gain,
potential regression \(y = 7.6697x^{0.3167}; R^2 = 0.9731; P = 0.0050\); (D) specific growth rate,
potential regression \(y = 0.006x^{2.486}; R^2 = 0.9869; P = 0.0091\); (E) feed conversion ratio,
polynomial regression \(y = -6.6978x^2 + 4.364x + 6.5296; R^2 = 0.9825; P = 0.0011\); (F)
[Protein], potential regression \(y = 9E-15x^{2.9356}; R^2 = 0.8938; P = 0.0231\); (G) [Lipid],
exponential regression \(y = 13.931e^{-0.008x}; R^2 = 0.9251; P = 0.0192\) of Nile tilapia.
Oreochromis niloticus fed different diets; commercial diet (■), SPH 0 (□), SPH 1:5 (▲), SPH 3 (▲) and SPH 6 (▲). Error bars represent S.E. of the mean trypsin activity (n=3).

Fig. 5. Relationship between aminopeptidase activity (AA of arginine as substrate) and (A) final mass, potential regression \(y = 0.3655x^{14.409}; R^2 = 0.9324; P = 0.0177 \); (B) average daily gain, polynomial regression \(y = -297.04x^2 + 366.64x - 68.151; R^2 = 0.9313; P = 0.0201 \); (C) specific growth rate, polynomial regression \(y = -5.8787x^2 + 85.885x - 269.22; R^2 = 0.9257; P = 0.0204 \); (D) feed conversion ratio, polynomial regression \(y = -617.7x^2 + 1327x - 666.24; R^2 = 0.9718; P = 0.0107 \); (E) [Protein], polynomial regression \(y = -0.0025x^2 + 3.0128x - 865.28; R^2 = 0.956; P = 0.0154 \); (F) [Lipid], polynomial regression \(y = -0.0017x^2 + 0.6826x - 23.545; R^2 = 0.9258; P = 0.0202 \) of Nile tilapia Oreochromis niloticus fed different diets; commercial diet (■), SPH 0 (□), SPH 1:5 (▲), SPH 3 (▲) and SPH 6 (▲). Error bars represent S.E. of the mean aminopeptidase activity (n=3).
Table I. Proximate composition (%) and energy of lyophilized shrimp protein hydrolysate (SPH, from L. vannamei) (Silva, 2006).

<table>
<thead>
<tr>
<th>Composition</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (%)</td>
<td>9.7</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>43.6</td>
</tr>
<tr>
<td>Fat (%)</td>
<td>6.2</td>
</tr>
<tr>
<td>Ash (%)</td>
<td>7.3</td>
</tr>
<tr>
<td>Carbohydrate (%)</td>
<td>33.1</td>
</tr>
<tr>
<td>Energy (KJ 100 g⁻¹)</td>
<td>1520.8</td>
</tr>
</tbody>
</table>
Table II. Amino acid composition of the shrimp protein hydrolysate (SPH from *Litopenaeus vannamei*) (Silva, 2006).

<table>
<thead>
<tr>
<th>Amino acids</th>
<th>SPH</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg 100g(^{-1})</td>
<td></td>
</tr>
<tr>
<td>Essential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arginine</td>
<td>3400 ± 0.043</td>
<td>7.3</td>
</tr>
<tr>
<td>Histidine</td>
<td>1060 ± 0.005</td>
<td>2.3</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>2000 ± 0.021</td>
<td>4.3</td>
</tr>
<tr>
<td>Leucine</td>
<td>3490 ± 0.021</td>
<td>7.4</td>
</tr>
<tr>
<td>Lysine</td>
<td>3350 ± 0.000</td>
<td>7.2</td>
</tr>
<tr>
<td>Methionine</td>
<td>1290 ± 0.005</td>
<td>2.7</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>2370 ± 0.002</td>
<td>5.1</td>
</tr>
<tr>
<td>Threonine</td>
<td>2120 ± 0.031</td>
<td>4.5</td>
</tr>
<tr>
<td>Thryptophan</td>
<td>670 ± 0.016</td>
<td>1.4</td>
</tr>
<tr>
<td>Valine</td>
<td>2250 ± 0.012</td>
<td>4.8</td>
</tr>
<tr>
<td>Non-essential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyrosine</td>
<td>3370 ± 0.004</td>
<td>7.2</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>4270 ± 0.031</td>
<td>9.1</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>5780 ± 0.003</td>
<td>12.4</td>
</tr>
<tr>
<td>Glycine</td>
<td>2890 ± 0.005</td>
<td>6.2</td>
</tr>
<tr>
<td>Serine</td>
<td>2030 ± 0.001</td>
<td>4.3</td>
</tr>
<tr>
<td>Alanine</td>
<td>3070 ± 0.017</td>
<td>6.6</td>
</tr>
<tr>
<td>Proline</td>
<td>2970 ± 0.024</td>
<td>6.3</td>
</tr>
<tr>
<td>Cystine</td>
<td>410 ± 0.015</td>
<td>0.9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>46790</td>
<td>100</td>
</tr>
</tbody>
</table>
Table III. Composition and proximate analysis of the experimental diets.

<table>
<thead>
<tr>
<th>Ingredients (%)</th>
<th>Diets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Commercial</td>
</tr>
<tr>
<td>Fish meal</td>
<td>23.0</td>
</tr>
<tr>
<td>Shrimp protein hydrolysate (SPH)</td>
<td>0.0</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>47.0</td>
</tr>
<tr>
<td>Wheat meal</td>
<td>16.0</td>
</tr>
<tr>
<td>Corn starch</td>
<td>10.5</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>1.0</td>
</tr>
<tr>
<td>Dicalcium phosphate</td>
<td>1.0</td>
</tr>
<tr>
<td>Mineral and vitamin mix¹</td>
<td>1.0</td>
</tr>
<tr>
<td>Salt</td>
<td>0.5</td>
</tr>
<tr>
<td>Antioxidant BHT</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Proximate analysis (on as-fed basis)

<table>
<thead>
<tr>
<th></th>
<th>Commercial</th>
<th>SPH0</th>
<th>SPH1.5</th>
<th>SPH3</th>
<th>SPH6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter (g kg⁻¹)</td>
<td>918.0</td>
<td>914.8</td>
<td>935.9</td>
<td>936.5</td>
<td>946.7</td>
</tr>
<tr>
<td>Crude protein (g kg⁻¹)</td>
<td>345.6</td>
<td>371.9</td>
<td>374.3</td>
<td>376.2</td>
<td>380.6</td>
</tr>
<tr>
<td>Ether extract (g kg⁻¹)</td>
<td>65.0</td>
<td>48.1</td>
<td>56.2</td>
<td>52.1</td>
<td>35.9</td>
</tr>
<tr>
<td>Crude fibre (g kg⁻¹)</td>
<td>34.9</td>
<td>39.7</td>
<td>38.8</td>
<td>41.1</td>
<td>46.6</td>
</tr>
<tr>
<td>Ash (g kg⁻¹)</td>
<td>67.5</td>
<td>105.7</td>
<td>102.9</td>
<td>101.6</td>
<td>101.9</td>
</tr>
<tr>
<td>Nitrogen-free extract</td>
<td>487.0</td>
<td>434.6</td>
<td>427.8</td>
<td>429.0</td>
<td>435.0</td>
</tr>
<tr>
<td>Calcium (g kg⁻¹)</td>
<td>14.3</td>
<td>22.2</td>
<td>21.7</td>
<td>20.0</td>
<td>17.2</td>
</tr>
<tr>
<td>Phosphorus (g kg⁻¹)</td>
<td>11.3</td>
<td>12.4</td>
<td>12.5</td>
<td>12.6</td>
<td>12.8</td>
</tr>
<tr>
<td>Gross energy (kJ 100 g⁻¹)</td>
<td>1931.8</td>
<td>1834.7</td>
<td>1860.7</td>
<td>1851.0</td>
<td>1807.5</td>
</tr>
</tbody>
</table>
1 Mineral and vitamin mix (kg⁻¹ premix): vitamin A (20,000UI), vitamin D₃ (5,000UI), vitamin E (250mg), vitamin K₃ (25mg), vitamin B₃ (37.5mg), vitamin B₁₂ (37.5mg), vitamin B₆ (25mg), vitamin B₁₂ (0.053mg), vitamin C (250mg), niacin (200mg), pantothenic acid (100 mg), biotin (1.25mg), choline (1,000mg), inositol (250mg), Fe (100mg), Cu (12mg), Zn (125mg), Mn (37.5mg), Se (0.25mg), I (1.25mg), Co (0.25mg).

