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RESUMO

Contexto: Sistemas sensíveis ao contexto utilizam contexto com o intuito de se adaptar as
necessidades atuais dos usuários ou falha de requisitos. Portanto, eles necessitam adaptar seu
comportamento dinamicamente. É de suma importância especificar e analisar o comportamento
desejado desses sistemas antes de serem totalmente implementados. A especificação do compor-
tamento pode ser utilizada para validação dos requisitos de forma a verificar se estes sistemas
serão capazes de alcançar os seus objetivos. Além disso, o raciocínio sobre propriedades desses
sistemas, tais como deadlocks, alcançabilidade, completude e corretude do sistema, pode ser
apoiado. Portanto, o comportamento dinâmico dos sistemas sensíveis ao contexto exige uma
abordagem para sua especificação a partir de seus requisitos. Objetivo: Nesse trabalho é pro-
posto o processo GO2S (Goals to Statecharts) para derivar sistematicamente o comportamento
de sistemas sensíveis a contexto, expresso em statecharts, a partir de modelos de requisitos,
descritos em modelo de objetivos. O processo considera o impacto dos requisitos não-funcionais
desses sistemas através da sua operacionalização e priorização de alternativas a serem utilizadas
em tempo de execução (variantes). Método: A pesquisa apresentada nessa dissertação seguiu
a abordagem de engenharia para definir o processo GO2S e sua adequabilidade foi avaliada
empiricamente. Resultados: O processo GO2S aborda a especificação das tarefas necessárias
para o monitoramento da satisfação dos requisitos bem como a adaptação do sistema de acordo
com o contexto, a operacionalização dos requisitos não-funcionais e priorização de variantes.
Este é um processo iterativo centrado no refinamento incremental de um modelo de objetivo,
obtendo diferentes visões do sistema (design, contextual, comportamental). Além disso, foi
realizado um experimento controlado para avaliar os statecharts produzidos seguindo o GO2S
(grupo experimental) com aqueles elaborados sem utilizá-lo (grupo de controle). Conclusões:
Os resultados do experimento mostraram que a complexidade estrutural dos statecharts do grupo
que usou a abordagem GO2S foi inferior ao grupo de controle. Além disso, a média do número
de funcionalidades cujo comportamento foi modelado de acordo com a especificação e o tempo
gasto para produzir os modelos do grupo experimental foram maiores em relação ao grupo de
controle. Finalmente, os participantes concordaram que o processo GO2S é fácil de usar.

Palavras-chave: Sistemas sensíveis a contexto. Comportamento. Statecharts. Modelo de
Objetivos. Derivação. Experimento Controlado.



ABSTRACT

Context: Context-sensitive systems use context in order to adapt to the user’s current needs
or requirements failure. Therefore, they need to dynamically adapt their behavior. It is of
paramount importance to specify and analyze the intended behavior of these systems before they
are fully implemented. The behavioral specification can be used for requirements validation
in order to verify if these systems will be able to achieve their goals. Moreover, the reasoning
about properties of these systems, such as deadlocks, reachability, completeness and correctness
of the system, can be supported. Therefore, the dynamic behavior of the context-sensitive
systems requires an approach to specify it from their requirements. Objective: In this work,
we propose the GOals to Statecharts (GO2S) process to systematically derive the behavior of
context-sensitive systems, expressed as statecharts, from requirements models, described as
goal models. The process takes into consideration the impact of non-functional requirements
of these systems through their operationalization and prioritization of alternatives to be used at
runtime (variants). Method: The research presented in this dissertation followed the engineering
approach to define the GO2S (GOals to Statecharts) process and its suitability was empirically
evaluated. Results: The GO2S process addresses the specification of the tasks required for
monitoring of the requirements satisfaction as well as the system adaptation according to the
context, the operationalization of non-functional requirements and prioritization of variants. This
is an iterative process centered on the incremental refinement of a goal model, obtaining different
views of the system (design, contextual, behavioral). Furthermore, we conducted a controlled
experiment to evaluate the statecharts produced following the GO2S (experimental group) in
relation to the ones elaborated by not using it (control group). Conclusions: The experiment
results show that the structural complexity of the statecharts of the group that used the GO2S
approach was lower in relation to the control group. Moreover, the average of functionalities
whose behavior was modeled according to the specification and the time spent to produce the
models of the experimental group were higher in relation to the control group. Besides, the
subjects agreed that the GO2S process is easy to use.

Keywords: Context-sensitive Systems. Behavior. Statecharts. Goal Models. Derivation.
Controlled Experiment.
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1
Introduction

In this chapter, we characterize the context of this work and the main motivations
and justifications for this dissertation. Then, we present the objectives and the related works.
Furthermore, we describe the methodology used to conduct this research. Finally, the work
structure is defined.

1.1 Context

Requirements Engineering (RE) is a branch of software engineering that deals with
elicitation, refinement, analysis, of software systems requirements. Therefore, it addresses the
reasons why a software system is needed, the functionalities it must have to achieve its purpose
and the constraints on how the software must be designed and implemented (LAPOUCHNIAN,
2005).

Goal-Oriented Requirements Engineering (GORE) approaches have become quite popu-
lar. GORE is concerned with the use of goals for eliciting, elaborating, structuring, specifying,
analyzing, negotiating, documenting, and modifying requirements (LAPOUCHNIAN, 2005).

The benefits of goal modeling are manifold (LAPOUCHNIAN, 2005) (ALI; DALPIAZ;
GIORGINI, 2010): goals provide rationale for requirements that operationalize them; goals
provide a precise criterion for sufficient completeness of a requirements specification; a single
goal model can capture variability in the problem domain through the use of alternative goal
refinements; goals provide a natural mechanism for structuring complex requirements documents,
and they offer a very intuitive way to elicit and analyze requirements.

Goal models have been used as an effective means to capture the interactions and
information-related requirements of adaptive systems and context-sensitive systems (PENSERINI
et al., 2007), (MORANDINI et al., 2009), (PIMENTEL et al., 2014), (ALI; DALPIAZ; GIORGINI,
2010). A possible reason is that they incorporate the space of alternatives of a set of operations,
i.e. variants, which gives more flexibility to meet stakeholders’ goals in a dynamic environment
(ALI; DALPIAZ; GIORGINI, 2010).

The requirements models, which describe the problem, need to be related to the solution
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space, which often begins with the architectural description. However, a software architecture
cannot be described in a simple one-dimensional fashion (CLEMENTS et al., 2002). It can be
represented through different views: structural, behavioral, deployment, and configuration. In
this work we are concerned with the behavioral view.

Many notations support the description of the system behavior such as Labelled Transition
Systems (LTS) (NICOLA, 1987), Petri Nets (MURATA, 1989), and Statechart (HAREL, 1987).
Statechart, adopted by Unified Modeling Language (UML) language, is a popular choice for
representing the behavioral view of a system (PIMENTEL et al., 2014) (RANJITA; PRAFULLA;
DURGA, 2012). Besides, this notation is an interesting visual formalism for modeling context-
sensitive systems since they are reactive and adapt its requirements.

Computer systems that use context to provide more relevant services or information
are called Context-Sensitive Systems (CSS) (ABOWD et al., 1999). CSS enable systems to
distil available information into relevant information, to choose relevant actions from a list of
possibilities, or to determine the optimal method of information delivery (SANTOS, 2008).

An important feature of CSS is the contextual adaptation (CHALMERS, 2002). In these
systems, context can be used to trigger actions (when a certain set of contextual information
reaches specific values); or services (tailored according to the limits and preferences imposed
by the context). Hence, these systems use context to direct actions and behaviors to support
communication between systems and their users. This support can be achieved changing their
sequence of actions, the style of interactions and the type of information provided to users
in order to adapt to the user’s current needs or requirements failure (VIEIRA; TEDESCO;
SALGADO, 2011).

Since context-sensitive systems are flexible and capable of reacting on behalf of their
users, they need to dynamically adapt their behavior. The benefits of specifying the behavior
of context-sensitive are manifold (CLEMENTS et al., 2002): the models can be used as a
communication channel among stakeholders during system-development activities; they improve
the confidence that the context-sensitive system will be able to achieve its goals. Moreover,
the reasoning about systems’ properties, such as deadlocks, reachability, completeness and
correctness of the system, can be supported in the behavioral models.

1.2 Motivation and Rationale

Enabling computer systems to change their behavior according to the analysis of con-
textual information is a challenge that attracts the attention of researchers from several areas of
computer science (SANTOS, 2008).

CSS must have the following characteristics: monitoring, awareness and adaptability.
Hence, developing CSS is a complex and a labor-intensive task. When designing these systems,
the software engineer needs to deal with issues associated to: which kind of information consider
as context, how to represent this information, how to acquire and process it (considering that it



1.2. MOTIVATION AND RATIONALE 20

may come from several and heterogeneous sources) and how to integrate the context usage in the
system (SANTOS, 2008).

However, software engineers have difficulties to understand and define what to consider
as context and how to design context-sensitive systems. A possible reason is the lack of consensus
in the literature regarding the terminology, characteristics and specificities related to context and
CSS.

It is worth mentioning that context can influence the requirements of a system, and as
a consequence, the choice of the variant (alternative to be executed at runtime) a system can
adopt to meet its requirements (ALI; DALPIAZ; GIORGINI, 2010). Hence, there is a need
for approaches that guide CSS designers on obtaining their behavior and performing activities
related to the system’s behavior specification.

It is important to note that Non-Functional Requirements (NFRs) affect both the structural
and behavioral aspects of the system (architecture) (LIU; MA; SHAO, 2010). Hence, they need
to be operationalized . Moreover, they should be taken in consideration when deciding which
variant is more appropriate in a given context. Therefore, NFRs are critical and must be elicited,
analyzed, and properly handled.

Software-development organizations frequently begin their activities with one of these
alternative starting points - requirements or architectures - often adopting a waterfall like devel-
opment process. It is common to artificially freeze the requirements document and release it for
use in the next step of the development life cycle. On the other hand, if the development is based
on constrained architectures, it may restrict users and handicap developers by resisting inevitable
and desirable changes in requirements.

In fact, it is well known that requirements and software architecture are intertwined
(NUSEIBEH, 2001). Hence, it is of paramount importance that the architecture should be
aligned with requirements.

The inherent variability of CSS requires the analysis of their behavior before they are
fully implemented. Therefore, we need approaches to guide the software engineer of CSS to
obtain the behavior of context-sensitive systems from requirements models. To the best of
our knowledge, does not exist any approach to guide the software engineer to perform this
specification.

In particular, we investigated the work of PIMENTEL et al. (2014) about the derivation
of behavior from goal models. The authors assume that there is an uniform nature of the context
in which the system operates. Unfortunately, this is not always the case.

Our work concerns on the specification of CSS behavior expressed as statecharts, and
derived from requirements models, described as goal models. It is out of scope to develop a tool
to assist the software engineer in performing such derivation.

The research described in this dissertation is targeted, especially, at designers of CSS,
particularly those responsible for knowledge engineering, requirement analysis and architecture
design. We envisage a Model-Driven Development (MDD) approach, where models play a key
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role throughout the development (MELLOR; CLARK; FUTAGAMI, 2003).

1.3 Objectives

The main research question investigated by this dissertation is: How can we obtain the

behavior of context-sensitive systems from requirements models including their non-functional

requirements?

In order to answer this research question, we define the following specific objectives:

� Proposal of a systematic process for deriving the behavior of context-sensitive systems
from requirements models;

� Definition of a systematic approach for the specification of monitoring and adaptation
tasks;

� Definition of a metamodel to relate the requirements, architectural design, context
and behavior in a unified approach.

� Illustration of the applicability of the process through an example;

� Empirical evaluation of the process through a controlled experiment to evaluate the
time to implement, syntactic correctness, structural complexity, behavioral similarity
and cognitive complexity of the generated statecharts using (or not) our approach.

1.4 Related Works

To the best of our knowledge, no process regarding the statecharts derivation of CSS
from requirements models has been undertaken so far. However, we identified some works that
are somehow related with behavior specification.

A process for generating complementary design views from a goal model with high
variability in configurations, behavioral specifications, architectural and business processes is
presented in (YU et al., 2008). To this end, the authors employed three complementary design
views: a feature model, a statechart and a component model. The process is guided by heuristic
rules and patterns to map a goal hierarchy into an isomorphic state hierarchy in a statechart.
However, the resulting statecharts of this approach do not support the specification of monitoring
and adaptation tasks and the variants prioritization as supported in our work. The specification of
these tasks are necessary in the development of context-sensitive systems since they must have
three characteristics: monitoring, awareness and adaptation (KLEIN et al., 2008).

The STREAM-A (Strategy for Transition between Requirements and Architectural
Models for Adaptive systems) approach (PIMENTEL et al., 2012) uses goal models based on
i* (istar) framework to support the design and evolution of systems that require adaptability.
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It comprises the enrichment of the requirements model with contextual annotations and the
identification of the data that the system will have to monitor. However, it focuses only on the
structure of a system architecture not the behavior. It is of paramount importance to specify and
analyze the intended behavior of context-sensitive systems before they are fully implemented
since context acts like a set of constraints that influence the behavior of a system (a user
or a computer) embedded in a given task (BAZIRE; BRÉZILLON, 2005). The behavioral
specification is used as input to the analysis which explores the range of possible order of
interactions, opportunities for concurrency, and time-based interaction dependencies among
system elements. Hence, an important difference of our work is to specify and analyze the
intended behavior of these systems.

In a subsequent work, PIMENTEL et al. (2014) proposed a process for deriving behav-
ioral models from goal models. The behavioral models, expressed as statecharts, are obtained
through a series of refinements expressed within an extended design goal model that constitutes
an intermediary model between requirements and architecture. However, they assume that there
is an uniform nature of the context in which the system operates. Unfortunately, this is not always
the case. This assumption is not valid in many types of systems, where it is essential to monitor
and adapt to an inherently varying context in order to keep the system’s goals satisfied. We
consider the algorithm for the statecharts derivation developed in this work and adapt it to CSS.
Besides considering the modeling of system’s context, the monitoring and adaption tasks, we
address the operationalization of NFRs. Moreover, given that it is possible that several variants
may be enabled in certain contexts, it is necessary to determine the best option. Hence, we
propose to perform this prioritization through the contribution of the variants to the satisfaction
of the non-functional requirements.

An integrated approach to assist the design of context-sensitive systems is described
in VIEIRA; TEDESCO; SALGADO (2011). Their work includes a context metamodel for
representing structural and behavioral aspects on CSS. In order to support the modeling of
behavioral concepts, the authors propose the use of a UML profile to model the application
behavior using the UML activity diagram with the semantics defined in the Contextual Graphs
(CxG). However, the authors observed in their empirical study that the usage of UML Activity
diagram to model the contextual graphs following the CxG profile, caused misunderstandings,
since the semantics of the elements of this diagram conflicted with the contextual graph elements
semantics. In our work, we use the statecharts to specify the intended behavior of context-
sensitive systems since it is a popular choice for representing the behavioral view of a system
and it is also adopted by UML language. Besides, this notation is an interesting visual formalism
for modeling context-sensitive systems since they are reactive and adapt their requirements.
Moreover, an activity diagram is a special case of a statechart. Statecharts, otherwise, are a
powerful graphical notation to describe reactive systems that allow nested super-/sub-state
structure for abstraction or decomposition. This hierarchical notation of statecharts allows the
description of the behavior of context-sensitive systems at different levels of abstraction. This
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property of statecharts makes them much more concise and usable than activity diagrams and
contributes to a lower structural complexity of the models. Besides, we also concerned with
the satisfaction of NFRs, thus we propose an activity in our process that deals with variants
prioritization.

1.5 Research Methodology

Research in software engineering can be conducted through four research methods:
scientific, engineering, empirical and analytical (GLASS, 1994) (WOHLIN et al., 2012). In the
scientific method, the world is observed and then a model or theory is proposed. It is measured
and analyzed, the hypotheses of the model or theory are validated, and repeated if possible.

The engineering method consists of the observation of current solutions, followed by the
proposal of alternative, the development, and evaluation. In the empirical method, a model is
proposed and evaluated through empirical studies, for example, case studies or experiments.

The analytical method consists of proposing a formal theory or set of axioms, developing
a theory, deriving results, and if possible comparison with empirical observations.

The research presented in this dissertation followed the engineering and empirical
methods. Initially, we performed a literature review about the main areas involved in this
work: Self-Adaptive and Context-Sensitive Systems, Requirements Engineering and Goal
Oriented Requirements Engineering, Non-Functional Requirements, Model-Driven Development,
Software Architecture, Flow Expressions, and Statecharts.

After identifying the open issues in these fields and considering the acquired knowledge,
we defined the GOals to Statecharts (GO2S) process for derivation of statecharts from goal
models. Given a goal model, we aimed to specify the contextual information and the monitoring
and adaptation tasks in a systematic way.

We propose the operationalization of NFRs in the goal model in order to specify its
impact on the system behavior. Accordingly, in the GO2S process, this is achieved through the
insertion of design tasks in the goal model and not through abstract and subjective attributes.
Besides, the NFRs were also considered for the selection of the variant, at runtime, when more
than one context hold simultaneously.

We also define the GO2S metamodel that describes the concepts of the behavioral
contextual design goal model, their properties and the valid connections between the elements.
This metamodel relates the requirements, architectural design, context and behavior annotations
in a unified metamodel.

For the description of the GO2S process, the meeting scheduler example, described in
next section, was used. In order to illustrate the approach, we considered the Znn exemplar.

Moreover, an empirical method was used to evaluate the GO2S process. We conducted
a controlled experiment with eighteen subjects enrolled in a RE course divided in two groups.
One group applied the treatment (GO2S process) and the other group (the control group) did not
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apply it. The feedback provided by the subjects allowed the improvement of GO2S process.

1.6 Dissertation Structure

Chapter 1 consists of this introduction about the context, motivation and rationale and
the objectives of this research. Furthermore, it discusses some related works, the methodology
used to conduct this dissertation, and describes the running example that is going to be used to
illustrate the proposed process.

Chapter 2 summarizes the basic concepts of context-sensitive systems, goal-oriented
requirements engineering, and contextual goal model. Besides, we address the behavior modeling
through flow expressions and statecharts. All these concepts are fundamental to understanding
the notations adopted and the research carried out.

Chapter 3 explains the GO2S process, its metamodel and discusses its use with a running
example.

Chapter 4 illustrates the use of the GO2S. The ZNN exemplar, a well known exemplar
of the adaptive systems community, is described in detail.

Chapter 5 presents the design and results of a controlled experiment conducted to
evaluate our process.

Chapter 6 discusses the results obtained in this dissertation. Moreover, it makes some
final considerations on the development of this work, as well as summarizes the main contribu-
tions, scope and limitations found. We indicate some future works that are required to improve
our approach.
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2
Background

The systematic process proposed in this dissertation consists of an incremental refinement
of a goal model, towards a statechart of a context-sensitive system. Our process follows the
twin peaks concept (NUSEIBEH, 2001) which separates problem structure and requirements
specification from solution structure and architecture specification, producing progressively more
detailed requirements and design specifications.

Therefore, we present in this chapter the running example to illustrate our process as
well as basic concepts of context-sensitive systems, goal oriented requirements engineering and
contextual goal model. Besides, we address the behavior modeling through flow expressions and
statecharts. All these concepts are fundamental for the understanding of the research carried out.
The following sections provide a brief overview of these concepts.

2.1 Running Example: Meeting Scheduler

We selected a simplified version of the popular meeting scheduler (VAN LAMSWEERDE;
DARIMONT; MASSONET, 1995) adapted from (ANGELOPOULOS; SOUZA; MYLOPOU-
LOS, 2014) as a running example in order to demonstrate the activities of the GO2S process.
This exemplar is a well known in the RE community, and provides a rich combination of chal-
lenging features - e.g., interfering goals, very high-level objectives such as usability, real-time
performance constraints, and privacy concerns. Besides, the space of alternative decisions and
compromises to be made throughout the process is fairly large (ANGELOPOULOS; SOUZA;
MYLOPOULOS, 2014).

