
Universidade Federal de Pernambuco
Centro de Informática

Pós-graduação em Ciência da Computação

Estimating Test Execution Effort Based on
Test Specifications

Eduardo Henrique da Silva Aranha

Tese de Doutorado

Recife
Janeiro de 2009

Universidade Federal de Pernambuco
Centro de Informática

Eduardo Henrique da Silva Aranha

Estimating Test Execution Effort Based on Test Specifications

Trabalho apresentado ao Programa de Pós-graduação em
Ciência da Computação do Centro de Informática da Uni-
versidade Federal de Pernambuco como requisito parcial
para obtenção do grau de Doutor em Ciência da Com-
putação.

Orientador: Prof. Paulo Henrique Monteiro Borba

Recife
Janeiro de 2009

Aranha, Eduardo Henrique da Silva
 Estimating test execution effort based on te st
specifications / Eduardo Henrique da Silva Aranha. -
Recife: O Autor, 2009.
 xxii, 168 p. : il., fig., tab.

 Tese (doutorado) – Universidade Federal de
Pernambuco. CIn. Ciência da Computação, 2009.

 Inclui bibliografia e apêndice.

 1. Engenharia de software. 2. Medição de softwar e.
3. Teste de software. I. Título.

 005.1 CDD (22. ed.) MEI2009 - 156

To my family.

Acknowledgements

X First of all, I would like to thank God, for giving me the strength required to complete
this important stage of my life, and my parents, wife and daughter, for their support and
patience.

X I would like to thank Paulo Borba, my advisor, for his great instructions and support
during this research.

X Thanks to the professors Cristiano Ferraz, Renata Souza and Carla Monteiro, for their
teaching and support given during this research.

X Many thanks to all professors, students and employees of the BTC Research Project and
the Software Productivity Group for their valuable comments about my work and for
their support during my empirical studies.

X Thanks to Luís Cláudio, Rogério Monteiro, Edson Fontes, André Lacerda, Alexandre
Mendonça and the other employees and scholarship holders at the CIn/Motorola program
that collaborated during this research.

X Thanks to the students Filipe de Almeida, Thiago Diniz, Vitor Fontes and Guilherme
Carvalho, for their hard work during the implementation of tools and scripts used in this
research.

X Thanks to the students Eduarda Freire, Raquel Cândida and Veristiana Carvalho, for their
help during the execution of the empirical study ES4.

X Thanks to the students André Ribeiro, Fernando Souza and Ivan Machado, for their help
during the execution of the empirical study ES5.

X Thanks to the student Roberto Ferreira, for their help during the evaluation of alternative
experimental designs for the empirical study ES6.

X The suggestions of well-known researchers in the area, such as Barry Boehm, Emilia
Mendes, Ricardo Valerdi, Andrea de Lucia and Carmine Gravino, as well as comments
from the anonymous reviewers of our papers allowed us to identify and explore several
opportunities in our research. We are grateful to them for their valuable comments.

X Thanks to the Motorola Brazil Test Center and the National Council of Technological
and Scientific Development (CNPq) for their financial support during my doctorate.

vii

Resumo

Em mercados competitivos como, por exemplo, o de celulares, empresas de software que lib-
eram produtos com baixa qualidade podem rapidamente perder os seus clientes. A fim de evitar
esse problema, essas empresas devem garantir que a qualidade dos produtos atenda a expecta-
tiva de seus clientes. Nesse contexto, testes é uma das atividades mais utilizadas para se tentar
melhorar a qualidade de um software. Além disso, o resultado da atividade de teste está sendo
considerado tão importante que em muitos casos é preferível alocar equipes exclusivamente
para exercer atividades de teste. Essas equipes de teste devem ser capazes de estimar o es-
forço exigido para exercer as suas atividades dentro do prazo ou para solicitar mais recursos
ou negociar prazos quando necessário. Na prática, as consequências de se ter estimativas ruins
são onerosas para a organização: redução de escopo, atraso nas entregas ou horas extras de
trabalho. O impacto dessas consequências é ainda maior em se tratando de execução manual
de testes.

Visando uma melhor forma de estimar esforço de execução manual de casos de teste fun-
cionais, esta pesquisa propõe e valida uma medida de tamanho de teste e de complexidade
de execução baseada nas próprias especificações dos testes, bem como um método de medição
para a métrica proposta. Além disso, diversos estudos de caso, survey e experimentos foram re-
alizados para avaliar o impacto desse trabalho. Durante esses estudos, verificamos uma melho-
ria significativa proporcionada por nossa abordagem na precisão das estimativas de esforço de
execução de testes manuais. Também identificamos fatores de custo relacionados a atividades
de execução manual de testes utilizando julgamento de especialistas. O efeito desses fatores
foram investigados através da execução de experimentos controlados, onde pudemos constatar
que apenas alguns dos fatores identificados tiveram efeito significativo. Por fim, diversas fer-
ramentas de suporte foram desenvolvidas durante essa pesquisa, incluindo a automação das
estimativas de esforço de execução de testes a partir de especificações de testes escritas em
linguagem natural.

Palavras-chave: Execução de testes, estimativa de esforço, especificação de testes, métricas
de tamanho, fatores de custo, engenharia de software experimental.

ix

Abstract

In competitive markets like the mobile phone market, companies that release products with
poor quality may quickly loose their clients. In order to avoid this, companies should ensure
that product quality conforms to their clients’ expectations. A usual activity performed to
improve quality is software testing, which is the act of exercising the software with the objective
to detect failures during its execution. In addition, software testing is being considered so
important that organizations can allocate teams exclusively for testing activities in order to
achieve unbiased test results. These test teams are usually requested to test features of different
software applications. Mainly in such situations, test teams should be able to estimate the
required effort to perform their test activities on the schedule and to request more resources or
negotiate deadlines when necessary. In practice, the consequences of making poor estimates
are costly to the organization: scope reduction, schedule overrun and overtime. The impact of
these consequences are more evident when regarding manual test execution.

In order to better estimate the effort required to execute a given tests or test suite, this re-
search proposes and evaluates a measure for test size and execution complexity based on the
test specifications written in a controlled or standardized natural language. We also define and
evaluate a measurement method for our proposed measure. Several empirical studies were ex-
ecuted to evaluate this work. The results suggests a significant accuracy improvement in effort
estimates for manual test execution. We also identified and investigated cost drivers related to
manual test execution through the use of expert judgement and designed experiments. Experts
highlighted several cost drivers, but we observed that only few of them had significative effect
on test execution effort in our studies. Finally, several tools were developed to support this re-
search, including one to automatically estimate test execution effort based on test specifications
written in natural language.

Keywords: Test execution, effort estimation, test specification, size measures, cost drivers,
empirical studies, experimental software engineering.

xi

Contents

1 Introduction 1
1.1 Problem Statement and Research Hypotheses 2
1.2 Context 3
1.3 Summary of Goals 3
1.4 Methodology 4
1.5 Summary of contributions 4
1.6 Thesis organization 5

2 Software Size Measurement Methods 7
2.1 Analysis Criteria 7
2.2 Source Lines of Code (SLOC) Counting 8
2.3 Function Points Analysis (FPA) 8

2.3.1 Critiques about FPA model construction 12
2.4 COSMIC 12
2.5 Test Points Analysis (TPA) 13
2.6 Other Measurement Methods 15
2.7 Final Considerations 15

3 State of Art in Effort Estimation 21
3.1 A General Classification for Effort Estimation Models 21
3.2 Productivity-Based Models 21

3.2.1 Average Effort or Conversion Factor 21
3.3 Statistical Models 23

3.3.1 Regression Models 23
3.4 Parametric Models 26

3.4.1 Putnam’s Software LIfe-cycle Model (SLIM) 26
3.5 Probabilistic Models 27

3.5.1 Bayesian Networks 27
3.6 Machine Learning Approaches 27

3.6.1 Decision Tree Learning 27
3.6.2 Case-Based Reasoning (CBR) 29
3.6.3 Rule Induction (RI) 29
3.6.4 Fuzzy Systems 29
3.6.5 Artificial Neural Network (ANN) 30
3.6.6 Support Vector Machines 30

xiii

xiv CONTENTS

3.7 Expert-Based Approaches 30
3.7.1 Delphi 30
3.7.2 Wideband Delphi 31
3.7.3 Other Approaches 32

3.8 Combined Techniques 32
3.8.1 COCOMO II 32
3.8.2 M5P 34

3.9 Final Considerations 34

4 Test Execution Effort Estimation 37
4.1 Research Plan 37

4.1.1 Goals 37
4.1.2 Research Questions 38
4.1.3 Research Hypotheses 38
4.1.4 Main Activities 39

4.2 Test Size and Execution Complexity 40
4.2.1 Test Specification Language 40
4.2.2 Execution Points (EP) 41

4.2.2.1 Measure Validation 42
4.2.3 Execution Points Measurement Method 43

4.2.3.1 Configuration 44
4.2.3.2 Measurement Method Automation 46
4.2.3.3 Automatic Calibration of Characteristic Weights 46
4.2.3.4 Measurement Validity 49

4.3 Estimation of Test Execution Effort 49
4.3.1 Test Productivity-Based Approach 50
4.3.2 COCOMO-Based Approach 51
4.3.3 Regression-Based Approach 51

4.4 Final Considerations 52

5 Empirical Studies 53
5.1 General Overview 53

5.1.1 Description of the empirical studies 53
5.1.2 Definition of metrics 55
5.1.3 Summary of main data analysis methods and techniques 56

5.2 Configuring a Test Execution Effort Estimation Model (ES1) 57
5.3 Evaluating Accuracy Improvement and Validity of EP (ES2) 59

5.3.1 Planning 59
5.3.2 Execution and Analysis 61
5.3.3 Validity of Execution Points 62
5.3.4 Discussion 62

5.4 Evaluating Accuracy Improvement Using Historical Data (ES3) 63
5.4.1 Planning 63
5.4.2 Execution and Analysis 64

CONTENTS xv

5.4.3 Limitations and Threats to Validity 65
5.4.4 Conclusions 65

5.5 Evaluating the Adequacy of Test Size Measures (ES4) 65
5.5.1 Research Objective 65
5.5.2 Size Measures Under Investigation 66

5.5.2.1 EP calibrated by specialists (M1) and by OLS (M2) 66
5.5.2.2 Number of test steps (M3) 66
5.5.2.3 Multiple characteristics (M4) 67

5.5.3 General Planning 67
5.5.3.1 Goal 67
5.5.3.2 Participants 68
5.5.3.3 Experimental Material 68
5.5.3.4 Tasks 68
5.5.3.5 Hypotheses, Fixed Factors and Variables 68

5.5.4 Experiment Design 69
5.5.4.1 Stage I: Collecting Data 69
5.5.4.2 Stage II: Creating Estimation Models 72
5.5.4.3 Stage III: Evaluating Estimation Accuracy 73

5.5.5 Execution and Analysis 73
5.5.5.1 Data Collected in Stage I 73
5.5.5.2 Estimation Models Created in Stage II 74
5.5.5.3 Estimation Accuracy Achieved in Stage III 75

5.5.6 Discussion 76
5.5.6.1 Evaluation of Results and Implications 76
5.5.6.2 Threats to Validity 77

5.6 Identifying Cost Drivers Related to Test Execution (ES5) 77
5.6.1 Target population and sample size 78
5.6.2 Participant selection and motivation 78
5.6.3 Questionnaire design 79
5.6.4 Methods for data analysis 79
5.6.5 Questionnaire evaluation 79
5.6.6 Data analysis 80
5.6.7 Threats to validity 81

5.7 Investigating Cost Drivers Using Designed Experiments (ES6) 81
5.7.1 Research Objectives 83
5.7.2 Context 83
5.7.3 Goal 83
5.7.4 Hypotheses, Parameters, and Variables 84
5.7.5 Investigating cost drivers related to the tested product 84

5.7.5.1 Experiment Design 85
5.7.5.2 Execution and analysis 87

5.7.6 Investigating cost drivers related to the tester profile 89
5.7.6.1 Experiment design 89

xvi CONTENTS

5.7.6.2 Execution and analysis 90
5.7.7 Discussion about the experiments results 91

5.7.7.1 Threats to Validity 92
5.7.8 Final Considerations 94

5.8 Summary of Empirical Results 94
5.9 Final Considerations 96

6 Related Work 97
6.1 Size Measures and Measurement Methods 97
6.2 Adequacy of Size Measures for Estimating Effort 98
6.3 Estimation Techniques 100
6.4 Identification of Cost Drivers and Model Calibration 101
6.5 Measurement Method Automation 101

7 Conclusions 103
7.1 Summary of Contributions 103
7.2 Impact and Limitations 105
7.3 Lessons Learned 106
7.4 Future Work 106

7.4.1 Estimating Test Execution Effort Based on Other Techniques 106
7.4.2 More Empirical Studies 106
7.4.3 Test Coverage vs. Test Execution Effort Analysis 107
7.4.4 Test Automation Effort Estimation 108
7.4.5 Test Automation vs. Manual Execution Analysis 108

A Statistical Analysis of Empirical Study ES3 111
A.1 Regression and Other Statistical Analyses for Creating Estimation Models. 111

A.1.1 Regression Analyses for Size Measure M1. 111
A.1.2 Regression Analyses for Size Measure M2. 111

A.2 Regression Analyses for Size Measure M3. 115
A.3 Regression Analyses for Size Measure M4. 116
A.4 Estimation Accuracy Achieved During the Montecarlo Experiment. 117

B Attempt to Validate Cost Drivers Using Historical Data 133
B.1 Planning 133

B.1.1 Goals, Questions, Metrics and Hypotheses 133
B.1.2 Historical Data Analysis 134

B.2 Execution 135
B.2.1 Gathering Historical Data 135
B.2.2 Stepwise Regression 136
B.2.3 Cross-validation Analysis 138

B.3 Final Considerations 140
B.3.1 Interpretation of Results 140
B.3.2 Threats to Validity 141

CONTENTS xvii

C Test Execution Effort Estimation Tool 143
C.1 Functionalities 143
C.2 Tool Architecture 144

C.2.1 Feature Model 146
C.3 Final Considerations 147

D ManualTEST: A Tool for Collecting Manual Test Execution Data 149
D.1 Manual Test Execution 149
D.2 Manual Test Execution assiSTant (ManualTEST) 151

D.2.1 Test Selection 151
D.2.2 Test Execution 151
D.2.3 Collected Data 155

D.3 Advantages and Current Limitations of ManualTEST 155
D.4 Related Tools 157
D.5 Final Considerations 157

Bibliography 159

List of Figures

3.1 The linear regression on a data set. 24
3.2 The normal (A) and the Rayleigh (B) distributions. 26
3.3 The linear regression on a data set. 28

4.1 Assigning execution points to a test case. 43
4.2 Measuring the number of execution points of a test suite. 44
4.3 Using execution points and a conversion factor to calculate test execution effort. 50

5.1 Randomized complete block design on tested products. 86
5.2 Variance of residuals versus predicted before and after log transformation. 87
5.3 Superimposing a CRD on top of a RDBD (split-plot design). 90
5.4 Statistical power for different effect sizes and number of observations. 94

7.1 Sample graph for test coverage vs. execution effort analysis. 107
7.2 Sample graph for test automation vs. execution effort analysis. 109

A.1 Regression analysis for initial model and raw data using M1. 111
A.2 Regression analysis for initial model and transformed data using M1. 112
A.3 Quadratic relationship between execution points (calibrated by experts) and the

transformed effort. 112
A.4 Regression analysis for model with quadratic effect and transformed data using

M1. 113
A.5 Some improvement in the linear relationship between the actual and the pre-

dicted effort after inclusion of the quadratic effect using M1. 113
A.6 Final regression analysis for model with measure M1 (EP-Experts). 114
A.7 Regression analysis for initial model and raw data using M2 (EP-Data). 115
A.8 Final regression analysis for model with measure M2 (EP-Data). 116
A.9 Regression analysis for initial model and raw data using M3 (Steps). 117
A.10 Regression analysis for transformed data using M3 (Steps). 118
A.11 Final regression analysis for model with measure M3 (Steps). 119
A.12 Regression analysis for initial model and raw data using M4 (Screen, Delay

and ListMap). 120
A.13 Regression analysis with transformed data and using M4 (Screen, Delay and

ListMap). 120
A.14 Regression analysis after removing Screen and Tester interaction. 121

xix

xx LIST OF FIGURES

A.15 Final regression analysis for model with the multiple measure M4 (Screen,
Delay and ListMap). 122

A.16 Analysis of MMRE distribution according to estimation models using measures
M1, M2, M3 and M4. 130

A.17 Analysis of MdMRE distribution according to estimation models using mea-
sures M1, M2, M3 and M4. 131

A.18 Analysis of PRED(25) distribution according to estimation models using mea-
sures M1, M2, M3 and M4. 132

B.1 Normal probability plot for the regression model. 139
B.2 Residual plot for the regression model. 139

C.1 Sample spreadsheet with test specification written in natural language. 143
C.2 Configuration of the characteristics used to measure test size and execution

complexity. 145
C.3 Architecture of the automated test execution effort estimation based on test

specifications. 145
C.4 Architecture of the automated test execution effort estimation based on test

specifications. 146

D.1 Sample test specification written in natural language. 150
D.2 Test selection perspective of ManualTEST. 152
D.3 Test execution perspective of ManualTEST. 153
D.4 ManualTEST at different moments: test step under execution is highlighted

and time is automatically counted as setup time or procedure execution time. 154
D.5 Test result for a single test case. 155
D.6 Detailed test result includes time spent in each test step. 155

List of Tables

2.1 Set of criteria used to evaluate software size measurement methods. 7
2.2 Official versions of the function points analysis. 9
2.3 Complexity matrix for ILFs and EIFs. 10
2.4 Weights used for data functions. 10
2.5 List of principles of the software context model defined in COSMIC. 16
2.6 List of principles of the generic software model defined in COSMIC. 17
2.7 Rules and processes used in the COSMIC measurement method. 18
2.8 Test effort distribution according to the author of Test Point Analysis. 18
2.9 Summary of the software size measurement methods reviewed in this chapter. 19

3.1 General classification of existing estimation models. 22
3.2 Cost drivers considered for COCOMO II. 34
3.3 Scale Factors for COCOMO II Early Design and Post-Architecture Models [28]. 35
3.4 Weights of Scale Factors for COCOMO II Early Design and Post-Architecture

Models [28]. 36

4.1 Example of a test procedure written in a controlled natural language. 41
4.2 Storing the time to execute each sentence (test action) of test specification TS-1. 47
4.3 Joining information about execution time and characteristics levels for each test

action. 48

5.1 Empirical studies used to answer our research questions. 54
5.2 List of characteristics identified in the Delphi panel. 58
5.3 List of cost drivers identified in the Delphi panel. 60
5.4 Improvements achieved by using execution points. 61
5.5 Descriptive statistics of the historical database used in the study. 64
5.6 Accuracy improvement achieved by using execution points (EP) against of us-

ing historical execution times (HET). 64
5.7 Example of a test procedure written in a controlled or standardized natural

language. 66
5.8 Values set for fixed factors in this experiment. 70
5.9 Variables defined for this experiment. 71
5.10 Information collected in the first part of the experiment. 72
5.11 MMRE means and 95% confidence intervals. 75
5.12 MdMRE means and 95% confidence intervals. 75
5.13 PRED(25) means and 95% confidence intervals. 76

xxi

xxii LIST OF TABLES

5.14 PRESS statistic for the models created by using each of the investigated measures. 77
5.15 Effort to answer the questionnaire. 80
5.16 Participants and response rate per test site. 80
5.17 Justifications for not responding the survey. 81
5.18 Cost drivers identified by the survey. 82
5.19 Factors and levels investigated by the experiments. 85
5.20 Treatment design matrix and aliasing structure for the principal half fraction of

a 23. 86
5.21 Results in seconds from the randomized block design on tested products∗. 88
5.22 Effect tests for the factors SW stability, HW performance and HW status. 89
5.23 Treatment design matrix of the split-plot design. 91
5.24 Results from the replicated split-plot experiment∗. 92
5.25 Effect tests for the factors D, E, F, G and their interactions. 93

6.1 Summary of EP and other software size measurement methods. 99

A.1 Person correlations between variables Effort, Keys, Screen, Delay and ListManip.118
A.2 Achieved estimation accuracy during the Montecarlo experiment. 123

B.1 Cost drivers obtained by analyzing past projects information and expert opinion. 136
B.2 Other related variables available in historical databases. 137
B.3 Mean of the MMRE, MdMRE and PRED(25) observed in the cross-validation

analysis. 140

CHAPTER 1

Introduction

In competitive markets like the mobile phone market, companies that release products with
poor quality may quickly loose their clients. In order to avoid this, companies should ensure
that their products conform to the their specifications. A usual activity performed to improve
quality is software testing, which is the act of exercising the software with the objective to
detect failures during its execution [68].

Software testing is an important activity that usually requires a significant effort. There is
a not so old rule of thumb saying that approximately 50 percent of the elapsed time and more
than 50 percent of the total cost of typical software development project is spent in testing
[104]. Although the development of new testing technologies reduced this impact over the
time, software testing still demands significant effort.

For this reason, several techniques are being developed not only to improve the effectivity
of the tests, but also to improve the test process efficiency. For instance, Model-Based Testing
(MBT) can help us to improve test coverage by automatically generating tests from software
specifications [46] [116] [109]. Although the use of MBT may reduce the costs of test design,
the effort for executing the generated tests is still significant. For instance, the use of MBT or
similar technologies to automatically generate tests usually achieves better test coverage (more
tests and more paths covered), perhaps increasing the number of tests and the effort required to
execute them, mainly when tests have to be manually executed due to restrictions such as:

• Short time to market, where the time required to automate tests is only acceptable for
software maintainance, but not for the first software release.

• Tests of multimedia (sounds, video, etc.) and hardware features that have limited support
of existing test automation frameworks.

In addition, software testing is being considered so important that organizations can allocate
teams exclusively for testing activities in order to achieve unbiased test results [35]. These test
teams are usually requested to test features of different software applications. Mainly in such
situations, test teams should be able to estimate the required effort to perform their test activities
on the schedule and to request more resources or negotiate deadlines when necessary.

A review of surveys [102] on estimation of software development effort showed the diffi-
culty to have accurate estimates. Some of the practical consequences (observed in industry and
reported by these surveys) of having poor estimates in testing projects are:

• Scope reduction: in order to keep the planned schedules and budget, only part of the tests
are executed. This means that only parts of the software will be tested, increasing the
chance of having escaped defects (defects not found during a test phase).

1

2 CHAPTER 1 INTRODUCTION

• Schedule overrun: in this case, the testing activities take more time than planned, increas-
ing the costs and delaying the delivery of software releases into the market. In some high
competitive markets, this option is not viable.

• Overtime: the testing phase is finished on schedule, but exceeding the regular working
hours. Here, the cost may be high, as well the negative impact on team motivation.

All these consequences are costly and should be avoided.

1.1 Problem Statement and Research Hypotheses

Although the use of MBT or similar technologies can help us to reduce the test design effort,
the effort to execute these tests is still significative, mainly when they have to be executed
manually. To avoid the consequences of having poor estimates, the effort required for executing
tests manually should be properly estimated by managers of independent test execution teams.
For that, it is necessary to have good measures related to test execution effort and accurate
estimation models.

Several estimation approaches and models have been proposed over the years for estimating
software development effort [27], such as Function Point Analysis (FPA) [49] and COCOMO
[28]. Regarding testing effort, Test Point Analysis [105] is an approach similar to FPA used for
estimating the effort of the whole testing activities of a given information system. Although
effort estimates for the whole development and testing activities are important, they are not
much useful for managers of independent test execution teams, since these estimates are not
appropriate to determine the effort that will be spent by test teams for providing their services:
execution of specific set of tests, according to what need to be tested in the software, etc. For
this reason, test execution effort estimates made by test managers are usually based on historical
averages (usually imprecise) or expert judgment (generally subjective and not repeatable) [19],
leading to the practical consequences mentioned above.

Also, there are several software development cost drivers (factors that have significant im-
pact on development costs, such as developer experience and software complexity) reported in
several papers and used by several software development estimation models to increase effort
estimation accuracy, but few of them are related to test execution. In fact, some cost drivers for
test execution can also be particular to specific industrial settings.

In summary, our research hypotheses are:

• It is possible to have a sound measure for the size and execution complexity of test
specifications;

• The use of such measure will improve the estimation accuracy of manual test execution
effort;

• By regarding cost drivers related to manual text execution, we will also improve the
estimation accuracy of manual test execution effort;

• The measurement of test size and execution complexity and the estimation of manual test
execution effort can be automated, reducing the costs of this approach.

1.2 CONTEXT 3

1.2 Context

This work is part of a multi-disciplinary research initiative [136] in partnership with Motorola
Industrial Ltda., an important software industry on the mobile application domain for devel-
oping new software testing technologies, such as the automatic generation of tests based on
software specifications. In particular, the focus of this research is to increase the accuracy of
test execution effort estimates and to automate the estimation process. In this way, we want to
be able not only to automatically generate test specifications, but also to automatically estimate
the effort required to execute tests manually.

In this work, we consider big organizations with dedicated and independent test execution
teams (more than 10 testers per team, for instance) executing functional tests manually for
several software development teams, since we observed that these teams are more impacted by
the investigated problem and usually are responsible for most part of the total testing effort of a
project. For this reason, we do not investigate in this work the effort estimation for other related
testing activities, such as test design, setup of test environment and defect tracking. Also, each
manual test execution on the mobile application domain usually requires the participation of
only one tester, which means that the effort in man-hours required to execute a test is usually
the time required to execute it.

Finally, we consider that software development teams request the services provided by test
execution teams when they deploy internal or commercial software releases. Hence, test execu-
tion effort estimates should be performed when these requests arrive. We also consider that the
tests for the product are already written in a more structured natural language (by model-based
testing tools or by manual test design) and only a subset of the tests will be executed, according
to the functionalities created and modified in the current software release.

1.3 Summary of Goals

This research has the objective of creating an estimation approach that can be used for esti-
mating the effort to execute a given test case or test suite. This novel estimation approach is
also intended to improve the estimation accuracy achieved for estimating manual test execution
effort when using current estimation practices (historical averages, etc.).

To achieve our main objective, this research has the goal of proposing a measure for test
size and execution complexity based on test specifications written in natural language. As size
is usually the most important variable in estimation models [29], this proposed measure should
improve the accuracy of test execution effort estimates. We also need to define and evaluate a
measurement method for the proposed measure.

To better improve the accuracy of the estimation of manual test execution effort, we want
to regard not only the size and execution complexity of test specifications, but also the effect
of cost drivers related to test execution. Hence, we also have the goal of identifying these cost
drivers and investigating their effects on test execution effort. Finally, we want to calibrate and
evaluate our proposed estimation approach through empirical studies on the mobile application
domain.

4 CHAPTER 1 INTRODUCTION

1.4 Methodology

Size is usually the most important and most used variable in effort estimation models. Hence,
it is important to know how to measure software size. For this reason, we first review the
existing measurement methods of software size. Since we want to propose a better way to
estimate test execution effort, we also review the existing software effort estimation models
described in the literature. Then, we define a size measure and a measurement method for test
size and execution complexity. During our empirical studies, this measure is evaluated in terms
of validity of construction, practical use and benefits for the accuracy of test execution effort
estimation.

We define some test execution effort estimation models based on our proposed measure of
test size and execution complexity and the existing estimation model techniques. After that, we
run a sequence of empirical studies to identify the relevant variables to include in the proposed
test execution effort estimation models, to evaluate them and the achieved accuracy. We eval-
uate the relevance of some cost drivers for executing tests by observing their impact on effort
when considering different test scenarios. Finally, to achieve better precision in our empirical
studies, we develop specific tools to support the collection and analysis of test execution data.

1.5 Summary of contributions

During this research, we produced the following contributions:

• The proposal and evaluation of a measure for test size and execution complexity that is
based on test specifications written in natural language. This characteristic supports the
estimation of the effort to execute a given set or subset of functional tests only based on
their specifications, being applicable even for tests never executed before.

• The definition and implementation of an automated measurement method for sizing test
specifications.

• The proposal and evaluation of an estimation approach based on our proposed measure
for test size and execution complexity.

• Use of systematic methods for configuring the proposed measurement method for spe-
cific application domains, which includes the identification and weighting of character-
istics in test specifications that better explain test execution effort.

• Use of systematic methods for identifying and weighting cost drivers related to test exe-
cution that can be particular to specific industrial settings.

• The configuration of the proposed measurement method and the investigation of cost
drivers related to test execution for the mobile application domain.

• The development of a tool for measuring test size and for estimating test execution effort
based on the test specifications.

1.6 THESIS ORGANIZATION 5

1.6 Thesis organization

The remaining of this document is organized as follows:

• Chapter 2 presents a review of software size measurement methods. It shows the main
software size measures and measurement methods that were proposed in the literature
and used in well-known software estimation models.

• Chapter 3 presents a review of existing effort estimation models. This review is mainly
based on books and papers that describe and compare estimation techniques, reporting
their advantages and limitations.

• In Chapter 4, we present the overall planning of our research, as well the development of
a measure for test size and execution complexity and estimation models for test execution
effort based on the proposed measure.

• Chapter 5 presents the planning, execution and results of our empirical studies used to:
evaluate our proposed size measure for test size and execution complexity; evaluate the
accuracy of estimation models for test execution effort when using our proposed measure;
identify cost drivers for test execution and investigate their effects on test execution effort.

• Chapter 6 relates this research to other works found in literature.

• Chapter 7 presents the final conclusions of this work, presenting opportunities for future
work.

CHAPTER 2

Software Size Measurement Methods

Size is usually the most important and most used variable in effort estimation models [29]. In
this chapter, we show the main software size measures and measurement methods that were
proposed and used in software estimation models.

2.1 Analysis Criteria

To analyze the different software size measurement methods reported in the literature, we de-
fined the criteria shown in Table 2.1. These criteria represent characteristics that should be
considered when selecting a software size measure for estimating effort based on the project
size.

Table 2.1 Set of criteria used to evaluate software size measurement methods.

Criterion Description
Artifact Type of artifact that is measured.
Attribute What characteristic of the artifact is being measured.
Restriction Any restriction that is applicable to the measured artifact.
Availability Phase or time where the artifacts are available and the met-

ric can be collected.
Standardized Describe if there are well-defined measurement procedures

and a consensus (standard) in the community.
Deterministic Describe if different people can obtain different results

when measuring the same artifacts.
Measurement cost The cost to obtain the measure.
Calibration cost The cost to calibrate the measurement method, if necessary.
Required background Describe if there is any dependency of expertise for ensure

the quality of the measure/measurement method.
Automation Capability of the measurement method to be automated.
Validity Describe if there is any critique about the validity of the

measure.

The main sources used to find the presented software size measures and measurement meth-
ods were books, papers and surveys related to software metrics and effort estimation models.

7

8 CHAPTER 2 SOFTWARE SIZE MEASUREMENT METHODS

2.2 Source Lines of Code (SLOC) Counting

There are two types of SLOC, the Physical SLOC and the Logical SLOC [113]. Physical SLOC
depends on the style and format of the programming language. It may include comments and
blank lines and it is easer to count. Logical SLOC attempts to measure only the number of
statements and it is harder to count. Some advantages of SLOC are:

• The counting can be automated, although the tools are usually developed for specific
languages due to their different syntaxes and structures. Examples of tools are the Code-
Counter [39] and SLOCCount [130].

• It is an intuitive metric, since bigger programs have more SLOCs than smaller ones.

However, there are also some problems with SLOC:

• The number of SLOCs is dependent upon the skill level of the programmer. For instance,
skilled programmer may write fewer lines of code for the same functionality when com-
pared to a beginner programmer.

• For the same application, the support of the programming language (structures, instruc-
tions, etc.) affect its number of SLOCs.

• Lack of counting standards. A recent initiative is trying to define what to consider when
counting SLOCs [108].

• It is difficult to have early estimates of the total number of SLOCs of the application to
be developed [83][103].

• The use of code generators can automatically generate a great amount of source code,
reducing the correlation between SLOC and development effort.

2.3 Function Points Analysis (FPA)

Function point [9] was developed by Allan Albrecht of IBM as a standardized metric for mea-
suring the functions of a software application from the user’s point of view. It provides a
technology independent estimate of the size of the final program, since it is related to specifica-
tions rather than code. His first publication about FP was in 1979 [7] and an extended version
was published in in 1983 [9]. Then, in 1984, the International Function Point Users Group
(IFPUG) [57] was set up to clarify the rules, set standards, and promote their use and evolution.

In industry, Function Points Analysis (FPA) is one of the most known measurement process
used for measuring software size based on the software specification [49] [82]. Since its initial
description in 1979, this method was evolved as shown in Table 2.2. More details about the
improvements found in each version can be seen in [5]. In addition, IFPUG Functional Points
Analysis is an ISO certified functional sizing method.

FPA measures function points in 7 steps [49] that are described next.

2.3 FUNCTION POINTS ANALYSIS (FPA) 9

Table 2.2 Official versions of the function points analysis.

Year Version
79 Albrecht 79 [7]
83 Albrecht 83 [9]
84 GUIDE 84 [8]
86 IFPUG Release 1.0 [58]
88 IFPUG Release 2.0 [59]
90 IFPUG Release 3.0 [60]
94 lFPUG Release 4.0 [61]

Step 1: Determine the type of counting.

Three different types of function point counts were defined to represent the three major
types of software projects:

• Development: this type of count is associated with the development of new software
applications.

• Enhancement: this type of count tries to size the enhancements to be done in applications
already in production.

• Application: this type of count is done on applications already developed, usually as a
“baseline count".

Step 2: Identify the counting scope and application boundary.

The counting scope is determined by the purpose of the count, identifying the systems,
applications or parts of applications that will be sized. The application boundary is the border
between what is being measured and external applications and users.

Step 3: Identify all data functions and their complexity.

The data functions are classified as Internal Logical Files (ILF) and External Interface Files
(EIF). ILF is a group of logically related data or control information that is perceived by the
user and maintained inside the application boundary. EIF is a group of logically related data
or control information that is perceived by the user but maintained inside the boundary of
another application. For instance, an EIF counted for an application may be an ILF for another
application.

FPA defines guidelines to identify ILFs and EIFs. Then, their complexity are calculated by
counting the number of Data Element Types (DET) and Record Element Types (RET). DETs
are unique user-recognizable non-repeatable fields or attributes. RETs are user-recognizable

10 CHAPTER 2 SOFTWARE SIZE MEASUREMENT METHODS

subgroups of data elements contained whitin ILFs or EIFs. There are also guidelines defined to
identify DETs and RETs in the FPA documentation.

The complexity of the data functions are given in a Low, Average and High scale, according
to the counts of DETs and RETs (see Table 2.3). Then, these ordinal values are transformed in
numerical values as presented in Table 2.4. To illustrate this transformation, let us suppose the
counts RETs=7 and DETs=3 for a given data function. According to Table 2.3, the complexity
of this data function is rated as Average. For an ILF data function, this result corresponds to
the weight 10 (see Table 2.4).

Table 2.3 Complexity matrix for ILFs and EIFs.

RETs
DETs

1-19 20-50 > 50
1 Low Low Average

2-5 Low Average High
> 5 Average High High

Table 2.4 Weights used for data functions.

Rating
Weights

ILF EIF
Low 7 5

Average 10 7
High 15 10

Step 4: Identify all transaction functions and their complexity.

Transaction functions perform update, information retrieval, output and so forth. They are
classified in External Inputs (EI), External Outputs (EO) or External Inquiries (EQ). EIs are
elementary processes that process data or control information entered from the outside of the
application boundary. EOs are elementary processes that generate data or control information
to outside of the application boundary. EQs are elementary processes that retrieve data or
control information from ILFs or EIFs to the outside of the application boundary.

DETs and File Types Referenced (FTR) are used to determine the transaction function
complexity. FTR is the number of files referenced or updated in the transaction. There are
other tables (see [49]) similar to Tables 2.3 and 2.4 with the complexity matrix and weigths for
EIs, EOs and EQs.

Step 5: Determine the unadjusted function point count.

2.3 FUNCTION POINTS ANALYSIS (FPA) 11

The unadjusted function point count is the sum of the points assigned to data functions and
transactions functions.

Step 6: Determine the value adjustment factor.

The value adjustment factor (VA) summarizes 14 General System Characteristics (GSC)
defined by FPA. When applied, the value adjustment factor can adjusts the functional size
by a maximum adjustment of ±35% to produce the adjusted function points (AFP). This is
considered one limitation of the FPA measurement method.

The list of GSCs includes complex processing, reusability, installation ease and the devel-
opment in multiple sites. Each GSC is evaluated on a scale of 0 to 5. This value is called
degree of influence. The sum of all GSC rates is called Total Degree of Influence (TDI). VAF
is calculated based on the following formula:

VAF = (T DI ∗0.01)+0.65 (2.1)

Step 7: Calculate the adjusted function point count.

Finally, the adjusted function point count is calculated by multiplying the number of unad-
justed function points by the value adjustment factor (VAF).

According to Garmus and Herron [49], counting points with FPA has the following advan-
tages:

• It is a language and implementation-independent metric.

• Available at an early stage of the software development cycle, since it is based on the
software specification.

• It has an international and independent group promoting its use and evolution.

However, there are also some problems in this approach:

• The reasons for the assignments of specific values (weights) are not clear.

• Lack of a clear definition. As we can see in [4], different authors had different interpreta-
tions of FP: a measure of size, productivity, complexity, functionality or user deliverables.

• The expertise in the assessment of complexity, the interpretation of the specification,
value judgments, perception of the object boundaries and other aspects may causes a
variation in the counts. Experience in the application of function points is then an impor-
tant factor in their successful application [83].

12 CHAPTER 2 SOFTWARE SIZE MEASUREMENT METHODS

2.3.1 Critiques about FPA model construction

The validity of Function Points Analysis (FPA) with respect to the measurement theory was
questioned by several researchers. In [4], the authors suggested that the function points in-
terpretation should be reconsidered from a measurement perspective, addressing issues in the
expert judgments and measurement scales and transformations throughout the measurement
steps.

Barbara Kitchenham discussed in [72] about problems in the model construction. She
pointed that absolute scale counts are reduced to ordinal scale measures and, for this reason,
you can no longer apply other transformations to make them interval or ratio scale. Formally,
we cannot add the label “simple" to the label “complex", even when using numbers (3, 5, etc.)
as a synonym for them. Also, since we cannot multiply or divide a ordinal value, we cannot
convert them to productivity measures.

Another reported problem with function points is the technology adjustment factor, that is
based on a subjective assessment of 14 project factors on a six-point ordinal scale. In addition,
some researchers found correlations between Albrecht function point elements. Actually, [73]
and [66] found different correlations, suggesting that predictive models based on the sum of the
elements will not be stable for different datasets [72]. Also, Kitchenham and Känsälä identified
that some function point elements were not related to effort [73].

For instance, they verified that an effort prediction model based on only two function point
elements (input function points and output function points) had a similar performance of an
effort model based on total function points. Also, the authors achieved almost the same result
using stepwise regression and raw counts of the number of files instead of the total function
points.

Another criticism is about the low interrater reliability of FP counts. Interrater reliability
is the extent to which two or more individuals agree. In this case, the extent to which two
individuals measuring the size of the same system using FPA would generate the same FP
count. However, the function points measurement interrater reliability appears to be sufficiently
high, posing no practical barrier to their adoption in the industry [71].

2.4 COSMIC

COSMIC [41] [133] is a method for measuring COSMIC Function Points (CFP) that is consid-
ered the new generation of functional sizing [137]. It was developed in the COSMIC (Common
Software Measurement International Consortium) project and it is an attempt to solve the prob-
lems of its main predecessor, FPA.

Its official documentation [41] includes the types of software for which the method has
been designed to measure functional size (domain of applicability), the software models used
for measurement and the COSMIC measurement process. COSMIC Functional Points Analysis
is also an ISO certified functional sizing method [62].

Using COSMIC, we measure the functional size of a piece of software in three distinct and
related phases:

1. Setting the measurement strategy using the principles of the Software Context Model

2.5 TEST POINTS ANALYSIS (TPA) 13

(Table 2.5), establishing:

• The purpose of the measurement.

• The scope of each piece of software to be measured;

• The functional users and the boundary of each piece of software.

• The required level of granularity for the measurements.

2. Mapping the artifacts of the software to be measured onto the Generic Software Model
(Table 2.6), which includes the following steps:

• Identify the events of the functional users that the software must respond and then
the functional processes.

• Identify the data movements (Entries, Exits, Reads and Writes) of each functional
process and data groups that are moved.

3. Measuring the specific elements of this model using a defined set of rules and processes.

Basically, the COSMIC size measurement is based on the following principle:

“The functional size of a piece of software is directly proportional to the number of its
data movements.” (COSMIC Method, Version 3.0 [41])

Also, the measurement rules and process follows the characteristics listed in Table 2.7.
In addition to the same advantages of FPA, the COSMIC measurement method of functional

size does not classify data using an ordinal scale. Also, it does not include weights to represent
software complexity. For these reasons, it does not have most of the problems reported against
of FPA. However, we did not found any published work that demonstrated the validity of the
measure with respect to measurement theory.

2.5 Test Points Analysis (TPA)

Test Point Analysis (TPA) is method to measure the volume of testing work to be undertaken
in a software development project [105]. This volume of work is expressed in a unit-of-work
called Test Points (TP). The TPA measurement method is an extension of Function Point Anal-
ysis for the testing development phase.

The total number of test points of an information system is calculated by adding the number
of test points necessary for testing the dynamic and the static measurable (testable) quality
characteristics of the system.

Dynamic Test Points

The number of test points necessary for testing the dynamic measurable quality character-
istics of the system assigned to each function of the system includes:

14 CHAPTER 2 SOFTWARE SIZE MEASUREMENT METHODS

• The number of function points assigned to it using an adaptation of FPA or other two
alternative models (FP).

• Influential factors divided into two categories:

– Function-dependent (D f): user-importance (Ue), usage-intensity (Uy), interfacing
(I), complexity (C) and uniformity (U).

– Quality requirements related to the dynamic quality characteristics to be tested
(Qd): suitability, security, usability and efficiency.

All function-dependent factors are rated in Low, Average or High according to some guide-
lines. Different weigths are associated for each factor. The following formula is used to calcu-
late D f :

D f =
Ue+Uy+ I +C

20
∗U (2.2)

where 20 is the sum of all nominal rate values of Ue, Uy, C and I.
The factors related to quality requirements are rated in 0, 3, 4, 5 or 6, according to is

importance in the project. Qd is calculated as follows. The rating for each factor is divided by
four (the nominal rating), then multiplied by a weighting factor. Finally, Qd is the sum of all
these values added together.

Finally, the number of dynamic points of a function (T Pf) is obtained by the following
formula:

T Pf = FPf ∗D f ∗Qd (2.3)

where FPf is the number of function points assigned to the function f of the information
system.

Static Test Points

The static measurable quality characteristics (Qi) are based on the ISO 9126 quality char-
acteristics [63]. For each quality characteristic to be observed during the test, the value sixteen
is added to the Qi factor rating.

Total Test Points

Finally, the total number of test points of an information system is calculated by the follow-
ing formula:

T P = ΣT Pf +
FP∗Qi

500
(2.4)

TPA includes an effort estimation model similar to the used in Function Point Analysis.
It defines environment factors (test tools, test environment, development environment, etc.)

2.6 OTHER MEASUREMENT METHODS 15

that should be rated according some guidelines. The sum of these environment factors is then
multiplied by the total number of test points. This adjusted counting is then multiplied by the
current test productivity (number of test hours required per test point). The author suggested
that the productivity is generally a value between 0.7 and 2.0.

The result of a TPA is an estimate for the complete test process, excluding test planning.
An effort distribution between phases can be done using historical data. According to his
experience, the author reported the following effort distribution:

Although the author makes not clear how this model was built and calibrated, this model
appears to have the same problems of FPA cited in 2.3.1. Also, we did not found any published
work reporting the use of this model and presenting results from empirical studies, achieved
accuracy, etc. For instance, there is no reference about in which situations this model was
applied. For instance, the effort distribution shown in Table 2.8 may vary significatively when
using MBT [116], since the test design effort can be reduced.

2.6 Other Measurement Methods

There are other extensions of function points analysis. MkII FPA [64] and NESMA FSM [107]
are variations of FPA that are also certified by ISO as international functional size measurement
standards. FAST Function Points [128] is an extension that tries to optimize the counting steps
in order to reduce counting effort.

The Use Case Point Analysis (UCP) [101] is an extension of FPA and estimates the size of
a system based on use case specifications. Object-Counts and Object-Points are object-based
output measures [23].

Finally, we can count the number of tests in a test suite and the number of test procedures
in test specifications. These two measures can be used to estimate respectively the size of a test
suite and the size of a test specification.