2 Based on 5.65, 4.2 and 39.77 kJ g⁻¹ protein, carbohydrate and fat, respectively.
Table IV. Digestive enzyme activity on crude extracts of *Oreochromis niloticus* fed commercial and experimental diets containing increasing shrimp protein hydrolysate (SHP) levels.

<table>
<thead>
<tr>
<th>Diets</th>
<th>Acid proteolytic activity</th>
<th>Alkaline proteolytic activity</th>
<th>Trypsin</th>
<th>Chymotrypsin</th>
<th>Aminopeptidase</th>
<th>Amylase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>45.72±0.22 a</td>
<td>8.20±1.06 a</td>
<td>1.13±0.14 a</td>
<td>11.96±2.13 a</td>
<td>26.49±3.65 a</td>
<td>25.24±3.74 a</td>
</tr>
<tr>
<td>SHP 0</td>
<td>155.84±24.63 a</td>
<td>11.30±1.23 b</td>
<td>2.59±0.21 b</td>
<td>22.70±2.52 b</td>
<td>41.88±6.65 b</td>
<td>45.47±8.78 b</td>
</tr>
<tr>
<td>SHP 1.5</td>
<td>111.38±39.56 a</td>
<td>15.35±1.70 c</td>
<td>3.38±0.49 c</td>
<td>39.74±7.88 c</td>
<td>45.34±3.66 c</td>
<td>53.50±10.41 c</td>
</tr>
<tr>
<td>SHP 3</td>
<td>162.49±28.91 b</td>
<td>13.60±1.64 d</td>
<td>2.82±0.45 d</td>
<td>36.89±5.41 d</td>
<td>47.66±4.16 d</td>
<td>48.79±9.64 d</td>
</tr>
<tr>
<td>SHP 6</td>
<td>132.10±22.74 c</td>
<td>15.23±1.78 a</td>
<td>2.62±0.30 a</td>
<td>36.66±7.20 a</td>
<td>30.85±5.22 a</td>
<td>56.77±8.63 a</td>
</tr>
</tbody>
</table>

Acid and alkaline proteolytic activity expressed as U mg of Protein (P)-1, trypsin, chymotrypsin and aminopeptidase activity expressed as mg of P-1 mg of P-1, and amylase activity expressed as mg of maltose min-1 mg of P-1. Different superscripts in the same column denote statistical differences (P < 0.05) (mean ± S.D. of three replicates).
Figure 1
Figure 4
Figure 5
6. CONCLUSÕES

O presente estudo indicou que:

- Amilases dos camarões marinhos estudados apresentaram propriedades físico-químicas similares às de outros crustáceos descritos na literatura. Embora as três espécies sejam descritas como onívoras oportunistas, *Farfantepenaeus subtilis* e *Litopenaeus schmitti* apresentam uma tendência maior à carnivoria, o que foi corroborado pelas taxas A:P mais baixas. Foi identificado um grande número de isoformas de amilases no hepatopâncreas das três espécies, o que pode representar uma vantagem ecológica e sugerir que as espécies são capazes de se beneficiar com os carboidratos da dieta;

- O hepatopâncreas de *F. subtilis* e *F. paulensis* apresentam tripsina, quimotripsina e aminopeptidases, com características gerais próximas a de outros camarões peneideos. Essas enzimas parecem diferir estruturalmente das enzimas de mamíferos, visto que não respondem de forma semelhante aos inibidores clássicos de proteases utilizados. A correlação entre as aminopeptidases e as concentrações recomendadas dos respectivos aminoácidos na dieta de camarões pode ser indicativo de uma resposta fisiológica das espécies à hidrólise protéica;

- O hidrolisado protéico de camarão demonstrou ser uma boa fonte de aminoácidos para juvenis da tilápia do Nilo, podendo ser incluído nas dietas até o nível de 6%, sem causar efeitos adversos na utilização do alimento e no crescimento dos peixes;

- Não foi constatada correlação entre diferentes níveis de hidrolisado protéico de camarão nas dietas e a atividade enzimática das tilápias. Entretanto, essas diferenças puderam ser observadas através da análise de zimogramas de atividade, sugerindo que a técnica pode ser uma boa ferramenta para identificação de diferentes tratamentos alimentares. Os inibidores clássicos de proteases utilizados para identificação das enzimas de tilápias ou não tiveram efeito ou os efeitos não foram conclusivos, sugerindo baixa similaridade das enzimas com proteases de mamíferos.
7. ANEXOS
7.1. **NORMAS DO PERIÓDICO AQUACULTURE RESEARCH**

AQUACULTURE RESEARCH

Edited by:
Ronald W. Hardy, Marc Verdegem and Lindsay Ross

Print ISSN: 1355-557X
Online ISSN: 1365-2109
Frequency: Sixteen times a year
Current Volume: 40 / 2009
ISI Journal Citation Reports® Ranking: 2007: 7/40 Fisheries
Impact Factor: 1.067

Author Guidelines

Relevant Documents: [Exclusive Licence Form](#), [Colour Work Agreement Form](#)
Useful Websites: [Submission Site](#), [Articles published in Aquaculture Research](#), [Author Services](#), [Blackwell Publishing's Ethical Guidelines](#), [Guidelines for Figures](#)

1. **GENERAL**

Aquaculture Research publishes papers on applied or scientific research relevant to freshwater, brackish, and marine aquaculture. The Journal also includes review articles, short communications and book reviews.

Please read the instructions below carefully for details on the submission of manuscripts, the Journal’s requirements and standards as well as information concerning the procedure after a manuscript has been accepted for publication in *Aquaculture Research*. Authors are encouraged to visit [Blackwell Publishing Author Services](#) for further information on the preparation and submission of articles and figures.

2. **ETHICAL GUIDELINES**

Aquaculture Research adheres to the below ethical guidelines for publication and research.

2.1. **Authorship and Acknowledgements**

Authorship: Authors submitting a paper do so on the understanding that the manuscript has been read and approved by all authors and that all authors agree to the submission of the manuscript to the Journal. ALL named authors must have made an active contribution to the conception and design and/or analysis and interpretation of the data and/or the drafting of the paper and ALL must have critically reviewed its content and have approved the final version submitted for publication. Participation solely in the acquisition of funding or the collection of data does not justify authorship and, except in the case of complex large-scale or multi-centre research, the number of authors should not exceed six.

Aquaculture Research adheres to the definition of authorship set up by The International Committee of Medical Journal Editors (ICMJE). According to the ICMJE, authorship criteria...
should be based on 1) substantial contributions to conception and design of, or acquisition of
data or analysis and interpretation of data, 2) drafting the article or revising it critically for
important intellectual content and 3) final approval of the version to be published. Authors
should meet conditions 1, 2 and 3. The Journal prefers papers describing hypothesis-driven
research. Descriptive papers are allowed providing that they meet the conditions listed above,
particularly if they provide substantial new knowledge which advances the state of knowledge in
their topic area. Papers describing research on topics already well described in the literature but
differing from previous work because the study was conducted with a different species of fish
are allowed, providing they describe novel findings rather than simply confirm well-known
phenomena found in other species.

