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Abstract
Miniaturisation of computers components is taking us from classical to quantum physics
domain. Further reduction in computer components size eventually will lead to the
development of computer systems whose components will be on such a small scale that
quantum physics intrinsic properties must be taken into account.

The expression quantum computation and a first formal model of a quantum computer
were first employed in the eighties. With the discovery of a quantum algorithm for factoring
exponentially faster than any known classical algorithm in 1997, quantum computing
began to attract industry investments for the development of a quantum computer and the
design of novel quantum algorithms. For instance, the development of learning algorithms
for neural networks.

Some artificial neural networks models can simulate an universal Turing machine, and
together with learning capabilities have numerous applications in real life problems. One
limitation of artificial neural networks is the lack of an efficient algorithm to determine its
optimal architecture. The main objective of this work is to verify whether we can obtain
some advantage with the use of quantum computation techniques in a neural network
learning and architecture selection procedure.

We propose a quantum neural network, named quantum perceptron over a field (QPF).
QPF is a direct generalisation of a classical perceptron which addresses some drawbacks
found in previous models for quantum perceptrons. We also present a learning algorithm
named Superposition based Architecture Learning algorithm (SAL) that optimises the
neural network weights and architectures. SAL searches for the best architecture in a finite
set of neural network architectures and neural networks parameters in linear time over the
number of examples in the training set. SAL is the first quantum learning algorithm to
determine neural network architectures in linear time. This speedup is obtained by the
use of quantum parallelism and a non linear quantum operator.

Key-words: Quantum neural networks. Artificial neural networks. Quantum computation.
Architecture selection.



Resumo
A miniaturização dos componentes dos computadores está nos levando dos domínios da
física clássica aos domínios da física quântica. Futuras reduções nos componentes dos
computadores eventualmente levará ao desenvolvimento de computadores cujos compo-
nentes estarão em uma escala em que efeitos intrínsecos da física quântica deverão ser
considerados.

O termo computação quântica e um primeiro modelo formal de computação quântica
foram definidos na década de 80. Com a descoberta no ano de 1997 de um algoritmo
quântico para fatoração exponencialmente mais rápido do que qualquer algoritmo clássico
conhecido a computação quântica passou a atrair investimentos de diversas empresas para
a construção de um computador quântico e para o desenvolvimento de algoritmos quânticos.
Por exemplo, o desenvolvimento de algoritmos de aprendizado para redes neurais.

Alguns modelos de Redes Neurais Artificiais podem ser utilizados para simular uma
máquina de Turing universal. Devido a sua capacidade de aprendizado, existem aplicações
de redes neurais artificiais nas mais diversas áreas do conhecimento. Uma das limitações
das redes neurais artificiais é a inexistência de um algoritmo com custo polinomial para
determinar a melhor arquitetura de uma rede neural. Este trabalho tem como objetivo
principal verificar se é possível obter alguma vantagem no uso da computação quântica no
processo de seleção de arquiteturas de uma rede neural.

Um modelo de rede neural quântica denominado perceptron quântico sobre um corpo
foi proposto. O perceptron quântico sobre um corpo é uma generalização direta de um
perceptron clássico que resolve algumas das limitações em modelos de redes neurais
quânticas previamente propostos. Um algoritmo de aprendizado denominado algoritmo
de aprendizado de arquitetura baseado no princípio da superposição que otimiza pesos
e arquitetura de uma rede neural simultaneamente é apresentado. O algoritmo proposto
possui custo linear e determina a melhor arquitetura em um conjunto finito de arquiteturas
e os parâmetros da rede neural. O algoritmo de aprendizado proposto é o primeiro algoritmo
quântico para determinar a arquitetura de uma rede neural com custo linear. O custo
linear é obtido pelo uso do paralelismo quântico e de um operador quântico não linear.

Palavras-chave: Redes neurais quânticas. Computação quântica. Redes neurais artificiais.
Seleção de arquitetura.
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1 Introduction

This thesis deals with learning and architecture selection of artificial neural networks
using a quantum computer. The focus is on quantum neural networks and learning
algorithms that are mathematically described to work on a quantum computer. The main
result is about neural network architecture selection. It is shown that with quantum
computing and with a nonlinear quantum operator it is possible to select the best neural
network architecture for a given dataset in linear time.

The theoretical possibility of quantum computing was initiated with Benioff (1980)
and Feynman (1982) and the formalization of the first quantum computing model was
proposed by Deutsch (1985). In (BENIOFF, 1980) it is shown through the simulation
of a Turing Machine that it is possible to use quantum mechanics to model a decision
procedure. In (FEYNMAN, 1982) it is pointed that a quantum system cannot be efficiently
simulated on a classical computer; on the other hand, a quantum system can be simulated
on a quantum computer with exponential gain when compared with classical computing.
Feynman concluded that a quantum computer should have a greater computational power
than a classical computer. Deutsch (1985) proposes a quantum Turing machine and
important concepts as universal quantum Turing machine and quantum parallelism are
introduced.

The concept of quantum parallelism is one of the main characteristics of quantum
computing. Quantum parallelism allows the application of a function to several (possibly
all) values with the cost of only a single function application. Quantum parallelism has
been used to develop quantum algorithms that can solve some problems more efficiently
than any known classical algorithm. For instance, a factoring algorithm with polynomial
time (SHOR, 1997), a search algorithm for unordered data with quadratic gain in relation
to the best classical algorithm (GROVER, 1997) and an algorithm to simultaneously present
all examples in one dataset for a machine learning algorithm (VENTURA; MARTINEZ, 1999).
Quantum parallelism cannot be directly used, because it is not possible to directly see
the results obtained after the function evaluation. Measurement in quantum computing is
probabilistic and disturbs the system.

An explosive development of quantum technologies and quantum information
fields occurred in the nineties (GEORGESCU, 2014). Quantum computers are not yet a
reality, but several research groups are working on the development of quantum computers.
Advances in the development of a quantum computer have been done. For instance,
in (MONZ et al., 2011) it is reported the development of a system with 14 quantum bits
(qubits) and in (BIAN et al., 2013) it is reported the development of a system with 84
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qubits. Actually, some quantum operations can be performed, for instance, long distance
quantum communication (DUAN et al., 2001) that promises secure transmission and transfer
of quantum states; in (JENNEWEIN et al., 2000) a quantum device to generate random
numbers is presented (current theory states that generation of true random numbers can
be performed only with quantum mechanics).

A quantum computer useful for artificial neural networks simulation needs of a
quantum memory with capacity to manipulate hundreds of qubits. Such technology does
not exist and all concepts analysed in this work cannot yet be experimentally verified.

The remainder of this Chapter is organized in the following way. Section 1.1 presents
the motivation for quantum neural computing. Section 1.2 presents the objectives of this
work. Section 1.3 presents some models related to quantum neural networks that are out
of the scope of this work. Section 1.4 presents the contributions of this work. Section 1.5
presents the bibliographical production. Section 1.6 describes the organization of this work.
And Section 1.7 presents the Thesis conclusion.

1.1 Motivation

1.1.1 From neural to quantum computation

Artificial neural networks (ANN) (HAYKIN, 1999) are a universal model of computa-
tion (CABESSA; SIEGELMANN, 2014) with learning capabilities and have several applications
in real life problems. There are problems without known algorithmic solution, but an
ANN can induce a map input/output of the problem. For instance, in the identification
of factors related to common mental disorders (LUDERMIR; DE OLIVEIRA, 2013), stock
market forecasting (TICKNOR, 2013; KOURENTZES; BARROW; CRONE, 2014), in the anal-
ysis of service quality in public transportation (GARRIDO; DE OÑA; DE OÑA, 2014), air
quality analysis (MATTOS NETO et al., 2014), in the solution of combinatorial optimisation
problems (ZHANG et al., 2014), pattern recognition (GONZÁLEZ et al., 2014) and in several
other applications (MACARIO et al., 2013; PACIFICO; LUDERMIR, 2013; STAFFA et al., 2014;
LIMA; LUDERMIR, 2013).

ANN have some problems as the lack of an algorithm to determine optimal archi-
tectures (YAMAZAKI; LUDERMIR, 2003), low memory capacity when used as associative
memory and high cost learning algorithms (BEIGY; MEYBODI, 2001). Neural networks
application depends on the choice of the neural network architecture. An empirical, costly
and repetitive process to determine the neural network architecture normally is performed
by an expert. Several heuristics have been proposed to automatize the choice of neural
network architecture. Some optimization strategies used in heuristics to choose neural
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networks architectures are evolutionary algorithms (DA SILVA; MINEU; LUDERMIR, 2010;
ALMEIDA; LUDERMIR, 2010), meta-learning (ABRAHAM, 2004; KORDÍK et al., 2010) and
genetic programming (KOZA; RICE, 1991).

A matrix of weights is a common representation of a neural network in software.
Output of a neural network layer is the product of the matrix of weights with an input
vector followed by the application of a nonlinear activation function. Quantum operators
are also represented by matrices and quantum bits are represented by vectors. And
attempts to represent a neural network as a quantum operator have been proposed in
several works (ZHOU; DING, 2007; ALTAISKY, 2001; PANELLA; MARTINELLI, 2011).

Another supposition that led the study of neural networks to the quantum domain
is that classical models of computation may not be used to simulate biological model of
intelligence and quantum models must be used to simulate consciousness (PENROSE, 1999).
This is a controversial statement and in (TEGMARK, 2000) it is stated that the brain is
probably not a quantum computer, because neuron state superposition involves millions of
ions and the decoherence time of this superposition will be smaller than the neuron action.
An answer to this question is an open problem besides some works shown the improbability
of necessity to use quantum computing to simulate cognitive processes (KOCH; HEPP,
2006). Independent of which affirmation is true, notions of Quantum Neural Networks
have been put forward since the nineties (KAK, 1995), but a precise definition of what is a
quantum neural network that integrates neural computation and quantum computation
is a non-trivial open problem (SCHULD; SINAYSKIY; PETRUCCIONE, 2014b). To date, the
majority of proposed models in the literature are really just quantum inspired in the sense
that despite using quantum representation of data and quantum operators, in a way or
another some quantum principles are violated usually during training.

1.1.2 From quantum to neural computation

Quantum computing is a new subject and a multidisciplinary field (mathematics,
physics, computer science and engineering). To develop a quantum algorithm is not an easy
task (we desire quantum algorithms that overcome the classical algorithms). Two possible
reasons for the lack of new quantum algorithms are that computer scientists do not know
quantum computation or there are only few interesting quantum algorithms (SHOR, 2003).
On the other hand, several companies work to develop quantum computers and quantum
algorithms (MORET-BONILLO, 2014).

One attempt to expand quantum computing application area is to develop an
intelligent system based on quantum computing principles (MORET-BONILLO, 2014). These
intelligent systems will allow the application of quantum computing in a greater range of
problems (FARHI; GUTMANN, 1998; MALOSSINI; CALARCO, 2008). Several companies and
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research institutions have put effort in develop quantum machine learning techniques, for
instance, the quantum artificial intelligence lab (NASA, 2013; NEVEN, 2013) launched by
Google, NASA and Universities Space Research Association; the Microsoft research group
in quantum artificial intelligence (MICROSOFT, 2014); and several researchers around the
world (BEHRMAN et al., 2000; TRUGENBERGER, 2002; RICKS; VENTURA, 2004; PANELLA;

MARTINELLI, 2011; DA SILVA; DE OLIVEIRA; LUDERMIR, 2012; ALTAISKY; KAPUTKINA;

KRYLOV, 2014).

Quantum computing has been used in the development of new machine learn-
ing techniques as quantum decision trees (FARHI; GUTMANN, 1998), artificial neural
networks (NARAYANAN; MENNEER, 2000; PANELLA; MARTINELLI, 2011; DA SILVA; DE

OLIVEIRA; LUDERMIR, 2012), associative memory (VENTURA; MARTINEZ, 2000; TRU-

GENBERGER, 2001), nearest-neighbour learning algorithms (WIEBE; KAPOOR; SVORE,
2015), quantum learning algorithm for support vector machines (REBENTROST; MOHSENI;

LLOYD, 2014) and inspired the development of novel evolutionary algorithms for contin-
uous optimization problems (HSU, 2013; DUAN; XU; XING, 2010). There is an increasing
interest in quantum machine learning and more specifically in the quantum neural network
area (SCHULD; SINAYSKIY; PETRUCCIONE, 2014b).

1.1.3 Quantum neural computation

Research in quantum neural computing is unrelated, as stated in (SCHULD; SINAYSKIY;

PETRUCCIONE, 2014b):

“QNN research remains an exotic conglomeration of different ideas under the
umbrella of quantum information”.

Currently there is no consensus of what are the components of a quantum neural net-
work. Several models of quantum neural networks have been proposed and they present
different conceptual models. In some models a quantum neural network is described as
a physical device (NARAYANAN; MENNEER, 2000); as a model only inspired in quantum
computing (KOUDA et al., 2005); or as a mathematical model that explores quantum
computing principles (ZHOU; DING, 2007; PANELLA; MARTINELLI, 2011; DA SILVA; DE

OLIVEIRA; LUDERMIR, 2012; SCHULD; SINAYSKIY; PETRUCCIONE, 2014a). We follow the
last approach and assume that our quantum neural network model would be implemented
in a quantum computer that follows the quantum principles as e.g. described in (NIELSEN;

CHUANG, 2000). We assume that our model is implemented in the quantum circuit model
of Quantum Computing (NIELSEN; CHUANG, 2000).

Some advantages of quantum neural models over the classical models are the
exponential gain in memory capacity (TRUGENBERGER, 2002), quantum neurons can solve
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non-linearly separable problems (ZHOU; DING, 2007), and a nonlinear quantum learning
algorithm with linear time over the number of examples in the data set is presented
in (PANELLA; MARTINELLI, 2011). However, these quantum neural models cannot be
viewed as a direct generalization of a classical neural network.

1.2 Objectives

The use of artificial neural networks to solve a problem requires considerable time
for choosing parameters and neural network architecture (ALMEIDA; LUDERMIR, 2010).
The architecture design is extremely important in neural network applications because a
neural network with a simple architecture may not be capable to perform the task. On the
other hand, a complex architecture can overfit the training data (YAMAZAKI; LUDERMIR,
2003). The definition of an algorithm to determine (in a finite set of architectures) the
best neural network architecture (minimal architecture for a given learning task that can
learn the training dataset) efficiently is an open problem.

The objective of this work is to verify whether we can obtain some advantage with
the use of quantum computation techniques in a neural network learning and architecture
selection procedure. More specifically this work shows that with the supposition of non-
linear quantum computing (PANELLA; MARTINELLI, 2011; PANELLA; MARTINELLI, 2009;
ABRAMS; LLOYD, 1998) we can determine an optimal neural network architecture that
can learn the training data in linear time with relation to the number of examples in the
training set. To accomplish this objective, previously proposed quantum neural networks
models were analysed to verify the actual development of quantum neural networks
field and if the proposed quantum neural networks models respect quantum and neural
computing principles. It was necessary to propose a quantum neural network that respect
the principles of quantum computation, neural computing and generalizes the classical
perceptron. The proposed neuron works as a classical perceptron when the weights are in
the computational basis, but as quantum perceptron when the weights are in superposition.

We propose a quantum nonlinear neural network learning algorithm which uses
a non-linear quantum operator (PANELLA; MARTINELLI, 2011; ABRAMS; LLOYD, 1998)
to perform a global search in the space of weights and architecture of a neural network.
The proposed learning algorithm is the first quantum algorithm performing this kind of
optimization in linear time and presents a framework to develop linear quantum learning
algorithms to find near optimal neural network architectures.

Specific objectives of this work are

1. To develop a quantum neural network based on weightless neural network and its
learning algorithm.
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2. To investigate quantum neural network based on the quantum multi-layer perceptron.
And if necessary, define a quantum perceptron. This quantum neural network must
have the following characteristics: direct implementation in quantum circuits; capacity
to simulate the classical models; and allow the use of a quantum learning algorithm.

3. To develop a learning algorithm for quantum neural networks. The learning algorithm
must be capable to select neural network free parameters and architecture.

1.3 Out of scope

Quantum computing and neural networks are multidisciplinary research fields. In
this way, the quantum neural computing research is also multidisciplinary and concepts
from physics, mathematics and computer science are used. Probably because of this
multidisciplinary characteristic there are completely different concepts named quantum
neural networks. In this Section, we point some models that are out of the scope of this
thesis.

1.3.1 Quantum inspired neural networks

Neural networks whose definition is based on quantum computation, but that
works in a classical computer as in (KOUDA et al., 2005; ZHOU; QIN; JIANG, 2006; LI et al.,
2013) are named in this work as Quantum Inspired Neural Networks. Quantum inspired
neural networks are not real quantum models. Quantum inspired models are classical
neural networks that are inspired in quantum computing exactly as there are combinatorial
optimization methods inspired in ant colony or bird swarm.

In (KOUDA et al., 2005) a complex neural network named qubit neural network
whose neurons acts in the phase of the input values is proposed. The qubit neural network
has its functionality based on quantum operation, but it is a classical model and can be
efficiently simulated in a classical computer.

Another quantum inspired models is defined in (ZHOU et al., 1999) where the
activation function is a linear combination of sigmoid functions. This linear combination of
activation functions is inspired in the concept of quantum superposition, but these models
can be efficiently simulated by a classical computer.

Quantum inspiration can bring useful new ideas and techniques for neural network
models and learning algorithms design. However quantum inspired neural networks are
out of the scope of this work.
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1.3.2 Physical device quantum neural networks

Devices that implement a quantum neural network are proposed in (NARAYANAN;

MENNEER, 2000; BEHRMAN et al., 2000). In this work, these models are named physical
device quantum neural network. The main problem of this kind of proposal is the hardware
dependence. Scalable quantum computers are not yet a reality and when someone build a
quantum computer we do not know which hardware will be used.

In (NARAYANAN; MENNEER, 2000) a quantum neural network is represented by the
architecture of a double slit experiment where input examples are represented by photons,
neurons are represented by slits, weights are represented by waves and screen represents
output neurons. In (BEHRMAN et al., 2000) a quantum neural network is represented by a
quantum dot molecule evolving in real time. Neurons are represented by states of molecules,
weights are the number of excitations that are optically controlled, inputs are the initial
state of the quantum dot molecules and outputs are the final state of the dot molecules.

Physical device quantum neural networks are real quantum models. This kind of
quantum neural networks needs of specific hardware and is out of the scope of this work.

1.3.3 Quantum inspired algorithms

In this work algorithms whose development uses ideas from quantum computing,
but run in a classical computer are named quantum inspired algorithms. For instance,
there are several quantum inspired evolutionary algorithm proposed in literature (HAN;

KIM, 2002; TIRUMALA; CHEN; PANG, 2014; STRACHAN et al., 2014; DA CRUZ; VELLASCO;

PACHECO, 2006). In (STRACHAN et al., 2014) a quantum inspired evolutionary algorithm
is proposed. This kind of algorithm uses quantum inspiration to define better classical
algorithms, but intrinsic quantum properties are not used. Quantum inspired algorithms
are out of the scope of this work.

1.4 Research road map and main contributions

This work research road map is displayed in Figure 1. As a result of this research
work the following contributions can be enumerated.

1. An open-ended research question about learning in quantum neural networks.

2. We show that a previous quantum neural network model can be efficiently simulated
by a classical single layer neural network and its learning algorithm is not a quantum
learning algorithm.
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Figure 1 – Research road map showing the goal and contributions of the thesis

Problem

Is there a polynomial time
learning algorithm for neural
network architecture selection?

Proposal

A non linear quantum learning
algorithm can perform neural
network architecture selection
in polynomial time.

Answer

Review

A search for a quantum
neural model to accomplish
architecture selection was
performed in literature.

Selecting quantum
neural network

model

Refining
proposal

Neuron

A quantum neuron is proposed.
Proposed neuron is a
generalization of a classical
perceptron.

Quantum neuron
with derired
properties

was not found.

Main objective

Definition of a nonlinear
quantum learning algorithm
for neural network architecture
selection in polynomial time.

Nonlinear quantum
learning

Complementary results

matricial representation of
weightless neural networks
(WNN). A simpler proof that
WNN can simulate a PA

Source: author

3. One formalization and definition of the quantum neural networks general concept.
This concept can guide the development of a quantum neural network model.

4. Definition of a quantum weightless neural network model and its learning algorithm.

5. Definition of a quantum perceptron named quantum perceptron over a field. This
neuron can be considered as a direct generalization of a classical perceptron to the
quantum field.

6. Definition of a nonlinear quantum learning algorithm for neural networks that can
select neural networks free parameters and architecture in linear time. The proposed
learning algorithm is the first quantum algorithm that can determine the best neural
network architecture (with best accuracy in the training set) in linear time.

During the development of this thesis some unrelated contributions where obtained.
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7. Inspired by quantum computing we show how a weightless neural network can be
represented by a matrix of sufficient generality as to have classical weighted, classical
weightless (RAM-based, PLN, etc), quantum weighted and quantum weightless
neural models as particular cases.

8. Inspired by quantum computing we show that is possible to simulate a Probabilistic
Automata (PA) with a single layer Weightless Neural Network (WNN) with no
auxiliary data structures.

1.5 Bibliographical production

In this Section the list of research papers submitted/published by Adenilton J. da
Silva during his doctoral work at the Centro de Informática, UFPE is presented.