2.7 Final Considerations

This chapter presented the software size measurement methods more related to this work, which
includes SLOC Counting, Function Points Analysis, COSMIC, Test Point Analysis and others.
Each metric has its specifics advantages and limitations. For instance, SLOC is difficult to
estimate in an early stage of development and FPA has several critiques about its construc-
tion process. Table 2.9 summarizes the main characteristics of these measurement methods
according to the criteria defined in Section 2.1.

In the next chapter, we review the existing estimation models and after that we present our
proposed test size measure and its measurement method in Chapter 4.

16 CHAPTER 2 SOFTWARE SIZE MEASUREMENT METHODS

Table 2.5 List of principles of the software context model defined in COSMIC.

Principles of the Software Context Model

• Software is bounded by hardware.

• Software is typically structured into layers.

• A layer may contain one or more separate ’peer’ pieces of software and any one
piece of software may further consist of separate peer components.

• Any piece of software to be measured, shall be defined by its measurement scope,
which shall be confined wholly within a single layer.

• The scope of a piece of software to be measured shall depend on the purpose of the
measurement.

• The functional users of a piece of software shall be identified from the functional
user requirements of the piece of software to be measured as the senders and/or
intended recipients of data.

• A piece of software interacts with its functional users via data movements across a
boundary and the piece of software may move data to and from persistent storage
within the boundary.

• The functional user requirement (FUR) of software may be expressed at different
levels of granularity.

• The level of granularity at which measurements should normally be made is that of
the functional processes.

• If it is not possible to measure at the level of granularity of the functional processes,
then the FUR of the software should be measured by an approximation approach
and scaled to the level of granularity of the functional processes.

2.7 FINAL CONSIDERATIONS 17

Table 2.6 List of principles of the generic software model defined in COSMIC.

Principles of the Generic Software Model

• The application receives input and produces output (or another outcome) for the
functional users.

• Functional user requirements can be mapped into unique functional processes.

• Each functional process consists of sub-processes.

• Sub-processes are data movements or a data manipulations.

• Events cause functional users to trigger a functional process by an Entry data move-
ment.

• A data movement moves a single data group.

• A data group consists of a unique set of data attributes that describe a single object
of interest.

• There are four types of data movement:

– An Entry moves a data group into the software.

– An Exit moves a data group out of the software.

– A Write moves a data group from the software to persistent storage.

– A Read moves a data group from persistent storage to the software.

• A functional process shall include a minimum of two data movements, including at
least one Entry data movement and either a Write or an Exit data movement.

• For measurement purposes, data manipulation subprocesses are not separately mea-
sured. It is assumed to be accounted for by the data movement with which it is
associated.

18 CHAPTER 2 SOFTWARE SIZE MEASUREMENT METHODS

Table 2.7 Characteristics of the rules and processes used in the COSMIC measurement method.

Characteristics

• 1 CFP (COSMIC Function Point)is equivalent to a single data movement.

• The functional size of a functional process is defined as the arithmetic sum of the
number of its constituent data movements .

• The functional size of any required functional change(s) to a piece of software is
by convention the arithmetic sum of the number of its data movements that must be
added, modified and deleted as a consequence of the required change(s).

• The minimum functional size for a single functional process is 2 CFP, because the
smallest functional process must have at least one Entry (as input), and either one
Exit (as output) or one Write (as an alternative useful outcome). As a change may
affect only one data movement, it follows that the minimum size of a change to a
functional process is 1 CFP.

Table 2.8 Test effort distribution according to the author of Test Point Analysis.

PHASE EFFORT DISTRIBUTION
Preparation 10%

Specification 40%
Execution 45%

Completion 5%
TOTAL 100%

2.7 FINAL CONSIDERATIONS 19
Ta

bl
e

2.
9

Su
m

m
ar

y
of

th
e

so
ft

w
ar

e
si

ze
m

ea
su

re
m

en
tm

et
ho

ds
re

vi
ew

ed
in

th
is

ch
ap

te
r.

SL
O

C
FP

A
C

O
SM

IC
T

PA
N

o.
of

Te
st

s
N

o.
of

st
ep

s
A

rt
ifa

ct
So

ur
ce

co
de

R
eq

ui
re

m
en

ts
R

eq
ui

re
m

en
ts

R
eq

ui
re

m
en

ts
Te

st
su

ite
Te

st
sp

ec
ifi

ca
tio

n
A

ttr
ib

ut
e

A
pp

lic
at

io
n

si
ze

an
d

co
m

pl
ex

ity
A

pp
lic

at
io

n
si

ze
an

d
co

m
pl

ex
ity

A
pp

lic
at

io
n

si
ze

an
d

co
m

pl
ex

ity
Vo

lu
m

e
of

te
st

Te
st

su
ite

si
ze

Te
st

si
ze

R
es

tr
ic

tio
n

L
an

gu
ag

e
sp

ec
ifi

c
R

eq
ui

re
m

en
ts

w
ri

tte
n

as
us

e
ca

se
s

A
va

ila
bi

lit
y

A
ft

er
im

pl
em

en
ta

-
tio

n
A

ft
er

re
qu

ir
em

en
t

sp
ec

ifi
ca

tio
n

A
ft

er
re

qu
ir

em
en

t
sp

ec
ifi

ca
tio

n
A

ft
er

re
qu

ir
e-

m
en

t
sp

ec
ifi

ca
-

tio
n

A
ft

er
te

st
sp

ec
ifi

-
ca

tio
n

A
ft

er
te

st
sp

ec
ifi

ca
tio

n

St
an

da
rd

iz
ed

T
he

re
is

so
m

e
w

or
k

in
pr

og
re

ss
Y

es
Y

es
Y

es
Y

es
Y

es

D
et

er
m

in
is

tic
Y

es
N

o,
re

su
lt

de
pe

nd
s

on
th

e
ex

pe
rt

is
e

in
th

e
m

ea
su

re
m

en
t

m
et

ho
d

N
o,

re
su

lt
de

pe
nd

s
on

th
e

ex
pe

rt
is

e
in

th
e

m
ea

su
re

m
en

t
m

et
ho

d

N
o,

re
su

lt
de

-
pe

nd
s

on
th

e
ex

pe
rt

is
e

in
th

e
m

ea
su

re
m

en
t

m
et

ho
d

Y
es

Y
es

M
ea

su
re

m
en

t
co

st
N

on
e

fo
r

la
ng

ua
ge

s
su

pp
or

te
d

by
to

ol
s

H
ig

h,
si

nc
e

th
er

e
is

a
lo

to
fm

an
ua

le
ff

or
t

V
er

y
hi

gh
,

si
nc

e
th

er
e

is
a

lo
t

of
m

an
ua

l
ef

fo
rt

an
d

it
is

m
or

e
ab

st
ra

ct
m

et
ho

d

H
ig

h,
si

nc
e

th
er

e
is

a
lo

to
f

m
an

ua
l

ef
fo

rt

N
on

e
w

he
n

su
p-

po
rt

ed
by

to
ol

s
N

on
e

w
he

n
su

pp
or

te
d

by
to

ol
s

C
al

ib
ra

tio
n

co
st

N
ot

re
qu

ir
ed

Si
gn

ifi
ca

nt
,

bu
t

no
t

re
qu

ir
ed

Si
gn

ifi
ca

nt
,

bu
t

no
t

re
qu

ir
ed

Si
gn

ifi
ca

nt
,

bu
t

no
tr

eq
ui

re
d

N
ot

re
qu

ir
ed

N
ot

re
qu

ir
ed

R
eq

ui
re

d
ba

ck
go

un
d

N
on

e
w

he
n

su
p-

po
rt

ed
by

to
ol

s
K

no
w

le
dg

e
in

th
e

m
ea

su
re

m
en

tm
et

ho
d

an
d

m
ea

su
re

d
ap

pl
i-

ca
tio

n

K
no

w
le

dg
e

in
th

e
m

ea
su

re
m

en
tm

et
ho

d
an

d
m

ea
su

re
d

ap
pl

i-
ca

tio
n

K
no

w
le

dg
e

in
th

e
m

ea
su

re
-

m
en

t
m

et
ho

d
an

d
m

ea
su

re
d

ap
pl

ic
at

io
n

N
on

e
N

on
e

A
ut

om
at

io
n

Y
es

N
o

N
o

N
o

Y
es

Y
es

V
al

id
ity

Sa
m

e
ap

pl
ic

at
io

n
ca

n
be

im
pl

em
en

te
d

w
ith

si
gn

ifi
ca

nt
di

ff
er

en
t

SL
O

C
,

de
pe

nd
in

g
on

th
e

la
ng

ua
ge

,
de

ve
lo

pe
r,

et
c.

T
he

re
ar

e
se

ve
ra

lc
ri

-
tiq

ue
s

(s
ee

Se
ct

io
n

2.
3.

1)

R
es

ul
t

de
pe

nd
s

on
w

ho
is

m
ea

su
ri

ng
Pr

ob
le

m
s

si
m

ila
r

to
FP

A
Te

st
s

ca
n

ha
ve

si
gn

ifi
ca

nt
ly

di
ff

er
en

t
si

ze
s

an
d

co
m

pl
ex

ity

St
ep

s
ca

n
ha

ve
si

gn
if

-
ic

an
tly

di
ff

er
en

t
ex

ec
u-

tio
n

co
m

pl
ex

iti
es

.
Sa

m
e

te
st

ca
n

ha
ve

di
ff

er
en

t
m

ea
su

re
s

de
pe

nd
in

g
on

th
e

le
ve

l
of

de
ta

il
us

ed
by

th
e

te
st

de
si

gn
er

CHAPTER 3

State of Art in Effort Estimation

As presented in Chapter 1, we aim to develop and evaluate models that can be used for estimat-
ing test execution effort. This chapter presents the state of art in estimation models, including a
general classification for the existing models. Due to the large number of models, we comment
here only the models more related to our context.

3.1 A General Classification for Effort Estimation Models

There are several papers and books in the literature classifying and describing existing estima-
tion models and techniques, such as [27], [67], [102], [110] and [125]. As discussed in [27],
no single estimation technique can be considered the best for all situations. For this reason, it
is important to know the strengths and limitations of these techniques to better select them to
produce more realistic estimates.

We present in Table 3.1 a general classification that we considered appropriate for clas-
sifying existing software estimation models. Then, we overview the most related estimation
models in the next sections, mainly those more close to our research: average effort, regression
analysis, Delphi and COCOMO models.

3.2 Productivity-Based Models

A simple way to estimate effort is to analyze productivity in historical databases, which is
calculated observing the relation between the outputs (what is produced) and inputs (demanded
effort). Although very limited, this method for making estimates is still being used in the
practice, probably due to its simplicity and lack of viable alternatives.

This estimation approach has a significant limitation. Estimates are accurate only if the
variance of the test productivity is small, that is, the productivity is almost constant. In other
words, there is no other variables, such as the environment factors, influencing the effort.

3.2.1 Average Effort or Conversion Factor

This method uses historical average effort for doing activities (usually mean effort) as the basis
for new estimates. For instance, we can estimate the time for executing tests based on the test
productivity in previous projects using the following equation:

21

22 CHAPTER 3 STATE OF ART IN EFFORT ESTIMATION

Table 3.1 General classification of existing estimation models.
Classification Description Example of Models
Productivity-
Based

Simple models that are based only on the his-
torical relation between output and input (e.g.,
SLOCs written per hour)

Average effort
Conversion factor

Parametric Models with mathematical algorithms or para-
metric equations. The parameters are usually
related to the project under estimation.

COCOMO 81
SLIM

Statistical Models created by using statistical techniques. Regression models
Probabilistic Models created by using probabilistic tech-

niques.
Bayesian networks

Learning-
Oriented

Models create by using machine learning tech-
niques

Decision tree learn-
ing
Case-Based Reason-
ing
Rule Induction
Neural Networks
SVM

Expert-Based Uses expert judgement for making estimates. Delphi
Wideband Delphi
Planning Game
Planning Poker
WBS

Combined
Techniques

Models created by a combination of techniques. COCOMO II
MP5 algorithm

E f f ort = Ncurrent ∗
ExecutionTimepreviousNprevious

where:

– E f f ort is the estimated effort to execute the tests of the current project.

– Ncurrent is the number of tests of the current project.

– Nprevious is the number of tests of the previous project.

– ExecutionTimeprevious is the effort spent on executing tests of the previous project.

In this case, the effort is estimated by regarding the mean effort to execute a test. The
generated estimates can be accurate only if productivity is almost constant.

3.3 STATISTICAL MODELS 23

This is also the approach used by Test Point Analysis (TPA) [105] and some other function
points-based models. A conversion factor is calculated based on the inverse of productivity and
it is used according to the following equations:

E f f ort = Points∗CF

CF =
E f f ortprevious

Pointsprevious

where:

– E f f ort is the estimated effort to run the project.

– Points is the number of points calculated for the current project.

– Pointsprevious is the number of points calculated for the previous project.

– E f f ortprevious is the effort spent on running the previous project.

3.3 Statistical Models

3.3.1 Regression Models

Regression analysis [53] is a statistical technique that investigates and models the relationship
between dependent and independent variables. An independent variable is an input to an esti-
mation model and it is also known as a predictor variable. In its turn, a dependent variable is
an output of an estimation model. It has this name because its value depends on the value of
the predictors variables. Dependent variables are also known as response variables.

The relationship between dependent and independent variables is defined as mathematical
model called regression equation. The most simple type of regression is the simple linear
regression. The general form of the mathematical model in this case is:

yi = α +βxi + εi

In this linear model, yi is the actual response when xi occurs, α is the intercept and β is
the slope of the linear equation, and εi is the error term (called residual), which represents the
unpredictable part of the response variable yi. Figure 3.1 illustrates a data set and the resulting
regression model.

In the practice, it is common to use multiple linear regression, which is the generalization
of simple linear regression to include more than one independent variable. In this case, we have
the following equation for n independent variables:

yi = α +β1x1 + . . .+βnxn + εi

The response variable is modeled as a random variable because of the uncertainty of its
value (we usually do not know the value of εi in advance). The regression equation estimates

24 CHAPTER 3 STATE OF ART IN EFFORT ESTIMATION

Figure 3.1 The linear regression on a data set.

hypothesized regression parameters that are constants (α and β1 to βn). These estimates are
constructed using sample data for the variables. The estimates of these coefficients measure the
relationship between the response variable and each independent variable.

There are several ways to perform regression analysis. With respect to the coefficient es-
timates, the Least Squares is the most common form of regression analysis. This technique
choose the line that minimizes the sum of the squared errors. Least-Median-Squares is an alter-
native technique that determines outlier values prior to the final regression, enabling the analyst
to discard or weight appropriately any outlier observations [84].

We also can use automatic techniques for variable selection, such as Stepwise Regression,
which allows the computer to experiment and evaluate different combinations of independent
variables. There are different approaches for selecting the independent variables when using
stepwise regression, such as:

• Forward selection: starts with no variables in the model, then starts to include the vari-
ables, one by one, regarding only the ones that appears to be statistically significant.

• Backward selection: starts with all variables in the model, then starts to discard the vari-
ables that do not appear to be statistically significant.

• Forward and backward selection, where variables can be included or discarded in the
model at any time.

Another question about regression analysis is that it is appropriated for using only with
independent continuous variables. However, we can find a lot of relevant categorical variables
in the practice. In this cases, we can make use of the dummy variables [85]. Basically, we create
n - 1 dummy variables, where n is the number of possible values of the categorical variable. We
leave one possible value out of this process to avoid multicollinearity. These variables takes

3.3 STATISTICAL MODELS 25

values of zero or one, indicating the absence or presence of a given situation. For instance, if
we have the categorical variable Q representing the quality of a product with possible values
Low, Average and High, then we can create two dummy variables, such as QLow and QHigh. In
this case, if the variable Q has the value Low, then QLow will have value 1 and QHigh will be set
to 0. To represent the value Average, we set both variables to 0.

All we have discussed until now is considering a linear relationship between dependent and
independent variables. However, this is not be true in some situations. For instance, develop-
ment effort may not have a linear relationship with software size. In these cases, we can use a
non-linear regression model [121] or we can transform the data. Concerning effort estimation,
we usually opt for transforming the data. Since we usually have lot of data, the transformation
techniques works fine. Also, non-linear regression models are harder to apply.

The transformations most used when regarding estimation models are the Box-Cox trans-
formation. This technique tries to impose linearity and the data is expected to approximate
to a normal distribution after the transformation. The Box-Cox transformation [124] has the
following function:

τ(Y ;λ) =

{
Y λ−1

λ if λ 6= 0
ln(Y) if λ = 0

where λ is a parameter calculated by statistical packages based on the analysis of the data to be
transformed. As we can see, the logarithmic transformation is the specialization of the Box-Cox
transformation when λ is 0. Actually, there is a more general form of this transformation:

τ(Y ;λ ;α) =

{
(Y+α)λ−1

λ if λ 6= 0
ln(Y +α) if λ = 0

This general form includes a shift parameter α . This alternative function should be used
when Y can assume the value 0 or a negative value, since the logarithmic function only accept
positive values.

Finally, regression analysis is based on several important assumptions that should be checked
to validate the model:

• The correct equation is being used (proper variables and functional form).

• Variables are measured accurately.

• Independent variables are independent from each other.

• The analyzed data is a random sample.

• The residual error term follows a normal or an approximate normal distribution.

If any of these assumptions are violated, the resulting regression equation may not be valid.
Also, the Least Square regression model assumes that:

26 CHAPTER 3 STATE OF ART IN EFFORT ESTIMATION

Figure 3.2 The normal (A) and the Rayleigh (B) distributions.

• The mean of the residuals is zero.

• The error term associated with one observation is not correlated with the error terms of
the other observations (no autocorrelation).

• The variability of the error term is not related to the response variable (homoscedastic
errors).

• The error term is not correlated with the response variable.

As presented by Jorgensen and Shepperd in [67], regression analysis is a tradicional method
for creating estimation models in software engineering. Regression analysis can be used for
estimating software effort, such as presented by Costagliola et al. [42], and also for estimating
lines of code in early stages of software development [134].

3.4 Parametric Models

3.4.1 Putnam’s Software LIfe-cycle Model (SLIM)

In the late 1970s, Larry Putnam of Quantitative Software Measurement [118] developed the
Software Life-cycle Model (SLIM) [117]. SLIM describes the time and effort required to
finish a software project of a specified size. Putnam noticed in his projects that software staffing
profiles followed the well-known Rayleigh distribution (see Figure 3.2).

In the practice, the effort is calculated by the following equation:

E f f orttotal =
Size

Productivity

3 1
Time4

where:

3.5 PROBABILISTIC MODELS 27

– E f f orttotal is the estimated effort to run the project.

– Size is a sizing measure for the project.

– Productivity is the team productivity.

– Time is the schedule for complete the project.

This method is highly sensitive to uncertainty in both project size and team productivity
estimates. Also, we need to define the schedule to estimate the project effort.

3.5 Probabilistic Models

3.5.1 Bayesian Networks

Bayesian Networks [123] are probabilistic graphical models that represents a set of variables
and their probabilistic independencies. For example, a Bayesian network can represent the
probabilistic relationships between effort and project characteristics. In [92], Mendes presents
the use of this technique for estimating the effort to develop Web applications.

To use this approach, we have to develop the structure of the bayesian network. Nodes of
the network and causal relationships should be identified. For instance, the node Effort can
have relationship with nodes representing the type of the project and team experience. Then,
the conditional probabilities should be estimated using expert judgement or based on historical
data. For example, the probabilities of the Effort be Low, Average and High according to the
possible combination of project types and team experience levels.

This approach requires the discretization of any continuous variable. It also do not produce
a numerical estimate. Figure 3.3 shows an example of bayesian network based on another work
of Mendes [90]. All nodes that affects the effort are measured qualitatively and the total effort
is estimated as low, average, high and so on. Hence, the historical average of each category is
used to estimate the effort in hours.

3.6 Machine Learning Approaches

3.6.1 Decision Tree Learning

In data mining and machine learning, a decision tree is a predictive model [100] [123]. Each
internal node of the tree represents a conditional rule that guide to a leaf node. A decision tree
can be a classification tree or a regression tree. In classification trees, each leaf node predicts
a categorical attribute (classification) of the data that reach that node. In regression trees, the
leaf nodes groups the data in a way that a specific numerical attribute (response variable) of the
data is more homogeneous [119].

To construct a decision tree based on an example set, we first select an attribute to place
at the root node and make one branch for each of its possible values. Each observation in the

28 CHAPTER 3 STATE OF ART IN EFFORT ESTIMATION

Figure 3.3 The linear regression on a data set.

example set is assigned to a unique child node. In this way, we split up the example set into
subsets, one for each possible value of the attribute.

Then, this process is repeated recursively for each branch of the tree, using only those
instances that actually reach the branch. The process stops developing a branch if all instances
at a node have the same classification. At the end, each internal node of the tree will represent
a splitting rule and each observation in the example set was assigned to a unique leaf node of
the tree.

As we seek small trees, the determination of the attribute to be used in each step is based
on a "purity" function calculated from the data assigned to a node (subset of the example set).
We choose the attribute that produces child nodes with the purest data. The data is considered
to be pure when it contains observations from only one class.

Some advantages of constructing decision trees are:

• They are simple to understand and interpret, increasing the chances to be validated and
accepted by the user.

• Important insights can be generated, even when there are small data sets.

• Can be combined with other techniques. For instance, we can apply the decision tree
to select relevant variables, to find more homogeneous data and to individually analyze
them using other techniques.

3.6 MACHINE LEARNING APPROACHES 29

3.6.2 Case-Based Reasoning (CBR)

Case-Based Reasoning (CBR) [139] is a technique to solve new problems by adapting the
solutions of old problems. The CBR process finds the most similar case(s) in its database and
tries to reuse it (them) to solve the new problem. In our context, a case is an abstraction of
a software project. In this way, we can estimate effort of new projects based on historical
information about completed projects with known effort.

To use CBR, we have to set parameters, such as the similarity function, which indicates
how to measure the similarity between projects, the number of analogies to be used and the
adaptation technique. For effort estimation, for example, we have to define how many similar
projects we will use and how we will estimate the effort of the new project based on the past
information (e.g., using mean effort, etc.). In [95], Mendes and Mosley investigate the use of
CBR and Stepwise Regression to predict Web development effort.

3.6.3 Rule Induction (RI)

Rule induction (RI) is a particular form of inductive learning in which algorithms produce rules
as a result of the analysis of a set of observations [100] [123]. By inductive learning we mean
the process of acquiring general concepts from specific examples. The more common way to
represent the output of this inductive learning is through IF-THEN rules. For instance, we can
have the following rules for effort estimation:

IF FunctionPoints > 600 THEN Complexity = Average

IF FunctionPoints > 230 AND ProjectType = Critical THEN Complexity = Average

IF Complexity = Average THEN Effort = 2000-2600 Man-hours

As we can see, the rules can predict single value or a range of values representing the
uncertainty.

3.6.4 Fuzzy Systems

The main assertion underlying the Fuzzy Logic approach [89] is that entities in the real world
do not fit into simple categories. For instance, a project may not be either small, medium,
or large, being in fact something in between. The idea is to assign membership values to the
observations varying between 0 and 1. These extreme values respectively represent the absolute
falsity and absolute truth.

For instance, we can assign a value 0.8 for the statement “the project is large”. This value is
not the probability of project to be large. It just means that the project is almost large, because
it also has some characteristics of medium projects.

This approach can be used to create rule induction, fuzzy-analogy and neuro-fuzzy systems
to estimate effort [125] [76] [56]. Also, the fuzzy values can be used as independent variables
in the models [50].

30 CHAPTER 3 STATE OF ART IN EFFORT ESTIMATION

3.6.5 Artificial Neural Network (ANN)

The Artificial neural networks (ANNs) [51] [123] were inspired by the architecture of biolog-
ical neural networks. Basically, an artificial neural network is a model composed of simple
interconnected units called artificial neurons. Each neuron computes a weighted sum of its in-
puts and generates an output if the sum exceeds a certain threshold. This output then becomes
an input to other neurons in the network or an output of the neural model.

To create such neural model, we have to define an appropriate layout of neurons. This
process includes defining the number of layers of neurons, the number of neurons within each
layer and how they are all linked. Then, the neural network need to be trained based on sample
data. Back propagation is the most common learning algorithm that has been used by software
metrics researchers.

Some limitations of this approach is the required expertise (not common in industry) to
build the neural nets and its “black-box” model, which provide no explanation about its esti-
mates.

3.6.6 Support Vector Machines

Support Vector Machines (SVMs) are a set of related supervised learning methods used in
many areas, such as classification and regression [132] [36]. Instead of attempting to minimize
only the empirical error, SVMs also maximize the geometric margin (maximum separation be-
tween two classes). In [45], the Support Vector Regression (SVR) was proposed for regression
problems. There are few works in effort estimation using SVR, such as the study performed by
Oliveira [111].

3.7 Expert-Based Approaches

3.7.1 Delphi

The Delphi method is a systematic and interactive method for obtaining consensus about a
subject from a panel of independent experts [81]. The selected experts answer questionnaires
in two or more rounds. After each round, a facilitator provides an anonymous summary of
the experts’ answers from the previous round, as well as the reasons they provided for their
judgments. In this way, participants are able to review their previous answers now considering
the answers of the other experts.

After each round, the range of the answers is expected to decrease and it is believed that the
group will converge towards the "correct" answer. This process is stopped after satisfying some
pre-defined stop criterion (number of rounds, achievement of consensus, stability of results,
etc.).

Some of the advantages of this method are:

• The use of the experts knowledge.

• The facilitator avoids the negative effects of face-to-face panel discussions and solves
usual problems of group dynamics.

3.7 EXPERT-BASED APPROACHES 31

• Prevention of participants to stick to previously stated opinions.

• Allows participants to freely express their opinions and to revise earlier judgments.

• Avoids participants dominating others using their authority or personality.

• Panel can be performed asynchronously. For instance, questionnaires and answers can
be sent by e-mail.

• Tends to be more accurate than when using unstructured groups of experts.

Although it is a simple method, the Delphi panel can also fail. Some of the reasons for the
failure of a Delphi panel are:

• Assuming that Delphi can be a surrogate for all other human communications in a given
situation, not allowing for the contribution of other perspectives related to the problem.

• Imposing the coordinator’s view and preconceptions of a problem upon the respondent
group.

• Poor summarization and presentation of the group response and not ensuring the common
interpretations of them.

• Generation of an artificial consensus, in which disagreements are ignored.

• Lack of experts or motivated people for the Delphi panel.

• Underestimating the demanding nature of a Delphi.

3.7.2 Wideband Delphi

Wideband Delphi estimation method is an adaptation of the Delphi technique explained in
Section 3.7.1. It is a consensus-based estimation technique for estimating effort involving
greater interaction and more communication between those participating. This method was
popularized by Barry Boehm in [26] and the main steps to arrange and perform the expert’s
panel are:

1. A coordinator gives a specification and an estimation form for each expert.

2. The coordinator set up a group meeting. In this meeting, the experts discuss estimation
issues with the coordinator and each other.

3. Experts fill out forms anonymously according to their judgment.

4. Coordinator collects responses and distributes a summary of the estimates.

5. Coordinator may call new group meetings focusing on points where their estimates vary
widely. Steps 3 to 5 are then iterated for as many rounds as necessary to achieve a
consensus.

32 CHAPTER 3 STATE OF ART IN EFFORT ESTIMATION

3.7.3 Other Approaches

Planning Game [25] is the software project planning method from Extreme Programming (XP),
a lightweight development methodology developed by Kent Beck in the 1990s. The Planning
Game has a highly iterative process, in which the Development and Business work together
to interactively write “user stories" on cards. We give estimates to each story in weeks. This
process is repeated continuously throughout the project.

The planning poker [40] [115] works a similar way of the Wideband Delphi to achieve a
consensus. However, it uses cards instead of questionnaires for given estimates. These cards
follow an uncommon sequence, in which higher numbers have less granularity. This encour-
ages the team to split large stories into smaller ones. There are also special cards, such as the
coffee cup card, which means that you are too tired to think and need a short break, and the
question mark, which means you have no idea about what is being discussed.

Another traditional way to estimate effort based on expert judgment is using a WBS [26].
WBS is a way of organizing project elements into a hierarchy, simplifying the cost estima-
tion and control. A software WBS actually consists of two hierarchies. One represents the
components of the software product and the other represents the activities needed to build that
product.

3.8 Combined Techniques

3.8.1 COCOMO II

The first version of COCOMO (COnstructive COst MOdel) cost and schedule estimation model
was first published in 1981 [26]. Then, the COCOMO II research effort was started in 1994 at
USC to address several issues, such as:

• Non-sequential and rapid development process models;

• Reengineering;

• Reuse driven approaches;

• Object oriented approaches;

• Etc.

The COCOMO model has three types of inputs, the size of the system to be developed, the
effort multipliers and the scale factors. Effort multipliers are cost drivers having linear relation-
ship with effort. The scale factors having non-linear relationship with effort, determining what
is called economies/diseconomies of scale of the software under development.

There are three submodels defined in COCOMO II [28]:

• Applications Composition Model: used for prototyping and evaluate potential high-risk
issues, such as user interfaces, software/system interaction, performance or technology

3.8 COMBINED TECHNIQUES 33

maturity. In this model, object points are used for sizing rather than the LOC metric.
This size measure is determined by counting the number of screens, reports, and other
components that will be used in the application.

• Early Design: involves the exploration and evaluation of alternative system architectures
and concepts of operation. Function points (or lines of code when available) are used as
input of the model, as well a set of five scale factors and 7 effort multipliers.

• Post-Architecture: this model is used when you have completed the top level design of
the system and detailed information about the project is already available. It uses SLOC
and/or Function Points as the size input parameter. A set of 17 effort multipliers and a
set of 5 scale factors.

The Early Design and the Post-Architecture models use the same approach for sizing prod-
ucts and for scale factors. Part of this process is summarized next.

The effort in persons-month is given by the following equations:

PM = A×SizeE ×
n

∏
i=1

EMi

E = B+0.01×
5

∑
j=1

SFj

where:

• PM is the effort estimate.

• A = 2.94 and B = 0.91.

• EMi is the ith effort multiplier.

• SFj is the jth scale factor.

If E < 1, the project exhibits economies of scale. If E = 1, the economies and diseconomies
are in balance. If E > 1, the project exhibits diseconomies of scale.

The list of scale factors and effort multipliers considered by the COCOMO II model is
shown in Table 3.2. The 5 scale factors are rated according the guidelines shown in Table 3.3
and the respective weights assigned to them are presented in Table 3.4. The evaluation of the
effort multipliers are done in a similar way.

The Post-Architecture Model was calibrated to a database of 161 projects, which data was
collected from Commercial, Aerospace, Government and non-profit organizations. This cali-
bration process included the use of: data analysis using the log-log transformation and linear
regression analysis; expert judgment (Delphi panel) to create a model based on expert opinion;
a bayesian regression approach to combine the information based on the data and the experts.

Although some works supported the hypothesis of the existence of both economies and
diseconomies of scale in software development [22], there are also some critiques about these
economies/deseconomies of scale considered in the construction of COCOMO [74].

With respect to tool support, there are several commercial and free tools available on the
Internet that implement this model.

34 CHAPTER 3 STATE OF ART IN EFFORT ESTIMATION

Table 3.2 Cost drivers considered for COCOMO II.

Scale Factors

Precedentedness
Development Flexibility
Architecture/Risk Resolution
Team Cohesion
Process Maturity

Effort Multipliers

Product Attributes

Required Reliability
Database Size
Product Complexity
Required Reuse
Documentation

Platform Attributes

Execution Time Constraint
Main Storage Constraint
Platform Volatility

Personnel Attributes

Analyst Capability
Programmer Capability
Personnel Continuity
Applications Experience
Platform Experience
Language and Toolset Experience

Project Attributes
Use of Software Tools
Multisite Development
Required Development Schedule

3.8.2 M5P

MP5 algorithm [138] can learn piecewise linear models, combining decision trees and linear
regression techniques. In this algorithm, the decision tree is adapted to a regression problem.
The M5P algorithm adapts decision trees to find more homogeneous data and individually
analyze them using linear regression analysis.

3.9 Final Considerations

In the previous chapter we presented the most used software size metrics. In this chapter we
classified and reviewed several estimation models. Some of these models were presented in
more detail, mainly the ones that we believe that can be used for test execution effort estimation.

The presented estimation models use metrics related to code or requirements, but they do
not consider metrics related to test artifacts, limiting their accuracy for estimating testing exe-
cution effort. In the next chapter, we present how we defined a new test size measure and how
we can use it to estimate test execution effort.

3.9 FINAL CONSIDERATIONS 35

Ta
bl

e
3.

3
Sc

al
e

Fa
ct

or
s

fo
rC

O
C

O
M

O
II

E
ar

ly
D

es
ig

n
an

d
Po

st
-A

rc
hi

te
ct

ur
e

M
od

el
s

[2
8]

.
Sc

al
e

Fa
ct

or
s

V
er

y
L

ow
L

ow
N

om
in

al
H

ig
h

V
er

y
H

ig
h

E
xt

ra
H

ig
h

PR
E

C
th

or
ou

gh
ly

un
pr

ec
e-

de
nt

ed
la

rg
el

y
un

pr
ec

e-
de

nt
ed

so
m

ew
ha

t
un

pr
ec

e-
de

nt
ed

ge
ne

ra
lly

fa
m

ili
ar

la
rg

el
y

fa
-

m
ili

ar
th

ro
ug

hl
y

fa
m

ili
ar

FL
E

X
ri

go
ro

us
oc

ca
si

on
al

re
la

xa
tio

n
so

m
e

re
la

x-
at

io
n

ge
ne

ra
l

co
nf

or
m

ity
so

m
e

co
n-

fo
rm

ity
ge

ne
ra

l
go

al
s

R
E

SL
lit

tle
(2

0%
)

so
m

e
(4

0%
)

of
te

n
(6

0%
)

ge
ne

ra
lly

(7
5%

)
m

os
tly

(9
0%

)
fu

ll
(1

00
%

)

T
E

A
M

ve
ry

di
ffi

cu
lt

in
te

ra
c-

tio
ns

so
m

e
di

ffi
cu

lt
in

te
ra

ct
io

ns

ba
si

ca
lly

co
op

er
at

iv
e

in
te

ra
ct

io
ns

la
rg

el
y

co
-

op
er

at
iv

e
hi

gh
ly

co
op

er
at

iv
e

se
am

le
ss

in
te

ra
ct

io
ns

PM
A

T
SW

-C
M

M
L

ev
el

1
L

ow
er

SW
-C

M
M

L
ev

el
1

U
pp

er

SW
-C

M
M

L
ev

el
2

SW
-C

M
M

L
ev

el
3

SW
-C

M
M

L
ev

el
4

SW
-C

M
M

L
ev

el
5

36 CHAPTER 3 STATE OF ART IN EFFORT ESTIMATION

Table 3.4 Weights of Scale Factors for COCOMO II Early Design and Post-Architecture Models [28].
Scale Factors Very Low Low Nominal High Very High Extra High

PREC 6.20 4.96 3.72 2.48 1.24 0.00
FLEX 5.07 4.05 3.04 2.03 1.01 0.00
RESL 7.07 5.65 4.24 2,83 1.41 0.00
TEAM 5.48 4.38 3.29 2.19 1.10 0.00
PMAT 7.80 6.24 4.68 3.12 1.56 0.00

CHAPTER 4

Test Execution Effort Estimation

In previous chapters, we overviewed several existing software measures, measurement meth-
ods and effort estimation techniques. As we could observe, there are several measures and
estimation models for software development, but none of them are apropriate for estimating
test execution effort. In this chapter, we present the planning of this research and the develop-
ment of a measure for test size and execution complexity. We also show how to estimate test
execution effort based on the proposed measure.

4.1 Research Plan

The planning of this research is structured in terms of research goals, questions, and hypotheses,
as described next.

4.1.1 Goals

The main goal of this research is the development and evaluation of a measure for test size and
execution complexity that is based on test specifications. Also, we want to evaluate its ade-
quacy for estimating manual test execution effort. In summary, we aim to create an estimation
approach for using in the mobile application domain with the following characteristics:

• Accurate estimates;

• Based on the size and execution complexity of test specifications, enabling the estimation
of manual test execution effort for any given set or subset of existing functional tests;

• Based on cost drivers related to manual test execution (team experience, test environment,
stability of the tested product, etc.);

• Good estimation accuracy for existing tests and for new ones;

• Low estimation cost.

We believe that these characteristics should improve the accuracy of effort estimation for
manual test execution. To achieve our main goal, we have the following secondary goals:

• Define and evaluate an automated method for sizing test specifications;

37

38 CHAPTER 4 TEST EXECUTION EFFORT ESTIMATION

• Identify cost drivers related to manual test execution and investigate their impact on test
execution effort;

• Define, calibrate, and evaluate our estimation approach through empirical studies on the
mobile application domain.

4.1.2 Research Questions

The assessment of our research goals will be performed by answering the following research
questions on the mobile application domain:

RQ1: Can we measure the size and execution complexity of a test specification?

RQ2: Is the estimation accuracy of manual test execution effort improved by regarding
the size and execution complexity of test specifications?

RQ3: Is the estimation accuracy of manual test execution effort improved by regarding
cost drivers related to manual test execution?

RQ4: What is the cost for estimating manual test execution effort based on the size and
execution complexity of test specifications, and based on cost drivers related to
manual test execution?

Questions RQ1 to RQ3 were not answered in previous works, since no existing effort es-
timation approach regards the size of test specifications and cost drivers related to manual test
execution. Also, the cost of calibrating and using an estimation model may be prohibitive. The
research question RQ4 is related to this issue.

In addition, we derived question RQ1 into more concrete ones, making easier to answer
them during our empirical studies on the mobile application domain:

RQ1.1: What are the relevant characteristics that should be considered when sizing a test
specification?

RQ1.2: What is the weight of each relevant characteristic with respect to manual test exe-
cution effort?

RQ1.3: Can we define a soundness measure for test size and execution complexity?

RQ1.4: Can we automate the measurement of test size and execution complexity?

RQ1.5: What are the relevant cost drivers for estimating manual test execution effort?

RQ1.6: What is the impact (weight) of each relevant cost driver on manual test execution
effort?

4.1.3 Research Hypotheses

Based on our research questions and our findings from the review of literature, we formulate
our research hypotheses as presented next:

4.1 RESEARCH PLAN 39

RH1: It is possible to determine the size and execution complexity of a test specification
by observing characteristics of each test action found in the specification.

RH2: The use of a measure for test size and execution complexity will significantly im-
prove the estimation accuracy of manual test execution effort.

RH3: The use of cost drivers related to manual test execution will significantly improve
the estimation accuracy of manual test execution effort.

RH4: It is possible to automate the measurement of test size and execution complexity,
reducing the costs of our approach.

These research hypotheses are our assumptions that should be supported or rejected at the
end of this work.

4.1.4 Main Activities

To answer our research hypotheses and to achieve our research goals, we structured this work
in the following main research activities:

1. Analyze the problem.

• Analyze test specifications and expert opinion to identify characteristics in test spec-
ifications that can be used to determine test size and execution complexity.

2. Propose a measure for test size and execution complexity.

• Identify how relevant characteristics for the size and complexity of test specifica-
tions can be measured. That is, define a measure and a measurement method for
test size and execution complexity based on test specifications.

• Identify how to verify if the proposed measure is sound.

• Define how to configure the measurement method for different application domains,
which includes the identification of relevant characteristics and their weights, either
based on:

– Expert opinion, to create an initial configuration, which is specially useful
when there is no historical data available.

– Analysis of historical data, which can result in more precise results for analyz-
ing the relevance and weights of each characteristic.

• Identify how the proposed measure can be used to create an estimation model for
test execution effort.

3. Evaluate the proposed measure and measurement method.

• Evaluate if the proposed metric is sound and that its measurement method is feasible
(not too costly, etc.).

40 CHAPTER 4 TEST EXECUTION EFFORT ESTIMATION

• Evaluate the adequacy of the proposed measure for estimating test execution effort
by observing the resulting estimation accuracy.

4. Identify and evaluate cost drivers related to manual test execution.

• Based on expert opinion, identify possible cost drivers for executing tests manually.

• Determine the relevance of some of the identified cost drivers, as well as their effect
(weight) on test execution effort.

• Evaluate the resulting estimation accuracy when considering the proposed measure
and relevant cost drivers.

5. Develop supporting tools.

The remaining of this chapter and the next one present the results of these activities.

4.2 Test Size and Execution Complexity

In this section, we present our proposed measure for test size and execution complexity [12][11],
as well as its measurement method based on test specifications. We start presenting how test
specifications are usually written in industry and what is necessary to enable better interpre-
tation and automatic processing. After that, we present our proposed measure and then its
measurement method.

4.2.1 Test Specification Language

Tests are usually specified in terms of pre-conditions, procedure (steps, inputs and expected
outputs) and post-conditions [68]. These specifications are commonly written in natural lan-
guage, often leading to problems such as ambiguity, redundancy and lack of writing standard
(level of detail, structure, etc.). All these problems make difficult to understand and estimate
test size and execution complexity. Nevertheless, they can be avoided using controlled natural
languages.

A controlled natural language (CNL) [126] is a subset of natural language with restricted
grammar and lexicon in order to have sentences written in a more concise and standard way.
This restriction reduces the number of possible ways to describe an event, action or object. In a
simplified way, each sentence (test step) of a test specification conforms to the following struc-
ture: a main verb and zero or more arguments. Table 4.1 shows an example of test procedure
written in a controlled natural language that tests a feature from the mobile application domain.

For each sentence, the verb identifies the test action to be performed during the test. The
verb arguments provide additional information for the test action represented by the verb. For
instance, the sentence Start the message center has the verb start (action of starting an appli-
cation) and the argument the message center (application to be started). A CNL usually have
its lexicon and grammar extended for specific application domains. For example, the list of

4.2 TEST SIZE AND EXECUTION COMPLEXITY 41

Table 4.1 Example of a test procedure written in a controlled natural language.
Step Description Expected Results

1 Start the message center. The phone is in message center.
2 Select the new message option. The phone is in message composer.
3 Insert a recipient address into the re-

cipients field.
The recipients field is filled.

4 Insert a SMS content into the message
body.

The message body is populated.

5 Send the message. The send message transient is dis-
played. The message is sent.

possible verbs and arguments can be different between the mobile and the Web application do-
mains. Since the context of this work is related to the test of mobile applications, the considered
controlled natural language reflects this domain [135] [78].

There are several advantages in using CNL, such as the support to write unambiguous, com-
plete and consistent specifications [126]. However, its adoption may not be easy due to the lack
of tools used to check the correctness of the specifications, the costs and skills required to de-
fine the controlled language, etc. Also, a testing organization can already have several existing
test cases written in natural language. In these cases, our proposed test size and complexity
measurement method should be applied to specifications written in natural language (NL) with
sentence structures similar to the CNL described here. From now on, we call this structured
NL as a standardized natural language.

In this work, we consider that tests are written in a CNL or a standardized natural language.
The details of our proposed measure and its measurement method are presented next.

4.2.2 Execution Points (EP)

Test teams may not have enough resources or time to execute all tests of an application when
features are being developed or changed. For this reason, only a subset of existing tests is
selected for execution. To enable the effort estimation for executing any given set of tests, we
need a method for sizing tests based on their specifications.

In this work, we propose a measure for the size of test specifications that are weighted
by their execution complexities, an approach used in other existing measures [29] that should
increase the correlation between the proposed measure and manual test execution effort. By
test size, we mean the amount of steps required to execute the test. We consider test execution
complexity as the difficulty of interaction between the tester, the tested product, and the test
environment that is required during the test. These definitions are adaptations of the idea of
size and development complexity for software products [112] [32] [48].

The proposed measure, called Execution Points (EP), should reflect the amount of work
need to manually execute tests. Basically, this measure is based on the amount of test actions
(user actions and observed results) found in a test specification, considering the functional (data

42 CHAPTER 4 TEST EXECUTION EFFORT ESTIMATION

input, screen navigations, etc.) and non-functional (use of network, etc.) characteristics of the
applications and system environments exercised by the test actions.

Execution points should have a high linear correlation with the effort to manually execute
tests. For this reason, the number of execution points should be useful not only for estimating
test execution effort, but also for comparing and prioritizing tests. For example, considering the
same environment conditions, a test with 1000 execution points should require approximately
twice the effort needed to execute a test with 500 execution points. In addition, execution points
allow us to better compare testers’s productivity and test team capacity. For instance, a tester
that executed 5 tests with 500 execution points each one can be considered faster than another
that executed 15 tests with 100 execution points during the same amount of time.

4.2.2.1 Measure Validation

Since we are proposing a measure for size and execution complexity of a test specification, it
is important to have an intuitive understanding of this test specification attribute. This leads us
to the identification of empirical relations between tests with respect to their size and execution
complexity:

• The relation bigger than indicates that one test has a bigger size and execution complexity
than another.

• The relation similar to indicates that one test has a similar size and execution complexity
when compared to another.