It is a requirement that all authors have been accredited as appropriate upon submission of the
manuscript. Contributors who do not qualify as authors should be mentioned under
Acknowledgements.

Acknowledgements: Under Acknowledgements please specify contributors to the article other
than the authors accredited. Please also include specifications of the source of funding for the
study.

2.2. Ethical Approvals

Ethics of investigation: Papers not in agreement with the guidelines of the Helsinki
Declaration as revised in 1975 will not be accepted for publication.

2.3 Appeal of Decision

The decision on a paper is final and cannot be appealed.

2.4 Permissions

If all or parts of previously published illustrations are used, permission must be obtained from
the copyright holder concerned. It is the author's responsibility to obtain these in writing and
provide copies to the Publishers.

2.5 Copyright Assignment

Authors submitting a paper do so on the understanding that the work and its essential
substance have not been published before and is not being considered for publication
elsewhere. The submission of the manuscript by the authors means that the authors
automatically agree to assign exclusive licence to Blackwell Publishing if and when the
manuscript is accepted for publication. The work shall not be published elsewhere in any
language without the written consent of the publisher. The articles published in this Journal are
protected by copyright, which covers translation rights and the exclusive right to reproduce and
distribute all of the articles printed in the Journal. No material published in the Journal may be
stored on microfilm or videocassettes, in electronic databases and the like, or reproduced
photographically without the prior written permission of the publisher.

Correspondence to the Journal is accepted on the understanding that the contributing author
licences the publisher to publish the letter as part of the Journal or separately from it, in the
exercise of any subsidiary rights relating to the Journal and its contents.
Upon acceptance of a paper, authors are required to assign the exclusive licence to publish their paper to Blackwell Publishing. Assignment of the exclusive licence is a condition of publication and papers will not be passed to the publisher for production unless licence has been assigned. (Papers subject to government or Crown copyright are exempt from this requirement; however, the form still has to be signed). A completed Exclusive Licence Form must be sent to the address specified on the form, before any manuscript can be published. Authors must send the completed original Exclusive Licence Form by regular mail upon receiving notice of manuscript acceptance, i.e., do not send the form at submission. Faxing or e-mailing the form does not meet requirements.

For questions concerning copyright, please visit Blackwell Publishing’s Copyright FAQ.

3. SUBMISSION OF MANUSCRIPTS
Manuscripts must be prepared to conform to the Journal’s style and format. Please consult the section Manuscript Format and Structure below for details. Substantial deviation from the Journal's format will result in return of manuscripts without review.

Manuscripts should be submitted electronically via the online submission site http://mc.manuscriptcentral.com/are. The use of an online submission and peer review site enables immediate distribution of manuscripts and consequentially speeds up the review process. It also allows authors to track the status of their own manuscripts. Complete instructions for submitting a paper are available online and below. Further assistance can be obtained from the Editorial Office at areedoffice@oxon.blackwellpublishing.com.

3.1. Getting Started

· Launch your web browser (supported browsers include Internet Explorer 6 or higher, Netscape 7.0, 7.1, or 7.2, Safari 1.2.4, or Firefox 1.0.4) and go to the journal's online Submission Site: http://mc.manuscriptcentral.com/are.

· Log-in or click the "Create Account" option if you are a first-time user.

· If you are creating a new account.
 - After clicking on "Create Account", enter your name and e-mail information and click "Next". Your e-mail information is very important.
 - Enter your institution and address information as appropriate, and then click "Next."
 - Enter a user ID and password of your choice (we recommend using your e-mail address as your user ID), and then select your area of expertise. Click "Finish".

· If you have an account, but have forgotten your login details, go to Password Help on the journals online submission system http://mc.manuscriptcentral.com/are and enter your e-mail address. The system will send you an automatic user ID and a new temporary password.

· Log-in and select "Author Center".

3.2. Submitting Your Manuscript

· After you have logged in, click the "Submit a Manuscript" link in the menu bar.
· Enter data and answer questions as appropriate. You may copy and paste directly from your manuscript and you may upload your pre-prepared covering letter.

· Click the "Next" button on each screen to save your work and advance to the next screen.

· You are required to upload your files.
 - Click on the "Browse" button and locate the file on your computer.
 - Select the designation of each file in the drop-down menu next to the Browse button.
 - When you have selected all files you wish to upload, click the "Upload Files" button.

· Review your submission (in HTML and PDF format) before sending to the Journal. Click the "Submit" button when you are finished reviewing.

3.3. Manuscript Files Accepted

Manuscripts should be uploaded as Word (.doc) or Rich Text Format (.rtf) files (not write-protected) plus separate figure files. GIF, JPEG, PICT or Bitmap files are acceptable for submission, but only high-resolution TIF or EPS files are suitable for printing. The files will be automatically converted to HTML and PDF on upload and will be used for the review process. The text file must contain the entire manuscript including title page, abstract, text, references, tables, and figure legends, but no embedded figures. Figure tags should be included in the file. Manuscripts should be formatted as described in the Author Guidelines below.

Please note that any manuscripts uploaded as Word 2007 (.docx) will be automatically rejected. Please save any .docx file as .doc before uploading.

3.4. Blinded Review

All manuscripts submitted to Aquaculture Research will be reviewed by two experts in the field. Aquaculture Research uses single-blinded review. The names of the reviewers will thus not be disclosed to the author submitting a paper.

3.5. Suggest a Reviewer

Aquaculture Research attempts to keep the review process as short as possible to enable rapid publication of new scientific data. In order to facilitate this process, please suggest the name and current e-mail address of one potential international reviewer whom you consider capable of reviewing your manuscript. It is permissible to choose reviewers known to the authors, but avoid choosing reviewers based solely upon professional relationships. International stature is an important quality for reviewers recommended by authors. Avoid recommending reviewers that are likely to have professional responsibilities that will make it difficult to obtain a review in the required time. In addition to your choice the Journal Editor will choose one or two reviewers as well.

3.6. Suspension of Submission Mid-way in the Submission Process

You may suspend a submission at any phase before clicking the "Submit" button and save it to submit later. The manuscript can then be located under "Unsubmitted Manuscripts" and you can click on "Continue Submission" to continue your submission when you choose to.
3.7. E-mail Confirmation of Submission

After submission you will receive an e-mail to confirm receipt of your manuscript. If you do not receive the confirmation e-mail after 24 hours, please check your e-mail address carefully in the system. If the e-mail address is correct please contact your IT department. The error may be caused by spam filtering software on your e-mail server. Also, the e-mails should be received if the IT department adds our e-mail server (uranus.scholarone.com) to their whitelist.

3.8. Manuscript Status

You can access Manuscript Central any time to check your "Author Center" for the status of your manuscript. The Journal will inform you by e-mail once a decision has been made.

3.9. Submission of Revised Manuscripts

Revised manuscripts must be uploaded within 3 months of authors being notified of conditional acceptance pending satisfactory revision. Locate your manuscript under "Manuscripts with Decisions" and click on "Submit a Revision" to submit your revised manuscript. Please remember to delete any old files uploaded when you upload your revised manuscript.

4. MANUSCRIPT TYPES ACCEPTED

Original Articles: Generally original articles are based upon hypothesis-driven research describing a single study or several related studies constituting a single project. Descriptive studies are allowed providing that they include novel information and/or scholarly insight that contributes to advancement of the state of information on a given scientific topic.

Review Articles: Review articles are welcome and should contain not only an up-to-date review of scientific literature but also substantial scholarly interpretation of extant published literature. Compilations of scientific literature without interpretation leading to new insights or recommendations for new research directions will be returned to the author without review.

Short Communications: These should differ from full papers on the basis of scope or completeness, rather than quality of research. They may report significant new data arising from problems with narrow, well defined limits, or important findings that warrant rapid publication before broader studies are complete. Their text should neither exceed 1500 words (approximately six pages of typescript) nor be divided up into conventional sections. When submitting Short Communications, authors should make it clear that their work is to be treated as such.