1.5.1 Articles in scientific journals

1. da Silva, Adenilton J.; de Oliveira, Wilson R.; Ludermir, Teresa B. (2015) Com-
ments on “quantum M-P neural networks”, International Journal of Theoretical
Physics, v. 54(6), pp. 1878-1881

2. da Silva, Adenilton J.; de Oliveira, Wilson R.; Ludermir, Teresa B. (2012). Classi-
cal and superposed learning in quantum weightless neural networks. Neurocomputing.
v. 75(1), pp. 52-60

3. da Silva, Adenilton J.; de Oliveira, Wilson R.; Ludermir, Teresa B. (2015). Weight-
less neural network parameters and architecture selection in a quantum computer.
Neurocomputing (article accepted for publication)

4. da Silva, Adenilton J.; Ludermir, Teresa B.; de Oliveira, Wilson R. Quantum
perceptron over a field (submitted to International Journal of Neural Systems).

5. de Paula Neto, F. M.; de Oliveira, Wilson R.; da Silva, Adenilton J.; Ludermir,
Teresa B. . Chaos in Quantum Weightless Neuron Node Dynamics (article accepted
to publication in Neurocomputing)

Presents the analysis of a quantum weightless neuron dynamics. Results of this work
are not displayed in this Thesis.

6. de Lima, Tiago P., da Silva, Adenilton J., Ludermir, Teresa B., de Oliveira,
Wilson R. (2014). An automatic methodology for construction of multi-classifier
systems based on the combination of selection and fusion. Progress in Artificial
Intelligence, 2(4), 205-215.
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Presents a methodology for the automatic construction of multi-classifiers systems.
Results of this work are not displayed in this Thesis.

1.5.2 Complete works published in proceedings of conferences

1. de Paula Neto, F. M. ; Ludermir, Teresa B. ; de Oliveira, Wilson R. ; da Silva,
Adenilton J. . Resolvendo 3-SAT com Neurônios Quânticos Sem Peso. In: V
Workshop-Escola de Computação e Informação Quântica. V Workshop-Escola de
Computação e Informação Quântica, 2015.

2. da Silva, Adenilton J. ; de Oliveira, Wilson R. ; Ludermir, Teresa B. . Training a
classical weightless neural network in a quantum computer. In: European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine Learning,
Bruges 2014. p. 523-528.

3. da Silva, Adenilton J. ; de Oliveira, Wilson R. ; Ludermir, Teresa B. . Probabilistic
automata simulation with single layer weightless neural networks. In: European
Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning, Bruges, 2014. p. 547-552.

4. de Oliveira, Wilson R. ; da Silva, Adenilton J. ; Ludermir, Teresa B. . Vector space
weightless neural networks. In: European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, Bruges, 2014. p. 535-540.

5. de Paula, F. M. ; da Silva, Adenilton J. ; Ludermir, Teresa B.; de Oliveira, Wilson
R. . Analysis of Quantum Neural Models. In: Congresso Brasileiro de Inteligência
computacional, 2013, Recife.

6. da Silva, Adenilton J. ; Ludermir, Teresa B. ; de Oliveira, Wilson R. Single-shot
learning algorithm for quantum weightless neural networks. In: Congresso Brasileiro
de Inteligência computacional, 2013, Recife. Congresso brasileiro de inteligência
computacional, 2013.

7. da Silva, Adenilton J. ; Ludermir, Teresa B. ; de Oliveira, Wilson R. On the
Universality of Quantum Logical Neural Networks. In: 2012 Brazilian Symposium
on Neural Networks (SBRN), 2012, Curitiba.p. 102-106.

8. Mineu, Nicole L. ; da Silva, Adenilton J. ; Ludermir, Teresa B. . Evolving Neural
Networks Using Differential Evolution with Neighborhood-Based Mutation and
Simple Subpopulation Scheme. In: 2012 Brazilian Symposium on Neural Networks
(SBRN), 2012, Curitiba. p. 190-195.
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9. Lima, Tiago P. F. ; da Silva, Adenilton J. ; Ludermir, Teresa B. .Clustering and
Selection of Neural Networks Using Adaptive Differential Evolution. In: International
Joint Conference on Neural Network, 2012, Brisbane. Proceedings of IJCNN 2012.
Los Alamitos: IEEE Computer Society, 2012

10. Lima, Tiago P. F. ; da Silva, Adenilton J. ; Ludermir, Teresa B. . Selection
and Fusion of Neural Networks via Differential Evolution. Advances in Artificial
Intelligence – IBERAMIA 2012. Springer Berlin Heidelberg, 2012, v. 7637, p. 149-158.

1.6 Outline

This Chapter is a Sumary article linking the other Parts of this Thesis and the
conclusion is displayed in Section 1.7. The remainder of this Thesis is divided in 4 parts.
Each part consists of a published, accepted or submitted article about quantum neural
networks.

Part I analyses a previously proposed quantum neural network model named
quantum M-P neural network (QMPN). It is shown an equivalence between the quantum
M-P neural network (ZHOU; DING, 2007) and a classical perceptron and it is shown that
the QMPN learning algorithm is not a quantum algorithm.

Part II proposes a quantum neural network named qRAM and its learning algorithm.
Weightless neural networks were chosen for its simplicity which allows direct quantization.
The qRAM neural networks can simulate the classical weightless neural networks models
and can be trained with a classical or quantum algorithm.

Part III extends results presented in Part I and deals with neural network architec-
ture selection in the context of weightless neural networks. It is shown that neural network
architecture selection can be performed through the training of a quantum weightless
neural network.

Part IV deals with architecture selection in the context of weighted neural networks.
A model of quantum perceptron named quantum perceptron over a field is defined, and a
linear time learning algorithm for architeture selection of perceptrons is presented. The
proposed learning algorithm optimizes weights and architectures simultaneously.

Section 1.7 is the Conclusion. Subsection 1.7.1 presents the main results of this
Thesis. Subsection 1.7.2 displays some directions in the research on quantum neural
networks. Finally Subection 1.7.3 shows some concluding remarks.
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1.7 Conclusion

This Thesis dealt with the question of design and training of a neural network
using a quantum computer. Quantum neural computing is a new field with many chal-
lenges. The main question of this work is about neural network architecture selection
using quantum techniques. This question naturally arose from previous works on neural
network architecture selection (DA SILVA; MINEU; LUDERMIR, 2010) and quantum neural
networks (DE OLIVEIRA et al., 2008). This Section presents the main results of this thesis,
analyses the limitations of the proposed model and algorithm and presents some possible
future works.

1.7.1 Main results

In (ZHOU; DING, 2007) a quantum neural network named Quantum M-P Neural
Network (QMP) is proposed. Part I showed that the QMPN algorithm is not a quantum
algorithm and that QMPN neurons can be efficiently simulated by a single layer classical
neural network. Part I is the article (DA SILVA; DE OLIVEIRA; LUDERMIR, 2014a) published
in the International Journal of Theoretical Physics.

The first result of this thesis was the definition of a quantum weightless neural
network. This step was important because previously proposed quantum neural networks
present some problems, for instance in (ZHOU; DING, 2007) where the quantum neuron can
enter in a non unitary configuration. The description of the quantum weightless neural
network and its learning algorithm is described in Part II that presented the article (DA

SILVA; DE OLIVEIRA; LUDERMIR, 2012) published in the Neurocomputing Journal.

Part III showed how to perform artificial neural network architecture selection
through the learning procedure of a qRAM weightless neural network. This strategy is the
first algorithm proposed to perform neural network architecture selection in a quantum
computer. Part III is an accepted article in Neurocomputing Journal.

Part IV extends the results of Parts II and III to a neural network with weights. A
quantum perceptron named Quantum Perceptron over a Field is proposed. The QPF differs
from previous quantum neural networks since it can be viewed as a direct generalisation
of the classical perceptron, can be trained by a quantum learning algorithm, cannot enter
in a non unitary configuration and have well defined inner operations. QPF is the first
quantum perceptron that have all these properties together.

The architecture of a multilayer quantum perceptron over a field can be represented
in a quantum computer as a matrix over field F . This representation allows any number
of layers and neurons by layers and do not break any quantum computing principle.
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A multilayer QPF corresponds to a fixed quantum operator and its configuration is
represented by a string of qubits.

In (PANELLA; MARTINELLI, 2011; PANELLA; MARTINELLI, 2009; DA SILVA; DE

OLIVEIRA; LUDERMIR, 2012) the training procedure of a neural network uses a nonlinear
quantum operator and the superposition of all neural networks configurations for a
given architecture. In this Thesis we extend the idea in (PANELLA; MARTINELLI, 2011)
and we defined a learning algorithm named Superposition based Architecture Learning
algorithm (SAL) that performs a non-linear search in the neural network parameters and
the architecture space simultaneously. The main advantage of our learning algorithm and
previously proposed learning algorithm is its ability to perform a global search in the space
of weights and architecture with linear cost in the number of examples in the training set
and in the number of bits used to represent the neural network. This result depends of two
suppositions: i) the existence of a quantum computer and ii) a nonlinear quantum operator
proposed in (ABRAMS; LLOYD, 1998). The main conclusion about architecture selection is
that with the supposition of nonlinear quantum computing we can select an optimal neural
network architecture in linear time. All results about the QPF and its learning algorithm
were detailed in Part IV that is an article submitted to the International Journal of Neural
Systems.

There is no guarantee in the viability of nonlinear quantum computing and quantum
operators. The existence of a unitary quantum algorithm that performs neural network
architecture selection exploiting superposition as suggested in the framework presented in
Fig. 2 of Part IV with better computational time than the classical algorithms is an open
problem. Superposition of quantum neural networks can allow architecture evaluation in a
way that is not possible in classical neural computing.

1.7.2 Future works

Several future directions can be derived from this work. Some of the possibilities
are described below. Next subsections points directions to perform some of these future
works.

• To develop a linear version of the superposition architecture based learning algorithm.

• To analyse the properties of quantum neural networks based on quantum associative
memories using benchmark datasets.

• To study the computational power of the quantum neural networks.

• To analyse the possibility of use classical methods to train a quantum neural model.

• Analyse the possibility of training an ensemble of neural networks in superposition.
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1.7.2.1 Quantum linear architecture learning algorithm

The final step of the Quantum architecture selection learning algorithm in Part IV
is a non-linear search in the architecture and weights space. In this step, free parameters
will collapse to a basis state not in superposition. One possible future work is to analyse
how one can use the neural network with weights in superposition. In this way one could
take advantage of superposition in a trained neural network.

In its first steps, SAL algorithm initialises the neural network weights with a
superposition of all possible weights for some different architectures. The result of this
initialisation is a superposition of a finite number of neural networks. This superposition
can be interpreted as a superposition of untrained neural networks. One possible future
work is to perform a quantum procedure to train these neural networks in superposition
and to perform quantum search only in the trained neural networks.

Any classical computation can be simulated by a quantum computer. In (DE

OLIVEIRA et al., 2008; DA SILVA; DE OLIVEIRA; LUDERMIR, 2012) some classical learn-
ing algorithms are adapted to work in a quantum computer. However algorithms as
backpropagations do not have a known quantisation.

1.7.2.2 Weightless neural networks in quantum memories

A RAM node is a small piece of RAM memory and is used in several applications.
There are several proposals for quantum memories (VENTURA; MARTINEZ, 2000; TRUGEN-

BERGER, 2001; TRUGENBERGER, 2002) and neural networks models based on quantum
memories (DA SILVA; DE OLIVEIRA; LUDERMIR, 2010; ZHOU, 2010; ANDRECUT; ALI, 2002).
However, there is not an analysis of the development of these quantum neural networks
using the architecture of a weightless neural network. For instance, there is no analysis if
a pyramidal or WISARd architecture can be efficiently used. A WISARd (LUDERMIR et

al., 1999) is composed of components named discriminators. A discriminator is displayed
in Figure 2, each weightless node receives few inputs and their outputs are summed to de-
termine the pertinence of the input example to the class associated with the discriminator.
Weightless nodes in the discriminator have a small number of inputs.

The study of small pieces of quantum memories as neurons of a neural network may
possibly allow the application of quantum computing using only small quantum processors
that are actually created in physical experiments. Using neurons with low dimensionality,
simulation of this kind of quantum neural network will be possible in classical computers.
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Figure 2 – Discriminator

Source: Ludermir et al. (1999)

1.7.2.3 Classical learning in quantum models

Heterogeneous computer architectures with different processors specialised for
different tasks are increasingly common. One possible future architecture is a computer
where the quantum processor is a host device controlled by a classical main device. This
scenario is displayed in Figure 3.

Figure 3 – Quantum computer with hybrid architecture

Source: Ömer (2005)

Hybrid quantum algorithms may allow the development of new heuristic algorithms
effectively using quantum computation. A programming language for hybrid quantum
computers is proposed in (ÖMER, 2005). With this kind of architecture, classical methods
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maybe can be used to control the quantum system using a measure and feedback strategy.
For instance, the quantum system can implement a neural network that is used as the
evaluation function of a classical evolutionary algorithm.

1.7.2.4 Computability of quantum neural network models

Computability of artificial neural networks has been studied in several works (SIEGEL-

MANN; SONTAG, 1991; CABESSA; SIEGELMANN, 2014; LUDERMIR, 1992; SOUTO; LUDERMIR;

CAMPOS, 2000; DE OLIVEIRA; DE SOUTO; LUDERMIR, 2003; DA SILVA; DE OLIVEIRA; LUDER-

MIR, 2014b). In (LUDERMIR, 1992) and (SOUTO; LUDERMIR; CAMPOS, 2000) authors showed
an equivalence between weightless neural networks and probabilistic automata. Probabilis-
tic automata (RABIN, 1963) are more powerful than finite state automata (HOPCROFT;

MOTWANI; ULLMAN, 2007) and can recognize all regular languages, some context-free,
some context-sensitive and some recursive enumerable languages, cutting the Chomsky
Hierarchy (HOPCROFT; MOTWANI; ULLMAN, 2007) elliptically. In (DE OLIVEIRA; DE SOUTO;

LUDERMIR, 2003) is presented how to simulate a Turing Machine with a RAM neural
network and an additional data structure.

In (SIEGELMANN; SONTAG, 1991) the complexity of recurrent neural networks is
analysed. Recurrent neural networks with rational weights can recognise any recursively
enumerable language and weighted neural networks with real weights has super Turing
capabilities. Auto adaptive neural networks modes can also recognise more than recursively
enumerable languages as show in (CABESSA; SIEGELMANN, 2014).

One possible future work is to verify the computational power of the quantum
neural networks previously proposed in literature. For instance, matrix defined quantum
perceptron as the ZQP can approximate any quantum operator and can be considered as
a universal model of quantum computing. With fixed operator quantum neural networks,
we cannot guarantee this universality and further studies are necessary to determine the
computational power of the quantum perceptron over a field and of previously proposed
fixed operator quantum neural networks.

1.7.3 Concluding remarks

The advent of quantum computation dramatically change the way that computers
are programmed and allow the solution of some problems more efficiently than in a classical
computer. Quantum algorithms that overcome classical algorithms use the concept of
quantum parallelism. The path that computer scientist need to follow to develop quantum
algorithms is hard because computer scientists do not known quantum principles.

This thesis proposes a framework to select a neural network architecture in a
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quantum computer. The main result is that the selection of a neural network architecture
can be performed in a nonlinear quantum computer with linear time in relation to the
number of example in the training set and the number of bits used in the neural network
representation. The proposed framework is the first strategy proposed to perform neural
network architecture selection in a quantum computer. This idea originated from our
previous works on architecture selection and quantum neural networks.

This thesis presents the results of a theoretical work that seek to unify two different
concepts related to the learning of neural networks: automatic architecture selection and
quantum learning algorithms. The combination of these concepts brings advantages in the
selection of neural networks architectures because the concept of quantum parallelism allow
a better evaluation of neural network architectures. The long term plan is to develop a
quantum learning algorithm for architecture selection without nonlinear quantum operators.
Such linear algorithm can allow architecture selection in quantum computers as soon as a
quantum computer is available.
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Abstract In a paper on quantum neural networks, Zhou and Ding (Int. J. Theor. Phys.
46(12):3209-3215 (2007)) proposed a new model of quantum perceptron denoted quantum
M-P neural network and showed its functionality by an example. In this letter, we show
that the proposed learning algorithm does not follow an unitary evolution and the proposed
neuron can be efficiently simulated by a classical single layer neural network.

Keywords Quantum computation · Neural networks · Quantum learning

1 Introduction

In [2] Kak proposed an idea of quantum neural computation. Since then, several researchers
have proposed quantum neural networks [6–8] and quantum inspired neural networks [3, 4].
In [8] Zhou and Ding proposed a quantum perceptron; they called the new neuron model as
quantum M-P neural network (qMPN). The weights of qMPN are stored in a squared matrix
W . Let |x〉 be an input vector, the output |y〉 can be calculated as in (1).

|y〉 = W |x〉 (1)

Representing a neural network as a quantum operator can bring new possibilities to neural
computation. A quantum neural network can receive any superposition of quantum states
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at its inputs which can be seen as untrained data. The network operator acts linearly. For
instance, if a neuron with weight matrix W receives the input |α〉 = ∑n

k=1 αk|k〉 it will act
linearly in each value in the superposition and its output will be |y〉 = ∑n

k=1 αkW |k〉.
In Section 4.2 of [8] is presented a prepocessing step to work with non-orthogonal states.

This prepossessing step changes the input representation from qubits (or vectors) to a matrix
of inner products. Any quantum bit can be represented as a superposition of orthogonal vec-
tors and this step is not used in any other section of [8]. This prepocessing is a nonquantum
operation for it accesses the amplitudes since inner product is employed freely. Calculat-
ing the inner product with a basis element results the amplitude corresponding to that basis
element in a superposition.

In this letter we first show that the proposed learning algorithm for qMPN does not pre-
serve unitary operators and it can produce non unitary weight matrices. After these steps
we show that any qMPN can be efficiently simulated by a single layer neural network com-
posed of classical perceptrons and that the learning algorithm of the qMPN is exactly the
classical perceptron learning rule.

2 Learning Algorithm

The learning algorithm proposed in [8] for qMPN is described in Algorithm 1. The weights
update rule of Algorithm 1 is described in (2), where wij are the entries of the n × n matrix
W , 1 ≤ i, j,≤ n, η is a learning rate, |d〉i and |y〉i corresponds to the ith probability
amplitude of n-dimensional qubits |d〉 and |y〉, and |x〉j is the j th probability amplitude of
the n-dimensional qubit |x〉.

wij (t + 1) = wij (t) + η (|d〉i − |y〉i ) |x〉j (2)

If |d〉 = α|0〉 + β|1〉, then |d〉1 = α and |d〉2 = β are the probability amplitudes of
the state |d〉. In quantum computation, one cannot direct access a probability amplitude [5].
Measuring a qubit returns only |0〉 with probability |α|2 or |1〉 with probability |β|2. There-
fore, the learning rule described in (2) is not a quantum learning rule and one cannot use a
quantum computer to train the qMPN with Algorithm 1.

One alternative is to use a classical computer to train the qMPN with Algorithm 1. How-
ever this strategy can lead to non-unitary neurons configurations, as we show in (3), where

W(0) =
[

0 1
−1 0

]

, |x〉 = 1√
2

(|0〉 + |1〉), |d〉 = 1√
2

(|0〉 + 1), and η = 1. After the first

learning algorithm iteration the qMPN will be represented by the matrix W(1). Clearly
W(1) is a non unitary operator. Quantum gates must be unitary operators [5], so the qMPN
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trained with this algorithm is not necessarily a quantum neuron. We conclude this paragraph
with Theorem 1.

|y〉 = W(0)|x〉 =
[

0 1
−1 0

]

· 1√
2

[
1
1

]

= 1√
2

[
1
−1

]

w00(t + 1) = w00(t) + η (|d〉0 − |y〉0) |x〉0 =
= 0 +

(
1√
2

− 1√
2

)

· 1√
2

= 0

w01(t + 1) = w01(t) + η (|d〉0 − |y〉0) |x〉1 =
= 1 +

(
1√
2

− 1√
2

)

·
(

1√
2

)

= 1

w10(t + 1) = w10(t) + η (|d〉1 − |y〉1) |x〉0 =
= −1 +

(
1√
2

+ 1√
2

)

·
(

1√
2

)

= 0

w11(t + 1) = w11(t) + η (|d〉1 − |y〉1) |x〉1 =
= 0 +

(
1√
2

+ 1√
2

)

·
(

1√
2

)

= 1

W(1) =
[

0 1
0 1

]

(3)

Theorem 1 qMPN learning rule does not preserve unitary operators.

We verified that Algorithm 1 is not a quantum algorithm. The main question in this letter
is about the differences between the perceptrons and the qMPN and if the Algorithm 1
presents some advantage when compared with classical neural networks learning algorithm.
Before start this analysis we define a classical neuron.

A neuron with inputs x1, x2, · · · , xn and weights w1, w2, · · · , wn and linear activation
function f has its output y described in (4). One possible weight update rule for an artificial
neuron is the Least Mean Square (LMS) rule [1] described in (5).

y = f

(
n∑

i=1

xi · wi

)

(4)

wi(t + 1) = wi(t) + η · (d − y) · xi (5)

Now we present an example with two artificial neurons, where the weights of the first
neuron are w11 and w12 and the weights of the second neuron are w21 and w22. If the
neurons receive an input

[
x1 x2

]
, then the output of the first neuron will be y1 = x1w11 +

x2w12 and the output of the second neuron will be y2 = x1w21 + x2w22.