These relations were defined intuitively by analyzing how experts create associations be-
tween test specifications with respect to their size and execution complexity. Also, we consider
that a test t1 is bigger than a test t2 only if t1 is not similar to t2. This assumption reflects the
difficulty to intuitively compare similar tests with respect to their size and execution complex-
ity.

Let us call T as the set of all existing test specifications. The set containing the identified
empirical relations (bigger than and similar to) is called R. Then, we call (T, R) as the empirical
relation system for the attribute size and execution complexity of a test specification [48]. To
measure test size and execution complexity that is characterized by (T, R), we must define a
mapping M of (T, R) into (E, P), in which test cases in T are mapped into numbers (called
execution points) in E and empirical relations in R are mapped into numerical relations in P.
In this way, we can evaluate our measure by demonstrating empirically that the mapping M is
valid for the attribute size and execution complexity.

The set E of all possible numbers of execution points consists of nonnegative integers and
the set of numerical relations P consists of the relations >ep and ≈ep defined as follows.

a >ep b =
{

f alse if a ≈ep b
a > b otherwise (4.1)

4.2 TEST SIZE AND EXECUTION COMPLEXITY 43

Figure 4.1 Assigning execution points to a test case.

a ≈ep b =
{

true if |a−b|
a ≤ p

100 and |a−b|
b ≤ p

100
f alse otherwise

(4.2)

As we can see in Equation 4.1, the expression a >ep b is equivalent to the expression a > b,
except in the case of similar numbers of execution points (≈ep). The definition of ≈ep in
Equation 4.2 shows that numbers a and b are considered similar if the absolute value of a−b
is less than or equal to p percent of a and of b. The value of p is discovered empirically, as
discussed later in Section 5.3.3. The relations of R and of P are mapped following the order of
their presentations in this section.

During the empirical studies presented in Chapter 5, we also evaluate the practical use of
execution points. For instance, we evaluate the estimation accuracy and cost achieved when
using execution points in comparison to other measures.

4.2.3 Execution Points Measurement Method

Since all information required to compute execution points is extracted from test specifications,
we only consider test specifications written in CNL or in a standardized NL, as discussed in
Section 4.2.1. This restriction simplifies the use of our approach, improves its accuracy and
also supports a high level of automation. Fig. 4.1 illustrates how we measure execution points.
First, (a) we individually analyze each test step (sentence) of the test specification. This step by
step analysis was defined with the objective to support the measurement method automation.
We analyze each test step according to a list of characteristics (C1 to Cn).

The characteristics C1 to Cn represent some general functional and non-functional require-
ments exercised when the test step is executed. Examples of possible characteristics are number
of navigations between screens, number of pressed keys and use of network. Each character-

44 CHAPTER 4 TEST EXECUTION EFFORT ESTIMATION

Figure 4.2 Measuring the number of execution points of a test suite.

istic considered by the method has an impact on the test size and execution complexity and,
consequently, on the effort required to execute the test. (b) This impact is rated using an ordi-
nal scale (Low, Average and High). As described later in Section 4.2.3.1, a Delphi approach
can be used to choose the set of relevant characteristics and to define guidelines to help the
selection of the more appropriate impact level for each characteristic.

After that, (c) we assign execution points for each characteristic according to its impact
level, transforming the qualitative rate (impact level) into a quantitative value. For instance, a
characteristic C1 rated with the Low value can be assigned to 30 execution points. However,
a more relevant characteristic rated with the Low value may be assigned to a higher number
of execution points. Section 4.2.3.1 also discusses about guidelines provided for assigning the
correct value for each possible characteristic value.

To calculate the total number of execution points of a test step, (d) we sum the points
assigned for each characteristic. Then, (e) we measure the size and execution complexity of
a test by summing the execution points of each one of its test steps. In practice, we need
to measure the size and execution complexity of test suites (set of related tests). For that,
we measure the execution points of each test specifications. Then, the sum of these points
represents the size and execution complexity of the whole test suite.

In the practice, we have to measure the size and execution complexity of test suites (set of
related test cases). Figure 4.2 illustrates this process. First, we measure the execution points
of each test specifications. Then, the sum of these points represents the size and execution
complexity of the whole test suite.

4.2.3.1 Configuration

The measurement method of execution points uses a model that should be configured according
to the target application domain in order to maximize the estimation accuracy. This section
presents what, why and how to configure our estimation model.

4.2 TEST SIZE AND EXECUTION COMPLEXITY 45

Controlled or Standardized Natural Language

Test specifications are the input of our approach and they can be written in a CNL or a
standardized natural language. In the case of using CNL, as shown in Section 4.2.1, its grammar
and lexicon are defined according to the target application domain. For example, we have the
verb take on the mobile application domain that accepts the term picture as argument. Hence,
a possible test step is Take a picture.

The list of verbs and possible arguments can be constructed by analysing requirement doc-
uments and existing test specifications. Besides, new verbs and terms can arises over the time
due to the specification of new requirements, changes in technology, etc. The CNL grammar
and lexicon can be stored in a database to be updated whenever necessary.

System Characteristics

During the test execution effort estimation, all test steps are analyzed according to a list of
characteristics. These characteristics represent some general functional and non-functional re-
quirements exercised when a test action is executed. The list of characteristics to be considered
may depend on the target application domain. For instance, the pressing of phone keys and
the usage of mobile network are examples of characteristics exercised on mobile applications
under test. However, these characteristics are not valid for Web and other different application
domains.

We use the Delphi method [81] for obtaining a consensus from a group of experts about
the list of relevant characteristics to consider. The Delphi panel consists of 3 to 7 experienced
testers invited from different teams for attending two or more rounds. In each round, they have
the opportunity to add or remove characteristics from the list.

Examples of real test specifications are provided as a source for identifying different types
of test actions, software configurations, use of tools or of specific hardware, and other char-
acteristics that can impact the size and execution complexity of a test. All this process is
anonymous and, in each round, a moderator provides the participants with a summary of the
experts’ decisions and their reasons for that.

An alternative technique that can be used to identify relevant characteristics is the survey
[114]. When we have several testers in the organization, we can survey them about the relevant
characteristics using questionnaires or other survey instruments.

Guidelines

Once the experts have defined the list of characteristics to be considered by the estimation
model, the experts continue attending the Delphi panels, but with different objectives. First,
they have to define the possible values for each identified characteristic. For example, if the
type of camera is selected as a relevant characteristic, its possible values would be automatic
shooting, manual zoom, use of flash, etc.

After identifying the possible values of each relevant characteristic, the experts group these
values into three impact levels (low, average and high). The choices are made based on the
impact of each value in the test size and execution complexity. This part of the guideline will

46 CHAPTER 4 TEST EXECUTION EFFORT ESTIMATION

help us to objectively choose the more appropriate impact level of a test step according to each
characteristic.

Finally, the experts must define for each characteristic the number of execution points to be
assigned for each one of its impact levels. The experts can proceed as follows. Each charac-
teristic is weighted from 1 to 10. These weights indicate the significance of each characteristic
for the test size and execution complexity. Then, the experts give a weight from 1 to 10 for the
levels Low, Average and High of each characteristic. These weights indicate the significance
of each level for the characteristic. Then, the number of execution points assigned for a level is
calculated by multiplying its weight by the weight of its characteristic.

An alternative procedure is to estimate the increase of time caused by each characteristic
level with respect to manual test execution effort. Then, the estimated increase of time is used
as the weight of each characteristic level.

The list of relevant characteristics, their values and weights can be updated periodically by
one or two experts.

4.2.3.2 Measurement Method Automation

One objective of this work is the development of an estimation approach that can be automated.
This automation is important for supporting the development of new test generation and test
selection tools. In practice, companies may not be able to execute all tests generated by such
tools, since their resources are limited. For this reason, test execution effort should be taken
in consideration for test selection. A test generation tool, for instance, can consider a minimal
requirement coverage and a maximum execution effort as its stop criteria.

The use of CNL or a standardized natural language for specifying tests supports the devel-
opment of an estimation tool that automatically reads and interprets these specifications. In
addition, all the information required for measuring execution points, such as the list of charac-
teristics, guidelines and weights can be stored in a database. Actually, the CNL grammar and
lexicon can also be stored in the database [135].

During the analysis of the first test cases, the estimation tool asks the user to rate the char-
acteristics of each different test action (verb). This information is stored in the database. Since
number of possible ways (verbs) to describe a test action is reduced (see Section 4.2.1), it is
reasonable that the same test action occurs many times in the same test specification and in
different ones. For this reason, the need for manual assistance during the estimations tends to
be reduced as much as we process tests.

4.2.3.3 Automatic Calibration of Characteristic Weights

Although the experienced testers can calibrate the execution points measurement method (de-
fine the weight of each characteristic level), this procedure can be automated when we have
historical test execution data stored with a high level of detail. Basically, we need to have the
time spent to execute each test action (sentence) of each test specification. This detailed infor-
mation can be collected by using ManualTEST [17] (see Appendix D), a tool that we developed
for collecting test execution data with a high level of detail and accuracy.

The time spent to execute each sentence is also the time spent to execute each test action

4.2 TEST SIZE AND EXECUTION COMPLEXITY 47

(verb or verb + arguments). In Table 4.2, we are considering the verb as the identifier of the
test action. For some test actions with larger execution time variation, such as Select, we can
also consider the identifier of the test action as the verb + arguments, increasing the accuracy
of this calibration process.

Table 4.2 Storing the time to execute each sentence (test action) of test specification TS-1.
Step Sentence Test action

(verb)
Time

1 Go to Message Center Go 00:00:10
2 Select Email Msgs Select 00:00:05
3 Accept the dialog Accept 00:00:21
4 Exit notification Exit 00:00:14
5 Exit Account Folder Exit 00:00:09
6 Go to Account Folder Go 00:00:06

The next step is to join information about execution times and characteristics rates for each
test action (see Table 4.3, which consider the use of three characteristics). Each test action is
usually associated to different execution times, since we have an inherent variability, different
verb arguments, different levels of tester experience and effects related to the testing environ-
ment. For this reason, it is important to analyze data collected in controlled test execution
environments and from the same tester or from testers with similar expertise.

To analyze the data presented in Table 4.3, we use the following regression model:

Timei = β0 +β1ScreensLowi +β2ScreensAvgi +β3ScreensHighi +β4KeysLowi (4.3)

+β5KeysAvgi +β6KeysHighi +β7DelayLowi +β8DelayAvgi +β9DelayHighi + εi

where:

– Timei is the time spent to execute the ith test action.

– ScreensLowi, ScreensAvgi and ScreensHighi are dummy variables for characteristic Screens
with respect to the ith test action.

– KeysLowi, KeysAvgi and KeysHighi are dummy variables for characteristic Keys with
respect to the ith test action.

– DelayLowi, DelayAvgi and DelayHighi are dummy variables for characteristic Delay
with respect to the ith test action.

– β0 to β9 are coefficients defined during the regression analysis.

– εi is the error term for the ith test action.

48 CHAPTER 4 TEST EXECUTION EFFORT ESTIMATION

Table 4.3 Joining information about execution time and characteristics levels for each test action.

Test/Step Test Action Time
Characteristics

Screens Keys Delay
TS-1/3 Accept 00:00:21 N/A Low Low
TS-3/3 Accept 00:00:23 N/A Low Low

.
TS-1/4 Exit 00:00:14 Low Low N/A
TS-1/5 Exit 00:00:09 Low Low N/A
TS-2/5 Exit 00:00:08 Low Low N/A
TS-3/4 Exit 00:00:04 Low Low N/A

.
TS-1/1 Go 00:00:10 Low Low N/A
TS-1/6 Go 00:00:06 Low Low N/A
TS-2/1 Go 00:00:08 Low Low N/A
TS-3/1 Go 00:00:07 Low Low N/A

.
TS-2/3 Reject 00:00:05 N/A Low N/A

.
TS-1/2 Select 00:00:05 N/A Low N/A
TS-2/2 Select 00:00:04 N/A Low N/A
TS-2/4 Select 00:00:34 N/A Low N/A
TS-3/2 Select 00:00:04 N/A Low N/A
TS-3/5 Select 00:00:22 N/A Low N/A
TS-3/6 Select 00:00:14 N/A Low N/A

.

.

As we can see, we create dummy variables for each characteristic. To avoid problems of
multicolinearity [85], we create only n − 1 dummy variables for each characteristic, where
n is the number of possible values for each characteristic (e.g., N/A, Low, Avg and High).
As we can see in Equation 4.3, we did not create a dummy variable for the value N/A (Not
Applicable), which is a reference (weight=0) with respect to the levels Low, Avg and High.
Finally, the weights for the levels Low, Avg and High of each characteristic are the values of
their respective β coefficients calculated by the regression analysis.

In summary, the weight of each characteristic level is the increase of time caused by it. The
correct identification of relevant characteristics should result in positive values for all β coeffi-
cients. In this way, this calibration procedure can require changes in the set of characteristics
considered relevant if problems during the regression analysis arises.

4.3 ESTIMATION OF TEST EXECUTION EFFORT 49

4.2.3.4 Measurement Validity

The measurement method of Execution Points (EP) is similar to Function Points Analysis
(FPA). Hence, we have to observe if the critiques to FPA (see Section 2.3.1) are applicable
to the measurement of execution points. Most of the critiques are related to problems in the
model construction: issues in the expert judgments and measurement scales and transforma-
tions throughout the measurement steps.

In FPA, absolute scale counts are reduced to ordinal scale measures. For instance, counts of
Data Element Types (DET) and Record Element Types (RET) are reduced to the Low, Average
and High scale. This scale transformation can be seen as a loss of information. When measuring
EP, we do not have absolute counts, but only intervals. For instance, we do not know how many
screen navigations the test action “go” will require, but we do know which interval (Low, Avg
and High) has the higher probability to include this number. In this way, there is no loss of
information in the EP measurement method.

Another problem with FPA is that ordinal values, such as Low and Average, are transformed
to a ratio scale in order to enable their sum, multiplication, etc. For instance, what is the
meaning of summing two ordinal values, such as Low + High? We have similar transformations
in the measurement of EP. However, the transformation of the Low level of a characteristic
to the weight 25 means that, in average, the value Low of that characteristic increases the
test execution time in 25 units. This interpretation is more clear when we use the automatic
calibration procedure presented in Section 4.2.3.3.

Another reported problem with function points is the technology adjustment factor, that
is based on a subjective assessment of 14 project factors on a six-point ordinal scale. In our
approach, the measurement method should be configured for each different application domain,
having no standard configuration that can be used in any testing project.

In addition, some works found correlations between Albrecht function point elements, the
first version of FPA. Also, some researchers observed that some function point elements were
not related to effort in their studies [73]. These kind of problems can occur by using the EP
measurement method calibrated by expert judgement. However, the statistical tests performed
during the automatic calibration procedure (regression analysis) of the EP measurement method
can identify and guide the solution of these problems.

4.3 Estimation of Test Execution Effort

The execution points counting of a test suite gives us a reference about its tests size and ex-
ecution complexity. Based on the literature and in our experience, we believe that this is the
most important information for estimating test execution effort. As presented next, we can use
execution points to estimate manual test execution effort in different ways. Some of them also
take in consideration the impact of cost drivers.

50 CHAPTER 4 TEST EXECUTION EFFORT ESTIMATION

Figure 4.3 Using execution points and a conversion factor to calculate test execution effort.

4.3.1 Test Productivity-Based Approach

The estimated effort can be calculated based on the execution point counting and a conversion
factor (CF). This conversion factor represents the relation between test execution effort and
execution points, which varies according to the productivity of the test team.

The conversion factor is given in seconds per execution point, indicating the number of
seconds required to execute each execution point of a test. For calculating the conversion
factor, testers can measure the execution points of some tests and collect their execution effort
based on a historical database (when available) or by executing them. As illustrated by Figure
4.3, (f) the conversion factor is calculated by dividing the total effort by the total number of
execution points. For estimating the execution effort of new test suites, we just (g) multiply
their number of execution points by the calculated conversion factor.

In the example of Figure 4.3, the tester verified a conversion factor of 3.17 seconds per
execution point. Using this value, a new test with 2,674 execution points is estimated to be
executed in 23.5 hours. Similar approach is used by other existing estimation models [49]
[101] [105] [112].

In this approach, we assume that test productivity and environment conditions are stable
over time. For example, improvements in the test team, tools or environment may change the
test productivity and consequently the conversion factor. In this case, the conversion factor
should be recalculated using data collected after the improvements.

In summary, the conversion factor used in the estimations should properly represent the
current situation. Additionally, a different conversion factor can be calculated and used for
each different test team, since they can have significant different productivities due to the type
of executed test, the tested product, etc.

4.3 ESTIMATION OF TEST EXECUTION EFFORT 51

4.3.2 COCOMO-Based Approach

COCOMO is a well-known effort estimation model that has several extensions for different
purposes, such as the COQUALMO [38] and COSYSMO [30]. We verified that the COCOMO
model can be used for estimating manual test execution effort. For that, we have to identify the
cost drivers related to test execution effort to be included in the COCOMO general equation:

PM = A×SizeE ×
n

∏
i=1

EMi (4.4)

E = B+C×
m

∑
j=1

SFj (4.5)

where:

– PM is the effort applied in person-months. In our case, the effort to execute the tests.

– Size is a measure of the project size, that is, the number of execution points of the test
cases.

– EM1 to EMn are the effort multipliers, that is, cost drivers having linear relationship with
effort.

– SF1 to SFm are the scale factors, that is, cost drivers having scale impact on effort.

– A, B and C are coefficients defined during a model calibration procedure.

As we can see, the cost drivers must be classified in effort multipliers and scale drivers.
In our case, the effort multipliers should have linear relationship with test execution effort and
the scale drivers should have an exponential impact on effort. The coefficient of each cost
driver must also be defined using expert judgment, regression analysis or a combination of
both methods.

4.3.3 Regression-Based Approach

In this approach, we use linear regression analysis [53] to build an estimation model, which is
a mathematical equation relating independent (predictors) and dependent (response) variables.
We can also use Stepwise Regression (SWR), a statistical technique that builds a regression
model by adding and possibly removing independent variables one-at-a-time until some stop-
ping rule is satisfied. Variables are removed from the model only if they become nonsignificant
after the inclusion of other variables. Basically, the main goal is to find the best set of predictors
(EP and cost drivers) and to build an equation to explain the variation in the response (manual
test execution effort):

E f f ort = α +β0EP+β1C1 + . . .+βnCn (4.6)

where:

52 CHAPTER 4 TEST EXECUTION EFFORT ESTIMATION

– E f f ort is the effort to execute the test cases.

– EP is the number of execution points of the test cases.

– C1 to Cn are the cost drivers selected as good predictors by the regression analysis.

– α and β0 to βn are coefficients defined during the regression analysis.

4.4 Final Considerations

In this chapter, we presented the planning of this research in terms of research goals, questions
and hypotheses. We also presented our proposed measure of test size and execution complexity
that is based on test specifications. Then, we presented different estimation approaches for
manual test execution effort based on execution points. In addition to the presented estimation
approaches, several others can be used, such as Case-Based Reasoning [139] and Bayesian
networks [106].

In the next chapter, we present a sequence of empirical studies used to evaluate the adequacy
of execution points for estimating manual test execution effort, to identify and investigate the
effect of cost drivers for test execution, etc. For practical reasons, we investigate the use of
only the productivity-based and the regression-based estimation approaches. We believe that
these two approaches are already being used in industry and they can be highly accurate when
correctly applied.

CHAPTER 5

Empirical Studies

The previous chapter presented how to estimate test execution effort based on test specifications
and cost drivers. To evaluate our estimation approach, we run a sequence of empirical studies
with the objective to create and calibrate estimation models for test execution effort, to evaluate
our proposed size measure for test size and execution complexity, and to investigate cost drivers
related to test execution. This chapter shows the planning, execution and analysis of these
studies.

5.1 General Overview

Table 5.1 summarizes our empirical studies related to test execution effort estimation, showing
for each empirical study (ES):

• A general classification for the study (experiment, survey, etc.).

• The relation between research questions, metrics, and main techniques and instruments
used in the study:

– Which research questions are investigated.

– Which metrics are used to answer each question.

– Which techniques and instruments produce the metrics used to answer our research
questions.

The design of most of these studies are also discussed in [14].

5.1.1 Description of the empirical studies

In this section, we briefly overview the studies shown in Table 5.1. The details of these studies
are presented in the next sections of this chapter.

ES1 − Expert Judgment: this first empirical study uses expert judgment through a Delphi
panel to configure an initial version (characteristics and cost drivers, their values and weigths,
etc.) of our test execution effort estimation approach. In this study, experts achieve a consensus
about the list of characteristics to consider for measuring the size of test specifications on the
mobile application domain. The experts are also asked to identify cost drivers that should
be considered when estimating manual test execution effort. This study helps us to answer
questions RQ1.1, RQ1.2, RQ1.5, RQ1.6 and RQ4.

53

54 CHAPTER 5 EMPIRICAL STUDIES
Table

5.1
E

m
piricalstudies

used
to

answ
erourresearch

questions.

G
oal

Q
uestion

M
etric(s)

E
m

piricalStudy
E

S1
[12]

E
S2

[15]
E

S3
[18]

E
S4

E
S5

E
S6

E
xpert

Judgem
ent

C
ase

Study
D

atabase
A

nalysis
M

ontecarlo
E

xperim
ent

Survey
D

esigned
E

x-
perim

ents

Based on test specifications

R
Q

1.1
−

W
hat

are
the

relevant
charac-

teristics
that

should
be

considered
w

hen
sizing

a
testspecification?

C
haracteristics,

C
V

aluesc,l
D

elphi
panel

A
N

O
VA

R
Q

1.2
−

W
hatis

the
w

eightofeach
rele-

vantcharacteristic
w

ith
respectto

m
anual

testexecution
effort?

C
W

eightc,l
D

elphi
panel

L
eastSquare

R
Q

1.3
−

C
an

w
e

define
a

soundness
m

easure
for

testsize
and

execution
com

-
plexity?

Inconsistences1 ,
Inconsistences2

E
m

pirical
dem

onstra-
tion

R
Q

1.4
−

C
an

w
e

autom
ate

the
m

easure-
m

entof
testsize

and
execution

com
plex-

ity?

StepsN
otA

uto
Prototype

de-
velopm

ent

Cost drivers

R
Q

1.5
−

W
hat

are
the

relevant
cost

drivers
for

estim
ating

m
anualtestexecu-

tion
effort?

C
ostD

rivers,
C

D
V

aluescd
,l

D
elphi

panel
Q

uestionnaire
A

N
O

VA

R
Q

1.6
−

W
hatis

the
im

pact(w
eight)

of
each

relevant
cost

driver
on

m
anual

test
execution

effort?

C
D

W
eightcd

,l
D

elphi
panel

L
eastSquare

L
eastSquare

Accuracy

R
Q

2
−

Is
the

estim
ation

accuracy
of

m
anualtestexecution

effortim
proved

by
regarding

the
size

and
execution

com
-

plexity
oftestspecifications?

M
M

R
E

,
PR

E
D

(.25)
C

ross-
validation/
Statisticaltest

C
ross-

validation/
Statisticaltest

A
N

O
VA

R
Q

3
−

Is
the

estim
ation

accuracy
of

m
anualtestexecution

effortim
proved

by
regarding

cost
drivers

related
to

m
anual

testexecution?

M
M

R
E

,
PR

E
D

(.25)
A

N
O

VA

Low cost

R
Q

4
−

W
hat

is
the

cost
for

estim
at-

ing
m

anualtestexecution
effortbased

on
the

size
and

execution
com

plexity
of

test
specifications,

and
based

on
cost

drivers
related

to
m

anualtestexecution?

C
onfigE

ffort,
E

valuationE
f-

fort

D
elphi

panel

5.1 GENERAL OVERVIEW 55

ES2 − Case Study: in this study, tests are executed in a controlled environment in order
to collect data and to perform different analyses: empirical demonstration of the soundness of
execution points (question RQ1.3); automation of the execution points measurement method
(question RQ1.4); evaluation of the accuracy of the estimation method configured in ES1 (ques-
tion RQ2).

ES3 − Data Analysis: using a large database of test execution data, the objective of this
study is to analyze and compare the accuracy of test execution effort estimates calculated by
using historical execution times (a simple and common estimation method used in practice)
and by using execution points (question RQ2).

ES4 − Montecarlo Experiment: the purpose of this experiment is to collect test execution
data from different testers in a controlled environment and to verify the adequacy of different
test size measures (execution points and others) for measuring test execution effort, helping to
answer questions RQ1.1, RQ1.2 and RQ2.

ES5 − Survey: the purpose of this survey is to identify cost drivers not highlighted during
the Delphi panel (ES1) through the application of a questionnaire to several testers of different
test execution teams. (RQ1.5 and 1.6).

ES6 − Designed Experiments: this study has the objective of investigating the effect on test
execution effort caused by cost drivers identified in ES5. For that, we design two experiments
to be run in the industrial setting, but in a controlled environment. This study helps us to answer
research questions RQ1.5, RQ1.6 and RQ3.

In addition, we run some other exploratory studies. One of them is presented in Appendix
B, having the objective of analyzing the effect on test execution effort caused by cost drivers
identified in ES5. For that, we analyze a historical test execution database and use expert
knowlegde to gather information about the investigated cost drivers. Despite of the low cost of
this study, the effect of confounding factors could not be controlled, creating the necessity of
the designed experiment of ES6.

5.1.2 Definition of metrics

Following the Goal/Question/Metric method [24], we define the set of metrics to be collected
during our empirical studies in order to answer our research questions.

• MMRE: Mean magnitude of the relative error.

MMRE = ∑MREi

N
(5.1)

where:

– MREi = |REi|
– REi = esti−actuali

actuali
– N is the number of estimates.

– esti is the estimated execution effort of the ith test.

– actuali is the actual execution effort of the ith test.

56 CHAPTER 5 EMPIRICAL STUDIES

• PRED(n): Percentage of estimates that are within n% of the actual values.

PRED(n) =
∑N

t=1(1, i f MREt ≤ n
100 ,0,otherwise)

N
(5.2)

• Characteristics: List of characteristics of test specifications that are relevant to estimate
test execution effort.

• CValuesc,l: List of values of the characteristic c that have a given influence level l (low,
average or high) on test execution effort.

• CWeightc,l: Weight (quantitative impact) assigned to the influence level l of the test char-
acteristic c with respect to test execution effort.

• CostDrivers: List of cost drivers relevant to estimate test execution effort.

• CDValuescd,l: List of values of the cost driver cd that have a given influence level l (low,
average or high) on test execution effort.

• CDWeightcd,l: Weight (quantitative impact) assigned to the influence level l of the cost
driver cd with respect to test execution effort.

• Inconsistences1: List of pair of tests (t1, t2), where t1 and t2 are intuitively similar with
respect to their size and execution complexity, but with significantly different numbers
of execution points.

• Inconsistences2: List of pair of tests (t1, t2), where t1 and t2 are intuitively different with
respect to their size and execution complexity, but with inconsistent numbers of execution
points. For instance, a bigger test with a similar or a smaller number of execution points.

• StepsNotAuto: List of steps of the estimation model that were identified as difficult to
automate.

5.1.3 Summary of main data analysis methods and techniques

Delphi [81] is a method that experts are invited to attend a panel for two or more rounds in order
to achieve a consensus about a subject. The participants are coordinated by a facilitator who
ensures their anonymity and structure the information flow between them. It promotes rapid
consensus and avoid groupthink. We use this method to decide how to configure our estimation
model based on expert judgment. For example, we use it to decide which cost drivers and test
characteristics to consider in the estimation model.

Statistical hypothesis test is a statistical method used to test if a given hypothesis is true
with a determined confidence level [131]. We use this kind of test to verify, for example, if a
given characteristic or cost driver is relevant for estimating test execution effort.

ANOVA is a statistical method to test heterogeneity of means by the analysis of group
variances [131]. In our research, we use ANOVA to identify the impact on the test execution

5.2 CONFIGURING A TEST EXECUTION EFFORT ESTIMATION MODEL (ES1) 57

effort when varying the influence levels of characteristics and cost drivers. This information is
also used to calculate the weight of these variables in our estimation approach.

Empirical demonstration is the confirmation that a given theory is correct by observing it in
the practice [48]. For instance, we empirically demonstrate the soundness of execution points
measured from test specifications.

Cross-validation [85] is a method for generalizing the results of a model evaluation. The
main idea is to partition a sample of data into folds (subsets) such that you test the model on a
single fold, while the other folds are used to build the model. The use of this method reduces
the probability of obtaining results by chance.

Regression analysis [87] is a method used to create a mathematical model (called regression
equation) that tries to explain the relationship between response and predictors variables. We
use this method to identify the weights of the influence levels of each relevant characteristic
or cost driver. We choose the regression model to be used (linear, quadratic, exponential, etc.)
by doing linear and nonlinear correlation analyses between the effort and each cost driver. The
Least Square Method is used to estimate the parameters of the regression model.

By Prototype development we mean the development of a tool that confirm the possibility
to automate our proposed solution. Finally, Questionnaire [114] is a survey instrument that we
use to gather information from experts.

5.2 Configuring a Test Execution Effort Estimation Model (ES1)

The first empirical study (E1) was run on the mobile application domain and it used expert
judgement through a Delphi panel to instantiate a first version of the test execution effort esti-
mation model. We did this panel with six experienced testers in two sessions of two hours.

In the first session, we explained to the participants how a Delphi panel works and the im-
portance of that work for the organization and for themselves (better estimates avoid overtime,
etc.). We also presented our approach for estimating manual test execution effort and the im-
portance to calibrate it for the mobile application domain. Then, we asked the participant to
answer questionnaires about the following questions:

• What characteristics of the tests (based on the specification) can be used to determine
how big and complex the test is?

• In which situations these characteristics can be rated as having a Low, Average or High
influence on the test size and execution complexity?

• Regarding the test size and execution complexity, what is the importance (weight) of
each characteristic when compared to the others?

• For each characteristic, what is the importance (weight) of each of its influence Level to
the test size and execution complexity?

We achieved a consensus in two rounds. The results are presented in Table 5.2, which
shows the possible values for each characteristic, their weights and the guidelines showing the
situations in which each value should be assigned.

58 CHAPTER 5 EMPIRICAL STUDIES

Table 5.2 List of characteristics identified in the Delphi panel.

5.3 EVALUATING ACCURACY IMPROVEMENT AND VALIDITY OF EP (ES2) 59

In the second session of the panel, we asked the experts about the following questions:

• What factors related to the test team, tested product, test environment and test process
has influence in the effort to execute tests?

• In which situations these factors can be rated as having a Low, Average or High influence
on the effort?

• What is the importance (weight) of each factor with respect to the others?

• For each factor, what is the importance (weight) of each influence Level?

After two rounds, we achieved a consensus about these questions. The results are presented
in Table 5.3.

5.3 Evaluating Accuracy Improvement and Validity of EP (ES2)

As reported in [15], the main goal of this study was to analyze the accuracy of test execution
effort estimates when using the estimation model proposed in this work. In order to do that, we
compared the estimates given by our model with the ones calculated using historical averages
of test execution times, a simple and common estimation method used in practice.

5.3.1 Planning

Following the goal-question-metric approach [24], we refined our goal for this empirical study
to the questions presented next:

Q1: Is the average estimation error lower when using our model rather than using historical
execution times?

Q2: Is the average percentage of estimates within 20% of the actual values higher when using
our model rather than using historical execution times?

The answer for Q1 will indicate if the use of our estimation model results in a small error
when regarding all estimates together. In its turn, the answer for Q2 will indicate if the number
of estimates within 20% of the actual values increased when using our estimation model, a
usual measure for estimation accuracy found in literature.

For the study, we selected 33 test cases of a messaging application feature for mobile phone.
These test cases were written in a controlled natural language and their size and complexity
were measured using our method. We wanted to compare the precision of estimates made
using historical information with estimates made using our approach. As both approaches
require information related to test productivity, we split the collected execution times into two
sets of data, one for training and other for testing. The tests were randomly split, where the
training set contained approximately 65% of the tests. All test cases were then executed by an
experienced tester.

The execution times were collected and stored in a spreadsheet for analysis. We used the
test execution times of the training set to calculate:

60 CHAPTER 5 EMPIRICAL STUDIES

Table 5.3 List of cost drivers identified in the Delphi panel.

5.3 EVALUATING ACCURACY IMPROVEMENT AND VALIDITY OF EP (ES2) 61

Table 5.4 Improvements achieved by using execution points.

Reduction of Increase of
Test MMRE PRED(20)

1 36.75% 100.00%
2 36.12% 33.33%
3 17.19% 50.00%

• The average test execution time (for the historical data approach).

• The average time required to execute each execution point of a test case (the conversion
factor for our proposed model).

With this information, we estimated the test execution effort of the testing set using both
approaches. The following metrics were collected for answering Q1 and Q2.

• Mean magnitude of the relative estimation error.

MMRE = ∑T
t=1 MREt

T

where:

MREt = abs(estimatedt−actualt
actualt

)

T = number o f tests

• Average percentage of estimates that were within 20% of the actual values.

PRED(.20) = ∑T
t=1(1, i f MREt ≤ .20,0,otherwise)

T

In order to avoid bias, we repeated the process two more times with different training and
testing sets.

5.3.2 Execution and Analysis

We executed the case study as planned. The results are presented in Table 5.4, showing the
improvements achieved for the metrics collected from the two analyzed estimation approaches.
In all tests we achieved better or equivalent estimation precision. In the first test, for example,
the number of estimates within 20% of the actual values increased by 100%. We also applied
t-tests and confirmed the significance of the results.

62 CHAPTER 5 EMPIRICAL STUDIES

5.3.3 Validity of Execution Points

In Section 4.2.2, we proposed a measure of the size and execution complexity attribute of a
test case. We can evaluate the validity of this measure by demonstrating empirically that the
mapping between the empirical relation system (T, R) to the numerical relation system (E, P)
is valid [48].

During the experiment presented in the previous section, we mapped several test cases in
T into execution points in E. It is necessary to verify that the mapped relations (in R and P) is
valid considering the collected data.

We used expert judgement and effort information to identify similar tests and tests bigger
than others with respect to their size and execution complexity. We verified that tests intuitively
identified as similar tests had different measured numbers of execution points. However, the
differences between these measures were within 20% of their values and this percentage value
(p) can be used for identifying similar test cases from their number of execution points.

We also verified that tests identified as bigger than others had bigger measures for their size
and execution complexity attribute. In summary, we demonstrated empirically that, for all ta
and tb in T:

ta bigger than tb ⇔ ep(ta) >ep ep(tb)

ta similar to tb ⇔ ep(ta) ≈ep ep(tb)

where ep(t) is the number of execution points measured from t.

5.3.4 Discussion

In this empirical study, we observed the cost to use our proposed model, which was basically
the time spent in the following activities:

• Define a controlled natural language;

• Identify relevant system characteristics;

• Define guidelines;

• Evaluate the size and execution complexity of test steps.

The cost to define a controlled natural language depends on the way we define it. For in-
stance, we can only define general rules, such as: each test step must be an imperative sentence
giving a direct command to the tester, the main verb in infinitive form that defines the test action
must starts the sentence, etc. In this case, we do not have a significant cost.

However, we can also specify the list of all possible verbs that define test actions, their
possible arguments, the vocabulary to be used, etc. In this case, we have to analyze existing
requirement and test documents, a process that can be done incrementally. We also need support
tools to store this information and to check the conformity of the test cases. In this way, we
maximize the benefits of the controlled natural language: reduced grammar and lexicon, writing
standard, etc.

5.4 EVALUATING ACCURACY IMPROVEMENT USING HISTORICAL DATA (ES3) 63

Finally, the cost to evaluate each test action, with respect to size and execution complexity,
was very small. It took less than a minute to evaluate each test step. However, there may exist
hundreds of test steps to be evaluated. Fortunately, we did not need to evaluate all test steps,
since it is common to have the same test step occurring several times in different test cases or
even in the same test. After evaluating a test step, we just need to assign the same number of
execution points to its other occurrences.

In our experiment, we observed that most of times we can evaluate a test step based only
on the main verb of its sentence, independently of the verb arguments. For instance, the act of
launching an application has the same complexity for most applications and only the exceptions
need to have a specific evaluation.

Also, we use a controlled natural language that reduces the vocabulary and consequently
increases the use of the same verb in different test steps that only change the verb arguments.
For this reason, the number of test steps to evaluate (and our cost) is even smaller. In summary,
the results of this empirical study suggests the feasibility of our model regarding the cost of
using it.

5.4 Evaluating Accuracy Improvement Using Historical Data (ES3)

In this section, we present the details of an empirical study which main goal is the analyis and
comparison of the accuracy of test execution effort estimates calculated by using historical exe-
cution times (a simple and common estimation method used in practice) and by using execution
points.

5.4.1 Planning

Based on the goal of this study, we defined the following research question:

Q1: What is the impact on estimation accuracy when using execution points instead of
historical execution times?

To answer this research question, we compare estimates from the model presented in Sec-
tion 4.3.1 (test productivity-based model) with estimates calculated by multiplying the number
of test to be executed by the average time spent in the past to execute a test. For this compar-
ison, we consider the Mean Magnitude of the Relative estimation Error (MMRE) and average
percentage of estimates that were within 25% of the actual values (PRED(.25)), two measures
commonly used to assess estimation accuracy.

In ES2, we analyzed the accuracy improvement by analyzing a small set of tests. In this
study, we use a large historical database of manual execution on the mobile application domain.
For measuring the execution points, we use the characteristics and weights for the mobile ap-
plication that were identified in ES1 through the Delphi panel with test experts. We use the
two estimation approaches to estimate test execution effort of previous test projects (historical
database) in a ten-fold cross-validation analysis.

64 CHAPTER 5 EMPIRICAL STUDIES

5.4.2 Execution and Analysis

The analyzed database has information about the execution of 319 different test suites (sets
of related tests) used to test the features of different types of mobile applications. Table 5.5
presents descriptive statistics of the analyzed data.

Table 5.5 Descriptive statistics of the historical database used in the study.

Test suite characteristic Mean Median Min Max Std Dev
Number of tests 48.55 57 15 104 21.37
Execution points 14935.12 15553 6086 28174 4641.48
Effort (hh:mm) 07:05 06:56 02:28 14:40 02:35

During the cross-validation analysis, we observed a reduction (from 49.49% to 66.02%) of
the Mean Magnitude of the Relative estimation Error (MMRE) and an increase (from 20.83%
to 93.75%) of the average percentage of estimates that were within 25% of the actual values
(PRED(.25)). We used a paired t-test to reject our null hypothesis (p-value<0.001, α = 0.05),
which says that the mean accuracy of both estimation approaches are the same according to
MMRE. Table 5.6 shows the accuracy improvement achieved by the use of execution points
during the cross-validation analysis.

Table 5.6 Accuracy improvement achieved by using execution points (EP) against of using historical
execution times (HET).

MMRE PRED(.25)
Fold HET EP Reduction HET EP Increase

1 0.30 0.12 60.37% 0.50 0.97 93.75%
2 0.28 0.11 60.65% 0.59 0.94 57.89%
3 0.27 0.12 53.83% 0.53 0.94 76.47%
4 0.28 0.10 66.02% 0.72 1.00 39.13%
5 0.30 0.14 52.70% 0.63 0.81 30.00%
6 0.36 0.17 53.00% 0.63 0.84 35.00%
7 0.30 0.11 64.11% 0.56 1.00 77.78%
8 0.30 0.12 58.91% 0.75 0.91 20.83%
9 0.33 0.12 62.93% 0.56 0.88 55.56%

10 0.31 0.15 49.49% 0.68 0.90 33.33%
Avg 0.30 0.13 58.20% 0.61 0.92 51.97%

We also analyzed the correlation between the execution points of the tests, number of tests
and the effort to execute them. The linear correlation between effort and execution points
was significative, achieving a Pearson’s correlation of 0.888 (p-value<0.001). This num-

5.5 EVALUATING THE ADEQUACY OF TEST SIZE MEASURES (ES4) 65

ber was larger than the correlation between effort and number of tests, which was 0.792 (p-
value<0.001).

5.4.3 Limitations and Threats to Validity

This study has some limitations and threats to validity. First, we did not consider the variation
that can occur when changing the group of experts used to define test characteristics, guidelines,
weights, etc. As a consequence, we do not know if this variation can significantly change the
observed results. In addition, we used historical data that may be affected by some uncontrolled
factors, such as test environment conditions, time pressure, etc. Although the cross-validation
reduced the impact of these factors, more precise results can be achieved by controlling all
relevant factors.

Although the test suites in the historical database are different, we observed that several of
them have tests in common with other test suites. This characteristic may increase the accuracy
metrics of both investigated estimation models, since the same test (with similar test execution
times) can occur in both training and test sets of the cross-validation. As we used the same
training and test sets for both investigated models, this effect is reduced when we analyze only
the accuracy improvement.

5.4.4 Conclusions

In this study, we observed a significant accuracy improvement caused by execution points when
compared to average test execution times. In addition, we observed a high estimation accuracy
for the both investigated estimation approaches. This can be an effect of having the same tests
in both training and test sets of the cross-validation. Also, the tested features are similar to those
used to configure the execution points measurement method. The use of features different from
those used to configure the measurement method may lead to smaller accuracy improvements.

5.5 Evaluating the Adequacy of Test Size Measures (ES4)

The accuracy of test execution effort estimation strongly depends on the selection of adequate
predictor variables. In Chapter 4, we propose the use of execution points to improve the accu-
racy of test execution effort estimation. In this study, we compare the adequacy of four test size
measures for estimating test execution effort. All these measures are related to the size of test
specifications. Three of them are based on the ideas presented in Chapter 4 and the other is a
measure commonly used in the practice.

5.5.1 Research Objective

Following the goal template of the Goal/Question/Metric (GQM) method [24], we define the
research objective of this experiment as:

Analyze test size measures for the purpose of evaluation with respect to its adequacy for
estimating test execution effort from the point of view of test managers in the context of

66 CHAPTER 5 EMPIRICAL STUDIES

functional tests on the mobile application domain.

5.5.2 Size Measures Under Investigation

For this experiment, we only consider measures that we believe to be appropriate for sizing test
specifications and to be used in the practice. These measures are detailed next.

5.5.2.1 EP calibrated by specialists (M1) and by OLS (M2)

These two measures (M1 and M2) are basically the Execution Points (EP) measured by two
differently calibrated measurement methods. The former is a measure obtained by using a
measurement method calibrated by using expert opinion (see empirical study ES1). The latter
is a measure obtained by using a measurement method calibrated by analyzing test execution
data (see Section 4.2.3.3), which uses the Ordinal Least Square (OLS) method to fit a linear
model and to obtain the weights to use in the model.

5.5.2.2 Number of test steps (M3)

One way to measure the size of a test specification is counting its number of test steps. This
simple measurement method can be easily automated and it does not require any calibration
procedure, since it is considered that all steps in the test specification have the same weight.
For instance, the test specification presented in Table 5.7 has the size of 5 test steps. The size
of a test suite is then calculated as the sum of steps of each individual test specification of the
suite.

Table 5.7 Example of a test procedure written in a controlled or standardized natural language.

Step Description Expected Results
1 Start the message center. The phone is in message center.
2 Select the new message option. The phone is in message composer.
3 Insert a recipient address into the recipi-

ents field.
The recipients field is filled.

4 Insert a SMS content into the message
body.

The message body is populated.

5 Send the message. The send message transient is displayed.
The message is sent.

This measure is very simple to compute and it is used in the practice, although its useful-
ness strongly depends on the use of a standardized test specification languages (description in
the same level of details, etc.). The tests specifications considered in this study have an homo-
geneous level of detail and follow writting standards defined by the industry involved in this
research.

5.5 EVALUATING THE ADEQUACY OF TEST SIZE MEASURES (ES4) 67

5.5.2.3 Multiple characteristics (M4)

We can see the execution points measurement method as a way for aggregating several charac-
teristics observed in test specifications that are all related to test execution effort. A different
method for estimating test execution effort is considering each of these characteristics as a dif-
ferent and complementary measure of test size. In other words, the characteristics Number of
navigations between screens (Nav), Number of press keys (Keys), etc., are considered as size
measures for estimating test execution effort. Then, all these multiple measures can be used
to build a model for estimating test execution effort based. A similar approach was successuly
used for estimating web development effort [95].

5.5.3 General Planning

In this section, we describe several information about the planning of our experiment, such
as its goals, the participants, hyphotheses, experiment design, data analysis procedures and
results, etc.

5.5.3.1 Goal

The major goal of this experiment is the evaluation of how useful the investigated test specifi-
cation measures are to estimate test execution effort. The assessment of this goal is performed
by answering the following research questions:

RQ1: How accurate are the estimates based on the investigated measures?

RQ2: What is the best measure to use for estimating test execution effort?

We analyze the accuracy of test execution effort estimation models that use the investigated
measures (question RQ1) by using multiple and standard accuracy measures [129]:

MMRE: Mean magnitude of the relative error.

MdMRE: Median magnitude of the relative error.

PRED(25): Percentage of estimates that are within 25% of the actual values.