Book Reviews: Book reviews are by invitation of the Editors.

5. MANUSCRIPT FORMAT AND STRUCTURE

5.1. Format

All sections of the typescript should be on one side of A4 paper, double-spaced and with 30mm margins. A font size of 12pt should be used. **Line numbering should be included, with numbering to continue from the first line to the end of the text (reference list). Line numbers should be continuous throughout the manuscript and NOT start over on each page.**
Articles are accepted for publication only at the discretion of the Editors. Authors will be notified when a decision on their paper is reached.

Language: The language of publication is English. Authors for whom English is a second language must have their manuscript professionally edited by an English speaking person before submission to make sure the English is of high quality. It is preferred that manuscripts are professionally edited. A list of independent suppliers of editing services can be found at www.blackwellpublishing.com/bauthor/english_language.asp. Japanese authors can also find a list of local English improvement services at http://www.wiley.co.jp/journals/editcontribute.html. All services are paid for and arranged by the author, and use of one of these services does not guarantee acceptance or preference for publication. Manuscripts in which poor English makes it difficult or impossible to review will be returned to authors without review.

Units and Spellings: Systeme International (SI) units should be used. The salinity of sea water should be given as gL⁻¹. Use the form gml⁻¹ not g/ml. Avoid the use of g per 100 g, for example in food composition, use g kg⁻¹. If other units are used, these should be defined on first appearance in terms of SI units, e.g. mmHg. Spelling should conform to that used in the Concise Oxford Dictionary published by Oxford University Press. Abbreviations of chemical and other names should be defined when first mentioned in the text unless they are commonly used and internationally known and accepted.

Scientific Names and Statistics: Complete scientific names, including the authority with correct taxonomic disposition, should be given when organisms are first mentioned in the text and in tables, figures and key words together with authorities in brackets, e.g. 'rainbow trout, Oncorynchus mykiss (Walbaum)' but 'Atlantic salmon Salmo salar L.' without brackets. For further information see American Fisheries Society Special Publication No. 20, A List of Common and Scientific Names of Fishes from the United States and Canada.

Carry out and describe all appropriate statistical analyses.

5.2. Structure

A manuscript (original article) should consist of the following sections:

Title page:

This should include:
- the full title of the paper
- the full names of all the authors
- the name(s) and address(es) of the institution(s) at which the work was carried out (the present address of the authors, if different from the above, should appear in a footnote)
- the name, address, telephone and fax numbers, and e-mail address of the author to whom all correspondence and proofs should be sent
- a suggested running title of not more than 50 characters, including spaces
- four to six keywords for indexing purposes

Main text:
Generally, all papers should be divided into the following sections and appear in the order: (1) Abstract or Summary, not exceeding 150-200 words, (2) Introduction, (3) Materials and Methods, (4) Results, (5) Discussion, (6) Acknowledgments, (7) References, (8) Figure legends, (9) Tables, (10) Figures.

The Results and Discussion sections may be combined and may contain subheadings. The Materials and Methods section should be sufficiently detailed to enable the experiments to be reproduced. Trade names should be capitalized and the manufacturer's name and location (town, state/county, country) included.

All pages must be numbered consecutively from the title page, and include the acknowledgments, references and figure legends, which should be submitted on separate sheets following the main text. The preferred position of tables and figures in the text should be indicated in the left-hand margin.

Optimizing Your Abstract for Search Engines

Many students and researchers looking for information online will use search engines such as Google, Yahoo or similar. By optimizing your article for search engines, you will increase the chance of someone finding it. This in turn will make it more likely to be viewed and/or cited in another work. We have compiled these guidelines to enable you to maximize the web-friendliness of the most public part of your article.

5.3. References (Harvard style)

References should be cited in the text by author and date, e.g. Lie & Hemre (1990). Joint authors should be referred to in full at the first mention and thereafter by et al. if there are more than two, e.g. Lie et al. (1990).

More than one paper from the same author(s) in the same year must be identified by the letters a, b, c, etc. placed after the year of publication. Listings of references in the text should be chronological. At the end of the paper, references should be listed alphabetically according to the first named author. The full titles of papers, chapters and books should be given, with the first and last page numbers. For example:

Authors are responsible for the accuracy of their references. References should only be cited as 'in press' if they have been accepted for publication. Manuscripts in preparation, unpublished reports and reports not readily available should not be cited. Personal communications should be cited as such in the text.

It is the authors' responsibility to obtain permission from colleagues to include their work as a personal communication. A letter of permission should accompany the manuscript.
The Editor and Publisher recommend that citation of online published papers and other material should be done via a DOI (digital object identifier), which all reputable online published material should have - see www.doi.org/ for more information. If an author cites anything which does not have a DOI they run the risk of the cited material not being traceable.

We recommend the use of a tool such as EndNote or Reference Manager for reference management and formatting.

EndNote reference styles can be searched for here:

www.endnote.com/support/enstyles.asp

Reference Manager reference styles can be searched for here:

www.refman.com/support/rmstyles.asp

5.4. Tables, Figures and Figure Legends

Tables: Tables should be self-explanatory and include only essential data. Each table must be typewritten on a separate sheet and should be numbered consecutively with Arabic numerals, e.g. Table 1, and given a short caption. No vertical rules should be used. Units should appear in parentheses in the column headings and not in the body of the table. All abbreviations should be defined in a footnote.

Figures: Illustrations should be referred to in the text as figures using Arabic numbers, e.g. Fig.1, Fig.2 etc. in order of appearance.

Photographs and photomicrographs should be unmounted glossy prints and should not be retouched. Labelling, including scale bars if necessary, should be clearly indicated. Magnifications should be included in the legend.

Line drawings should be on separate sheets of paper; lettering should be on an overlay or photocopy and should be no less than 4 mm high for a 50% reduction. Please note, each figure should have a separate legend: these should be grouped on a separate page at the end of the manuscript. All symbols and abbreviations should be clearly explained.

Avoid using tints if possible; if they are essential to the understanding of the figure, try to make them coarse.

Preparation of Electronic Figures for Publication: Although low quality images are adequate for review purposes, print publication requires high quality images to prevent the final product being blurred or fuzzy. Submit EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Do not use pixel-oriented programmes. Scans (TIFF only) should have a resolution of at least 300 dpi (halftone) or 600 to 1200 dpi (line drawings) in relation to the reproduction size (see below). Please submit the data for figures in black and white or submit a Colour Work Agreement Form (see Colour Charges below). EPS files should be saved with fonts embedded (and with a TIFF preview if possible).
For scanned images, the scanning resolution (at final image size) should be as follows to ensure good reproduction: line art: >600 dpi; halftones (including gel photographs): >300 dpi; figures containing both halftone and line images: >600 dpi.

Further information can be obtained at Blackwell Publishing’s guidelines for figures: www.blackwellpublishing.com/bauthor/illustration.asp

Check your electronic artwork before submitting it: www.blackwellpublishing.com/bauthor/eachecklist.asp

Permissions: If all or parts of previously published tables and figures are used, permission must be obtained from the copyright holder concerned. It is the author’s responsibility to obtain these in writing and provide copies to the Publisher.

Colour Charges: It is the policy of Aquaculture Research for authors to pay the full cost for the reproduction of their colour artwork. Therefore, please note that if there is colour artwork in your manuscript when it is accepted for publication, Blackwell Publishing require you to complete and return a Colour Work Agreement Form before your paper can be published. Any article received by Blackwell Publishing with colour work will not be published until the form has been returned. If you are unable to access the internet, or are unable to download the form, please contact the Production Editor are@oxon.blackwellpublishing.com.

In the event that an author is not able to cover the costs of reproducing colour figures in colour in the printed version of the journal, Aquaculture Research offers authors the opportunity to reproduce colour figures in colour for free in the online version of the article (but they will still appear in black and white in the print version). If an author wishes to take advantage of this free colour-on-the-web service, they should liaise with the Editorial Office to ensure that the appropriate documentation is completed for the Publisher.