One can organize the weights in a matrix W =
[

w11 w12
w21 w22

]

, the inputs in a vector

|x〉 = [
x1 x2

]T
, and the neurons outputs can be calculated exactly as in (1), where |y〉 =

[
y1 y2

]T
. The desired outputs for |x〉 can be represented with a vector |d〉 = [

d1 d2
]
,

where di is the desired output of ith neuron, when |x〉 is presented. We rewrite (5) using a
matrix notation and we obtain exactly the learning rule in (2) that was proposed in [8].
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The authors also shown the capacity of the qMPN to solve non linearly separable pat-
terns. But to perform this task the values 00, 01, 10, 11 were associated with qubits in the
computational basis that are linearly independents.

3 Conclusion

We conclude claiming that for any qMPN one can create an equivalent classical single layer
neural network. We also verified that the learning algorithm proposed by Zhou and Ding
does not present any advantage over the classical ones and works exactly as the LMS rule.
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b Departamento de Estatı́stica e Informática Universidade Federal Rural de Pernambuco, Brazil

a r t i c l e i n f o

Available online 31 July 2011

Keywords:

Quantum neural networks

Weightless neural networks

Quantum-supervised learning algorithm

Superposition-based learning algorithm

a b s t r a c t

A supervised learning algorithm for quantum neural networks (QNN) based on a novel quantum neuron

node implemented as a very simple quantum circuit is proposed and investigated. In contrast to the

QNN published in the literature, the proposed model can perform both quantum learning and simulate

the classical models. This is partly due to the neural model used elsewhere which has weights and non-

linear activations functions. Here a quantum weightless neural network model is proposed as a

quantisation of the classical weightless neural networks (WNN). The theoretical and practical results

on WNN can be inherited by these quantum weightless neural networks (qWNN). In the quantum

learning algorithm proposed here patterns of the training set are presented concurrently in super-

position. This superposition-based learning algorithm (SLA) has computational cost polynomial on the

number of patterns in the training set.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Quantum computation was proposed by Richard Feynman in
1982 [1] motivated by the observation that a quantum system
cannot be simulated by a classical computer without an expo-
nential computational cost. In quantum theory of computation, a
single quantum computer can follow many distinct computa-
tional paths in parallel and produce a final output depending on
the interference of all of them. This parallelism enables the
proposal of algorithms not matched by classical computation
regarding computational costs. Amongst those are the Deutsch-
Josza and Simon [2] with an exponential speed up. Shor’s Algo-
rithm which solves the factoring problem in polynomial time, a
problem believed to be classically intractable. Grover’s search
algorithm [3] which searches an unordered database quadrati-
cally faster then any classical one.

There are several works applying quantum computing in
artificial intelligence: quantum neural networks [4–11], decision
tree [12], pattern recognition [13] and associative memory [14].
This paper investigates the use of quantum computing techniques
to design learning algorithms for neural networks. We propose a
quantum weightless neural network and a quantum supervised
learning algorithm. The study of quantum weightless neural
networks (qWNN) was started by de Oliveira et al. in [4,5] where
it is investigated quantisations of probabilistic logic node (PLN)
and multi-valued probabilistic logic node (MPLN) [15]. Here we
propose and investigate a novel neuron model which is a
quantum analogue of the RAM node which we call q-RAM node.

The q-RAM node is very simple, but despite its simplicity it can
simulate any of its classical siblings, PLN, MPLN, goal seeking
neuron (GSN) and pRAM, and their quantisations.

The proposed learning algorithm for training weightless neural
networks, the superposition-based learning algorithm (SLA), is
based on Grover’s search algorithm [3]. The SLA is a quantum
supervised learning algorithm for neural networks where all
patterns of the training set are presented at the same time to
the network using a state in superposition. The computational
cost of SLA is polynomial in the number of patterns in the training
set. The SLA is able to train any model of weightless neural
networks that can be quantised i.e. the free parameters, inputs
and outputs of the network can be represented as qubits in
different registers and the action of the network can be repre-
sented by a quantum operator.

This paper is organised as follows: Sections 2–4 present the
basic definitions for quantum computation, classical weightless
neural networks and quantum neural networks. Section 5 describes
a novel quantum weightless neural node, one of the contributions
of this work. Section 6 describes the superposition-based learning
algorithm, another contribution of this work. Finally, Section 7
summarises our conclusions and presents future works.

2. Quantum computation

The cross-disciplinary nature of quantum computing makes it
difficult to present their main definitions and results unbiased.
The presentation which follows is biased towards Mathematics
and mostly Computer Science.

The fundamental unit of information in classical computation
is the bit which can assume one of the two possible abstract
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values in B¼ f0,1g. More complex data types are encoded as
sequences of bits. To represent a bit a classical computer must
contain a corresponding physical system which can exist in two
unambiguously distinguishable states, associated with its two
possible abstract values. For example, one such system could be a
switch in an open or a shut state; or a magnet whose magnetisa-
tion could be in two different orthogonal directions.

Similarly, the fundamental unit of information in quantum
computing is the quantum bit or qubit. One qubit is a
bi-dimensional vector in a (complex) Hilbert space.1 A qubit
represents a state of (bi-dimensional) quantum mechanical sys-
tem. In actual physical quantum systems, where ‘‘Nobody knows
how it can be like that’’ [16], Hilbert spaces can be very efficiently
used to tell what happens.

In this section we briefly introduce the concepts of quantum
computing necessary for the remaining sections. For a more
complete introduction on Quantum Computation and Informa-
tion, see [17] or [2] for a more Computing Science oriented
approach.

2.1. Quantum bits

The passage from bits to qubits can be understood via
mathematical quantisation. A very intuitive view of the quantisa-
tion procedure is put forward by Nik Weaver in the preface of
his book Mathematical Quantisation [18] which briefly says:
‘‘The fundamental idea of mathematical quantisation is sets are

replaced with Hilbert spaces’’. So the idea is to represent bits 0 and
1 as pairs of orthonormal (column) vectors, a basis2 for C2. In
spite of fact that 0 and 1 can be represented by any orthogonal
base of C2, the mostly used one is the canonical (or computational)
basis defined as the pair

90S¼
1

0

� �
, 91S¼

0

1

� �
ð1Þ

where 90S and 91S are, in a notation commonly used by
physicists (and quantum computing scientists), the computa-
tional basis states and read ‘‘ket zero’’ and ‘‘ket one’’. They are
also called basic or ground states. The ket notation was invented
in 1939 by Paul Dirac [19] and is related to inner product. This
notation is also used for an arbitrary vector 9cS. The other part of
the bracket defining the inner product (of say x and y, /x,yS) is
unsurprisingly called bra. The bra of a ket vector 9cS is its
conjugate transpose, and thus a row vector, denoted as /c9.
Their matrix product /c99cS is a scalar, their inner product.
From the inner product we obtain a norm :9cS:2

¼/c9cS.

2.2. Superposition and parallelism

While in classical computing a one bit state can be only 0 and
1, in quantum computation we can have a continuum of linear
combinations of 90S and 91S by the quantisation procedure. For
instance the general qubit state 9cS¼ a090Sþa191S is a state
that can be seen as part 90S and part 91S as a superposition of the
basic states. 9cS is at the same time in both state 90S and 91S.

One of the main properties of quantum computation is the
quantum parallelism. If one applies a quantum operator Uf that
implements a function f(x) such that Uf 9x,0S¼ 9x,f ðxÞS in a state
in superposition 9cS¼

Pn�1
i ¼ 0 ai9xi,0S, the value of f(x) will be

computed for all qubits 9xiS. The resultant state will bePn�1
i ¼ 0 ai9xi,f ðxiÞS.
Because of the quantum parallelism, if one have a quantum

neural network implemented as a quantum operator, then it will
be possible to use states in superposition to evaluate the outputs
of all patterns in the training set, all at once in parallel.
A drawback is that the individual results of this computation
are not direct accessible, due to the properties of the measure-
ment in quantum mechanics.

2.3. Measurement

In Quantum Physics if a system is in a state which is a
superposition 9cS¼ a090Sþa191S, upon measurement the sys-
tem collapses to one of its basis state 9iS,iAf0,1g probabilistically:

pð9iSÞ ¼
9ai9

2

:9cS:2
¼

9ai9
2

Sj9aj9
2

which is the probability that the system will be found in the
ground state 9iS after a measurement.

After the first measurement of a state 9cS if one performs
another measurements will get the same result. The collapse of
the state after measurement says that one cannot see all the
results generated by the quantum parallelism. The challenge in
quantum computation is how to take advantage of the quantum
parallelism before performing a measurement.

2.4. States are rays

Note that if a state is a scalar multiple of another, say
9fS¼ b9cS the chance that the system in state 9fS will be
found, after measurement, in state 9iS,iAf0,1g is the same as if
the system were in state 9cS

pð9iSÞ ¼
9bai9

2

:9fS:2
¼

b29ai9
2

b2Sj9aj9
2
¼

9ai9
2

Sj9aj9
2

and so, the kets b9cS and 9cS describe the same physical system.
The set fa9cS j aACg is the ray generated by 9cS and represents
the same state as 9cS. A natural representative of the ray is a
normalised vector in the set. As a result, normalising the ket 9cS
i.e. multiplying it by 1=:9cS:, gives a unit length ket in which the
probability of being observed in 9iS is

pð9iSÞ ¼ 9ai9
2

So the collection of qubits are all the bi-dimensional complex
vectors 9cS¼ a090Sþa191S, such that 9a09

2
þ9a19

2
¼ 1.

For example, the ket 9cS¼ ð1=
ffiffiffi
2
p
Þð90Sþ91SÞ represents a

system which is 1=2 equiprobably to be found in any of the two
basis states upon measurement.

2.5. Multi-qubits systems

A system with more than one qubit can be represented by the
tensor product of their matrix representation. Recall that the
tensor product of two bi-dimensional vectors

9cS¼
c0

c1

" #
, 9fS¼

f0

f1

" #

is the four-dimensional vector:

9cS� 9fS¼

c0

f0

f1

" #

c1

f0

f1

" #
2
666664

3
777775¼

c0f0

c0f1

c1f0

c1f1

2
66664

3
77775

1 A complex Hilbert space is a vector space over the complex numbers C with

a compatible inner product.
2 A basis for a vector space V is any subset of linear independent vectors

BDV such that any vAV is a linear combination of the vectors in B i.e.

v¼SxABaxv where faxgxAB is a B-indexed set of scalars.
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This obviously generalises to any pair of n- and m-dimensional
vectors producing a nm-dimensional vector or more generally a
ðn0,m0Þ-dimensional matrix by a ðn1,m1Þ-dimensional one produ-
cing a third ðn0m0,m0n0Þ-dimensional matrix and so on.

Generally we omit the tensor product operator in the notation
9iS� 9jS¼ 9iS9jS¼ 9ijS, where i,jAf0,1g. The n-qubits live in the
space C2n

.
The construction of Uf in Section 2.2 for one qubit can be

generalised to multi-qubits. Given a Boolean function f : Bn2Bm

defines the unitary operator Uf : C
2n

2C2m

where Uf 9xSn9ySm ¼

9xSn9y� f ðxÞSm and 9xSn are an n qubits base state and � is the
bitwise XOR (addition mod 2).

2.6. Linear quantum operators

In Quantum Mechanics observables quantities are Hermitian

operators whose eingevectors form a complete orthonormal basis
for the space. The result of a measurement is its eingenvalue. The
dynamics or time evolution of the system is governed by a unitary

operator related to the Halmitonian of the system. So the next
natural step in our quantisation procedure is the representation of
the Boolean operators as unitaries.

Four our purposes, a unitary operator U is a squared matrix
over the complex numbers, UACn�n, such that

UUy ¼UyU¼ In

where In is the identity n�n matrix and Uy is the conjugate
transpose (Hermitian conjugate) of U. Being invertible, a unitary
operator is reversible. They preserve inner product and so they
are isometries. In the Bloch sphere representation of qubits, they
correspond to rotations or inversions.

Some examples of operators over one qubit in quantum
computation are: I, identity operator: does nothing; X, flip
operator: behaves as the classical NOT on the computational
basis and H, Hadamard transformation: generates superposition
of states. Together with the X matrix the Z and Y matrices (see
Eq. (2)) form the well-known Pauli matrices which plays an
important role in quantum mechanics in general and in quantum
computing in particular. Their matrix representations in relation
to the computational basis are displayed in Eqs. (2) and (3).

I¼
1 0

0 1

� �
, X¼

0 1

1 0

� �
ð2Þ

Y¼
0 �i

i 0

� �
, Z¼

1 0

0 �1

� �

Apart from these gates, the Hadamard gate H, the phase gate S,
and the p=8 -gate T are given by the matrices

H¼
1ffiffiffi
2
p

1 1

1 �1

� �
, S¼

1 0

0 i

� �
ð3Þ

T¼
1 0

0 expðip=4Þ

" #

These single qubit gates are important, as they can be used
together with the CNOT-gate to give universal sets of discrete
quantum gates.

The Hadamard gate can be used to produce equally weighted
superpositions as the following simple example shows

H90S¼
1ffiffiffi
2
p ð90Sþ91SÞ ð4Þ

H91S¼
1ffiffiffi
2
p ð90S�91SÞ ð5Þ

The CNOT-gate is an example of a two-qubit controlled operation.
It also goes under the name (quantum) XOR. Its matrix represen-
tation in the computational basis is

CNOT¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

2
6664

3
7775 ð6Þ

The CNOT gate performs a NOT (i.e. an X) operation on the
target qubit t conditioned on the control bit c being 1.

2.7. Non-linear quantum operators

A new idea in quantum computing is that the quantum
evolution might be slightly non-linear [20]. The non-linearity is
useful for overcoming ‘‘the difficulties connected with the ordin-
ary linear quantum components’’ [10]. Following this idea
non-linear quantum algorithms have been proposed [21]. The non-
linear quantum gates were applied to neural networks in [10,11].

In [20] a non-linear quantum algorithm is proposed that

receives a state in superposition 9cS¼ ð1=
ffiffiffiffi
N
p
Þ
PN

i ¼ 1 9c
i,0S and

returns the state 9cS¼ ð1=
ffiffiffiffi
N
p
Þ
PN

i ¼ 1 9c
i,0S or 9cS¼ ð1=

ffiffiffiffi
N
p
ÞPN

i ¼ 1 9c
i,1S. The last qubit is changed to 91S if and only if in

the superposition all ci are equal to 0. Note that his operator

could be used to solve the satisfiability problem.

2.8. Quantum circuits

Quantum operators can be represented as quantum circuits.
Fig. 1 shows the quantum circuit for the CNOT gate and Fig. 2 shows
a quantum circuit where an n-qubit controlled gate U whose action
on the target qubit (bottommost) is active or not by n�1 (topmost)
control qubits [17]. The output is checked by measurement gates.

2.9. Grover’s algorithm

Grover’s algorithm is a quantum algorithm for searching an
unordered data quadratically faster than any classical method [22].
Given a data set with N items the most efficient classical algorithm
will need execute an average of 0.5 N classical steps before finding
the desired item. In the worst case, N classical steps are necessary.
Grover’s algorithm outperforms any classical algorithm and realises
the task with Oð

ffiffiffiffi
N
p
Þ quantum steps. The iteration number T of the

algorithm is very important and is calculated as in Eq. (7), where M

is the number of answers in the search space:

T ¼
p
4

ffiffiffiffiffi
N

M

r$ %
ð7Þ

The Algorithm 1 is based on the one shown in [2] and M is a squared
2n-dimensional matrix whose each entry is 1=2n.

Algorithm 1 (Grover’s algorithm).

1 Initialise the system 9cS¼ 90Sn

2 Apply the Hadamard Transform 9cS¼H�n9cS
3 Apply the phase inversion operation: Uf ðI� HÞ

4 Apply the inversion about the mean operation: �Iþ2M
5 Repeat steps 3 and 4, T ¼Oð

ffiffiffiffiffiffi
2n
p
Þ times.

6 Measure the state 9cS

Fig. 1. Controlled NOT gate.
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The iterations 3 and 4 of Algorithm 1 can be represented as a
quantum operator G called the Grover iteration [22].

3. Weightless neural networks

The RAM-based neural networks were proposed by Igor
Aleksander [23] and do not have weights associated in their
connections.

A RAM node with n inputs has 2n memory locations, addressed
by the n-bit string a¼ ða1a2 . . . anÞ. A binary signal x¼ ðx1x2 . . . xnÞ

on the input lines will access only one of these locations resulting
in y¼ C½x� [15]. In Fig. 3, s and d are respectively the learning
strategy and the desired output to be learned.

Learning in weightless neural networks takes place simply by
writing into the corresponding look-up table entries. This learning
process is much simpler than the adjustment of weights. In spite of
the simplicity of the RAM-based nodes, RAM-based networks have
good generalisation capabilities [24] and computational power [25].

The PLN is based on the RAM node. The difference between the
PLN and RAM nodes is that a 2-bit number (rather than a single
bit) is now stored at the addressed memory location. The
content of this location is turned into the probability of firing
(i.e. generating 1) at the overall output of the node. In other
words, a PLN consists of a RAM node, where now a 2-bit number
00, 11 and 01 (or 10) stored at the addressed memory location are
to be interpreted respectively as 0, 1 or u. The output of the PLN
Node is given by [15]

y¼

0 if C½x� ¼ 0

1 if C½x� ¼ 1

random ð0,1Þ if C½x� ¼ u

8><
>:

The multi-valued probabilistic logic node (MPLN) differs from
PLN by allowing a wider but still finite set of finite precision
probabilities M¼ fp0, . . . ,p2n

�1g to be stored at each memory
content. The output of the MPLN Node is given by [15]

y¼

0 if C½x� ¼ 0

1 withprobability
1

p
if C½x� ¼ p

8><
>:

The goal seeking neuron (GSN) differs from the PLN by
allowing that the node receives and generate values 0, 1 and u.
If the GSN node receives one value u in its input lines a set of
memory positions will be addressed. The set of addressed posi-
tions is derived from the original address replacing the u values in
the input vector to 0 and 1. For instance, if a three input GSN
receives the input I¼ 0u1, two addresses of the GSN node will be
accessed a1 ¼ 001 and a2 ¼ 011 because of the u value in the
second position of I. The output of the GSN node is determined by
the number of values 0, 1 and u in the addressed memory
positions.

4. Quantum weighted neural networks

The concept of quantum neural computation was first intro-
duced by Kak in 1995, creating a new paradigm using neural
networks and quantum computation which opened new direc-
tions in neural network research [26]. It is expected that quantum
neural networks are more efficient than classical neural networks,
parallel to what is expected from quantum computation in
relation to classical computation.

Since the Kak’s work further neural networks models have
been proposed [6,7,10,4,9,27,28], but there remains the challenge
of direct implementation in quantum circuits, natural adaptation
of the classical learning algorithms and quantum learning algo-
rithms respecting the postulates of the quantum mechanics.
These are characteristics not altogether found in any of the
proposed quantum weighted neural networks models but are
found in our new model.

In this section we describe some models of quantum neural
networks and their learning algorithms. We verify that the
learning algorithms for these models break the postulates of
quantum computing by the use of non-linear or non-unitary
quantum operators. Use of non-linear quantum operators is an
open question, but non-linear quantum computation implies
P¼NP [20].

The proposed learning algorithms for quantum neural net-
works [6,10,28,9] can be classified as iterative [28,9] (in each
iteration only one pattern is presented to the network) or super-
position based [10,6] (all patterns are presented to the networks
concurrently in superposition). Here we analyse one iterative
algorithm [28] and one based on the superposition [10] and we
show that these algorithms for weighted neural networks are
non-unitary and non-linear.

The one qubit output 9yS of a quantum perceptron [28] with
inputs 9x1S, . . . ,9xnS is defined in Eq. (8) where ŵj are 2� 2
matrices representing the weights of neuron and F̂ is a quantum
operator. The quantum iterative learning rule for this model is
presented with F¼ I in Eq. (9), where t is the iteration number, 9dS
is the desired output and the output of the node in time t is
described by Eq. (10):

9yS¼ F̂
Xn

j ¼ 1

ŵj9xjS ð8Þ

9yðtÞS¼
Xn

j ¼ 1

ŵjðtÞ9xjS ð9Þ

ŵjðtþ1Þ ¼ ŵjðtÞþZð9dS�9yðtÞSÞ/xj9 ð10Þ

The learning rule of quantum perceptron drives the quantum
perceptron into the desired output 9dS [28], but the learning rule
(10) does not preserve unitary operators.

Theorem 4.1. The learning rule described in Eq. (10) does not

preserve unitary operators.

Fig. 2. A quantum circuit for the general controlled U gate where U is an arbitrary

1-qubit unitary operator. Note that appropriately choosing circles (J) and bullets

(�) one could define a controlled operator which would apply U to the bottommost

qubit if the corresponding binary combination (00 s for circles and 10 s for bullets)

is present in the remaining qubits from top to bottom.