The purpose of the meeting scheduler system is to support the organization of meetings
(VAN LAMSWEERDE; DARIMONT; MASSONET, 1995). Therefore, the system should
determine, for each meeting request, a meeting date and location so that most of the intended
participants will effectively participate.

Figure 2.1 presents a goal model of meeting scheduler example adapted from AN-
GELOPOULOS; SOUZA; MYLOPOULOS (2014). Its main goal is to have a Meeting Scheduled.
In order to achieve this goal, the system should satisfy the Meeting characterized, Timetables
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collected and the Schedule defined goals. Besides, the system has privacy concerns represented
by the Security softgoal, Real-time performance constraints represented by the Performance

softgoal and the user should be able to Update meeting. These requirements are part of an
and-refinement,. Accordingly, all children nodes should be satisfied.

Figure 2.1: Goal Model of meeting scheduler example adapted from
ANGELOPOULOS; SOUZA; MYLOPOULOS (2014).

The Meeting characterized goal is achieved when the Usability softgoal and the tasks
Define date range, Define participants and Define topics are satisfied.

The Timetables can be collected through three alternative tasks: Collect by phone, Collect

by email or Collect automatically. Finally, the Schedule defined goal can be achieved by the
Schedule manually and Schedule automatically tasks.

2.2 Context-Sensitive Systems

People use daily, contextual information to make decisions, make judgments or interact
with others. Understanding the context in which there is a certain interaction is essential for
individuals to respond appropriately to the situation. Accordingly, context is used in different
types of interactions such as "Person-Person", "Human-Computer" and "Computer-Computer"
(VIEIRA et al., 2006).

In interaction between people, context improves the quality of conversations and interac-
tions and it helps to solve ambiguities and conflicts since messages sent to communication bring
embedded an associated context that supports its understanding. Besides, it helps to understand
situations, actions and events. For example, consider that a user is using a computer with many
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files and windows open. If someone says "close the window", probably she is talking about
a window open in the computer. If someone is not in front of the computer, in a room with a
physical window, perhaps she is refering to the window of the room. Moreover, context drives
actions and behaviors. For example, when a person is in a football stadium or a movie, she
knows that her behavior should be quite different in each of these locations. While in the movies
she should turn off the phone, be quiet and remain seated, in the stadium she can scream, jump
and stomp with her team and the phone can be used without restrictions (VIEIRA et al., 2006).

Context is also used in "Human-Computer" Interactions expanding the form of com-
munication without the need for explicit user intervention. For example, if a user is in website
seraching for a book, the system can search the previous orders of the user, investigate his profile
and the people that already bought the book. From this contextual information, the system
can make an analysis and provide a list of books that probably the user is interested. Hence,
context allows system adaptation by enabling/disabling functionalities, providing services and
information relevant to a situation (VIEIRA et al., 2006).

Another application of context is in "Computer-Computer" interactions helping the
communication between devices. For example, in a smart home, the system should be able to
turn on/off lights, open/close windows and doors and provide another personalized services. In
order to perform these tasks, the different devices (sensors, camera, etc) should communicate
with each other (VIEIRA et al., 2006).

Applications that use context to provide services and relevant information are called CSS.
These systems must have the following characteristics: monitoring, awareness and adaptability
(KLEIN et al., 2008). Accordingly, CSS are flexible, able to act autonomously on behalf of users
and dynamically adapt their behavior.

Thus, CSS use context to direct actions and behaviors to support communication between
systems and their users (VIEIRA; TEDESCO; SALGADO, 2011). To provide this support can
be used (CHALMERS, 2002):

a) Contextual sensing - where the context is sensed and information describing the
current context, e.g. location, temperature, can be presented to the user.

b) Contextual augmentation - consists of the association of context with data, for
example, records of objects surveyed can be associated with location, meeting notes
can be associated with people in the meeting and the place the meeting was held.

c) Contextual resource discovery, e.g., to cause printing to be on the nearest printer.

d) Context triggered actions - context is used to trigger actions in a system such as
loading map data for an area to be entered.

e) Contextual mediation - using context to modify a service.
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In our work, we are concerned with the last two cases Context triggered actions and
Contextual mediation. They are two types of Contextual adaptation (CHALMERS, 2002) that
are responsible for changing the sequence of actions, the style of interactions and the type of
information provided to users in order to adapt to the user’s current needs or requirements failure
(VIEIRA; TEDESCO; SALGADO, 2011).

There is no consensus on the definition, terminology and related terms associated to
context. BAZIRE; BRÉZILLON (2005) cataloged more than 150 definitions of the concept
and concluded that there are many definitions for context that differs strongly across different
domains (computer science, philosophy, economy, business, human computer interaction). As
an example, in a context-sensitive search engine, if a user searches the term “java” that could
mean a programming language or an island. To disambiguate the searched term, the engine may
look to the context that can be the query history. If the user asked recently for any programming
language such as Pascal, C++, PHP, then most probably he is looking for the Java programming
language (ALI; DALPIAZ; GIORGINI, 2010).

One possible explanation for this lack of consensus is that the context is used supposing
that everybody knows its meaning and the definitions of context are too much dependent of their
own contexts (e.g. the discipline in which the definition is taken but also on both the kind and
the goal of a given text) (BAZIRE; BRÉZILLON, 2005).

In this work, we adopted the definition from the perspective of goal-oriented requirement
engineering proposed by ALI; DALPIAZ; GIORGINI (2010). They defined a framework that
states that context is a partial state of the world that is relevant to an actor’s goals. Accordingly,
each context must be refined to allow it to be checked. The contextual refinement has a tree-like
structure (see Figure 2.2) in which the root of this model is the context, and facts and statements
are its nodes. In order to obtain a verifiable context, all statements are refined into sub-statements
and facts, until there are only facts left.

Facts are predicates which truth values can be verified in a context, i.e. the system can
capture the necessary data and compute the truth value of a fact. For example, The meeting date

is more two days away.
Statements, on the other hand, cannot be verified directly in a context due lack of

information or its abstract nature. For example, The meeting is not urgent, is a subjective
assertion that does not have a clear criteria to be evaluated against. A statement S is supported
(through Support relation) by a set of facts that gives enough evidence to the truth of S. Hence,
a statement is not monitorable by itself but it is an abstraction of visible facts.

Statements are represented as shadowed rectangles and facts as parallelograms (ALI;
DALPIAZ; GIORGINI, 2010). The support relation is represented as curved filled-in arrow, and
the implication logical operators and, or are represented as black triangles, white triangles,
filled-in arrows, respectively.

Figure 2.2 presents the refinement of the C4 context related to Collect timetables by

email task of the meeting scheduler example. It will be true if The number of participants is high
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Figure 2.2: Refinement of C4 context of meeting scheduler example (AUTHOR, 2015).

(since it will be time consuming calling too many participants), or The meeting is not urgent

(which can be checked by the fact The meeting date is more than 2 days away). If it is urgent, the
participants should be contacted by phone. Likewise, it is required that The participants usually

answer meeting requests by email (i.e. The participants answered more than 50% of timetables

requests).
The context acts like a set of constraints that influence the behavior of a system embedded

in a given task (BAZIRE; BRÉZILLON, 2005). Hence, context-sensitive systems must monitor
the context at runtime in order to decide which action will be executed. Accordingly, in addition
to the specification of the facts and statements that defines a context, it is necessary to specify the
real-word properties of the facts that changes at runtime. These properties are called Contextual
Elements (CEs) (VIEIRA; TEDESCO; SALGADO, 2011). These elements can be defined as
data or information in the domain whose instantiated values influence the truth values of facts in
the contextual refinements.

Each CE can be identified with respect to its frequency or periodicity and classified as
static or dynamic. Static CE indicates information that is, in general, fixed or does not change
very often (e.g. user’s personal data - date of birth, number of rooms in the meeting scheduler
system). Dynamic CE changes almost instantly, hence it needs to be constantly monitored and
updated (e.g. physical location of a person, participants agenda, number of date conflicts in
a meeting request). The dynamic elements are important for the specification of the context
monitoring as will be discussed in Section 3.

The design of CSS entails more work in comparison to systems that do not consider
context since they must care for context-related tasks, such as the acquisition, processing, storage
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and presentation of contextual information. In the next section, we provide some concepts related
to Requirements Engineering (RE) and a goal-oriented approach for context modeling.

2.3 Goal-Oriented Requirements Engineering

RE is a branch of software engineering that deals with elicitation, refinement, analysis,
of software systems requirements. Therefore, it addresses the reasons why a software system is
needed, the functionalities it must have to achieve its purpose and the constraints on how the
software must be designed and implemented (LAPOUCHNIAN, 2005).

The popularity of GORE approaches has increased dramatically. GORE is concerned
with the use of goals for eliciting, elaborating, structuring, specifying, analyzing, negotiating,
documenting, and modifying requirements (LAPOUCHNIAN, 2005).

Goal models capture and refine stakeholder intentions to generate functional and non-
functional requirements. A goal model consists of a hierarchy of goals, tasks, and softgoals that
relates the high-level goals to low-level system requirements (see Figure 2.1). The notation used
in this dissertation is based on the notation described by CASTRO; KOLP; MYLOPOULOS
(2002) which has goals, tasks, softgoals and contribution links (Make (++), Help (+), Hurt (-) or
Break (- -)).

Goals represent an intention of a system such as Meeting Scheduled and Timetables

collected in the meeting scheduler example (Figure 2.1). They are iteratively decomposed
into subgoals by And-refinement (all subgoals should be achieved to fulfill the top goal) and
Or-refinement (at least one subgoal should be achieved to fulfill the top goal). Goals are satisfied
by means of executable tasks.

Tasks are elements directly mapped to functionality in the running system and are
satisfied if executed successfully. Examples of tasks of the meeting scheduler example are
Schedule automatically and Collect by email.

Softgoals are goals whose satisfaction cannot be established in a clear-cut sense. Unlike
regular goals, softgoals can seldom be said to be accomplished or satisfied through contribution
links (Make, Help, Hurt, Make). These links allow us to qualitatively specify that there is
evidence that certain tasks/softgoals contribute positively or negatively to the satisfaction of
softgoals. Make is a positive contribution strong enough to satisfy a softgoal. Help is a partial
positive contribution not enough by itself to satisfy the softgoal. Hurt is a partial negative
contribution not enough by itself to deny softgoal. Finally, Break is a negative contribution
enough to deny a softgoal.

The variability of a system is modeled in a goal model through OR decompositions of
goals and tasks namely variants. The variants that a system can adopt to meet its requirements
are influenced by context. Therefore, we describe in next section a RE modeling framework
(ALI; DALPIAZ; GIORGINI, 2010) for systems operating in and reflecting varying contexts.
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2.4 Contextual Goal Model

A contextual goal model extends a goal model with context annotations in order to specify
the variation points that are context-dependent. The notation used in this paper to represent
contexts in goal models is based on ALI; DALPIAZ; GIORGINI (2010). Thus, contexts in our
work can be associated with the following variation points in a goal model: or/and refinements
and contribution to softgoals.

Or-refinement

The adoptability of a subgoal (subtask) may require a specific context to hold as a pre-
condition for the applicability of the corresponding goal model variant. For example, consider
the or-refinement of Timetables Collected goal in Figure 2.3. The Collect automatically task will
be executed only if C5 holds, the same reasoning applies to the other tasks in this refinement.

Figure 2.3: OR-Refinement of Timetables Collected goal of meeting scheduler example
(AUTHOR, 2015).

The C5 context refined with facts and statements is presented in Figure 2.4.

Figure 2.4: Refinement of C5 context of meeting scheduler example (AUTHOR, 2015).
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And-refinement

The satisfaction (execution) of a subgoal (subtask) in this refinement is needed only in
certain contexts. A subgoal/task in this refinement must be provided by its parent node but its
execution is context-dependent. For example, consider the Manage performance adaptation task
in Figure 2.5. The meeting scheduler system must be able to perform this task, but it has not to
be in all cases, only when the C7 context holds.

Figure 2.5: And-Refinement of Timetables Collected goal of meeting scheduler example
(AUTHOR, 2015).

The C7 context refined with facts and statements is presented in Figure 2.6.

Figure 2.6: Refinement of C7 context of meeting scheduler example (AUTHOR, 2015).

Although this is syntactically equivalent to an or-refinement, the semantic is different.
A context on an and-refinement influences the need for the reaching or executing the corre-
sponding subgoal/subtask, while a context on an or-refinement is itself needed to hold before
adopting the corresponding subgoal/subtask. This semantic difference is essential to decide
which requirements and alternatives will be active when a context change occurs at runtime.

Contribution to softgoals

Softgoals can be contributed either positively or negatively by goals and tasks. The
contribution of softgoals can vary from one context to another as demonstrated in Figure 2.7. For
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example, the Turn on air ventilator task contributes positively to Privacy softgoal and negatively
to Energy spent wisely softgoal when C12 (It is sunny and not very windy) holds.

Figure 2.7: Contribution to softgoals context-dependent adapted from ALI; DALPIAZ;
GIORGINI (2010).

The visual syntax and semantics for each type of variation point are presented in Table 2.1.
A variation point consists in a refinement in the goal model that is context-dependent.

Table 2.1: Semantics for the contextual variation points adapted from ALI; DALPIAZ;
GIORGINI (2010).

Variation point Visual Syntax Semantics

OR-Refinement

Goal Gi (task Ti) can be
achieved (executed) via Gj (Tj)

if context Ci holds.

AND-Refinement

The achievement of goal Gi
(the execution of task Ti)

requires Gj (task Tj)
if context Ci holds.

to softgoals

Goal Gi (task Ti) contributes
Contribution positively to softgoal SGi

if context Cj holds.
It contributes negatively to

softgoal SGi if context Ci holds.

According the framework of ALI; DALPIAZ; GIORGINI (2010), for each variation point
in the goal model, the software engineer has to decide if a variation point is context-dependent or
not. When a contextual variation point is identified, the variants at the goal model are labelled by
C1. . . Cn and annotated in the model (see Figure 3.8), and described as a sentence (see Table 2.2).

The framework of ALI; DALPIAZ; GIORGINI (2010) requires that each context identi-
fied in a contextual goal model must be refined to allow it to be checked. This context analysis
allows the software engineer to identify the facts that the system has to verify. These facts are
verifiable on the basis of data a system can collect of the world.

The analogy between goal analysis and context analysis is shown in Figure 2.8. While a
goal is a partial state of the world that a system attempts to reach, context is a partial state of the
world that a system attempts to judge if it holds. For example, consider the Collect timetables by
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email task of the meeting scheduler example of Figure 2.3. This task will be executed only if
C4 context holds. This context are refined in a set of facts and statements (see Figure 2.2) that
should hold at runtime.

Accordingly, goal analysis justifies why a system takes some actions (tasks), while
context analysis provides the rationale that explains why a system needs to collect data and check
facts of its environment (ALI; DALPIAZ; GIORGINI, 2010).

Figure 2.8: The analogy between goal analysis and context analysis (ALI; DALPIAZ;
GIORGINI, 2010).

Content-sensitive systems operate in many different contexts and therefore it is important
to specify the equipments or technologies necessary to install and to use in order to verify if the
context holds (ALI; DALPIAZ; GIORGINI, 2013). These equipments can be of several types
like GPS, RFID, camera, different types of sensors (presence, humidity, light), information stored
in databases or another mechanism to information storage, etc. To provide such information,
expertise in technologies is needed. They can be specified in a table as shown in Table 2.2. They
are identified after analyzing the facts for each context in the contextual goal model.

Table 2.2: Example of descriptions of contexts and the equipments/technology needed to
monitor them.

Description Variation Equipment or
Point Type Technology

The number of participants is small Mechanism to
C1 and The number of rooms available OR information

is small and The date range is small storage.
The number of participants is high and Mechanism to

C2 The number of rooms available is high OR information
and The date range is high storage.

The number of participants is small Mechanism to
C3 or The meeting is urgent OR information

or Participants do not usually answer storage.
meeting requests by email
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2.5 Design Goal Model

The design goal model is an extension of the goal model proposed by PIMENTEL et al.
(2014) to include new elements that appeared in the design phase, such as design tasks and
design constraints.

Design tasks allow the architect to model tasks that, although not relevant for the
stakeholders at a first moment, are important for the definition of the system behavior. For
example, a login task can be a design task identified by architects to satisfy the security softgoal.

Design quality constraints, on the other hand, restrict the initial goals and tasks or define
requirements quality constraints into more concrete ones (PIMENTEL et al., 2014). For example,
the performance softgoal can correspond to The response time should be less than 2 seconds

constraint. Note that these design elements usually emerge after requirements elicitation.
Accordingly, these new elements are represented through dashed borders in a goal model.

This differentiation is used to emphasize the phase of the software development they appear,
while requirements elements describe the stakeholders’ needs, design ones express a possible
way to fulfill those needs. However, these elements have the same semantic of tasks and quality
constraints of a goal model. Therefore, by including these refined elements in a goal model, it is
possible to make use of the existing goal reasoning infrastructure when designing systems with
specific needs like context-sensitive.

Design goal models do not specify the order of execution of the tasks. In order to perform
such specification, we rely on flow expressions described in next section.

2.6 Flow Expressions

Flow expressions are an extension to regular expressions and can be used to describe
the behavior of software architectures through its goals and tasks in a goal model. Accordingly,
flow expressions are an useful notation that can aid in the design, analysis, and understanding of
software systems (SHAW, 1978).

We adopted the symbols proposed by PIMENTEL et al. (2014), described in Table 2.3,
with the purpose of facilitating their writing. Each atomic symbol represents a state related to an
element of the goal model. For example, if t1 is a task, the atomic expression Ti represents the
state where t1 is being fulfilled.

Flow expressions can be composed in terms of regular expression operators, such as
concatenation (t1 t2), meaning first satisfy t1 then t2 (sequential flow), or t2*, meaning that t2
is to be satisfied zero or more times. Flow expressions separated with a vertical bar | symbol
represent alternative flows. The question mark ? is used to represent the optionality of the flow
to its left, i.e., that flow may be executed zero or one times.

The star symbol * indicates that the flow to its left may be executed zero, one or more
times, while the plus symbol + indicates that the flow may be executed one or more times. A
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dash - indicates that two flows are to be carried out concurrently, in the sense that their states can
be interleaved. These expressions allow the representation of the system behavior as annotations
on a goal model. Table 2.3 presents each symbol, its meaning and an example.

Table 2.3: Symbols of flow expressions (PIMENTEL et al., 2014).

Expression Meaning Example
blank space Sequence (t1 t2), first t1 and then t2

| Alternative (t1 | t2), t1 xor t2

?
Optional (t1 t2? t3), first t1 and then t3,

or first t1 followed by t2 and t3

*
Zero (t1 t2* t3), first t1, then

or more times t2 zero or more times, then t3
+ One (t1 t2+), first t1,

or more times then t2 one or more times
- Parallelism (t1-t2), t1 is executed

at the same time as t2

As an example of flow expressions, consider the following flow expression: (A B (C |
D) E F* G) - (H*). This expression indicates that state A is followed by state B. After B, the
possible states are C or D (exclusively), followed by E. After E, F may be reached any number
of times. State G occurs after E or after F. Concurrently to all that, the state H may occur any
number of times.

2.7 Software Architecture

Software architecture is composed of elements, connections or relations among them,
and, usually, some other aspect (s) such as configuration; constraints or semantics; properties;
or rationale, requirements, or stakeholders’ needs (CLEMENTS et al., 2002). Accordingly, a
software architecture is a complex entity that cannot be described in a simple one-dimensional
fashion.