Figure Legends: In the full-text online edition of the Journal, figure legends may be truncated in abbreviated links to the full-screen version. Therefore, the first 100 characters of any legend should inform the reader of key aspects of the figure.

6. AFTER ACCEPTANCE

Upon acceptance of a paper for publication, the manuscript will be forwarded to the Production Editor who is responsible for the production of the journal.

6.1 Proof Corrections

The corresponding author will receive an e-mail alert containing a link to a website. A working e-mail address must therefore be provided for the corresponding author. The proof can be downloaded as a PDF (portable document format) file from this site.

Acrobat Reader will be required in order to read this file. This software can be downloaded (free of charge) from the following website: www.adobe.com/products/acrobat/readstep2.html . This will enable the file to be opened, read on screen, and printed out in order for any corrections to be added. Further instructions will be sent with the proof. Hard copy proofs will be posted if no e-mail address is available; in your absence, please arrange for a colleague to access your e-mail to retrieve the proofs.
Proofs must be returned to the Author Corrections Team within three days of receipt. Please note that if you have registered for production tracking e-mail alerts in Author Services, there will be no e-mail for the proof corrections received stage. This will not affect e-mails alerts for any later production stages.

As changes to proofs are costly, we ask that you only correct typesetting errors. Please note that the author is responsible for all statements made in their work, including changes made by the copy editor.

6.2 Early View (Publication Prior to Print)
Aquaculture Research is covered by Blackwell Publishing's OnlineEarly service. OnlineEarly articles are complete full-text articles published online in advance of their publication in a printed issue. OnlineEarly articles are complete and final. They have been fully reviewed, revised and edited for publication, and the authors' final corrections have been incorporated. Because they are in final form, no changes can be made after online publication. The nature of OnlineEarly articles means that they do not yet have volume, issue or page numbers, so OnlineEarly articles cannot be cited in the traditional way. They are therefore given a Digital Object Identifier (DOI), which allows the article to be cited and tracked before it is allocated to an issue. After print publication, the DOI remains valid and can continue to be used to cite and access the article.

6.3 Author Services
Online production tracking is available for your article through Blackwell's Author Services. Author Services enables authors to track their article - once it has been accepted - through the production process to publication online and in print. Authors can check the status of their articles online and choose to receive automated e-mails at key stages of production. The author will receive an e-mail with a unique link that enables them to register and have their article automatically added to the system. Please ensure that a complete e-mail address is provided when submitting the manuscript. Visit www.blackwellpublishing.com/bauthor for more details on online production tracking and for a wealth of resources including FAQs and tips on article preparation, submission and more.

Please note that corrections received will be acknowledged on receipt, thus authors will not receive alerts at the 'first proof corrections received' stage. This does not affect any further alerts to authors from Author Services.

For more substantial information on the services provided for authors, please see Blackwell Publishing Author Services.

6.4 Author Material Archive Policy

Please note that unless specifically requested, Blackwell Publishing will dispose of all hardcopy or electronic material submitted one month after publication. If you require the return of any material submitted, please inform the Editorial Office or Production Editor as soon as possible.

6.5 Offprints and Extra Copies

A PDF offprint of the online published article will be provided free of charge to the corresponding author, and may be distributed subject to the Publisher's terms and conditions. Additional paper offprints may be ordered online. Please click on the following link, fill in the
necessary details and ensure that you type information in all of the required fields:
offprint.cosprinters.com/cos/bw/main.jsp?SITE_ID=bw&FID=USER_HOME_PG

If you have queries about offprints please e-mail offprint@cosprinters.com
7.2. Normas do Periódico Aquaculture International

Online Manuscript Submission

Springer now offers authors, editors and reviewers of Aquaculture International the option of using our fully web-enabled online manuscript submission and review system. To keep the review time as short as possible (no postal delays!), we encourage authors to submit manuscripts online to the journal's editorial office. Our online manuscript submission and review system offers authors the option to track the progress of the review process of manuscripts in real time. Manuscripts should be submitted to: http://aqui.edmgr.com

The on-line manuscript submission and review system for Aquaculture International offers easy and straightforward log-in and submission procedures. This system supports a wide range of submission file formats: for manuscripts - Word, WordPerfect, RTF, TXT and LaTeX; for figures - TIFF, GIF, JPEG, EPS, PPT, and Postscript.

NOTE: By using the online manuscript submission and review system, it is NOT necessary to submit the manuscript also in printout + disk.
In case you encounter any difficulties while submitting your manuscript online, please get in touch with the responsible Editorial Assistant by clicking on "CONTACT US" from the toolbar.

Electronic figures

Electronic versions of your figures must be supplied. For vector graphics, EPS is the preferred format. For bitmapped graphics, TIFF is the preferred format. The following resolutions are optimal: line figures - 600 - 1200 dpi; photographs - 300 dpi; screen dumps - leave as is. Colour figures can be submitted in the RGB colour system. Font-related problems can be avoided by using standard fonts such as Times Roman, Courier and Helvetica.

Colour figures

Springer offers two options for reproducing colour illustrations in your article. Please let us know what you prefer: 1) Free online colour. The colour figure will only appear in colour on www.springer.com and not in the printed version of the journal. 2) Online and printed colour. The colour figures will appear in colour on our website and in the printed version of the journal. The charges are EUR 950/USD 1150 per article.

Language

We appreciate any efforts that you make to ensure that the language is corrected before submission. This will greatly improve the legibility of your paper if English is not your first language.

Reviewing Procedure

Aquaculture International is sent to 2 specialist reviewers who remain anonymous unless they specifically choose to confer with the author.

Manuscript Presentation

Manuscripts should all be presented in the accepted scientific format e.g. Introduction, Materials and Methods etc. There is no separate format for short communication. The journal's language is English. British English or American English spelling and terminology may be used, but either one should be followed consistently throughout the article. Manuscripts should leave adequate margins on all sides to allow reviewers' remarks. Please double-space all material, including notes and references. Quotations of more than 40 words should be set off clearly, either by indenting the left-hand margin or by using a smaller typeface. Use double quotation marks for direct quotations and single quotation marks for quotations within quotations and for words or phrases used in a special sense.

Number the pages consecutively with the first page containing:

running head (shortened title)
title
Abstract

Please provide a short abstract of 100 to 250 words. The abstract should not contain any undefined abbreviations or unspecified references.

Key Words

Please provide 5 to 10 key words or short phrases in alphabetical order.

Abbreviations

Abbreviations and their explanations should be collected in a list.

Figures

All photographs, graphs and diagrams should be referred to as 'Figure' and they should be numbered consecutively (1, 2, etc.). Multi-part figures ought to be labelled with lower case letters (a, b, etc.). Please insert keys and scale bars directly in the figures. Relatively small text and great variation in text sizes within figures should be avoided as figures are often reduced in size. Figures may be sized to fit approximately within the column(s) of the journal. Provide a detailed legend (without abbreviations) to each figure, refer to the figure in the text and note its approximate location in the margin. Please place the legends in the manuscript after the references.

Tables

Each table should be numbered consecutively (1, 2, etc.). In tables, footnotes are preferable to long explanatory material in either the heading or body of the table. Such explanatory footnotes, identified by superscript letters, should be placed immediately below the table. Please provide a caption (without abbreviations) to each table, refer to the table in the text and note its approximate location in the margin. Finally, please place the tables after the figure legends in the manuscript.

Section Headings

First-, second-, third-, and fourth-order headings should be clearly distinguishable but not numbered.

Appendices

Supplementary material should be collected in an Appendix and placed before the Notes and Reference sections.

Notes

Please use endnotes rather than footnotes. Notes should be indicated by consecutive superscript numbers in the text and listed at the end of the article before the References. A source reference note should be indicated by an asterisk after the title. This note should be placed at the bottom of the first page.