Then, the best investigated measure considered here (question RQ2) is the one that achieved
the best results with the accuracy metrics (MMRE, MdMRE, PRED) and the following metric:

PRESS: Prediction Sum of Squares statistic, which is a leave-one-out refitting and pre-
diction method [31]. It measures how a regression model is sensitive to particular data
itens and it is calculated by:

PRESS =
n

∑
i=1

(yi − ŷi,−i)2 (5.3)

where yi is the actual y value for the point xi and ŷi,−i is the predicted value using a model
calibrated by n - 1 points (all data points except xi).

68 CHAPTER 5 EMPIRICAL STUDIES

5.5.3.2 Participants

The participants of this experiment were students of a testing course at the Informatics Cen-
ter/UFPE in partinership with an important cell phone manufactor. In this course, graduate and
undergraduate students have class during half of the day and the remaining time is used to prac-
tice software testing in a real test site on the mobile application domain. All students of this
testing course are required to participate in a research project, being evaluated according to the
achieved results. Usually in groups of three, these students choose their research project from a
predefined list of options according to their interest and some project prerequisites (experience
of the participants, etc.).

In this context, the main motivation of the participants (three student volunteers) were the
interest in the topic of study and the fulfilment of the testing course requirements (research
project) with their participation in the experiment. These students worked as testers for approxi-
mately six months, having experience on executing functional tests on the mobile applications.
All the participants had almost the same testing experience background, existing only some
individual testing experiences with respect to specific features and types of mobile phones.

5.5.3.3 Experimental Material

The tests specifications considered in this experiment were obtained from a real test repository.
These tests were previously designed to test a feature related to message applications running
on mobile phones. The complete test suite contain 47 functional tests that exercise all the 7
requirements of the considered feature.

We selected these tests based on their availability, previous knowlegde of the participants
about the tests (no training required) and the high quality of the specification writing, which
reduced any confounding effect related to who wrote the tests. Also, we verified that these tests
have the most common test actions found in functional tests for mobile applications.

5.5.3.4 Tasks

The task of the participants in this study is to execute a set of functional tests in a random order
assigned to each one of them. For this activity, the test environment (hardware and software)
is already prepared. Also, the testers are asked and monitored to run the tests without being
affected by any external factor, such as time pressure, noisy environment, etc.

They executed the tests using ManualTEST [17] (see Appendix D), a tool that we developed
to improve the accuracy of the data collected in our empirical studies and to provide information
to locate and identify sources of problems occurred during the execution such studies. Hence,
the participants have to follow the procedures to use the tool, which include the logging of
problems during the test execution, such as any influence of confounding factors.

5.5.3.5 Hypotheses, Fixed Factors and Variables

For evaluating the adequacy of each measure under investigation for estimating test execution
effort, we compare the mean accuracy obtained by their respectives estimation models. We
verify the statistical significance of the differences between the means through the test of the

5.5 EVALUATING THE ADEQUACY OF TEST SIZE MEASURES (ES4) 69

following statistical hyphoteses:

H0i : µiM1 = µiM2 = µiM3 = µiM4

H1i : µiM j 6= µiMk for at least one M j 6= Mk, Mj,Mk=M1, M2, M3, M4

Where i = MMRE, MdMRE, PRED(25) and M1 to M4 are the measures under investigation.
The test of these hypotheses shows if there is a statistical significant difference when using

some of the measures under investigation for estimating test execution effort. If this differ-
ence exists, we identify the measure(s) that provides the best estimation accuracy by perform-
ing simultaneous inferences and multiple comparisons with respect to the resulting accuracy
(MMRE, MdMRE and PRED(25)).

There are several factors that can influence the accuracy of the test execution effort esti-
mates. As we intend to analyse only the influence of the size measures on the accuracy of the
estimates, the effect of these other factors have to be controlled. The value for most of these
factors were fixed for the experiment, as presented in Table 5.8.

In addition, we present the variables defined for this experiment in Table 5.9. We have
the independent variables SizeM1 to SizeM4, the factor MeasureType representing the type of
size measure to be used, the actual test execution effort (ActE f f ort) and the response variable
EstE f f ort, which is the estimated test execution effort by using one of the investigated size
measure.

5.5.4 Experiment Design

This experiment is organized in three stages. In the first stage, we collect data using three testers
executing tests in a controlled environment. In the second stage, we use this data to create test
execution effort estimation models based on the investigated size measures. The third stage
consists in calibrating and evaluating the created models using a cross-validation analysis in
order to analyze the accuracy provided by each investigated size measure.

5.5.4.1 Stage I: Collecting Data

In this first stage, three participants (testers) execute all the tests described in Section 5.5.3.3 in
a controlled environment, each tester following a different and random test execution order. The
objective of this stage of the experiment is to determine the actual effort required to execute
each test. We reduce and control the effect on test execution effort caused by confounding
factors through the following methods:

• Blocking. We block the testers who execute the tests, since they have similar but not equal
previous experiences and others personal characteristics that affect their performance.

• Randomization. The order of test execution may affect the total execution effort. We
assign a different and random order of test execution for each tester. This forces a more
homogeneous contribution of the test execution order with respect to the execution effort.

70 CHAPTER 5 EMPIRICAL STUDIES

Table 5.8 Values set for fixed factors in this experiment.

Related to Factor Name Value

Environment Tools All availables testing tools are used.
Resources Mail servers are available and operating

with the usual performance.
Stability Mobile network is available and the sign is

stable.
Personnel Participant level of expertise Several months of experience on testing.

Similar testing experience and academic
performance.

Familiarity of participants
with the tested feature, phone
and tools

Good familiarity.

Current occupation Subjects from a university course and half-
time employee.

Test project Software testing technique Functional testing.
Test size Set of similar tests with size that is common

on the mobile application domain.
Application domain Mobile applications.
Application complexity Feature with small complexity.
Tested application Feature related to mobile message applica-

tions.
Tested phone A stable phone model with regular perfor-

mance.
External pressures Low level of schedule preassure to execute

the tests.

5.5 EVALUATING THE ADEQUACY OF TEST SIZE MEASURES (ES4) 71

Ta
bl

e
5.

9
V

ar
ia

bl
es

de
fin

ed
fo

rt
hi

s
ex

pe
ri

m
en

t.

N
am

e
A

bb
re

vi
at

io
n

C
la

ss
E

nt
ity

Ty
pe

of
at

tr
ib

ut
e

Sc
al

e
ty

pe
U

ni
t

R
an

ge
or

Sc
al

e
po

in
ts

Si
ze

of
th

e
te

st
sp

ec
ifi

ca
tio

ns
de

te
rm

in
ed

by
m

ea
su

re
M

1
Si

ze
M

1
Pr

od
uc

t
Te

st
Sp

ec
ifi

ca
-

tio
ns

In
te

rn
al

R
at

io
E

xe
cu

tio
n

po
in

t
[0

,∞
]

Si
ze

of
th

e
te

st
sp

ec
ifi

ca
tio

ns
de

te
rm

in
ed

by
m

ea
su

re
M

2
Si

ze
M

2
Pr

od
uc

t
Te

st
Sp

ec
ifi

ca
-

tio
ns

In
te

rn
al

R
at

io
E

xe
cu

tio
n

po
in

t
[0

,∞
]

Si
ze

of
th

e
te

st
sp

ec
ifi

ca
tio

ns
de

te
rm

in
ed

by
m

ea
su

re
M

3
Si

ze
M

3
Pr

od
uc

t
Te

st
Sp

ec
ifi

ca
-

tio
ns

In
te

rn
al

R
at

io
Te

st
N

on
-n

eg
at

iv
e

in
te

ge
rs

Si
ze

of
th

e
te

st
sp

ec
ifi

ca
tio

ns
de

te
rm

in
ed

by
m

ea
su

re
M

4
Si

ze
M

4
Pr

od
uc

t
Te

st
Sp

ec
ifi

ca
-

tio
ns

In
te

rn
al

R
at

io
St

ep
N

on
-n

eg
at

iv
e

in
te

ge
rs

Id
of

th
e

te
st

er
th

at
ex

ec
ut

ed
a

te
st

Te
st

er
Id

Pr
oc

es
s

Te
st

er
In

te
rn

al
N

om
in

al
-

A
,B

,C

Ty
pe

of
m

ea
su

re
an

d
m

ea
-

su
re

m
en

t
m

et
ho

d
to

be
us

ed
fo

r
es

tim
at

in
g

th
e

re
qu

ir
ed

te
st

ex
ec

ut
io

n
ef

fo
rt

M
ea

su
re

Ty
pe

M
et

ho
d

Si
ze

m
ea

su
re

-
m

en
t

In
te

rn
al

N
om

in
al

-
M

1,
M

2,
M

3,
M

4

E
st

im
at

ed
ef

fo
rt

re
qu

ir
ed

to
ex

ec
ut

e
th

e
te

st
s

E
st

E
ff

or
t

Pr
oc

es
s

Te
st

E
xe

cu
tio

n
In

te
rn

al
R

at
io

H
ou

r
[0

,∞
]

A
ct

ua
le

ff
or

tr
eq

ui
re

d
to

ex
e-

cu
te

th
e

te
st

s
A

ct
E

ff
or

t
Pr

oc
es

s
Te

st
E

xe
cu

tio
n

E
xt

er
na

l
R

at
io

H
ou

r
[0

,∞
]

72 CHAPTER 5 EMPIRICAL STUDIES

• Holding project and environmental conditions constant during the experiment. These are
the fixed factors already described.

Hence, we consider that only the size of the testers and the testers’s experience can signifi-
cantly affect the test execution effort. Then, we record information about the test and the tester
who executed each test in a database, as well as its actual test execution effort. As the test is
executed by only one tester, test execution effort means the time spent to execute the test. The
structure of this database is described in Table 5.10.

Table 5.10 Information collected in the first part of the experiment.

Name Description

TestId Identification of the test that was executed.
M1 Size of the test case determined by the M1 measurement method.
M2 Size of the test case determined by the M2 measurement method.
M3 Size of the test case determined by the M3 measurement method.
ActualEffort Actual effort required to execute the test.
TesterId Identification of the tester that executed the test.

All test size measures are automatically calculated by using a tool [20] (see Appendix C),
avoiding measurement errors. The test execution data is collected by the ManualTEST tool,
avoiding most of the data collection problems.

5.5.4.2 Stage II: Creating Estimation Models

We use regression analysis [53] for creating the estimation models used to investigate the ad-
equacy of the size measures. We selected this technique since regression analysis is a well-
known statistical technique largely used in industry and in the academia for creating estimation
models. In summary, regression analysis a statistical technique that investigates the relation-
ship between dependent variables (response variables) and independent variables (predictor
variables). This relationship is defined by an regression model, which is in our case:

ExecTimek = β0 +β1Sizemk +β2TAk +β3TBk +β4TAk ∗Sizemk +β5TBk ∗Sizemk + εk (5.4)

Where:

• ExecTimek is the time spent to execute the test of the kth observation.

• β0 to β5 are coefficients of the estimation model to be calculated by the regression anal-
ysis.

• Sizemk is the size of the test executed in the kth observation determined by the measure
m (M1, M2, M3 or M4).

5.5 EVALUATING THE ADEQUACY OF TEST SIZE MEASURES (ES4) 73

• TAk is equal to 1 if tester A executed the test of the kth observation, otherwise it is equal
to 0.

• TBk is equal to 1 if tester B executed the test in the kth observation, otherwise it is equal
to 0.

• εk is the error term for the kth observation.

As we can see, we use a general linear model that includes the possible interactions between
the test size (Sizemk) and the tester’s experience (dummy variables [85] TAk and TBk). For each
investigated measure, the regression analysis is applied to the database created in stage I with
the objective of determining which β coefficients are different from 0. Also, transformations
in the model can be performed to meet some regression analysis assumptions:

• The residual error term follows a normal or an approximate normal distribution.

• The residuals have a constant variance.

5.5.4.3 Stage III: Evaluating Estimation Accuracy

In this stage, we calibrate and evaluate the four models created in Stage II (one for each inves-
tigated measure). In summary, this stage has the objective of analyzing the accuracy provided
by each investigated measure for estimating test execution effort. For that, we calibrate and
evaluate the estimation models using a three-fold cross-validation arrangement [85].

In this three-fold cross-validation, the data collected in Stage I is randomly split into three
folds of sizes as similar as possible. Then, each fold is used to verify the accuracy of each
estimation model when they are calibrated based on the other folds. Since this experiment
blocks the testers, this cross-validation analysis is executed three times, each time considering
the data obtained from a different tester. We run this procedure one hundred times to reduce
the experimental error variance. After that, we analyze the achieved accuracy, performing
statistical tests to support our conclusions.

5.5.5 Execution and Analysis

This study was executed according to the planning presented in the previous sections. The
details of this execution and its analysis are presented next.

5.5.5.1 Data Collected in Stage I

During the execution of some tests, the testers observed and logged the effect of some con-
founding factors, such as changes in the network performance. These problems were confirmed
by analyzing the data recorded by the ManualTEST tool. For this reason, only 130 of the 141
observations were considered in the study, 44 from tester A, 43 from tester B and 43 from tester
C.

74 CHAPTER 5 EMPIRICAL STUDIES

5.5.5.2 Estimation Models Created in Stage II

As presented next, we created four estimation models, one for each investigated size measure.
The details of the statistical analyses performed to create the models are presented in Appendix
A.

Measure M1. We applied the regression analysis considering measure M1 (EP-Experts). The
results of this analysis are presented in Figure A.1. As we can observe in the residual by pre-
dicted plot, the variance of the residuals is not constant. The distribution of the data is also
suggesting that there may exist some non-linear relation between the dependent and indepen-
dent variables.

To stabilize variance of the residuals, we applied the Box Cox [53] transformation on the
variable effort. The results of this analysis are presented in Figure A.2. As we can observe in
the residual by predicted plot, the variance of the residuals was stabilized. We also observed
that there is some non-linear effect of size on the transformed effort that we approximated by a
quadratic effect (see Figure A.3).

After that, we performed again the regression analysis (see Figure A.4). The inclusion
of the quadratic effect of the measure M1 on test execution effort improved in some way the
linear relationship between the actual and the predicted effort (see Figure A.5 and the changes
in RSquare Adj from Figure A.2 to A.4).

Finally, we removed the terms that were not considered significant by the regression analy-
sis. The final result from this analysis is presented in Figure A.6. Although the dummy variable
for tester B was not considered significant, we kept it in the model, since the other dummy vari-
able was significant. We also confirmed the normal distribution of the residuals by analyzing
the data histograms and applying the Shapiro-Wilk W Test [131].

Measure M2. The results of applying regression analysis considering measure M2 (EP-Data)
are presented in Figure A.7. As we can observe in the residual by predicted plot, the variance of
the residuals is not constant. We transformed the effort data using the Box-Cox transformation.
After that, we verified that all factors and interactions should be kept in the model, as presented
in Figure A.8.

Measure M3. We applied the regression analysis considering measure M3 (Steps) and we
verified the variance not constant of the residuals (Figure A.9). After transforming the effort
data using the Box-Cox transformation method, we removed the interactions between the size
measure and the testers (dummy variables), since they did not have significant effect (Figure
A.10). The resulting model was considered the final model for measure M3 (see Figure A.11).

Measure M4. Before applying the regression analysis considering measure M4 (measures
Keys, Screen, Delay, ListManip), we analyzed the correlation between the four measures rep-
resented by the multiple measure M4. We observed a high correlation between some of them:
Keys and Screen and Keys and ListManip (see Table A.1). Using the partial correlation analy-
sis, we decided to remove the variable Key.

Then, we applied the regression analysis and verified the variance not constant of the resid-
uals (Figure A.12). We transformed the data using the Box-Cox transformation and verified

5.5 EVALUATING THE ADEQUACY OF TEST SIZE MEASURES (ES4) 75

that some interactions have not significant effect (Figure A.13). To reach the final regression
model, we first removed the Screen and Tester interaction term (Figure A.14) and then the
ListManip and Tester interaction term (Figure A.15).

5.5.5.3 Estimation Accuracy Achieved in Stage III

We performed the Stage III of this study according to the planning by implementing scripts
in the statistical package R [37]. The estimation accuracy (MMRE, MdMRE and PRED(25))
achieved in each run and by each estimation model is presented in Table A.2. The analysis of
the MMRE distribution is presented in Figure A.16. The values observed for the MMRE are
distributed between 0.2 and 0.9 and follow an approximate normal distribution. The MMRE
means and their confidence intervals at α = 0.05 are presented in Table 5.11.

Table 5.11 MMRE means and 95% confidence intervals.

Measure lower 95% Mean MMRE Mean upper 95% Mean Rank
M1 0.3924 0.4156 0.4387 3
M2 0.3264 0.3321 0.3378 1
M3 0.3890 0.3978 0.4066 3
M4 0.3502 0.3619 0.3737 2

As we can see, the statistical analysis of confidence intervals shows an intersection only
between the confidence intervals of the MMRE means for M1 and M3. This result rejects
the null hypothesis H0MMRE at α = 0.05, which says that the choice between the investigated
measures did not impact the achived estimation accuracy measured by MMRE. The column
Rank shows which measures had the best results with statistical significance.

With respect to the MdMRE means, the analysis of their distributions is presented in Figure
A.17. The values observed for the MdMRE also follow an approximate normal distribution. In
addition, the results also reject the null hypothesis H0MdMRE at α = 0.05, which says that the
choice between the investigated measures did not impact the achived estimation accuracy mea-
sured by MdMRE. As we can see in Table 5.12, we observed statistical significant differences
between some of the Median means. Again, column Rank shows which measures had the best
results with statistical significance.

Table 5.12 MdMRE means and 95% confidence intervals.

Measure lower 95% Mean MdMRE Mean upper 95% Mean Rank
M1 0.2886459 0.2960826 0.3035194 2
M2 0.2377913 0.2434163 0.2490413 1
M3 0.3029377 0.3106087 0.3182798 2
M4 0.2371364 0.2437111 0.2502858 1

76 CHAPTER 5 EMPIRICAL STUDIES

Finally, the analysis of the PRED(25) distribution is presented in Figure A.18. The values
observed for the PRED(25) also follow an approximate normal distribution. The results reject
the null hypothesis H0PRED(25) at α = 0.05, which says that the choice between the investigated
measures did not impact the achived estimation accuracy measured by PRED(25). Column
Rank of Table 5.13 shows which measures had the best results with statistical significance.

Table 5.13 PRED(25) means and 95% confidence intervals.

Measure lower 95% Mean PRED(25) Mean upper 95% Mean Rank
M1 43.548274 44.477639 45.407003 2
M2 50.792641 51.581219 52.369796 1
M3 42.477479 43.300828 44.124177 2
M4 51.026752 51.904510 52.782268 1

5.5.6 Discussion

5.5.6.1 Evaluation of Results and Implications

We answer question RQ1 by using the calculated means for MMRE, MdMRE and PRED(25)
for each estimation model used in the experiment. Different from what we expected, none
of the models based on the characteristics of test specifications (M1, M2, and M4) achieved
the great estimation accuracy observed in previous studies, that is, MMRE and MdMRE close
to 0.2 and PRED(25) close to 80%. We believe that this decrease in the observed estimation
accuracy for these models is due to specific characteristics of this feature (intensive use of
network, etc.) that were not identified in empirical study ES1, since that study was based on
different features. Also, it is difficulty to control the effect of some confounding factors (tester
experience, network performance, etc.), which may reduce the accuracy of all investigated
models. However, the comparison between the estimation models was not impacted, since the
models were evaluated using the same conditions.

For answering question RQ2, we observed which of the investigated measures produced
estimation models with better performance in the accuracy metrics (MMRE, MdMRE and
PRED(25)) and in the PRESS metric. In the mean, this study shown with statistical signifi-
cance that MMRE was smaller when we use the measure M2. Actually, the maximal MMRE
value obtained by using M2 was almost the half of the maximal value obtained by using M4.
However, the MdMRE and the PRED(25) were similar for mesaures M2 and M4 with respect
to their means. With respect to the PRESS metric, measure M2 resulted in a smaller PRESS
than the other measures (see Table 5.14). In summary, based on the MMRE and PRESS metrics
observed in this study, we consider measure M2 as the best measure to use for estimating test
execution effort.

5.6 IDENTIFYING COST DRIVERS RELATED TO TEST EXECUTION (ES5) 77

Table 5.14 PRESS statistic for the models created by using each of the investigated measures.

Measure: M1 M2 M3 M4
PRESS: 343933.25389 302215.05609 382953.04261 303771.93926

5.5.6.2 Threats to Validity

In this section, we describe threats to the validity of the experiments results, the impact of each
threat and how we controlled them.

Construct validity: The execution points measurement method was configured in ES1 by
testers that did not executed this feature. For this reason, some characteristics present only
in test specifications of this feature may be missing in the measurement method, reducing the
accuracy of the models based on characteristics of test specifications (metrics M1, M2, and
M4). We asked the participants to report any characteristic that was missed, in their opinion.

Internal validity: Only one of the participants (testers) was expert in testing the feature used
in the experiment. The other two testers knew the feature and have tested it before, but long
time ago and only part of their requirements. We noticed that the experience of these two testers
had different effect on test executin effort, according to each test. For instance, these testers
had the effect of an experienced testers for tests similar to those frequently executed by them.
However, they may had different performance for tests different from those frequently executed
by them. This problem can increase the variance of the effort spent to execute each test and
can reduce the effectiveness of our mechanism used to control the testers’s experience effect
(dummy variables, etc.). The possible consequence of this confounding effect is a reduction in
the estimation accuracy of all investigated models. The control of this problem was performed
through the analysis of outliers, where some observations were discarded.

In addition, the tests could not be executed in the same day, making difficulty the control of
the testing environment. A possible consequence of this problem is an increase of the effects
of confounding factors, reducing the estimation accuracy of all investigated models. To control
this problem, we asked the testers to report any observed variation in the testing environment.

External validity: The participants and material used in the experiment limit the generaliza-
tion of our findings. The use of three different testers, tests containing the most common test
actions, and a cross-validation analysis repeated several times increases the probability to find
results not by chance.

5.6 Identifying Cost Drivers Related to Test Execution (ES5)

The purpose of the survey was to identify what information is necessary to accurately estimate
test execution effort on the mobile application domain. We defined the survey objective through
the following research question with respect to the mobile application domain:

RQ: What cost drivers (test environment, team capability, etc.) significantly impact the
effort to execute test cases?

78 CHAPTER 5 EMPIRICAL STUDIES

This survey was planned to run during two business days of August, 2007. The last months
before the application of this survey were considered common in terms of number and types of
test projects. For this reason, we believe that the participants could remember the different test
scenarios and environment conditions they have experienced before.

Next, we discuss about the main concerns about the survey administration.

5.6.1 Target population and sample size

The group of people able to answer our questions are the test architects, test managers, test
designers and testers of the mobile application domain.

This work is part of the Motorola Brazil Test Center (BTC) Research Project, a partnership
between Motorola Industrial Ltda. and the Informatics Center of the Federal University of
Pernambuco that allowed us to have access to real test projects, teams and environments of
Motorola BTC. We consider this industrial setting very representative in the mobile application
domain, due to the high number of mobile applications that are developed by Motorola.

We were able to apply the survey to two Motorola test sites in Brazil (called here as test
sites A and B). These sites together have more than 150 people working on testing mobile
applications. We considered that a sample size of approximately 40 respondents were enough
to get the information we needed and also feasible to run within our resources.

Using our previous experiences working with these test sites, we believed that our survey
would achieve a response rate of 80%. For this reason, we decided to use a sample size of 50
people, as the analysis of a bigger sample would be too costly.

5.6.2 Participant selection and motivation

We wanted our sample to be representative. This means that it should ideally include people
not only from all positions, but also from all different test teams with respect to the type of test
and tested technology, since they may have different necessities and test environments. Both
Motorola sites have similar organizational structure with respect to teams and positions. Hence,
we selected 25 participants from each site using two different approaches.

For the test site A, the participants were randomly selected according to their positions,
including test managers, test architects, test designers, testers and others. We split its list of
employees into subgroups of the same position and then sample them separately.

For the test site B, the participants were randomly selected according to their test teams.
We split its list of employees into subgroups of the same test teams and then sample them
separately.

This stratified random sample has more chance to have participants from all positions and
all test teams, since there are more testers than any other position. The number of members
selected from each subgroup was proportional to the size of the subgroup.

Aiming to achieve a high response rate, we motivated the participants in different ways.
First, we presented the goals of the survey in the beginning of the questionnaire, as well the
benefits that an improvement in the accuracy of test execution effort estimations may result for
the respondents.

Also, we designed the questionnaire to take 10 to 20 minutes to be answered. We believed

5.6 IDENTIFYING COST DRIVERS RELATED TO TEST EXECUTION (ES5) 79

that most of the participants would not have more than 30 minutes to spend answering the
questionnaire. The test managers were also asked to reinforce the importance of the survey.

We verified which participants responded the survey at the end of each day. We sent an
e-mail to those that did not respond in order to remind the importance of their answers. We
also approached the unresponsive participants four hours before the response deadline.

5.6.3 Questionnaire design

We designed a questionnaire having three parts. The first part is the survey description, which
presents the survey goals, benefits and recommendations about how to answer the questions.
For instance, we recommended the respondents to spend some time remembering previous
experiences that impacted in the test execution effort.

The second part of the questionnaire regards the respondent position and profile. For in-
stance, the participants were asked about their experience in testing, their position, etc. This
information is useful to analyze the representativeness of the answers.

Finally, the last part of the questionnaire are related to the factors that may impact text
execution effort. We tried to create simple questions that help us to identify these cost drivers.
Basically, we created four questions asking what factors or characteristics impact test execution
effort.

Each one of these four questions regards a specific point of view: the tested hardware
(mobile phone), tested software (feature), test environment or tester capability. In addition,
we defined a last question asking for any additional information that the respondent may think
relevant to test execution effort estimation. We used a customized spreadsheet as our data
collection instrument.

5.6.4 Methods for data analysis

For analyzing the responses, we first consolidate all responses into a single spreadsheet. Then,
we screen the responses to ensure their correctness, standardizing the way they are written,
removing ambiguities, etc. After that, we analyze the reviewed answers and group them using
keywords. We use these keywords and their frequency of occurrence to help the identification
of the cost drivers. This process is called coding in the qualitative analysis theory [127].

5.6.5 Questionnaire evaluation

Before running the survey, we evaluated the questionnaire through a pilot study. In this pilot,
we performed the same procedures defined for the survey, excepting the participant selection.
We invited seven testers to answer the questionnaire. Three of them were already collaborating
with this research. The others four testers were selected due to their availability.

The answers were totally relevant, suggesting a good understanding of the questions. Also,
the pilot was useful to identify missing questions related to the respondent profile. In addition,
we verified that respondents took between 9 to 30 minutes to answer the questionnaire, as
shown in Table 5.15.

In the beginning, we planned to collect the answers and, after three days, give the opportu-

80 CHAPTER 5 EMPIRICAL STUDIES

Table 5.15 Effort to answer the questionnaire.

Time in minutes
Mean Median Std Dev Max Min
20.43 20 8.04 30 9

nity for each respondent to read his answers and improve them with other information that he
may have remembered. However, we verified in the pilot that the answers were not improved
as we expected. Probably, no different situation happened during those days. For this reason,
the respondent were not asked to review their answers in the survey as we did in the pilot.

5.6.6 Data analysis

In this section, we describe the results found during the analysis of the questionnaire answers.
As shown in Table 5.16, we received 37 responses from the total of 50 participants, achieving
a response rate of 74%. The response rate is presented according to each participant test site.
Although this response rate is close to the one we were expecting, we did not expected the low
response rate of test site B.

Table 5.16 Participants and response rate per test site.

Test Site
Total

A B
Participants 25 25 50
Responses 25 12 37
Response rate 100% 48% 74%

We tried to understand why some participants did not respond the survey. We asked them
to justify why they did not answer the questionnaire. We also explained that the justifications
are anonymous in order to have more reliable information. Some of the participants presented
more than one justification, as presented in Table 5.17.

After analyzing the justifications, we did not find any pattern that could invalidate the sur-
vey. Most of the participants that did not answered the questionnaire due to lack of time. We
received answers from at least 75% of the test teams, suggesting that the sample still represen-
tative. For these reasons, although the achieved response rate is lower than the one expected,
we believe that the survey results were not significantly impacted.

We identified several cost drivers during the analysis of the responses. Table 5.18 lists the
identified cost drivers and presents how they impact test execution effort. The other comments
that did not fit a cost driver were presented to the test managers and quality engineers as a list
of possible improvement opportunities.

5.7 INVESTIGATING COST DRIVERS USING DESIGNED EXPERIMENTS (ES6) 81

Table 5.17 Justifications for not responding the survey.

Justification Frequency Percentage
I did not read the mail in the first day. The next
day I did not have time.

6 46.15%

I did not have time. 4 30.78%
I felt tired answering the questionnaire and I
postpone it. At the end, I did not have time.

1 7.69%

I am on vacation. 1 7.69%
I had to do an unexpected task. For this reason,
I did not have time.

1 7.69%

TOTAL 13 100%

5.6.7 Threats to validity

In this section, we describe the threats to our survey validity and how we controlled them.
Some of the questions of our questionnaire were answered in a too generic way, giving none or
few details about what they mean. These generic answers could be misinterpreted during our
analysis. To avoid this threat, these answers were discussed between real testers. In the worst
case, the respondent was asked to give more detail about his answer.

Also, the way the questions were formulated led the respondents to answer what they think
about specific subjects of our interest. However, we were not able to identify what reported
situations or comments were really based on their own experiences. For instance, a respondent
may have reported an impact on test execution effort just because he suppose it is true. The im-
pact of this threat may be an increase in the number of answers to analyze. During the analysis,
we were able to discard some answers that were identified as unreal or unlikely situations.

The quality of the answers for open questions depend on how well formulated is the ques-
tion. We used a pilot study to ensure that the questions were understandable and the answers
were useful. Besides, the respondents could ask for help during the survey.

If our sample do not properly represent the knowledge of the target population, the represen-
tativeness of our results may be compromised. To avoid this problem, we selected participants
from two very representative Motorola test sites with respect to functional testing. Also, we
chosen a sample size of 50 participants, a significant size that fitted our available resources.
Our selection procedure ensured participants of all positions and all teams of the two test sites.
In addition, our response rate was close to the expected value and we did follow-up procedures
to ensure the survey validity.

5.7 Investigating Cost Drivers Using Designed Experiments (ES6)

The accuracy of estimation models depends on the correct choice of their input variables. Most
of the software cost and effort estimation models use cost drivers, which are variables that

82 CHAPTER 5 EMPIRICAL STUDIES

Table 5.18 Cost drivers identified by the survey.

Category Cost Driver Impact on Test Effort

Tested Product

Software stability When the software is not stable, tests are more com-
mon to fail. When tests fail, an additional effort is
required. First, the tester should ensure that he re-
ally found a software defect. Then, he must report
it.

Phone status During the test activities, the phones may be dam-
aged. This kind of problem occur mainly when test-
ing very initial phone prototypes, since they may be
fragile. The effort to execute tests in a damaged
phone tend to increase.

Phone perfor-
mance

In general, newer phones are faster than older ones,
reducing the time for executing the tests.

Test Project
Build documen-
tation

Before the tests, it is necessary to install the correct
build (software package) in the phone. This process
can take longer if it is not documented properly.

Quality of the test
cases

Test cases are written in natural language. Tests writ-
ten in a more standardized way are easer to be un-
derstood. For instance, the use of abbreviations, the
lack of the expected results for each test step and
the inconsistency with requirements make difficult
to understand the tests.

Personnel

Phone familiarity Testers must prepare and operate the phone during
the tests. The familiarity of the testers with the
phone functionalities (such as voice recognition and
soft keys) may reduce the test execution time.

Feature experi-
ence

Testers exercise feature functionalities during the
tests. The familiarity of the testers with the feature
may reduce the test execution time.

Test experience Testers are faster when they know the procedures
and tools they should use, how to detect bugs, how
to document them, etc.

English skills Tests are written in english. In the beginning of the
tests, non english native speakers may have difficul-
ties with specific english vocabulary.

Test
Environment

Use of tools Some of the test activities can be supported by tools.
The support of tools may significantly reduce the test
execution effort.

Mobile network
signal

The quality of the mobile network signal may influ-
ence the time for executing some mobile application
functionalities.

Performance to
access Intranet
resources

During the test activities, some Intranet resources
are used (server, databases, etc.). The performance
of the local network may impact the time to access
these resources during the execution of tests.

5.7 INVESTIGATING COST DRIVERS USING DESIGNED EXPERIMENTS (ES6) 83

describe dynamic conditions that impact team productivity, such as the team experience and the
project environment. COCOMO [28] is a well-known model that addresses up to 17 cost drivers
related to software development. Nevertheless, most of these cost drivers have no impact on
the estimation of test execution effort because they are related to software development instead
of software testing. Also, additional cost drivers that are specific to some industrial settings
(tester profile, tested product, etc.) may improve the precision of test effort estimates.

In this study, we designed and run controlled experiments in the industrial setting to inves-
tigate the effect of some of the cost drivers identified in ES5. Although the identification of
cost drivers presented in ES5 was based on test experts, it is important to have evidence about
the significance of these cost drivers. Otherwise, test managers may waste effort to control
cost drivers not really relevant and to build complex and inefficient estimation models with too
many variables.

5.7.1 Research Objectives

Following the goal template of the Goal/Question/Metric (GQM) method [24], we define the
research objective of this study as

Analyze cost drivers for the purpose of evaluation with respect to their relevance for
estimating manual test execution effort from the point of view of test managers in the
context of functional tests on the mobile application domain.

5.7.2 Context

The empirical studies presented here were run using tests, testers, phone prototypes, software
applications, test environments and tools available in two test sites located in Brazil, established
as independent and dedicated test teams. Both test sites, called from now on as test sites A and
B, provide testing services for a major mobile phone manufacturer. They have more than 300
people working on testing activities, such as test design, test execution and test automation.

In this work, we considered only teams executing component, regression and integration
tests, since these were the teams more impacted by the problem we investigated.

5.7.3 Goal

The major goal of this experiment is the

• Gathering of evidence about the real impact of cost drivers (identified by the survey) on
test execution effort.

The assessment of this goal is performed by answering the following research question:

Q1: For which cost drivers identified by the survey do we have statistical evidence about
the significance of their effects on test execution effort?

We answer question Q1 by verifying the probability (p-value) of the main effects and low-
order interaction effects of investigated factors (cost drivers) being different from 0 (zero).

84 CHAPTER 5 EMPIRICAL STUDIES

Main effects of a factor are contrasts (impact on the response variable, in our case manual test
execution effort) between levels (possible values, like damage and not damaged) of the factor
averaged over all levels of the other factors. In addition, a factor interaction effect measures
how the main effects of a factor are impacted by changing the level of other factors.

5.7.4 Hypotheses, Parameters, and Variables

In this study, we investigate the impact on test execution effort of some cost drivers identified
by the survey. We defined two possible values (levels) for each investigated cost driver (factor),
which are represented by the symbols – and +. Regarding the main effect of the investigated
factors, we defined the following statistical hypothesis:

H0i : µ i− = µ i+

H1i : µ i− 6= µ i+

The null hypothesis (H0i) of equality among the mean of the response variable when factor
i set to “−” (µ i−) and the mean when factor i set to “+” (µ i+) says that the main effect of factor
i is not significative (µ i+ −µ i− = 0). Regarding the two-factor interactions, our null hypothesis
(H0i j) says that there is no interaction effect between i and j, that is, no impact in the main
effect of i when changing the level of j and vice-versa:

H0i j : (µ i+ −µ i−) j− = (µ i+ −µ i−) j+ and (µ j+ −µ j−)i− = (µ j+ −µ j−)i+

H1i j : (µ i+ −µ i−) j− 6= (µ i+ −µ i−) j+ or (µ j+ −µ j−)i− 6= (µ j+ −µ j−)i+

High-order factor interactions (three or more) are not being considered in this study, because
they usually have low probability to occur in practice [75].

Regarding the 13 cost drivers identified in the survey, we decided to analyze 7 of them
in this study (see Table 5.19). The main reasons for not investigating all cost drivers were
the following: the difficulty to control some cost drivers, such as network availability; the
low frequency of some problems, such as the lack of well described tests; the already known
effect of some factors from previous studies or historical database analysis, such as the phone
familiarity. Test size and complexity are an exception. Although we already know they have
a significant impact on the test execution effort [15], we want to investigate their interaction
effect with other factors related to the tester profile.

All cost drivers identified by the survey and not investigated by our experiments are fixed to
values that minimize test execution effort, reducing in this way the effort required for running
our experiments.

5.7.5 Investigating cost drivers related to the tested product

A 27 full-factorial experiment requires at least 128 runs (test executions) to investigate the
main effect and interaction effects of factors listed in Table 5.19, being costly, inefficient and
impracticable to run in our context. To reduce this number of runs, we can analyze these

5.7 INVESTIGATING COST DRIVERS USING DESIGNED EXPERIMENTS (ES6) 85

Table 5.19 Factors and levels investigated by the experiments.

Factor Description
Level
– +

A SW stability Old build More recent build
B HW performance Old hardware More recent hardware
C HW status Partially damaged Not damaged
D Testing experience Scholarship holder Employee
E Language skills English course level < 7 English course level >= 7
F Feature experience Tester not tested the feature

in the last six months
Tester tested the feature in
the last six months

G Test size and com-
plexity

Test with less than five test
steps, common test actions
and number of execution
points* close to 200.

Test with more than 10 test
steps, specific test actions
and number of execution
points close to 600.

∗ Execution point is a measure of test size and execution complexity previously proposed in [12].

factors using smaller experiments. First, we investigate the effect of cost drivers related to the
product under test (hereafter factors A, B and C), because these factors are easier to control
when compared to the others. The statistical significance of the other cost drivers are then
investigated in a second experiment, as described in Section 5.7.6.

5.7.5.1 Experiment Design

To investigate the main effects and interaction effects of factors A, B and C in a 23 full-factorial
design, eight runs are required, one for each possible combination of factors levels (treatment).
However, we decided to run only a 1

2 fraction of the 23 factorial structure. This fractional
factorial design [75] allows us to reduce the number of runs by confounding (aliasing) some
effects considered dismissible with others considered significant. If some aliased effect is con-
sidered significative, additional runs can be used to identify which one of the aliased effects is
significative.

We use the principal 1
2 fraction of a 23 factorial structure, which confounds the interactions

effects with the main effects of factors A, B and C, as presented in Table 5.20. For instance,
the effect of treatment c (only factor C set to “+") is confounded with the effect of treatment ab
(interaction effect between factors A and B). If the effect of C is significant in the experiment,
few more factors levels combinations can be run to verify if the significant effect is due to the
main effect of C or due to the interaction effect between A and B. The details about how to
generate the treatment design matrix can be found in [75] or in most statistical packages that
support design of experiments.

In this experiment, each treatment defines the characteristics of the phone to be tested (soft-
ware and hardware). Hence, we need four phone prototypes to run this experiment. Considering
a single product family selected by availability of resources (different models, software releases

86 CHAPTER 5 EMPIRICAL STUDIES

Table 5.20 Treatment design matrix and aliasing structure for the principal half fraction of a 23.

Factor
Treatment A B C Alias

(stability) (perf.) (status)
c – – + ab
a + – – bc
b – + – ac

abc + + +

Figure 5.1 Randomized complete block design on tested products.

and phone prototypes, experienced testers, etc.), a pair of phone prototypes is selected from an
old model and other pair is selected from a more recent model with a newer hardware (factor
B). Each pair must have one damaged phone (factor C), which is a phone with some problem
in the keyboard or display caused by its intense use during the test phases or during physical
tests (drop tests, etc.). Finally, a more recent or old software build is installed in each phone
(factor A), according to the treatments defined in Table 5.20.

To control the effect of the cost drivers related to the tester profile, a single tester manually
executes a set of tests four times, each time using a different mobile phone (treatment). We
estimate the number of tests to be executed based on the time available to run the experiment.
As we know that the size of the tests impact the test execution time [15], each test is considered
as a block in this experiment, as presented in Figure 5.1.

The run order of the tests within each block is randomly defined, as well as the definition
of which test (block) is executed first. This randomization process reduces the learning effect
that may occur between test executions. All other cost drivers are set in a way to minimize the
test execution time. For instance, the selected tester must have experience with the tests and
the tested feature.

5.7 INVESTIGATING COST DRIVERS USING DESIGNED EXPERIMENTS (ES6) 87

Figure 5.2 Variance of residuals versus predicted before and after log transformation.

5.7.5.2 Execution and analysis

The experiment was run according to the planning and the results are presented in Table 5.21.
The average effort to execute a test was 131.8 seconds. The table also shows the average effort
per treatment and per block, as well as the observed treatments and block effects. Although the
block effect on test execution effort is clearly significant when compared to the grand average
or the residuals, it is not clear the significance of the treatments effects or the significance of
the factors effects.

We used analysis of variance (ANOVA) [75] to test our hypotheses that the main effects
of the investigated factors are dismissible. The residuals of the model built by the ANOVA
using the raw data are presented in Table 5.19. During the validation of the model assumptions,
we detected a heterogenic variance of the residuals against the predicted values. As presented
in Figure 5.2, a transformation of the response variable [53] based on the log stabilized the
variance of the residuals against the predicted values. After the data transformation, we also
verified the normality of the residuals using the Shapiro-Wilk W test (p-value=0.6211) and
the additivity of treatments and block effects using the Tukey’s test of nonadditivity [131] (p-
value=0.1154) at α=0.05.

The results of the ANOVA using the transformed data are presented in Table 5.22. The last
column of the table (p-values) can be respectively interpreted as the probability of rejecting
H0A , H0B and H0C when they are true. Hence, it is not possible to reject these null hypotheses
at α=0.05, that is, the main effect of factors A (Software stability), B (Hardware performance)
and C (Hardware status) cannot be considered significative. We also cannot reject the null
hypotheses H0AB , H0AC and H0BC , which say that the effects of two-factor interactions are not
significative, since at least one factor must be significative to occur an interaction effect (hier-
archy principle [75]).

Finally, comments about possible reasons of not rejecting the null hypotheses are presented
later, in Section 5.7.7.

88 CHAPTER 5 EMPIRICAL STUDIES

Table
5.21

R
esults

in
seconds

from
the

random
ized

block
design

on
tested

products ∗.

treatm
ent(phone)

block
block

residuals
fortreatm

ent
block

c
a

b
abc

average
effect

c
a

b
abc

test7
53

(4)
56

(2)
82

(1)
48

(3)
59.8

-72.1
3.2

(4)
-13.0

(2)
22.0

(1)
-12.2

(3)

test2
66

(3)
63

(4)
67

(2)
127

(1)
80.8

-51.1
-4.8

(3)
-27.0

(4)
-14.0

(2)
45.8

(1)

test5
326

(3)
519

(1)
261

(2)
418

(4)
381.0

249.2
-45.0

(3)
128.7

(1)
-120.3

(2)
36.6

(4)

test3
116

(1)
64

(2)
119

(3)
94

(4)
98.3

-33.6
27.7

(1)
-43.5

(2)
20.5

(3)
-4.7

(4)

test4
60

(2)
43

(4)
52

(3)
86

(1)
60.3

-71.6
9.7

(2)
-26.5

(4)
-8.5

(3)
25.3

(1)

test8
225

(2)
233

(4)
296

(1)
149

(3)
225.8

93.9
9.2

(2)
-2.0

(4)
70.0

(1)
-77.2

(3)

test6
62

(3)
111

(1)
114

(2)
49

(4)
84.0

-47.8
-12.0

(3)
17.7

(1)
29.7

(2)
-35.4

(4)

test1
67

(1)
40

(2)
66

(4)
87

(3)
65.0

-66.8
12.0

(1)
-34.3

(2)
0.7

(4)
21.6

(3)

treatm
ent

121.9
141.1

132.1
132.3

131.8
=

grand
average

average
treatm

ent
-10.0

9.3
0.3

0.4
effect
∗

T
he

superscripts
in

parentheses
associated

w
ith

the
observations

indicate
the

random
orderin

w
hich

the
experim

entw
ere

run
w

ithin
each

block.E
ach

block
w

as
executed

according
to

the
orderof

presentation
(up

to
dow

n).

5.7 INVESTIGATING COST DRIVERS USING DESIGNED EXPERIMENTS (ES6) 89

Table 5.22 Effect tests for the factors SW stability, HW performance and HW status.

5.7.6 Investigating cost drivers related to the tester profile

Our second experiment has the objective of investigating the cost drivers related to the testers
profile (factors D to F) and their interaction with the test size and complexity (factor G). The
details of the experiment are presented next.

5.7.6.1 Experiment design

In a 24 full-factorial design, we have 16 different treatments. Each of these treatments requires
the use of a different tester, since some of his or her characteristics are under investigation. We
can reduce to 8 treatments by running only a 1

2 fraction. In such design, however, each two-
factor interaction is confounded with some other two-factor interaction, which would probably
require additional runs to resolve ambiguities of aliased effects [141]. In addition, we can-
not select any tester to participate in the experiment, but only those that match some specific
profiles. We verified that we would take longer to have 8 testers available with such specific
profiles.