Fig. 3. RAM node.
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Proof. We construct a counterexample and execute one iteration
of the iterative quantum learning rule. In Eq. (10) set j¼1, the
weight ŵ1ðtÞ ¼ I, the desired output 9dS¼ 91S, the network out-
put is 90S, the input of ŵ1ðtÞ is 9xjS¼ 91S and Z¼ 0:5. Then

ŵjðtþ1Þ ¼ Iþ0,5ð91S�90SÞ/19¼ Iþ0,5ð91S/19�90S/19Þ

¼
1 0

0 1

� �
þ

0 �0:5

0 0:5

� �
¼

1 �0:5

0 1:5

� �
ð11Þ

where we see that w1ðtþ1Þ is non-unitary. &

One may think that the trouble lies in the choice of the
learning rate but let Z be arbitrary. Then

ŵ1ðtþ1Þ ¼
1 �Z
0 1þZ

 !
-ŵ1ðtþ1Þŵ1ðtþ1Þy

¼
1þZ2 �Z�Z2

�Z�Z2 ð1þZÞ2

 !
ð12Þ

and since ŵ1ðtþ1Þ is unitary

1þZ2 �Z�Z2

�Z�Z2 ð1þZÞ2

 !
¼

1 0

0 1

� �

and we must have Z¼ 0. In this case there is no non-zero learning
rate that allows the use of rule (10) without violating the
quantum computing postulates.

The learning algorithms that use states in superposition [10,6]
also violates the quantum computation postulates. In [10,11] it is
used as a non-linear quantum operator proposed in [20] and in [6]
it is necessary for the use of a non-linear quantum oracle. One
difficulty here is that non-linear quantum mechanics implies
P¼NP [20].

5. Quantum weightless neural networks

In [6] we define a quantisation of the RAM node, the qRAM
node. Quantum weightless neural networks do not use non-linear
activation function, like sigmoid or tangent hyperbolic. This is
important because non-linear activation functions will hardly
have an exact quantum analogous [28].

Usually the RAM node stores one bit at each addressable
location. We follow this approach by investigating first the qRAM
node which store just one qubit. This qubit will not be directly
stored in a quantum register as in the classical case. We will
rather use a selector (parameter) and an operator which applied
to the selector will produce the desired qubit. This form of
quantisation of weightless neural networks was proposed in
[4,5] using different matrices from the matrix A used here

A¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0
BBB@

1
CCCA ð13Þ

The matrix A defines a quantum operator over two qubits that
simply flip the second qubit if the first is in the state 91S and it
does nothing if the first state is in the state 90S. The reader
familiar with quantum computing terminology will notice that
our matrix A is well known as the controlled not or c-NOT gate.
We keep with the alternative notation since it gives rooms for
further generalisations as in [4,5] where more complex matrices
are used.

Definition 5.1. A qRAM node with n inputs is represented by the
operator N described in Eq. (14). The inputs, selectors and outputs
of N are organised in three quantum registers 9iS with n qubits,
9sS with 2n qubits and 9oS with 1 qubit. The quantum state 9iS

describes qRAM input, and quantum state 9sS9oS describes
qRAM state.

N¼
X2n
�1

i ¼ 0

9iSn/i9nAsi ,o ð14Þ

Fig. 4 describes the quantum circuit of a qRAM node with
two inputs 9cS and 9jS. Four selectors 9siS and four operators
Asi ,o each one equals to the A operator above, where the first
qubit is the selector 9siS and the second is the state in the
output register 9oS. We can now see that learning is achieved
by adapting the value of the selectors to the training set. The
main advantage of qRAM over classical weightless neural net-
works is its capacity to receive input and selectors in super-
position. When the selectors are in the computational basis the
qRAM node acts exactly as a RAM node. But it behaves in a much
more interesting way when is fed with a superposition of
basis state.

Let us see the operation of qRAM node N when given a value in
the form 9cS¼ ð1=

ffiffiffi
2
p
Þ90Sþð1=

ffiffiffi
2
p
Þ91S in one of its input lines.

Further assume that 9jS¼ 0, 9s1s2s3s4S¼ 90111S and 9oS¼ 0.
Eq. (15) shows the operation of the qRAM. In this example the
two matrices A0 and A2 are simultaneously addressed and the
output register is in state 9oS¼ ð1=

ffiffiffi
2
p
Þð90Sþ91SÞ i.e. outputs of

00 and 10 are calculated simultaneously.

N
1ffiffiffi
2
p ð90Sþ91SÞ90S90111S90S
� �

¼
1ffiffiffi
2
p ½Nð90S90S90111S90SÞþNð91S90S90111S90SÞ�

¼
1ffiffiffi
2
p ½ð90S90S90111S90SÞþð91S90S90111S91SÞ� ð15Þ

One example of qRAM network is presented in Fig. 5, qRAM
networks have pyramidal architecture and low connectivity. The
configuration of a given qRAM network is represented by a string
of qubits ðs11,s12, . . . , s1n; . . . ; sm1,sm1,sm2 . . . ,smnÞ representing net-
work selectors, where m is the number of neurons and n is the
number of inputs of neurons.

N¼ 900S/009� As1 ,oþ901S/019� As2 ,o

þ910S/109� As3 ,oþ911S/119� As4 ,o ð16Þ

Exponential cost in simulation of quantum computers makes it
prohibitive to simulate qRAM networks. Here we present a simple
example to show qRAM network operation. We can use the qRAM
network in Fig. 5 to solve the four bit parity problem. The

Fig. 4. qRAM node.

Fig. 5. Two-layer qRAM network.
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configuration of the network is s1 ¼ 90110S, s2 ¼ 90110S and
s3 ¼ 90110S. One can present inputs simultaneously as in Eq. (17)
to qRAM network

9iS¼
1

2
ð90000Sþ90001Sþ90010Sþ90011SÞ ð17Þ

The neuron N1 receives as input the two first qubits of state
9iS, 9i1i2S¼ 900S. The action of neurons of network is described
by the operator in Eq. (16). The action of the neuron N1 and N2 are
described in Eqs. (18) and (19)

N19i1i2S9s1S9o1S¼ ð900S/009� As1 ,oþ901S/019� As2 ,o

þ910S/109� As3 ,oþ911S/119� As4 ,oÞ900S90110S90S

¼ 900S/009� As1 ,oð900S90110S90SÞ ¼ 900S90110S90S ð18Þ

N29i3i4S9s2S9o2S¼ ð900S/009� As1 ,oþ901S/019� As2 ,o

þ910S/109� As3 ,oþ911S/119� As4 ,oÞ
1

2
ð900S

þ901Sþ910Sþ911SÞ900S90110S90S

¼
1

2
ð900S/009� As1 ,oð900S90110S90SÞ

þ901S/019� As2 ,oð900S90110S90SÞ

þ910S/109� As3 ,oð900S90110S90SÞ

þ911S/119� As4 ,oð900S90110S90SÞÞ ¼ 900S90110S90S

þ901S90110S91Sþ910S90110S91Sþ911S90110S90S

ð19Þ

The outputs of neurons N1 and N2 are 9o1S¼ 90S and 9o2S¼
ð1=

ffiffiffi
2
p
Þð90Sþ91SÞ. These outputs will be used as inputs of neuron

N3. Eq. (20) shows the action of N3 and the network calculates the
outputs of all the inputs in superposition

N39o1o2S9s3S9o3S¼
1ffiffiffi
2
p ð900S/009As1o3

900S90110S90S

þ901S/019As2o3
901S90110S90SÞ

¼
1ffiffiffi
2
p ð900S90110S90Sþ901S90110S91SÞ ð20Þ

The action of the qRAM network Net can be summarised as in
Eq. (21). The network calculates the output of each input in
superposition

Net
1

2
ð90000Sþ90001Sþ90010Sþ90011SÞ

� �
90S

¼
1

2
ðNet90000S90SþNet90001S90S

þNet90010S90SþNet90011S90SÞ

¼
1

2
ð90000S90Sþ90001S91Sþ90010S91Sþ90011S90SÞ

ð21Þ

In Section 6 the capacity to process states in superposition will
be explored to train a neural network.

5.1. Simulation of classical weightless models

Interestingly, if we perform a measurement at the output wire
of the qRAM and allow for superposition of the selectors the
qRAM node can simulate any of its siblings PLN, MPLN and pRAM
and the training algorithm of the classical weightless neural
networks can be adapted to the qRAM.

Let 9uS¼H90S be an undefined state as in Section 3, in
Eq. (15) the qRAM node behaves as a GSN node. The node can
receive and produce 90S, 91S and 9uS then the qRAM node can be
viewed as a qGSN node, but the qRAM node can receive and
produce others quantum states behaving as a sort of continuum

valued qGSN node.

Algorithm 2 (PLN net learning).

1 All memory contents are set to u;
2 while some stopping criterion is not met do
3

4

5

6

7

8

9

10

11

12
13

14
15

16

17

One of the N training patterns p
is presented to the net;

learn’FALSE

for t¼ 1 to Z do

The net is allowed to produce the output for the

pattern p

if s is equal to the desired output for the
pattern p then

learn’TRUE

break

����
end

����������������
end

if learn then
all the addressed memory content are made 7

to assume their
current output values; making those with u

become definitely 0

or 1; accordingly

����������
else

all the addressed memory content are made to assume

the u value

����
end

��������������������������������������������������
end

The classical algorithm of PLN network is defined in Algorithm 2.
In order to simulated a PLN the values stored in a PLN node 0, 1 and
u, will be represented respectively by the qubits 90S, 91S and
9uS¼H90S. The probabilistic output of the PLN is obtained with a
measurement in the output of the qRAM node. The results of this
measurement is described in Eq. (22)

y¼

0 if 9oS¼ 90S

1 if 9oS¼ 91S

randomð0,1Þ if 9oS¼ 9uS

8><
>: ð22Þ

With a small modification of Algorithm 2 one can train the
qRAM node. It is necessary to measure the output of each node
and define 9uS¼H90S, replace the line 1 of Algorithm 2 with all

selectors are set to 9uS and replace lines 13 and 15 respectively
with all the addressed A gates have their selectors changed to

produce the current output of their nodes, making those with 9uS
become definitely 90S or 91S, accordingly and all the addressed A

gates have their selectors set to 9uS. We can see the PLN node as a
particular case of the qRAM where a measurement is realised in
the output of each node i.e. we are working only with classical
data.

The Fig. 6 shows the quantisation of lines 5–11 in Algorithm 2.
Operator Net represents a qRAM network with input 9pS,
selectors 9sS and output 9oS. There are Z Net operators to perform

Fig. 6. PLN learning iteration.
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the for loop in Algorithm 2. The operator f1 change the control
register 9cS to 90S if the desired output 9dS is equal to network
output 9oS and stop the execution of the networks. Operator f1

also changes 9oS to 90S if 9dS is different from 9oS preparing the
output register to the next Net operator.

Algorithm 3 shows the quantisation of Algorithm 2. In this
algorithm all neuron outputs are measured, data in registers 9pS,
9oS, 9dS and 9cS are in computational basis. Only the register 9sS
receives states in superposition.

Algorithm 3 (Naive qRAM net learning).

1 All selectors 9sS are set to 9uS;

2 while some stopping criterion is not met do
3

4

5

6

7

8

9

10

11

12

One of the N training patterns 9pS is
presented to the net;

Set 9cS¼ 91S and 9oS¼ 0

Let dðpÞ be the desired output of
pattern p: Set9dS¼ 9dðpÞS

Apply the quantum circuit described in Fig:6

if 9cS¼ 90S

all the addressed memory content are made
to assume their
current output values; making those with 9uS
become definitely

90S or 91S, accordingly

����������
else

all the addressed memory content are made
to assume the 9uS

value

������
end

end

�����������������������������������������

In [4,5] the size of matrices depends on the number of stored
probabilities which make the quantisation of the pRAMs impos-
sible. In contrast our novel model has constant size matrices
independent of the number of stored probabilities. The probability
is stored as amplitude of the input state and/or the selectors which
can be tuned during the learning phase through phase rotations.

One can easily simulate the other weightless neural nodes
with the qRAM node. Then any computation done by a weightless
neural node can be realised by a qRAM. This implies, for instance,
that the qRAM maintain the generalisations capabilities of the
weightless models. In the next section we present a quantum
learning algorithm to train the qRAM node.

Algorithm 3 is called naive because it does not explore
quantum mechanics properties. In next section we present a
quantum algorithm to train qRAM networks exploring its capacity
to receive states in superposition.

6. Superposition-based learning algorithm

Let us imagine a classically improbable learning algorithm. For
a fixed architecture the number of possible WNN is finite, say n.
Supposing we have all the required computational resource
available, we could present all the p patterns in the learning set
at once in parallel to each individual network; perhaps making p

copies of each one of the n networks. Then we could search
amongst the pn combinations networks and input patterns that
network which recognises the training set mostly accordingly to
some fixed criterion. The quantisation of this absurdly computa-
tional expensive algorithm is what we propose next and show
that in a quantum computer it is a polynomial time algorithm!

The superposition-based learning algorithm (SLA) is a super-
vised algorithm that takes advantage of states in superposition to
approximate the idea in the previous paragraph. SLA can be used
to train qRAM networks where the selectors and inputs are a
quantum state 9cS composed of four quantum registers. The first
register s will store the selectors, the second register p will store
the training pattern, the third register o, with one qubit, will store
the output of the node and the fourth register d, used only in the
learning phase of the algorithm, will store the desired output.

Algorithm 4 (Superposition-based learning).

1 Initialise all the qubits in register s with the quantum state

H90S.

2 Initialise the register p, o, d with the quantum state

9pS¼
Pp

i ¼ 1 9pi,0,diS.

3 9cS¼N9cS, where N is a quantum operator representing

the action of the neuron.
4 Use a quantum oracle to change the phase of the states

where the registers p, o, d¼
Pp

i ¼ 1 9pi,di,diS
5 Apply the operator inverse to the neuron in the state 9cS,

9cS¼N�19cS, to disentangle the state in the register s

6 Apply the inversion about the mean operation (see
Algorithm 1) in the register s

7 Repeat steps 3–6, T ¼ ðp=4Þ
ffiffiffi
n
p

times, where n is the number
of selectors of the networks.

8 Measure the register s to obtain the desired parameters.

In step 1 of Algorithm 4 a superposition of all possible
configurations for the network is created. This step is realised
setting the quantum register s to 90, . . . ,0S and applying the
Hadamard operator in all qubits of the register s, at this moment s
will hold the quantum state 9sS described in Eq. (23), where m is
the number of selectors, a¼ 2m

�1 and sj ¼ j

9sS¼
1ffiffiffiffiffiffiffiffiffiffiffi

aþ1
p

Xa

j ¼ 0

9sjS ð23Þ

Let pi be a pattern of the training set and di be its desired output.
In step 2 a superposed quantum state holding all pi and di is set to
the quantum registers p and d respectively. The output register o
is set to the basis state 90S.

One can execute step 2 as in the case of quantum associative
memory proposed in [14,29]. At this moment the register p holds
all training patterns pi and the register d holds all desired outputs
di. The state of the registers p, o and d is described in Eq. (24)

9p,o,dS¼
1ffiffiffi
p
p

Xp�1

i ¼ 0

9pi,0,diS ð24Þ

Let N be the operator associated to a quantum neural network.
The action of N may be summarised as sending the state
9s,pi,0,diS into the state 9s,pi,yi,diS, where yi is the calculated
output of the node.

In step 3 of Algorithm 4 the operator N acts on the state 9c0S
and, by linearity of the quantum operators, the desired output is
produced in all terms of the superposition. Eq. (25) describes the
state 9c1S, where m is the cardinality of the training set and
a¼ 2m

�1

9cS¼
1ffiffiffiffiffiffiffiffiffiffiffi

aþ1
p

1ffiffiffi
p
p

Xp�1

i ¼ 0

Xa

j ¼ 0

9sj,pi,yij,diS ð25Þ

Let O be the quantum oracle that sends the state
Pp�1

i ¼ 0 9pi,di,diS
into the state �

Pp�1
i ¼ 0 9pi,di,diS and that acts as the identity for the

other states. In step 4 of the SLA the oracle O receives the state 9c1S
and will mark only the states where the desired outputs are equals to

A.J. da Silva et al. / Neurocomputing 75 (2012) 52–6058
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the calculated output yij ¼ di. The action of the oracle will permit to
use the Grover’s search algorithm in the register s.

In the third step the neuron N entangled the quantum register
s with the quantum registers, p, o and d, then the quantum search
algorithm applied in the register s will change the registers p, o
and d. To avoid this change in the registers p, o and d the operator
N�1 is applied to disentangle the states in the registers in the fifth
step of the algorithm. Then the inversion about the mean opera-
tion is applied in the register s. The steps 3–6 are repeated T times
and a measurement will return the desired parameters.

6.1. Complexity of SLA

In this section we analyse the complexity of the SLA algorithm.
To simplify the analysis we suppose that all possible (Boolean)
patterns are in the training set, the number of patterns in training

set is Np ¼ 2n and each q-RAM node has two inputs. In this

situation patterns can be represented with n¼ logNp bits. A

pyramidal qRAM network with log Np input terminals will have

2logðlogNpÞ�1 neurons. Then the number of qubits in the quantum

register s will be 4ðlogNp�1Þ. The search occurs in the quantum

register s with all 24ðlogNp�1Þ possible selectors and this search will

have cost p=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24ðlogNp�1Þ

p
¼ ðp=4Þð22ðlogNp�1Þ

Þ ¼ ðp=4Þð2�2
� N2

p Þ ¼

ðp=16ÞðN2
p Þ. Then the SLA algorithm has polynomial time in the

number of patterns Np in the training set. This result is similar to
the cost of the learning algorithm proposed in [10].

6.2. Training a q-RAM node with the SLA

Let us look at the concrete example of the SLA training the
q-RAM node to solve the XOR problem. We shall see that a q-RAM
node with two inputs learn the function with only one iteration.
The training is set to S¼ fð00,0Þ,ð01,1Þ,ð10,1Þ,ð11,1Þg.

A q-RAM node with two inputs has four selectors, then in step
1 the state 9sS is initialised as

9sS¼H�490000S¼
1

4

X16

i ¼ 0

9iS4 ð26Þ

In step 2 the registers p, o and d are prepared as in Eq. (27)

9p,o,dS¼
1

2
ð900,0,0Sþ901,0,1Sþ910,0,1Sþ911,0,1SÞ ð27Þ

At this moment the state 9cS can be described as in Eq. (28)

9cS¼
1

8

X16

i ¼ 0

9iS4ð900,0,0Sþ901,0,1Sþ910,0,1Sþ911,0,1SÞ ð28Þ

In step 3 the operator N is applied to 9cS which calculates the

output yi
p of the node for each selector i and for each pattern p as

in Eq. (29)

9cS¼
1

8

X16

i ¼ 0

9iS4ð900,yi
00,0Sþ901,yi

01,1Sþ910,yi
10,1Sþ911,yi

11,1SÞ

ð29Þ

In step 4 an oracle O which inverts the phase of state 9e1S¼

ð900,0,0Sþ901,1,1Sþ910,1,1Sþ911,0,0SÞ is applied to 9cS and

we obtain the state in Eq. (30), where d is the Kronecker’s delta

and xðiÞ ¼ 1 if and only if 9pi,oi,diS¼ 9e1S. The oracle marks the

state with the desired parameters

9cS¼
1

8

X16

i ¼ 0

ð�1Þd1xðiÞ 9iS4ð900,yi
00,0Sþ901,yi

01,1Sþ910,yi
10,1S

þ911,yi
11,1SÞ ð30Þ

In step 5 the operators N�1 and G are applied to 9cS and the
amplitude of the marked state goes to one and the amplitude of
the others state go to zero. The training finishes in three iterations
because T ¼ bðp=4Þ

ffiffiffiffiffiffi
16
p
c¼ 3, then one can measure the s register

and use the result as the parameters of the network.

7. Conclusion

A quantum weightless neural node based on the quantisation
of the RAM node, the qRAM node, was proved. Its ability to
simulate the classical weightless neural networks was demon-
strated, a very important result since all the theoretical and
practical results for WNN are inherited by our model. The main
property of the qRAM node explored in this paper is the ability to
receive all patterns from the training set in superposition.

The size of the matrices A in other models of quantum
weightless neural networks is exponential on the number of
stored probabilities [4,5]. Our model can store probabilities using
matrices A with constant size. The probabilities are stored in the
amplitudes of the selectors not in the matrices A. This reduction
in space complexity may allow classical simulations of networks
composed by qRAM nodes for small sized problems.

We also propose a quantum learning algorithm for neural
networks, the superposition-based learning algorithm (SLA). The
SLA is a supervised learning algorithm. It explores the capacity of
the qRAM to receive qubits in superposition and apply a retrieval
algorithm of a quantum probabilistic memory to choose the best
configuration of the network. The SLA receives several neural
network configurations in superposition and returns a trained
neural network.

The SLA has polynomial computational cost in the number of
patterns in the training set. This cost is mainly associated with the
use of the quantum search algorithm. Because of the super-
position capacity one can argue that it may be possible to design
an algorithm with a smaller computational cost exploring super-
position of neural networks.

A possible future work is to create an ensemble of neural
networks in a single quantum neural network with a polynomial
cost in the size of the training set. This task may be realised with
an algorithm that marks a parameter (one qubit) of the networks
in superposition. Instead of performing a measurement projecting
to the basis state one can realise a projective measurement to
collapse the network to the marked networks.

Another possible future work is to develop a probabilistic
version of the SLA where we must run the neural network only
twice, one forward and other backward. This can be obtained
changing the Grover algorithm for a retrieval algorithm of a
quantum probabilistic memory as in [13].
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Abstract

Training artificial neural networks requires a tedious empirical evaluation to determine a suitable neural network architecture. To
avoid this empirical process several techniques have been proposed to automatise the architecture selection process. In this paper,
we propose a method to perform parameter and architecture selection for a quantum weightless neural network (qWNN). The
architecture selection is performed through the learning procedure of a qWNN with a learning algorithm that uses the principle of
quantum superposition and a non-linear quantum operator. The main advantage of the proposed method is that it performs a global
search in the space of qWNN architecture and parameters rather than a local search.