Therefore, software architecture can be represented through four views: structural,
behavioral, deployment, and configuration (CLEMENTS et al., 2002). A view is a representation
of a set of system elements and the relationships associated with them. Each vision type express
different systems characteristics, and together are capable of defining the system architecture as
a whole.

The structural view is concerned with logical relationships between the components and
connectors. The behavioral view, expressed for example through state diagrams, describes the
execution order of system tasks, including the definition of parallelism and temporal dependen-
cies. It also allows analysis of potential deadlocks; performs resource optimization tests; being a
primordial vision for a complete architectural description (CLEMENTS et al., 2002).

The deployment view is similar to the structural view. However, is focused on the
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physical structure of the system. This view is used to define the devices to be used; the networks
to be created, what parts of the system run on what equipment, among others.

Finally, the configuration view explores every possible variation of the system, either
those that can be selected manually by the user as the ones chosen by the system itself au-
tonomously (CLEMENTS et al., 2002). Hence, these possible variations are expressed in a
feature model.

In this dissertation, we are concerned with the behavioral view since documenting
behavioral aspects of an architecture provides many benefits, both during development of the
architecture and during system maintenance. This information can be used to improve the
understanding of a system. Moreover, it can also help stakeholders to reason about how a system
built will be able to meet its quality-related goals (CLEMENTS et al., 2002).

Many notations may be used to capture behavioral information of context-sensitive
systems such as LTS (NICOLA, 1987), Petri Nets (MURATA, 1989), and Statecharts (HAREL,
1987). In this dissertation we rely on statechart, a popular visual formalism to represent the
behavioral view of a system. In the next section, we will detail this behavioral language.

2.8 Statecharts

Statecharts (HAREL, 1987) extend conventional state-transition diagrams with essentially
three elements, dealing, respectively, with the notions of hierarchy, concurrency and communi-
cation. Besides, this notation is an interesting visual formalism for modeling context-sensitive
systems since they are reactive and adapt its requirements.

Statecharts can be used as a stand-alone behavioral description, and, therefore, became
a popular visual formalism for modeling reactive systems (HAREL, 1987). These systems are
characterized by being, to a large extent, event-driven, continuously having to react to external
and internal stimuli such as context-sensitive systems.

The main elements of statecharts are states, events, transitions, actions and regions.
States are conditions during the life of an object or an interaction during which it satisfies some
condition, performs some action, or waits for some event.

Transitions capture a change of state caused by the occurrence of some associated event.
A transition may be guarded by some condition, represented by a condition name or an expression
enclosed between brackets. A guard captures a necessary condition for transition firing. States
are represented as boxes and transitions between states represented as arrows.

An action is an auxiliary operation associated with a state transition that is applied
when the transition is activated. Statecharts also support the nesting of states. Concurrency is
represented by dividing a composite state into regions that are shown separated by dotted lines.

Figure 2.9 presents the statechart corresponding to flow expression described in Sec-
tion 2.6. State A is followed by state B. After B, the possible states are C or D (exclusively),
followed by E. After E, F may be reached any number of times. State G occurs after E or after F.
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Concurrently to all that, the state H may occur any number of times.

Figure 2.9: Statechart Example (AUTHOR, 2015).

2.9 Final Considerations

This chapter presented the meeting scheduler example used in the next dissertation
to illustrate our process as well as the main concepts required for the understanding of this
dissertation. GORE approach was presented showing the main advantages in the context of this
dissertation. We discussed the concepts of context-sensitive systems and the contextual goal
model, a goal-oriented requirements approach for modeling these systems. In order to define the
system’s behavior, we presented the flow expressions. Besides, the main concepts of software
architecture behavior used in this work were outlined. In particular, we presented statecharts
language, discussing its elements.

Developing CSS is a complex and a labor-intensive task. When designing these systems,
the software engineer needs to deal with issues associated with: the kind of information to
be considered as context, how to represent this information, how to acquire and process it
(considering that it may come from several and heterogeneous sources) and how to integrate the
context usage in the system (SANTOS, 2008). Hence, there is a need for approaches that guide
CSS designers on obtaining their behavior from requirements models and performing activities
related to the system’s behavior specification. In the next chapter, we present the GO2S process
- a systematic process to derive the behavior of context-sensitive system from requirements
models.
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3
The GOals to Statecharts Process

Processes provide steps that support an activity. They can be used as checklists and
guidelines of what to do and how to do it (WOHLIN et al., 2012). In order to develop context-
sensitive systems, several steps to obtain their behavior have to be taken and they have to be in a
certain order. Thus, a systematic process for how to obtain their behavior is needed.

In this dissertation, we propose the GO2S process to systematically derive the behav-
ioral view of context-sensitive systems architecture (modeled as statecharts), from system’s
requirements (modeled as goal models) following the twin peaks concept (NUSEIBEH, 2001).

To specify the GO2S process we use the Business Process Model and Notation (BPMN)
(OMG, 2014). BPMN is a well-adopted process-modeling standard supported by many software
tools that provides a graphical notation that describes the flow of a process. Since this notation
has been specifically designed to coordinate the sequence of processes and the messages that flow
between different process participants in a related set of activities, it facilitates the understanding
of the procedures and ensure that software engineers understand themselves.

The process is divided into the following main steps: the first activity concerns the
construction of Design Goal Model (DGM). It is followed by the specification of contextual
variation points. In the third activity, the tasks required for the monitoring and adaptation
activities are specified. Later, in the fourth activity, the system behavior is represented in flow
expressions. The next one derives a statechart from the behavioral contextual design goal model.
Finally, the last activity is the prioritization of variants.

We explored the idea that it is possible to modularize the development of CSS by
organizing the GO2S process in six activities considering the main steps in order to develop a
context-sensitive system: requirements specification, context specification, the adaptation and
monitoring, the definition of system’s behavior, the statechart derivation and the prioritization of
variants.

The process is not supposed to be a waterfall model. Thus, it is not assumed that an
activity must be totally finished before the next one is started. This is an iterative process centered
on the incremental refinement of a goal model, obtaining different views of the system (design,
contextual, behavioral). Accordingly, it may be necessary to go back and forth in the activities
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until the desired level of detail is reached.
The activities of GO2S process are illustrated in Figure 3.1, and further elaborated in

the following sub-sections. At the beginning of each activity, we present a summary of its goal,
inputs, steps, and outputs.

Figure 3.1: The GO2S process for deriving the behavior of context-sensitive systems
(AUTHOR, 2015).

3.1 Activity 1: Construction of design goal model

� Goal: Refine a goal model with new design elements

� Input: A goal model

� Steps:

1: Identify design tasks and constraints

2: Perform the NFR analysis

3: Include the design tasks that operationalizes the NFRs in the goal model

4: Assign Tasks
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� Outputs:

DGM

Operationalization of NFRs

Our overall objective is to obtain the behavioral view of context-sensitive systems
architecture. Thus, we assume that requirements elicitation and analysis activities were previously
performed and a goal model was generated. Hence, the first activity (see Figure 3.2) of our
process consists of Construction of DGM and receives a goal model as an input.

Figure 3.2: Steps of Construction of Design goal model activity (AUTHOR, 2015).

As we move to the solution space, it can be necessary to include new elements that
appeared in the design phase, such as design tasks and design constraints (PIMENTEL et al.,
2014). In this first activity of the process, the software engineer should check if there is critical
design task or quality constraint that was not identified in the requirements phase that is necessary
to the system. One source of these elements are NFRs. Therefore, it is important to consider
their impact in the system, since they change or complement both the structural and behavioral
aspects of the system architecture (LIU; MA; SHAO, 2010).

Therefore, note that in this first activity, we can establish the relationship between NFRs
and the goal model using techniques for NFR analysis such as Softgoal Interdependency Graph
(SIG) (CHUNG et al., 2000). If a NFR needs to be operationalized, a design task must be
included in the goal model. Further, design constraints may also need to be included.

Moreover, the design goal model also allows the definition of assignments for its tasks. A
task or design task may be assigned/delegated to one or more users. Assignments are expressed
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by labels below the assigned element (PIMENTEL et al., 2014). The left side of the label shows
the icon of a person, to represent the assignment. The users to whom the task was assigned to
are listed to the right of the icon, as shown in Figure 3.3.

Figure 3.3: DGM of meeting scheduler example adapted from ANGELOPOULOS;
SOUZA; MYLOPOULOS (2014).

In the meeting scheduler system, we have the usability, performance and security NFRs.
In order to satisfy the security NFR, it was decided to perform access management, so a new
functionality should be added to satisfy this requirement. This is expressed by the Manage

Access design task. Besides, the Contact Participants design task may be performed either by
the meeting organizer or by a secretary.

This assignment was chosen since developing the capability of making automatic phone
calls and collecting timetables would be too costly. In order to make this kind of decision, it may
be necessary to consult with the project stakeholders in order to find the most beneficial option.
The DGM of the meeting scheduler which encompasses both requirements and design elements,
is shown in Figure 3.3.

The outputs of this process activity are the design goal model which can include the
design tasks that operationalizes the NFRs.

The OR refinement of DGMs introduces alternatives into the model accommodating
many/all possible functionalities that fulfill stakeholder goals. The space of alternatives defined by
a goal model can be used as a basis for designing fine-grained variability for highly customizable
or adaptable software (YU et al., 2008). Hence, we need to consider variability of the model
(ALI; DALPIAZ; GIORGINI, 2010) as described in next activity.
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3.2 Activity 2: Specification of contextual variation points

� Goal: Refine a design goal model with contextual variation points

� Input: A design goal model

� Steps:

1: Identify and specify the contextual variation points

2: Refine contexts

� Outputs:

Contextual design goal model

Contexts refinements

In this second activity, the DGM constructed in the previous step is refined with contextual
variation points and their associated contexts are refined as demonstrated in Figure 3.4.

Figure 3.4: Steps of Specification of contextual variation points activity (AUTHOR,
2015).

The contextual variation points represent the context influence on the choice among the
available variants of goals satisfaction. They are annotated in the DGM to visually specify the
effects of context in the system’s behavior. In the GO2S process, contexts can be associated to
or/and refinements as well as contribution to softgoals present in a design goal model.

Accordingly, the architect should identify a contextual variation point and specify the
variants at the design goal model with context labels such as C1. . . Cn as shown in Figure 3.5.
We followed the notation proposed by ALI; DALPIAZ; GIORGINI (2010) which requires that
each context specified in the contextual DGM must be refined through a set of statements and
facts. The contextual refinements are required in order to allow the system be able to check the
validity of context at runtime. Hence, if a context is true, the variant is enabled.
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Figure 3.5: Contextual DGM of meeting scheduler example (AUTHOR, 2015).

As an example of context refinement, consider the refinement of C4 context related to
Collect timetables by email task in Figure 2.2. C4 will be true if The number of participants is

high fact, or The meeting is not urgent statement (which can be checked by The meeting date

is more than 2 days away fact), or The participants usually answer meeting requests by email

statement (verified by the The participants answered more than 50% of timetables requests fact)
are true. The contextual DGM of the meeting scheduler example is shown in Figure 3.5.

The outputs of this activity are the contextual design goal model and the context refine-
ments. Next, we need to consider how the monitoring and adaptation will be performed.

3.3 Activity 3: Specification of adaptation and monitoring

� Goal: Refine the contextual DGM with elements necessary for the specification of
adaptation DTs as well as the monitoring

� Input: Contextual design goal model

� Steps:

1: Define the critical requirements that requires adaptation

2: Represent the adaptation management

2.1: Add a new design task in the root node for adaptation management

2.2: Add design tasks in the parent node previously created for the management
of each requirement that must be monitored and adapted
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2.3: Add design tasks to represent the adaptation strategies for each monitored
requirement

3: Associate each adaptation design task with a context label

4: Refine each context

5: Identify the dynamic contextual elements

6: Represent the context monitoring

6.1: Add a new design task in the root node

6.2: Add design tasks to monitor each dynamic contextual element

7: Specify the equipments/technology necessary to monitor the contexts

� Outputs:

Contextual design goal model refined

Contexts Refinements

In this activity, the contextual DGM is refined with elements necessary for the specifi-
cation of adaptation design tasks as well as the monitoring. Figure 3.6 presents the required
steps.

Context-sensitive systems have the ability of adapt themselves in order to provide
personalized services for its users when enable/disable functions. Therefore, we propose to use
this characteristic to deal with the requirements adaptation when a goal fails. In order to achieve
this, we refine a contextual DGM with elements necessary for the specification of adaptation
design tasks as well as the monitoring.

The input of this third activity is the contextual design goal model. The software engineer
should analyze the system’s requirements, aiming to define the requirements that are critical, and
therefore require some action in case of failure. Our approach does not prescribe any specific
technique for elicitation and analysis of the requirements. Thus, the software engineer should
choose existing requirement elicitation techniques that best fit. However, we can suggest some
common sources of requirements that usually require adaptation since usually they are critical
and impact the system behavior:

� Softgoals present in the goal model;

� Goals that are critical for the system-to-be to fulfill its purpose, since some subsequent
activities may depend on them;

� Government regulations and rules may require that certain goals cannot fail or be
achieved at appropriate rates;

� Requirements related to Service Level Agreements (SLAs).
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Figure 3.6: Steps of Specification of adaptation and monitoring activity (AUTHOR,
2015).

Next, adaptation design tasks should be added in the root node of the contextual DGM
following the Step 2 described in the beginning of the section. These adaptation design tasks
represent the tasks required for adaptation of each requirement the software engineer wants to
adapt. We propose to add a new design task in the root node for adaptation management as well
as design tasks in this node for each critical requirement that must be monitored and adapted.

Finally, design tasks should be added to represent the adaptation strategies. The adapta-
tion design tasks can be of several types, such as reconfiguration of system’s parameters, step
back or delegate the task to an user. Note that we should add at least two adaptation design tasks
since the variants are the cornerstone for adaptability, a system with only one variant cannot be
adaptable (ALI; DALPIAZ; GIORGINI, 2010).

The next step is to associate each adaptation design task with a context label meaning
that these elements will be activated when the associated context holds. For example, consider
the Manage Schedule adaptation design task in Figure 3.8. This task will be executed when
C6 context holds. According to the framework of ALI; DALPIAZ; GIORGINI (2010), the
contexts should be refined in statements and facts. The refinement of C6 context is presented in
Figure 3.7.

Therefore, C6 context will hold when The Number of conflicts is higher than [MCA]
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Figure 3.7: Refinement of C6 context of meeting scheduler example (AUTHOR, 2015).

(being MCA the Maximum Conflicts Allowed by the stakeholders) or when Schedule defined

goal failed, i.e. the fact Goal is in the failed state.

Figure 3.8: Contextual DGM of meeting scheduler example refined with adaptation
elements (AUTHOR, 2015).

After all contexts, that influence the requirements are refined, and the contextual elements
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that need to be monitored are identified, the next step is to identify the equipments/technologies
needed to monitor these contextual elements (see Section 2.4). The contextual elements are the
properties of real-world presented in the facts of context refinements that change their values
dynamically. Therefore, the changes in the contextual elements imply in changes in the system
context.

The context information can be represented in a table like Table 3.1 in order to facilitate
the visualization and management by the software engineer.

Table 3.1: List of contexts of meeting scheduler example and the equipment/technology
needed to monitor them m (AUTHOR, 2015).

Description Variation Equipment or
Point Type Technology

The number of participants is small Mechanism to
C1 and The number of rooms available OR information

is small and The date range is small storage.
The number of participants is high and Mechanism to

C2 The number of rooms available is high OR information
and The date range is high storage.

The number of participants is small Mechanism to
C3 or The meeting is urgent OR information

or Participants do not usually answer storage.
meeting requests by email

Number of participants is high or Mechanism to
C4 The meeting is not urgent or OR information

Participants usually answer storage.
meeting requests by email

C5 The participants agenda is up to date OR Mechanism to
information storage.

C6 Goal Schedule defined failed or The AND Mechanism to
number of conflicts is higher than [MCA] information storage.

C7 Response Time is higher than 2s AND Mechanism to
more than five times in the week information storage.

C8 The Number of conflicts is OR Mechanism to
higher than [MCA] OR information storage.

C9 The Step back strategy have failed OR Mechanism to
information storage.

C10 The Add new server OR Mechanism to
strategy have failed information storage.

C11 Response Time is higher than 2s OR Mechanism to
more than five times in the week information storage.

In our running example, the software engineer decided that the system has to adapt itself
when the Performance softgoal and the Schedule Defined goals fail. Therefore, two adaptation
design tasks were added to our running example: Manage Performance adaptation and Manage

Schedule adaptation.
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The adaptation design tasks are Step Back and Reconfigure Schedule for the Manage

Schedule adaptation design task; otherwise, Delegate (Software Architect) and Add new server

are the adaptation tasks for the adaptation Manage Performance adaptation design task.
These adaptation elements of the meeting scheduler example are represented in Figure 3.8.

In this figure, C1-C5 are the contexts previously identified, while C6-C11 are the ones related to
the requirements adaptation identified in this activity. These contexts must hold so the adaptation
design tasks can be executed.

In our meeting scheduler running example, the only technology needed to monitor the
contexts annotated in the contextual goal model is a mechanism to information storage. The
description of contexts and the equipment/technology are presented in Table 3.1.

However, the world is volatile and could be in different states. A partial state of the world
that is uniform does not influence the decisions of a system (ALI; DALPIAZ; GIORGINI, 2010).
Hence, the system should monitor the properties over the world that are dynamic and have a
impact on system’s behavior namely contextual elements (see Section 2.2).

The facts and statements of a context will be activated when some change in the CEs
occurs. Therefore, we should create a new design task, called Monitor Context for example, to
represent the monitoring of the context. Then, for each one of the dynamic CE, a new design task
should be created, expressing the need to monitor it. These tasks can have the form of Monitor

[contextual element].
In the meeting scheduler system, we identified five CEs: meeting date, timetables

responses, participants’ agenda, number of conflicts and response time. Thus, we added five
design tasks to represent the monitoring of these contextual elements as shown in Figure 3.8.

The outputs of this activity are the refined contextual design goal model and context
refinements. Having defined the adaptation strategies and the contextual elements that need to be
monitored, we can now move on to specify the order of execution of tasks and goals. For this,
we rely on flow expressions.

3.4 Activity 4: Specification of flow expressions

� Goal: Refine the contextual design goal model with flow expressions that represent
the execution order of elements in the model

� Input: Contextual design goal model refined

� Steps:

1: Assign an identification (ID) for each goal and task in the goal model

2: Determine the flow expressions

3: Specify idle states

� Output: Behavioral contextual design goal model
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In this activity, the contextual design goal model is refined with flow expressions that
represent the execution order of elements in the model through the steps shown in Figure 3.9.

Figure 3.9: Steps of Specification of flow expressions activity (AUTHOR, 2015).

Flow expressions are a set of enrichments to a goal model that allow specification of the
runtime behavior through the execution order of its elements (see Section 2.6). These expressions
are used in the GO2S process as an intermediary model in order to derive the statechart.

The first step of the specification of flow expressions activity is to assign an identification
to each goal and task in the model. This identification is necessary for reference in the flow
expression later. Gi was used as the identification for goals and Ti for tasks and design tasks
where i is the number of the task. Considering that there are different ways for a system to
perform a set of tasks, determining the behavioral refinement (through flow expressions) is not a
matter of direct translation (PIMENTEL et al., 2014).

After the IDs assignment, the next step is to define the flow expression for each parent
node which describes the behavior of its children elements using the symbols proposed by
PIMENTEL et al. (2014). The strategy can be bottom-up or top-down, the result will be the
same. Thereafter, when we reach the root goal, we have the flow expression from the entire
system. The resulting flow expressions should be annotated in the contextual design goal model
as demonstrated in Figure 3.10.