Since the run of a 1
4 fraction of a 24 is not used in practice (too many confounded effects),

we use a more elaborated experiment design, called split-plot , to reduce the number of required
testers to four. A split-plot design can be described as the superimposing of one experiment
design on top of another [52] [99]. Figure 5.3 shows the split-plot design for our experiment.

In our split-plot design, the first experiment design is a complete randomized design (CRD)
[75]. In this CRD, factors D and E are combined to define the levels of a factor tester profile,
as we can see in the treatment design matrix for this split-plot design presented in Table 5.23.
These tester profiles are the treatments used to select four testers (whole-plots), who are as-
signed to test a group of phones. All considered phones are similar and assigned to each tester
at random. The execution order inside each group of phones is also defined at random.

The second experiment design is a randomized complete block design (RCBD) [75]. In this
RCBD, factors F and G are combined to define the levels of a factor test characteristics, which
is used to select four tests to be executed by each tester (block). For each block, we randomly
allocate a test to a different phone (subplot). In this way, our split-plot design can be described
as a completely randomized design on top of a randomized complete block design. We also
replicate our experiment by changing the tests and using the same testers to execute the new

90 CHAPTER 5 EMPIRICAL STUDIES

Figure 5.3 Superimposing a CRD on top of a RDBD (split-plot design).

tests.
With respect to the experimental units, all phone prototypes are from the same model,

with the same or at least similar hardware and software versions. The testers that match the
investigated profiles (factors D and E) are selected by availability. Then, for each replicate, an
pair of tests is selected from a feature that all testers have recently tested and other pair of tests
is selected from a feature that all testers have not tested it in the last six months (factor F). From
each pair of tests, one test must be small and simple and the other should be more complex (see
definition of factor G in Table 5.19).

5.7.6.2 Execution and analysis

The experiment was run according to the planning and the results are presented in Table 5.24.
Based on the analysis of variance presented in Table 5.25 we can only support the hypotheses
that the effect of factors testing experience and test size and complexity are significant (H0F and
H0G). No statistically significant effect was detected for all other individual factors and factor
interactions investigated by the experiment.

In this way, we cannot reject the remaining null hypotheses (H0D , H0E , H0DE , H0FG , ...),
which say that the effects of factors testing experience (D), english skills (E) and all two-factor

5.7 INVESTIGATING COST DRIVERS USING DESIGNED EXPERIMENTS (ES6) 91

Table 5.23 Treatment design matrix of the split-plot design.

Factor tester profile used as in a CRD
Factorial structure

D E
Treatment (Testing exp.) (Language skills)

(1) – –
d + –
e – +

de + +
Factor test characteristics used as in a RCBD

Factorial structure
F G

Treatment (Feature exp.) (Test size)
(1) – –
f + –
g – +
fg + +

interactions between factors D, E, F and G are not significative. Our interpretation of this result
is presented next, in Section 5.7.7. Also, details about the construction of this specific ANOVA
table, which has two error terms, can be found in [52].

5.7.7 Discussion about the experiments results

In this work, we designed experiments using 2k factorial structures to investigate the signifi-
cance of cost drivers identified by the survey using the limited resouces we had available. In
the first experiment, we could not reject the null hypotheses. Afte analyzing the results, we
reach the conclusions described next.

The factor software stability affected the number of tests that had failed or passed, but
the difference in the effort required to execute a test when it fail or pass was not statistically
significant. This factor is probably significant to estimate the effort of some testing activities
not considered in this study, such as reporting and monitoring detected defects.

By observing test executions, we verified that the average time spent by the tester to read and
to manipulate the phone is higher than the average phone response time for processing the tester
commands. This is probably the main reason for not rejecting the null hypothesis for factor
hardware performance. Hence, this factor may be significant for tests executed automatically
or for tests that require higher cpu processing time.

Although we did not detect significant effect of damaged phone prototypes on test execution
effort, we know that a too damaged prototype can impact or even block the test execution.

The factor testing experience was not considered significant. We considered employees and
scholarship holders as the levels of testing experience. We observed that one can get experience

92 CHAPTER 5 EMPIRICAL STUDIES

Table 5.24 Results from the replicated split-plot experiment∗.

test tester
tester (1) f g fg average

(1)
221(4) 268(1) 467(2) 409(3) 341.3
241(3) 626(2) 97(1) 471(4) 358.8

d
288(3) 196(2) 337(4) 311(1) 283.0
183(2) 589(4) 126(3) 731(1) 407.3

e
180(3) 103(1) 528(4) 239(2) 262.5
240(3) 179(1) 120(4) 436(2) 243.8

de
181(4) 114(1) 553(2) 301(3) 287.3
142(2) 299(3) 294(1) 616(4) 337.8

test 217.5 170.3 471.3 315.0 293.5
average 201.5 423.3 159.3 563.5 336.9
∗ The superscripts in parentheses associated with the

data indicate the random order in which tests were
executed by each tester. For each tester, there is one
row for each replicate.

in executing tests manually in few months. As the scholarship holders have approximately 6
months of work in testing, they may already have enough experience in executing tests. This
result cannot be generalized for other testing activities.

During the execution of the experiments, no one tester reported problems to understand
the test specification written in a foreing language (english), which is in conformance with the
results: factor language skills not significative. The language used in test specifications are
usually simple, diminishing the effect of this factor. This may not be true for other testing
activities, mainly those involving communication with foreigners.

When we cannot reject a null hypothesis, it is interesting to know the power of the test, that
is, the probability to reject the null hypothesis when the null hypothesis is false. To calculate the
power of a test, we need to define the level of significance (α), the detectable effect size (δ) and
the standard error (σ) of the residual error in the model. Although we can estimate the value
of σ based on the observed data (σ=32.6293), it is not correct to make retrospective power
analysis to support our results [54], but only for planning future experiments. For instance, as
presented in Figure 5.4, the use of 32 experimental units would be appropriate for δ=20 or 30
to aim at a power of 0.9.

5.7.7.1 Threats to Validity

In this section, we describe threats to the validity of the experiments results, the impact of each
threat and how we controlled them.

Construct validity: For the factors language skills and test size and complexity, their cat-
egorization into two levels (“-” and “+”) is not intuitive. Also, the significance of the factor
can depend on the correct factor categorization. We used expert opinion and historical data to
categorize these factors according to its expected impact on test execution productivity (low or

5.7 INVESTIGATING COST DRIVERS USING DESIGNED EXPERIMENTS (ES6) 93

Table 5.25 Effect tests for the factors D, E, F, G and their interactions.

high).
Internal validity: In the second experiment, we involved more than one tester. The effect of

each tester was controlled by the investigated factors D, E and F. However, many other factors
(culture, education, etc.) may affect the behavior of a tester. These factors may have significant
impact on test execution effort, obscuring the effects of the investigated factors. Also, we
noticed differences in the test execution times between the replicates. Some learning effect and
other related problem may be increasing the variance of the residuals, reducing our capacity to
detect significant effects. We control this threat by considering the effect of the replicates in
the analysis model.

Conclusion validity: We used an elaborated experiment design (strip-plot) with a replicate
that require a special statistical analysis not directly supported by statistical packages. The
participation of an statistician improved the reliability of the analysis of the results.

External validity: The participants and material used in the experiments limit the general-
ization of our findings. All testers work at the test sites and were selected by availability. The
use of more testers and different tests may make significant factors not detected as significant
in our experiment.

94 CHAPTER 5 EMPIRICAL STUDIES

Figure 5.4 Statistical power for different effect sizes and number of observations.

5.7.8 Final Considerations

In this work, we used designed experiments and 2k factorial structures to investigate the signif-
icance of cost drivers identified by a survey in an industrial setting. The survey identified 13
cost drivers and we investigated those related to the tested products and testers profile. Different
from experts opinions, only two cost drivers had significative effect.

We see that not all cost drivers suggested by experts have significant effect on test execution
effort. With our results, test managers can focus their attention on the cost drivers that had
significant impact on manual test execution effort. Also, this reduced number of cost drivers to
consider implies in the creation of simpler estimation models.

We used 2k factorial structures and design of experiments to overcome the lack of resources
found in the industrial setting to run experiments. We could reduced the number of required
resources by 1

2 in the first experiment and by 1
4 in the second experiment.

5.8 Summary of Empirical Results

In this section, we analyze how our empirical studies answered our research questions and
supported or rejected our research hypotheses.

RQ1.1: What are the relevant characteristics that should be considered when sizing a test
specification?

This question was answered in ES2, where experts identified the list of char-
acteristics that should be considered when sizing test specifications. Some of

5.8 SUMMARY OF EMPIRICAL RESULTS 95

these characteristics are specific to particular features. Only four of them were
applicable to the feature used in ES4. In addition, we used statistical methods
in ES4 to verify the significance of these four characteristics. One of them was
high correlated to the others and was discarded.

RQ1.2: What is the weight of each relevant characteristic with respect to test execution
effort?

This question was also answered in ES2, where experts identified the weights
of the characteristics considered relevant for sizing test specifications. In addi-
tion, we used statistical methods in ES4 to automatically calculate the weight
of these characteristics based on historical data.

RQ1.3: Can we define a soundness measure for representing test size and execution com-
plexity?

According to our empirical results in ES2, Execution Points is a measure of
test size and execution complexity that is soundness and that can be used in
practice.

RQ1.4: Can the measurement method be automated?

For running ES2, we developed a tool prototype [20] (see Appendix C) that im-
plemented the execution points measurement method, showing that is possible
to automate all steps of the measurement method.

RQ1.5: What are the relevant cost drivers for estimating test execution effort?

To answer this research question, we first use expert opinion in ES1, identifying
12 possible cost drivers related to manual test execution. To confirm the rele-
vance of these cost drivers and to identify others, we applied a survey (ES5),
resulting in 13 possible cost drivers that include most of the ones found in ES1.
In ES6, we tryied to confirm the relevance of seven of these cost drivers, but
only the significance of test size and tester experience were statistically con-
fimed.

RQ1.6: What is the impact on test execution effort (weight) of each each cost driver?

In ES1, experts assigned weights to 12 possible cost drivers related to manual
test execution. In ES6, the weight of the cost drivers considered statistically
significant are determined based on their effects observed in the experiment.

RQ2: Is the estimation accuracy of test execution effort improved by regarding the size
and execution complexity of test specifications?

Studies ES2, ES3 and ES4 presented accuracy improvements (with statistical
significance) by considering the size and execution complexity.

RQ3: Is the estimation accuracy of test execution effort improved by regarding cost drivers
related to manual test execution?

96 CHAPTER 5 EMPIRICAL STUDIES

In ES6, some of the investigated cost drivers presented statistically significant
effect on test execution effort. In addition, the factor representing the tester
experience was considered statistically significant in ES4. In this way, we can
conclude that we can improve estimation accuracy by considering these rele-
vant cost drivers.

RQ4: What is the cost for estimating manual test execution effort based on the size of test
specifications and cost drivers related to manual test execution?

As we showed that the measurement method can be automated (RQ1.4), the
cost for using the model is basically the cost for configure the measurement
method, that is, the cost for identifying the characteristics and cost drivers to
consider and the cost for determining their weights. In ES1, we had the cost of
four hours (two Delphi sessions) to configure the model using six experts from
the mobile application domain. We believe that similar cost will be necessary
for other application domains.

Based on the answers we presented for research questions RQ1.1 to RQ1.6, we can con-
clude that it is possible to determine the size and execution complexity of a test specification by
observing characteristics of each test action in the specification. This result answers our more
general research question RQ1 (Can we measure the size and execution complexity of a test
specification?) and supports our research hypothesis RH1.

In addition, our answer for research question RQ2 supports our research hypothesis RH2,
which says that the use of a measure for test size and execution complexity will significantly
improve the accuracy of test execution effort estimates. Similarly, our answer for research ques-
tion RQ3 supports our research hypothesis RH3, which says that the use of cost drivers related
to test execution will significantly improve the accuracy of test execution effort estimates.

Finally, the answers for research questions RQ1.4 and R4 support our research hypothesis
RH4, which says that it is possible to automate test execution effort estimation based on test
specifications, leading to a low estimation cost.

5.9 Final Considerations

In this chapter, we presented the details of planning, execution, analysis and results of six
empirical studies. Each one of these studies was run to answer one or more research questions.
The whole sequence of studies produced enough information to answer all of our research
questions and to support all of our research hyphoteses.

Since we presented the details of our research in the previous chapter and the results from
our empirical studies in this chapter, the next chapter relates this work to others found in liter-
ature and in industry.

CHAPTER 6

Related Work

In this research, we proposed and evaluated a measure, called Execution Points, and its mea-
surement method. We also proposed estimation models for test execution effort based on this
measure. In addition, we run several empirical studies to configure the Execution Points (EP)
measurement method, evaluated and compared its adequacy for estimating test execution effort.
In this chapter, we relate all these works with others found in literature.

6.1 Size Measures and Measurement Methods

In Chapter 2, we presented the characteristics of several size measures and measurement meth-
ods. Table 6.1 recalls the main characteristics of these existing size measurement methods and
summarizes the main characteristics of the EP measurement method. EP, number of tests and
number of test steps are the only measures we know that can be used to size test suites and test
specifications. This is an important characteristic for our context, where we have to estimate
the effort to execute a subset of the tests designed for a feature that are selected according to
what we need to test (parts that were created, modified or possibly impacted by changes done
in the code of a feature).

Some of the other size measurement methods can be calibrated using local data, but this
procedure is optional and difficulty in some cases. The EP measurement method must be
configured according to each application domain. We defined and evaluated procedures for
that based on expert judgement and regression analysis. The EP measurement method and
its configuration procedures are automated by supporting tools, reducing the cost to use this
approach.

With respect to the validity of the EP measurement method, we verified that some of the
critiques to Function Points Analysis (FPA) are valid to our approach, but they are not valid
when we configure the EP measurement method without using regression analysis. For in-
stance, the weights used in most versions of FPA were defined using expert judgement. Hence,
subjectivity is considered a weaknesses of the FPA weights system. The weights used in the EP
measurement method can be defined using expert judgement through Delphi panel (a subjective
method) or using historical data through regression analysis, which is not a subjective method.
In fact, some researchers already proposed the use of non subjective methods to determine the
weights system of FPA. For example, the authors of [6] established a new FP weights system
by using Artificial Neural Networks. They reported accurate results when the new FP weight
system was used to estimate development effort based on real data sets of software projects.

There are some works in literature that proposed estimation models for specific application

97

98 CHAPTER 6 RELATED WORK

domains, requiring the definition of new size measures. Regarding the development of Web
applications, there are proposals of how to better measure the size of this kind of software
projects [86]. Our research and these others are all based on the use of surveys, expert judgment
and statistical techniques.

Finally, Test Point Analysis [105] is a method for measuring the volume of testing of a
project. This includes all functional test activities, such as the definition, automation and exe-
cution of all tests, being not appropriated in situations such as:

• Companies having different test teams, some of them responsible to design and others
to execute tests. In this situation, each different test team needs to estimate the effort
required to perform their activities (for instance, only test design or only test execution).

• When it is not possible or required to execute all test cases due to time constraints or
optmization techniques, it is important to estimate the effort to execute only a selected
subset of tests.

For example, it is not possible to use the Test Point measure for estimating only the effort to
execute test cases that were automatically generated by a Model-based testing tool [46], since
this measure is related to requirements instead of test specifications. Using EP, we can estimate
the effort required only to execute tests, which is apropriated to the context of this research:
dedicated and independent test execution teams working with the possibility to automatically
generate tests.

6.2 Adequacy of Size Measures for Estimating Effort

In ES4 (see Section 5.5), we compared the adequacy of four size measures to estimate test
execution effort. We observed statistically significant differences between the estimation accu-
racies achieved by models based on these measures and created by linear regression analysis.
In literature, we can find several studies comparing size measures using similar approach. In
[96], the authors compared groups of Web-based size measures (lenght, complexity and func-
tionality metrics) used to estimate Web design and authoring effort. For that, the authors used
linear and stepwise regression analyses to create estimation models and compare their estima-
tion accuracy. Their empirical results revealed that “none of the obtained models produced
reasonable accurate estimates of the effort", and “the models did not produce significantly dif-
ferent residual values”.

In [65], the authors used regression analysis to verify the correlation between two different
function points counting techniques and to compare the accuracy achieved when using each
technique. Also, Ruhe et al. used regression analysis to compare Web Objects and Function
Points (FPs) measures with respect to their adequacy to estimate the effort to develop Web
applications [122]. The results of the empirical analysis revealed that the model based on Web
Objects presented significantly better prediction accuracy, which also support our idea that we
can improve estimation accuracy by considering the characteristics particular to each different
application domain.

6.2 ADEQUACY OF SIZE MEASURES FOR ESTIMATING EFFORT 99

Ta
bl

e
6.

1
Su

m
m

ar
y

of
E

P
an

d
ot

he
rs

of
tw

ar
e

si
ze

m
ea

su
re

m
en

tm
et

ho
ds

.

SL
O

C
FP

A
C

O
SM

IC
T

PA
N

o.
of

Te
st

s
N

o.
of

st
ep

s
E

P
A

rt
ifa

ct
So

ur
ce

co
de

R
eq

ui
re

m
en

ts
R

eq
ui

re
m

en
ts

R
eq

ui
re

m
en

ts
Te

st
su

ite
Te

st
sp

ec
ifi

ca
tio

n
Te

st
sp

ec
ifi

ca
tio

n
A

ttr
ib

ut
e

A
pp

lic
at

io
n

si
ze

an
d

co
m

pl
ex

ity
A

pp
lic

at
io

n
si

ze
an

d
co

m
pl

ex
ity

A
pp

lic
at

io
n

si
ze

an
d

co
m

-
pl

ex
ity

Vo
lu

m
e

of
te

st
Te

st
su

ite
si

ze
Te

st
si

ze
Te

st
si

ze
an

d
ex

-
ec

ut
io

n
co

m
pl

ex
-

ity
R

es
tr

ic
tio

n
L

an
gu

ag
e

sp
e-

ci
fic

R
eq

ui
re

m
en

ts
w

ri
tte

n
as

us
e

ca
se

s
A

va
ila

bi
lit

y
A

ft
er

im
pl

em
en

-
ta

tio
n

A
ft

er
re

qu
ir

e-
m

en
t

sp
ec

ifi
ca

-
tio

n

A
ft

er
re

-
qu

ir
em

en
t

sp
ec

ifi
ca

tio
n

A
ft

er
re

-
qu

ir
em

en
t

sp
ec

ifi
ca

tio
n

A
ft

er
te

st
sp

ec
ifi

ca
tio

n
A

ft
er

te
st

sp
ec

ifi
-

ca
tio

n
A

ft
er

te
st

sp
ec

ifi
-

ca
tio

n

St
an

da
rd

iz
ed

T
he

re
is

so
m

e
w

or
k

in
pr

og
re

ss
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es

D
et

er
m

in
is

tic
Y

es
N

o,
re

su
lt

de
-

pe
nd

s
on

th
e

ex
pe

rt
is

e
in

th
e

m
ea

su
re

m
en

t
m

et
ho

d

N
o,

re
su

lt
de

pe
nd

s
on

th
e

ex
pe

rt
is

e
in

th
e

m
ea

su
re

m
en

t
m

et
ho

d

N
o,

re
su

lt
de

pe
nd

s
on

th
e

ex
pe

rt
is

e
in

th
e

m
ea

su
re

m
en

t
m

et
ho

d

Y
es

Y
es

Y
es

M
ea

su
re

m
en

t
co

st
N

on
e

fo
r

la
n-

gu
ag

es
su

pp
or

te
d

by
to

ol
s

H
ig

h,
si

nc
e

th
er

e
is

a
lo

to
f

m
an

ua
l

ef
fo

rt

V
er

y
hi

gh
,

si
nc

e
th

er
e

is
a

lo
t

of
m

an
ua

l
ef

fo
rt

an
d

it
is

m
or

e
ab

st
ra

ct
m

et
ho

d

H
ig

h,
si

nc
e

th
er

e
is

a
lo

to
f

m
an

ua
le

ff
or

t

N
on

e
w

he
n

su
pp

or
te

d
by

to
ol

s

N
on

e
w

he
n

su
p-

po
rt

ed
by

to
ol

s
L

ow
,

si
nc

e
w

e
ne

ed
to

m
an

ua
lly

ra
te

ea
ch

ne
w

te
st

ac
tio

n

C
al

ib
ra

tio
n

co
st

N
ot

re
qu

ir
ed

Si
gn

ifi
ca

nt
,

bu
t

no
tr

eq
ui

re
d

Si
gn

ifi
ca

nt
,

bu
t

no
tr

eq
ui

re
d

Si
gn

ifi
ca

nt
,

bu
t

no
tr

eq
ui

re
d

N
ot

re
qu

ir
ed

N
ot

re
qu

ir
ed

L
ow

,b
ut

re
qu

ir
ed

R
eq

ui
re

d
ba

ck
go

un
d

N
on

e
w

he
n

su
p-

po
rt

ed
by

to
ol

s
K

no
w

le
dg

e
in

th
e

m
ea

su
re

-
m

en
t

m
et

ho
d

an
d

m
ea

su
re

d
ap

pl
ic

at
io

n

K
no

w
le

dg
e

in
th

e
m

ea
su

re
-

m
en

t
m

et
ho

d
an

d
m

ea
su

re
d

ap
pl

ic
at

io
n

K
no

w
le

dg
e

in
th

e
m

ea
su

re
-

m
en

t
m

et
ho

d
an

d
m

ea
su

re
d

ap
pl

ic
at

io
n

N
on

e
N

on
e

K
no

w
le

dg
e

to
ra

te
ne

w
te

st
ac

tio
ns

A
ut

om
at

io
n

Y
es

N
o

N
o

N
o

Y
es

Y
es

Y
es

V
al

id
ity

Sa
m

e
ap

pl
i-

ca
tio

n
ca

n
be

im
pl

em
en

te
d

w
ith

si
gn

ifi
ca

nt
di

ff
er

en
t

SL
O

C
,

de
pe

nd
in

g
on

th
e

la
ng

ua
ge

,
de

ve
lo

pe
r,

et
c.

T
he

re
ar

e
se

ve
ra

l
cr

iti
qu

es
(s

ee
Se

ct
io

n
2.

3.
1)

R
es

ul
t

de
pe

nd
s

on
w

ho
is

m
ea

-
su

ri
ng

Pr
ob

le
m

s
si

m
i-

la
rt

o
FP

A
Te

st
s

ca
n

ha
ve

si
g-

ni
fic

an
tly

di
ff

er
en

t
si

ze
s

an
d

co
m

pl
ex

ity

St
ep

s
ca

n
ha

ve
si

gn
ifi

ca
nt

ly
di

f-
fe

re
nt

ex
ec

ut
io

n
co

m
pl

ex
iti

es
.

Sa
m

e
te

st
ca

n
ha

ve
di

ff
er

en
t

m
ea

su
re

s
de

pe
nd

in
g

on
th

e
le

ve
lo

f
de

ta
il

us
ed

by
th

e
te

st
de

si
gn

er

So
m

e
cr

iti
qu

es
of

FP
A

ar
e

va
lid

fo
r

E
P

m
ea

su
re

m
en

t
ca

lib
ra

te
d

by
ex

pe
rt

ju
dg

e-
m

en
t,

bu
t

no
t

w
he

n
ca

lib
ra

te
d

by
re

gr
es

si
on

an
al

ys
is

100 CHAPTER 6 RELATED WORK

In [86], the authors compared four sets of size measures (Length, Web Objects, Func-
tional and Tukutuku measures) using not only regression analysis (Forward Stepwise Regres-
sion), but also Case-Based Reasoning. All the measures provided good predictions in terms
of MMRE, MdMRE, and Pred(0.25) statistics, for both FSR and CBR. Moreover, when using
SWR, Length measures and Web Objects gave significant better results than Functional mea-
sures, however presented similar results to the Tukutuku measures [3]. As for CBR, results did
not show any significant differences amongst the four sets of size measures.

6.3 Estimation Techniques

The existing algorithmic estimation models, such as COCOMO [28] and FPA-based approaches
[49], are usually based on the size of the software under development and their effort estimates
are for the whole development cycle (with some breakdown). For this reason, it is difficult to
estimate the effort required to execute tests. Our approach is based on EP, a measure of test
size and execution complexity, which allows us to estimate the effort required to execute tests
based on their specifications. One additional advantage of this characteristics is that sometimes
the requirements are not available (not written or outdated). However, the test specifications
are more likely to be documented and updated.

Since it is not appropriate to use the existing models in our context, we presented the use
of three different approaches to estimate test execution effort: productivity-based, regression-
based and COCOMO-like approaches. The use of these approaches can be found in several
works, such as [49], [28], [30], [105], [98], [91] and others. In addition to these approaches,
several other techniques can be used to estimate test execution effort based on EP, such as
robust regression [53], Bayesian networks [106] and models based on machine learning, such
as CBR [139], regression trees [119] and neural networks [51]. Next, we highlight some works
that applied these other techniques.

Costagliola et al. compared Web-based Length and Functional measures using both Step-
wise Linear Regression, Regression Trees and Case-Based Reasoning [43]. Their empirical
results suggest that Length measures provide best accuracy for estimating software develop-
ment effort. Briand et al. also applied Stepwise Linear Regression, Regression Trees and
Case-Based Reasoning in [33] and [34]. Their results point out that Linear Regression and
Regression Trees are better than Case-Based Reasoning in predicting effort, and in general RT
provides the best results in terms of MMRE and Pred(25).

Mendes has several publications ([93], [95], etc.) and a book [91] about creating models for
estimating Web development effort. She investigated the use of well-known techniques, such as
Case-Based Reasoning (CBR), Stepwise Regression (SWR) and Classification and Regression
Trees (CART), obtaining interesting accuracy results [98]. She used several measures instead
a single size measure in order to avoid scale and transformation problems. In ES4, we also
compared the use of EP with the use of multiple measures. However, we observed a slightly
better result when using EP.

6.4 IDENTIFICATION OF COST DRIVERS AND MODEL CALIBRATION 101

6.4 Identification of Cost Drivers and Model Calibration

In our research, we used a Delphi panel and a survey to identify possible cost drivers for manual
test execution. Then, we designed experiments to investigate the effect of some of these cost
drivers on the effort to manually execute tests. In literature, we can find many related works that
identified cost drivers for software development. To identify the cost drivers used in COCOMO
II [28], the authors used expert judgement through Wideband Delphi panels. To define the
effect of the identified cost drivers, they used a Bayesian network to combine effect estimates
based on expert judgment (Wideband Delphi panel) and historical data (regression analysis).
The combination of these effect estimates produced a more accurate and generalizable model
calibration.

Another related work was developed by Mendes et al. [97]. They identified several size
metrics and cost drivers for early Web cost estimation based on current practices of several
Web Companies worldwide. For that, they applied two surveys and a case study using a mature
Web company. The results of these activities were used to gather data on Web projects. Finally,
regression and other statistical analyses were performed to estimate the effect of cost drivers
and size measures. They detected statistically significant effect for few size measures, but not
for the cost drivers. During our work, we also investigated the effect of cost drivers using
historical data (see B), but the effect of confounding factors could not be controlled.

6.5 Measurement Method Automation

Many researchers highlighted the need to automate the measurement of size measures. In
[29], Boehm and Malik highlighted the need for automating the counting processes. In [96],
the authors confirmed the need for objective size measures collected automatically whenever
possible. In this research, we developed an automated EP measurement method that process
test specifications written in natural language. For using our measurement method, it is only
necessary to configure the method and to rate the first occurrence of each possible test action
(verb), reducing the costs of our approach.

There are several other works that automate measurement methods. In [44], the authors
propose a formalization of the IFPUG Function Point (FP) definition for automated measure-
ment of the software requirements specified in a formal language called B [77]. In addition to
the reduction of measurement costs, they identified specific holes in the IFPUG FP definition
and proposed modifications to ensure completeness. In [142], Zivkovic et al. proposed a map-
ping of UML models into function points, enabling an automation of the counting procedure.
Also, Levesque et al. proposed a method for automating the measurement of COSMIC-FFP
from UML [79].

CHAPTER 7

Conclusions

This work focus in a relevant problem for industry and academia. In industry, good planning
is essential and it depends on how good estimates are. In general, the consequences of poor
estimates are scope reduction, schedule overrun and overtime, which increase costs and might
reduce quality.

For academia, even after several decades of research in estimation models, there are several
studies being performed to achieve accurate results. Some examples are the creation of domain-
specific models [98] and the analysis of cross-company and within-company effort estimation
models [94]. In addition, testing is a fundamental activity for the industry involving several
research groups [136].

This chapter summarizes the contributions of our work, presenting their impacts and limi-
tations, showing lessons learned from this research, and presenting future works.

7.1 Summary of Contributions

The main contribution of this research is the proposal and evaluation of a measure for test size
and execution complexity. This measure, called Execution Points, is based on test specifica-
tions written in controlled or standardized natural language. This characteristic better supports
the estimation of the effort to execute any given set or subset of functional tests. The use of
specifications written in natural language also makes easier further adoption of the proposed
approach by industry, a usual challenge for an academic research.

Also, our test size measure supports a better capacity specification and testers productivity
comparison [13]. For instance, it is difficulty to evaluate team capacity or tester productivity
only based on the number of tests they can execute per day, since tests may vary a lot in size and
complexity. However, we can better state manual test execution capacity and compare manual
test execution productivity by using execution points, since it is a generic unit of work.

We measure execution points by analyzing each sentence (step or test action) found in test
specifications according to a set of characteristics. In this measurement method, the evaluations
of similar test actions are reused, since we observed that their execution complexity can be
determined by analyzing only the main verb of each sentence. Also, it is possible to automate
all steps of this measurement method, except the evaluation of the first occurrence of each
different test action (verb). With this automation support, the number of necessary manual
evaluations of test actions tends to decrease over the time. All these optimizations significantly
reduce the costs for using our model.

Another contribution of this work is the proposal and evaluation of estimation approaches

103

104 CHAPTER 7 CONCLUSIONS

for manual test execution effort based on test specifications. After being configured and cal-
ibrated, our estimation approaches (regression-based, productivity-based, etc.) do not require
previous execution times of the tests to be executed, since they are based on the characteristics
of test specifications. This characteristic is extremely important in several situations, such as
when tests are new (never executed before), when they are very different from the existing ones,
or when we do not have reliable historical data about these tests to be executed.

We planned our research in terms of main goals, questions and hypotheses. This planning
guided not only the research development, but also its evaluation through a sequence of six
empirical studies on the mobile application domain. These studies were based on the most
used techniques in the experimental software engineering field, such as experiments, surveys,
case studies, expert judgments and statistics. These studies helped us to generate more reliable
results, which answered our research questions and supported our research hypotheses.

In summary, the empirical study ES1 used expert judgment through a Delphi panel to create
a first version of the test execution effort estimation model. The empirical study ES2 was a case
study where we observed a statistical significant accuracy improvement when using execution
points. We also showed empirically the soundness of execution points and the automation of
its measurement method. The empirical study ES3 observed an accuracy improvement when
using execution points to analyze a large historical database. The empirical study ES4 was a
Montecarlo Experiment that collected test execution data from different testers in a controlled
environment, verifying that execution points was the more adequated test size measure for
estimating test execution effort. The survey ES5 identified 13 possible cost drivers related to
manual test execution through the application of a questionnaire to several testers with different
profiles and positions. Finally, ES6 was structured as two experiments that investigated the
effect on test execution effort caused by cost drivers identified in ES5, suggesting that only few
of them are really relevant for estimating test execution effort.

As detailed in Section 5.8, all these results supported our research hypotheses in the follow-
ing way:

• We found evidences of the validity of execution points, a measure for test size and exe-
cution complexity based on the characteristics of each test action found in the test speci-
fications.

• The use of a measure for test size and execution complexity (execution points) signifi-
cantly improved the estimation accuracy of manual test execution effort.

• Some cost drivers related to manual test execution (tester experience, test size, etc.) sig-
nificantly improved the estimation accuracy of manual test execution effort.

• We automated the measurement of execution points, reducing the costs of its use.

An additional contribution of our empirical studies is the presentation of how to configure
and calibrate measurement methods and estimation models by using expert opinion or data
analysis. These studies also show how to compare size measures and how to identify and
investigate the effect of cost drivers in industrial settings.

7.2 IMPACT AND LIMITATIONS 105

Some other additional contributions of this work are the review of existing software effort
estimation models and software size measurements methods, as well as the development of
a test execution effort estimation tool and the ManualTEST, a tool that resulted in significant
quality improvements in collecting data during experiments and case studies related to manual
test execution.

7.2 Impact and Limitations

This section describes the most important findings of this research with respect to their potential
impact in industry, emphasizing potential impacts on cost, time, and quality, as well as the
principal limitations of this work.

The cost to introduce the use of execution points for estimating test execution effort in an
software organization is small, since we can automatically process test specifications written
in an controlled or standardized natural language. Basically, we have to configure the exe-
cution points measurement method according to the characteristics relevant to the considered
application domain. According to the results of ES1, the method configuration can cost up to
four hours of five to seven experienced testers in a Delphi panel. We can also calibrate the
measurement method (define weights) using historical data, which can takes few more hours
of an experienced data analyst. This cost is very small when considering possible overtime
reductions of large test execution teams.

The results of this work also have impact on the time of planning test activities. These
activities can be performed several times per month, since test projects are usually shorter in
time than software development projects. In practice, experienced testers have to analyze test
specifications or to consider historical test execution times to estimate test execution effort.
This activity can takes few hours of more than one tester. In our approach, estimates of test
execution effort are automatically performed by the tool we developed.

As our estimation approach improves the accuracy of test execution effort estimates, it also
has impact on software quality. By avoiding the problems of having poor estimates, such as
scope reduction, we decrease the probability of having tests not executed due to time restric-
tions.

Despite of the benefits of our estimation approach that were observed in our empirical
studies, they depend on the appropriate configuration of the execution points measurement
method, that is, the proper selection of characteristics and weights. In addition, it is necessary
to properly evaluate all test actions (verbs) according to the set of characteristics considered
relevant. Although the verbs appear to be good test action identifiers in most cases, we did not
investigated in which cases the verb arguments should also be used to improve accuracy. In
addition, we have to deal with several different situations when processing test specifications
written in a standardized natural language: when verbs are used in different sentences with
different meanings, we have to consider the verb arguments or the use of an additional verb to
eliminate the ambiguity; when different verbs are used with the same meaning (synonyms), we
should select only one verb and eliminate the others or consider all of them as the same to keep
consistency; general sentences that represent more than one test action should be rewritten in a
high level of detail (more sentences); etc.

106 CHAPTER 7 CONCLUSIONS

Also, we did not consider in our studies the variation that can occur when changing the
group of experts used to define test characteristics, guidelines, weights, etc. As a consequence,
we do not know if this variation can significantly change the observed results. Finally, if we
consider different application domains, we have to run again: empirical studies E1 and E5 (see
Table 5.1), to identify the relevant test characteristics and cost drivers related to test execution,
as well as their impact (weight) based on expert opinion; empirical studies similar to E3 and
E6, to evaluate the effect of each of these test characteristics and cost drivers with statistical
significance.

7.3 Lessons Learned

During this research, we had several lessons learned. In particular, we learned how to do
research in industrial settings, which includes the negotiation of research goals, schedules and
resources in order to have minor impact on the organizational performance. With respect to
research techniques and methodologies, we learned how to propose and evaluate size measures.
To verify the conformity of Execution Points with the measurement theory, we had to better
understand and better formulate the concepts of our proposal.

During the planning and execution of our empirical studies, we learned how to control con-
founding factors and other threats to the validity of our studies. For that, we usually took much
more time planning the studies than running them. The use of Design of Experiment tech-
niques helped us to minimize the resources (participants and experimental material) required to
run our experiments, making them feasible to industrial settings without impacting the teams
productivity.

7.4 Future Work

During our research, we discussed some ideas of new models and possible extensions of our
work. Some of these ideas were discussed in [16] and are presented next.

7.4.1 Estimating Test Execution Effort Based on Other Techniques

This research did not investigate the development and evaluation of models using techniques
different from regression analysis, such as Bayesian Networks [123], decision trees [123],
Case-Based Reasoning [139], Neural networks [123] and other machine learning approaches.
However, these models may have interesting results with test execution effort estimation. To
verify that, more empirical studies have to be run.

7.4.2 More Empirical Studies

In order to evaluate the our work, we run the empirical studies presented in Chapter 5. These
experiments are restricted to the mobile and desktop application domains. We can try to extend
this work for different application domains. In addition, a sequence of empirical studies should

7.4 FUTURE WORK 107

Figure 7.1 Sample graph for test coverage vs. execution effort analysis.

be run in order to evaluate the other models proposed here as future work.

We also want to verify the performance of our method to measure the size and execution
complexity of other types of tests (performance, stress, etc.).

7.4.3 Test Coverage vs. Test Execution Effort Analysis

When executing tests, it is important to achieve the highest possible level of test coverage [140].
Nevertheless, in practice, the resources are limited and it may not be possible to execute all test
cases as desired. Then, the tester has to select a subset of tests to execute.

Some times it is possible to know the contribution of each test case for the test coverage
before executing them, such as when using some Model-based testing (MBT) approaches [116].
Using our proposed test effort estimation model, it is also possible to know the effort to execute
each test case individually.

In this context, we are investigating the ways to select the best set of tests to execute. For
instance, the test selection can be supported by a tool that generates graphs such as the one
shown in Figure 7.1. In this sample graph, each dot represents a test case. In general, tests with
high coverage and low effort to execute are good candidates for selection. In this way, we can
help to achieve maximum coverage within a limited cost.

108 CHAPTER 7 CONCLUSIONS

7.4.4 Test Automation Effort Estimation

Another important and time-consuming activity is test automation. In general, automated tests
are cheaper to execute, since they usually require few human interaction. For instance, a tester
can control the execution of several automated tests at the same time. In addition, automated
tests can be schedule to be automatically executed at night or on the weekends.

Nevertheless, test managers must consider the cost to automate the tests. For this reason, we
intend to create an estimation model for test automation effort. This other proposed estimation
model is also based on the test specifications written in CNL.

In this way, we need to identify the list of characteristics and risk factors that are relevant
to estimate test automation effort.

7.4.5 Test Automation vs. Manual Execution Analysis

Although test automation has a lot of benefits, it may not be possible to automate all test cases.
One of the main reasons is the cost of automation. The automation effort must be paid by its
resulting benefits. In this research, we intend to create tools that combine the outputs of both
test execution and automation effort estimation models and other relevant information in order
to support test selection for automation.

For instance, the tester can select tests to automate by analyzing the effort to execute and
to automate each test using graphs, as the sample shown in Figure 7.2. In addition, the model
will regard other variables such as the expected test execution frequency and the available time
to automate the tests.

7.4 FUTURE WORK 109

Figure 7.2 Sample graph for test automation vs. execution effort analysis.

APPENDIX A

Statistical Analysis of Empirical Study ES3

This appendix shows several statistical analyses performed during the execution of empirical
study ES3.

A.1 Regression and Other Statistical Analyses for Creating Estimation
Models.

A.1.1 Regression Analyses for Size Measure M1.

This section presents the output of the regression analyses performed using measure M1.

Figure A.1 Regression analysis for initial model and raw data using M1.

A.1.2 Regression Analyses for Size Measure M2.

This section presents the output of the regression analyses performed using measure M2.

111

112 APPENDIX A STATISTICAL ANALYSIS OF EMPIRICAL STUDY ES3

Figure A.2 Regression analysis for initial model and transformed data using M1.

Figure A.3 Quadratic relationship between execution points (calibrated by experts) and the transformed
effort.

A.1 REGRESSION AND OTHER STATISTICAL ANALYSES FOR CREATING ESTIMATION MODELS.113

Figure A.4 Regression analysis for model with quadratic effect and transformed data using M1.

Figure A.5 Some improvement in the linear relationship between the actual and the predicted effort
after inclusion of the quadratic effect using M1.

114 APPENDIX A STATISTICAL ANALYSIS OF EMPIRICAL STUDY ES3

Figure A.6 Final regression analysis for model with measure M1 (EP-Experts).

A.2 REGRESSION ANALYSES FOR SIZE MEASURE M3. 115

Figure A.7 Regression analysis for initial model and raw data using M2 (EP-Data).

A.2 Regression Analyses for Size Measure M3.

This section presents the output of the regression analyses performed using measure M3.

116 APPENDIX A STATISTICAL ANALYSIS OF EMPIRICAL STUDY ES3

Figure A.8 Final regression analysis for model with measure M2 (EP-Data).

A.3 Regression Analyses for Size Measure M4.

This section presents the output of the regression and other statistical analyses performed using
measure M4.

A.4 ESTIMATION ACCURACY ACHIEVED DURING THE MONTECARLO EXPERIMENT. 117

Figure A.9 Regression analysis for initial model and raw data using M3 (Steps).

A.4 Estimation Accuracy Achieved During the Montecarlo Experiment.

118 APPENDIX A STATISTICAL ANALYSIS OF EMPIRICAL STUDY ES3

Figure A.10 Regression analysis for transformed data using M3 (Steps).

Table A.1 Person correlations between variables Effort, Keys, Screen, Delay and ListManip.

Effort Keys Screen Delay

Keys 0,338
0,000

Screen 0,347 0,676
0,000 0,000

Delay 0,639 0,259 0,406
0,000 0,003 0,000

ListManip 0,300 0,778 0,137 0,256
0,001 0,000 0,119 0,003

Cell Contents: Pearson correlation
P-Value

A.4 ESTIMATION ACCURACY ACHIEVED DURING THE MONTECARLO EXPERIMENT. 119

Figure A.11 Final regression analysis for model with measure M3 (Steps).

120 APPENDIX A STATISTICAL ANALYSIS OF EMPIRICAL STUDY ES3

Figure A.12 Regression analysis for initial model and raw data using M4 (Screen, Delay and ListMap).

Figure A.13 Regression analysis with transformed data and using M4 (Screen, Delay and ListMap).

A.4 ESTIMATION ACCURACY ACHIEVED DURING THE MONTECARLO EXPERIMENT. 121

Figure A.14 Regression analysis after removing Screen and Tester interaction.

122 APPENDIX A STATISTICAL ANALYSIS OF EMPIRICAL STUDY ES3

Figure A.15 Final regression analysis for model with the multiple measure M4 (Screen, Delay and
ListMap).

A.4 ESTIMATION ACCURACY ACHIEVED DURING THE MONTECARLO EXPERIMENT. 123
Ta

bl
e

A
.2

A
ch

ie
ve

d
es

tim
at

io
n

ac
cu

ra
cy

du
ri

ng
th

e
M

on
te

ca
rl

o
ex

pe
ri

m
en

t.

R
un

Fo
ld

M
M

R
E

M
1

M
M

R
E

M
2

M
M

R
E

M
3

M
M

R
E

M
4

M
dM

R
E

M
1

M
dM

R
E

M
2

M
dM

R
E

M
3

M
dM

R
E

M
4

PR
E

D
(2

5)
M

1
PR

E
D

(2
5)

M
2

PR
E

D
(2

5)
M

3
PR

E
D

(2
5)

M
4

1
1

0.
32

31
53

1
0.

32
22

40
8

0.
38

79
81

6
0.

33
02

80
9

0.
22

00
19

4
0.

19
79

57
2

0.
35

21
78

0
0.

22
63

05
5

53
.1

91
49

00
55

.3
19

15
00

46
.8

08
51

00
55

.3
19

15
00

2
0.

36
87

06
1

0.
29

81
50

5
0.

36
58

66
7

0.
28

89
18

0
0.

34
65

12
2

0.
20

48
52

3
0.

32
92

31
3

0.
20

17
73

0
33

.3
33

33
00

54
.7

61
90

00
35

.7
14

29
00

52
.3

80
95

00
3

0.
40

55
63

3
0.

33
79

29
6

0.
36

99
11

1
0.

34
16

55
9

0.
21

16
99

8
0.

22
76

80
6

0.
23

26
31

4
0.

16
11

43
6

56
.0

97
56

00
58

.5
36

59
00

51
.2

19
51

00
63

.4
14

63
00

2
1

0.
80

82
08

5
0.

47
55

50
9

0.
56

01
81

6
0.

56
59

55
4

0.
50

32
68

6
0.

39
14

57
4

0.
55

79
01

4
0.

48
38

89
1

31
.1

11
11

00
31

.1
11

11
00

28
.8

88
89

00
31

.1
11

11
00

2
0.

31
99

70
0

0.
23

71
51

2
0.

28
26

59
2

0.
24

32
85

3
0.

25
83

01
5

0.
17

17
76

2
0.

27
00

24
7

0.
18

67
20

8
46

.6
66

67
00

64
.4

44
44

00
48

.8
88

89
00

64
.4

44
44

00
3

0.
33

56
72

2
0.