Keywords:
Quantum neural networks, quantum weightless neural networks, quantum learning, architecture selection

1. Introduction

The exponential reduction of computers components know
as Moore’s law took computation from the classical physical
domain to the quantum physics. The idea of quantum compu-
tation was initially proposed in [1], where Feynman states that
quantum computers can simulate quantum physical systems ex-
ponentially faster than classical computers. Some quantum al-
gorithms also overcome the best knew classical algorithms; the
most famous examples being the Shor’s factoring algorithm [2]
that is exponentially faster than the best know classical algo-
rithm and the Grover’s search algorithm [3] with quadratic gain
in relation to the best classical algorithm for unordered search.
It is true that quantum computers are not yet a reality, but there
has been an explosion of investment in quantum computing, the
result of which are numerous proposals for quantum computers
and the general belief which soon they will be realised. The
use of an adiabatic quantum system with 84 quantum bits is re-
ported in [4] and in [5] is reported the creation of a quantum
system with 14 quantum bits. Empirical evaluations of ideas
presented in this work for real problems requires a quantum
computer with capacity to manipulate hundreds of qubits which
is impossible with current technology.

One of the main characteristics of quantum computation is
the quantum parallelism that for some problems allows quan-
tum algorithms to have a speedup in relation to the classical
algorithms. With quantum parallelism is possible to calculate
all possible 2n values of a n−ary Boolean function in a single
query. However, we cannot visualise these outputs directly. A
quantum measurement is necessary and it returns probabilisti-
cally only a more restrict value. The quantum algorithm design
problem is then to perform quantum operations to increase the
probability of the desired output.

Designing quantum algorithms is not an intuitive task. At-
tempts to bring quantum computing power to a greater range of
problems is the development of quantum machine-learning al-
gorithms as decision trees [6], evolutionary algorithms [7] and
artificial neural networks [8, 9, 10, 11, 12, 13, 14, 15, 16]. In
this paper, we are concerned in the field of quantum weightless
neural networks.

Weightless neural networks (WNN) are not the most used
model of artificial neural networks. WNN have been proposed
by Aleksander [17] as engineering tools to perform pattern clas-
sification. Applications of WNN are described in several works
[18, 19, 20, 21] and quantum versions of WNN have been pro-
posed in [10, 15, 13].

The idea of quantum neural computation have been pro-
posed in the nineties [22], since then several models of quantum
neural networks have been proposed. For instance, quantum
weightless neural networks [13], neural networks with quantum
architecture [8] and a simple quantum neural network [11]. In
all these works [13, 8, 11] a quantum neural network configura-
tion is represented by a string of qubits and quantum learning al-
gorithms are proposed within a common framework. The main
idea of the learning algorithms in [13, 8, 11] is to present input
data to all possible neural networks for a given architecture in
superposition and perform a quantum search in the resulting su-
perposition. The objective of this paper is to generalise this idea
to allow architecture selection trough the training of a quantum
weightless neural network. To achieve this objective we use a
quantum weightless neural network that stores representations
of weightless neural networks with different architectures in its
memory positions and we define a quantum learning algorithm
using the non-linear operator proposed in [23] and the measure-
ment and feedback strategy [24].

Selection of a neural network architecture is an important
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task in neural networks applications. Normally this task re-
quires a lot of empirical evaluation performed by an expert.
To avoid the tedious empirical evaluation process and help in-
experienced users some algorithms have been proposed to per-
form automatic selection of neural networks architecture. Tech-
niques such as meta-learning [25] and evolutionary computa-
tion [26] have been used for architecture selection.

In this paper, we show how to use a quantum weightless neu-
ral network with a non-linear quantum-learning algorithm to
find a quantum neural network architecture and parameters with
a desired performance. The proposed algorithm uses quantum
superposition principle and a non-linear quantum operator. The
proposed algorithm performs a global search in architecture and
parameters space and its computational time is polynomial in
relation to the number of training patterns, architectures and
quantum weightless network memory size.

The rest of the paper is organised as follows. Section 2
presents basics concepts on quantum computation such as quan-
tum bits, operators, measure and parallelism. Section 3 presents
the concept of weightless neural networks, quantum neural net-
works and quantum weightless neural networks. Section 4 de-
scribes a quantum learning algorithm for weightless neural net-
works and how to apply this learning algorithm to perform ar-
chitecture selection. Finally, Section 5 is the conclusion.

2. Quantum computing

Deep knowledge of classical physics is not required for de-
signing classical algorithms. In the same vein, the development
of quantum algorithms does not require a deep knowledge of
quantum physics and there are several books [27, 28, 29] that
follow this approach by introducing only the strictly necessary
knowledge of quantum physics for the understanding of quan-
tum computing. In order to create a self-contained text a brief
introduction to quantum computing is presented.

The state of a quantum computer with n quantum bits (or
qubits) can be mathematically represented by a unit vector of an
2n-dimensional complex vector space with inner product. For
instance, one single qubit can be represented in the vector space
C2 as described in Equation (1),

|ψ〉 = α |0〉 + β |1〉 (1)

where α, β ∈ C, |α|2 + |β|2 = 1 and |0〉 and |1〉 are the vectors
described in Equation (2)1.

|0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
(2)

One qubit in a n-dimensional quantum system is represented by
the 2n-dimensional vector space as described in Equation (3),

2n−1∑
i=0

αi |ψi〉 (3)

1We could have used any other orthonormal basis but in quantum computing
the canonical basis also called computational basis is the most employed.

where the sum of the squared modulus of the amplitude
∑

i |αi|
2

is equal to one and the set {|ψ0〉 , |ψ1〉 , · · · , |ψ2n−1〉} is an or-
thonormal basis of C2n

.
A Quantum operator in a quantum system with n qubits is an

unitary operator2 in the vector space C2n
. Let U be an unitary

operator over C2n
and

∣∣∣ψt1
〉

the state of the quantum system.
After applying the quantum operator U the system will be in
the state

∣∣∣ψt2
〉

described in Equation (4).∣∣∣ψt2
〉

= U
∣∣∣ψt1

〉
(4)

In the computational basis, the matrix representation of the
quantum operators the not operator X and the Hadamard op-
erator H over one qubit are described in Equation (5).

X =

[
0 1
1 0

]
and H =

1
√

2

[
1 1
1 −1

]
(5)

X acts on the computational basis vectors as a not operator
(X |0〉 = |1〉 and X |1〉 = |0〉) and H applied to a state in the
computational basis creates a “uniform” superposition (or lin-
ear combination) of the two basis:

H |0〉 =
1
√

2
(|0〉 + |1〉)

H |1〉 =
1
√

2
(|0〉 − |1〉)

(6)

both represent a state which is |0〉 with probability 1
2 and |1〉

with probability 1
2 , and can be thought of a state which is both

|0〉 and |1〉. That is why one says that a qubit is able to “store”
two classical bits simultaneously. This scale up exponentially
with the number of qubits n, H |0〉 ⊗ · · · ⊗ H |0〉 = H⊗n |0 · · · 0〉,
with 0 · · · 0 being a sequence of n 0’s, is the superposition of all
2n possibles n-qubits. Equation (7) shows the result for n = 2,
where H⊗2 = H ⊗ H:

H⊗2 |0〉 |0〉 =
1
2

(|0〉 + |1〉) ⊗ (|0〉 + |1〉) =

1
2

(|0〉 |0〉 + |0〉 |1〉 + |1〉 |0〉 + |1〉 |1〉)
(7)

Quantum parallelism is one of the main properties of quan-
tum computation and it is used in the majority of quantum al-
gorithms. Let U f be a quantum operator with action described
in Equation (8),

U f |x, c〉 = |x, c ⊕ f (x)〉 (8)

where f : Bm → Bn is a Boolean function. Applying this oper-
ator in a state in superposition

∑
i |xi, 0〉 the value of xi will be

calculated for all i in a single quantum operation, as described
in Equation (9).

U f

∑
i

|xi, 0〉

 =
∑

i

U f |xi, 0〉 =
∑

i

|xi, f (xi)〉 (9)

2An operator (or matrix, for the finite dimensional case once fixed a basis) A
is unitary if AA† = A†A = I where A† is the complex conjugate of the transpose
of A

2
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Despite the possibility of obtaining all possible outputs of a
Boolean function in a single query, quantum parallelism can-
not be used directly.

Results in quantum computation are obtained via measure-
ment which returns only a limited information about the system.
For instance, if a measurement is performed in a quantum state
|ψ〉 = αi |ψi〉 the result will be |ψi〉 with probability |αi|

2. After
measurement state |ψ〉 collapses to the output obtained and new
measurements will result in the same output.

With the definition given above, also adopted by the main-
stream quantum literature as [27], quantum operators are linear
operators. In this paper, we suppose the viability of a nonlinear
quantum operator Q proposed in [23] whose action is described
in Equation (10) if at least one |ci〉 is equal to |1〉 otherwise its
action is described in Equation (11).

Q

∑
i

|ψi〉 |ci〉

 =

∑
i

|ψi〉

 |1〉 (10)

Q

∑
i

|ψi〉 |ci〉

 =

∑
i

|ψi〉

 |0〉 (11)

The speedup obtained by the application of non-linear operators
have been associated with unphysical effects, however in [30,
31] it is presented a version of this non linear quantum operator
free of unphysical influences.

3. Classical and quantum weightless neural networks

This work deals with quantum weightless neural networks.
Weightless Neural Networks (WNN) are neural networks with-
out weights associated in their connections where the informa-
tion is stored in a look up table. The first model of WNN named
RAM have been proposed in [17], since then several neural net-
works models have been proposed, for instance the Probabilis-
tic Logic Neuron (PLN), the Multi-valued Probabilistic Logic
Neuron (MPLN), Goal Seeking Neuron (GSN) and the quan-
tum RAM neuron (qRAM).

A weightless neuron with n input values has a memory with
2n addressable positions. The learning procedure of a WNN
does not require differential calculus or any complex mathe-
matical calculations. The learning procedure is performed by
writing in the look up table. This learning strategy is faster than
techniques based in gradient descendant methods and are suit-
able to implementation in conventional digital hardware.

Several models of weightless neural networks are described
in [32]. In this paper we deal with the qRAM neural net-
work. The qRAM neuron is based in the simplest weightless
model, the RAM neuron. Besides its simplicity RAM neurons
can be trained very rapidly. Some applications of RAM and
RAM based neurons in real world problems are described e.g.
in [33, 20, 19, 34]. For a recent review see [21]. In [33, 19] a
WiSARD system is used to track moving objects or human be-
ings, in [20] a WiSARD clustering version is proposed to per-
form credit analysis and in [34] a VG-RAM weightless neural
network is used to perform multi-label text categorisation.

3.1. RAM Node

A RAM neuron with n inputs has a memory C with 2n ad-
dressable positions. Each memory position of a RAM neuron
stores a Boolean value and its address is a Boolean string in
{0, 1}n also called Boolean vector. When a RAM neuron re-
ceives a Boolean vector x = x1 · · · xn as input it will produce
the output C[x]. Learning in the qRAM node is very simple
and can be accomplished updating the bits in memory positions
for each one of the patterns in the training set.

Architectures of weightless neural networks are weekly con-
nected as a consequence of the limited number of neurons in-
puts. Two common architecture are pyramidal where the output
of a neuron in one layer is connected with a single neuron in the
next layer or with only one layer where the neural network out-
put is the sum of each neuron outputs.

3.2. Quantum neural networks

The notion of quantum neural networks have been pro-
posed on several occasions [8, 11, 12]. In [8, 11] quan-
tum neural models are pure abstract mathematical devices and
in [12] quantum neural networks is described as a physical
device. In this paper we follow the first approach where a
neural network is a mathematical model. It is also possible
to classify quantum neural networks models as either quan-
tum neural model [35, 36, 8, 11, 12, 13] or quantum inspired
model [37, 38]. Quantum inspired models are classical models
of computation that uses ideas from quantum computing. Im-
plementation of the quantum weightless neural network mathe-
matically described in this paper requires a real quantum com-
puter. Recent reviews on quantum neural networks can be
found in [39, 40].

Models of quantum weightless neural networks are proposed
or analysed in [10, 15, 13, 41]. Quantum weightless neural net-
works models are first proposed in [10], in [42] a quantum ver-
sion of the RAM neuron based in an associative quantum mem-
ory is presented and in [13] the qRAM neuron and a learning al-
gorithm for quantum weightless neural networks are presented.

Learning algorithms for quantum neural networks are also
proposed in [8, 11] where a superposition of neural networks
with a fixed architecture is created and a quantum search is
performed to recover the best neural network architecture. In
this paper we propose a variation of this methodology to train
quantum weightless neural networks. In our training strategy,
weightless neural networks with different architectures are in a
superposition. The neural network model used in this learning
methodology is the qRAM neural network.

3.3. qRAM Node

The qRAM neuron is a quantum version of the RAM neuron.
As in classical case, a n input qRAM neuron has a quantum
memory with 2n memory positions. The content of the qRAM
memory cannot be directly stored because a measurement of the
output could destroy the information stored in the qRAM mem-
ory. We store quantum bits in the computational basis named
selectors and apply one quantum operator A to obtain the stored
qubit.
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The A operator used in the qRAM is the control X operator
described in Equation 12. With this operator a quantum RAM
neuron can be described as in Definition 1, where memory con-
tents are stored in quantum register selectors.

A =

(
I 0
0 X

) where
A |00〉 = |0〉 I |0〉
A |10〉 = |1〉 X |0〉

(12)

Definition 1. A qRAM node with n inputs is represented by the
operator N described in Equation (13). The inputs, selectors
and outputs of N are organised in three quantum registers |i〉
with n qubits, |s〉 with 2n qubits and |o〉 with 1 qubit. The quan-
tum state |i〉 describe qRAM input, and quantum state |s〉 |o〉
describes qRAM state.

N =

2n−1∑
i=0

|i〉n 〈i|n Asi,o (13)

The qRAM neural network functions exactly as a RAM neu-
ral network when the selectors are in the computational basis.
For instance, when the quantum register selectors of a qRAM
neuron is in the state |c00c01c10c11〉 and the input |xy〉 is pre-
sented its output is

∣∣∣cxy

〉
. The difference between the qRAM

and RAM neurons can be observed when the selectors are ini-
tialised with a state in superposition. Suppose an initialisation
of the quantum register selector with a state in the superposition

1
√

2

(
|c00c01c10c11〉 +

∣∣∣c′00c′01c′10c′11

〉)
. When the neuron receives

an input |xy〉, the output for each configuration in the superpo-
sition will be calculated and the quantum register output will be
in the state 1

√
2

(∣∣∣cxy

〉
+

∣∣∣c′xy

〉)
, a sort of parallel execution of the

network.
Classical and quantum weightless neurons require a memory

(in the classical case) and a number of selectors (in the quan-
tum case) exponential in relation to the number of inputs. To
avoid exponential memory requirements, classical and quantum
weightless neural networks use a feed-forward, low connected,
pyramidal architecture. A pyramidal, feed-forward neural net-
work with three two inputs qRAM Nodes is shown in Figure 1.
A pyramidal qRAM network with n inputs and composed of
neurons with two inputs will have 2log2(n) − 1 = n − 1 neurons.
Each two input neuron has a memory with 4 selectors than net-
work memory will need of 4 · (n − 1) selectors (linear memory
size instead of an exponential memory size).

Configuration of a qRAM neural network is realised by the
neuron selectors. For instance the configuration of the qRAM
neural network in Figure 1 is the state of quantum registers
|s1, s2, s3〉. For instance, a qRAM network with architecture
displayed in Figure 1 with configuration |s1〉 = |0110〉, |s2〉 =

|0110〉 and |s3〉 = |0110〉 can solve the 4 bit parity problem. Su-
perposition of qRAM neural networks with a given architecture
can be obtained with the initialisation of qRAM neural config-
uration with a state in superposition. In Section 5, we explore
superposition of qRAM networks in the learning procedure to
allow neural network architecture selection.

N1
i1
i2

s1

-
-
-

N2
i3
i4

s2

-
-
-

-
- N3

s3 -
-

Figure 1: qRAM Neural Network of 2 layers

4. Non linear quantum learning

Nonlinear quantum operators have been used previously [8,
43]. In this section we show how to train a weightless neu-
ral network with a nonlinear quantum algorithm. The proposed
algorithm is based in a strategy proposed in [24], where the
learning procedure is performed by measurement and feedback.
Figure 2 illustrates how the measurement and feedback strategy
works. The input is presented to a controlled quantum opera-
tor named quantum processor, and the result of a measurement
performed in the output registers is used to update qubits in the
control quantum register. The procedure is repeated until the
control qubits |s〉 are set to some desired value.

Quantum

processor

input performance

|s〉

Figure 2: Measurement and feedback methodology

The quantum processor in our learning strategy will be a
qRAM weightless neural network with a fixed architecture.
This quantum weightless neural network can have any num-
ber of layers and neurons and must have a feed-forward ar-
chitecture. Patterns selected from a training set will be pre-
sented to several neural networks in parallel. This step cannot
be efficiently performed in a classical computer, but it can be
performed in a quantum computer using quantum parallelism.
Operation performed by the quantum processor is described in
Figure 3 where each pattern x is presented to all qRAM net-
work configurations represented in the quantum register |s〉 and
the performance quantum register is updated to indicate if the
neural network output is equal to the desired output d(x). Af-
ter the presentation of all patterns in the training set all pairs
of neural network configuration and its respective performance
will be in superposition.

Control qubits of the quantum processor in the measurement
and feedback strategy are selectors of the qRAM neural net-
work. In the kth iteration of the measurement and feedback
methodology a non-linear quantum operator and a measure-

4



56

WNN.1

.

.

.

WNN.n1

All networks with a
given architecture

input

desired
output

Performance 1

Performance n1

Figure 3: Action of quantum processor in Figure 2 when the selector quan-
tum register of a qRAM weightless neural network with fixed architecture is a
superposition of quantum states

ment are performed to determine the kth quantum bit of the
selectors quantum register |s〉. After all iterations, the quantum
register |s〉 will hold a qRAM configuration with performance
greater than or equal to a given threshold θ for given training
set (if exists).

Algorithm 1 presents the proposed learning strategy. It re-
quires six quantum registers. Input quantum register |i〉 used
to present patterns from the training set to the qRAM network.
The free parameters or selectors quantum register |s〉 used to
store qRAM neural network configuration. The output quan-
tum register |o〉 used to store the qRAM neural network output,
the desired output quantum register |d〉, performance quantum
register |perf 〉 used to store the performance of each classifier
in the superposition. And the objective quantum register |ob j〉
used to mark configurations with desired performance. A con-
figuration of the weightless neuron during the execution of Al-
gorithm 1 will be represented using the quantum state |ψ〉 de-
scribed in Equation (14).

|ψ〉 = |i〉 |s〉 |o〉 |d〉 |perf 〉 |ob j〉 (14)

The for loop starting in line 1 will be repeated ns times, where
ns is the number of quantum bits in quantum register |s〉. At
the end of the kth iteration a non-linear quantum operator is
performed to determine the kth bit lk of the quantum register
|s〉.

Steps 2, 4, 5, 6 initialise quantum registers input, output, per-
formance and objective. Step 3 of Algorithm 1 initialises se-
lector quantum register. After this step, the state of quantum
registers |s〉 is described in Equation (15), where the value of
first k qubits li were determined in ith iteration of the for loop
and the last ns − k qubits are initialised with H |0〉 state.

|s〉 =

(
1
√

2

)ns−k+1

|l1 · · · lk−1〉 (|0〉 + |1〉)⊗(ns−k+1) (15)

The for loop starting in line 7 performs the quantum proces-
sor operation. It calculates the performance of all configura-
tions in the superposition for the given architecture simultane-
ously due to principle of quantum parallelism. Step 8 initialises

Algorithm 1: Learning algorithm

1 for k = 1 to ns do
2 Set input quantum register |i〉 to |0〉
3 Set the ns − k + 1 last qubits in quantum register |s〉 to

H |0〉
4 Set output quantum register to |0〉
5 Set performance quantum register to |0〉
6 Set objective quantum register to |0〉
7 for each pattern x ∈ training set do
8 Set quantum register |i〉 to |x〉 and quantum register

|d〉 to |d(x)〉
9 Allow the qRAM network to produce it output in

quantum register |o〉
10 if |o〉 = |d(x)〉 then
11 add 1 into quantum register |perf 〉
12 end
13 Remove |x〉 and |d(x)〉 of quantum registers |i〉 and

|d〉
14 end
15 for l = 0 to 1 do
16 Set quantum register objective to |1〉 if kth quantum

bit in neuron representation is equal to l and
performance is greater than a given threshold θ.