The flow expressions could be defined taking in consideration the business rules of
the system that were defined during the requirements phase. Therefore, the software engineer
should analyze the requirements to determine the execution order of the tasks in the system, their
optionality and multiplicity.

A common practice when creating statecharts is to use intermediate states as a point
where the system is idle, waiting for some input, such as input selection by the user or for a
context to hold. Considering how frequently these states appear, and aiming to reduce visual
pollution in the behavioral contextual DGM, such states must be inserted directly in the flow
expressions identified as iX, where X is an integer.
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Figure 3.10: Behavioral contextual design goal model of the meeting scheduler example
(AUTHOR, 2015).

The result flow expression, presented in Figure 3.10, of our running example is (i1 t16 i2

(g2 | g3 | g4 | t15)*) - t24 - t25.

Thus, from the idle state (i1), the system executes Manage Access (t16) design task,
entering in an idle state (i2). The Meeting Characterized (g2), Timetables collected (g3), Schedule

defined (g4) goals, and the Update meeting (t15) task are alternatives that can be executed zero
or more times. Besides, Monitor Context (t24) and Manage Adaptation (t25) design tasks are
running concurrently with all tasks.

The output of this activity is the behavioral contextual design goal model. It is the
contextual design goal model annotated with flow expressions. This model can represent in a
unified way all the views developed in the GO2S (contextual, design and behavioral).

The behavior of a context-sensitive system can be simulated, using tools such as
YAKINDU (2014) to help reason about the architecture’s ability to support the range of func-
tionality and related quality requirements of the system (CLEMENTS et al., 2002). Hence, after
defining the flow expressions, the next activity is the statechart derivation, which later can be
used for analysis.
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3.5 Activity 5: Statechart derivation and refinement

� Goal: Obtain the statechart and perform the refinements

� Input: Behavioral contextual design goal model

� Steps:

1: Generate the statechart using the derivation patterns:

1.1: Create a state for each goal and task following the hierarchy of the design
goal model

1.2: If necessary, create idle states to model situations where the system is
waiting for user interaction or for a given context to hold.

2: Specify transitions in the statechart

� Output: Statechart

The statechart derivation and refinement activity relies on the behavioral contextual
design goal model as in input, as indicated in Figure 3.11. The goal of this activity is to obtain
the statechart and perform the refinements.

Figure 3.11: Steps of Statechart derivation and refinement activity (AUTHOR, 2015).

The flow expressions previously defined are translated into states of the statechart that
represents the system’s behavior view. We adopted the set of derivation patterns proposed
by PIMENTEL et al. (2014). They are related to the different flows that may be expressed
(sequential, alternative and concurrent) as well as to their optionality and multiplicity (see
Figure 3.12).
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Figure 3.12: Statechart Derivation Patterns (PIMENTEL et al., 2014).

The generation of statechart consists of creating a state for each goal and task starting
with the root node. The hierarchy of goals should be considered, therefore, each goal and task in
and/or refinements becomes a superstate with its children nodes. We have six types of flows:
sequential tasks, alternative tasks, concurrent tasks, optional execution, zero or more executions,
one or more executions.

Sequential tasks are represented in the flow expression through the IDs separated by
blank space ( ). Figure 3.13 shows an illustration of the statechart derivation of this type of flow
from the behavioral design goal model.

Figure 3.13: Sequential Tasks Pattern (AUTHOR, 2015).

Alternative tasks are represented in the flow expression through the IDs separated by a
vertical bar (|). An illustration of the statechart derivation of this type of flow is presented in
Figure 3.14.

Figure 3.14: Alternative Tasks Pattern (AUTHOR, 2015).
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A hyphen (-) should be used to separate the IDs of concurrent tasks in the flow expression
as shown in Figure 3.15.

Figure 3.15: Concurrent Tasks Pattern (AUTHOR, 2015).

In a sequence flow, one of the tasks possibly will not be executed. Accordingly, a question
mark (?) on the right of the ID in the flow expression should be used to represent this optionality
as demonstrated in Figure 3.16.

Figure 3.16: Optional Tasks Pattern (AUTHOR, 2015).

An optional task can be executed repeatedly. Hence, we should use an asterisk (*) on the
right of the ID in the flow expression to represent that this task can be executed zero or more
times. Figure 3.17 shows an illustration of the statechart derivation of zero or more executions
tasks from the behavioral design goal model.

Figure 3.17: Zero or more executions Pattern (AUTHOR, 2015).

Finally, we should use a plus sign (+) on the right of the ID in the flow expression to
represent the repetition of tasks as presented in Figure 3.18.

During the statechart derivation it can be necessary to specify more idle states to represent
that the system is waiting for some input. These states should be represented though new states
and the conditions required to hold should be specified in the transition of these idle states.
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Figure 3.18: One or more executions Pattern (AUTHOR, 2015).

The procedure described above should be carried traversing the behavioral contextual
design goal model until it reaches the leaf nodes. After generating the statechart, we must specify
its transitions in terms of their triggers and conditions. Any event can be used as a trigger, but
there are five particular classes of events that are likely to appear in a statechart (PIMENTEL
et al., 2014): user request, timer, requested by another task, requested by another system and
context activation.

Figure 3.19 presents the complete statechart of our running example. The context
activation is represented through the context labels (C1, C2. . . Cn) annotated in the behavioral
contextual design goal model (Figure 3.10).

The system starts in idle state (i1). If the user requests login in the system, Manage

Access (t16) state is executed. In case of failure of the login, the system returns to the idle state

(i1), otherwise, it enters in idle state (i2). From i2, the user can start to characterize the meeting,
so, the system enters in Meeting Characterized (g2) superstate in which Define participants (t2),
Define Date Range (t1) and Define topics (t3) states are reached, followed by the idle state (i2).

If the user requests to update the meeting, the system reaches the Update meeting (t15)

state, later returning to idle state (i2). On the other hand, if collect timetables is requested, the
system enters in Collect timetables (g3) superstate from Idle state (i4) where it should wait C3
or C4 or C5 context to hold. If C3 holds, Input participants availability (t5) state is reached,
otherwise if C4 holds, Collect by email (t4) state is reached, and finally, if C5 holds, Collect

automatically (t6) state is reached. After that, the system returns to idle state (i2).
If the user requests manually schedule, the system reaches the Schedule manually (t7)

state. On the other hand, if C1 or C2 context holds, the system enters in Schedule automatically

(t8) superstate. If C1 holds, Brute Force Algorithm (t12) state is reached. Otherwise, if C2 holds,
Heuristics based algorithm (t11) state is reached.

Therefore, Characterize meeting (g2), Timetables collected (g3), Schedule defined (g4),
Update meeting (t15) are alternatives states that can be executed zero or more times. All these
states are running concurrently to Monitor Context (t24) and Manage Adaptation (t25) states.

Monitor Context (t24) is a superstate which has five states running concurrently: Monitor

meeting date (t19), Monitor number of conflicts (t22), Monitor Participants agenda (t20), Monitor

response time (t23) and Monitor Timetables responses (t21). These sub-states represent the
monitoring of dynamic contextual elements. Hence, when some change occurs in any of these
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Figure 3.19: Statechart of meeting scheduler example (AUTHOR, 2015).

CEs, some context may hold and thus, the system should take some adaptation action.
Manage Adaptation (t25) is a superstate that represents the adaptation design tasks the

system should perform in case of failure of critical requirements. It starts in a idle state (i7)

and waits until C6 or C7 context holds. If C6 context holds, it enters in the Manage schedule

adaptation (t27) superstate from idle (i5) state. When C9 context holds, the Reconfigure Schedule

(t14) state is reached, otherwise, if C8 holds, Step Back (t13) state is entered. These states are
executed as many times as necessary, until the contexts do not hold anymore.

When C7 context holds, the system enters the Manage performance adaptation (t26)

superstate from the idle state (i3). When C11 context holds, the Delegate (Software Architect)
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(t17) state is reached. Otherwise, if C10 holds, Add new server (t18) state is entered. Similarly
these states are executed many times as necessary until the contexts do not hold anymore.

The statechart can be used to requirements validation, hence, the software engineer will
be able to check if the system will behave as expected. This model can also be used in the next
phase of the software development (implementation) to generate code through tools such as
YAKINDU (2014).

Given that it is possible that several variants may be enabled in certain contexts, it is
necessary to determine the best option. The prioritization of variants is explained in the next
section.

3.6 Activity 6: Prioritization of variants

� Goal: When more than one context holds prioritize variants

� Input: Behavioral contextual design goal model

� Steps:

1: Define the preferences for variants over each NFR

2: Determine the weights of each NFR

3: Synthesize the results

4: Verify the consistence

� Output: Vector of variants priorities

The system’s variants are applicable only if their associated contexts hold. However, in a
certain execution, more than one variant may be enabled in the actual context. Therefore, the
system has to implement runtime mechanisms to decide on the best choice of variant to adopt. In
our work, we are concerned with the satisfaction of the non-functional requirements since they
have a impact on the system’s behavior. Hence, we consider the variant contribution for the NFR
satisfaction when choosing the best one when more than one hold at runtime.

In order to determine the variant contribution, we propose the use of the Analytical
Hierarchy Process (AHP)) method (SAATY, 1987). We adopted this method because of its
benefits are well described in the literature (BRITO et al., 2007): it is a well-known and accepted
method; it is appropriate for handling conflicting concerns problems; it has the ability to quantify
subjective judgements; it is capable of comparing alternatives in relation to established criteria;
and it provides means to guarantee the logical consistency of the judgements.

The AHP method is used in the GO2S process to produce a ranking of variants (alter-
natives) that most contributes for the satisfaction of NFRs (criteria). First, it is necessary to
establish priorities for the main criteria by judging them in pairs for their relative importance,
thus generating a pairwise comparison matrix. Judgments which are represented by numbers
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from the fundamental scale are used to make the comparisons. The number of judgments needed
for a particular matrix of order n, the number of elements being compared, is n(n - 1)/2 because
it is reciprocal and the diagonal elements are equal to unity (SAATY, 1987).

It should be noted that AHP analysis can be performed using a spreadsheet tool, which
shows that there is no need for a sophisticated tool support to implement this method. The
activities required for NFRs prioritization are depicted in Figure 3.20.

Figure 3.20: Steps of Prioritization of variants activity (AUTHOR, 2015).

In our running example, we took in consideration three NFRs (usability, security, perfor-
mance) and that it is possible that C3, C4, and C5 contexts of Figure 3.10 hold at the same time.
Figure 3.21 illustrates the hierarchical tree of this example.

Figure 3.21: AHP hierarchical tree of the meeting scheduler example (AUTHOR, 2015).



3.6. ACTIVITY 6: PRIORITIZATION OF VARIANTS 59

The first step of this activity consists in defining the preferences for variants (alternative)
over each NFR (criteria). In order to achieve this, we considered the contributions links Make,
Help, Hurt and Break that can be presented in the behavioral contextual design goal model.
In case of changes in the contribution links that are context-dependent, the new values of the
contributions should be considered. The system should update the contribution strength at
runtime and perform new analysis of the variants.

The contributions can also be represented, respectively, by ++, +, - and - - (SANTOS,
2013). The variants contribution for each NFR are represented through the contribution links as
demonstrated in Table 3.2 for the meeting scheduler example. These contributions values pre-
sented in this table are subjective and based on our experience. In a real setting, the stakeholders
should be consulted.

Table 3.2: Variants and their contribution for the NFRs of meeting scheduler example
(AUTHOR, 2015).

ID Variant Performance Security Usability
var3 Collect by phone + -
var4 Collect by email - + +
var5 Collect automatically ++ ++ ++

SANTOS (2013) defined a mapping, presented in Table 3.3, to convert from the variants
contribution (demonstrated in Table 3.2) to AHP scale (SAATY, 1987). Note that in the first
row, ++ sign has a importance from 1 (when compared to ++) to 9 (when compared to - -). On
the other hand, in the last row, the - - sign has an inverse importance varying from 1/9 (when
compared to ++) to 1 (when compared to - -).

Table 3.3: Mapping from NFRs Contributions to AHP values (SANTOS, 2013).

++ + = - - -
++ 1 3 5 7 9
+ 1/3 1 3 5 7
= 1/5 1/3 1 3 5
- 1/7 1/5 1/3 1 3

- - 1/9 1/7 1/5 1/3 1

The pairwise comparisons between the variants for each NFR is done by creating a matrix
for each NFR to compare all values of variants contributions. Hence, matrices n x n (with n as
the number of variants) will associate the variants according to their contribution to the selected
NFR. In our running example, we have three NFRs, hence we constructed three matrices. The
results of these comparisons are presented in Table 3.4, Table 3.6, and Table 3.8.

In order to determine the vector of variants priorities for the Performance NFR, we
should calculate the normalized pairwise comparison matrix. Its elements are determined by
dividing each element of the comparison matrix (Table 3.4) by the sum of each column. The
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Table 3.4: Variant’s contributions to the Performance NFR of meeting scheduler example
(AUTHOR, 2015).

Performance var3 var4 var5
var3 1 5 1/3
var4 1/5 1 1/7
var5 3 7 1

Sum 5 9 1.48

normalized pairwise comparison matrix for the variants contributions to the Performance NFR
of meeting scheduler example is presented in Table 3.5.

Table 3.5: Normalized pairwise comparison matrix for the variants contributions to the
Performance NFR (AUTHOR, 2015).

Performance var3 var4 var5 Weight
var3 0.24 0.38 0.23 0.28
var4 0.5 0.08 0.10 0.074
var5 0.71 0.54 0.68 0.643

Then, we find the estimated relative priorities by calculating the average of each row of
the normalized matrix. Finally, we have the priority vector for the pairwise matrix. The vector of
variants priorities for the Performance NFR is [var3 = 0.28 , var4 = 0.074, and var5 = 0.643].

The results of the comparisons of the variant’s contributions to the Security NFR of
meeting scheduler example are presented in Table 3.6.

Table 3.6: Variant’s contributions to the Security NFR of meeting scheduler example
(AUTHOR, 2015).

Security var3 var4 var5
var3 1 1/5 1/7
var4 5 1 1/3
var5 7 3 1

Sum 13 4.2 1.48

The normalized pairwise comparison matrix for variants contributions to the Security
NFR is presented in Table 3.7. Accordingly, the vector of variants priorities for the Security NFR
is [var3 = 0.074 , var4 = 0.283, and var5 = 0.643].

The results of the comparisons of the variant’s contributions to the Usability NFR of
meeting scheduler example are presented in Table 3.8.

The normalized pairwise comparison matrix for variants contributions to the Usability
NFR is presented in Table 3.9.

Accordingly, the vector of variants priorities for the Usability NFR is [var3 = 0.106 ,
var4 = 0.26, and var5 = 0.633].
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Table 3.7: Normalized pairwise comparison matrix for the variants contributions to the
Security NFR (AUTHOR, 2015).

Performance var3 var4 var5 Weight
var3 0.08 0.05 0.10 0.074
var4 0.38 0.24 0.23 0.283
var5 0.54 0.71 0.68 0.643

Table 3.8: Variant’s contributions to the Usability NFR of meeting scheduler example
(AUTHOR, 2015).

Usability var3 var4 var5
var3 1 1/3 1/5
var4 3 1 1/3
var5 5 3 1

Sum 9 4.33 1.53

Table 3.9: Normalized pairwise comparison matrix for the variants contributions to the
Usability NFR (AUTHOR, 2015).

Performance var3 var4 var5 Weight
var3 0.118 0.08 0.13 0.106
var4 0.33 0.23 0.22 0.26
var5 0.56 0.69 0.65 0.633

In order to determine the weights of each NFR, the software engineer should compare all
pairs of NFRs and assign a value to each pair using the AHP scale. The results of the pairwise
comparisons of the meeting scheduler example with three NFRs (usability, security, performance)
are shown in Table 3.10. These assigned values are subjective and based on our experience.

Table 3.10: Pairwise comparison values for the NFRs of the meeting scheduler example
(AUTHOR, 2015).

Usability Performance Security
Usability 1 1/7 1/5

Performance 7 1 3
Security 5 1/3 1

Sum 13 1.48 4.2

The normalized pairwise comparison matrix for the NFRs of the meeting scheduler
example is presented in Table 3.11.

The NFR priorities vector of the meeting scheduler example is [Performance = 0.643,
Security = 0.283 and Usability = 0.074]. Hence, we can notice that Performance is the most
critical NFR followed by Security and Usability.

After defining the preferences for variants over each NFR, as well as the weights of each
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Table 3.11: Normalized pairwise comparison matrix for the NFRs of the meeting
scheduler example (AUTHOR, 2015).

var3 var4 var5 Weight
var3 0.08 0.10 0.05 0.074
var4 0.54 0.68 0.71 0.643
var5 0.38 0.23 0.24 0.283

NFR, the next step is to synthesize these results. Accordingly, the vectors of variants priority for
each NFR are combined into a single matrix. This new matrix is multiplied by the NFR priority
vector obtained from the NFR importance matrix to obtain the overall objective (i.e., ranking of
variants).

Table 3.12 shows the final ranking in our running example. We can notice that the var5
(collect automatically) is the one that contributes mostly for the satisfaction of the NFRs (0.67)
followed by var3 (collect by phone) with 0.21 and var4 (collect by email) with 0.15.

Table 3.12: Final Ranking of meeting scheduler example (AUTHOR, 2015).

var3 var4 var5 NFR priority
Usability 0.11 0.26 0.63 0.074

Performance 0.28 0.07 0.64 0.643
Security 0.07 0.28 0.64 0.283

Variant priority 0.21 0.15 0.64

The final step of the prioritization is to check the consistency of the judgments that the
software engineer demonstrated during the pairwise comparisons. The logical quality of the
decisions is guaranteed by computing the consistency ratio (CR), which measures the consistency
of the pairwise comparison judgments. The required procedure to calculate these ratios are
described in SAATY (1987). When the consistency ratio exceeds 0.10 appreciably the judgments
often need reexamination. This reduces any possible error that might have been introduced
during the judgment process (SAATY, 1987).

We used a spreadsheet tool to determine the consistency ratios of the meeting scheduler
example. For the pairwise comparison matrix for NFRs (Table 3.10), we obtained a consistency
ratio of 0.056. Otherwise, the consistency ratios for the variants contribution for performance,
security, and usability were 0.056, 0.056, and 0.033 respectively. These ratios are a good
indication that logical consistent judgments were made on all pairwise comparisons, because
they are below the required 0.1 threshold (SAATY, 1987).

3.7 GO2S Metamodel

Modeling languages allow the creation of high-level models raising the level of abstrac-
tion and hiding implementation details. In order to prevent invalid models, the abstract syntax
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of a modeling language must define well-formedness rules that state how the concepts may be
legally combined (FIDALGO et al., 2012).

The abstract syntax of a language describes the vocabulary of concepts provided by the
language and how they may be combined to create models. This abstract syntax is formalized
by means of a metamodel, which also serves as a basis to interchange models with other tools
(FIDALGO et al., 2012).

Accordingly, a metamodel describes the concepts of a modeling language, their properties
and the legal connections between language elements. Therefore, metamodels are mandatory
and important artifacts in the specification of modeling languages since they precisely define
how tools and models should work together (FIDALGO et al., 2012).

An abstract syntax model of the behavioral contextual design goal model include concepts
such as Nodes, Context and Behavioral Annotations, and Requirements and Design Elements. In
addition, there are relationships between concepts, such as Links and Contributions.

Figure 3.22 presents the metamodel of the behavioral contextual design goal model.
It has three main entities: BehavioralContextualDesignGoalModel, Node, and Link. Behav-

ioralContextualDesignGoalModel is the root entity that corresponds to the drawing area of a
behavioral contextual design goal model. For this reason, it can have many instances of Node and
many instances of Link, which cannot exist without BehavioralContextualDesignGoalModel.