33
21

56
8

0.
31

61
39

3
0.

33
10

69
6

0.
25

10
36

4
0.

20
45

04
2

0.
23

03
12

9
0.

19
14

85
9

50
.0

00
00

00
55

.0
00

00
00

52
.5

00
00

00
57

.5
00

00
00

3
1

0.
38

31
27

5
0.

33
29

89
3

0.
39

41
07

6
0.

30
67

44
7

0.
32

69
60

3
0.

25
08

04
5

0.
34

59
37

1
0.

24
89

29
4

34
.8

83
72

00
48

.8
37

21
00

39
.5

34
88

00
51

.1
62

79
00

2
0.

45
83

23
0

0.
30

12
41

1
0.

36
98

47
6

0.
43

88
98

9
0.

24
37

70
2

0.
24

42
29

8
0.

25
15

11
6

0.
28

86
69

6
50

.0
00

00
00

50
.0

00
00

00
50

.0
00

00
00

45
.6

52
17

00
3

0.
37

95
35

9
0.

36
76

71
2

0.
37

72
17

5
0.

40
19

09
8

0.
26

93
03

7
0.

23
54

57
3

0.
33

93
40

5
0.

19
41

01
3

48
.7

80
49

00
56

.0
97

56
00

43
.9

02
44

00
56

.0
97

56
00

4
1

0.
40

31
04

8
0.

36
76

34
9

0.
50

26
70

4
0.

35
01

07
8

0.
38

93
29

5
0.

33
19

91
7

0.
44

02
30

4
0.

30
77

76
8

34
.8

83
72

00
44

.1
86

05
00

32
.5

58
14

00
41

.8
60

47
00

2
0.

29
95

10
3

0.
31

92
16

9
0.

32
93

30
2

0.
45

11
14

7
0.

21
01

50
7

0.
16

16
27

8
0.

27
27

00
8

0.
19

65
38

7
56

.8
18

18
00

61
.3

63
64

00
45

.4
54

55
00

61
.3

63
64

00
3

0.
38

27
81

5
0.

26
94

32
2

0.
35

18
75

2
0.

31
19

56
3

0.
28

14
53

7
0.

22
55

02
5

0.
23

50
46

4
0.

20
67

00
6

44
.1

86
05

00
51

.1
62

79
00

51
.1

62
79

00
53

.4
88

37
00

5
1

0.
34

24
80

0
0.

31
39

26
4

0.
35

52
70

2
0.

31
35

33
9

0.
32

92
21

4
0.

26
57

45
4

0.
34

35
03

1
0.

27
06

39
4

36
.9

56
52

00
45

.6
52

17
00

43
.4

78
26

00
47

.8
26

09
00

2
1.

27
35

84
0

0.
38

52
77

3
0.

53
11

83
6

0.
55

03
39

1
0.

23
07

89
6

0.
24

88
09

8
0.

30
01

95
7

0.
24

86
58

1
51

.2
19

51
00

51
.2

19
51

00
41

.4
63

41
00

51
.2

19
51

00
3

0.
35

32
15

2
0.

28
18

78
3

0.
35

45
52

8
0.

26
71

51
6

0.
31

06
59

1
0.

22
12

51
2

0.
28

48
41

3
0.

17
88

49
9

41
.8

60
47

00
53

.4
88

37
00

44
.1

86
05

00
62

.7
90

70
00

6
1

0.
34

47
73

7
0.

42
28

14
1

0.
47

18
68

1
0.

40
21

45
0

0.
27

50
30

6
0.

25
50

66
9

0.
29

77
02

6
0.

20
75

05
8

45
.0

00
00

00
47

.5
00

00
00

37
.5

00
00

00
55

.0
00

00
00

2
0.

36
47

69
1

0.
32

30
15

7
0.

37
11

69
0

0.
33

72
39

3
0.

30
53

82
9

0.
28

60
53

6
0.

26
63

03
1

0.
25

01
25

4
44

.4
44

44
00

48
.8

88
89

00
44

.4
44

44
00

48
.8

88
89

00
3

0.
38

78
51

7
0.

32
27

55
7

0.
39

00
21

5
0.

34
34

53
7

0.
34

64
98

6
0.

23
98

27
5

0.
33

63
81

4
0.

24
87

05
2

37
.7

77
78

00
51

.1
11

11
00

40
.0

00
00

00
51

.1
11

11
00

7
1

0.
46

08
07

2
0.

36
19

99
0

0.
42

16
75

3
0.

36
33

61
8

0.
39

21
77

6
0.

25
08

79
1

0.
37

64
26

4
0.

21
26

51
3

22
.2

22
22

00
48

.8
88

89
00

31
.1

11
11

00
57

.7
77

78
00

2
0.

63
85

49
1

0.
30

91
85

0
0.

42
30

12
7

0.
39

25
94

2
0.

26
06

97
0

0.
23

98
22

8
0.

33
59

56
9

0.
20

50
85

1
44

.1
86

05
00

51
.1

62
79

00
44

.1
86

05
00

51
.1

62
79

00
3

0.
34

11
59

9
0.

31
27

66
3

0.
35

04
57

5
0.

33
53

04
5

0.
24

17
28

4
0.

23
76

97
3

0.
32

68
24

7
0.

32
80

62
8

52
.3

80
95

00
52

.3
80

95
00

40
.4

76
19

00
45

.2
38

10
00

8
1

0.
36

95
65

8
0.

25
87

22
2

0.
32

95
23

0
0.

29
06

51
1

0.
27

71
14

1
0.

20
11

87
1

0.
23

10
85

8
0.

19
33

67
7

45
.6

52
17

00
56

.5
21

74
00

50
.0

00
00

00
56

.5
21

74
00

2
0.

38
57

83
1

0.
35

01
62

9
0.

45
63

05
1

0.
34

36
11

8
0.

28
23

55
6

0.
25

75
57

0
0.

38
77

01
6

0.
28

76
18

4
40

.9
09

09
00

47
.7

27
27

00
36

.3
63

64
00

47
.7

27
27

00
3

0.
32

67
37

4
0.

34
59

48
6

0.
34

73
02

3
0.

33
61

63
9

0.
34

31
15

6
0.

26
87

97
1

0.
28

17
64

9
0.

24
94

40
5

45
.0

00
00

00
42

.5
00

00
00

42
.5

00
00

00
52

.5
00

00
00

9
1

0.
43

01
67

1
0.

30
28

94
3

0.
38

94
59

6
0.

33
12

41
8

0.
35

58
36

2
0.

18
37

36
6

0.
30

83
49

5
0.

19
03

31
8

43
.4

78
26

00
60

.8
69

57
00

43
.4

78
26

00
60

.8
69

57
00

2
0.

32
26

47
3

0.
33

11
26

1
0.

33
90

04
4

0.
30

77
79

8
0.

23
12

56
3

0.
26

19
60

8
0.

26
73

12
0

0.
21

51
44

0
55

.8
13

95
00

48
.8

37
21

00
46

.5
11

63
00

53
.4

88
37

00
3

0.
31

44
91

5
0.

30
95

55
3

0.
38

94
39

9
0.

31
19

56
5

0.
25

61
49

5
0.

24
84

80
8

0.
34

95
00

4
0.

29
29

98
6

46
.3

41
46

00
51

.2
19

51
00

41
.4

63
41

00
41

.4
63

41
00

10
1

0.
37

82
25

3
0.

36
64

29
7

0.
38

12
49

1
0.

35
97

83
0

0.
32

31
09

6
0.

22
29

84
0

0.
24

47
77

3
0.

21
67

55
7

38
.6

36
36

00
54

.5
45

45
00

52
.2

72
73

00
56

.8
18

18
00

2
0.

31
27

60
2

0.
25

65
27

8
0.

41
69

60
0

0.
26

30
93

1
0.

30
04

20
6

0.
14

01
13

7
0.

34
49

30
8

0.
18

04
11

2
44

.1
86

05
00

58
.1

39
53

00
41

.8
60

47
00

58
.1

39
53

00
3

0.
41

01
57

0
0.

34
68

67
1

0.
42

23
51

4
0.

41
98

18
5

0.
29

79
13

5
0.

27
59

63
9

0.
35

97
33

4
0.

33
19

87
1

44
.1

86
05

00
44

.1
86

05
00

37
.2

09
30

00
37

.2
09

30
00

11
1

0.
31

60
37

6
0.

27
93

47
3

0.
30

33
29

7
0.

26
10

05
3

0.
23

13
74

5
0.

23
77

62
3

0.
21

85
91

3
0.

19
83

53
6

55
.3

19
15

00
53

.1
91

49
00

51
.0

63
83

00
63

.8
29

79
00

2
0.

33
89

72
0

0.
41

02
43

6
0.

49
80

55
8

0.
46

74
76

6
0.

28
51

64
7

0.
27

82
39

0
0.

34
78

13
0

0.
30

72
74

0
48

.7
80

49
00

46
.3

41
46

00
43

.9
02

44
00

43
.9

02
44

00
3

0.
39

36
77

0
0.

36
27

78
3

0.
40

49
29

5
0.

33
30

51
4

0.
31

46
49

0
0.

25
62

19
8

0.
31

29
56

0
0.

22
43

98
9

45
.2

38
10

00
47

.6
19

05
00

40
.4

76
19

00
52

.3
80

95
00

12
1

0.
38

16
34

8
0.

31
71

68
7

0.
39

83
21

2
0.

30
64

86
5

0.
28

31
23

0
0.

24
82

65
1

0.
32

24
44

3
0.

22
84

61
4

47
.6

19
05

00
50

.0
00

00
00

42
.8

57
14

00
54

.7
61

90
00

2
0.

29
83

57
7

0.
29

63
74

9
0.

29
72

38
9

0.
29

26
31

2
0.

24
38

71
0

0.
20

61
78

2
0.

27
51

80
0

0.
24

55
68

9
52

.1
73

91
00

56
.5

21
74

00
43

.4
78

26
00

52
.1

73
91

00
3

0.
84

84
14

5
0.

40
34

21
8

0.
50

98
52

6
0.

59
61

84
6

0.
41

51
26

1
0.

19
41

18
4

0.
37

34
93

8
0.

31
24

65
8

40
.4

76
19

00
54

.7
61

90
00

40
.4

76
19

00
45

.2
38

10
00

13
1

0.
75

71
44

4
0.

42
41

33
7

0.
59

73
10

4
0.

65
66

12
5

0.
49

10
01

0
0.

31
04

12
8

0.
56

66
17

5
0.

39
04

47
2

31
.8

18
18

00
43

.1
81

82
00

29
.5

45
45

00
36

.3
63

64
00

2
0.

36
78

05
3

0.
26

44
30

0
0.

34
06

02
4

0.
26

59
47

0
0.

31
50

98
5

0.
21

20
61

5
0.

32
16

46
6

0.
20

10
79

1
35

.5
55

56
00

57
.7

77
78

00
37

.7
77

78
00

62
.2

22
22

00
3

0.
28

01
96

5
0.

30
21

30
4

0.
26

80
23

1
0.

31
32

02
9

0.
18

74
39

1
0.

17
62

22
5

0.
19

81
08

6
0.

20
47

95
5

63
.4

14
63

00
58

.5
36

59
00

58
.5

36
59

00
56

.0
97

56
00

14
1

0.
39

24
63

0
0.

35
83

86
4

0.
53

38
85

4
0.

36
78

52
6

0.
25

89
88

4
0.

25
61

21
9

0.
36

97
83

1
0.

23
56

76
5

47
.5

00
00

00
50

.0
00

00
00

37
.5

00
00

00
52

.5
00

00
00

2
0.

35
48

78
0

0.
36

45
30

7
0.

35
97

16
9

0.
35

79
50

2
0.

29
52

04
1

0.
31

77
46

0
0.

33
59

59
2

0.
31

07
71

3
44

.4
44

44
00

37
.7

77
78

00
42

.2
22

22
00

44
.4

44
44

00
3

0.
33

04
88

0
0.

26
30

97
7

0.
33

03
47

6
0.

26
19

53
3

0.
30

03
55

7
0.

19
50

51
6

0.
23

79
63

3
0.

16
10

39
3

46
.6

66
67

00
64

.4
44

44
00

55
.5

55
56

00
62

.2
22

22
00

124 APPENDIX A STATISTICAL ANALYSIS OF EMPIRICAL STUDY ES3
15

1
0.2904830

0.2710063
0.5005408

0.2726495
0.2135658

0.1400226
0.2869511

0.1578536
59.5238100

64.2857100
45.2381000

61.9047600
2

0.4488122
0.3861752

0.4501162
0.4212459

0.3441601
0.2998069

0.4246570
0.2803793

31.9148900
42.5531900

31.9148900
46.8085100

3
0.3759861

0.3410088
0.3687985

0.3158255
0.3190396

0.2304074
0.3407867

0.2108731
31.7073200

53.6585400
43.9024400

58.5365900

16
1

0.4171941
0.2782483

0.4411465
0.2641473

0.3083049
0.1846931

0.3473898
0.1697331

44.1860500
55.8139500

44.1860500
60.4651200

2
0.4193076

0.4086050
0.4668451

0.4715510
0.3136406

0.2756592
0.3387610

0.3171086
34.0909100

45.4545500
40.9090900

43.1818200
3

0.3740837
0.3850148

0.4059280
0.3796023

0.3225798
0.3383976

0.3372809
0.2882041

39.5348800
41.8604700

37.2093000
41.8604700

17
1

0.4033106
0.4042740

0.4196828
0.4092889

0.3050726
0.3298018

0.3670797
0.3641608

40.9090900
38.6363600

29.5454500
40.9090900

2
0.4042971

0.2817891
0.3549501

0.2915481
0.3527203

0.1968417
0.2485510

0.1957725
43.1818200

56.8181800
50.0000000

54.5454500
3

0.2720138
0.2507760

0.4042051
0.2282906

0.2235242
0.1522805

0.2639264
0.1581760

54.7619000
61.9047600

47.6190500
66.6666700

18
1

0.3740371
0.3521402

0.3761406
0.4383943

0.3241792
0.2455112

0.2903017
0.2509793

42.2222200
51.1111100

40.0000000
48.8888900

2
0.3718238

0.3710872
0.3695392

0.3559424
0.3864646

0.2969627
0.3327533

0.2650990
43.1818200

43.1818200
43.1818200

47.7272700
3

0.3015659
0.2864805

0.4564183
0.2952485

0.2292078
0.2195339

0.3297123
0.2334276

53.6585400
51.2195100

41.4634100
53.6585400

19
1

0.5374282
0.2989806

0.4302508
0.4579440

0.3352734
0.2237530

0.3344979
0.2678835

37.5000000
56.2500000

39.5833300
45.8333300

2
0.3680821

0.3415138
0.4016134

0.3182518
0.2928886

0.2844749
0.2994710

0.1957172
45.6521700

47.8260900
41.3043500

54.3478300
3

0.3795666
0.4095046

0.4342311
0.4025095

0.2548819
0.2586800

0.3387307
0.2724784

50.0000000
50.0000000

47.2222200
50.0000000

20
1

0.3689718
0.3083550

0.3653394
0.3087586

0.3209625
0.2453803

0.3267531
0.2279828

39.1304300
50.0000000

43.4782600
54.3478300

2
0.6234981

0.3996726
0.4742701

0.4823132
0.4657378

0.3510290
0.4612770

0.4098534
36.1702100

42.5531900
36.1702100

38.2978700
3

0.3005221
0.2604501

0.2931436
0.2350128

0.2192784
0.1759679

0.2123798
0.1682139

54.0540500
64.8648600

54.0540500
64.8648600

21
1

0.2512398
0.2579160

0.2765426
0.2697048

0.1711904
0.2195263

0.1744131
0.1764700

65.1162800
58.1395300

60.4651200
58.1395300

2
0.3818387

0.4030685
0.3904774

0.5397877
0.3647787

0.2463772
0.3479498

0.2954381
40.9090900

50.0000000
40.9090900

45.4545500
3

0.7020670
0.3423741

0.5197481
0.6846622

0.3415775
0.2783690

0.3670599
0.3978615

32.5581400
44.1860500

25.5814000
39.5348800

22
1

0.9147913
0.3443745

0.4297557
0.4273250

0.2816322
0.2872796

0.3077031
0.3060680

38.6363600
40.9090900

45.4545500
45.4545500

2
0.4247661

0.3865697
0.4301702

0.3958360
0.3728182

0.2685263
0.3714420

0.2403840
36.3636400

47.7272700
36.3636400

52.2727300
3

0.3095269
0.2660507

0.3072073
0.2692346

0.3098379
0.2302718

0.2796263
0.2307205

47.6190500
54.7619000

47.6190500
54.7619000

23
1

0.3087700
0.2855006

0.2928306
0.2806263

0.2168805
0.1917723

0.1912730
0.1930079

53.3333300
55.5555600

55.5555600
57.7777800

2
0.3896682

0.3739602
0.4276404

0.3960767
0.3456354

0.2613371
0.3174709

0.2687629
41.3043500

50.0000000
41.3043500

47.8260900
3

0.3799771
0.4246405

0.5135088
0.3606956

0.3396388
0.3408349

0.3613756
0.3091225

41.0256400
38.4615400

33.3333300
46.1538500

24
1

0.3054624
0.2665792

0.3127117
0.2723393

0.2258112
0.1948328

0.2442640
0.1866395

54.7619000
57.1428600

57.1428600
57.1428600

2
1.3330650

0.3485674
0.6396040

0.5030265
0.3873722

0.3045933
0.4262326

0.3565426
31.1111100

44.4444400
35.5555600

40.0000000
3

0.3583825
0.3403032

0.3323760
0.3452216

0.2374548
0.2457892

0.2337940
0.1609647

51.1627900
53.4883700

51.1627900
58.1395300

25
1

0.4923840
0.3962998

0.5084618
0.6437915

0.3911838
0.2830203

0.3577838
0.2650202

36.3636400
45.4545500

38.6363600
43.1818200

2
0.3430444

0.3316746
0.3968287

0.3609079
0.2399020

0.2178125
0.2921784

0.2549675
50.0000000

52.1739100
39.1304300

50.0000000
3

0.3186181
0.2631613

0.2897880
0.2682154

0.2684474
0.2261512

0.2617005
0.1943262

47.5000000
55.0000000

47.5000000
60.0000000

26
1

0.3441864
0.2963088

0.3687368
0.2755318

0.2839783
0.2252772

0.3056884
0.2171104

41.3043500
52.1739100

43.4782600
56.5217400

2
0.3801342

0.3600816
0.3960429

0.3517967
0.2965076

0.2766621
0.2722739

0.2544760
37.7777800

44.4444400
46.6666700

48.8888900
3

0.3786089
0.4934357

0.4116495
0.5697831

0.2578853
0.3171148

0.3096966
0.3139776

46.1538500
46.1538500

46.1538500
46.1538500

27
1

0.3585842
0.3038143

0.4223971
0.3170740

0.2908019
0.2166593

0.3673678
0.3025103

43.4782600
54.3478300

39.1304300
43.4782600

2
0.3936629

0.2985101
0.3556246

0.3280930
0.3255773

0.1815890
0.2870713

0.1819533
43.4782600

63.0434800
41.3043500

60.8695700
3

0.3295887
0.3680235

0.3598696
0.3507570

0.2153556
0.2845943

0.2360606
0.2600249

57.8947400
47.3684200

50.0000000
50.0000000

28
1

0.3362577
0.3058933

0.3649527
0.2682416

0.2682499
0.1832973

0.2392332
0.1633367

47.8260900
58.6956500

52.1739100
60.8695700

2
0.3727300

0.2892695
0.3726712

0.2974676
0.3019123

0.2434624
0.3440066

0.2355123
45.2381000

50.0000000
42.8571400

50.0000000
3

0.3913811
0.3417571

0.4048732
0.3463225

0.3458093
0.2266235

0.3463727
0.2464200

38.0952400
52.3809500

38.0952400
52.3809500

29
1

0.5000447
0.3425452

0.4802927
0.4932172

0.3999501
0.2558706

0.4429714
0.3587928

38.6363600
45.4545500

38.6363600
43.1818200

2
0.3435460

0.3060727
0.3137854

0.3234526
0.2361788

0.1748290
0.2158636

0.1553292
52.2727300

65.9090900
52.2727300

65.9090900
3

0.3096423
0.2722647

0.3054111
0.2520151

0.2502888
0.2095254

0.2975098
0.1870984

50.0000000
57.1428600

42.8571400
64.2857100

A.4 ESTIMATION ACCURACY ACHIEVED DURING THE MONTECARLO EXPERIMENT. 125
30

1
0.

28
33

69
0

0.
28

32
45

4
0.

28
12

11
9

0.
27

65
23

4
0.

18
75

37
2

0.
16

57
78

6
0.

22
35

45
3

0.
19

89
86

9
55

.5
55

56
00

60
.0

00
00

00
53

.3
33

33
00

64
.4

44
44

00
2

0.
69

30
47

5
0.

44
09

40
6

0.
68

33
79

2
0.

55
60

54
9

0.
47

15
06

9
0.

36
35

10
4

0.
52

13
62

7
0.

35
38

10
5

30
.2

32
56

00
39

.5
34

88
00

32
.5

58
14

00
39

.5
34

88
00

3
0.

30
31

46
8

0.
28

01
73

4
0.

32
38

49
0

0.
28

50
27

7
0.

23
02

78
5

0.
20

50
84

8
0.

21
32

95
7

0.
16

49
78

6
52

.3
80

95
00

59
.5

23
81

00
52

.3
80

95
00

61
.9

04
76

00

31
1

0.
31

34
34

8
0.

36
92

38
0

0.
33

44
98

4
0.

35
98

26
9

0.
26

13
02

7
0.

31
10

79
8

0.
27

05
70

7
0.

28
27

10
4

48
.8

88
89

00
35

.5
55

56
00

44
.4

44
44

00
40

.0
00

00
00

2
0.

37
34

70
7

0.
30

64
32

6
0.

39
39

99
0

0.
36

71
66

5
0.

27
77

41
0

0.
20

53
31

0
0.

36
65

31
9

0.
23

42
81

6
47

.6
19

05
00

59
.5

23
81

00
40

.4
76

19
00

52
.3

80
95

00
3

0.
37

80
09

9
0.

29
36

23
4

0.
44

77
80

4
0.

29
52

29
2

0.
35

82
08

0
0.

23
17

93
1

0.
37

75
01

6
0.

22
24

54
4

34
.8

83
72

00
53

.4
88

37
00

32
.5

58
14

00
53

.4
88

37
00

32
1

0.
32

06
00

3
0.

33
65

99
7

0.
35

89
13

7
0.

36
17

23
2

0.
28

39
64

0
0.

27
45

08
2

0.
25

96
07

9
0.

26
86

17
0

45
.6

52
17

00
45

.6
52

17
00

45
.6

52
17

00
47

.8
26

09
00

2
0.

48
66

63
7

0.
30

61
12

4
0.

48
13

85
2

0.
46

75
44

4
0.

28
02

34
4

0.
20

82
90

8
0.

33
15

49
9

0.
23

98
75

1
46

.6
66

67
00

60
.0

00
00

00
40

.0
00

00
00

51
.1

11
11

00
3

0.
40

83
58

1
0.

34
30

42
5

0.
40

44
61

7
0.

33
60

04
1

0.
33

89
95

1
0.

23
86

45
2

0.
33

43
52

8
0.

21
60

79
7

43
.5

89
74

00
53

.8
46

15
00

46
.1

53
85

00
53

.8
46

15
00

33
1

0.
36

39
44

3
0.

29
06

36
5

0.
31

85
62

4
0.

32
33

28
4

0.
28

93
71

8
0.

17
09

28
7

0.
28

19
02

7
0.

18
81

77
6

40
.9

09
09

00
59

.0
90

91
00

47
.7

27
27

00
68

.1
81

82
00

2
0.

50
92

18
5

0.
32

16
26

1
0.

45
77

39
3

0.
40

12
98

3
0.

34
57

51
3

0.
22

14
78

6
0.

36
49

44
1

0.
30

85
56

7
41

.3
04

35
00

54
.3

47
83

00
36

.9
56

52
00

45
.6

52
17

00
3

0.
35

31
94

4
0.

40
62

15
4

0.
39

48
63

0
0.

39
07

97
8

0.
27

87
78

6
0.

28
66

12
1

0.
32

30
15

4
0.

27
07

93
4

47
.5

00
00

00
47

.5
00

00
00

47
.5

00
00

00
50

.0
00

00
00

34
1

0.
38

72
24

5
0.

29
27

67
2

0.
38

28
61

3
0.

29
61

78
4

0.
35

88
77

2
0.

27
36

89
8

0.
32

49
26

6
0.

23
12

84
8

35
.5

55
56

00
48

.8
88

89
00

40
.0

00
00

00
55

.5
55

56
00

2
0.

29
80

37
5

0.
29

01
69

5
0.

37
73

04
3

0.
26

73
05

3
0.

22
83

43
3

0.
22

98
49

2
0.

25
72

91
3

0.
24

90
90

5
55

.5
55

56
00

55
.5

55
56

00
48

.8
88

89
00

51
.1

11
11

00
3

0.
39

94
78

7
0.

41
78

77
6

0.
41

23
78

6
0.

42
37

66
0

0.
25

38
48

0
0.

34
58

77
2

0.
37

83
57

8
0.

33
78

92
2

47
.5

00
00

00
37

.5
00

00
00

37
.5

00
00

00
40

.0
00

00
00

35
1

0.
34

85
10

1
0.

31
98

51
5

0.
38

30
27

5
0.

31
47

97
3

0.
26

35
71

1
0.

26
82

71
1

0.
32

74
96

7
0.

19
63

31
7

48
.7

80
49

00
48

.7
80

49
00

43
.9

02
44

00
58

.5
36

59
00

2
0.

35
85

06
2

0.
30

18
21

5
0.

33
86

40
3

0.
30

09
67

2
0.

23
82

18
7

0.
21

55
20

5
0.

28
18

95
0

0.
22

48
35

0
52

.1
73

91
00

54
.3

47
83

00
45

.6
52

17
00

52
.1

73
91

00
3

0.
35

12
02

1
0.

36
64

27
6

0.
43

23
00

5
0.

40
82

58
6

0.
28

56
52

1
0.

23
33

26
9

0.
31

44
98

0
0.

27
43

55
7

44
.1

86
05

00
53

.4
88

37
00

34
.8

83
72

00
46

.5
11

63
00

36
1

0.
34

94
39

2
0.

31
75

18
1

0.
41

65
07

3
0.

30
43

71
6

0.
26

79
49

9
0.

21
80

01
3

0.
29

52
18

6
0.

23
94

55
7

48
.8

37
21

00
53

.4
88

37
00

44
.1

86
05

00
51

.1
62

79
00

2
0.

42
89

24
0

0.
37

37
02

7
0.

40
44

82
3

0.
38

68
89

0
0.

38
48

64
9

0.
28

98
87

2
0.

30
39

19
0

0.
25

01
85

0
36

.9
56

52
00

47
.8

26
09

00
30

.4
34

78
00

50
.0

00
00

00
3

0.
32

77
00

1
0.

28
20

63
1

0.
35

39
02

7
0.

28
06

64
3

0.
24

32
22

7
0.

23
24

23
3

0.
29

79
81

4
0.

21
24

13
8

51
.2

19
51

00
53

.6
58

54
00

43
.9

02
44

00
53

.6
58

54
00

37
1

0.
34

23
93

9
0.

31
82

57
3

0.
38

61
94

7
0.

34
40

40
9

0.
31

22
38

9
0.

24
00

18
6

0.
28

83
32

5
0.

32
92

48
8

37
.7

77
78

00
53

.3
33

33
00

40
.0

00
00

00
44

.4
44

44
00

2
0.

33
61

50
1

0.
38

54
55

3
0.

37
91

36
9

0.
37

54
21

9
0.

26
70

31
3

0.
28

78
58

2
0.

34
31

03
4

0.
31

89
15

2
48

.8
37

21
00

37
.2

09
30

00
37

.2
09

30
00

37
.2

09
30

00
3

0.
40

80
50

0
0.

29
77

75
4

0.
36

67
39

9
0.

33
15

99
8

0.
24

44
85

3
0.

19
09

44
1

0.
24

95
88

3
0.

15
97

29
3

50
.0

00
00

00
71

.4
28

57
00

50
.0

00
00

00
66

.6
66

67
00

38
1

0.
40

94
63

2
0.

35
64

92
9

0.
39

53
01

7
0.

34
50

62
9

0.
33

45
30

4
0.

28
64

08
9

0.
37

64
99

3
0.

30
50

95
6

33
.3

33
33

00
42

.2
22

22
00

37
.7

77
78

00
48

.8
88

89
00

2
0.

25
19

50
6

0.
34

46
56

1
0.

32
94

18
5

0.
40

06
74

3
0.

18
38

86
4

0.
19

53
44

2
0.

18
90

09
7

0.
20

89
16

1
65

.2
17

39
00

60
.8

69
57

00
58

.6
95

65
00

56
.5

21
74

00
3

0.
36

62
04

7
0.

29
77

96
4

0.
39

21
85

1
0.

29
47

71
7

0.
32

88
18

8
0.

21
32

34
1

0.
31

42
10

6
0.

21
26

86
1

38
.4

61
54

00
51

.2
82

05
00

38
.4

61
54

00
58

.9
74

36
00

39
1

0.
41

77
72

2
0.

34
46

11
0

0.
42

39
74

2
0.

33
64

38
8

0.
33

78
39

0
0.

27
12

18
4

0.
38

32
61

8
0.

27
49

81
2

35
.5

55
56

00
46

.6
66

67
00

35
.5

55
56

00
44

.4
44

44
00

2
0.

29
85

43
3

0.
27

85
68

1
0.

28
70

26
3

0.
30

34
69

1
0.

25
81

88
6

0.
21

55
52

9
0.

22
30

70
3

0.
27

12
91

7
48

.8
88

89
00

57
.7

77
78

00
51

.1
11

11
00

48
.8

88
89

00
3

0.
34

28
02

5
0.

39
86

16
4

0.
48

91
31

9
0.

39
68

31
3

0.
25

59
41

6
0.

24
48

33
1

0.
34

97
23

6
0.

25
16

97
3

47
.5

00
00

00
52

.5
00

00
00

35
.0

00
00

00
50

.0
00

00
00

40
1

0.
34

95
40

0
0.

38
58

76
2

0.
42

41
32

2
0.

37
88

23
6

0.
25

64
21

0
0.

27
44

41
9

0.
35

81
02

2
0.

23
16

01
8

48
.8

88
89

00
44

.4
44

44
00

44
.4

44
44

00
57

.7
77

78
00

2
0.

28
20

70
9

0.
27

95
66

7
0.

25
08

83
1

0.
24

92
31

2
0.

23
28

35
2

0.
21

13
98

3
0.

19
21

62
4

0.
19

14
92

2
52

.3
80

95
00

54
.7

61
90

00
57

.1
42

86
00

59
.5

23
81

00
3

0.
44

09
12

1
0.

31
67

56
1

0.
43

75
66

2
0.

33
90

31
3

0.
39

10
23

9
0.

30
05

51
1

0.
38

40
96

9
0.

30
39

09
0

32
.5

58
14

00
46

.5
11

63
00

25
.5

81
40

00
41

.8
60

47
00

41
1

0.
83

70
29

9
0.

42
38

57
5

0.
55

46
24

0
0.

52
10

42
0

0.
37

44
06

0
0.

40
36

02
2

0.
35

35
96

1
0.

37
08

01
3

36
.3

63
64

00
36

.3
63

64
00

38
.6

36
36

00
43

.1
81

82
00

2
0.

31
96

62
3

0.
24

21
84

6
0.

30
76

34
9

0.
23

39
19

6
0.

25
48

41
9

0.
16

75
77

7
0.

21
52

22
7

0.
17

59
84

6
48

.8
37

21
00

60
.4

65
12

00
51

.1
62

79
00

60
.4

65
12

00
3

0.
34

22
11

0
0.

28
37

28
7

0.
35

11
69

5
0.

30
01

18
1

0.
28

17
92

7
0.

18
18

34
7

0.
30

23
53

2
0.

21
61

93
7

48
.8

37
21

00
58

.1
39

53
00

46
.5

11
63

00
58

.1
39

53
00

42
1

0.
34

61
39

1
0.

27
01

94
8

0.
31

05
46

3
0.

24
85

18
5

0.
27

70
66

2
0.

20
57

03
6

0.
30

02
91

2
0.

17
51

37
8

43
.4

78
26

00
60

.8
69

57
00

43
.4

78
26

00
65

.2
17

39
00

2
0.

42
32

82
5

0.
39

68
23

7
0.

43
02

29
8

0.
39

21
07

0
0.

30
25

43
0

0.
32

69
38

4
0.

38
34

75
1

0.
29

82
24

2
38

.6
36

36
00

43
.1

81
82

00
40

.9
09

09
00

47
.7

27
27

00
3

0.
32

83
33

5
0.

30
04

38
4

0.
39

87
53

2
0.

31
60

23
6

0.
30

35
56

1
0.

20
11

89
3

0.
35

53
19

7
0.

28
00

80
0

45
.0

00
00

00
60

.0
00

00
00

45
.0

00
00

00
47

.5
00

00
00

43
1

0.
37

44
97

2
0.

34
74

15
9

0.
40

52
11

1
0.

34
58

70
9

0.
29

91
15

7
0.

28
75

88
0

0.
35

10
95

4
0.

23
88

44
6

44
.4

44
44

00
46

.6
66

67
00

44
.4

44
44

00
51

.1
11

11
00

2
0.

30
46

34
2

0.
29

29
09

5
0.

29
38

76
1

0.
28

41
25

6
0.

26
43

94
6

0.
21

01
75

4
0.

28
57

50
7

0.
21

10
66

8
45

.4
54

55
00

56
.8

18
18

00
43

.1
81

82
00

54
.5

45
45

00
3

0.
88

35
82

6
0.

33
03

98
5

0.
51

27
74

2
0.

89
81

97
0

0.
40

34
16

0
0.

24
87

69
5

0.
32

90
63

4
0.

38
25

36
6

26
.8

29
27

00
51

.2
19

51
00

39
.0

24
39

00
29

.2
68

29
00

44
1

0.
31

80
58

8
0.

25
46

01
6

0.
30

41
56

2
0.

26
06

90
6

0.
23

29
55

0
0.

16
23

47
0

0.
20

42
19

2
0.

19
69

43
3

52
.0

83
33

00
56

.2
50

00
00

58
.3

33
33

00
60

.4
16

67
00

2
0.

37
36

58
5

0.
39

58
08

0
0.

47
09

12
5

0.
39

09
27

2
0.

32
49

42
6

0.
25

53
93

6
0.

44
39

73
0

0.
23

47
46

2
41

.8
60

47
00

46
.5

11
63

00
32

.5
58

14
00

53
.4

88
37

00
3

0.
39

24
35

0
0.

31
41

35
7

0.
34

67
15

3
0.

28
49

55
2

0.
27

21
45

7
0.

26
98

39
1

0.
30

02
11

5
0.

24
97

88
4

46
.1

53
85

00
48

.7
17

95
00

43
.5

89
74

00
51

.2
82

05
00

126 APPENDIX A STATISTICAL ANALYSIS OF EMPIRICAL STUDY ES3
45

1
0.3646964

0.3466661
0.3502764

0.3047249
0.2803691

0.2092272
0.2373079

0.1654402
45.2381000

57.1428600
54.7619000

59.5238100
2

0.2954406
0.2438265

0.2849636
0.2387744

0.2525128
0.1800699

0.2012093
0.1937823

48.9361700
63.8297900

51.0638300
65.9574500

3
1.2138920

0.4043676
0.6674945

0.5415898
0.3557955

0.3760702
0.4572442

0.3835527
34.1463400

41.4634100
36.5853700

36.5853700

46
1

0.3573765
0.3667912

0.4844711
0.3497609

0.2519710
0.2205379

0.4164761
0.2753149

48.8372100
53.4883700

37.2093000
48.8372100

2
0.3870369

0.2980134
0.3764762

0.2948557
0.3163812

0.2445686
0.2864887

0.2453954
40.9090900

52.2727300
40.9090900

50.0000000
3

0.3431302
0.3307701

0.3403515
0.3706898

0.3004839
0.1988265

0.2918909
0.2168029

46.5116300
51.1627900

44.1860500
51.1627900

47
1

0.3480073
0.3239897

0.3494652
0.3367563

0.3393435
0.2751529

0.2723313
0.2670792

45.6521700
47.8260900

47.8260900
45.6521700

2
0.2818555

0.2853387
0.3502404

0.2575568
0.2145042

0.2144474
0.2307708

0.1932026
60.0000000

57.7777800
51.1111100

62.2222200
3

0.4168519
0.3211166

0.4355479
0.3703156

0.3806636
0.2181770

0.3752339
0.2108869

41.0256400
56.4102600

33.3333300
53.8461500

48
1

0.4776570
0.4262623

0.5000144
0.4115953

0.3971374
0.3531788

0.3626891
0.3251758

38.0952400
35.7142900

38.0952400
42.8571400

2
0.3493451

0.4040998
0.3753392

0.3380636
0.2766208

0.3032733
0.2864593

0.2520937
45.4545500

43.1818200
43.1818200

50.0000000
3

0.2841693
0.2792160

0.3308060
0.2956085

0.1795146
0.1437683

0.2125015
0.1867457

59.0909100
63.6363600

54.5454500
63.6363600

49
1

0.3823250
0.3783556

0.4012924
0.3698800

0.2955928
0.2652477

0.3169985
0.2846088

39.0243900
46.3414600

41.4634100
46.3414600

2
0.3897459

0.3222902
0.4018754

0.3250870
0.3944305

0.2705539
0.2946955

0.2513523
31.2500000

47.9166700
37.5000000

47.9166700
3

0.6273910
0.3115725

0.4903514
0.7670410

0.2045839
0.2209000

0.2807858
0.3523317

60.9756100
53.6585400

43.9024400
41.4634100

50
1

0.3011898
0.2671293

0.2911238
0.2577343

0.2035402
0.2115738

0.2284272
0.1764882

58.1395300
60.4651200

53.4883700
62.7907000

2
0.7629380

0.3787962
0.5253933

0.4831045
0.4764328

0.2531188
0.3469107

0.2758163
34.7826100

50.0000000
34.7826100

45.6521700
3

0.3307482
0.3103517

0.3561616
0.3015692

0.2972877
0.2691661

0.3466939
0.3043237

46.3414600
46.3414600

36.5853700
43.9024400

51
1

0.3325419
0.3182673

0.3413560
0.3109597

0.2522373
0.2108389

0.2490843
0.1870237

48.8888900
53.3333300

51.1111100
62.2222200

2
0.8623596

0.4363446
0.6167958

0.4884441
0.4723434

0.3853933
0.5013774

0.3767512
32.6087000

30.4347800
23.9130400

34.7826100
3

0.3777739
0.2578787

0.3195976
0.2346020

0.2967699
0.1794138

0.2424723
0.1829162

43.5897400
56.4102600

51.2820500
58.9743600

52
1

0.3379470
0.2684425

0.3044442
0.2741645

0.3146326
0.1521768

0.2553727
0.1852021

43.1818200
56.8181800

50.0000000
59.0909100

2
2.2952330

0.3280128
0.4522834

0.5751354
0.3997054

0.2721249
0.3465319

0.2824563
33.3333300

46.6666700
37.7777800

44.4444400
3

0.3968939
0.3815512

0.4022771
0.3855837

0.3114373
0.2564582

0.2939588
0.2385948

41.4634100
48.7804900

48.7804900
51.2195100

53
1

0.6168577
0.3052824

0.4069238
0.3115733

0.3057302
0.2513273

0.3001500
0.2508241

41.3043500
50.0000000

36.9565200
50.0000000

2
0.4156757

0.4057802
0.3970704

0.3699827
0.3819782

0.2193539
0.3279420

0.2396545
44.1860500

51.1627900
44.1860500

51.1627900
3

0.3371090
0.3311884

0.3732708
0.3318758

0.2501578
0.2065605

0.2278501
0.1947848

48.7804900
53.6585400

53.6585400
53.6585400

54
1

0.4177208
0.3173788

0.3647455
0.3246763

0.2833268
0.2866402

0.2884213
0.2767458

45.4545500
47.7272700

45.4545500
47.7272700

2
0.3004346

0.3808072
0.3721697

0.3674183
0.1956311

0.2272725
0.2525537

0.2559421
60.8695700

52.1739100
47.8260900

50.0000000
3

0.3780430
0.2921516

0.3891560
0.2747169

0.3572323
0.2226886

0.3307580
0.1943553

35.0000000
52.5000000

32.5000000
62.5000000

55
1

0.3617110
0.3025318

0.3587986
0.3204869

0.3396498
0.2292748

0.3106527
0.2032021

33.3333300
57.7777800

40.0000000
60.0000000

2
0.5485970

0.3685521
0.5942407

0.5630981
0.2782342

0.3063868
0.3218867

0.2872325
45.6521700

45.6521700
41.3043500

45.6521700
3

0.3532838
0.3385601

0.3615898
0.3320067

0.2702162
0.2180326

0.3023577
0.2628983

46.1538500
51.2820500

46.1538500
48.7179500

56
1

0.4831650
0.4083559

0.4721307
0.4179023

0.3843412
0.3508630

0.4014507
0.3476362

37.2093000
41.8604700

30.2325600
34.8837200

2
0.3213175

0.2911832
0.3628796

0.3161809
0.2559081

0.2119930
0.2646545

0.2108083
48.8888900

53.3333300
44.4444400

55.5555600
3

0.2838518
0.2604604

0.3623545
0.2145703

0.2349044
0.1985978

0.2542373
0.1477393

52.3809500
61.9047600

50.0000000
69.0476200

57
1

0.4005793
0.2861437

0.3987691
0.2930363

0.3592903
0.2599099

0.3600205
0.2421992

37.7777800
48.8888900

40.0000000
51.1111100

2
0.2916518

0.3617607
0.4765699

0.3499719
0.2334459

0.2710598
0.3929733

0.3032751
50.0000000

47.6190500
42.8571400

42.8571400
3

0.3491349
0.3187589

0.3300827
0.3310285

0.3085647
0.2218095

0.2660726
0.1977956

44.1860500
58.1395300

48.8372100
60.4651200

58
1

0.4018602
0.3139289

0.3623776
0.3573823

0.3662520
0.1965252

0.2607690
0.2164089

42.5531900
55.3191500

46.8085100
55.3191500

2
0.3337689

0.3041560
0.4020999

0.2981016
0.2783665

0.2097132
0.3493247

0.2479333
46.5116300

58.1395300
41.8604700

51.1627900
3

0.3391564
0.3402499

0.3663555
0.3486315

0.2590295
0.2949167

0.3070869
0.3135866

47.5000000
42.5000000

42.5000000
40.0000000

59
1

0.4498700
0.3317841

0.3917154
0.3325495

0.3480761
0.2650102

0.2687261
0.2243865

35.7142900
47.6190500

45.2381000
52.3809500

2
0.3831006

0.2964351
0.3740240

0.3226434
0.3687319

0.2556685
0.3166982

0.2765100
35.4166700

50.0000000
37.5000000

39.5833300
3

0.3038043
0.3459165

0.4026401
0.3456502

0.1904594
0.1597200

0.3027627
0.2169758

52.5000000
55.0000000

45.0000000
55.0000000

A.4 ESTIMATION ACCURACY ACHIEVED DURING THE MONTECARLO EXPERIMENT. 127
60

1
0.

35
89

26
3

0.
28

71
73

9
0.

35
17

36
3

0.
29

47
72

3
0.

30
28

37
0

0.
22

91
12

6
0.

29
73

94
7

0.
23

33
35

4
41

.3
04

35
00

52
.1

73
91

00
45

.6
52

17
00

52
.1

73
91

00
2

0.
29

91
41

5
0.

34
31

87
0

0.
32

93
36

7
0.

32
36

30
4

0.
23

43
98

4
0.

24
59

97
2

0.
29

96
72

1
0.

25
45

59
4

53
.4

88
37

00
51

.1
62

79
00

46
.5

11
63

00
46

.5
11

63
00

3
0.

61
34

12
3

0.
43

95
80

2
0.

52
26

20
6

0.
79

44
77

6
0.

34
04

14
1

0.
24

85
71

4
0.

36
38

12
2

0.
26

45
66

8
39

.0
24

39
00

51
.2

19
51

00
36

.5
85

37
00

48
.7

80
49

00

61
1

0.
33

96
18

7
0.

36
20

34
5

0.
41

38
36

7
0.

38
15

47
8

0.
34

15
02

6
0.

25
53

55
0

0.
32

04
83

5
0.

23
48

56
3

40
.0

00
00

00
48

.8
88

89
00

35
.5

55
56

00
53

.3
33

33
00

2
0.

37
53

74
6

0.
32

68
69

5
0.

39
08

19
9

0.
31

02
81

5
0.

26
18

97
7

0.
22

65
23

5
0.