17 Apply the non-linear quantum operator NQ to
quantum register objective.

18 if |ob jective〉 = |1〉 then
19 Perform a measurement in all quantum register
20 Set kth bit of quantum register selectors to l
21 end
22 end
23 end

quantum register input with a pattern x from the data-set, and
desired output quantum register with the desired output of x
named d(x). These initialisation steps can be performed by uni-
tary operators controlled by a classical system using the classi-
cal representation of x and d(x). Step 9 runs the qRAM neural
network and its output quantum register is set to the calculated
output y(x, s) for pattern x with neural network configuration
s. Steps 10 to 11 adds 1 to quantum register performance if
y(x, s) is equal to d(x). After these steps, description of state
|ψ〉 is presented in Equation (16), where state |s〉 is described in
Equation (15) and |perf (x, s)〉 is the performance of the neural
network with selectors s after reading the input x.

|ψ〉 = |x〉 |s〉 |y(x, s)〉 |d(x)〉 |perf (x, s)〉 |0〉 (16)

Step 13 removes |x〉 and |d(x)〉 of quantum registers |i〉 and |d〉
performing the inverse operation of Step 8. After the execution
of the for loop starting in line 7 the performance of each clas-
sifier |perf (s)〉 will be in superposition with its representation
|s〉.

The for loop starting in line 15 performs the measurement
and feedback. An exhaustive non-linear quantum search is per-
formed to determine the value of the kth bit in quantum state
|s〉. Step 16 sets the quantum register |ob j〉 to |1〉 if perf (s) = θ
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and k = l. This step can be performed by a unitary controlled
operator Ug that flips objective quantum register if and only if
perf (x, s) ≥ θ and k = l. After Step 16 the state of quantum reg-
isters |s〉, |perf 〉 and |ob j〉 is described in Equation (17), where
δms,l,perf (ms) is equal to 1 if perf (s) ≥ θ and the kth quantum bit
in |s〉 is equal to l.

|s, perf , ob j〉 =
∣∣∣s, perf (s), δs,l,perf (s)

〉
(17)

All previous steps can be performed utilising only linear
quantum operators. Step 17 applies the non-linear quantum op-
erator proposed in [23] to the objective quantum register. The
objective quantum register will be changed to the basis state |1〉
if there is at least one configuration in the superposition with
objective equal to one. In this case, Steps 18 to 20 performs
a measurement in state |ψ〉 and changes the kth quantum bit in
quantum register |s〉 to l.

The computational cost of Algorithm 1 depends on the num-
ber of patterns in the training set nt and on the number of qubits
used in selector quantum register ns. The for loop starting in
line 1 will be repeated ns times. Steps 2 to 6 have constant
computational time. For loop in lines 7 to 13 will be repeated
nt times and each inner line has constant computational cost.
For loop in lines 15 to 22 does not depend on nt and ns and it
has a constant computational cost. In this way the overall cost
of the Algorithm 1 is O(nt · ns). Then Algorithm 1 has polyno-
mial time in relation to the number of qubits used to represent
the qRAM neural network selectors and the number of patterns
in the training set.

A concrete example of Algorithm 1 execution is presented to
illustrate its functionality. Without loss of generality we use a
qRAM neural network composed by only one neuron with two
inputs to learn the 2-bit XOR toy problem described in Equa-
tion (18). For this problem, quantum register input needs two
qubits, quantum register selectors has 4 qubits, quantum regis-
ter output needs 1 qubit, quantum register performance has 3
qubits and quantum register objective has 1 qubit.

T = {(|00〉 , |0〉) , (|01〉 , |1〉) , (|10〉 , |1〉) , (|11〉 , |0〉)} (18)

In Steps 2, 4, 5 and 6 bits in quantum registers input, out-
put, performance and objective are initialised with the quantum
state |0〉. The number of quantum bits in |s〉 quantum register is
equal to 4 and in the first iteration ns − k + 1 is also equal to 4,
then all four qubits in quantum register |s〉 are initialised with
the state H |0〉. After these initialisation steps, neural network
configuration |ψ〉 is described in Equation (19).

|ψ〉 =
1
4
|00〉 (|0〉 + |1〉)⊗4 |0〉 |0〉 |000〉 |0〉 =

1
4

∑
j∈{0,1}4

|00〉 | j〉 |0〉 |0〉 |000〉 |0〉
(19)

Suppose that in the first iteration of the for loop starting in
line 1 x assumes value |01〉 and d(x) is |1〉. Step 8 initialises
pattern and desired output quantum register respectively to |01〉

and |1〉. This initialisation can be performed through CNOT op-
erators applied to |ψ〉 resulting in state |ψ1〉 described in Equa-
tion (20).

1
4

∑
j∈{0,1}4

|01〉 | j〉 |0〉 |1〉 |000〉 |0〉 (20)

Step 9 runs the neural network and this output is calculated
in quantum register |o〉. After this step we obtain the state |ψ2〉

described in Equation (21), where j1 is the qubit in memory
position 01 and δ j1,1 = 1 if and only if j1 = 1.

1
4

∑
j∈{0,1}4

|01〉 | j〉
∣∣∣δ j1,1

〉
|1〉 |000〉 |0〉 (21)

Step 10 to 11 check if desired output is equal to the calculated
output, adding one to the performance quantum register if they
are equal. The resulting state after Step 11 |ψ3〉 is described in
Equation (22). These steps can be performed using a unitary
operator describing the qRAM neural network and a quantum
operator that adds one to the quantum register performance with
controls |o〉 and |d〉.

|ψ3〉 =
1
4

(|01〉 |0000〉 |0〉 |1〉 |000〉 |0〉

+ |01〉 |0001〉 |0〉 |1〉 |000〉 |0〉 + |01〉 |0001〉 |0〉 |1〉 |000〉 |0〉
+ |01〉 |0001〉 |0〉 |1〉 |000〉 |0〉 + |01〉 |0001〉 |0〉 |1〉 |000〉 |0〉
+ |01〉 |0001〉 |0〉 |1〉 |000〉 |0〉 + |01〉 |0001〉 |0〉 |1〉 |000〉 |0〉
+ |01〉 |0001〉 |0〉 |1〉 |000〉 |0〉 + |01〉 |0001〉 |0〉 |1〉 |000〉 |0〉
+ |01〉 |0001〉 |0〉 |1〉 |000〉 |0〉 + |01〉 |0001〉 |0〉 |1〉 |000〉 |0〉
+ |01〉 |0001〉 |0〉 |1〉 |000〉 |0〉 + |01〉 |0001〉 |0〉 |1〉 |000〉 |0〉
+ |01〉 |0001〉 |0〉 |1〉 |000〉 |0〉 + |01〉 |0001〉 |0〉 |1〉 |000〉 |0〉

+ |01〉 |0001〉 |0〉 |1〉 |000〉 |0〉

(22)

Step 13 removes the values of |x〉 and |d(x)〉 from quantum
registers |i〉 and |d〉 allowing the initialisation of the next for
loop iteration. After the for loop last execution only one con-
figuration in superposition, with |s〉 = |0110〉, has performance
100% and the selectors and performance quantum registers are
described by quantum state in Equation (23), where perf ( j) < 4
for all j , 0110.

|s, perf 〉 =
1
4

|0110〉 |4〉3 +
∑

j∈{0,1}4, j,0110

| j〉 |perf ( j)〉

 (23)

Setting θ to 100%, in the first iteration of the for loop (l = 0)
in line 15, Step 16 changes objective register to |1〉when the kth
qubit of |s〉 is |0〉 and performance is θ. After Step 15 selectors,
performance and objective quantum registers are described in
Equation (11).

|s, perf , ob j〉 =
1
4

|0110〉 |4〉3 |1〉 +
∑

j∈{0,1}4, j,0110

| j〉 |perf ( j)〉 |0〉


(24)

Step 17 applies the nonlinear quantum operator in objective
quantum register and the state of selectors, performance and
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|a1〉 • •
|a2〉 • •
|x〉

N1 N2 N3 N4|s〉
|o〉

1

Figure 4: Quantum neuron representing a weightless neural networks with four
different architectures

objective quantum registers are described in Equation (25). The
nonlinear quantum operator sets the quantum register objective
to |1〉.

|s, perf , ob j〉 =
1
4

|0110〉 |4〉3 +
∑

j∈{0,1}4, j,0110

| j〉 |perf ( j)〉

 |1〉
(25)

Since the objective quantum register is in a base state we can
check whether |ob j〉 = |1〉 with no information loss. In Steps 18
to 20 a measurement is performed in quantum register |s〉 and
the first qubit of |s〉 is set to |l1〉 = |0〉. This qubit will not be
changed in the next iterations.

At the end of the main for loop the selector quantum regis-
ter |s〉 will be in the state |0110〉 and the desired configuration
was found. Next section shows how to perform a search in the
architecture space of a quantum weightless neural network.

5. Architecture learning

The operator A in a qRAM neural network is known as con-
trolled not operator. In other models of quantum weightless
neural networks this operator can assume different forms. For
instance, in [10] the A operators of qPLN are represented in
computational basis by the quantum operator AqPLN described
in Equation (26), where U is an arbitrary quantum operator

AqPLN = |00〉 〈00| ⊗ I + |01〉 〈01| ⊗ X+

|10〉 〈10| ⊗ H + |11〉 〈11| ⊗ U
(26)

and the A operators of a qMPLN with n qubits in each mem-
ory position are represented by the matrix described in Equa-
tion (27), where Upk is a rotation operator with angle pk.

AqMPLN =

n−1∑
k=0

|k〉 〈k| ⊗ Upk (27)

These A operators are used to generate the values stored in a
specific memory position. For instance in the qPLN, instead of
storing the qubit 1

√
2

(|0〉 + |1〉), we store the qubits in the com-
putational basis |10〉 and uses the operator AqPLN to generate the
content 1

√
2

(|0〉 + |1〉).

WNN1.1

.

.

.

WNN1.n1

Architecture 1

.

.

.

WNNm.1

.

.

.

WNNm.nm

Architecture m

input

desired
output

Performance 1.1

Performance 1.n1

Performance m.1

Performance m.n2

Figure 5: Action of quantum processor in Figure 2 when the selector and ar-
chitecture selector quantum registers of a weightless neuron with some distinct
architectures are in a superposition of quantum states

The main idea in this Section is to allow a weightless neu-
ral network to store the output of a weightless neural network
with a given input x and selectors s. In this case, the quantum
version of this weightless neural network will need a matrix A
representing the weightless neural network to generate the out-
put of the weightless neural network. Then the A operators are
replaced by operators representing weightless neural networks
and selectors are replaced by the neural network inputs and se-
lectors. Figure 4 illustrates this weightless neuron with two in-
puts, where |a1a2〉 are architecture selectors, input pattern x and
selectors are combined in one single quantum register and acts
as the free parameters of the neuron, and quantum register out-
put is shared by all weightless networks N0,N1,N2,N3.

With this quantum neuron the action of the quantum proces-
sor in Figure 2 can be described by Figure 5. Initialisation of
the architecture selector quantum register with a quantum state
in superposition will put different architectures, represented by
the doted boxes, into superposition. And the initialisation of se-
lectors quantum registers puts different configurations of each
architecture into superposition. Problem of architecture selec-
tion is reduced to the problem of training the weightless neuron
in Figure 4 where the input is represented by quantum register
|x〉 and selectors are represented by quantum registers |a, s〉. In
this way, Algorithm 1 can be used to learning parameters and
architecture simultaneously.

Architecture selection computational time is directly related
to computational time of the Algorithm 1. Due to the linearity
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Patterns Class
0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

Table 1: Simple artificial data set

of quantum operators, neurons can share selectors and under
supposition that all architectures are pyramidal and low con-
nected then network memory size (or the necessary number of
selectors) will be polynomial in relation to the number of neu-
ral network inputs. The cost of architecture selection will be
O (na + ns + nt), where na is the number of architectures, ns is
the number of selectors in the most complex (with more selec-
tors) architecture and nt is the number of training patterns.

5.1. Architecture selection with SAL algorithm

Quantum computers are not yet a reality and we cannot eval-
uate SAL algorithm in real problems. In this Section we present
a concrete example (with low dimensionality) of the SAL algo-
rithm in architecture selection. Weuse the artificial dataset de-
scribed in Table 1obtained in the following way. Two weight-
less neural network architectures were defined and an exhaus-
tive search was performed to find a dataset in each one archi-
tecture can learn the dataset and the other architecture cannot
learn the dataset using selectors in the computational basis.

The architectures used in the experiment are two layers, pyra-
midal qRAM weightless neural networks. The first architec-
ture N0 has two qRAM neurons each with two inputs in the
first layer and one qRAM neuron with two inputs in the second
layer. Figure 1 displays architecture N0. The second architec-
ture N1 has two qRAM neurons in the first layer where the first
neuron has three inputs and the second neuron has one input
and the second layer has one qRAM neuron with two inputs.

The first architecture needs of 12 quantum bits for represent-
ing selector quantum register, 4 quantum bits for representing
input of the first layer, 2 quantum bits to represent the second
layer input, and 1 quantum bit to representing the neural net-
work output. In this way, the first architecture representation
needs of 19 quantum bits. The second architecture needs of 14
quantum bits for representing selector quantum register and the
same number of quantum bits used by the first architecture to

represent neurons inputs and network output than the second
architecture representation requires 21 quantum bits.

These two qRAM neural networks are represented in a single
circuit with six quantum registers. Neurons inputs quantum reg-
ister |i〉 with 6 quantum bits, selectors quantum register |s〉 with
14 quantum bits, output quantum register |o〉 with one qubit
and architecture selector quantum register |a〉 with 1 qubit. Per-
formance quantum register |perf 〉 with 5 quantum bits. Output
quantum register with 1 quantum bit.

The qRAM neural network with architecture N0 uses all
qubits in quantum registers selectors, input and output. The
qRAM neural network with architecture N1 uses all qubits in
inputs and output quantum register and uses only 12 qubits in
selectors quantum register. The architecture quantum register
|a〉 is used to select the architecture. If |a〉 is equal to 0 the ar-
chitecture 1 is used. If |a〉 is equal to 1 the architecture 2 is
used.

After the initialization steps of Algorithm 1, the state of
quantum registers |a〉 |s〉 |perf 〉 is described in Equation (28),
where |a〉 and |s〉 are in a superposition with all possible val-
ues and the quantum bits in performance quantum register are
initialized with |0〉.

|a〉 |s〉 |perf 〉 = (|0〉 + |1〉)
∑

k∈{0,1}14

|k〉 |00000〉 (28)

After the datased presetation to the neural network performed
in Steps 7 to 14 of Algorithm 1, the state of quantum registers
|a〉 |s〉 |perf 〉 is described in Equation (29), where perf (k,Ni) is
the performance of qRAM neural network with architecture Ni

and selectors |k〉.

|a〉 |s〉 |perf 〉 =

|0〉

 ∑
k∈{0,1}12

|k〉H⊗2 |00〉

 |perf (k,N0)〉

+ |1〉
∑

k∈{0,1}14

|k〉 |perf (k,N1)〉

(29)

N0 architecture cannot learn the dataset with 100% of accu-
racy and N1 can learn the dataset with 100% of accuracy when
its selectors are in the set

T = {|01010111, 01, 1101〉 , |01010111, 10, 1110〉 ,
|10101000, 01, 0111〉 , |10101000, 10, 1011〉}.

(30)

In the second iteration of for loop starting in line 15, the quan-
tum register objective is set to |1〉 if and only if the performance
is greather than a given threshold θ. Here we use θ equal to 16
(100% of accuracy), after this operation the state of quantum
registers |a〉 |s〉 |perf 〉 |ob j〉 is described in Equation (31).

8
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|a〉 |s〉 |perf 〉 |ob j〉 =

|0〉

 ∑
k∈{0,1}12

|k〉H⊗2 |00〉

 |perf (k,N0)〉 |0〉

+ |1〉
∑

k∈{0,1}14,k<T

|k〉 |perf (k,N1)〉 |0〉

+ |1〉
∑
k∈T

|k〉 |perf (k,N1)〉 |1〉

(31)

Step 17 applies the nonlinear quantum operator and the re-
sultant state of quantum registers |a〉 |s〉 |perf 〉 |ob j〉 is described
in Equation (32), where a measurement can be performed and
the architecture register will be in state |1〉 and the architecture
N1 was chosen.

|a〉 |s〉 |perf 〉 |ob j〉 = |1〉
∑
k∈T

|k〉 |perf (k,N1)〉 |1〉 (32)

5.2. Discussion

We proposed a methodology to select quantum neural net-
work parameters and architecture using a quantum weightless
neural networks in polynomial time in relation to the number of
training patterns, architectures and neural network free param-
eters. The proposed algorithm, named Superposition based Ar-
chitecture Learning (SAL), performs a non-linear global search
in the space of weightless neural networks parameters and for a
given data set returns a classifier with a desired performance θ
or returns that there is no classifier otherwise.

A classical polynomial time algorithm to perform neural net-
work architecture selection is not known. Classical techniques
used to perform architecture selection are heuristics that do not
guarantee to find an exact solution. Some strategies used to find
near optimal neural networks architectures or parameters are
evolutionary algorithms [26] and meta-learning [44]. Running
time of evolutionary algorithms used in architecture selection
are displayed in [44] and even in benchmark problems the run-
ning time of these classical strategies can vary from 3 to 400
minutes.

In the application of the SAL algorithm to perform archi-
tecture selection, if there is a solution in the space search then
the solution will be found in polynomial time. SAL algorithm
puts all neural network configurations with some architectures
in superposition, the performance is calculated and a nonlinear
operator is used to recover the configuration and architecture
with desired performance. SAL algorithm is the first algorithm
to perform quantum weightless neural network architecture se-
lection in polynomial time in relation to the number of patterns,
architectures.

Superposition principle allows the evaluation of neural net-
works architectures in a way that is not possible in classical
neural networks. In a classical neural network the architecture
evaluation is biased by a choice of neural network parameters.
In SAL algorithm all neural network parameters are initialized
with all parameters in superposition allowing the evaluation of

neural network architecture without the bias of a given set of
parameters.

The gain in computational time of the proposed strategy is
a result of the use of non-linear quantum operator proposed
in [23]. Despite non-linear quantum computing has been used
in several works, there still remains some controversy with
some authors claiming that non linear quantum operators are
not physically realisable [23] while other researchers claiming
otherwise [30].

Even if non-linear quantum operators do not become a real-
ity, the proposed learning algorithm furnishes a framework for
the development of linear quantum algorithms to perform neu-
ral network architecture selection. The proposed idea is to de-
fine a quantum weightless neural network such that its memory
positions store configurations of neural networks with different
architectures.

6. Conclusion

For some problems there are quantum algorithms wich are
assyntotically faster than the known classical algorithms [3, 2,
45]. In this paper, we defined a quantum Superposition based
Architecture Learning algorithm for weightless neural networks
that finds architecture and parameters with polynomial time in
relation to the number of training patterns, architectures and the
size of the selectors quantum register. The proposed algorithm
used the quantum superposition principle and a nonlinear quan-
tum operator.

A linear version of the proposed algorithm is challenging re-
search topic which is the subject of on going work. This linear
version should be a quantum probabilistic algorithm, because
the problem of training a weightless neural networks is a NP-
complete problem. One could use the quantum processor to
create a superposition of weightless neural networks with dif-
ferent architectures and to perform classical learning steps in
these neural networks in superposition before performing the
measurement and feedback.

Quantum weightless neural networks proposed in [10] are
generalisation of the classical models based in a classical RAM
memory. Another possible future work is the analysis of quan-
tum memories [46, 47] for the development of weightless neural
networks models. These quantum memories has an exponential
gain in memory capacity when compared with classical memo-
ries.
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Adenilton José da Silva1 and Teresa Bernarda Ludermir
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In this work we propose a quantum neural network named quantum perceptron over a field (QPF). QPF
is a direct generalization of a classical perceptron and solve some drawbacks found in previous models
of quantum perceptrons. We also present a learning algorithm named Superposition based Architecture
Learning algorithm (SAL) that optimizes the neural network weights and architectures. SAL searches for
the best architecture in a finite set of neural network architectures with linear time over the number of
patterns in the training set. SAL is the first learning algorithm to determine neural network architectures
in polynomial time. This speedup is obtained by the use of quantum parallelism and a non linear quantum
operator.

1. Introduction

The size of computer components reduces each year

and quantum effects have to be eventually consid-

ered in computation with future hardware. The the-

oretical possibility of quantum computing initiated

with Benioff 1 and Feynman2 and the formaliza-

tion of the first quantum computing model was pro-

posed by Deutsch in 19853. The main advantage of

quantum computing over classical computing is the

use of a principle called superposition, which allied

with linearity of the operators allows for a powerful

form of parallelism to develop algorithms more effi-

cients than the known classical ones. For instance,

the Grover’s search algorithm4 and Shor’s factoring

algorithm5 overcome any known classical algorithm.

Quantum computing has recently been used

in the development of machine learning tech-

niques as quantum decision trees6, artificial neural

networks7–9, associative memory10; 11, and inspired

the development of novel evolutionary algorithms for

continuous optimization problems12; 13. There is an

increasing interest in quantum machine learning and

in the quantum neural network area14. This paper

proposes a quantum neural network named Quan-

tum Perceptron over a Field (QPF) and investigates

the use of quantum computing techniques to design

a learning algorithm for neural networks.

Artificial neural networks are a universal model

of computation15 and have several applications

in real life problems. For instance, in the solu-

tion of combinatorial optimization problems16, pat-

tern recognition17, but have some problems as

the lack of an algorithm to determine optimal

architectures18, memory capacity and high cost

learning algorithms19.

Notions of Quantum Neural Networks have been

put forward since the nineties20, but a precise defi-

nition of what is a quantum neural network that in-

1
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tegrates neural computation and quantum computa-

tion is a non-trivial open problem14. To date, the pro-

posed models in the literature are really just quan-

tum inspired in the sense that despite using quantum

representation of data and quantum operators, in a

way or another some quantum principles are violated

usually during training. Weights adjustments needs

measurements (observation) and updates.