The behavioral contextual design goal model has requirements and design elements.
Accordingly, the GO2S metamodel has two specialized entities for Node: RequirementsElement

and DesignElement that has an attribute called Name (i.e. the content presented in these
elements).

The requirements elements can be goals, tasks, quality constraints and softgoals. Hence,
the RequirementsElement entity is specialized in four entities that are used to represent the
requirements concepts of a goal model: Softgoal, Task, QualityConstraint, and Goal.

The design elements of a behavioral contextual design goal model can be design tasks
and design constraints. Therefore, the DesignElement entity is specialized in two entities: Design

Task, and DesignConstraint, which are used to represent the design concerns that appeared in the
design phase.

Since tasks and design tasks can be assigned to an user, the Task and DesignTask entities
have an attribute called Assignment. Besides, the Task, Goal and Design Task entities can have
behavioral annotations. Hence, they are associated with the BehavioralAnnotation entity.

Besides the Node entity, our metamodel has two specialized entities for Link, namely
RefinementLink and ContributionLink. Since, a link can have a context annotation, the Link

entity is associated with the ContextAnnotation entity that has an attribute named Description.
The RefinementLink entity is associated the Node entity. A refinement link has one

parent and one child. Furthermore, we represented the two types of refinement links (AND,
OR-refinements of a behavioral contextual design goal model) through the same class. For
this reason, the RefinementLink entity has an enumerator attribute named RefinementType that
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Figure 3.22: GO2S metamodel that relates requirements, design, context and behavioral
annotations (AUTHOR, 2015).

encompasses these two possible refinement types.
As we have explained previously, a softgoal has different degrees of satisfaction. With

this in mind, nodes (the Node entity) contribute to some degree of satisfaction to softgoals
(Softgoal Entity). Hence, based on the NFR Framework (CHUNG et al., 2000), we propose to
represent the contributions from the nodes to satisfy the softgoals through the ContributionLink

entity. Therefore, a contribution has a Node as source and a Softgoal as target. In order to specify
the contribution degree to satisfy each softgoal, the ContributionLink entity has an enumerator
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attribute – named ContributionType – indicating five possible contribution degrees: Make, Break,
Unknown, Help or Hurt.

3.8 Final Considerations

In this section we presented the GO2S, a systematic process for deriving the behav-
ioral view of context-sensitive systems architecture (modeled as statecharts), from system’s
requirements (modeled as goal models). This is an iterative process centered on the incremental
refinement of a goal model, obtaining different views of the system (design, contextual, be-
havioral). We described its six activities: Construction of design goal model; Specification of

contextual variation points; Specification of monitoring and adaptation; Specification of flow

expressions, Statechart derivation and refinement and Prioritization of variants presenting a
summary of their goals, inputs, steps, and its outputs. We also presented the GO2S metamodel
that describes the concepts of the behavioral contextual design goal model, their properties and
the legal connections between the elements. In the next chapter, we illustrate the application of
the GO2S process through the Znn exemplar.
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4
Illustration

In this chapter, we illustrate the application of the GO2S process through the ZNN.com
exemplar. It is a problem available in the repository of examples and challenge problems that the
software engineering for self-adaptive systems community can use to motivate research, exhibit
solutions and techniques, and compare results (CHENG; SCHMERL, 2014). This example
has already been used by several other studies (ANGELOPOULOS; SOUZA; PIMENTEL,
2013)(CHENG; GARLAN; SCHMERL, 2009) (LUCKEY et al., 2011).

4.1 System’s Description

Znn.com is a news service, based on real sites, that serves multimedia news content to its
customers through a website. The business objectives at Znn.com are to serve news content to
its customers within a reasonable response time range while keeping the cost of the server pool
within its operating budget.

From time to time, due to highly popular events, Znn.com experiences spikes in news
requests that it cannot serve adequately, even at maximum pool size. In these cases, response
times for user requests might become unacceptable and the system has two possible adaptation
strategies: enlisting new servers to divide the load of requests or switch from multimedia to
text-mode to make each request quicker to respond.

However, these strategies may cause problems in two other requirements of this system:
(i) the website managers would like to run the system at the lowest cost possible and adding new
servers costs money; (ii) second, the users would like to see news with high content fidelity (i.e.,
high presentation quality), preferring multimedia over simple text.

We borrow the goal model for this exemplar by (ANGELOPOULOS; SOUZA; PI-
MENTEL, 2013) (see Figure 4.1). It is important to note that the model does not represent
complete requirements for a news service (which would include concerns such as adding news,
searching, managing advertisement, etc.), but concentrates on the adaptation scenario.

The challenge of such systems is to achieve their mandate even when they operate
under critical conditions. The difficulty lies in taking the right decision at the right time, in the
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Figure 4.1: Goal model of the ZNN.com exemplar (ANGELOPOULOS; SOUZA;
PIMENTEL, 2013).

sense that the problem should be detected promptly and the most efficient strategy to stabilize
operation should be applied immediately. Under such circumstances, human intervention can
be insufficient and automated mechanisms are required to carry out both decision-making and
adaptation.

When ZNN.com experiences spikes in news requests it may cause the failure of the High

performance softgoal. In this case, four adaptations are possible (ANGELOPOULOS; SOUZA;
PIMENTEL, 2013):

a) Simple Reduce Response Time: In case a client experiences response time above a
predefined threshold, then the fidelity is lowered by one step. In case response time
remains high, fidelity is decreased again one more step;

b) Smarter Reduce Response Time: If an unacceptable percentage of clients experi-
ences high response time, then enlist one server, then enlist another server and finally
lower fidelity by one step. Repeat twice the last two actions until response time is
restored;

c) Reduce Overall Cost: If server cost is higher than a threshold value, then reduce
the number of servers by one. If response time is low and cost remains high repeat
the previous action, until cost is returned to normal;

d) Improve Overall Fidelity: If content fidelity level is below threshold then raise
fidelity of all servers by one step. If response time is low and fidelity remains low
then raise fidelity level one more step.
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In the next sections we describe the results of applying each activity of GO2S process in
this exemplar.

4.2 Activity 1: Construction of design goal model

The first activity of GO2S process has the objective of refining a goal model with new
design elements. Hence, the software engineer should check if there is critical design task or
design quality constraint not previously identified in the requirements phase that is necessary for
the system. Moreover, the DGM also allows the definition of assignments for its tasks. These
assignments are expressed by labels below the assigned element.

We are concerned with the adaptation scenario in the Znn example. The goal model
provided by ANGELOPOULOS; SOUZA; PIMENTEL (2013) is appropriate, so there was no
need to add new design tasks and constraints. All critical requirements were identified and
modeled as shown in Figure 4.1.

The OR refinement of DGM introduces alternatives into the model accommodating
many/all possible functionalities that fulfill stakeholder goals. Hence, we need to consider
variability of the model as indicated in next activity.

4.3 Activity 2: Specification of contextual variation points

In this activity, the (contextual) variation points – VP are annotated in the design goal
model to visually specify the effects of context in the system’s behavior as shown in Figure 4.2.

Figure 4.2: Contextual DGM of the ZNN exemplar (AUTHOR, 2015).

Considering that the news can be showed in three different ways: only-text context,
low resolution context and high resolution content, we identified three variation points at the
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or-refinement of Serve news goal. These VPs are annotated in the contextual goal model trough
the C1, C2 and C3 labels.

The contextual VPs should be specified following the notation of ALI; DALPIAZ;
GIORGINI (2010). Hence, each context specified in the contextual design goal model must be
refined through a set of statements and facts. These refinements are required in order to enable
the system to check at runtime if context is enabled. Figure 4.3 presents the refinements of
contexts C1, C2 and C3.

C1 context holds when the st1=softgoal high performance keeps failing statement is true.
This refinement is evaluated through the f1=the response time is higher than [MAXRT] for more

than a second fact. If this fact is true, then the statement holds. Therefore, we can infer that C1
context is true and then the Serve text-only context task can be executed.

C2 context holds when the f3=Content fidelity level is below than [threshold] fact or the
st1=softgoal high performance is failing statement are true. If f1=the response time is higher

than [MAXRT] in less than a second fact or f2=the number of servers is equal to 3 fact is true,
the statement holds. Therefore, we can infer that C2 context is true and then the Serve low

resolution content task can be executed.

Figure 4.3: Refinements of contexts of ZNN exemplar of activity 2 (AUTHOR, 2015).

C3 context holds when the st1=softgoal high performance is being satisfied statement is
true. This refinement is evaluated through the f1=the response time is less than [MAXRT] fact. If
it holds, the statement is true. Therefore, we can infer that C3 context is true and then the Serve

high resolution content task can be executed.
The outputs of this activity are the contextual design goal model and the context refine-

ments. Next, we need to consider how the monitoring will be performed and how to support the
required adaptation.
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4.4 Activity 3: Specification of adaptation and monitoring

Context-sensitive systems have the ability to adapt themselves in order to provide per-
sonalized services for their users, i.e. to enable/disable functions. Therefore, we propose to use
this characteristic to deal with the requirements adaptation when a goal fails. In order to achieve
this, we refine the contextual design goal model with elements necessary for the specification of
adaptation design tasks as well as the monitoring of the facts.

In the Znn examplar, we observed that the system has to adapt itself when the Perfor-

mance softgoal fails. Accordingly, the Manage Performance Adaptation (t9) design task was
added and its adaptation tasks are Add new server (t10) and Remove a server (t11). These
adaptation design tasks, the context annotations as well as the tasks responsible for monitoring
the contextual elements are presented in Figure 4.4.

Figure 4.4: Contextual DGM of ZNN refined with adaptation elements (AUTHOR,
2015).

Figure 4.5 depicts the refinements of C4 and C5 contexts. C4 context holds when the
st1=it is necessary to add a new server statement is true. This statement holds if f1= [x]% of

clients experiences response time higher than [MAXRT] fact or f2= the number of servers is less

or equal to 3 fact holds. When the C4 context is true, the Add new server design task is executed.
On the other hand, C5 context holds when the st2=it is necessary to remove a server

statement is true. This statement holds if f1= server cost is higher than [threshold] value fact or
f2= response time is less than [MAXRT] and cost remains higher than [threshold] value fact
hold. When the C5 context is true, the Remove a server design task is executed.

The refinements of each context, annotated in Figure 4.5, were used to identify the
contextual elements. Thus, the elements in the znn.com exemplar identified were response time,
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Figure 4.5: Refinements of contexts of ZNN exemplar of activity 3 (AUTHOR, 2015).

number of servers, server cost and content fidelity level.
Therefore, we added the Context Monitored goal in the root goal to represent the moni-

toring of these contextual elements and consequently the system’s context. Thereafter, we added
a design task for monitoring each contextual element as depicted in Figure 4.5.

After all contexts, that influence the requirements are refined, and the contextual elements
that need to be monitored are identified, the next step is to identify the equipments/technologies
needed to monitor these contextual elements (see Section 2.4). In this examplar, the only tech-
nology needed to monitor the contexts annotated in the contextual goal model is the information
stored in a database. The description of contexts and the equipment/technology are presented in
Table 4.1.

Table 4.1: List of contexts of Znn example and the equipment/technology needed to
monitor them (AUTHOR, 2015).

Description Variation Point Type Equipment/Technology
C1 Softgoal high performance Mechanism to

keeps failing OR information storage.
C2 Softgoal high performance is Mechanism to

failing and Content fidelity OR information
level is below than [threshold] storage.

C3 Softgoal high performance OR Mechanism to
is being satisfied information storage.

C4 It is necessary to add OR Mechanism to
a new server information storage.

C5 It is necessary to remove OR Mechanism to
a new server information storage.

The outputs of this activity are the contextual design goal model refined and contexts
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refinements. Having defined the adaptations strategies and the contextual elements that need to
be monitored, we can now move on to specify the order of execution of tasks and goals and how
they interact. For this, we rely on flow expressions.

4.5 Activity 4: Specification of flow expressions

In this activity, the contextual design goal model is refined with flow expressions that
represents the execution order of elements in the model. The output of this activity is the
behavioral contextual goal model which is the contextual goal model annotated with flow
expressions.

The behavioral contextual design goal model of the Znn exemplar is presented in Fig-
ure 4.6. Its flow expression is (i1 g2*)- t4 – t9

Thus, from the idle state (i1), the system executes the Serve News (g2) state zero or more
times. Besides, the Manage Performance Adaptation (t9) and Monitor Context (t4) are states
running concurrently with all states.

Figure 4.6: Behavioral Contextual DGM of Znn Exemplar (AUTHOR, 2015).

The behavior of context-sensitive system can be simulated to help to reason about the
architecture’s ability to support the range of functionality and related quality requirements of the
system. Hence, after defining the flow expressions, the next activity is to derive a statechart that
later can be executed/simulated.

Given that it is possible that several variants may be enabled in certain contexts it is
necessary to determine the best option. The prioritization of variants is explained in the next
section.
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4.6 Activity 5: Statechart derivation and refinement

The statechart derivation and refinement activity uses the behavioral contextual goal
model as in input. The goal of this activity is to obtain the statechart and perform the refinements.

The flow expressions previously defined are translated into states of the statechart that
represents the system’s behavior view. We adopted the set of derivation patterns proposed
by PIMENTEL et al. (2014) related to the different flows that may be expressed (sequential,
alternative and concurrent) as well as to their optionality and multiplicity (see Figure 3.12). The
complete statechart of Znn example is shown in Figure 4.7.

Figure 4.7: Statechart of Znn Exemplar (AUTHOR, 2015).

4.7 Activity 6: Prioritization of variants

The system’s variants are applicable only if their associated contexts hold. However, in a
certain execution, more than one variant may be enabled in the actual context. In our work, we
take in consideration the impact of the NFRs in the system’s behavior when choosing the best
variant. Hence, we consider the variant contribution to the NFR satisfaction.

In order to determine the variant contribution, we propose the use of the Analytical
Hierarchy Process (AHP) method. With this method, we obtain a ranking of variants (alternatives)
that the best one contributes to the satisfaction of NFRs (criteria).

In Znn example, we considered three NFRs (Cost efficiency, High performance, High
Fidelity) and that C1, C2, and C3 contexts of Figure 4.6 hold at the same time. The first step of
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this activity consists of defining the preferences for variants over each NFR. In order to achieve
this, we considered the Make, Help, Hurt and Break contributions links represented, respectively,
by ++, +, - and - -.

For the Znn examplar, the variants contribution for each NFR are represented by the
contribution links in Table 4.2. These contributions values presented in this table are subjective
and based on our judgement and experience. Of course, in a real setting the stakeholders should
be consulted.

Accordingly, Serve text-only context variant makes Cost efficiency and High performance,
but breaks High Fidelity. Serve low resolution content variant contributes positively to Cost

efficiency and High performance, but hurts High Fidelity. Finally, Serve high resolution content

variants hurts Cost efficiency,breaks High performance and makes High Fidelity.

Table 4.2: Variants and their contribution for the NFRs of Znn example (AUTHOR,
2015).

ID Variant Cost efficiency High performance High Fidelity
var1 Serve text-only context ++ ++ - -
var2 Serve low resolution content + + -
var3 Serve high resolution content - - - ++

In order to convert from the variants contribution (as depicted in Table 4.2) to AHP scale
we used the mapping proposed by SANTOS (2013). The next step is to perform the pairwise
comparisons between the variants for each NFR. Accordingly, it is necessary to create a matrix
for each NFR to compare all values of variants contributions. Given that, in the Znn example,
there are three NFRs, three matrices are required. The results of these comparisons are presented
in Table 4.3, Table 4.4, Table 4.5.

Table 4.3: Variant’s contributions to the Cost efficiency NFR of Znn exemplar
(AUTHOR, 2015).

Cost efficiency var1 var2 var3
var1 1 3 7
var2 1/3 1 5
var3 1/7 1/5 1

The variants priority vector for the Cost efficiency NFR, after solving for the main
eigenvector, is [var1 = 0.643 , var2 = 0.283, and var3 = 0.074].

Table 4.4: Variant’s contributions to the High performance NFR of Znn exemplar
(AUTHOR, 2015).

High performance var1 var2 var3
var1 1 3 9
var2 1/3 1 7
var3 1/9 1/7 1
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The variants priority vector for the High performance NFR, after solving for the main
eigenvector, is [var1 = 0.649 , var2 = 0.295, and var3 = 0.057].

Table 4.5: Variant’s contributions to the High Fidelity NFR of Znn exemplar (AUTHOR,
2015).

High Fidelity var1 var2 var3
var1 1 1/3 1/9
var2 3 1 1/7
var3 9 7 1

The variants priority vector for the High Fidelity NFR, after solving for the main eigen-
vector, is [var1 = 0.069 , var2 = 0.155, and var3 = 0.777].

In order to determine the weights of each NFR, we should compare all pairs of NFRs
and assign a value to each pair using the AHP scale. The results of the pairwise comparisons of
znn example with three NFRs (Cost efficiency, High performance, High Fidelity) are shown in
Table 4.6. Recall that these assigned values are subjective and based on our experience. In a real
setting the stakeholders should be consulted.

Table 4.6: Pairwise comparison values for Znn example (AUTHOR, 2015).

Cost efficiency High performance High Fidelity
Cost efficiency 1 1/3 5

High performance 3 1 7
High Fidelity 1/5 1/7 1

According to this method, the NFR priority vector is obtained by solving for the main
eigenvector of the matrix followed by the normalization of the result. The NFR priority vector of
Znn examplar is [High performance = 0.643, Cost efficiency = 0.283 and High Fidelity = 0.074].
We can notice that High performanc is the most critical NFR, followed by Cost efficiency and
High Fidelity.

After defining the preferences for variants over each NFR, as well as the weights of each
NFR, the next step is to synthesize these results. Accordingly, the variants priority vectors for
each NFR are combined into a single matrix. This new matrix is multiplied by the NFR priority
vector obtained from the NFR importance matrix to obtain the overall objective (i.e., ranking of
variants).

Table 4.7 shows the final ranking of Znn example. We can notice that the var1 (Serve text-

only context) is the one that contributes mostly for the satisfaction of the NFRs (0.61) followed
by var2 (Serve low resolution content) with 0.28 and var3 (Serve high resolution content) with
0.12.

The final step is the evaluation of the consistency of the judgments that the software
engineer used during the pairwise comparisons. We used a spreadsheet tool to determine the
consistency ratios. For the pairwise comparison matrix for NFRs (Table 4.6), we obtained a
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Table 4.7: Final Ranking of Znn example (AUTHOR, 2015).

var1 var2 var3 NFR priority
Cost efficiency 0.64 0.28 0.07 0.28

High performance 0.65 0.29 0.06 0.64
High Fidelity 0.07 0.15 0.78 0.07

Variant priority 0.61 0.28 0.12

consistency ratio of 0.056. Otherwise, the consistency ratios for the variants contribution for
Cost efficiency, High performance, and High Fidelity were 0.056, 0.07, and 0.071 respectively.
These ratios are a good indication that logical consistent judgments were made on all pairwise
comparisons, because they are below the required 0.1 threshold (SAATY, 1987).

4.8 Final Considerations

In this chapter, we illustrated the application of the GO2S process in the Znn exemplar.
In the next chapter we will describe the controlled experiment we conducted to evaluated the
GO2S process empirically.
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5
Evaluation

Experiments are appropriate to investigate different aspects of a research such as
(WOHLIN et al., 2012): Confirm theories, i.e. to test existing theories; Confirm conven-
tional wisdom, i.e. to test people’s conceptions; Explore relationships, i.e. to test that a certain
relationship holds; Evaluate the accuracy of models, i.e. to test that the accuracy of certain
models is as expected; and to Validate measures, i.e. to ensure that a measure actually measures
what it is supposed to.

In order to evaluate our proposal we designed a controlled experiment. We conducted a
multi-test within an object study since we examined a single object (the Smart Home System)
across a set of subjects. This empirical method can be used when it is possible to control those
using the approach method, and when and where they are used (WOHLIN et al., 2012). Hence,
it allows the control of, for example, subjects, objects and instrumentation. This ensures that we
are able to draw more general conclusions.