34
45

93
1

0.
25

76
40

1
50

.0
00

00
00

52
.1

73
91

00
43

.4
78

26
00

47
.8

26
09

00
3

0.
37

83
41

2
0.

30
68

60
0

0.
32

75
11

4
0.

28
52

28
9

0.
31

03
97

7
0.

26
31

82
1

0.
26

12
19

1
0.

20
96

24
8

35
.8

97
44

00
48

.7
17

95
00

48
.7

17
95

00
51

.2
82

05
00

62
1

0.
29

75
03

3
0.

24
45

69
5

0.
33

51
69

9
0.

25
16

93
6

0.
26

47
82

2
0.

15
20

29
7

0.
24

11
12

1
0.

15
04

93
6

47
.8

26
09

00
67

.3
91

30
00

52
.1

73
91

00
63

.0
43

48
00

2
0.

37
02

61
9

0.
32

61
27

8
0.

35
97

97
3

0.
31

82
47

2
0.

28
78

15
5

0.
27

29
12

2
0.

29
42

03
5

0.
24

62
10

2
44

.4
44

44
00

46
.6

66
67

00
48

.8
88

89
00

51
.1

11
11

00
3

0.
38

14
49

7
0.

43
96

65
2

0.
45

09
89

9
0.

44
51

51
6

0.
29

33
43

9
0.

35
73

58
6

0.
37

82
80

3
0.

31
75

78
7

46
.1

53
85

00
38

.4
61

54
00

33
.3

33
33

00
43

.5
89

74
00

63
1

0.
27

81
55

4
0.

28
02

42
7

0.
30

87
08

7
0.

27
94

99
8

0.
22

54
73

8
0.

22
53

31
8

0.
23

82
80

3
0.

17
45

13
2

52
.3

80
95

00
57

.1
42

86
00

52
.3

80
95

00
54

.7
61

90
00

2
0.

44
93

24
3

0.
36

67
50

2
0.

46
05

92
4

0.
53

23
61

3
0.

39
08

90
8

0.
30

87
11

8
0.

34
22

93
5

0.
35

49
52

4
28

.2
60

87
00

43
.4

78
26

00
34

.7
82

61
00

32
.6

08
70

00
3

0.
36

07
10

6
0.

41
33

71
5

0.
39

35
89

9
0.

44
61

05
7

0.
26

20
06

3
0.

21
56

86
5

0.
27

10
17

5
0.

21
86

04
5

47
.6

19
05

00
57

.1
42

86
00

45
.2

38
10

00
59

.5
23

81
00

64
1

0.
32

08
68

3
0.

32
63

45
3

0.
40

72
62

9
0.

30
60

76
8

0.
23

96
31

6
0.

21
67

88
2

0.
35

28
60

3
0.

24
45

01
5

52
.2

72
73

00
56

.8
18

18
00

38
.6

36
36

00
50

.0
00

00
00

2
0.

29
92

70
4

0.
28

25
27

0
0.

30
65

46
6

0.
28

30
75

4
0.

23
49

76
1

0.
25

35
38

5
0.

23
66

83
6

0.
23

03
32

2
51

.1
62

79
00

48
.8

37
21

00
51

.1
62

79
00

55
.8

13
95

00
3

0.
41

01
74

5
0.

35
32

22
1

0.
40

40
22

5
0.

43
89

83
6

0.
28

97
70

1
0.

22
17

10
1

0.
28

31
42

4
0.

23
65

82
4

41
.8

60
47

00
53

.4
88

37
00

44
.1

86
05

00
51

.1
62

79
00

65
1

0.
64

09
66

0
0.

32
87

64
6

0.
40

62
27

0
0.

46
85

04
1

0.
30

83
56

7
0.

23
36

52
4

0.
34

51
47

5
0.

22
25

22
4

41
.3

04
35

00
54

.3
47

83
00

43
.4

78
26

00
52

.1
73

91
00

2
0.

35
28

04
5

0.
33

01
34

9
0.

37
47

85
3

0.
33

80
70

6
0.

26
85

17
5

0.
23

91
09

8
0.

29
45

60
4

0.
23

28
99

5
47

.8
26

09
00

52
.1

73
91

00
43

.4
78

26
00

54
.3

47
83

00
3

0.
37

95
10

7
0.

26
47

31
7

0.
33

87
53

6
0.

24
98

44
3

0.
30

63
55

7
0.

22
44

12
1

0.
31

39
16

6
0.

16
43

28
4

34
.2

10
53

00
60

.5
26

32
00

47
.3

68
42

00
55

.2
63

16
00

66
1

0.
42

92
61

5
0.

33
29

83
7

0.
37

54
95

2
0.

30
17

60
7

0.
40

04
58

6
0.

25
25

47
0

0.
31

66
90

9
0.

24
53

44
8

30
.9

52
38

00
50

.0
00

00
00

35
.7

14
29

00
52

.3
80

95
00

2
0.

36
93

33
3

0.
30

81
35

1
0.

40
34

97
3

0.
28

89
77

1
0.

27
03

26
0

0.
26

16
95

1
0.

29
03

62
9

0.
20

41
59

9
48

.8
88

89
00

46
.6

66
67

00
40

.0
00

00
00

57
.7

77
78

00
3

0.
33

72
24

9
0.

35
25

16
5

0.
38

03
91

4
0.

45
54

70
2

0.
28

47
13

8
0.

22
56

83
4

0.
29

67
76

8
0.

29
48

77
1

44
.1

86
05

00
51

.1
62

79
00

37
.2

09
30

00
44

.1
86

05
00

67
1

0.
77

96
99

0
0.

43
61

01
0

0.
56

34
06

4
0.

66
39

69
6

0.
40

25
06

5
0.

30
62

01
1

0.
48

01
84

9
0.

29
65

68
4

41
.8

60
47

00
44

.1
86

05
00

37
.2

09
30

00
41

.8
60

47
00

2
0.

36
81

39
7

0.
30

32
66

7
0.

32
31

12
7

0.
29

16
15

3
0.

27
37

97
8

0.
24

94
77

5
0.

25
01

96
2

0.
23

04
56

1
47

.7
27

27
00

50
.0

00
00

00
50

.0
00

00
00

54
.5

45
45

00
3

0.
31

11
44

0
0.

27
89

15
7

0.
34

42
80

7
0.

27
48

02
8

0.
25

01
11

4
0.

17
96

69
6

0.
24

55
56

5
0.

16
24

41
7

48
.8

37
21

00
65

.1
16

28
00

51
.1

62
79

00
62

.7
90

70
00

68
1

0.
44

72
97

0
0.

38
48

02
6

0.
42

34
86

3
0.

38
14

44
6

0.
42

32
90

3
0.

22
41

72
0

0.
34

40
24

8
0.

21
49

73
7

25
.5

81
40

00
51

.1
62

79
00

34
.8

83
72

00
55

.8
13

95
00

2
0.

27
78

86
9

0.
28

60
34

7
0.

32
35

85
3

0.
26

32
47

8
0.

22
03

39
2

0.
20

63
01

5
0.

25
83

81
1

0.
16

65
34

2
54

.3
47

83
00

54
.3

47
83

00
47

.8
26

09
00

63
.0

43
48

00
3

0.
36

15
52

6
0.

29
75

24
0

0.
38

03
81

5
0.

33
08

86
1

0.
22

36
04

0
0.

24
44

03
8

0.
26

92
00

1
0.

22
31

53
0

53
.6

58
54

00
53

.6
58

54
00

43
.9

02
44

00
53

.6
58

54
00

69
1

0.
37

22
99

7
0.

25
73

87
4

0.
33

88
93

9
0.

25
81

48
3

0.
27

39
08

2
0.

17
89

77
3

0.
28

37
58

6
0.

19
46

70
6

38
.6

36
36

00
63

.6
36

36
00

45
.4

54
55

00
56

.8
18

18
00

2
0.

35
95

00
4

0.
40

45
98

0
0.

39
04

14
4

0.
44

28
62

6
0.

32
25

07
0

0.
32

87
22

5
0.

32
34

23
8

0.
34

72
84

9
40

.0
00

00
00

40
.0

00
00

00
35

.5
55

56
00

42
.2

22
22

00
3

1.
37

97
94

0
0.

31
44

60
0

0.
50

26
60

6
0.

46
25

83
1

0.
28

15
14

5
0.

23
22

29
6

0.
28

26
37

1
0.

26
74

87
6

41
.4

63
41

00
51

.2
19

51
00

48
.7

80
49

00
48

.7
80

49
00

70
1

0.
37

48
77

9
0.

32
54

92
0

0.
46

38
26

8
0.

31
60

35
9

0.
32

62
69

3
0.

21
35

87
8

0.
33

06
66

5
0.

15
90

47
3

39
.1

30
43

00
54

.3
47

83
00

39
.1

30
43

00
54

.3
47

83
00

2
0.

41
03

35
3

0.
34

03
30

2
0.

42
78

95
4

0.
36

36
98

0
0.

29
83

94
3

0.
28

47
13

1
0.

35
42

29
7

0.
32

01
65

5
47

.6
19

05
00

45
.2

38
10

00
42

.8
57

14
00

47
.6

19
05

00
3

0.
32

31
70

7
0.

31
39

04
2

0.
33

21
16

7
0.

30
98

94
4

0.
25

75
09

9
0.

22
88

98
8

0.
27

96
48

6
0.

24
06

76
0

47
.6

19
05

00
52

.3
80

95
00

45
.2

38
10

00
52

.3
80

95
00

71
1

0.
38

59
62

4
0.

36
70

69
7

0.
40

70
04

7
0.

44
49

74
3

0.
32

73
86

7
0.

27
39

93
8

0.
32

22
38

2
0.

29
13

04
8

34
.8

83
72

00
48

.8
37

21
00

30
.2

32
56

00
46

.5
11

63
00

2
0.

57
65

12
7

0.
26

68
86

3
0.

41
57

79
9

0.
61

14
37

6
0.

23
04

64
9

0.
20

27
04

5
0.

23
59

25
5

0.
26

37
42

0
55

.5
55

56
00

60
.0

00
00

00
51

.1
11

11
00

48
.8

88
89

00
3

0.
34

83
99

9
0.

35
86

29
9

0.
35

30
07

3
0.

34
22

20
2

0.
23

37
04

4
0.

24
99

26
9

0.
25

81
16

7
0.

20
34

26
0

52
.3

80
95

00
50

.0
00

00
00

50
.0

00
00

00
52

.3
80

95
00

72
1

0.
39

01
11

8
0.

24
73

07
8

0.
37

16
07

3
0.

25
29

91
1

0.
26

76
19

8
0.

18
06

37
5

0.
24

27
87

3
0.

13
61

67
9

44
.4

44
44

00
60

.0
00

00
00

51
.1

11
11

00
64

.4
44

44
00

2
0.

44
51

12
4

0.
42

11
55

6
0.

42
92

92
6

0.
39

84
99

7
0.

35
45

73
2

0.
27

54
78

1
0.

30
82

43
4

0.
21

57
19

5
32

.5
00

00
00

45
.0

00
00

00
42

.5
00

00
00

57
.5

00
00

00
3

0.
31

80
98

7
0.

33
95

70
9

0.
37

82
55

3
0.

34
67

01
2

0.
23

24
96

2
0.

23
15

94
6

0.
28

98
16

6
0.

25
49

30
4

55
.5

55
56

00
51

.1
11

11
00

48
.8

88
89

00
48

.8
88

89
00

73
1

0.
38

93
72

8
0.

35
96

49
7

0.
38

56
46

3
0.

39
15

22
8

0.
32

22
36

1
0.

26
20

47
5

0.
31

18
68

0
0.

22
83

76
5

37
.7

77
78

00
48

.8
88

89
00

37
.7

77
78

00
51

.1
11

11
00

2
0.

31
50

69
5

0.
36

28
25

9
0.

43
95

88
8

0.
35

50
31

2
0.

22
87

80
0

0.
24

30
31

6
0.

38
06

94
6

0.
29

51
52

1
53

.4
88

37
00

51
.1

62
79

00
44

.1
86

05
00

46
.5

11
63

00
3

0.
37

58
09

0
0.

27
58

22
4

0.
32

62
15

7
0.

27
60

44
5

0.
32

10
76

6
0.

21
25

76
5

0.
25

11
34

9
0.

18
14

53
7

42
.8

57
14

00
59

.5
23

81
00

50
.0

00
00

00
54

.7
61

90
00

74
1

0.
44

08
19

2
0.

42
75

48
4

0.
50

80
68

5
0.

43
53

62
7

0.
46

75
68

7
0.

37
18

55
9

0.
47

87
67

6
0.

35
43

72
6

37
.7

77
78

00
40

.0
00

00
00

26
.6

66
67

00
40

.0
00

00
00

2
0.

32
76

96
3

0.
25

27
15

5
0.

31
03

33
4

0.
26

44
84

8
0.

24
37

35
9

0.
20

86
77

3
0.

19
90

44
6

0.
18

34
13

2
53

.3
33

33
00

57
.7

77
78

00
55

.5
55

56
00

60
.0

00
00

00
3

0.
37

89
82

5
0.

36
69

94
3

0.
43

34
71

5
0.

37
81

78
2

0.
31

23
76

6
0.

18
69

04
4

0.
27

17
52

6
0.

21
40

06
6

37
.5

00
00

00
55

.0
00

00
00

47
.5

00
00

00
55

.0
00

00
00

128 APPENDIX A STATISTICAL ANALYSIS OF EMPIRICAL STUDY ES3
75

1
0.3518443

0.3267643
0.3700717

0.3384420
0.2128322

0.2703933
0.2717296

0.2715327
52.1739100

45.6521700
50.0000000

47.8260900
2

0.3441817
0.3595755

0.4672426
0.3621040

0.2946620
0.2782576

0.3766045
0.2497635

38.0952400
47.6190500

33.3333300
50.0000000

3
0.3451528

0.2678763
0.3196665

0.2578086
0.2723640

0.1829943
0.2115323

0.1640147
47.6190500

61.9047600
54.7619000

64.2857100

76
1

0.3168950
0.2719494

0.3003691
0.2621978

0.2544241
0.2386344

0.2576079
0.2381368

50.0000000
52.1739100

50.0000000
56.5217400

2
0.5098264

0.4139428
0.4996717

0.4109360
0.4442790

0.3193911
0.4143888

0.2635226
26.8292700

43.9024400
29.2682900

46.3414600
3

0.2786612
0.3001802

0.3662923
0.3195228

0.2425002
0.2157418

0.2353085
0.2354185

53.4883700
53.4883700

51.1627900
58.1395300

77
1

0.3705594
0.3768175

0.4328096
0.3544802

0.3098273
0.2944988

0.3369948
0.2312887

48.8888900
48.8888900

42.2222200
51.1111100

2
0.2982211

0.2792717
0.3049353

0.2771756
0.1848281

0.1784835
0.2203430

0.1654296
56.8181800

61.3636400
54.5454500

61.3636400
3

0.5489652
0.3200751

0.4804607
0.3309194

0.4206593
0.2319440

0.4025407
0.2391441

26.8292700
51.2195100

29.2682900
51.2195100

78
1

0.4103070
0.2961961

0.3734318
0.3078541

0.3649047
0.2846688

0.3514701
0.2617636

32.6087000
47.8260900

36.9565200
43.4782600

2
0.2969537

0.3152579
0.3070875

0.3073901
0.1976189

0.2417746
0.2364946

0.2545917
56.0975600

51.2195100
53.6585400

48.7804900
3

0.6507405
0.3583787

0.5069428
0.4990380

0.3110879
0.1967235

0.3743607
0.2609798

46.5116300
51.1627900

41.8604700
48.8372100

79
1

0.3652011
0.3218576

0.3808787
0.4080897

0.2644668
0.2295662

0.3199696
0.3256644

46.6666700
57.7777800

37.7777800
42.2222200

2
0.3656974

0.2838384
0.4022473

0.2741104
0.2741083

0.1919828
0.3134740

0.1732542
50.0000000

56.8181800
47.7272700

56.8181800
3

0.3489550
0.3495649

0.3658232
0.3270024

0.3112977
0.2400223

0.2862741
0.2315561

36.5853700
51.2195100

46.3414600
56.0975600

80
1

0.3350087
0.3540168

0.3243074
0.4271601

0.2125236
0.1901688

0.2469283
0.2132167

54.7619000
59.5238100

50.0000000
52.3809500

2
0.4162316

0.3225048
0.4414844

0.3418157
0.3620774

0.2408391
0.3625847

0.2362723
36.9565200

54.3478300
41.3043500

52.1739100
3

0.3238401
0.3518221

0.4047847
0.3201529

0.2773167
0.2796759

0.2879156
0.2474613

47.6190500
47.6190500

45.2381000
50.0000000

81
1

0.3132461
0.3219281

0.4072988
0.3068295

0.2572532
0.2590808

0.3131026
0.2477491

48.8372100
44.1860500

39.5348800
51.1627900

2
0.3338442

0.3416417
0.3601557

0.3251565
0.2622921

0.2688364
0.2979329

0.2195781
45.6521700

47.8260900
43.4782600

54.3478300
3

0.4416975
0.3351405

0.4088000
0.3574613

0.2779434
0.1972192

0.2322468
0.1879061

43.9024400
58.5365900

53.6585400
58.5365900

82
1

0.5156373
0.3177855

0.4837145
0.3574559

0.4287993
0.2506738

0.3887741
0.2559183

21.4285700
50.0000000

33.3333300
50.0000000

2
0.2760978

0.2775517
0.3133152

0.2602771
0.2013365

0.1958442
0.2555416

0.2028712
55.5555600

53.3333300
48.8888900

62.2222200
3

0.3449104
0.3755705

0.3914767
0.4291842

0.2552617
0.2693277

0.2966026
0.2385236

48.8372100
48.8372100

44.1860500
53.4883700

83
1

0.3833680
0.3332808

0.3504952
0.3099113

0.3305595
0.2765275

0.2892102
0.2231634

35.7142900
47.6190500

47.6190500
57.1428600

2
0.3299765

0.3179602
0.3877605

0.3059258
0.3040851

0.2403707
0.3673302

0.2290136
40.4255300

53.1914900
40.4255300

53.1914900
3

0.3436131
0.3712486

0.3639196
0.5347240

0.1707582
0.1747488

0.2418403
0.2320838

58.5365900
58.5365900

51.2195100
51.2195100

84
1

0.7386648
0.3889671

0.5580965
0.6041432

0.4130162
0.2890679

0.5065037
0.2980317

36.9565200
43.4782600

30.4347800
41.3043500

2
0.3312184

0.2291037
0.2956699

0.2438644
0.2652925

0.1696607
0.1843328

0.1775113
45.0000000

70.0000000
60.0000000

62.5000000
3

0.3503513
0.3525747

0.3741310
0.3928504

0.3131674
0.2487421

0.3465060
0.2414775

40.9090900
50.0000000

36.3636400
52.2727300

85
1

0.3768612
0.3616867

0.3325100
0.3847385

0.3111535
0.2505156

0.2833472
0.2370604

43.4782600
50.0000000

43.4782600
54.3478300

2
0.3256865

0.3278298
0.4303042

0.3087094
0.2327500

0.1849687
0.3252923

0.1857343
54.3478300

56.5217400
45.6521700

63.0434800
3

0.3940904
0.3299992

0.4083663
0.3426210

0.3108716
0.2861796

0.3739267
0.2837205

39.4736800
42.1052600

39.4736800
42.1052600

86
1

0.3167974
0.2928361

0.2975346
0.3026221

0.2636116
0.2110499

0.2146039
0.1830404

46.6666700
60.0000000

51.1111100
60.0000000

2
0.4104827

0.3322111
0.4076245

0.3113143
0.4092717

0.3030238
0.3469314

0.2534439
37.7777800

44.4444400
35.5555600

48.8888900
3

0.3099783
0.3280262

0.4508528
0.3374917

0.2126703
0.2544846

0.3560249
0.2780511

52.5000000
47.5000000

42.5000000
45.0000000

87
1

0.4183568
0.3411251

0.4204802
0.3411233

0.4089016
0.2541263

0.4030705
0.2411782

32.6087000
47.8260900

34.7826100
50.0000000

2
0.3028325

0.3149739
0.3159096

0.3506093
0.1688538

0.2151799
0.2249206

0.2155911
60.0000000

57.7777800
53.3333300

62.2222200
3

0.3166065
0.2866915

0.5132950
0.2943289

0.2439448
0.2252775

0.3380711
0.2425137

51.2820500
56.4102600

43.5897400
51.2820500

88
1

0.7718368
0.4235806

0.6187970
0.6861628

0.3708225
0.2793652

0.4249438
0.2687733

35.5555600
37.7777800

35.5555600
46.6666700

2
0.3506788

0.3211887
0.3709625

0.3019963
0.3132216

0.2386384
0.2913132

0.2082914
43.1818200

52.2727300
43.1818200

54.5454500
3

0.3115945
0.3308167

0.2834091
0.2955990

0.2425241
0.2077583

0.2108555
0.1746010

51.2195100
56.0975600

58.5365900
56.0975600

89
1

0.3410640
0.2432120

0.3390348
0.2548133

0.2358209
0.1711340

0.2315940
0.1601417

52.1739100
65.2173900

52.1739100
67.3913000

2
0.3142235

0.3310879
0.4020273

0.3274192
0.2602367

0.2577539
0.3317733

0.2703573
47.7272700

47.7272700
40.9090900

45.4545500
3

0.4323974
0.3871653

0.3934658
0.3717334

0.3816186
0.3328582

0.3439345
0.2744407

37.5000000
42.5000000

37.5000000
47.5000000

A.4 ESTIMATION ACCURACY ACHIEVED DURING THE MONTECARLO EXPERIMENT. 129

90
1

0.
34

89
06

4
0.

26
14

50
9

0.
33

89
93

1
0.

28
24

40
8

0.
31

45
97

4
0.

20
27

39
8

0.
29

24
21

6
0.

20
32

92
3

38
.2

97
87

00
61

.7
02

13
00

42
.5

53
19

00
61

.7
02

13
00

2
0.

35
87

13
4

0.
39

50
34

4
0.

50
49

00
8

0.
46

56
81

6
0.

24
78

58
3

0.
29

53
42

1
0.

27
04

89
1

0.
29

94
96

8
51

.1
62

79
00

48
.8

37
21

00
48

.8
37

21
00

39
.5

34
88

00
3

0.
34

72
31

0
0.

37
39

56
2

0.
36

39
68

2
0.

35
10

87
6

0.
25

02
13

9
0.

23
66

59
1

0.
23

44
23

2
0.

23
34

77
1

50
.0

00
00

00
52

.5
00

00
00

52
.5

00
00

00
52

.5
00

00
00

91
1

0.
54

59
27

9
0.

27
70

25
2

0.
50

53
48

7
0.

55
23

08
0

0.
36

05
59

4
0.

21
74

15
7

0.
36

33
58

8
0.

26
16

53
2

42
.2

22
22

00
60

.0
00

00
00

44
.4

44
44

00
48

.8
88

89
00

2
0.

32
56

19
4

0.
35

07
66

3
0.

37
96

20
6

0.
40

32
29

6
0.

27
79

11
8

0.
25

47
67

6
0.

25
49

11
0

0.
38

54
72

2
48

.9
36

17
00

46
.8

08
51

00
48

.9
36

17
00

40
.4

25
53

00
3

0.
37

46
79

3
0.

41
69

85
3

0.
40

03
69

3
0.

35
56

70
0

0.
24

07
59

2
0.

26
58

36
9

0.
33

53
67

7
0.

17
92

42
1

50
.0

00
00

00
47

.3
68

42
00

39
.4

73
68

00
52

.6
31

58
00

92
1

0.
35

99
76

0
0.

33
60

94
1

0.
37

51
94

3
0.

35
23

00
8

0.
32

95
78

8
0.

32
45

90
0

0.
37

15
00

6
0.

28
87

55
0

36
.9

56
52

00
43

.4
78

26
00

39
.1

30
43

00
43

.4
78

26
00

2
0.

31
84

26
3

0.
31

20
13

9
0.

40
67

71
5

0.
29

34
15

1
0.

24
19

33
2

0.
18

85
24

2
0.

23
99

95
4

0.
17

95
10

1
51

.1
62

79
00

58
.1

39
53

00
51

.1
62

79
00

60
.4

65
12

00
3

0.
42

46
66

8
0.

35
59

54
2

0.
42

67
48

7
0.

39
64

18
5

0.
34

92
23

9
0.

25
47

33
7

0.
35

60
76

4
0.

27
34

44
8

31
.7

07
32

00
48

.7
80

49
00

36
.5

85
37

00
46

.3
41

46
00

93
1

0.
58

71
28

1
0.

27
87

24
7

0.
40

45
15

0
0.

37
06

31
1

0.
22

58
21

2
0.

19
34

79
4

0.
29

69
77

7
0.

18
90

69
2

52
.1

73
91

00
60

.8
69

57
00

45
.6

52
17

00
58

.6
95

65
00

2
0.

32
77

49
8

0.
33

89
59

7
0.

32
55

03
8

0.
32

16
29

6
0.

25
56

53
7

0.
24

43
67

0
0.

26
83

39
1

0.
24

16
84

9
48

.8
88

89
00

53
.3

33
33

00
48

.8
88

89
00

51
.1

11
11

00
3

0.
42

27
24

6
0.

38
09

74
6

0.
42

03
89

2
0.

36
25

76
9

0.
40

02
22

7
0.

26
17

68
9

0.
39

17
75

1
0.

25
61

86
0

35
.8

97
44

00
48

.7
17

95
00

35
.8

97
44

00
48

.7
17

95
00

94
1

0.
30

83
99

7
0.

21
68

32
3

0.
27

54
46

0
0.

20
29

14
7

0.
23

37
61

9
0.

18
75

62
5

0.
19

35
23

6
0.

14
43

84
3

55
.5

55
56

00
64

.4
44

44
00

55
.5

55
56

00
68

.8
88

89
00

2
1.

61
83

18
0

0.
47

41
98

5
0.

71
97

20
3

0.
72

35
41

5
0.

48
34

16
9

0.
35

83
80

6
0.

53
75

34
1

0.
40

61
06

9
28

.5
71

43
00

45
.2

38
10

00
26

.1
90

48
00

38
.0

95
24

00
3

0.
31

77
17

1
0.

32
37

08
9

0.
34

62
15

6
0.

33
81

95
7

0.
29

86
99

2
0.

24
93

96
0

0.
29

23
99

0
0.

25
25

05
1

44
.1

86
05

00
51

.1
62

79
00

46
.5

11
63

00
48

.8
37

21
00

95
1

0.
37

86
42

3
0.

39
87

48
5

0.
44

67
90

8
0.

36
12

25
0

0.
32

37
31

9
0.

33
55

80
5

0.
32

51
52

8
0.

23
10

55
2

42
.2

22
22

00
37

.7
77

78
00

28
.8

88
89

00
53

.3
33

33
00

2
0.

29
82

70
6

0.
25

84
36

3
0.

29
13

40
6

0.
23

15
55

3
0.

20
14

87
9

0.
18

50
49

2
0.

18
76

63
7

0.
15

49
01

9
57

.1
42

86
00

64
.2

85
71

00
59

.5
23

81
00

71
.4

28
57

00
3

0.
43

85
95

9
0.

43
19

27
4

0.
50

63
70

6
0.

46
73

58
3

0.
32

33
76

2
0.

38
05

82
8

0.
46

08
94

9
0.

41
09

02
7

41
.8

60
47

00
39

.5
34

88
00

37
.2

09
30

00
39

.5
34

88
00

96
1

0.
31

24
96

3
0.

27
99

69
1

0.
40

74
67

3
0.

22
51

76
8

0.
22

11
00

5
0.

19
13

42
7

0.
35

28
12

1
0.

17
47

62
7

53
.3

33
33

00
62

.2
22

22
00

46
.6

66
67

00
68

.8
88

89
00

2
0.

37
33

45
2

0.
30

38
69

9
0.

38
44

35
5

0.
35

14
59

9
0.

25
93

38
7

0.
20

76
53

5
0.

29
23

77
2

0.
20

88
78

5
48

.8
37

21
00

55
.8

13
95

00
41

.8
60

47
00

55
.8

13
95

00
3

0.
37

64
82

6
0.

38
48

85
1

0.
39

05
33

7
0.

37
34

66
0

0.
34

66
34

0
0.

35
45

85
3

0.
38

51
91

4
0.

31
92

59
8

38
.0

95
24

00
35

.7
14

29
00

30
.9

52
38

00
33

.3
33

33
00

97
1

0.
38

67
47

0
0.

39
92

23
6

0.
38

58
68

4
0.

38
04

54
8

0.
34

86
87

6
0.

31
96

04
2

0.
31

46
27

3
0.

25
34

80
7

30
.2

32
56

00
41

.8
60

47
00

39
.5

34
88

00
48

.8
37

21
00

2
0.

29
98

69
4

0.
34

27
81

0
0.

37
41

65
8

0.
35

79
44

9
0.

21
76

04
8

0.
24

96
49

8
0.

27
26

92
9

0.
28

38
18

1
53

.1
91

49
00

51
.0

63
83

00
44

.6
80

85
00

48
.9

36
17

00
3

0.
69

51
45

4
0.

29
59

00
8

0.
76

05
82

5
0.

70
25

34
8

0.
39

83
25

0
0.

26
72

53
5

0.
39

22
00

7
0.

33
03

52
2

30
.0

00
00

00
47

.5
00

00
00

35
.0

00
00

00
42

.5
00

00
00

98
1

0.
43

34
65

7
0.

32
54

60
3

0.
42

07
96

2
0.

33
51

54
9

0.
34

29
16

6
0.

28
28

29
1

0.
35

67
80

6
0.

24
78

82
8

34
.0

42
55

00
44

.6
80

85
00

29
.7

87
23

00
51

.0
63

83
00

2
0.

32
96

13
0

0.
33

20
50

4
0.

37
32

08
4

0.
33

63
73

7
0.

22
13

24
8

0.
16

00
68

4
0.

24
66

01
0

0.
15

51
25

3
51

.1
62

79
00

58
.1

39
53

00
51

.1
62

79
00

58
.1

39
53

00
3

0.
28

51
27

9
0.

34
23

68
1

0.
36

79
25

9
0.

37
44

56
9

0.
24

05
27

7
0.

19
98

19
0

0.
23

09
23

0
0.

27
16

16
1

52
.5

00
00

00
52

.5
00

00
00

52
.5

00
00

00
45

.0
00

00
00

99
1

0.
54

19
06

1
0.

38
29

21
6

0.
49

37
18

1
0.

37
85

92
8

0.
42

31
82

0
0.

25
16

88
5

0.
38

57
70

5
0.

23
84

92
0

23
.2

55
81

00
48

.8
37

21
00

34
.8

83
72

00
53

.4
88

37
00

2
0.

34
79

88
6

0.
33

37
72

1
0.

39
07

76
5

0.
30

18
27

2
0.

24
28

92
6

0.
21

55
48

5
0.

32
87

90
8

0.
23

04
64

8
52

.2
72

73
00

54
.5

45
45

00
38

.6
36

36
00

50
.0

00
00

00
3

0.
29

55
89

4
0.

28
68

18
8

0.
32

07
12

5
0.

29
22

14
7

0.
20

91
87

1
0.

21
18

69
5

0.
20

01
77

2
0.

18
79

01
0

58
.1

39
53

00
53

.4
88

37
00

53
.4

88
37

00
60

.4
65

12
00

10
0

1
0.

98
32

36
2

0.
34

49
87

8
0.

50
71

19
8

0.
60

74
66

3
0.

37
54

47
4

0.
24

90
67

4
0.

36
52

90
7

0.
34

45
35

1
34

.0
90

91
00

50
.0

00
00

00
34

.0
90

91
00

38
.6

36
36

00
2

0.
36

45
27

3
0.

31
16

20
4

0.
35

39
55

1
0.

30
73

81
0

0.
32

91
42

9
0.

25
67

67
1

0.
30

11
67

2
0.

23
80

78
5

32
.6

08
70

00
47

.8
26

09
00

39
.1

30
43

00
52

.1
73

91
00

3
0.

29
60

86
5

0.
35

26
03

5
0.

29
81

84
3

0.
37

85
26

1
0.

18
99

72
7

0.
17

18
82

2
0.

19
52

69
3

0.
15

70
13

0
62

.5
00

00
00

65
.0

00
00

00
57

.5
00

00
00

65
.0

00
00

00

130 APPENDIX A STATISTICAL ANALYSIS OF EMPIRICAL STUDY ES3

Figure A.16 Analysis of MMRE distribution according to estimation models using measures M1, M2,
M3 and M4.

A.4 ESTIMATION ACCURACY ACHIEVED DURING THE MONTECARLO EXPERIMENT. 131

Figure A.17 Analysis of MdMRE distribution according to estimation models using measures M1, M2,
M3 and M4.

132 APPENDIX A STATISTICAL ANALYSIS OF EMPIRICAL STUDY ES3

Figure A.18 Analysis of PRED(25) distribution according to estimation models using measures M1,
M2, M3 and M4.

APPENDIX B

Attempt to Validate Cost Drivers Using Historical
Data

After identifying cost drivers that may significantly impact test execution effort, we run a case
study to evaluate the use of the cost drivers to estimate test execution effort. The details of this
study are presented next.

B.1 Planning

We planned this case study using the Goal/Question/Metric approach [24] and defining the
procedures to be executed, as presented next.

B.1.1 Goals, Questions, Metrics and Hypotheses

This study has the following main goals:

G1: Verify if the identified cost drivers can improve test execution effort estimation
accuracy.

G2: Compare the performance of a test execution effort estimation model when regard-
ing and disregarding cost drivers.

The assessment of these goals are performed by answering the following research questions:

Q1: Which cost drivers significantly improve the test execution effort estimation accu-
racy?

Q2: How more accurate are the estimates when regarding cost drivers?

As described in the next section, we build and analyze estimation models using statistical
techniques. One of these statistical techniques (stepwise regression) identifies the cost drivers
that impact test execution effort with statistical significance, answering the research question
Q1.

For answering the research question Q2, we analyze the estimation accuracy of the created
estimation models using standard accuracy measures [129]:

MMRE: Mean magnitude of the relative error.

133

134 APPENDIX B ATTEMPT TO VALIDATE COST DRIVERS USING HISTORICAL DATA

MdMRE: Median magnitude of the relative error.

PRED(25): Percentage of estimates that are within 25% of the actual values.

The statistical significance of the observed estimation accuracy is analyzed through the test
of the following statistical hypotheses:

1) The mean magnitude of the relative error is smaller when regarding cost drivers (reg)
than when disregarding them (disreg).

H01 : MMREreg ≥ MMREdisreg

H11 : MMREreg < MMREdisreg

2) The median magnitude of the relative error is smaller when regarding cost drivers than
when disregarding them.

H02 : MdMREreg ≥ MdMREdisreg

H12 : MdMREreg < MdMREdisreg

3) The percentage of estimates that are within 25% of the actual values is larger when re-
garding cost drivers than when disregarding them.

H03 : PRED(25)reg ≤ PRED(25)disreg

H13 : PRED(25)reg > PRED(25)disreg

B.1.2 Historical Data Analysis

In this study, we analyze the historical data of the industry on the mobile application domain
that sponsored the survey described in Section 5.6. The analyzed database had approximately
six-month data containing information about the execution of more than 300 test suites, which
means the execution of thousands of different test cases by more than 30 testers of different test
teams.

To achieve our goals, this study is organized in three parts. In the first part, we analyze and
prepare the data, removing inconsistencies and some outliers, as well using expert opinion to
gather missing values. Then, the second part of this study uses stepwise regression (SWR) [53]
to find the best set of cost drivers (predictors) to explain the variation in the test execution effort
(response).

SWR is a statistical technique that builds a regression model, which is a mathematical
equation relating independent (predictors) and dependent (response) variables. We use the
forward and backward method, that is, the regression model is created by adding and possibly
removing independent variables one-at-a-time until some stopping rule is satisfied. In each step
of this analysis, a variable can be added to the model if it is considered statistically significant.

B.2 EXECUTION 135

Also, variables can be removed from the model if they become nonsignificant after the inclusion
of other variables.

After that, the last part of this study performs a cross-validation analysis to evaluate and
compare the accuracy to estimate test execution effort when using the set of selected cost drivers
and when disregarding it. Cross-validation is a method for generalizing the results of a model
evaluation. The main idea is to partition a sample of data into folds (subsets) such that you
test the model on a single fold, while the other folds are used to build the model. The use of
this method reduces the probability of obtaining results by chance and enable us to test our
statistical hypotheses.

B.2 Execution

In the next subsections, we detail the main activities executed during this study and their results.
To avoid bias during the presentation of these results, our interpretation of them are presented
later, in Section B.3.1.

B.2.1 Gathering Historical Data

In the historical database, each record stored information about the executed tests, tested prod-
uct, testers and related information. However, the information about most of the identified cost
drivers were not stored, since they were not being used at that time. For this reason, we had to
gather information about the cost drivers in the analyzed period of time.

We analyzed the possibility to obtain past information for each cost driver described in Ta-
ble 5.18. After talking to test experts, managers and people that maintain the infrastructure (test
environment, test tools, etc.), we verified that we were able to obtain reliable past information
only for the cost drivers presented in Table B.1. Information about other cost drivers were not
completely available, too costly to be obtained or only indirectly available through some of the
variables presented in Table B.2. We used these variables related to some cost drivers in an
attempt to capture some effect of them.

Our first task to obtain past information about cost drivers was to organize and consolidate
the data to identify which tests were executed during the considered period, who executed the
tests, what phones were tested and so forth. After that, we analyzed each cost driver individu-
ally, as shown next.

Since we did not have access to all phone performance specifications, we invited seven ex-
perienced testers to assess phone performance using their previous experience in testing them.
We adapted the Delphi [81] and Card Sorting [47] techniques to reach a consensus about the
performance of the phones tested during the analyzed period.

We asked seven participants to classify the phone performance into three levels (low, aver-
age and high). They received some slips of paper, each one containing the model of one phone.
Then, we run some trials in which they had to group the phones according to the three levels
we defined. At the end of each trial, we removed the slips of the phones which performance
achieved a consensus. We verified that this process was very fast and not boring for the partici-
pants. After three trials, we achieved the consensus about the performance of the phones tested

136 APPENDIX B ATTEMPT TO VALIDATE COST DRIVERS USING HISTORICAL DATA

Table B.1 Cost drivers obtained by analyzing past projects information and expert opinion.

Description Abbreviation Scale Range or Scale
points

Source of information

Phone performance PhonePerf ordinal Low, Avg, High Expert assessment.
Quality of the test
cases

QualityTC ordinal Low, Avg, High Expert assessment.

% of Testers with Av-
erage experience

ExpAvgPerc ratio [0, 100] Historical records of
training and team allo-
cation.

% of Testers with High
experience

ExpHighPerc ratio [0, 100] Historical records of
training and team allo-
cation.

% of Testers with Av-
erage English skills

EngAvgPerc ratio [0, 100] English class level and
team allocation.

% of Testers with High
English skills

EngHighPerc ratio [0, 100] English class level and
team allocation.

in the past.
We used the same approach to reach a consensus about the quality of the test cases. As

the tests related to each family of products have similar quality, the participants classified the
tests of each family of products in low, average or high. Also, the english skill of the testers
were assessed based on their current level of english class. Regarding the tester experience in
testing, we determined it based on their job start date.

B.2.2 Stepwise Regression

The stepwise regression analysis have some assumptions that must be satisfied. First, the rela-
tion between independent and dependent variables is expected to be linear. Also, it is assumed
that the residuals (predicted minus actual values) are normally distributed. We verified that the
numerical variables used in this study were not normally distributed. For instance, a simple
linear regression analysis between test execution effort and execution points built a model with
residuals not normally distributed. For this reason, we transformed these numerical variables
into a natural logarithmic scale using the box-cox transformation technique [53] [87] in order
to approximate the data to normal distributions.

For each numerical variable that required data transformation we created a new variable
using the letter L and the original variable name. For instance, we created the variable LE f f ort
for storing the transformed data of the variable E f f ort. After all this process, we verified that
the linear correlation between the transformed effort data (LE f f ort) and the other transformed
data from independent variables were improved.

In this study, some variables considered have ordinal scales, such as the tested applica-

B.2 EXECUTION 137

Table B.2 Other related variables available in historical databases.

Description Abbreviation Scale Range or Scale
points

Related cost drivers

Effort to execute the
tests

Effort ratio Positive numbers -

Number of execution
points

EP ratio Positive numbers -

Number of tests NumOfTests interval Positive integers -
Name of the tested
product

Product nominal A, B, C, . . . , M,
N, O

Stability

Product Family of the
tested product

ProductFamily nominal F1, F2, F3, F4,
F5, F6, F7

Performance

Technology of the
tested product

Tech nominal T1, T2 Feature Experience

tion, the model of the tested hardware and the tester’s language skill. For including them in
the regression model, we created (n− 1) dummy variables [53] for each of these categorical
variables, where n is the number of different values (scale points) that the variable can take.
For instance, the variable Product requires the creation of 14 dummy variables (Product_A to
Product_N) for representing 15 different products (from letter A to O). The dummy variables
can take the values 0 (not present) and 1 (present). For example, the variable Product_A takes
value 1 only when A is the tested product. When variables Product_A to Product_N take the
value 0, it means that the tested product is O.

After that, we run the stepwise regression with α = 0.15 to add and to remove variables,
the most common used values in the practice. We verified that some of the selected indepen-
dent variables were high correlated (multicollinearity problem). For instance, the independent
variables number of tests and execution points are highly correlated. However, a high degree
of multicollinearity produces large variance in the regression coefficient estimates.

To avoid multicolinearity, we calculated the Pearson’s correlation coefficient for measuring
the linear relationship between the independent variables and also between independent and
dependent variables. Hence, when the SWR selected two independent variables with high
linear correlation, we discarded the one less correlated with the dependent variable (effort) and
repeated the stepwise regression analysis. In this way, we run the stepwise regression until all
selected independent variables were not highly correlated between them.

The SWR selected 5 variables with α at 0.15. However, after running a multiple re-
gression analysis (independent variables are fixed), we verified that one of these variables
(LEngSkillAvPerc) were not significative with α at 0.05. We discarded this variable and then
used the multiple regression analysis to build the following equation:

LE f f ort = −3.91+1.06LEP−0.0586LExpHighPerc

138 APPENDIX B ATTEMPT TO VALIDATE COST DRIVERS USING HISTORICAL DATA

−0.0989ProductFamilyD+0.08ProductB (B.1)

The output of the multiple regression analysis is presented next.

Predictor Coef SE Coef T P
Constant -3,9000 0,2249 -17,34 0,000
LEP 1,05855 0,02390 44,29 0,000
LExpHighPerc -0,057588 0,009053 -6,36 0,000
ProductFamilyD -0,09927 0,02318 -4,28 0,000
ProductB 0,08038 0,01915 4,20 0,000

S = 0,139850 R-Sq = 86,8% R-Sq(adj) = 86,6%

Analysis of Variance

Source DF SS MS F P
Regression 4 40,361 10,090 515,91 0,000
Residual Error 314 6,141 0,020
Total 318 46,502

Source DF Seq SS
LEP 1 38,831
LExpHighPerc 1 0,622
ProductFamilyD 1 0,564
ProductB 1 0,345

As we can see, the adjusted R2 achieved was 86.6%. We confirmed the regression analysis
assumptions and the model stability by:

• Using the normal probability plot in Figure B.1, the residual plot to in Figure B.2 and
other graphs to verify if the residuals were random and normal.

• Calculating the Cook´s distance values [87] to identify influential data points. Twelve
test project with distance higher than 3 x (4/n) were removed to test the model stability.
After running the regression analysis with the new data set, the coefficients remaining
stable and the adjusted R2 was improved in almost 1%.

Then, we transformed back the regression equation to the following equation:

E f f ort = EP1.06(ExpHighPerc+1)−0.0586

e(−3.91+0.0989ProductFamilyD+0.08ProductB) (B.2)

B.2.3 Cross-validation Analysis

The last part of this study is the cross-validation analysis. We run a 10-fold cross-validation,
that is, we partition the data into 10 folds. Then, each of these folds are used to test the models
(test set) built using the others folds (training set). In each iteration of the cross-validation
analysis, we run the multiple regression analysis to build two models based on the training data
set:

B.2 EXECUTION 139

Figure B.1 Normal probability plot for the regression model.

Figure B.2 Residual plot for the regression model.

140 APPENDIX B ATTEMPT TO VALIDATE COST DRIVERS USING HISTORICAL DATA

Model-1: Model that regards cost drivers. This model consider all the variables selected by
the stepwise regression analysis.

Model-2: Model that does not regard cost drivers. This model only consider the independent
variable LEP, since it only represents the size and complexity of the tests to be
executed.

After that, we use the test set to evaluate the accuracy of both models using the measures
defined in Section B.1.1. We repeated the cross-validation analysis three times with differ-
ent partitioning. Table B.3 summarizes the mean accuracy achieved by each model in the 30
iterations.