Cross-Referencing

In the text, a reference identified by means of an author's name should be followed by the date of the reference in parentheses and page number(s) where appropriate. When there are more than two authors, only the first author's name should be mentioned, followed by 'et al.'. In the event that an author cited has had two or more works published during the same year, the reference, both in the text
and in the reference list, should be identified by a lower case letter like 'a' and 'b' after the date to distinguish the works.

Examples:
Winograd (1986, p. 204)
(Winograd 1986; Flores et al. 1988)
(Bullen and Bennett 1990)

Acknowledgements

Acknowledgements of people, grants, funds, etc. should be placed in a separate section before the References.

References

1. Journal article:

2. Inclusion of issue number (optional):

3. Journal issue with issue editor:

4. Journal issue with no issue editor:

5. Book chapter:

6. Book, authored:

7. Book, edited:

8. Chapter in a book in a series without volume titles:

9. Chapter in a book in a series with volume title:

11. Proceedings with an editor (without a publisher):

12. Proceedings without an editor (without a publisher):

13. Paper presented at a conference:
14. Patent:
Name and date of patent are optional

15. Dissertation:
Trent JW (1975) Experimental acute renal failure. Dissertation, University of California

International Anatomical Nomenclature Committee (1986) Nomina anatomica. Excerpta Medica, Amsterdam

17. Non-English publication cited in an English publication:

18. Non-Latin alphabet publication:
The English translation is optional.
Marikhin YV, Myasnikova LP (1977) Nadvokulyarnaya struktura polimerov (The supramolecular structure of polymers). Khimiya, Leningrad

19. Published and In press articles with or without DOI:
19.1 In press

19.2. Article by DOI (with page numbers)

19.3. Article by DOI (before issue publication with page numbers)

19.4. Article in electronic journal by DOI (no paginated version)

20. Internet publication/Online document

20.1. Online database
Supplementary material/private homepage
University site
FTP site
Organization site

Proofs

Proofs will be sent to the corresponding author. One corrected proof, together with the original, edited manuscript, should be returned to the Publisher within three days of receipt by mail (airmail overseas).

Offprints

25 offprints of each article will be provided free of charge. Additional offprints can be ordered by means of an offprint order form supplied with the proofs.

Page Charges and Colour Figures
No page charges are levied on authors or their institutions. Colour figures are published at the author's expense only.

Copyright

Authors will be asked, upon acceptance of an article, to transfer copyright of the article to the Publisher. This will ensure the widest possible dissemination of information under copyright laws.

Permissions

It is the responsibility of the author to obtain written permission for a quotation from unpublished material, or for all quotations in excess of 250 words in one extract or 500 words in total from any work still in copyright, and for the reprinting of figures, tables or poems from unpublished or copyrighted material.

Springer Open Choice

In addition to the normal publication process (whereby an article is submitted to the journal and access to that article is granted to customers who have purchased a subscription), Springer now provides an alternative publishing option: Springer Open Choice. A Springer Open Choice article receives all the benefits of a regular subscription-based article, but in addition is made available publicly through Springers online platform SpringerLink. To publish via Springer Open Choice, upon acceptance please visit http://www.springer.com/openchoice to complete the relevant order form and provide the required payment information. Payment must be received in full before publication or articles will publish as regular subscription-model articles. We regret that Springer Open Choice cannot be ordered for published articles.

Additional Information

Additional information can be obtained from:

Aquaculture International
Springer
P.O. Box 17
3300 AA Dordrecht
The Netherlands
Fax: 78-6576377
Internet: http://www.springer.com/
7.3. Normas do Periódico Journal of Fish Biology

JOURNAL OF FISH BIOLOGY
The official journal of the Fisheries Society of the British Isles

Edited by:
J.F. Craig

Print ISSN: 0022-1112
Online ISSN: 1095-8649
Frequency: Monthly
Current Volume: 74 / 2009
ISI Journal Citation Reports® Ranking: 2007: 15/40 Fisheries
Impact Factor: 1.404

Author Guidelines

INSTRUCTIONS FOR AUTHORS

1. The Journal of Fish Biology welcomes research manuscripts containing new biological insight into any aspect of fish biology. The Journal serves an international readership, and so seeks papers which report material and ideas of value to fish biology in general. Hence the novelty of the content of manuscripts should have relevance to more than the particular species or locality in which the work was carried out. All material submitted must be original, unpublished work and not under consideration for publication elsewhere. If in doubt about overlap, please give details of any related work under consideration or in press with the submission during login in Comments to Editor. Review papers will either be invited or agreed with the Reviews Editor (see 18). Brief Communications (see 19) and occasional Comments (see 21) will be considered.

The Society considers that scientists should avoid research which kills or damages any species of fish which, using IUCN criteria, is regarded as threatened or is listed as such in a Red Data Book appropriate to the geographic area concerned. In accordance with this view, papers based on such research will not be accepted by the Journal, unless the work had clear conservation objectives.

Full instructions and support are available on the site and a user ID and password can be obtained on the first visit. Authors are encouraged to suggest potential referees for their manuscripts. This can be done during login in Comments to Editor.

3. Preparation of manuscripts. Typing should be double-spaced throughout the text, including tables, figure legends and reference lists. All lines should be numbered. Files should not be saved as PDF (portable document format) files.

The first page (see recent past issues) should bear the title of the paper, name(s) (forenames initials only) and academic address(es) of author(s); if the present address of any author is different it should be added as a footnote. Telephone and facsimile numbers and email address
for the corresponding author should also be provided as a footnote. A concise running headline of not more than 45 characters inclusive of spaces should also be given on this page.

Full papers should generally be arranged in the following sequence: Abstract, Key Words, Introduction, Materials and Methods, Results, Discussion (a combined Results and Discussion is not normally acceptable), Acknowledgements, References, Tables and Figures. Within sections, subdivisions should not normally exceed two grades; decimal number classification of headings and subheadings should not be used. All pages should be numbered. Footnotes should not be used except in Tables. Names of fishes should be given in full, *i.e.* common name and Latin name with authority. Italics are required for species names which are written in full the first time they appear in the text, *e.g.* *Cyprinus carpio* L. and *Oncorhynchus mykiss* (Walbaum), but abbreviated at subsequent mention (*e.g.* *C. carpio* and *O. mykiss*). The plural 'fish' should be used for the same species, 'fishes' for more than one species. Spellings should be in English, *e.g.* *Concise Oxford English Dictionary* (as distinct from American) throughout, except in quotations and references. All Latin words should be in italics. **Text should not be written in the first person.**

Information in tables should not be duplicated in figures, and vice versa. Repetition of table headings and figure legends in the text should be avoided.

Authors will find it helpful to consult recent issues of *Journal of Fish Biology* for details of style and presentation. They should note that if their manuscript does not follow the format of the Journal, it will be returned to them.

Two carriage returns should be used to end headings and paragraphs. Text should be typed without end of line hyphenation, except for compound words. Lower case 'f' for '1' or 'O' for '0' should not be used. Tables and figure captions should be saved in a separate file from the main text of the manuscript. **Tables should not be embedded in the text file in picture format.** Punctuation should be consistent and only a single space inserted between words and after punctuation. A separate file should be supplied for illustrations; Encapsulated PostScript (EPS) files are preferred.

4. **Abstracts.** An abstract, which should be concise and summarize only the significant findings of the paper (*i.e.* not the background or methods), should accompany each manuscript. It should be followed by a list of not more than six key words.