Experimentation is a labor-intensive task and is not simple; therefore, we had to prepare,
conduct and analyze the experiment properly. In order to make sure that the proper actions were
taken to ensure a successful experiment, we followed the framework proposed by WOHLIN et al.
(2012) for performing experiments in software engineering. The authors propose five activities
in order to perform an experiment: Scoping, Planning, Operation, Analysis & interpretation, and
Presentation & package. The results obtained in each activity are described in the following
subsections.

5.1 Scoping

The scoping specifies the motivation for performing the experiment. Hence, we began
setting its objectives. The goal of our experiment is summarized in Table 5.1.

After the definition of the experiment scope, the next activity is the planning (WOHLIN
et al., 2012).
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Table 5.1: Goal of the experiment.

Analyze the GO2S process for deriving statecharts
from goal models of context-sensitive systems.

For the purpose of evaluation.
With respect to the time to implement, syntactic correctness,

structural complexity, behavioral similarity
and cognitive complexity.

From the point of view of software engineers.
In the context of students of a requirements engineering undergraduate and

graduate course, with some industry expertise,
implementing the GO2S process in an example.

5.2 Planning

Planning defines how the experiment should be conducted. It is divided into six steps:
Context Selection, Hypothesis formulation, Variables selection, Selection of subjects, Experiment

design, Instrumentation and Validity evaluation. The steps are described in details in next
subsections.

5.2.1 Context selection

The context of our experiment is students of undergraduate, master’s and doctor’s
degree from a Requirements Engineering course at an university. The subjects were eighteen
students enrolled in the course. The experiment was run off-line (not in an industrial software
development environment). The experiment was specific, since it focuses on the following
metrics to evaluate the generated statecharts: time to implement, syntactic correctness, structural
complexity, behavioral similarity, and cognitive complexity described in Section 5.2.3. The
ability to generalize from this specific context is further elaborated in Section 5.6 where we
discuss threats to the experiment.

5.2.2 Hypotheses formulation

The main hypothesis is the null hypothesis that states there is no difference between
using or not the GO2S process. Therefore, the study tries to reject this hypothesis. There are
fourteen null hypotheses, one for each metric the study analyzes.

Null hypothesis (H01): The implementation time using the GO2S process is not differ-
ent than those not using the process.

Null hypothesis (H02): The syntactic correctness using the GO2S process is not differ-
ent than those not using the process.

Null hypothesis (H03): The structural complexity using the GO2S process is not dif-
ferent than those not using the process.
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Null hypothesis (H04): The behavioral similarity using the GO2S process is not differ-
ent than those not using the process.

Null hypothesis (H05): The GO2S is not easy to understand.
Additionally, alternative hypotheses were defined to be accepted when the corresponding

null hypothesis is rejected.
Null hypothesis (H11): The implementation time using the GO2S process is smaller

than those not using the process.
Null hypothesis (H12): The syntactic correctness using the GO2S process is smaller

than those not using the process.
Null hypothesis (H13): The structural complexity using the GO2S process is smaller

than those not using the process.
Null hypothesis (H14): The behavioral similarity using the GO2S process is higher

than those not using the process.
Null hypothesis (H15): The GO2S is easy to understand.

5.2.3 Variables selection

In the design of experiments, we have to consider what independent variables or factors
are likely to have an impact on the results. In our experiment the independent variable was the
GO2S process.

On the other hand, we considered five dependent variables, based on the metrics related to
evaluate our process: time to implement, syntactic correctness, structural complexity, behavioral
similarity, and cognitive complexity. These metrics were already used in the literature to evaluate
behavioral models (DIJKMAN et al., 2011) (MIRANDA; GENERO; PIATTINI, 2005). They
are described as following:

a) Implementation time: the time that subjects spent to develop the statecharts mea-
sured in minutes. This metric was used to investigate if there was a significant
difference in time spent using the GO2S process.

b) Syntactic Correctness: we measured this variable through the number of syntactic
errors and warnings indicated by the YAKINDU (2014) modeling tool used in our
experiment. This metric was used to investigate how well the subjects of each group

learned the statechart language as well as to verify if the groups were well balanced.

c) Structural complexity: this variable is determined by the different elements that
compose the model (MIRANDA; GENERO; PIATTINI, 2005), such as states, tran-
sitions, activities, etc. Hence, we evaluated the structural complexity of statecharts
through different metrics: the number of super states, orthogonal states, idle states, fi-
nal state, simple states, state transitions, choice, variables and actions. High structural
complexity has an impact on the cognitive complexity of statecharts (MIRANDA;
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GENERO; PIATTINI, 2005). This metric was used to investigate the structural
complexity of the statecharts obtained using (or not) the GO2S process.

d) Cognitive complexity: this metric can be defined as the mental burden that the
persons have to deal with the process. Hence, the cognitive complexity of each
activity of the GO2S process was evaluated through the subject’s opinion about the
steps and notations used in the GO2S process. Thus, we applied an anonymous
questionnaire with different assertions (see Table 5.10) about the GO2S process.
The subjects had to choose an option using the following scale: Totally Disagree,
Disagree, Indifferent, Agree, and Totally Agree. This metric was used to investigate
if the GO2S process were specified in a understandable way.

e) Behavioral similarity: each software engineer constructs a model according his
experience and knowledge. Accordingly, the behavioral similarity intends to explore
the behavior of different models despite their structural differences (DIJKMAN et al.,
2011). We measured the behavioral similarity analyzing if the statechart, produced
by the control and experimental groups, behaves as expected through the percentage
of the number of functionalities modeled as described in the requirements model
in relation of the total number of functionalities. This metric was used to check if
the behavioral similarity of the statecharts produced of the experimental group was
higher than those of control group.

5.2.4 Selection of subjects

According to WOHLIN et al. (2012), the selection of subjects is also called a sample
from a population. In our experiment, we performed convenience sampling: the nearest and most
convenient persons are selected as subjects.

In order to identify the impacts of the use of the GO2S process, the subjects were divided
in two groups with nine subjects each: the subjects of one group generating statecharts using
the proposed process (experimental group), whereas the other subjects did not use the proposed
process (i.e. they belonged to the control group). This distribution of the subjects in the two
groups was performed randomly.

5.2.5 Experiment Design

In our experiment, we compared two treatments: the use or not of the GO2S process.
Therefore, the design of our experiment was classified as one factor with two treatments being
of the type completely randomized design. The design setup uses the same objects for both
treatments and assigns the subjects randomly to each treatment. Each subject uses only one
treatment on one object (WOHLIN et al., 2012). Since we had the same number of subjects per
treatment, the design was balanced.
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5.2.6 Instrumentation

The instruments for an experiment are of three types, namely objects, guidelines and
measurement instruments (WOHLIN et al., 2012). Therefore, for each subject, we prepared a
set of materials (see the Appendix) to be used in the experiment as described in the following
subsections.

5.2.6.1 Experimental object

The subjects received a specification of a Smart Home System designed to make life
easier for people with dementia problems and provide continuous care about them to ensure their
safety and comfort. To this end, the Smart Home had to act in response to the context. In this
experiment, we used a simplified version of the system adapted from description available at
ALI (2010).

5.2.6.2 Guidelines

The subjects were aware that their data would be used by the experimental study. The
experimental group that applied the GO2S process also received a reference guide with a
summary of the activities and the notations used by our process. In addition to the reference
guide (presented in Appendix), the subjects of the experimental group also attended 4 hours of
course to learn our process.

5.2.6.3 Measurement instruments

All subjects answered a pre-experiment questionnaire to inform their profile and expe-
rience in system modeling. Moreover, the subjects also filled a questionnaire post-experiment
to express their opinions about each process activity. We collected their statecharts and all the
material used in the experiment for evaluation.

5.3 Operation

In the operational phase of the experiment, the treatments were applied to the subjects.
This phase consists of three steps: preparation, execution and data validation.

5.3.1 Preparation

As previously mentioned, this study was performed using subjects enrolled in under-
graduate and graduate course and consisted of two trainings to the subjects. In the first one,
we provided classes about the goal model, the statecharts theory and the yakindu tool to the
participants of both groups (control and experimental group).
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We took extra care to check if the subjects had indeed learned adequately the statecharts
theory it was a pre-requisite to participate in the experiment. They were asked to work on a course
project in which they had to model a statechart from a given requirements specification (provided
by the instructors). Besides the project modeling, we also performed an oral argumentation with
each subject, to check the quality of their project handout and aquaintacy/familiarity with the
statechart theory (HAREL, 1987) and modeling tool (YAKINDU, 2014).

The second training consisted in presenting/teaching the students the GO2S process to
the subjects of the experimental group (9 subjects) and performing a dry run to give the subjects
a chance to familiarize with activities of the process. The control group also had an opportunity
to exercise the statecharts language in a domain different from the one of the experiment.

Finally, the experiment was executed. The time spent in each activity was the following:

� Classes about goal model, statecharts theory and tool to all subjects: 8hrs

� Oral argumentation: 3hrs

� Training about the process to the subjects of the experimental group: 4hrs

� Dry run with all subjects: 4hrs

� Experiment: 3hrs

The time spent to execute the experiment was 22hrs. Besides this execution time, there
was the time spent in meetings for decision-making, the preparation of the project, answering
questions of students and correcting all projects. In addition, there was the time spent on
preparing slides, the material used in the experiment and the time required to analyze the results.
Hence, the total time was approximately 132 hours.

5.3.2 Execution

The experiment was carried out in a computer laboratory with the two groups. Each sub-
ject of the control group developed a statechart for the Smart Home System from the requirements
specification (presented in Appendix). On the other hand, each subject of the experimental group
developed a statechart following the GO2S process. We asked the subjects of the experimental
group to perform the activities 1 to 5 of the GO2S process, since the last one concerns with the
variants prioritization that was not possible to compare to the control group. All subjects had to
perform the following experimental tasks:

� To write down the start and end time of the experiment.

� To fill out a pre-experiment questionnaire, which included academic and industry
experience.
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� To construct the statechart using the Yakindu tool (YAKINDU, 2014).

� The experimental group also had to fill out a post-experiment questionnaire.

5.3.3 Data validation

The subjects’ data was validated. When subjects finished the experiment, we checked
for each one of them, if their data forms were filled in a reasonable way. Furthermore, we also
checked that everybody has understood how to fill in the data in a correct way.

5.4 Analysis & interpretation

The data collected during operation step provided input to the Analysis & interpretation
activity. During the analysis phase, we understand the data while the interpretation phase
determines whether the hypothesis was accepted or rejected (WOHLIN et al., 2012).

In the operation phase, we applied a pre-experiment questionnaire to each subjects of
both groups in order to investigate their profile and previous experience. From the analysis of
Figure 5.1, we can notice that both control group and experimental group were well balanced.
They were students of different course types (undergraduate, and graduate - including master’s
and doctoral students) and they had different background, i.e. they attended/or were attending
different undergraduate courses. The majority studied/is studying computer science.

Figure 5.1: Subject’s Profile (AUTHOR, 2015).

We also asked the participants about their experience with behavior modeling and the
results are shown in Figure 5.2. The subjects had some experience with behavior modeling and
both groups were more experienced with use case diagram and class diagram. These notations
have a different level of abstraction compared to statecharts.

We requested the subjects to answer about their level of proficiency on behavioral
modeling (statecharts and other modeling languages). The results are presented in Figure 5.3.
The majority (of both groups) said that they had proficiency in modeling languages. It is
important to note that this is a subjective affirmation that depends on how the subjects evaluate
their knowledge.
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Figure 5.2: Experience in behavior modeling (AUTHOR, 2015).

Figure 5.3: Proficiency in behavior modeling languages (AUTHOR, 2015).

After conducting the experiment, we analyzed each statechart produced by each subject
of the the control group and experimental group in order to measure the dependent variables.

In relation to the syntactic correctness, the number of syntactic errors and the number
of warnings of each subject of the control group is presented in Table 5.2. The results of the
experimental group are presented in Table 5.3.

From the results presented in Table 5.2 and Table 5.3, we can conclude that the number
of syntactic errors was 66.67% higher than the number of control group. Analysing these results,
we noticed that the syntactic errors were made by two subjects (4 and 8 mistakes) in the control
group and by one subject in the experimental group (4 mistakes).

This high number of syntactical errors in the control group was caused by two participants.
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Table 5.2: Syntactic Correctness of statecharts of control group.

Subject Number of Syntactic Errors Number of Warnings
#6 4 0
#7 0 0
#8 0 2
#9 8 0

#10 0 0
#11 0 0
#15 0 3
#18 0 0
#20 0 0

Mean 1.33 0.56

Table 5.3: Syntactic Correctness of statecharts of experimental group.

Subject Number of Syntactic Errors Number of Warnings
#1 0 0
#3 0 0
#4 0 0

#12 0 7
#13 0 7
#14 0 0
#16 0 0
#17 0 0
#19 4 0

Mean 0.44 1.56

The other subjects did not make any syntactic error. The subject that made 4 syntactic errors in
the control group did not consider himself/herself proficient in any system modeling language
although he/she have already used a language for system modeling before the experiment. The
subject that made 8 syntactic errors in the control group agree that he/she has proficiency in
system modeling languages. The syntactical errors in the experimental group were made by one
subject. This subject did not agree that he/she is proficient in state diagrams or other system
modeling languages.

The number of warnings, on the other hand, was 64,29% higher in the experimental
group as shown in Figure 5.4. In relation to the control group, these errors were made by two
subjects (2 and 3 errors). The subject that made 2 errros agree that he/she has proficieny in
state diagrams including statecharts and said that he/she is indifferent to others system modeling
languages. The subject that made 3 errors did not considered himself/herself proficient in any
system modeling languages.

In relation to the number of warnings of the experimental group, these errors were made
by two subjects (7 errors each). One subject agreed that he/she is proficient in state diagrams
and statecharts and he/she is indifferent to other system modeling languages. The other subject
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also agreed in his/her proficiency in state diagrams and totally agreed that he/she is proficient in
other system modeling languages.

Accordingly, we can infer that the level of proficiency in statecharts and other system
modeling languages said by the subjects does not have a direct impact on the results of syntactic
correctness.

Figure 5.4: Syntactic correctness (AUTHOR, 2015).

Table 5.4 and Table 5.5 present the results of the metrics used to characterize the structural
complexity of statecharts (superstates, orthogonal states, idle states, final states, simple states,
state transitions, choice, variables and actions) of each subject in the experiment.

Table 5.4: Structural complexity of statecharts of control group.

Super- Ortho- Idle Final Simple State Choice Variables Actions
states gonal states states transi-

states tions
#6 2 6 1 0 19 22 0 4 2
#7 1 4 0 0 21 22 0 1 0
#8 1 6 1 0 17 21 0 1 0
#9 5 4 0 1 13 15 0 21 26
#10 1 7 7 0 21 32 9 9 8
#11 3 6 0 0 17 26 0 6 5
#15 1 8 0 0 20 34 0 23 18
#18 4 0 4 0 19 28 0 2 0
#20 5 4 0 0 22 26 0 0 0

Mean 2.56 5.00 1.44 0.11 18.78 25.11 1.00 7.44 6.56

From the analysis of Table 5.4 and Table 5.5 we can notice that the experimental group
used more superstates, orthogonal states, idle states. The control group, on the other hand,
used more final states, simple states, state transitions, choice, variables and actions. When we
grouped these values (see Figure 5.5), we found that the structural complexity of control group
was 8.33% higher (mean of 68 elements) than the experimental group (62.33 elements). These
results indicate that for the scenario in which the experiment was conducted that the structural
complexity of the statecharts generated using the GO2S process was lower than the satecharts
produced not using it.
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Table 5.5: Structural complexity of statecharts of experimental group.

Super- Ortho- Idle Final Simple State Choice Variables Actions
states gonal states states transi-

states tions
#1 6 5 4 0 15 19 0 0 0
#3 5 7 7 0 21 23 0 5 0
#4 3 12 5 0 18 19 0 9 0
#12 3 6 1 0 17 15 0 7 0
#13 3 14 2 0 24 23 0 6 0
#14 5 8 9 0 23 25 0 7 0
#16 6 9 7 0 20 26 0 8 0
#17 5 8 4 0 15 16 0 8 0
#19 4 4 0 0 15 20 0 5 0

Mean 4.33 8.17 3.83 0 19 20.83 0 6.83 0

Figure 5.5: Structural complexity (AUTHOR, 2015).

The behavioral similarity was another dependent variable analyzed in the statecharts.
Table 5.6 and Table 5.7 show the results of each subject of control and experimental groups.
These values were calculated by analyzing each statechart of all subjects and verifying if the
functionalities behave (in sequence, parallel, alternative and other possible flows) as described in
the requirements specification. Finally, we calculated the porcentage of correct funcionalities
from the total number of funcionalities.

Considering the behavioral similarity, we observed that the number of correct function-
alities i.e. they behave as described in requirements specification is higher in the experimental
group. Therefore, the mean of behavioral similarity of the experimental group was 21.49%
higher than the control group as indicated in Figure 5.6.

Moreover, the time spent by each subject to construct the statechart is presented in
Table 5.8 and Table 5.9.
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Table 5.6: Behavioral Similarity of statecharts of control group.

Subject Behavioral Similarity (%)
#6 66.67
#7 46.67
#8 60
#9 20

#10 73.33
#11 66.67
#15 73.33
#18 33.33
#20 46.67

Mean 58.67

Table 5.7: Behavioral Similarity of statecharts of experimental group.

Subject Behavioral Similarity (%)
#1 53.33
#3 93.33
#4 80

#12 66.67
#13 100
#14 80
#16 80
#17 73.33
#19 53.33

Mean 75.56

Figure 5.6: Behavioral similarity (AUTHOR, 2015).

From the results of these tables, we can conclude that the time to construct the statecharts
was slightly higher (119.67 minutes) than the control group (108.56 minutes) with a small
difference of 11.11 minutes (9.29%) as shown in Figure 5.6. These results indicate that, although
there is an extra effort to perform all the activities of the GO2S process, the extra time required
is not significant compared to not using it.

We also asked the subjects of the experimental group to fill out a post-questionnaire form
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Table 5.8: Time spent to implement the statecharts of control group.

Subject Time spent (minutes)
#6 70
#7 68
#8 65
#9 115

#10 113
#11 126
#15 109
#18 153
#20 158

Mean 108.56

Table 5.9: Time spent to implement the statecharts of experimental group.

Subject Time spent (minutes)
#1 112
#3 91
#4 76

#12 110
#13 120
#14 124
#16 141
#17 147
#19 156

Mean 119.67

in order to obtain their cognitive complexity about the process. We provided fifteen statements
(presented in Table 5.10) where they had to choose an answer using the following scale: Totally
Disagree (TD), Disagree (D) Indifferent (I), Agree (A), Totally Disagree (TA). For the questions
not answered by the subjects, we marked as Not Answered (NA). The results of the cognitive
complexity of GO2S process are listed in Table 5.11. These results indicate that the GO2S
process is easy to understand.

5.5 Presentation & package

The subjects of our experiment were students of different course types (graduate and
undergraduate students) having the mostly studied/is studying computer science course. They
stated that they have modeled the behavior of systems previously and both groups have more
experience with use case diagram and class diagram. Besides, the majority of both groups agree
that they had proficiency in modeling languages.

After analysing the statectharts produced by the subjects, we can conclude in relation to
the syntactic correctness, the number of syntactic errors of control group was 66.67% higher
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Table 5.10: Statements used to evaluate cognitive complexity.

Number Statement
1 The process for statecharts derivation from goal models is understandable.
2 Step 1 is easy to understand.
3 The notation of goal model is easy to understand.
4 The use of goal models facilitates the creation of statecharts.
5 Step 2 is easy to understand.
6 The notation for context specification is easy to understand.
7 Step 3 is easy to understand.
8 Step 4 is easy to understand.
9 The use of flow expressions facilitates the creation of statecharts.