Table B.3 Mean of the MMRE, MdMRE and PRED(25) observed in the cross-validation analysis.

Estimation model MMRE MdMRE PRED(25)
With cost drivers 0,1169 0,1015 92,48%
No cost drivers 0,1171 0,0906 90,59%

Finally, we tested our statistical hypotheses using the paired t-test with α at 0.05. In all
cases, the test did not found enough evidence to reject the null hypotheses (all p-values were
larger than 0.05).

B.3 Final Considerations

B.3.1 Interpretation of Results

During the stepwise regression, the achieved adjusted R2 was greater than 70%, which is con-
sidered good, but yet smaller than the ideal (close to 95%). This means that there are missing
cost drivers in the model. Indeed, this result was expected due the lack of historical data about
them. The normal probability and the residual plots shows that the residuals are normally
distributed and with constant variance, as assumed by the regression analysis.

Observing the equation generated by the regression, we can see that LEP is the most im-
portant variable due to its highest coefficient and range of values that it can take. This result
was also expected, since the project size is usually the variable with more impact on project
effort. However, the coefficient of the other variables are too small when compared to the
LEP coefficient. Also, the range of values of the others variables are also smaller, leading to
a small impact on the effort estimates. This fact means that the variables did not have strong
relationship with the cost drivers that are affecting the effort.

On the other hand, the signs used in the coefficients of each variable are intuitively con-
sistent. Basically, the effort increases with the size of the test project (LEP) and if the tested
product is B (a newer product with low stability). Also, the effort decreases with the per-
centage of high experienced testers and when the tested product is from the family D (high
performance).

B.3 FINAL CONSIDERATIONS 141

With respect to the cross-validation, the accuracy achieved by both models were similar.
This fact was confirmed by the statistical hypotheses tests, which did not found any statistical
significant difference between the accuracy of the two models.

B.3.2 Threats to Validity

Construct validity: In this case study, we faced with the lack of historical data about the iden-
tified cost drivers. We used measures that can be indirectly related to the cost drivers under
investigation. However, some of these variables may not have the expected relation with the
cost drivers.

Internal validity: The use of the testers to create some missing values based on expert
opinion may bias the results, since they may feel that their productivity are under evaluation
too. To control this threat, we carefully explained the goals of the study.

Some variables in the historical database were used as indirect measures for cost drivers.
These variables may not represent a causal relationship with the response variable (effort). To
control this threat, we reviewed the variables selected by the stepwise regression analysis.

Conclusion validity: We were not able to support our hypothesis that the use of cost drivers
related to testing improves the estimation accuracy of test execution effort. One of the possible
causes is the missing of the relationships between the response (effort) and cost drivers which
impact were not captured by none of the independent variables.

External validity: The findings of this study may not be generalized due to the lack of
information about the cost drivers. Others studies are required to achieve more representative
results.

APPENDIX C

Test Execution Effort Estimation Tool

This appendix describes a tool that we developed to support an automated estimation of func-
tional test execution effort based on the measurement of size and execution complexity of tests
or test suites. This tool is also discussed in [20].

C.1 Functionalities

This section presents the main functionalities provided by our tool, which uses the model de-
scribed in [12] and [15] to estimate the execution effort of a given test suite based on the test
specifications.

Natural Language Processing. To automatically estimate the effort to execute test suites,
the tool must be able to process test specifications, which are usually written in natural lan-
guage. Figure C.1 presents an example of test specification written in natural language.

Our tool has a natural language processing mechanism that identifies the test action repre-
sented by each test step (i.e., sentence in the test specification) based on the main verb of the
sentence. Figure 1 shows some examples of test actions on the mobile application domain, such
as the selection of a menu option (cell B2) and the insertion of content in form fields (cells B3
and B4).

Test Size and Execution Complexity Measurement. To estimate test execution effort,
the tool measures the size and execution complexity of the test cases in execution points. The
number of execution points of a test or test suite shows how big and complex it is. This measure
is calculated by analyzing the test actions found in test specifications according to specific
system characteristics. On the mobile application domain, examples of these characteristics

Figure C.1 Sample spreadsheet with test specification written in natural language.

143

144 APPENDIX C TEST EXECUTION EFFORT ESTIMATION TOOL

are the number of screens to navigate the number of keys to press and delays in the application
response time. More details on execution points and its measurement method are presented in
[12].

These characteristics represent some general functional and non-functional requirements of
the system under test that are exercised when the test is executed. The number of execution
points assigned to a test action depends on its impact on the test execution complexity (Low,
Average or High). Finally, the number of execution points of a test suite is the sum of execution
points assigned to each test action found in the test specifications.

Test Execution Effort Estimation. Several models can be used to estimate test execution
effort based on the number of execution points and cost drivers [4]. These cost drivers are
factors usually related to the testing team and environment, such as team experience and tool
support. Our tool allows the use of different estimation models, such as regression models
or productivity-based estimation models. Regression models are equations that can regard
execution points and the effect of the cost drivers to estimate the test execution effort. A
productivity-based estimation is based on the average time per execution point spent during
the tests execution (execution time / execution points).

Model Configuration. Before estimating test execution effort, it is necessary that the user
configures the tool with the characteristics that should be used to measure the size and execu-
tion complexity of test specifications. In addition, the user needs to indicate which cost drivers
should be used when estimating test execution effort. For both characteristics and cost drivers,
the user has to indicate their impact (influence levels and weights) with respect to test execu-
tion complexity and effort. All this information may be specific to some application domains
and it can be determined through Delphi panels [81]. Figure C.2 shows an example of the
configuration of system characteristics for the mobile application domain.

C.2 Tool Architecture

We developed the tool in Java using the architecture shown in Figure C.3. In summary, the tool
consists of the following components: Reader, Natural Language Processing, Model Configu-
ration, Effort Estimation and Persistence Manager. These components are detailed next.

Reader: It is responsible for reading the files containing test specifications, extracting the
test steps from each test specification. For that, this component has to manipulate the internal
structure of the files.

Natural Language Processing: It is responsible for identifying the test action represented
by each test step. First, the tool parses the sentence and identifies its main verb. Then, the
tool converts the verb to its infinitive form, which is used to identify the test action. Next, the
verb in the infinitive form is validated against a database that stores thousands of existing verbs
of the English language. If the verb is not recognized, we consider that either the parsing or
the conversion to infinitive form has failed. Since the English language is dynamic, the user is
always enabled to add new verbs to the database. Validated verbs are then considered as test
actions. When the tool finds a test action, it verifies if the test action is already stored in the test
action database. This database contains all test actions previously processed by the tool. If the
test action is not found in the database, it is stored.

C.2 TOOL ARCHITECTURE 145

Figure C.2 Configuration of the characteristics used to measure test size and execution complexity.

Figure C.3 Architecture of the automated test execution effort estimation based on test specifications.

146 APPENDIX C TEST EXECUTION EFFORT ESTIMATION TOOL

Figure C.4 Architecture of the automated test execution effort estimation based on test specifications.

Model Configuration: It is responsible for supporting the configuration of all information
required to estimate the test execution effort, such as information about cost drivers, system
characteristics, influence levels, weights and guidelines. In addition, the user has to evaluate
the new test actions found in the test specifications, according to the system characteristics
previously defined.

Effort Estimation: It is responsible for estimating the execution effort of a given suite of
tests processed by the tool. For that, this component computes the number of execution points
of the test suite and uses this measure to estimate the required test execution effort. All the
information to compute execution points (characteristics, weights, etc.) and to estimate test ex-
ecution effort (estimation model parameters, cost drivers, etc.) are retrieved by the Persistence
Manager.

Persistence Manager: It is responsible for the persistence of data, storing information
about the model configuration (system characteristics, cost drivers, influence levels, weights)
and the test actions found in the analyzed test cases.

C.2.1 Feature Model

The presented architecture makes easy the customization of our tool, according to the customer
needs. The feature model [120] presented in Fig. C.4 shows the possible extensions of each
component of the tool architecture.

We implemented this as follows. The Reader component uses the Apache POI API [1]
to read test specifications from Microsoft Excel files. The Natural Language Processing uses
the Stanford Parser API [2] to parse test steps. The Model Configuration requires a manual
configuration process based on expert opinion, although the tool can be extended by future
works to automatically calibrate the model (define weights of characteristics and cost drivers)
based on historical data. The Effort Estimation component supports both the regression and the
productivity-based models.

C.3 FINAL CONSIDERATIONS 147

C.3 Final Considerations

This automation support is essential to make feasible the test execution effort estimation based
on the analysis of a high number of test specifications (may be hundreds) written in natural
language. We discussed the main functionalities and architecture components of the tool. Cur-
rently, the tool allows the processing of test specifications written in English to estimate test
size and execution complexity, as well as test execution effort. This tool was used to support
our empirical studies, suggesting the viability of this tool.

Some of the drawbacks of this tool are the necessity to manually configure the measurement
method of execution points and the estimation model based on regression analysis, for instance.
In addition, it requires a manual evaluation of complexity for the first time a test action is found
in test specifications. However, previous empirical studies indicated that little effort is required
for the manual configuration of the tool, since the vocabulary for writing test specifications is
reduced (few verbs for hundreds of tests) [15].

There are some improvements in the tool that can be done in future works. One example is
an automatic or semi-automatic model configuration, supporting the calibration of the estima-
tion models through an automatic analysis of historical databases. The automation support of
effort estimation provided by this tool can be integrated with model-based testing tools. This
integration can support the use of execution effort as an additional criterion for limiting the
number of test cases to be generated.

APPENDIX D

ManualTEST: A Tool for Collecting Manual Test
Execution Data

In this appendix, we present ManualTEST [17], a tool that we developed to improve the ac-
curacy of the data collected in our empirical studies and to provide information to locate and
identify sources of problems occurred during the execution of these studies.

In addition, ManualTEST can improve the accuracy of the collected data, providing in-
formation to locate and identify sources of problems occurred during the execution of these
studies. ManualTEST was successfully used in several studies run in two real test sites that
provide testing services for a major mobile phone manufacturer.

D.1 Manual Test Execution

In empirical studies involving manual test execution, it is necessary to have at least one or more
of the following components: tester, product under tested, test specification and test environ-
ment. In a manual test execution, a tester reads and executes each step of a test specification
using a product under test and a test environment.

The test specifications are usually described in terms of pre-conditions (initial conditions to
start the test), procedure (list of test steps with inputs and expected outputs) and post-conditions
[68]. In addition, they can contain more information, such as a test description, test objectives,
the tested requirements and a software and hardware setup procedure. These specifications are
commonly written in natural language, as shown in Figure D.1.

The data collected during manual test execution depend on the objective of the study, but
the most common collected data are:

• Test id.

• Tester id.

• Date and time in which the test execution was started.

• Test execution time, which is the time spent to execute the test.

• Test result.

In general, test result indicates if the test was executed successfully (passed), if a bug was
detected (failed) or if the tester could not execute the test (blocked) due to some constraint,
such as lack of resource, test not applicable to the product under test, etc.

149

150APPENDIX D MANUALTEST: A TOOL FOR COLLECTING MANUAL TEST EXECUTION DATA

Figure D.1 Sample test specification written in natural language.

During the manual test execution in an empirical study, some problems can occur and threat
the validity of the data analysis:

P1. While executing the tests, testers have to start counting test execution time just before the
beginning of the test execution activity and to stop just after finishing it. The tester can
forget to start or stop the chronometer, including between test executions, reducing the
accuracy of the collected data.

P2. When running studies in industrial settings, participants may be interrupted by important
phone calls or by other emergencies [21]. The time spent during these interruptions
should not be taken into account.

P3. These interruptions should also be recorded to verify if they impacted the study [21]. In

D.2 MANUAL TEST EXECUTION ASSISTANT (MANUALTEST) 151

our context, these interruptions can impact the total test execution time and the tester
performance.

P4. From previous experiences [15], we observed that the effect of some confounding fac-
tors can be hard to detect, such as changes in network bandwidth or in other dynamic
environmental conditions. These problems are usually hard to avoid when considering
studies in industrial settings, even when running supervised experiments.

P5. For some studies, such as test prioritization based on data reuse [80], it is important to
distinguish between test procedure time, test setup time, etc., making difficulty the data
collection.

To solve these problems, we developed and used a tool to collect manual test execution
data, as described in the next sections.

D.2 Manual Test Execution assiSTant (ManualTEST)

This section presents the main functionalities of ManualTEST, a tool developed to automate
the collection of manual test execution data, avoiding the problems previously described. The
tool was developed using the Eclipse Rich Client Platform (RCP) [88] and have two different
perspective, one to select the tests to be executed and another one to support the test execution
activity. Next, we present the details of these two perspectives and information about the data
collected by the tool.

D.2.1 Test Selection

To automatically read test specifications, ManualTEST consider that these specifications are
stored in spreadsheets files. In addition, the tool can be customized to read spreadsheets in
different formats. Once a spreadsheet file is opened, the tests are listed to the user, as shown in
Figure D.2. Then, the tester must double-click to open the tests that she is going to execute.

D.2.2 Test Execution

When the tester selects the Test Execution perspective, only the selected tests are presented. A
Test Execution Controller view is also presented, as shown in Figure D.3. In this view, the play
and the pause buttons are presented to the tester to control the counting of time. This integrated
functionality make easy to the tester to start, pause and resume the test execution time (problem
P1 and P2).

When the tester pushes the play button, the chronometer is activated and the first line of
the test specification is highlighted. Using keys ↑ and ↓ from the keyboard, the tester executes
the highlighted test step and go to the next one or go back to the previous one, as presented
in Figure D.4. This functionality will ensure that the tester will read and execute each test
step. Also, the time spent in each step is properly recorded (problem P5). For pausing the

152APPENDIX D MANUALTEST: A TOOL FOR COLLECTING MANUAL TEST EXECUTION DATA

Figure D.2 Test selection perspective of ManualTEST.

chronometer, the tester should push the pause button and push the play button later to resume
the time counting (problem P2).

ManualTEST counts the time based on three stages: Setup, Execution and Debug. The
Setup stage is relative to the execution of steps required to build the test pre-conditions. The
Execution stage is relative to the execution of the test procedure (execution of test steps and
verification of expected results). Finally, the Debug stage is used for recording the time spent
by the tester for confirming that a test failed. For instance, the tester may have to execute the
test again to confirm the test failure or s/he may have to read the specification to confirm that
the problem is a defect in the application and not a problem in the test specification. This
approach is interesting when the study analyzes only one of these stages (problem P5). The
total execution time is also presented by the tool.

By default, the initial test execution stage considered by the tool is Setup. To change the

D.2 MANUAL TEST EXECUTION ASSISTANT (MANUALTEST) 153

Figure D.3 Test execution perspective of ManualTEST.

stage, participants of the study can use the Setup, Execution or Debug buttons provided in the
Test Execution Controller view. However, the tool automatically detects when the cursor is
on the “Test procedure:” line and automatically consider the change from test setup to proce-
dure execution, improving data collection accuracy. The test setup time, procedure execution
time, debug time and total test execution time are presented to the tester in the Test Execution
Controller view.

The field observations can be used to describe any problem occurred during the execution
of the test. To finish the execution of a test case, the tester should press in button Passed, Failed
or Blocked to indicate the correct test result. The Cancel button will discard the data collected
for the current test execution.

154APPENDIX D MANUALTEST: A TOOL FOR COLLECTING MANUAL TEST EXECUTION DATA

Figure D.4 ManualTEST at different moments: test step under execution is highlighted and time is
automatically counted as setup time or procedure execution time.

D.3 ADVANTAGES AND CURRENT LIMITATIONS OF MANUALTEST 155

D.2.3 Collected Data

As test execution is finished, ManualTEST stores the test result, execution times and other
related information in two different spreadsheet files. The first one is presented in Figure D.5,
which is basically the general information recorded for each executed test.

Figure D.5 Test result for a single test case.

The second spreadsheet file contains detailed information about the test execution. As
presented in Figure D.6, ManualTEST stores the time spent to execute each step of the test
specification. This characteristic is very important to investigate the presence of aberrant values
in outlier analyses (problems P3 and P4) and to identify sources of variations on test execution
time.

Figure D.6 Detailed test result includes time spent in each test step.

D.3 Advantages and Current Limitations of ManualTEST

We used ManualTEST in several studies carried out by researchers from a research group in
testing [136]. These studies involved manual test execution and some of them are overviewed
next.

• A case study and a controlled experiment designed to compare the time reduction for
manual test setup provided by different test case prioritization techniques.

156APPENDIX D MANUALTEST: A TOOL FOR COLLECTING MANUAL TEST EXECUTION DATA

• A case study to compare functional tests generated manually or automatically by a model-
based testing tool [109] with respect to their manual test execution time.

• Controlled experiments designed to analyze the relationship of different test size mea-
sures with manual test execution time.

• Controlled experiments designed to investigate the effect of cost drivers for manual test
execution.

• Case studies to verify if code instrumentation has impact on manual test execution time
when considering mobile phone applications.

These studies were run in industrial settings and most of them were carried out by re-
searchers different from the authors of the tool. The researchers were asked to write the ben-
efits and limitations of ManualTEST observed during the execution of their empirical studies.
We received several feedbacks showing the advantages and limitations of ManualTEST. These
feedbacks are summarized next.

• Automated test execution time collection with the click of few buttons.

• The integration of the chronometer and test specifications increased productivity and
reduced the occurrence of problems (forgetting to start or pause the time, etc.). Also, this
integration make easy to the researcher to monitor more than one tester at the same time.

• Detailed log files included all information required for data analysis. Due to the high
level of detail, the effect of some confounding factors were detected and outliers were
treated properly.

• With the detailed and automated data collection, it was also possible to study the impact
of each test step on total execution time, including an analysis of the main sources of
variation.

• The format of the log files was not easy to be understood by other researchers.

• There are possible improvements to implement and minor defects to correct in the tool,
improving its usability.

• The available version of ManualTEST did not guide the tester through the correct se-
quence of tests to be executed, requiring a careful attention of testers and researchers.
The implementation of this functionality can improve the benefits of the tool.

• After some interruptions, some testers forgot to resume the chronometer (push the the
play button), requiring the intervention of the researcher that was monitoring the test
execution. The tool can be improved by having warning messages blinking while the
chronometer still paused.

• To write into the field Observations, the time should be paused by the tester. It would be
interesting if the tool could do that automatically.

D.4 RELATED TOOLS 157

As we can see, ManualTEST can be used to avoid several problems during the execution of
empirical studies related to manual test execution. However, its benefits depend on the correct
use by the testers. For instance, the tester may still forget to push the play and pause buttons.
As suggested in the feedbacks, some improvements in the tool should be done to avoid the
reported problems.

D.4 Related Tools

Several testing tools are available in the marketing. For manual test authoring and execution,
there is a tool that can be found in [55]. This commercial tool provides functionalities to execute
and mark some steps of the test (comparisons and other verifications) as they are executed, as
well as the storage of test results and test execution time. For collecting data in empirical
studies, our tool presents better benefits due to characteristics such as the more detailed data
collection and the highlighting of the test step being executed.

Some other researchers also have developed data collection tools for supporting their empir-
ical studies. In [70], the authors reported a tool under development for collecting data during
software engineering experiments. They were not interested in execution time, but in data
concerning subjects, interactions between subjects and technology and changes in engineering
artefacts. In [69], the authors proposed an unobtrusive method of collecting feedback from sub-
jects during an experiment. They developed a tool to collect the feedbacks from experimental
subjects and they identified several benefits of using the tool during the execution of four ex-
periments, such as its use for validating the data obtained from other sources, checking process
conformance and identifying problems with the experiments.

In [21], the authors developed a web-based support environment for planning and running
software engineering experiments. One of its functionality is the collection of the experiment
results, such as the answers of web questionnaires. The authors reported common interruptions
(phone calls, lunch break, etc.) that occurred during the experiments run in real environments.
In their approach, the subjects had to report the nature and time span of the interruptions. In
our approach, the subject has to pause and resume the chronometer.

D.5 Final Considerations

This paper presented the main functionalities of ManualTEST, a tool developed for improving
the collection of manual test execution data. This tool not only helps to collect data accurately,
but it also provides information in different levels of detail, supporting the identification of
problems in the collected data and analyses of outliers, sources of variability, etc. These benefits
were observed during the execution of several case studies and controlled experiments in two
real test sites. We intend to evolve the tool in order to overcome the current limitations and
include the suggestions received during the empirical studies.

Despite of the use of ManualTEST for empirical studies, the tool can also be used to sup-
port the manual test execution activities. Its use can help, for instance, to have more accurate
historical data in industrial settings. Although our tool is structured for experiments related to

158APPENDIX D MANUALTEST: A TOOL FOR COLLECTING MANUAL TEST EXECUTION DATA

manual test execution, we believe that it can be extended (or similar ones can be developed) to
support data collection for other types of manual activities that can have problems similar to
those reported here. Finally, the benefits observed during the use of ManualTEST justified the
cost to develop the tool, which took approximatelly two months of work (partial time) of one
experienced developer.

Bibliography

[1] Apache POI: Java API to access microsoft format files, 2007. http://poi.apache.org/.

[2] The Stanford parser: A statistical parser, 2007.
http://nlp.stanford.edu/software/lexparser. shtml.

[3] Tukutuku project, 2007. http://www.metriq.biz/tukutuku/.

[4] Alain Abran and Pierre N. Robillard. Function points: a study of their measurement
processes and scale transformations. Journal of Systems and Software, 25(2):171–184,
1994.

[5] Alain Abran and Pierre N. Robillard. Function points analysis: An empirical study of its
measurement processes. IEEE Trans. Softw. Eng., 22(12):895–910, 1996.

[6] Mohammed Abdullah Al-Hajri, Abdul Azim Abdul Ghani, Md Nasir Sulaiman, and
Mohd Hasan Selamat. Modification of standard Function Point complexity weights sys-
tem. Journal of Systems and Software, 74(2):195–206, 2005.

[7] Allan J. Albrecht. Measuring application development productivity. Proc. IBM Appli-
cations Development Symp., 1979.

[8] Allan J. Albrecht. Ad/m productivity measurement and estimate validation-draft. IBM
Corp. Information Systems and Administration, AD/M Improvement Program, 1984.

[9] Allan J. Albrecht and John E. Gaffney. Software functions, source lines of code, and
development effort prediction: A software science validation. IEEE Trans. Software
Eng., 9(6):639–648, November 1983.

[10] Eduardo Aranha. Estimating test execution effort based on test specification. In Fourth
edition of the International Summer School on Software Engineering, September 2007.
Student talk.

[11] Eduardo Aranha and Paulo Borba. Considering test execution complexity for estimating
test execution effort. In 1st International Doctoral Symposium on Empirical Software
Engineering (IDoESE 2006), September 2006.

[12] Eduardo Aranha and Paulo Borba. Measuring test execution complexity. In 2nd Intl.
Workshop on Predictor Models in SE (PROMISE 2006), co-located with the 22nd IEEE
Conference on Software Maintenance (ICSM’06), September 2006.

159

160 BIBLIOGRAPHY

[13] Eduardo Aranha and Paulo Borba. Test execution effort and capacity estimation. In
17th IEEE International Symposium on Software Reliability Engineering (ISSRE 2006),
November 2006.

[14] Eduardo Aranha and Paulo Borba. Empirical studies of test execution effort estimation
based on test characteristics and risk factors. In 2nd International Doctoral Symposium
on Empirical Software Engineering (IDoESE 2007), September 2007.

[15] Eduardo Aranha and Paulo Borba. An estimation model for test execution effort. In 1st
International Symposium on Empirical Software Engineering and Measurement (ESEM
2007), pages 107–116, September 2007.

[16] Eduardo Aranha and Paulo Borba. Test effort estimation models based on test specifi-
cations. In Testing: Academic & Industrial Conference - Practice And Research Tech-
niques (TAIC PART 2007), September 2007.

[17] Eduardo Aranha and Paulo Borba. Manualtest: Improving collection of manual test exe-
cution data in empirical studies. In 5th Empirical Software Engineering Latin-american
Workshop (ESELAW 2008), Salvador, Brazil, November 2008.

[18] Eduardo Aranha and Paulo Borba. Estimating manual test execution effort and capacity
based on execution points. International Journal of Computers and Applications, special
issue on the International Summer School on Software Engineering, 31(3), 2009.

[19] Eduardo Aranha, Paulo Borba, and Jose Lima. Model simulation for test execution
capacity estimation. In 17th IEEE International Symposium on Software Reliability En-
gineering (ISSRE 2006), November 2006.

[20] Eduardo Aranha, Filipe de Almeida, Thiago Diniz, Vitor Fontes, and Paulo Borba. Auto-
mated test execution effort estimation based on functional test specifications. In Brazil-
ian Symposium on Software Engineering (SBES’08), 2008.

[21] Erik Arisholm, Dag I. K. Sj, Gunnar J. Carelius, and Yngve Lindsj. A web-based support
environment for software engineering experiments. Nordic J. of Computing, 9(3):231–
247, 2002.

[22] Rajiv D Banker, Hsihui Chang, and Chris F Kemerer. Evidence on economies of scale
in software development. Information and Software Technology, 36(5):275–282, May
1994.

[23] Rajiv D. Banker, Robert J. Kauffman, and Rachna Kumar. An empirical test of object-
based output measurement metrics in a computer aided software engineering (case) en-
vironment. Journal of Management Information Systems, 8(3):127–150, 1992.

[24] Victor Basili, Gianluigi Caldiera, and Dieter Rombach. The goal question metric ap-
proach. Encyclopedia of Software Engineering, 1:528–532, 1994.

BIBLIOGRAPHY 161

[25] Kent Beck and Martin Fowler. Planning Extreme Programming. Addison-Wesley Pro-
fessional, 2000.

[26] Barry Boehm. Software Engineering Economics. Prentice Hall, 1981.

[27] Barry Boehm, Chris Abts, and Sunita Chulani. Software development cost estimation
approaches - a survey. Annals of Software Engineering, 10:177–205, 2000.

[28] Barry Boehm, Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford Clark, Bert
Steece, Winsor Brown, Sunita Chulani, and Chris Abts. Software Cost Estimation with
COCOMO II. Prentice Hall, 2000.

[29] Barry Boehm and Ali Afzal Malik. System and software sizing tutorial. In 22nd Inter-
national Forum on COCOMO and Systems/Software Cost Modeling, 2007.

[30] Barry Boehm, Donald J. Reifer, and Ricardo Valerdi. Cosysmo: A systems engineer-
ing cost model. In 1st Annual Conference on Systems Integration. Stevens Institute of
Technology Campus, 2003.

[31] Bruce Bowerman and Richard O’Connell. Linear Statistical Models, an Applied
Aproach. PWS-KENT, 2nd edition, 1990.

[32] Lionel Briand, Khaled El Emam, and Sandro Morasca. On the application of measure-
ment theory in software engineering. Empirical Software Engineering: An International
Journal, 1(1):61–88, 1996.

[33] Lionel C. Briand, Khaled El Emam, Dagmar Surmann, Isabella Wieczorek, and Kat-
rina D. Maxwell. An assessment and comparison of common software cost estimation
modeling techniques. In Proceedings of the 21st international conference on Software
engineering (ICSE ’99), pages 313–322, New York, NY, USA, 1999. ACM.

[34] Lionel C. Briand, Tristen Langley, and Isabella Wieczorek. A replicated assessment
and comparison of common software cost modeling techniques. In Proceedings of the
22nd international conference on Software engineering (ICSE ’00), pages 377–386, New
York, NY, USA, 2000. ACM.

[35] Bart Broekman and Edwin Notenboom. Testing Embedded Software. Addison-Wesley,
2002.

[36] Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition.
In Data Mining and Knowledge Discovery, pages 121–167, 1998.

[37] John M. Chambers. Software for Data Analysis: Programming with R. Springer, New
York, 2008.

[38] Sunita Chulani. Constructive quality modeling for defect density prediction: Coqualmo.
In International Symposium on Software Reliability Engineering (ISSRE’99), November
1999.

162 BIBLIOGRAPHY

[39] Code count tools. http://sunset.usc.edu/research/CODECOUNT/.

[40] Mike Cohn. Agile Estimating and Planning. Prentice Hall, 2005.

[41] Common Software Measurement International Consortium (COSMIC). The COSMIC
Functional Size Measurement Method, Version 3.0, September 2007.

[42] Gennaro Costagliola, Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, Genov-
effa Tortora, and Giuliana Vitiello. Effort estimation modeling techniques: a case study
for web applications. In ICWE ’06: Proceedings of the 6th international conference on
Web engineering, pages 9–16, New York, NY, USA, 2006. ACM.

[43] Gennaro Costagliola, Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, Genov-
effa Tortora, and Giuliana Vitiello. Effort estimation modeling techniques: a case study
for web applications. In 6th international conference on Web engineering (ICWE ’06),
pages 9–16, New York, NY, USA, 2006. ACM.

[44] Hassan Diab, Marc Frappier, and Richard St-Denis. A formal definition of function
points for automated measurement of b specifications. In 4th International Conference
on Formal Engineering Methods (ICFEM 2002), pages 483–494, 2002.

[45] Harris Drucker, Chris J.C. Burges, Linda Kaufman, Alex Smola, and Vladimir Vapnik.
Support vector regression machines. In Advances in Neural Information Processing
Systems, pages 155–161. MIT Press, 1996.

[46] Ibrahim K. El-Far and James A. Whittaker. Model-based software testing. In
J. Marciniak, editor, Wiley Encyclopedia of Software Engineering. John Wiley & Sons,
2001.

[47] Angi Faiks and Nancy Hyland. Gaining user insight: A case study illustrating the card
sort technique. College and Research Libraries journal, 61(4):349–357, July 2000.

[48] N. Fenton. Software measurement: A necessary scientific basis. IEEE Transactions on
Software Engineering, 20(3):199–206, 1994.

[49] David Garmus and David Herron. Function Point Analysis, Measurement Practices for
Successful Software Projects. Addison Wesley, 2001.

[50] A. Gray and S. MacDonell. Applications of fuzzy logic to software metric models for
development effort estimation. In Fuzzy Information Processing Society, pages 394–399,
1997.

[51] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, 2nd
edition, 1998.

[52] Klaus Hinkelmann and Oscar Kempthorne. Design and Analysis of Experiments, Intro-
duction to Experimental Design. Wiley-Interscience, 2nd edition, 2007.

BIBLIOGRAPHY 163

[53] Ronald Hocking. Methods and applications of linear models: regression and the analy-
sis of variance. New York: Wiley-Intercience, 2003.

[54] John Hoenig and Dennis Heisey. The abuse of power: The pervasive fallacy of power
calculations for data analysis. The american statistician, 55(1), February 2001.

[55] IBM Rational Software. Rational Manual Tester, September 2008.
http://www.ibm.com/software/awdtools/tester/manual.

[56] Ali Idri, Alain Abran, and Taghi M. Khoshgoftaar. Estimating software project effort by
analogy based on linguistic values. Eighth IEEE International Symposium on Software
Metrics (METRICS’02), 00:21, 2002.

[57] IFPUG: International Function Point Users Group. http://www.ifpug.org/.

[58] International Function Point Users Group (IFPUG). Function Point, Counting Practices
Manual, Release 1.0, 1986.

[59] International Function Point Users Group (IFPUG). Function Point, Counting Practices
Manual, Release 2.0, 1988.

[60] International Function Point Users Group (IFPUG). Function Point, Counting Practices
Manual, Release 3.0, 1990.

[61] International Function Point Users Group (IFPUG). Function Point, Counting Practices
Manual, Release 4.0, 1994.

[62] International Organization for Standardization (ISO). ISO/IEC19761:2003, Software
Engineering – COSMIC – A Functional Size Measurement Method, 2003.

[63] International Organization of Standardization. ISO/IEC FCD 9126-1, Information tech-
nology - Software product quality Part 1: Quality Model, 1998.

[64] ISO. ISO/IEC 20968: Software Engineering - MkII Function Point Analysis - Counting
Practices Manual, 2002.

[65] D. Ross Jeffery, Graham C. Low, and M. Barnes. A comparison of function point count-
ing techniques. IEEE Trans. Software Eng., 19(5):529–532, 1993.

[66] D.R. Jeffery and J. Stathis. Specification-based software sizing: an empirical investiga-
tion of function metrics. In Proc. NASA Goddard Software Eng. Workshop, 1993.

[67] Magne Jorgensen and Martin Shepperd. A systematic review of software development
cost estimation studies. IEEE Trans. Softw. Eng., 33(1):33–53, 2007.

[68] Paul Jorgensen. Software Testing, A Craftsmans Approach. CRC Press, second edition,
2002.

164 BIBLIOGRAPHY

[69] Amela Karahasanoviæ, Bente Anda, Erik Arisholm, Siw Elisabeth Hove, Magne J,
Dag I. Sj, and Ray Welland. Collecting feedback during software engineering exper-
iments. Empirical Software Engineering, 10(2):113–147, 2005.

[70] A Karahasanovic, D I. K Sjøberg, and M Jørgensen. Data collection in software engi-
neering experiments. In , editor, Managing Information Technology in a Global Econ-
omy, Information Resources Management Association International Conference IRMA
2001, Software Engineering Track, pages 1027–1028, Toronto, Ontario Canada, 2001.
Idea Group Publishing.

[71] Chris F. Kemerer. Reliability of function points measurement: a field experiment. Com-
mun. ACM, 36(2):85–97, 1993.

[72] Barbara Kitchenham. Counterpoint: The problem with function points. IEEE Software,
14(2):29,31, 1997.

[73] Barbara Kitchenham and Kari Känsälä. Inter-item correlations among function points.
In ICSE ’93: Proceedings of the 15th international conference on Software Engineering,
pages 477–480, Los Alamitos, CA, USA, 1993. IEEE Computer Society Press.

[74] Barbara A. Kitchenham. The question of scale economies in software why cannot
researchers agree? Information and Software Technology, 44(1):13–24, January 2002.

[75] Robert Kuehl. Design of Experiments: Statistical Principles of Research Design and
Analysis. Duxbury Press, 2nd edition, 1999.

[76] Satish Kumar1, B. Ananda Krishna2, and Prem S. Satsangi3. Fuzzy systems and neural
networks in software engineering project management. Journal of Applied Intelligence,
1994.

[77] Kevin Lano. The B Language and Method: A Guide to Practical Formal Development.
Springer-Verlag, 1996.

[78] Daniel Leitao. Translating natural language descriptions into formal test case specifica-
tions. Master’s thesis, Federal University of Pernambuco/UFPE, 2006.

[79] Ghislain Levesque, Valery Bevo, and De Tran Cao. Estimating software size with uml
models. In 2008 C3S2E conference (C3S2E’08), pages 81–87, New York, NY, USA,
2008. ACM.

[80] Lucas Lima, Juliano Iyoda, and Augusto Sampaio. A permutation technique for test case
prioritization in a black-box environment. In 2nd Brazilian Workshop on Systematic and
Automated Software Testing, Campinas-SP, Brazil, October 2008. To appear.

[81] Harold Linstone and Murray Turoff. The Delphi Method: Techniques and Applications.
http://is.njit.edu/pubs/delphibook, 2002.

BIBLIOGRAPHY 165

[82] David H. Longstreet. Function Points Analysis Training Course. Longstreet Consulting
Inc, February 2005.

[83] Graham C. Low and D. R. Jeffery. Function points in the estimation and evaluation of
the software process. IEEE Trans. Softw. Eng., 16(1):64–71, 1990.

[84] S. MacDonell and A. Gray. Alternatives to regression models for estimating software
projects. In Proceedings of the IFPUG Fall 1996 Conference. IFPUG, 1996.

[85] G S. Maddala. Introduction to Econometrics. Wiley, 3 edition, May 2001.

[86] Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, and Emilia Mendes. Compar-
ing size measures for predicting web application development effort: A case study. In
International Symposium on Empirical Software Engineering and Measurement (ESEM
2007), 2007.

[87] Katrina Maxwell. Applied Statistics for Software Managers. Prentice Hall, 2002.

[88] Jeff McAffer and Jean-Michel Lemieux. Eclipse Rich Client Platform: Designing, Cod-
ing, and Packaging Java(TM) Applications. Addison-Wesley Professional, 2005.

[89] Jerry Mendel. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Di-
rections. Prentice Hall, 2000.

[90] Emilia Mendes. A comparison of techniques for web effort estimation. In ESEM ’07:
Proceedings of the First International Symposium on Empirical Software Engineering
and Measurement, pages 334–343, Washington, DC, USA, 2007. IEEE Computer Soci-
ety.

[91] Emilia Mendes. Cost Estimation Techniques for Web Projects. IGI Publishing, Septem-
ber 2007.

[92] Emilia Mendes. The use of a bayesian network for web effort estimation. In Interna-
tional Conference on Web Engineering (ICWE), pages 90–104, 2007.

[93] Emilia Mendes and Steve Counsell. Web development effort estimation using analogy.
In Proceedings of the 2000 Australian Software Engineering Conference, 2000.

[94] Emilia Mendes and Barbara Kitchenham. Further comparison of cross-company and
within-company effort estimation models for web applications. In METRICS ’04: Pro-
ceedings of the Software Metrics, 10th International Symposium on (METRICS’04),
pages 348–357, Washington, DC, USA, 2004. IEEE Computer Society.

[95] Emilia Mendes and Nile Mosley. Further investigation into the use of cbr and stepwise
regression to predict development effort for web hypermedia applications. In Interna-
tional Symposium on Empirical Software Engineering (ISESE 2002), 2002.

166 BIBLIOGRAPHY

[96] Emilia Mendes, Nile Mosley, and Steve Counsell. Comparison of web size measures for
predicting web design and authoring effort. IEE Proceedings - Software, 149(3):86–92,
2002.

[97] Emilia Mendes, Nile Mosley, and Steve Counsell. Investigating web size metrics for
early web cost estimation. J. Syst. Softw., 77(2):157–172, 2005.

[98] Emilia Mendes, Ian Watson, Chris Triggs, Nile Mosley, and Steve Counsell. A com-
parative study of cost estimation models for web hypermedia applications. Empirical
Software Engineering, 8(2):163–196, 2003.

[99] George Milliken and Dallas Johnson. Analysis of Messy Data: Designed Experiments,
volume I. Chapman Hall/CRC, 1993.

[100] Tom Mitchell. Machine Learning. McGraw-Hill, 1997.

[101] Parastoo Mohagheghi, Bente Anda, and Reidar Conradi. Effort estimation of use cases
for incremental large-scale software development. In Proceedings of the 27th interna-
tional conference on Software engineering (ICSE05), pages 303–311. ACM Press, 2005.

[102] Kjetil Molokken and Magne Jorgensen. A review of surveys on software effort estima-
tion. International Symposium on Empirical Software Engineering (ISESE’03), 00:223,
2003.

[103] Tridas Mukhopadhyay and Sunder Kekre. Software effort models for early estimation
of process control applications. IEEE Trans. Softw. Eng., 18(10):915–924, 1992.

[104] Glenford J. Myers. The Art of Software Testing. John Wiley & Sons, Inc., 2004.

[105] Suresh Nageswaran. Test effort estimation using use case points. In 14th International
Internet & Software Quality Week 2001, June 2001.

[106] Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.

[107] NESMA. Definitions and Counting Guidelines for the Application of Function Points
Analysis, version 1.0 edition, 1990.

[108] Vu Nguyen, Sophia Deeds-Rubin, and Thomas Tan. Sloc counting standards. In 22nd
International Forum on COCOMO and Systems/Software Cost Modeling, 2007.

[109] Sidney Nogueira, Emanuela Cartaxo, Dante Torres, Eduardo Aranha, and Rafael Mar-
ques. Model based test generation: A case study. In 1st Brazilian Workshop on System-
atic and Automated Software Testing (SAST 2007), October 2007.

[110] Strategic Evolution of ESE Data Systems (SEEDS). Survey of cost estimation tools,
2001.

[111] Adriano L. I. Oliveira. Letters: Estimation of software project effort with support vector
regression. Neurocomputing, 69(13-15):1749–1753, 2006.

BIBLIOGRAPHY 167

[112] C. Pandian. Software Metrics: A Guide to Planning, Analysis, and Application. CRC
Press, Inc., 2003.

[113] Robert E. Park, Robert E. Park, Thomas R. Miller, and Lt Col. Software size mea-
surement: A framework for counting source statements. Technical report, Software
Engineering Institute, 1992.

[114] Shari Lawrence Pfleeger and Barbara A. Kitchenham. Principles of survey research: part
1: turning lemons into lemonade. SIGSOFT Softw. Eng. Notes, 26(6):16–18, 2001.

[115] http://www.crisp.se/planningpoker.

[116] Alexander Pretschner. Model-based testing. In ICSE ’05: Proceedings of the 27th
international conference on Software engineering, pages 722–723, 2005.

[117] Lawrence Putnam and Ware Myers. Measures for Excellence. Yourdon Press Computing
Series, 1992.

[118] Quantitative software measurement, QSM Inc. http://www.qsm.com.

[119] John Ross Quinlan. Learning with continuous classes. In Fifth Australian Joint Conf.
Artificial Intelligence, pages 343–348, 1992.

[120] Matthias Riebisch, Detlef Streitferdt, and Ilian Pashov. Modeling variability for object-
oriented product lines. In Object-Oriented Technology (LNCS), volume 3013, pages
165–178. Springer Berlin, 2004.

[121] Christian Ritz and Jens Streibig. Nonlinear Regression with R. Springer, 2008.

[122] Melanie Ruhe, Ross Jeffery, and Isabella Wieczorek. Using web objects for estimating
software development effort for web applications. In METRICS ’03: Proceedings of
the 9th International Symposium on Software Metrics, page 30, Washington, DC, USA,
2003. IEEE Computer Society.

[123] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 2nd edition, 2002.

[124] R. M. Sakia. The box-cox transformation technique: A review. Journal of the Royal
Statistical Society. Series D (The Statistician), 41(2):169–178, 1992.

[125] Chris Schofield. Non-algorithmic effort estimation techniques. Technical report, Empir-
ical Software Engineering Research Group (ESERG) at Bournemouth University, 1998.

[126] Rolf Schwitter. English as a formal specification language. In Proceedings of the 13th
International Workshop on Database and Expert Systems Applications (DEXA02), pages
228–232, 2002.

[127] Carolyn Seaman. Qualitative methods in empirical studies of software engineering.
IEEE Trans. Softw. Eng., 25(4):557–572, 1999.

168 BIBLIOGRAPHY

[128] David Seaver. Fast function points. http://sunset.usc.edu/Activities/oct24-27-
00/Presentations/Seaver_FAST Function Points.pdf.

[129] Martin Shepperd, Michelle Cartwright, and Gada Kadoda. On building prediction sys-
tems for software engineers. Empirical Software Engineering, 5:175–182, 2000.

[130] Sloc count. http://www.dwheeler.com/sloccount.

[131] George W. Snedecor and William G. Cochran. Statistical Methods. Iowa State University
Press, 8 edition, 1989.

[132] Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer, 2008.

[133] Charles Symons. The cosmic functional size measurement method version 3,0. In
IWSM-Mensura 2007, 2007.

[134] Hee Beng Kuan Tan, Yuan Zhao, and Hongyu Zhang. Conceptual data model-based
software size estimation for information systems. ACM Trans. Softw. Eng. Methodol.,
19(2):1–37, 2009.

[135] Dante Torres, Daniel Leitao, and Flavia Barros. Motorola specnl: A hybrid system to
generate nl descriptions from test case specifications. Sixth International Conference on
Hybrid Intelligent Systems (HIS’06), page 45, 2006.

[136] Dante Torres, Sidney Nogueira, Emanuela Cartaxo, Eduardo Aranha, Paulo Borba,
Flávia Barros, Patrícia Machado, Augusto Sampaio, and Alexandre Mota. Brazil test
center research group. In 1st Brazilian Workshop on Systematic and Automated Soft-
ware Testing (SAST 2007), October 2007.

[137] Frank Vogelezang. Cosmic full function points the next generation of functional sizing.
In Software Measurement European Forum - SMEF 2005, pages 281–289, 2005.

[138] Yong Wang and Ian H. Witten. Inducing model trees for continuous classes. In Proceed-
ings of the poster papers of the 9th European Conference on Machine Learning (ECML
97), 1997.

[139] Ian Watson. Applying Case-Based Reasoning: Techniques for Enterprise Systems. Mor-
gan Kaufmann, 1997.

[140] Michael Whalen, Ajitha Rajan, Mats Heimdahl, and Steven Miller. Coverage metrics
for requirements-based testing. In ISSTA ’06: Proceedings of the 2006 international
symposium on Software testing and analysis, pages 25–36. ACM Press, 2006.

[141] C. F. Jeff Wu and Michael Hamada. Experiments: Planning, Analysis, and Parameter
Design Optimization. Wiley-Interscience, 2000.

[142] Ales Zivkovic, Ivan Rozman, and Marjan Hericko. Automated software size estima-
tion based on function points using uml models. Information and Software Technology,
47(13):881–890, 2005.