5. **Illustrations.** Photographs should be selected only to illustrate something that cannot adequately be displayed in any other manner. Magnification should be given in actual terms and all stains used should be described in full. Colour photographs can be included; the first two figures will be produced free of charge, additional figures will be at the author's expense (see 6). Figures should be numbered consecutively using Arabic numerals (Fig. 1, 2, etc.), in order of their mention in the text. A fully descriptive caption should be provided for every figure and the complete list of captions typed together on a separate page. All relevant information, *e.g.* keys to the symbols and formulae, should be included in the caption. The minimum reduction for the figures may be indicated. Artwork should be received in digital format. Line artwork (vector graphics) should be saved as Encapsulated PostScript (EPS) and bitmap files (half-tones or photographic images) as Tagged Image Format (TIFF). Native file formats should not be submitted. More detailed information on the submission of electronic artwork can be found at http://www.blackwellpublishing.com/bauthor/illustration.asp

6. **Colour.** Authors must complete a Colour Work Agreement Form for any colour figures requiring payment. This will be indicated on acceptance. The form can be downloaded as a
PDF* (portable document format) file from the home page at http://jfb.edmgr.com
Completed forms should be sent to the Production Editor, Journal of Fish Biology, 101 George Street, Edinburgh EH2 3ES, U.K. (or by email: jfb@oxon.blackwellpublishing.com).
*To read PDF files, you must have Acrobat Reader installed.

7. Tables. These should be numbered in Roman numerals (Table I, II, etc.), in the order of their mention in the text. A brief title should be typed directly above each table, not on a separate page. Footnotes to tables should be indicated by superscripts and typed at the bottom of the tables.

8. Units and symbols. Metric units should be used. Physical measurements should be in accordance with the Système International d'Unités (SI), e.g. mm, mm3, s, g, µg, m s⁻¹(superscript), g l⁻¹(superscript). Use joules not calories. Authors will find the following two publications helpful: British Standard 1991: Part I: 1967 Recommendations for Letter Symbols, Signs and Abbreviations, and Units, Symbols and Abbreviations. A Guide for Biological and Medical Editors and Authors (Baron, D.N., ed.) published by the Royal Society of Medicine, London. In mathematical expressions, single letters should be used for variables, qualifying them with subscripts if required, e.g. length L, fork length LF(subscript F), standard length LS(subscript S), index i, gonado-somatic index IG(subscript G), hepato-somatic index IH(subscript H), etc. The 24 hour clock should be used for time of day, e.g. 1435 hours, not 2.35 p.m. Calendar dates should be as, e.g. 15 June 1998. In the text, one-digit numbers should be spelt out unless they are used with units of measure (in which case they should not be hyphenated), e.g. five boxes, 5 cm. Numerals should be used for all numbers of two or more digits, e.g. 34 boxes. Use mass(es) rather than weight(s). Means and error (S.D., S.E., 95% CL, etc.), should be to the same number of decimal places. Salinity is dimensionless with no units; psu, ‰ or similar should not be used.

9. Statistics. Statistics should be presented as follows: name of test, number of observations or degree of freedom, and probability level (P > 0.05, P < 0.05, P < 0.01 and P < 0.001). Values of test statistics are not required.

10. Name-bearing type specimens of taxa that are described in the Journal of Fish Biology as new to science should be deposited in recognized national or international institutions that can meet Recommendations 72F.1-5 of the International Code of Zoological Nomenclature (ICZN, 1999; available from http://www.iczn.org/iczn/index.jsp) for Institutional responsibility. The chosen institute for deposition of name-bearing type specimens should be able to meet these responsibilities into the foreseeable future. A paratype series may be distributed among more than one recognized national or international institution at the discretion of the authors. This is encouraged for paratype series that include numerous specimens, where the paratype series can be split into two or more representative samples, comprising several specimens that are deposited at different institutions. For examples of recognized national or international institutions see earlier taxonomic publications in the Journal of Fish Biology, or check institutions listed in Eschmeyer's Catalog of Fishes Online (available at http://www.calacademy.org/RESEARCH/ichthyology/catalog/abtabr.html), and see Poss & Collette, Copeia 1995, 48-70, for U.S. and Canadian institutions. Institutional abbreviations used in manuscripts should follow standard code designations as given in Eschmeyer's Catalog of Fishes Online (see URL above).

12. **Sequence data.** Manuscripts containing novel amino acid sequences of proteins or novel nucleotide sequences (e.g., primer sequences) will only be accepted if they carry a statement that all the data have been deposited with an appropriate data bank, e.g., the European Molecular Biology Laboratory (EMBL) or GenBank Data Libraries. The data base accession number must be given in the Materials and Methods section of the manuscript. Lengthy nucleotide sequences will only be published if, in the judgement of the Editor, these results are of general interest and importance. Where sequences are already published, reference to the original source will suffice.

13. **RAPD.** In the opinion of the Editors, data derived by RAPDs (randomly amplified polymorphic DNAs) technology are frequently not satisfactory and conclusions derived from them unreliable. Papers submitted to the Journal should not include data generated by this technique.

14. **Acknowledgement of copyright.** Authors should obtain permission from the copyright owner (usually this is the publisher) to use any figure, table or extended quotation from material that has previously been published. Acknowledgement, however, should cite the author: ‘Reproduced with permission from Einstein (1975)’.

15. **Digital object identifier.** Blackwell Publishing assigns a unique digital object identifier (DOI) to every article it publishes. The DOI appears on the title page of the article. It is assigned after the article has been accepted for publication and persists throughout the lifetime of the article. Due to its persistence, it can be used to find the article on the Internet through various web sites, including Blackwell Synergy, and to cite the article in academic references. When using a Blackwell Publishing article in the reference section, it is important to include the article’s DOI in the reference as volume and page information is not always available for articles published online. Section 16 shows samples of DOI included in references. All articles on Blackwell Synergy (www.blackwell-synergy.com) include full details on how to cite the article.

16. **References.** The use of a tool such as EndNote or Reference Manager for reference management and formatting is recommended. EndNote reference styles can be searched for here: http://www.endnote.com/support/enstyles.asp

Reference Manager styles can be searched for here: http://www.refman.com/support/rmstyles.asp

The list of references should be arranged alphabetically according to the surname of the first author and set out as follows:

When citing a Blackwell Publishing journal, include the digital object identifier (DOI), if noted, from the article’s title page. Please note the following examples:

The order in the list should be:

(i). Single authors. Where more than one reference is given for a single author the publications should be listed chronologically.

(ii). Two authors. These should be arranged first alphabetically, then chronologically. For text citations, use the names of both authors and the year. Do not use *et al.* for two-author references.

(iii). Three or more authors. These should be arranged chronologically. For all text citations use the surname of the first author only, followed by *et al.* and the date.

If more than one reference by the same author(s) published in the same year is cited, use *a, b, etc.* after the year in both text and list, e.g. (1963a). Text citations can be given in either of two ways: (a) with date in parentheses, ‘as demonstrated by Jones (1956)’; (b) with names and date in parentheses, ‘according to recent findings (Jones, 1956)’. Where more than one reference is cited in the text these should be in chronological order, e.g. Smith, 1975; Arnold, 1981; Jones, 1988. *Journal titles should be given in full.* The full title of the paper, the volume number and the page numbers should be given. Authors should check that all citations in the text are in the list of references and vice versa, and that their dates match. Journal titles, book titles and any other material within the reference list which will be italicized in print should be italicized or underlined in the manuscript.

References must be available in the public domain, e.g. ‘grey’ literature should not be included.

17. *Ethics.* Contributors to the *Journal of Fish Biology* must read the Editorial in *Journal of Fish Biology* **68**, 1-2 (2006), available here. They will be required to complete a questionnaire on submission of their paper, available for download here.

18. *Reviews.* The *Journal of Fish Biology* plans to include one review paper with each issue. These reviews should be concise (up to 30 printed pages of the Journal), critical and creative. They should seek to stimulate topical debate and new research initiatives. Prospective authors are asked to submit a synopsis (two pages maximum) of their paper to the Reviews Editor, Dr M. J. Kaiser, University of Wales - Bangor, School of Ocean Sciences, Menai Bridge, Gwynedd LL59 5EY, U.K. (or by email: michel.kaiser@bangor.ac.uk). The synopsis should outline why the review is topical, its main points and objectives, and how it will stimulate debate and research. When the proposal has been accepted by the Reviews Editor, he will invite the author to submit a manuscript within an agreed time limit and following the general guidelines for submission of standard papers. A modest honorarium will be paid on publication of reviews.