Research in quantum neural computing is unre-

lated, as stated in Ref. 14:

“QNN research remains an exotic conglom-

eration of different ideas under the umbrella

of quantum information”.

and there is no consensus of what are the compo-

nents of a quantum neural network. Several mod-

els of quantum neural networks have been pro-

posed and they present different conceptual mod-

els. In some models a quantum neural network is

described as a physical device7; as a model only

inspired in quantum computing21; or as a math-

ematical model that explores quantum computing

principles22; 8; 9; 23. We follow the last approach and

assume that our quantum neural network model

would be implemented in a quantum computer that

follows the quantum principles as e.g. described

in Ref. 24. We assume that our models is imple-

mented in the quantum circuit model of Quantum

Computing24.

Some advantages of quantum neural models over

the classical models are the exponential gain in mem-

ory capacity25, quantum neurons can solve nonlin-

early separable problems 22, and a nonlinear quan-

tum learning algorithm with polynomial time over

the number of patterns in the data set is presented in

Ref. 8. However, these quantum neural models can-

not be viewed as a direct generalization of a classical

neural network and have some limitations presented

in Section 4. Quantum computing simulation has ex-

ponential cost in relation to the number of qubits.

Experiments with benchmarks and real problems are

not possible because of the number of qubits neces-

sary to simulate a quantum neural network.

The use of artificial neural networks to solve a

problem requires considerable time for choosing pa-

rameters and neural network architecture26. The ar-

chitecture design is extremely important in neural

network applications because a neural network with

a simple architecture may not be capable to perform

the task. On the other hand a complex architecture

can overfitting the training data18. The definition of

an algorithm to determine (in a finite set of architec-

tures) the best neural network architecture (minimal

architecture for a given learning task that can learn

the training dataset) efficiently is an open problem.

The objective of this paper is to show that with the

supposition of non-linear quantum computing8; 27; 28

we can determine an architecture that can learn the

training data in linear time with relation to the num-

ber of patterns in the training set. To achieve this ob-

jective, we propose a quantum neural network that

respect the principles of quantum computation, neu-

ral computing and generalizes the classical percep-

tron. The proposed neuron works as a classical per-

ceptron when the weights are in the computational

basis, but as quantum perceptron when the weights

are in superposition. We propose a neural network

learning algorithm which uses a non-linear quan-

tum operator8; 28 to perform a global search in the

space of weights and architecture of a neural net-

work. The proposed learning algorithm is the first

algorithm performing this kind of optimization in

polynomial time and presents a framework to develop

linear quantum learning algorithms to find near op-

timal neural network architectures.

The remainder of this paper is divided into 5

Sections. In Section 2 we present preliminary con-

cepts necessary to understand this work. In Section 4

we present related works. Section 5 presents main

results of this paper. We define the new model of a

quantum neuron named quantum perceptron over a

field that respect principles of quantum and neural

computing. Also in Section 5 we propose a quantum

learning algorithm for neural networks that deter-

mines a neural network architecture that can learn

the train set with some desired accuracy. Section 6

presents a discussion. Finally, Section 7 is the con-

clusion.

2. Preliminary concepts

As quantum neural networks is a multidisciplinary

subject involving concepts from Computer Science,

Mathematics and Physics in this section some back-

ground concepts in the field of Quantum Computing

is presented for the sake of self-containment.
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3. Quantum computing

In this Section, we perform a simple presentation

of quantum computing with the necessary concepts

to understand the following sections. As in theoreti-

cal classical computing we are not interested in how

to store or physically represent a quantum bit. Our

approach is a mathematical. We deal with how we

can abstractly compute with quantum bits or design

abstract quantum circuits and models. We take as

a guiding principle that when a universal quantum

computer will be at our disposal, we could implement

the proposed quantum neural models.

We define a quantum bit as unit complex bi-

dimensional vector in the vector space C2. In the

quantum computing literature a vector is represented

by the Dirac’s notation |·〉. The computational basis

is the set {|0〉, |1〉}, where the vectors |0〉 and |1〉 can

be represented as in Equation (1):

|0〉 =

[
1

0

]
and |1〉 =

[
0

1

]
(1)

A quantum bit |ψ〉, qubit, is a vector in C2 that has

a unit length as described in Equation (2), where

|α|2 + |β|2 = 1, α, β ∈ C.

|ψ〉 = α|0〉+ β|1〉 (2)

While in classical computing there are only two

possible bits, 0 or 1, in quantum computing there are

an infinitely many quantum bits, for a quantum bit

can be a linear combination (or superposition) of |0〉
and |1〉.

Tensor product ⊗ is used to define multi-qubit

systems. On the vectors, if |ψ〉 = α0|0〉 + α1|1〉 and

|φ〉 = β0|0〉+β1|1〉, then the tensor product |ψ〉⊗|φ〉
is equal to the vector |ψφ〉 = |ψ〉 ⊗ |φ〉 = (α0|0〉 +

α1|1〉) ⊗ (β0|0〉 + β1|1〉) = α0β0|00〉 + α0β1|01〉 +

α1β0|10〉+α1β1|11〉. Quantum states representing n

qubits are in a 2n dimensional complex vector space.

On the spaces, let X ⊂ V and X′ ⊂ V′ be basis of

respectively vector spaces V,⊂ V′. The tensor prod-

uct V⊗V′ is the set vector space obtained from the

basis {|b〉 ⊗ |b′〉; |b〉 ∈ X and |b′〉 ∈ X′}. The symbol

V⊗n represents a tensor product V⊗ · · · ⊗ V with n

factors.

Quantum operators over n qubits are repre-

sented by 2n×2n unitary matrices. An n×n matrix is

unitary if UU† = U†U = I, where U† is the transpose

conjugate of U. For instance, identity I, the flip X,

and the Hadamard H operators are important quan-

tum operators over one qubit and they are described

in Equation (3).

I =

[
1 0

0 1

]
X =

[
0 1

1 0

]
H = 1√

2

[
1 1

1 −1

]
(3)

The operator described in Equation (4) is the con-

trolled not operator CNot, that flips the second qubit

if the first (the controlled qubit) is the state |1〉.

CNot =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


 (4)

Parallelism is one of the most important prop-

erties of quantum computation used in this paper. If

f : Bm → Bn is a Boolean function, B = {0, 1}, one

can define a quantum operator

Uf :
(
C2
)⊗n+m →

(
C2
)⊗n+m

, (5)

as

Uf |x, y〉 = |x, y ⊕ f(x)〉,
where ⊕ is the bitwise xor, such that the value of

f(x) can be recovered as

Uf |x, 0〉 = |x, f(x)〉.
The operator Uf is sometimes called the quantum

oracle for f . Parallelism occurs when one applies the

operator Uf to a state in superposition as e.g. de-

scribed in Equation (6).

Uf

(
n∑

i=0

|xi, 0〉
)

=
n∑

i=0

|xi, f(xi)〉 (6)

The meaning of Equation (6) is that if one applies

operator Uf to a state in superposition, by linearity,

the value of f(xi), will be calculated for each i si-

multaneously with only one single application of the

quantum operator Uf .

With quantum parallelism one can imagine that

if a problem can be described with a Boolean func-

tion f then it can be solved instantaneously. The

problem is that one cannot direct access the values in

a quantum superposition. In quantum computation

a measurement returns a more limited value. The

measurement of a quantum state |ψ〉 =
∑n
i=1 αi|xi〉

in superposition will return xi with probability |αi|2.

With this result the state |ψ〉 collapses to state |xi〉,
i.e., after the measurement |ψ〉 = |xi〉.
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4. Related works

Quantum neural computation research started in the

nineties20, and the models (such as e.g. in Refs. 7, 8,

22, 29, 9, 30) are yet unrelated. We identify three

types of quantum neural networks: 1) models de-

scribed mathematically to work on a quantum com-

puter (as in Refs. 29, 30, 22, 8, 31, 9, 32, 33); 2)

models described by a quantum physical device (as

in Refs. 7, 34); and 3) models only based (inspired)

on quantum computation, but that works in a clas-

sical computer (as in Refs 21, 35, 36). In the follow-

ing subsections we describe some models of quantum

neural networks.

4.1. qANN

Altaisky29 proposed a quantum perceptron (qANN).

The qANN N is described as in Equation (7),

|y〉 = F̂
n∑

j=1

ŵj |xj〉 (7)

where F̂ is a quantum operator over 1 qubit repre-

senting the activation function, ŵj is a quantum op-

erator over a single qubit representing the j-th weight

of the neuron and |xj〉 is one qubit representing the

input associated with ŵj .

The qANN is one of the first models of quantum

neural networks. It suggests a way to implement the

activation function that is applied (and detailed) for

instance in Ref. 8.

It was not described in Ref. 29 how one can im-

plement Equation (7). An algorithm to put patterns

in superposition is necessary. For instance, the stor-

age algorithm of a quantum associative memory25

can be used to create the output of the qANN. But

this kind of algorithm works only with orthonormal

states, as shown in Proposition 1.

Proposition 1. Let |ψ〉 and |θ〉 be two qubits with

probability amplitudes in R, if 1√
2

(|ψ〉+ |θ〉) is a unit

vector then |ψ〉 and |θ〉 are orthogonal vectors.

Proof. Let |ψ〉 and |θ〉 be qubits and suppose that
1√
2

(|ψ〉+ |θ〉) is a unit vector. Under these condi-

tions

1

2
(|ψ〉+ |θ〉, |ψ〉+ |θ〉) = 1⇒

1

2
(〈ψ|ψ〉+ 〈ψ|θ〉+ 〈θ|ψ〉+ 〈θ|θ〉) = 1

Qubits are unit vectors, then

1

2
(2 + 2 〈ψ|θ〉) = 1 (8)

and |ψ〉 and |θ〉 must be orthogonal vectors.

A learning rule for the qANN has been proposed

and it is shown that the learning rule drives the per-

ceptron to the desired state |d〉29 in the particular

case described in Equation (9) where is supposed

that F = I. But this learning rule does not preserve

unitary operators9.

ŵj(t+ 1) = ŵj(t) + η (|d〉 − |y(t)〉) 〈xj | (9)

In Ref. 32 a quantum perceptron named Au-

tonomous Quantum Perceptron Neural Network

(AQPNN) is proposed. This model has a learning

algorithm that can learn a problem in a small num-

ber of iterations when compared with qANN and this

weights are represented in a quantum operator as the

qANN weights.

4.2. qMPN

Proposition 1 shows that with the supposition of uni-

tary evolution, qANN with more than one input is

not a well defined quantum operator. Zhou and Ding

proposed a kind of quantum perceptron22 which they

called as quantum M-P neural network (qMPN). The

weights of qMPN are stored in a single squared ma-

trix W that represents a quantum operator. We can

see the qMPN as a generalized single weight qANN,

where the weight is a quantum operator over any

number of qubits. The qMPN is described in Equa-

tion (10), where |x〉 is an input with n qubits, W

is a quantum operator over n qubits and |y〉 is the

output.

|y〉 = W |x〉 (10)

They also proposed a quantum learning algo-

rithm for the new model. The learning algorithm

for qMPN is described in Algorithm 1. The weights

update rule of Algorithm 1 is described in Equa-

tion (11),

wt+1
ij = wtij + η (|d〉i − |y〉i) |x〉j (11)

where wij are the entries of the matrix W and η is a

learning rate.
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Algorithm 1 Learning algorithm qMPN

1: Let W (0) be a weight matrix

2: Given a set of quantum examples in the form

(|x〉, |d〉), where |x〉 is an input and |d〉 is the de-

sired output

3: Calculate |y〉 = W (t)|x〉, where t is the iteration

number

4: Update the weights following the learning rule

described in Equation (11).

5: Repeat steps 3 and 4 until a stop criterion is met.

The qMPN model has several limitations in re-

spect to the principles of quantum computing. qMPN

is equivalent to a single layer neural network and its

learning algorithm leads to non unitary neurons as

shown in Ref. 37.

4.3. Neural network with quantum
architecture

In the last subsections the neural network weights

are represented by quantum operators and the in-

puts are represented by qubits. In the classical case,

inputs and free parameters are real numbers. So

one can consider to use qubits to represent inputs

and weights. This idea was used, for instance, in

Refs. 30 and 8. In Ref. 30 a detailed description of

the quantum neural network is not presented.

In Ref. 8 is proposed a Neural Network with

Quantum Architecture (NNQA) based on a com-

plex valued neural network named qubit neural net-

work21 which is not a quantum neural network being

just inspired in quantum computing. Unlike previous

models29; 22, NNQA uses fixed quantum operators

and the neural network configuration is represented

by a string of qubits. This approach is very similar

to the classical case, where the neural network con-

figuration for a given architecture is a string of bits.

Non-linear activation functions are included in

NNQA in the following way. Firstly is performed

a discretization of the input and output space, the

scalars are represented by Boolean values. In doing so

a neuron is just a Boolean function f and the quan-

tum oracle operator for f , Uf , is used to implement

the function f acting on the computational basis

In the NNQA all the data are quantized with

Nq bits. A synapses of the NNQA is a Boolean func-

tion f0 : B2Nq → BNq A synapses of the NNQA is a

Boolean function (12).

z = arctan

(
sin(y) + sin(θ)

cos(y) + cos(θ)

)
(12)

The values y and θ are angles in the range

[−π/2, π/2] representing the argument of a complex

number, which are quantized as described in Equa-

tion (13). The representation of the angle β is the

binary representation of the integer k.

β = π

(
−0.5 +

k

2Nq − 1

)
, k = 0, 1, · · · , 2Nq − 1

(13)

Proposition 2. The set F = {βk|βk = π · (−0.5+

k/(2Nq − 1)
)
, k = 0, · · · , 2Nq − 1

}
with canonical

addition and multiplication is not a field.

Proof. We will only show that the additive neutral

element is not in the set. Suppose that 0 ∈ F . So,

π ·
(
−0.5 +

k

2Nq − 1

)
= 0⇒ −0.5 +

k

2Nq − 1
= 0

⇒ k

2Nq − 1
= 0.5⇒ k = (2Nq − 1) ·

(
−1

2

)

Nq is a positive integer, and 2Nq−1 is an odd positive

integer, then (2Nq−1)·
(
− 1

2

)
/∈ Z which contradicts

the assumption that k ∈ Z and so F is not a field

since 0 /∈ F .

From Proposition 2 we conclude that the we can-

not directly lift the operators and algorithms from

classical neural networks to NNQA. In a weighted

neural network inputs and parameters are rational,

real or complex numbers and the set of possible

weights of NNQA under operations defined in NNQA

neuron is not a field.

5. Quantum neuron

5.1. Towards a quantum perceptron
over a field

In Definition 3 and Definition 4 we have, respectively,

an artificial neuron and a classical neural network as

in Ref. 38. Weights and inputs in classical artificial

neural networks normally are in the set of real (or

complex) numbers.

Definition 3. An artificial neuron is described by

the Equation (14), where x1, x2, · · · , xk are input sig-

nals and w1, w2, · · · , wk are weights of the synaptic
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links, f(·) is a nonlinear activation function, and y is

the output signal of the neuron.

y = f




m∑

j=0

wjxj


 (14)

In both qANN and qMPN artificial neurons,

weights and inputs are in different sets (respectively

in quantum operators and qubits) while weights

and inputs in a classical perceptron are elements of

the same field. The NNQA model defines an arti-

ficial neuron where weights and inputs are strings

of qubits. The neuron is based on a complex val-

ued network and does not exactly follow Definition 3.

The main problem in NNQA is that the inputs and

weights do not form a field with sum and multipli-

cation values as we show in Proposition 2. There is

no guarantee that the set of discretized parameters

is closed under the operations between qubits.

Other models of neural networks where inputs

and parameters are qubits were presented in Ref. 39,

40, 9. These models are a generalization of weight-

less neural network models, whose definitions are not

similar to Definition 3.

Definition 4. A neural network is a directed graph

consisting of nodes with interconnecting synaptic

and activation links, and is characterized by four

properties38:

(1) Each neuron is represented by a set of linear

synaptic links, an externally applied bias, and

a possibility non-linear activation link. The bias

is represented by a synaptic link connected to an

input fixed at +1.

(2) The synaptic links of a neuron weight their re-

spective input signals.

(3) The weighted sum of the input signals defines

the induced local field of the neuron in question.

(4) The activation link squashes the induced local

field of the neuron to produce an output.

The architecture of NNQA can be viewed as a

directed graph consisting of nodes with interconnect-

ing synaptic and activation links as stated in Defini-

tion 4. The NNQA does not follow all properties of

a neural network (mainly because it is based in the

qubit NN), but it is one of the first quantum neu-

ral networks with weights and a well defined archi-

tecture. The main characteristics of the NNQA are

that inputs and weights are represented by a string

of qubits, and network follows a unitary evolution.

Based on these characteristics we will propose the

quantum perceptron over a field.

5.2. Neuron operations

We propose a quantum perceptron with the follow-

ing properties: it can be trained with a quantum or

classical algorithm, we can put all neural networks

for a given architecture in superposition, and if the

weights are in the computational basis the quantum

perceptron acts like the classical perceptron. One of

the difficulties to define a quantum perceptron is that

the set of n-dimensional qubits, sum and (tensor)

product operators do not form a field (as shown in

Proposition 5). Therefore, the first step in the def-

inition of the quantum perceptron is to define an

appropriate sum and multiplication of qubits.

Proposition 5. The set of qubits under sum + of

qubits and tensor product ⊗ is not a field.

Proof. The null vector has norm 0 and is not a valid

qubit. Under + operator the null vector is unique, so

there is not a null vector in the set of qubits. Then

we cannot use + operator to define a field in the set

of qubits.

Tensor product between two qubits, results in

a compound system with two qubits. So the space

of qubits is not closed under the ⊗ operator and we

cannot use ⊗ operator to define a field in the set of

qubits.

We will define unitary operators to perform sum

⊕ and product � of qubits based in the field oper-

ations. Then we will use these operators to define a

quantum neuron. Let (F,⊕,�) be a finite field. We

can associate the values a ∈ F to vectors (or qubits)

|a〉 in a basis of a vector space V . If F has n elements

the vector space will have dimension n.

Product operation � in F can be used to de-

fine a product between vectors in V . Let |a〉 and |b〉
be qubits associated with scalars a and b, we define

|a〉 � |b〉 = |a� b〉 such that |a� b〉 is related with

the scalar a � b. This product send basis elements

to basis elements, so we can define a linear operator

P : V 3 → V 3 as in Equation (15).

P|a〉|b〉|c〉 = |a〉|b〉|c⊕ (a� b)〉 (15)
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We show in Proposition 6 that the P operator is uni-

tary, therefore P is a valid quantum operator.

Proposition 6. P is a unitary operator.

Proof.

Let B = {|a1〉, |a2〉, · · · , |an〉} be a computa-

tional basis of a vector space V , where we associate

|ai〉 with the element ai of the finite field F (⊕,�).

The set B3 = {|ai〉|aj〉|ak〉} with 1 ≤ i, j, k ≤ n is

a computational basis of vector space V 3. We will

show that P sends elements of basis B3 in distinct

elements of basis B3.

P sends vectors in base B3 to vectors in base B3.

Let a, b, c in B. P|a〉|b〉|c〉 = |a〉|b〉|c⊕ (a� b)〉. Op-

erators ⊕ and � are well defined, then |c⊕ (a� b)〉 ∈
B and |a〉|b〉|c⊕ (a� b)〉 ∈ B3.

P is injective. Let a, b, c, a1, b1, c1 ∈ F such that

P|a〉|b〉|c〉 = P|a1〉|b1〉|c1〉 . By the definition of oper-

ator P a = a1 and b = b1 . When we apply the oper-

ator we get |a〉|b〉|c⊕ (a� b)〉 = |a〉|b〉|c1 ⊕ (a� b)〉.
Then c1⊕(a�b) = c⊕(a�b) . By the field properties

we get c1 = c.

An operator over a vector space is unitary if and

only if the operator sends some orthonormal basis to

some orthonormal basis41. As P is injective and sends

vectors in base B3 to vectors in base B3, we conclude

that P is an unitary operator.

With a similar construction, we can use the sum

operation ⊕ in F to define a unitary sum operator

S : V 3 → V 3. Let |a〉 and |b〉 be qubits associated

with scalars a and b, we define |a〉⊕|b〉 = |a⊕ b〉 such

that |a⊕ b〉 is related with the scalar a⊕b. We define

the unitary quantum operator S in Equation (16).

S|a〉|b〉|c〉 = |a〉|b〉|c⊕ (a⊕ b)〉 (16)

We denote product and sum of vectors over F

by |a〉 � |b〉 = |a� b〉 and |a〉 ⊕ |b〉 = |a⊕ b〉 to

represent, respectively, P|a〉|b〉|0〉 = |a〉|b〉|a� b〉 and

S|a〉|b〉|0〉 = |a〉|b〉|a⊕ b〉.

5.3. Quantum perceptron over a field

Using S and P operators we can define a quantum

perceptron analogously as the classical one. Inputs

|xi〉, weights |wi〉 and output |y〉 will be unit vec-

tors (or qubits) in V representing scalars in a field

F . Equation (17) describes the proposed quantum

perceptron.

|y〉 =

n⊕

i=0

|xi〉 � |wi〉 (17)

If the field F is the set of rational numbers, then Defi-

nition 3 without activation function f correspond to

Definition 17 when inputs, and weights are in the

computational basis.