10 The use of flow expressions makes the creation
of statecharts more systematic.

11 Step 5 is easy to understand.
12 Statecharts makes easy to understand the system’s behavior.
13 The creation of statecharts contributes to a more complete system specification.
14 The mapping of tasks to states facilitates the creation of statecharts.
15 The mapping between goals and super-states

improves the organization of the statechart.

Table 5.11: Results of cognitive complexity.

Number TD (%) D (%) I (%) A (%) TA (%) NA (%)
1 66.67 33.33
2 11.11 88.89
3 55.56 44.44
4 11.11 44.44 44.44
5 33.33 22.22 44.44
6 22.22 22.22 55.56
7 11.11 33.33 22.22 33.33
8 11.11 55.56 33.33
9 22.22 66.67 11.11
10 22.22 66.67 11.11
11 11.11 66.67 11.11 11.11
12 11.11 44.44 33.33 11.11
13 33.33 11.11 44.44 11.11
14 11.11 55.56 22.22 11.11
15 44.44 44.44 11.11

than the number of the experimental group. The number of warnings, on the other hand, was
64.29% higher in experimental group.

Moreover, the structural complexity of control group is higher (mean of 68 elements)
than experimental group (62.33 elements) corresponding to a reduction of 8.33%. In addition,
the mean of behavioral similarity of experimental group was higher (75.56%) than control group
(54.07%) corresponding to a difference of 21.49%. Besides, the time spent by the experimental
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group to construct the statecharts was higher (119.67 minutes) than the control group (108.56
minutes) with a difference of 11.11 minutes (9.29%).

The nine subjects that applied our process also filled out a post-questionnaire in which
they expressed their opinion about the process using the following scale Totally Disagree,
Disagree, Indifferent, Agree and Totally Agree. We asked their opinion about easiness to apply
the process and all subjects agreed (66.67% agreed and 33.33% totally agreed) that the process
is understandable.

The results of our experiment are discussed in more details in Chapter 6.

5.6 Threats to Validity

This section discusses how valid the results are and if we can generalize them to a broad
population. According to WOHLIN et al. (2012), there are four kinds of validity: internal,
conclusion, construct and external as discussed in the following subsections.

5.6.1 Internal Validity

Internal validity analyzes if the collected data in the study are result of the dependent
variables and not from an uncontrolled factor. We tried to mitigate the selection bias (i.e. there
are differences between the subjects’ expertise) by performing a random assignment of the
subjects to the control group and the experimental group.

Despite being separated in two groups, one that used the GO2S process and the other that
did not use, both groups received the same goal model and system specification. Therefore, we
did not expect the subjects to be unhappy or discouraged in performing or not the treatment, since
the resulting statechart should be behaviorally equivalent. Finally, given that the experiment was
performed in one day related to a domain that they had no contact before, we mitigate the history
and maturation effects by making observation at a single time point.

5.6.2 Conclusion Validity

Conclusion validity is related to the ability to reach a correct conclusion about the
collected data, as well as the reliability of measures and the collected data. We tried to improve
the reliability of treatment implementation by using the same treatment and providing the same
training, with the same instructor for all subjects of the experimental group. If the training was
provided by different instructors, it would not possible to infer whether the results were influenced
by the training or they were derived from the GO2S process. Thus, we mitigate this possible
threat to validity. We also attempted to improve the conclusion validity by randomly choosing
the subjects of both groups, thus promoting heterogeneous groups that were not correlated with
the dependent variables.
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5.6.3 Construct Validity

Construct validity is concerned to the relationship between the concepts and theories
behind the experiment as well as what is measured and affected. In order to mitigate threats
of this nature, we carefully designed our study. We chose objective measurements that did not
depend on who was administering the test. Therefore, the subjects applied the treatment to a
specification of a Smart Home System using an execution plan, which explained how to apply
the treatment. In addition, they performed a dry run to make clear how the treatment should be
implemented and how data should be collected.

5.6.4 External Validity

External validity is concerned with the ability to generalize the results to an industrial
environment. One expected result of this study is to guide software engineers on when to use
(or not) the GO2S process. As we used randomization to separate the subjects in two groups,
we expect a decrease on the confounding factors (factors that can influence the results of the
experiments), since the most important is the subjects’ expertise.

Even though we had different types of students (undergraduate, master’s and doctoral’s
degree), the limited number of subjects does not allow to generalize outside the scope of the
study. On the other hand, we expect that the results, including the subjects’ feedback, can be
used as guidelines to improve our process.

Although the results are limited by the narrow scope, we believe that the process and the
study design are considerable contributions. This experiment can guide other studies in order to
evaluate the proposed process with more general and conclusive results and can also support
other kind of studies.

5.7 Ethics

In our controlled experiment, we were committed to make our research ethical. Therefore,
we addressed the ethical principles that form the core of several research ethics guidelines and
codes: informed consent, beneficence, confidentiality (VINSON; SINGER, 2008).

The principle of informed consent stipulates that potential subjects should be informed
of all relevant facts about a study before making an explicit, free and well-considered decision
about whether to participate (VINSON; SINGER, 2008). Therefore, we provided to subjects
all the information necessary to understand how the research would affect them: the purpose
of the research, its procedure, the risks to the subjects, the anticipated benefits to the subjects,
alternatives to participation, the treatment of confidential information, the voluntary nature of
participation, and a statement offering to answer the subjects’ questions.

The degree of beneficence results from a weighted combination of risks, harms, and
benefits to the subjects and society from participation in a study (VINSON; SINGER, 2008).
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In our experiment, the risks of harm were minimized by protecting the confidentiality. The
principle of confidentiality refers to the subjects’ right to expect that any information they share
with researchers will remain confidential (VINSON; SINGER, 2008).

Accordingly, we executed procedures in order to maintain confidentiality and reduce the
risks of harm. During the experiment, we randomly assigned a number to each participant and
they answered all questionnaires anonymously. Therefore, the data anonymity was preserved
since the analysis of the data could not reveal the identity of the subjects.

5.8 Final Considerations

In this section, we described the empirical method used to evaluate our process. We con-
ducted a controlled experiment to investigate if the GO2S process could improve the derivation
of statecharts of context-sensitive systems from requirements models. Since experimentation
is a labor-intensive task, we followed the framework proposed by WOHLIN et al. (2012) for
performing experiments in software engineering in order to make sure that the proper actions
were taken to ensure a successful experiment. In the next chapter we discuss the results obtained
in this dissertation, we summarize the main contributions, and we indicate some future works
that are required to improve our approach.
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6
Conclusions

This chapter discusses the results obtained in this dissertation. Moreover, it summarizes
the main contributions, scope and limitations found. We indicate some future works that are
required to improve our approach. Finally, we list papers related to this dissertation that were
published.

6.1 Discussion

Software-development organizations frequently begin their activities with one of these
alternative starting points - requirements or architectures - often adopting a waterfall development
process. The start from the requirements produces artificially frozen requirements documents
for use in the next step in the development life cycle. Starting from architecture, on the other
hand, creates systems with constrained architectures that restrict users and handicap developers
by resisting inevitable and desirable changes in requirements (NUSEIBEH, 2001).

Software engineers have difficulties to understand and define what to consider as context
and how to design context-sensitive systems. A possible reason is the lack of consensus in
the literature regarding the terminology, characteristics and specificities necessary to develop
them. There is a need for approaches to guide the designers to perform activities related to the
specification of the behavior of context-sensitive systems.

Processes provide steps that support an activity and are important as they can be used
as checklists and guidelines of what to do and how to do it (WOHLIN et al., 2012). In order to
develop context-sensitive systems, several steps are required to derive their behavior. Thus, a
systematic process for derivation of the behavior of context-sensitive systems from requirements
models is needed.

This dissertation proposes GO2S a systematic process for obtaining the behavior of
context-sensitive systems (expressed as statecharts) from requirements models (expressed as
goal models) following the twin peaks concept (NUSEIBEH, 2001). Altough the process was
presented in a sequential way in Figure 3.1, this is an iterative process centered on the incremental
refinement of a goal model, which provides different views of the system (design, contextual,
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behavioral). Accordingly, it may be necessary to go back and forth in the activities until the
desired level of detail is reached. The iterative characteristic of the GO2S process can be provided
by a tool to support it. This tool will allow the software engineer to modify some view of the
model, and to reflect these changes in the next views.

The benefits of obtaining the behavior of context-sensitive are manifold: the models can
be used as a communication channel among stakeholders during system-development activities;
they improve the confidence that the context-sensitive system will be able to achieve its goals;
and they are amenable to reasoning (CLEMENTS et al., 2002). Hence, it becomes possible
to analyze properties such as system’s completeness, correctness, deadlocks as well as the
satisfaction of some quality attribute.

In Chapter 3, we described the activities of GO2S process indicating input/output artifacts
and a systematic way to execute each activity. The process can be divided into the following
main activities: the first activity concerns the construction of design goal model. It is followed
by the specification of contextual variation points. In the third activity, the tasks required for the
monitoring and adaptation activities are specified. Later, the system behavior is represented in
flow expressions. In the next one, a statechart is derived from the behavioral contextual design
goal model. Finally, the last activity is the prioritization of variants is performed.

We explored the idea that it is possible to organize the development of CSS by structuring
the GO2S process in six activities considering the main steps in order to develop a context-
sensitive system: requirements specification, context specification, the adaptation and monitoring,
the definition of system’s behavior, the statechart derivation and the prioritization of variants.
We hope that this organization can aid the maintenance and evolution of CSS, diminishing the
complexity on building these applications.

The behavioral view of the context-sensitive architecture was represented in statecharts
since it is a popular visual formalism to represent the behavior and this diagram, adopted by the
UML, has a powerful graphical notation to describe reactive systems.

The input of GO2S process is a goal model. We adopted this model considering its
benefits described in the literature (LAPOUCHNIAN, 2005) (ALI; DALPIAZ; GIORGINI,
2010): goals provide rationale for requirements that operationalize them; goals provide a precise
criterion for sufficient completeness of a requirements specification; a single goal model can
capture variability in the problem domain through the use of alternative goal refinements; they
provide a natural mechanism for structuring complex requirements documents, and goals offer a
very intuitive way to elicit and analyze requirements.

This dissertation also proposed the GO2S metamodel that describes the concepts of the
behavioral contextual design goal model, their properties and the valid connections between the
elements. This metamodel relates the requirements, architectural design, context and behavior
annotations in a unified metamodel.

Besides, many authors such as PENSERINI et al. (2007), MORANDINI et al. (2009),
PIMENTEL et al. (2014), and ALI; DALPIAZ; GIORGINI (2010) agree that goal models have
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been used as an effective means to capture the interactions and information-related requirements
of adaptive systems and context-sensitive systems. The reason is that they incorporate the
space of alternatives of a set of operations, i.e. variants, which gives more flexibility to meet
stakeholders’ goals in a dynamic environment (ALI; DALPIAZ; GIORGINI, 2010).

Flow expressions were used to specify the system behavior and thus, help the derivation
of statecharts. These expressions are useful because they can aid in the design, analysis, and
understanding of software systems (SHAW, 1978). Since every goal and task should be present
in the flow expression, excepting the ones assigned to users, we can check the completeness of
the derivation. Hence, every element should correspond to a state in the statechart.

In comparison with the work of PIMENTEL et al. (2014), the main difference is that we
address the system’s context, the operationalization of the NFRs, the specification of monitoring
and adaptation in the same model and prioritization of variants. This prioritization was performed
using the AHP method. This method uses a scale [1...9] that is based on psychological theories
and experiments that points to the use of nine unit scales as a reasonable set that allows humans
to perform discrimination between preferences for two items. Each value of the scale can be
given a different interpretation allowing a numerical, verbal or graphical interpretation of the
values (SAATY, 1987).

The prioritization of variants activity is useful for selecting which variant the system
must adopt at runtime when more than one variant is enabled at the same time. The variant that
will be executed is the one that mostly contributes for the satisfaction of the most critical NFR
from the point of view of the software engineer. It should be noted that AHP analysis can be
performed using a spreadsheet tool, which shows that there is no need for sophisticated tool
support for this method.

The AHP method has many benefits (BRITO et al., 2007): it is a well-known and
accepted method; it is appropriate for handling conflicting concerns problems; it has the ability to
quantify subjective judgements; it is capable of comparing alternatives in relation to established
criteria; and it provides means to guarantee the logical consistency of the judgements. Hence,
the AHP has proven to be an effective method for prioritizing objectives. In industrial projects,
this method has been reported as being effective, accurate and also to yield informative and
trustworthy results (KARLSSON, 1996). However, since all unique pairs must be compared, the
required effort can be substantial.

An experiment to study the scalability of statechart generation algorithm was previously
conducted by PIMENTEL et al. (2014). The inputs of the simulation were five flow expressions
with all possible operators and different number of elements (100, 300, 500, 700, and 900). The
results demonstrated that the automatic derivation of statecharts from design goal models is
feasible even for large models.

Besides, the contextual design goal model captures the inherent variability of the design
space, through the definition of alternative refinements for the same design element. Thus,
different solutions (statecharts) for a given problem can be devised.
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The design of context-sensitive systems entails more work in comparison to applications
that do not consider context since they must care for context-related tasks, such as the acquisition,
processing, storage and presentation of contextual information. Hence, it is important to note
that the monitoring required to assess the context may have a significant impact on the system
under development. The context monitoring often consumes many application resources and has
the tendency to decrease the system’s performance. Thus, the impact of monitoring the context
data must also be taken in consideration when defining the context annotations.

Chapter 4 presents an illustration of the application of the GO2S process in the Znn
exemplar. Znn is a news service, based on real sites, that serves multimedia news content to
its customers through a website. This problem is available in the repository of examples and
challenge problems that the software engineering for self-adaptive systems community can use
to motivate research, exhibit solutions and techniques, and compare results.

In Chapter 5, we described a controlled experiment conducted to evaluate our process.
The objective of this experiment was to compare the output of the GO2S process (a statechart)
with the statecharts produced by the control group through five dependent variables: time to
implement, syntactic correctness, structural complexity, behavioral similarity and cognitive
complexity.

The subjects were students of different course types (graduate and undergraduate stu-
dents) having the mostly studied/is studying computer science course. The subjects in our
experiment stated that they had previously modeled the behavior of systems (see Figure 5.2).
Moreover, they had more experience with use case diagram and class diagram. Besides, the
majority of the subjects agreed that they have proficiency in modeling languages.

The majority of the subjects of experimental group said that they are proficient in
statecharts or other system modeling languages. This was not a threat to validity of the experiment
since this is a subjective assertion and only two subjects in the control group made syntactic
mistakes in the statecharts. The subject that made 8 errors agreed that he/she is proficient and the
subject that made 4 errors did not agree. Accordingly, we can infer that the level of proficiency
said by the subjects in statecharts and other system modeling languages does not have a direct
impact on the results of syntactic correctness.

From the statecharts produced by the subjects, we can conclude in relation to the syntactic
correctness, the number of syntactic errors of control group was 66.67% higher than the number
of process group (see Table 5.2 and Table 5.3). These errors were made by two subjects in the
control group and one subject in the experimental group. The other participants did not make
syntactic error. If we consider only the subjects that modeled the functionalities as described in
the requirements document (the subjects that modeled correctly at least 50% of the functionalities
- Table 5.6 and Table 5.7), the mean of syntactic errors in the control group still remains higher
than experimental group.

The number of warnings was 64.29% higher in process group (see Table 5.2 and Ta-
ble 5.3). These warnings were present in the statecharts of two subjects in the experimental group
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and two of the control group. If we perform the same analysis with the subjects that modeled
correctly at least 50% of the functionalities) described in Table 5.6 and Table 5.7, the average of
warnings in the experimental group still remains higher than experimental group. However, one
of these two subjects of the experimental group, whose statecharts had warnings, modeled all
functionalities correctly (100%) and the other one modeled 66.67% correctly. Besides, these two
participants did not make any syntactical errors.

Moreover, the structural complexity of control group (see Table 5.4) is higher than
process group (see Table 5.5). The average of elements in the control group was 68 elements and
the mean of the experimental group was 62.33 elements corresponding to a reduction of 8.33%.
If we consider only the subjects that modeled correctly at least 50% of the functionalities, the
difference between the control and experimental groups increases to 11.16%.

In addition, the mean of behavioral similarity of process group was higher (75.56%)
than control group (54.07%) corresponding to a difference of 21.49%. If we consider only the
subjects that modeled correctly at least 50% of the functionalities, the difference between the
control and experimental groups decreases to 10.56%.

Besides, the time spent by the process group to construct the statecharts was higher
(119.67 minutes) than the control group (108.56 minutes) with a difference of 11.11 minutes
(9.29%). If we consider only the subjects that modeled correctly at least 50% of the func-
tionalities), the difference between the control and experimental groups increases to 12.83
minutes.

Thereby, the experiment results allow us to reject the null hypotheses (H01..4) that there
is no difference between using or not the GO2S process and accept the alternative hypotheses
(H12..4). We can not reject the H11 since the time to implement the statechart was higher in the
experimental group.

Therefore, there are some evidence that the number of functionalities that behaved as
specified in requirements document was higher in process group models. Besides, the structural
complexity was lower in the process group models. However, the time spent to implement, on
the other hand, was slightly higher (9.29%) in the process group.

The nine subjects that applied our process also filled out a post-questionnaire in which
they expressed their opinion about the process using the following scale Totally Disagree,
Disagree, Indifferent, Agree and Totally Agree. We asked their opinion about easiness to apply
the process and six subjects (66.67%) agreed that the process was easy to use, while 3 subjects
(33.33%) said they Totally Agree. Hence, we can reject the H05 hypothesis that the GO2S
process is not easy to understand and accept the H15 hypothesis.

Eight subjects (88.89%) agreed that the step 1 (Construction of design goal model) is
easy and only one subject disagreed (11.11%) as illustrated in Table 5.11. Considering the
easiness of understanding Step 2 (Specification of contextual variation points), three subjects
(33.33%) disagreed, two subjects (22.22%) marked indifferent, and four agreed (44.44%) as
shown in Table 5.11. These results indicate that some subjects had some difficulties to identify
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and specify the context.
In relation to the easiness of Step 3 (Specification of monitoring and adaptation), three

subjects agreed (33.33%), two subject marked indifferent (22.22%), three disagreed (33.33%)
and one totally disagreed (11.11%) as demonstrated in Table 5.11. We expected these results
since Step 3 is the most critical activity of the GO2S process that has many steps to specify all
the tasks required to monitor the context and adapt the system according to it.

The Step 4 (Specification of flow expressions) was also evaluated about its easiness of
understanding (see Table 5.11). The majority agreed (55.56%) and totally agreed (33.33%) that
this step was easy of understand. Only one subject marked as indifferent (11.11%). We also
asked the subjects if the Step 5 (Statechart derivation and refinement) was easy to understand.
Six subjects (66.67%) agreed that the step 5 was easy, one totally agreed (11.11%), one marked
indifferent (11.11%) and one subject did not answered this question (11.11%) as illustrated in
Table 5.11.

Therefore, since the subjects did not have much difficulties to use the GO2S process,
the results of the experiment indicate that it is possible to reproduce the process and it is
understandable. Although the results are limited by the narrow scope we have, we believe that
the process and the study design are considerable contributions. This controlled experiment can
guide other studies in order to evaluate the GO2S process with more general and conclusive
results and can also support other kind of studies.

Nevertheless, despite the encouraging results obtained, they must be considered as
preliminaries. Further replication is necessary and also new experiments must be carried out
with software engineers who develop context-sensitive systems.