19. *Brief Communications.* A Brief Communication may be concerned with any subject within the scope of the *Journal of Fish Biology* but should be confined to a single point or issue of progress, such as an unusual occurrence, an interesting observation, or a topical and timely finding. The manuscript must, however, have some relevance beyond the species or locality.
under consideration. To qualify for inclusion as a Brief Communication a paper must be short. An abstract of not more than three lines is required. No subheadings or subdivisions should be included, in other respects submitted manuscripts should comply with the instructions given above.

20. Acceptance of papers. Papers will normally be critically reviewed by two or more outside experts in the relevant discipline and evaluated for publication by the Editor; however, the Editor may return to authors without review any manuscripts deemed to be of inadequate quality or inappropriate for the *Journal of Fish Biology*.

21. Occasional Comments. Occasionally, comments concerning recent published papers in the *Journal* will be considered by the Editor. The comments will be sent to the original author(s) to provide an opportunity to reply. Publication of the Comment and Reply will end the debate.

22. Copyright. Authors submitting a manuscript do so on the understanding that, if it is accepted for publication, the licence to publish the article, including the right to reproduce the article in all forms and media, shall be assigned exclusively to the Society. The submission of an exclusive licence to publish is a condition of publication and papers will not be passed to the publisher for production until this has been received. The Exclusive Licence Form can be downloaded from the home page at http://jfb.edmgr.com or, alternatively, please click here. This should be signed by the appropriate person(s) and must be sent, by post offline, after login, to the Editorial Office. Authors are themselves responsible for obtaining permission to reproduce copyright material from other sources.

23. **NEW: Online Open.** OnlineOpen is a pay-to-publish service from Blackwell that offers authors once their papers have been accepted for publication the opportunity to pay up-front for their manuscript to become open access (i.e. free for all to view and download) via the Blackwell Synergy website. Each OnlineOpen article will be subject to a one-off fee of $3,000 to be met by or on behalf of the Author in advance of publication. Upon online publication, the article (both full-text and PDF versions) will be available to all for viewing and download free of charge. The print version of the article will also be branded as OnlineOpen and will draw attention to the fact that the paper can be downloaded for free via the Blackwell Synergy service.

Any authors wishing to send their paper OnlineOpen will be required to complete the combined payment and copyright licence form available by clicking here: (Please note this form is for use with OnlineOpen material ONLY). Once complete this form should be sent to the Editorial Office along with the rest of the manuscript materials at the time of acceptance or as soon as possible after that (preferably within 24 hours to avoid any delays in processing).

Prior to acceptance you should not inform the Editorial Office that you intend to publish your paper OnlineOpen.

The copyright statement for OnlineOpen authors will read:

© [date] The Author(s)

Journal compilation © [date] The Fisheries Society of the British Isles
24. **Proofs and offprints.** Proofs should be downloaded as a PDF file from a designated website. Full details will be sent to the corresponding author by email. Therefore, a working email address must be provided. Hard copy proofs will be posted if no email address is available. Proofs should be returned to the Editor within 3 days of receipt. Authors will be provided with electronic offprints of their paper. Additional paper offprints may be ordered online. Full instructions for ordering paper offprints are available on the journal home page at www.blackwellpublishing.com/jfb for For Authors. Any queries regarding offprints should be emailed to: offprint@cosprinters.com. Offprints are normally dispatched within 3 weeks of publication of the issue in which the paper appears. Please contact the publishers if offprints do not arrive; however, please note that offprints are sent by surface mail, so overseas orders may take up to 6 weeks to arrive. Electronic offprints are sent to the first author at his or her first email address on the title page of the paper, unless advised otherwise; therefore please ensure that the name, address and email of the receiving author are clearly indicated on the manuscript title page if he or she is not the first author of the paper.

25. **NEW: Online production tracking is now available through Blackwell’s Author Services.**

 Author Services enables authors to track their article - once it has been accepted - through the production process to publication online and in print. Authors can check the status of their articles online and choose to receive automated emails at key stages of production. The author will receive an e-mail with a unique link that enables them to register and have their article automatically added to the system. Please ensure that a complete email address is provided when submitting the manuscript. Visit www.blackwellpublishing.com/bauthor for more details on online production tracking and for a wealth of resources including FAQs and tips on article preparation, submission and more.

26. **Author material archive policy.** Please note that unless specifically requested, Blackwell Publishing will dispose of all hard copy or electronic material 2 months after publication. If the return of any submitted material is required, the editorial office or production editor must be informed as soon as possible.

Ten of the most common faults in papers submitted to the Journal of Fish Biology:

1. Title page layout. Authors should consult past published papers.
2. Abstract contains information other than main findings.
3. Headings. Authors should consult past published papers.
4. Naming of fishes, *e.g.* no authority given on first mention.
5. Use of active voice (usually the first person). The passive voice should be used.
6. References, *e.g.* lack of match between text and list and wrong format.
7. Figure and caption, *e.g.* keys should be on the caption, not on the figure.
8. Variables not defined correctly. Normally these should be single letters qualified with subscripts if required, *e.g.* LT for total length.
9. Mismatch of decimal places, *e.g.* between mean and S.D., S.E., etc.
10. Files submitted as PDFs.
7.4. **Indicadores de Produção 2005 - 2009**

Artigos completos publicados em periódicos

1. Buarque, Diego Souza, Castro, Patrícia Fernandes, Santos, Fábio Marcel Silva, Lemos, Daniel, Júnior, Luiz Bezerra Carvalho, Bezerra, Ranilson Souza

2. ASSIS, C. R. D., AMARAL, I. P. G., CASTRO, P. F., CARVALHO JUNIOR, L. B., BEZERRA, R. S.

3. LEGAT, Jefferson Francisco Alves, PUCHNICK, Angela, CASTRO, P. F., PEREIRA, Alitiene Moura Lemos, GOES, J. M., GOES, L. C. F.

Artigos completos aceitos para publicação

Capítulos de livros publicados

1. BEZERRA, R. S., BUARQUE, D. S., AMARAL, I. P. G., CASTRO, P. F., ESPOSITO, T. S., CARVALHO JUNIOR, L. B.

Trabalhos publicados em anais de eventos (resumo)

 Alkaline proteases from pyloric caeca of bijupirá (Rachycentrun canadum) In: XXXVII Reunião Anual da Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq e XI Congresso da PABMB, 2008, Águas de Lindóia.
 Anais do XXXVII Reunião Anual da Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq e XI Congresso da PABMB. 2008.

 Anais do XXXVII Reunião Anual da Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq e XI Congresso da PABMB. , 2008.

 Anais do XXXVII Reunião Anual da Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq e XI Congresso da PABMB. , 2008.

 Anais do XXXVII Reunião Anual da Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq e XI Congresso da PABMB. , 2008.

 Anais do XXXVII Reunião Anual da Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq e XI Congresso da PABMB. , 2008.

 Anais do XXXVII Reunião Anual da Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq e XI Congresso da PABMB. , 2008.
[Anais do XXXVII Reunião Anual da Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq e XI Congresso da PABMB.], 2008.

[Anais do XXXVII Reunião Anual da Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq e XI Congresso da PABMB.], 2008.

[Anais do XXXVII Reunião Anual da Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq e XI Congresso da PABMB.], 2008.

Alkaline proteases from tropical fish processing waste as heavy metal In: XXXVI Reunião Anual da SBBq, 2007, Salvador.
[XXXVI Reunião Anual da SBBq.], 2007.

[XXXVI Reunião Anual da SBBq.], 2007.

[XXXVI Reunião Anual da SBBq.], 2007.