The definition in Equation (17) hides several an-

cillary qubits. The complete configuration of a quan-

tum perceptron is given by the state |ψ〉 described

in Equation (18),

|ψ〉 = |x1, · · · , xn, w1, · · · , wn,
p1, · · · , pn, s1, · · · , sn−1, y〉

(18)

where |x〉 = |x1, · · · , xn〉 is the input quantum reg-

ister, |w〉 = |w1, · · · , wn〉 is the weight quantum

register, |p〉 = |p1, · · · , pn〉 is an ancillary quan-

tum register used to store the products |xi � wi〉,
|s〉 = |s1, · · · , sn−1〉 is an ancillary quantum register

used to store sums, and |y〉 is the output quantum

register. From Equation (18) one can see that to put

several or all possible neural networks in superposi-

tion one can simply put the weight quantum register

in superposition. Then a single quantum neuron can

be in a superposition of several neurons simultane-

ously.

A quantum perceptron over a finite d-

dimensional field and with n inputs needs 4 ·n ·d+d

quantum bits to perform its computation. There are

n quantum registers to store inputs xi, n quantum

registers to store weights wi, n quantum registers pi
to store the products wi � xi, n quantum registers

|si〉 to store sums and one quantum register to store

the output |y〉.
We show now a neuron with 2 inputs to illus-

trate the workings of the quantum neuron. Suppose

F = Z2 = {0, 1}. As the field has only two elements

we need only two orthonormal quantum states to

represent the scalars. We choose the canonical ones

0↔ |0〉 and 1↔ |1〉.
Now we define sum ⊕ and multiplication � op-

erators based on the sum and multiplication in Z2.

The operators S and P are shown, respectively, in

Equations (19) and (20).
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S =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




(19)

P =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0




(20)

Using S and P operators we describe the quan-

tum neuron N in Equation (21). The subscripts in

operators indicate the qubits upon which they will

be applied.

N = Sp1p2yPx2w2,p2Px1w1,p1 (21)

For our execution example, we define |x1x2〉 =

|01〉, |w1〉 = 1√
2
(|0〉 + |1〉) and |w2〉 = 1√

2
(|0〉 + |1〉).

The initial configuration of the quantum perceptron

is |ψ0〉 described in Equation (22). The initial con-

figuration has all possible weights in the set {0, 1}2
and applying the QP will result the output for each

weight simultaneously.

|x1x2〉|w1w2〉|p1p2〉|s〉|y〉 =

1

2
|01〉 (|00〉+ |01〉+) |00〉|0〉|0〉 =

1

2
(|01〉|00〉|00〉|0〉|0〉+ |01〉|01〉|00〉|0〉|0〉+

|01〉|10〉|00〉|0〉|0〉+ |01〉|11〉|00〉|0〉|0〉)

(22)

The action of the quantum perceptron N over

|ψ0〉 is shown in Equation (23), where N calculates

the output for all possible weights (or all neurons in

superposition) in only one single run.

N|ψ0〉 =
1

2
N(|01〉|00〉|00〉|0〉|0〉+

|01〉|01〉|00〉|0〉|0〉+ |01〉|10〉|00〉|0〉|0〉+
|01〉|11〉|00〉|0〉|0〉) =

1

2
(N|01〉|00〉|00〉|0〉|0〉+ N|01〉|01〉|00〉|0〉|0〉+

N|01〉|10〉|00〉|0〉|0〉+ N|01〉|11〉|00〉|0〉|0〉) =

1

2
(Sp1p2y|01〉|00〉|0� 0, 1� 0〉|0〉|0〉+

Sp1p2y|01〉|01〉|0� 0, 1� 1〉|0〉|0〉+
Sp1p2y|01〉|10〉|0� 1, 1� 0〉|0〉|0〉+

Sp1p2y|01〉|11〉|0� 1, 1� 1〉|0〉|0〉) =

|01〉|00〉|0, 0〉|0⊕ 0〉|0〉+
|01〉|01〉|0, 1〉|0⊕ 1〉|0〉+
|01〉|10〉|0, 0〉|0⊕ 0〉|0〉+
|01〉|11〉|0, 1〉|0⊕ 1〉|0〉) =

|01〉|00〉|0, 0〉|0〉|0〉+ |01〉|01〉|0, 1〉|1〉|1〉+
|01〉|10〉|0, 0〉|0〉|0〉+ |01〉|11〉|0, 1〉|1〉|1〉)

(23)

5.4. Neural network architecture

We start this Section with an example of a classical

multilayer perceptron and show an equivalent rep-

resentation in a quantum computer. Let N be the

neural network described in Fig. 1.

x1

x2

x3

∑

∑

∑

∑

∑

w11

w 12

w
1
3

w
21

w22

w 23

w
3
1

w
32

w33

w
14

w24

w
3
4

w
1
5

w
25

w 35

y1

y2

Fig. 1. Architecture of the multilayer quantum percep-
tron over a field.

The output of this network can be calculated as



71

July 7, 2015 16:32 output

Quantum perceptron over a field 9

y = L2 ·L1 · x using the three matrices L1, L2 and x

described in Equation (24).

L1 =



w11 w12 w13

w21 w22 w23

w31 w32 w33


 ,

L2 =

[
w14 w24 w34

w15 w25 w35

]
, x =



x1
x2
x3




(24)

Weights, inputs and outputs in a classical neu-

ral network are real numbers. Here we suppose fi-

nite memory and we use elements of a finite field

(F,⊕,�) to represent the neural network parame-

ters. We can define a quantum operator M3×3,3×1
that multiplies a 3× 3 matrix with a 3× 1 matrix. If

L1 · x =
[
o1 o2 o3

]t
we define the action of M3×3,3×1

in Equation (25), where wi = wi1, wi2, wi3.

M3×3,3×1|w1, w2, w3, x1, x2, x3, 0, 0, 0〉 =

|w1, w2, w3, x1, x2, x3, o1, o2, o3〉
(25)

Each layer of the quantum perceptron over a

field can be represented by an arbitrary matrix as in

Equation (26),

M2×3,3×1M3×3,3×1|L2〉|L1〉|x〉|000〉|00〉 (26)

where M3×3,3×1 acts on |L1〉, |x〉 with output in reg-

ister initialized with |000〉; and M2×3,3×1 acts on

|L2〉, the output of the first operation, and the last

quantum register. This matrix approach can be used

to represent any feed-forward multilayer quantum

perceptron over a field with any number of layers.

We suppose here that the training set and de-

sired output are composed of classical data and that

the data run forward. The supposition of classical

desired output will allow us to superpose neural net-

work configurations with its performance, as we will

see in the next section.

5.5. Learning algorithm

In this Section, we present a learning algorithm that

effectively uses quantum superposition to train a

quantum perceptron over a field. Algorithms based

on superposition have been proposed previously in

Refs. 8, 27, 42. In these papers, a non-linear quantum

operator proposed in Ref. 28, is used in the learning

process. In Ref. 8 performances of neural networks

in superposition are entangled with its representa-

tion. A non-linear algorithm is used to recover a neu-

ral network configuration with performance greater

than a given threshold θ. A non-linear algorithm is

used to recover the best neural network configura-

tion. In Ref. 27 the nonlinear quantum operator is

used in the learning process of a neurofuzzy network.

In Ref. 42 a quantum associative neural network is

proposed where a non-linear quantum circuit is used

to increase the pattern recalling speed.

We propose a variant of the learning algorithm

proposed in Ref. 8. The proposed quantum algorithm

is named Superposition based Architecture Learning

(SAL) algorithm. In the SAL algorithm the superpo-

sition of neural networks will store its performance

entangled with its representation, as in Ref. 8. Later

we will use a non-linear quantum operator to recover

the architecture and weights of the neural network

configuration with best performance.

In the classical computing paradigm, the idea

of presenting an input pattern to all possible neural

networks architectures is impracticable. To perform

this idea classically one will need to create several

copies of the neural network (one for each configura-

tion and architecture) to receive all the inputs and

compute in parallel the corresponding outputs. After

calculating the output of each pattern for each neu-

ral network configuration, one can search the neural

configuration with best performance. Yet classically

the idea of SAL learning is presented in Fig. 2. For

some neural network architectures, all the patterns in

the training set P = {p1, p2, · · · , pk} are presented

to each of the neural network configurations. Out-

puts are calculated and then one can search the best

neural network parameters.



72

July 7, 2015 16:32 output

10 Adenilton Silva et.al.

QPF1.1

.
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.

QPF1.n1

Architecture 1
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.

.

QPF1.1

.

.

.

QPF1.n2

Architecture m

input

desired

output

Performance 1.1

Performance m.n1

Performance 1.n1

Performance m.n2

Fig. 2. Superposition based framework

In a quantum computer, the framework de-

scribed in Fig. 2 can be implemented without the

hardware limitations showed in the classical imple-

mentation. Let N0, N1, · · · , Nm−1 be m quantum

operators representing neural networks with different

architectures. A quantum circuit with quantum reg-

isters architecture selector |a〉 with dlog2(m)e qubits,

input |x〉, weight |w〉 and output|o〉 can be created,

where operator Ni is applied to |x,w, o〉 if and only

if |a〉 = |i〉. In Fig. 3 this approach is illustrated with

m = 4.

|a1〉 • •
|a2〉 • •
|x〉

N0 N1 N2 N3
|w〉

Fig. 3. Circuit to create a superposition with four neu-
ral network architectures.

If the qubits in quantum registers |a〉 and |w〉 are

initialized with the quantum state H|0〉, the circuit

will be in a superposition representing all possible

weights configuration for each architecture. Initializ-

ing the quantum register |x〉 with a pattern p, it is

possible to present the pattern p to all neural network

configurations in the superposition simultaneously.

Algorithm 2 is the SAL algorithm. SAL is a

quantum-learning algorithm for any quantum neural

network model in which input |p〉, output |o〉, weights

|w〉, architecture selectors |a〉 and desired output |d〉
are represented in separated quantum registers. The

main idea of SAL algorithm is to create a superposi-

tion of all possible neural network configurations in

a finite set of architectures and apply a non-linear

quantum operator to recover the architecture and

weights of a neural network configuration with a de-

sired performance.

The Algorithm 2 initialization is performed in

Steps 1 to 6. Step 1 defines m quantum operators

representing multi-layers QPF with different archi-

tectures. Steps 2 and 3 initialize all the weights and

architecture selectors with the quantum state H|0〉.
After this step we have all possible neural network

configurations for the given architectures in super-

position. In Steps 5 and 6 quantum registers perfor-

mance and objective are initialized respectively, with

the quantum states |0〉n and |0〉.
The for loop starting in Step 7 is repeated for

each pattern p of the data set. Step 8 initializes quan-

tum registers p, o and d respectively with a pat-

tern |p〉, state |0〉 and its desired output |d〉. Step 9

presents the pattern to the neural networks, and the

outputs are calculated. In this moment, the pattern

is present to all neural networks configurations, be-

cause the weights and architecture selectors quan-

tum registers are in a superposition of all possibles

weights and architectures. In Steps 10 to 12, it is

verified for each configuration in the superposition if

the desired output |d〉 is equal to the calculated out-

put |o〉. If they match, is added the value 1 for the

performance quantum register. Step 13 is performed

to allow the initialization of the next for loop.

|a〉|w〉|performance〉|objective〉 =
∑

w∈W,
a∈A

|a〉|w〉|performance(w)〉|0〉 (27)

After the execution of the for loop, the state of

quantum registers weights w, architecture selectors

a, performance and objective can be described as in

Equation (27).
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Algorithm 2 SAL

1: Let N0, N1, · · · , Nm be quantum operators rep-

resenting multi-layers QPF with diferent archi-

tectures.

2: Create a quantum circuit where the i-th network

acts if and only if |a〉 = |i〉.
3: Initialize all weights quantum registers with the

quantum state H|0〉.
4: Initialize all architecture quantum registers with

quantum state H|0〉.
5: Initialize a quantum register |performance〉 with

the state |0〉n.

6: Initialize a quantum register |objective〉 with the

state |0〉.
7: for each pattern p and desired output d in the

training set do

8: Initialize the register p, o , d with the quantum

state |p, 0, d〉.
9: Calculate N|p〉 to calculate network output in

register |o〉.
10: if |o〉 = |d〉 then

11: Add 1 to the register |performance〉
12: end if

13: Calculate N−1|p〉 to restore |o〉.
14: end for

15: Perform a non-linear quantum search to recover

a neural network configuration and architecture

with desired performance.

Steps 1 to 14 of Algorithm 2 can be performed

using only linear quantum operators. In Step 15 a

non-linear quantum operator NQ proposed in Ref. 28

will be used. Action of NQ is described in Equa-

tion (28) if at least one |ci〉 is equal to |1〉 otherwise

its action is described in Equation (29).

NQ

(∑

i

|ψi〉|ci〉
)

=

(∑

i

|ψi〉
)
|1〉 (28)

NQ

(∑

i

|ψi〉|ci〉
)

=

(∑

i

|ψi〉
)
|0〉 (29)

The non-linear search used in step 15 is de-

scribed in Algorithm 3. The for loop in Step 1 of

Algorithm 3 indicates that the actions need to be re-

peated for each quantum bit in the architecture and

weights quantum registers. Steps 3 to 5 set the ob-

jective quantum register |o〉 to |1〉 if the performance

quantum register p is greater than a given threshold

θ. After this operation the state of quantum registers

a, w and o can be described as in Equation (30).
∑

w∈(P (a,w)<θ),
|b〉6=|i〉

|a〉|w〉|0〉+
∑

w∈(P (a,w)≥θ),
|b〉=|i〉

|a〉|w〉|1〉 (30)

Now that quantum register objective is set to 1 in

the desired configurations, it is possible to perform

a quantum search to increase the probability ampli-

tude of the best configurations.

Algorithm 3 Non-linear quantum search

1: for each quantum bit |b〉 in quantum registers

|a〉|w〉 do

2: for i = 0 to 1 do

3: if |b〉 = |i〉 and |p〉 > θ then

4: Set |o〉 to |1〉
5: end if

6: Apply NQ to |o〉
7: if |o〉 = |1〉 then

8: Apply Xi · NQ to qubit |b〉
9: Apply X to |o〉

10: end if

11: end for

12: end for

Step 6 applies NQ to quantum register |o〉. If

there is at least one configuration with |b〉 = |i〉 then

the action of NQ will set |o〉 to |1〉. In this case, Steps

7 to 10 set qubit |b〉 from a superposed state to the

computational basis state |i〉.
Algorithm 3 performs an exhaustive non-linear

quantum search in the architecture and weights

space. If there is a neural network configuration with

the desired performance in initial superposition, the

search will return one of these configurations. Oth-

erwise the algorithm does not change the initial su-

perposition and the procedure can be repeated with

another performance threshold.

The computational cost of Steps 1 and 2 of SAL

is O(m) and depends on the number of neural net-

works architectures. Steps 3 to 6 has computational

cost O(m + nw), where nw is the number of qubits

to represent the weights. The for starting in Step 7

will be executed p times and each inner line has con-

stant cost. Step 14 is detailed in Algorithm 3. Steps

3 to 9 of Algorithm 3 have constant computational

cost and it will be repeated 2 · (m+ nw) times. The
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overall cost of the SAL algorithm is O(p + m + nw)

where p is the number of patterns in the training set.

6. Discussion

Classical neural networks have limitations, such as i)

the lack of an algorithm to determine optimal archi-

tectures, ii) memory capacity and iii) high cost learn-

ing algorithms. In this paper, we investigate how to

use quantum computing to deal with limitation iii).

To achieve this objective, we define a quantum neu-

ral network model named quantum perceptron over

a field QPF and a nonlinear quantum learning al-

gorithm that performs an exhaustive search in the

space of weights and architectures.

We have shown that previous models of quan-

tum perceptron cannot be viewed as a direct quan-

tization of the classical perceptron.In other models

of quantum neural networks weights and inputs are

represented by a string of qubits, but the set of all

possible inputs and weights with inner neuron opera-

tions does not form a field and there is no guarantee

that they are well defined operations. To define QPF

we propose quantum operators to perform addition

and multiplication such that the qubits in a com-

putational basis forms a field with these operations.

QPF is the unique neuron with these properties. We

claim that QPF can be viewed as a direct quantiza-

tion of a classical perceptron, since when the qubits

are in the computational basis the QPF acts exactly

as a classical percetron. In this way, theoretical re-

sults obtained for the classical perceptron remains

valid to QPF.

There is a lack of learning algorithms to find the

optimal architecture of a neural network to solve a

given problem. Methods for searching near optimal

architecture use heuristics and perform local search

in the space of architectures as eg. trough evolution-

ary algorithms or meta-learning. We propose an al-

gorithm that solves this open problem using a nonlin-

ear quantum search algorithm based on the learning

algorithm of the NNQA. The proposed learning al-

gorithm, named SAL, performs a non-linear exhaus-

tive search in the space of architecture and weights

and finds the best architecture (in a set of previ-

ously defined architectures) in linear time in relation

to the number of patterns in the training set. SAL

uses quantum superposition to allow initialization of

all possible architectures and weights in a way that

the architecture search is not biased by a choice of

weights configuration. The desired architecture and

weight configuration is obtained by the application

of the nonlinear search algorithm and we can use

the obtained neural network as a classical neural

network. The QPF and SAL algorithm extend our

theoretical knowledge in learning in quantum neural

networks.

Quantum computing is still a theoretical possi-

bility with no actual computer, an empirical eval-

uation of the QPF in real world problems is not

yet possible, “quantum computing is far from actual

application8”. Studies necessary to investigate the

generalization capabilities of SAL algorithm through

a cross validation procedure cannot be accomplished

with actual technology.

The simulation of the learning algorithm on a

classical computer is also not possible due to the ex-

ponential growth of the memory required to repre-

sent quantum operators and quantum bits in a clas-

sical computer. Fig. 4 illustrates the relationship be-

tween the number of qubits and the size of memory

used to represent a quantum operator.

Fig. 4. Relation between the number of qubits n and
size of quantum operators with matricial representation
in R2n×2n using standard C++ floating point precision

To illustrate the impossibility of carrying out an

empirical analyses of Algorithm 2 let us consider the

number of qubits necessary to represent a percep-

tron to learn the Iris dataset43. Let N be a quan-

tum perceptron over a n-dimensional field F , then

each attribute of the dataset and each weight of the

network will be represented by n quantum bits. Iris

database has 4 real entries, then the perceptron will

have 4 weights. Excluding auxiliary quantum regis-

ters, weights and inputs will be represented by 8n

quantum bits. An operator on 8n quantum bits will

be represented by a matrix 28n × 28n. The number

of bytes required to represent a 28n×28n real matrix

using the standard C++ floating point data type is
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f(n) = 4 · (28n)2. Note that using only three quan-

tum bits to represent the weights and input data the

memory required for simulation is 1024 terabytes.

Thus the (quantum or classical) simulation of the

learning algorithm in real or synthetic problems is

not possible with the current technology.

The multilayer QPF is a generalization of a mul-

tilayer classical perceptron and their generalization

capabilities are at least equal. There is an increasing

investment in quantum computing by several com-

panies and research institutions to create a general-

purpose quantum computer an it is necessary to be

prepared to exploit quantum computing power to

develop our knowledge in quantum algorithms and

models.

If there are two or more architectures with de-

sired performance in the training set, Algorithm 3

will choose the architecture represented (or ad-

dressed) by the string of qubits with more 0’s. This

information allows the use of SAL to select the min-

imal architecture that can learn the training set.

Nonlinear quantum mechanics have been study

since the eighties44 and several neural networks mod-

els and learning algorithms used nonlinear quantum

computing45; 8; 27; 42, but the physical realizability

of nonlinear quantum computing is still controver-

sial 28; 46. A linear version of SAL needs investiga-

tion. The main difficulty is that before step 15 the to-

tal probability amplitude of desired configurations is

exponentially smaller than the probability amplitude

of undesired configurations. This is an open problem

and it may be solved performing some iterations of

“classical” learning in the states in the superposition

before performing the recovery of the best architec-

ture. Another possibility which we are investigating

is to use Closed Timelike Curves47; 48 known to make

quantum computing have the power of the complex-

ity class polynomial space (PSPACE).

7. Conclusion

We have analyzed some models of quantum percep-

trons and verified that some of previously defined

quantum neural network models in the literature

does not respect the principles of quantum comput-

ing. Based on this analysis, we presented a quan-

tum perceptron named quantum perceptron over a

field (QPF). The QPF differs from previous models

of quantum neural networks since it can be viewed

as a direct generalization of the classical perceptron

and can be trained by a quantum learning algorithm.

We have also defined the architecture of a multi-

layer QPF and a learning algorithm named Superpo-

sition based Architecture Learning algorithm (SAL)

that performs a non-linear search in the neural net-

work parameters and the architecture space simul-

taneously. SAL is based on previous learning algo-

rithms. The main differences of our learning algo-

rithm is the ability to perform a global search in the

space of weights and architecture with linear cost in

the number of patterns in the training set and in

the number of bits used to represent the neural net-

work. The principle of superposition and a nonlinear

quantum operator are used to allow this speedup.

The final step of Algorithm 2 is a non-linear

search in the architecture and weights space. In this

step, free parameters will collapse to a basis state

not in superposition. One possible future work is to

analyze how one can use the neural network with

weights in superposition. In this way one could take

advantage of superposition in a trained neural net-

work.
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