6.2 Limitations of our experiment

The context of our experiment is students of undergraduate, master’s and doctor’s degree
from a Requirements Engineering course at an university. The subjects were eighteen students
enrolled in the course. The experiment was run off-line (not in an industrial software development
environment).

Many authors, such as BASILI; SELBY; HUTCHENS (1986), FENTON (1993) and
SJOBERG et al. (2002) point out the difficulties of conducting controlled software engineering
experiments in realistic environments. Accordingly, these environments can also be a weakness,
because there are an enormous number of factors that differ across environments, in terms of
desired cost/quality goals, methodology, experience, problem domain, constraints, etc (BASILI;
SELBY; HUTCHENS, 1986). Hence, it may be too costly or impossible to manipulate an
independent variable or to randomize treatments in real life (SJOBERG et al., 2002).

The particular individuals examined in an empirical study can make an enormous dif-
ference (SJOBERG et al., 2002). Someone could argue that we should use professionals in
experiments because there may be many differences between students and professionals. These
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differences are related to their experience and skill levels, use of professional methods and
tools, and team work versus individual work (SJOBERG et al., 2002). However, the lack of
professionals in software engineering experiments is due to the conception of high costs and
large organisational effort.

SJOBERG et al. (2002) apud Warren Harrison (2000) state that professional programmers
are hard to come by and are very expensive. Thus, any study that uses more than a few profes-
sional programmers must be very well funded. Even if we can somehow gather a sufficiently
large group of professionals, the logistics of organizing the group into a set of experimental
subjects can be daunting due to schedule and location issues. According to SJOBERG et al.
(2002), empirical software engineering research departments should have particular budgets for
paying students and software professionals for taking part in experiments. Unfortunately, this
was not our case.

A non-controversial use of student experiments is to use them to test experimental design
and initial hypotheses, before conducting experiments with professionals, as recommended by
SJOBERG et al. (2002). We accept these arguments and assume that we tried to mitigate these
effects by performing a careful experiment in which we tried to use an appropriate assessment
criterion.

The experiment we conducted was specific, since it focused on the following metrics to
evaluate the generated statecharts: time to implement, syntactic correctness, structural complexity,
behavioral similarity, and cognitive complexity. These metrics were already used in the literature
to evaluate behavioral models (DIJKMAN et al., 2011) (MIRANDA; GENERO; PIATTINI,
2005).

Moreover, formal designs and the resulting statistical robustness are desirable, but we
should not be driven exclusively by the achievement of statistical significance. Common sense
must be maintained, which allows us, for example, to experiment just to help develop and refine
hypotheses (BASILI; SELBY; HUTCHENS, 1986). Besides, the number of subjects in our
experiment is too small to conduct hypothesis testing.

We agree that the experiment results can be different according to the subjects and
environmental conditions where the experiment is conducted. However, increasing the realism
of software engineering experiments also requires an increase in the resources needed to conduct
such experiments. Using professionals as subjects usually means that they must be paid. De-
velopment of necessary supporting tools is costly. Attracting experts to take part in the design,
management and data analysis of realistic experiments also requires resources (SJOBERG et al.,
2002).

In the next sections, some conclusions, considerations and future works are presented.

6.3 Contribuitions

The main contributions of this work consist in the proposal of:
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� A systematic process for deriving the behavior of context-sensitive systems, ex-
pressed as statechart, from requirements models, specified as goal models. The
GO2S process consists of six activities to guide the software engineer: Construction

of design goal model; Specification of contextual variation points; Specification of

monitoring and adaptation; Specification of flow expressions, Statechart derivation

and refinement. The process was modeled using the BPMN language to capture
the sequence of activities to be performed indicating the input/output artifacts. The
process is useful both for guiding a context-sensitive systems development team on
designing a new application and also as a conceptual foundation to support academic
teaching activities on context and context-sensitive systems. This GO2S process
for deriving the behavior of context-sensitive systems from requirements models is
original.

� Specification of monitoring and adaptation tasks in a contextual design goal
model. We propose the specification of monitoring and adaptation tasks in a single
model, the contextual goal model. This is an important contribution since context-
sensitive systems should provide three characteristics: monitoring, awareness and
adaptation. Therefore, it does not require any additional notation or extension, the
specification is performed using the elements already defined in this model.

� The behavioral contextual design goal model. This model allows to express, in a
single model, information about requirements, architectural design, operationalization
of NFRs, context, behavior, adaptation and monitoring tasks.

� The GO2S metamodel. This dissertation proposed the GO2S metamodel that de-
scribes the concepts of the behavioral contextual design goal model, their properties
and the valid connections between the elements. This metamodel relates the require-
ments, architectural design, context and behavior annotations in a unified metamodel.
To the best of our knowledge, there is no metamodel that addresses all those elements.

� A running example to demonstrate the process application. In order to illustrate
our process we considered the popular Znn.com system, aiming closely follow the
defined process.

� A controlled experiment in order to evaluate our process. The experiment results
allowed us to reject hypotheses that there is no difference between using or not
the proposed process. The results of the experiment indicate that there are some
evidence that the number of functionalities that behaved as specified in requirements
document was higher in the group that used the GO2S process. Besides, the structural
complexity was lower. However, the time spent to implement, on the other hand, was
slightly higher in the group that followed our approach.
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6.4 Future Works

For future works, the following activities can be undertaken:

� Develop a case tool to implement the process. This tool could be used to produce
the goal model and guide the software engineer to apply the GO2S process generating
the different views (design, contextual and behavioral) of our process to implement
the statechart derivation. Such tool can be developed using the metamodel proposed
in this dissertation and it could use OCL rules to constrain the relationships between
the metaclasses present in this unified metamodel.

� Apply the process in complex systems. The use of the process for more complex
systems, especially in the context of the industry, would help to assess if it is suitable
in different domains. Equally important is to conduct further investigation to assess
its costs and benefits. This analysis would help to identify points of the process that
require improvements.

� Perform new controlled experiments. Despite the encouraging results obtained,
we consider them as preliminaries. Further replication is necessary and also new
experiments must be carried out with software engineers who develop context-
sensitive systems.

� Develop mechanisms to perform the reasoning of context-sensitive systems from
the generated statecharts. Statecharts allow the reasoning through the analysis of
properties such as system’s completeness and correctness. This reasoning could be
added to the GO2S process to improve the quality of generated statecharts.

� Incorporate other architectural views in our process. Software architecture can
be composed of four views: structural, behavioral, deployment, and configuration.
The structural view was already addressed in the work of PIMENTEL et al. (2012)
and our process addressed the behavioral view. It is important to derive systematically
the other architectural views, for example deployment and configuration in order to
obtain a complete system specification.

6.5 Summary of publications

In this section we list papers related to this dissertation that were published in international
venues.

VILELA, J.; CASTRO, J.; PIMENTEL, J.; SOARES, M.; LIMA, P.; LUCENA, M.
Deriving the behavior of context-sensitive systems from contextual goal models. 2015. 30th
ACM/SIGAPP Symposium On Applied Computing (SAC). April 2015. In press.
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VILELA, J.; CASTRO, J.; PIMENTEL, J.; LIMA, P. On the behavior of context-sensitive
systems. 2015. 18 Workshop em Engenharia de Requisitos (WER 2015). April 2015. In press.

DERMEVAL, D.; VILELA, J.; BITTENCOURT, I.; CASTRO, J.; ISOTANI, S.; BRITO,
P.; SILVA, A. Applications of ontologies in requirements engineering: a systematic review of the
literature. In: Requirements Engineering journal, 2015, pp.1-33.

DERMEVAL, D.; VILELA, J.; BITTENCOURT, I.; CASTRO, J.; ISOTANI, S.; BRITO,
P. A Systematic Review on the Use of Ontologies in Requirements Engineering. In: Simpósio
Brasileiro de Engenharia de Software (SBES), 2014, pp. 1-10.
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A
Pre-Experiment Questionnaire

We applied a pre-experiment questionnaire in portuguese in order to know the subjects
profile and experience in system modeling. The file that subjects received is presented in next
page.



Derivation of statecharts from goal models to context-sensitive systems 

Experiment 

Date: 03/12/2014 

Group:      (       ) Using the process          (    ) Control___________ 

Anonymous questionnaire 

 

Pre-Experiment – Questionnaire 

The  aim  of  this  questionnaire  is  to  obtain  information  about  your 

background on systems modeling and software engineering. Your answers do 

not  affect  the  other  activities  of  this  experiment,  they  simple  provide  us  a 

context for the interpretation of results. Feel free to write beyond the designated 

lines in order to explain or detail your answers, if needed be. 

1) On which academic level are you enrolled? 

(   ) Undergraduation            (   ) Master               (   ) Doctoral 

 

2) What is/was your undergraduation course? 

_____________________________________________________________ 

 

3) Do you have professional experience on software engineering? 

(   ) No    (   ) Yes, for how long? ________________________________ 

If yes, which activities have you performed professionally? 

_____________________________________________________________

_____________________________________________________________

_____________________________________________________________ 

 

4) Have you ever used a modeling language for describing systems behavior 

before this training?? 

(   ) No     (   ) Statemachines   (   ) Petri Nets (   ) Statechart 

(   ) Class Diagram   (   ) Activity Diagram    (   ) Use Case Diagram 

(   ) Goal Model  (   ) Process Diagram 

(   ) Other: which one(s)?  

____________________________________________ 

 

 

5) Choose one of the alternatives with respect to the following statement:  
“I am proficient in statecharts or other kinds of state diagrams”. 

 

6) Choose one of the alternatives with respect to the following statement:  
“I am proficient in a systems modeling language different of statecharts or other 

kinds of state diagrams”. 
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B
Activity of Control Group

The control group received the specification in portuguese of simplified version of a
Smart Home System described in natural language (portuguese), its goal model, and the activities
the subjects had to perform in the experiment.
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Statecharts Derivation 

Experiment 

Group: Control                      Data: 03/12/2014 

 

Start Time: __________________ 

End Time: ___________________ 

1) Consider the system for a smart home whose requirements and goal model are 

presented below.  

The smart home system has been designed to make life easier for people with dementia 
problems and provide continuous care to them to ensure their safety and comfort. In order to 
achieve that, the smart home has to act in response to the context.  In this experiment, we will 
use a small version of the system adapted from description available at [ALI, 2010]1.  

The main goal of the system is to control the home for the patient: people with dementia 
suffer from serious problems with memory. As a result of these problems, a patient may forget 
to maintain healthy family environment. One of the features of the system is the temperature 
setting, in order to achieve this, the patient should be able to open/close the windows or turn 
on/off the ventilator as often as desired. 

Protect the house against potential thieves is another goal that the smart home should be 
responsible. The house should provide the illusion that there is always someone at home when 
the patient is out. Thus, the system should turn on/off the lights when the patient is away from 
home for a long time and it is night; when sunrise should turn off the lights. This would help 
prevent a thief enter the house. 

Furthermore, the smart home should at the same time act against any potential thief 
when he is inside the house area. Thus, the smart home should always monitor the rooms of 
the house and check if a person is acting suspiciously (by entering foran unusual entry, for 
example). If this occurs, the smart home should many times as necessary to close all doors and 
windows and then call the police. 

While the system manages the temperature and protects the house from thieves, the 
system must provide patient entertainment in various ways, such as watching movies (for this 
he should log into a site of film and then the film is shown on television) or view a TV channel 
or send messages to friends/relatives of the patient to visit him when they do not do more 
than a month.  

A critical requirement for the smart home is the gas leakage control, so the use of the oven 
should be controlled. Thus, the possible actions for the system are turn off the oven (when the 
patient finished using it) or notify the fire department (when it detects a leak). 

For all these actions are taken by the system, it should perform the necessary monitoring. 

 

2) From the specification presented above, create a statechart in Yakindu tool that 

represents the desired system behavior. This statechart should not have any added 

functionality or less than is described in the specification. 
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thesis, 2010. 
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The goal model of the smart home is presented below. 

 

Temperature is 

managed

House is controlled for 
the patient

OR

Open/Close the 
windows

Display movie 
on TV

AND

Home is 
protected 

against theft

Goal TaskSoftgoal Quality 
constraint

Legend

Actions against potential 

theft are taken

Turn on/off the 

ventilator

Turn on/off light 
iteratively

Close all doors and 
windows

Patient is 

entertained

Film is shown

OR

Login to movie 
site

AND

View TV show

Call police

AND

AND
Send message to 
relative or friend

Leak 

controlled

Turn off the 
oven

Call fire 
department

OR
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C
Activity of Experimental Group

The experimental group also received the specification in portuguese of simplified version
of a Smart Home System. Besides the specification and its goal model, the activity also described
the activities the subjects had to perform in the experiment.
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Derivation of statecharts from goal models to context-sensitive systems 

Experiment 

Group: Using the Process                    Date: 03/12/2014 

 

Start Time: __________________ 

End Time: ___________________ 

1. Consider the system for a smart home whose requirements and goal model are 

presented below.  

The smart home system has been designed to make life easier for people with dementia 
problems and provide continuous care to them to ensure their safety and comfort. In order to 
achieve that, the smart home has to act in response to the context.  In this experiment, we will 
use a small version of the system adapted from description available at [ALI, 2010]1.  

The main goal of the system is to control the home for the patient: people with dementia 
suffer from serious problems with memory. As a result of these problems, a patient may forget 
to maintain healthy family environment. One of the features of the system is the temperature 
setting, in order to achieve this, the patient should be able to open/close the windows or turn 
on/off the ventilator as often as desired. 

Protect the house against potential thieves is another goal that the smart home should be 
responsible. The house should provide the illusion that there is always someone at home when 
the patient is out. Thus, the system should turn on/off the lights when the patient is away from 
home for a long time and it is night; when sunrise should turn off the lights. This would help 
prevent a thief enter the house. 

Furthermore, the smart home should at the same time act against any potential thief 
when he is inside the house area. Thus, the smart home should always monitor the rooms of 
the house and check if a person is acting suspiciously (by entering foran unusual entry, for 
example). If this occurs, the smart home should many times as necessary to close all doors and 
windows and then call the police. 

While the system manages the temperature and protects the house from thieves, the 
system must provide patient entertainment in various ways, such as watching movies (for this 
he should log into a site of film and then the film is shown on television) or view a TV channel 
or send messages to friends/relatives of the patient to visit him when they do not do more 
than a month. 

For all these actions are taken by the system, it should perform the necessary monitoring. 

The goal model of the smart home system is presented in next page. 

2. Specification of requirements identified in the design phase in the goal model: 

 

2.1. Include the requirements below in the goal model: 

The system must provide patient entertainment in various ways, such as watching movies 

(for this he should log into a site of film and then the film is shown on television) or view a TV 

channel or send messages to friends/relatives of the patient to visit him when they do not do 

more than a month. 

 

2.2. Identify the contextual variation points from the conditions for the execution of 

tasks listed in the specification of question 1. 

                                                           
1
 Raian Ali. Modeling and Reasoning about Contextual Requirements: Goal-based Framework. Doctoral 

thesis, 2010. 
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Temperature is 

managed

House is controlled for 
the patient

OR

Open/Close the 
windows

Display movie 
on TV

AND

Home is 
protected 

against theft

Goal TaskSoftgoal Quality 
constraint

Legend

Actions against potential 

theft are taken

Turn on/off the 

ventilator

Turn on/off light 
iteratively

Close all doors and 
windows

Patient is 

entertained

Film is shown

OR

Login to movie 
site

AND

View TV show

Call police

AND

AND
Send message to 
relative or friend

Leak 

controlled

Turn off the 
oven

Call fire 
department

OR

 

3. Include in the goal model the tasks necessary for the adaptation of the critical objective 

of the system with their contexts and monitoring as described in the step 3 of the 

reference guide.  

A critical requirement for the smart home is the gas leakage control, so the use of the oven 
should be controlled. Thus, the possible actions for the system are turn off the oven (when the 
patient finished using it) or notify the fire department (when it detects a leak). 

 

 

4. Observe the order of execution of the tasks in the specification of question 1 and 

determine the system flow expressions, writing the expression in the objective model. 

 

5. Using the flow expressions, create a statechart in Yakindu tool that represents the 

desired behavior of the system with the appropriate transitions. This statechart should 

not have any added functionality or less than is described in the specification. Consider 

the idle states for wait the context hold or the user entries. 
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Post-Questionnaire Experiment

We applied a pos-experiment questionnaire in portuguese to the experiemtnal group. The
aim of this questionnaire was to detect the subjects opinions about each process activity of GO2S
process. The file that subjects received is presented in next page.
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Derivation of statecharts from goal models to context-sensitive systems 

Experiment 

Group: Using the process                   Date: 03/12/2014 

Anonymous questionnaire 

 

For each one of the statements below, select whether you strongly disagree, disagree, is 

neutral, agree, or strongly agree. 

1. The process for statecharts derivation from goal models is understandable. 

 
 

2. Step 1 (Construction of design goal model) is easy to understand. 

 

3. The notation of goal model is easy to understand. 

 

4. The use of goal models facilitates the creation of statecharts. 

 

5. Step 2 (Specification of contextual variation points) is easy to understand. 

 

6. The notation for context specification is easy to understand. 

 

7. Step3 (Specification of monitoring and adaptation) is easy to understand. 
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8. Step4 (Specification of flow expressions) is easy to understand. 

 

9. The use of flow expressions facilitates the creation of statecharts. 

 

10. The use of flow expressions makes the creation of statecharts more systematic. 

 

11. Step5 (Derivation of Statechart and refinement) is easy to understand. 

 

12. Statecharts makes easy to understand the system's behavior. 

 

13. The creation of statecharts contributes to a more complete system specification. 

 
 

14. The mapping of tasks to states facilitates the creation of statecharts. 

 

15. The mapping between goals and super-states improves the organization of the statechart. 

 

 

Do you like to perform some comment about the process? 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 
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Reference Guide

The group that applied the GO2S process received a reference guide in portuguese with
a summary of the activities and the notations used by our process. This file is presented in next
page.
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Reference Guide 

Overall Process 

Construction 
of design 

goal model 

Specification 
of contextual 

variation 
points 

Specification 
of 

adaptation 
and 

monitoring  

Specification 
of flow 

expressions 

Statechart 
derivation 

and 
refinement 
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Goal Model[Notation] 

TaskSoftgoalGoal Quality 
constraint

ORAND

Design quality 
constraint

Design Task

The tasks and the quality constraints 

identifified in the design phase are represented 

with the dashed notation. 

1º Activity of the process 

 Steps: 
 Identify the requirements appeared in the design phase 

such as 
 Non-functional requirements 

 Design tasks 

 Design quality constraints 

 

 Assign a design task (that will not be executed by the 
system) to an user (if there is any task of this type) 

 
Example: 
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Overall Process 

Construction 
of design 

goal model 

Specification 
of contextual 

variation 
points 

Specification 
of 

adaptation 
and 

monitoring  

Specification 
of flow 

expressions 

Statechart 
derivation 

and 
refinement 

Contextual Goal Model [Notation] 

The contextual variation points can appear in AND/OR 

refinements and they are specified through a label (C1, 

C2.. Cn) in the goal model. 

Visitante segue 

as regras do 

museu

Informar 

visitante sobre 

regras

AND

Funcionário 

reforça 

pessoalmente

Visitante não tira 

foto/toca nas peças

Regras sejam 

reforçadas

AND

Fornecer 

informações de 

quebra de regras 

ao funcionário

AND

Controlar a 

câmera do 

celular do 

usuário

Notificar 

visitante da hora 

de encerramento

Notificar visitante 

via sms para não 

entrar no museu 
Notificar visitante 

via sms para sair 

do museu 

OR

Funcionário do museu

Bloquear 

Câmera

Liberar 

Câmera

OR

C3C2

C1

C4

C5

-C5

C7
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2º Passo do processo 

 Steps: 
 Identify and specify the contextual variation points. 

 tip: look for situations that represent conditions for a task to be 
executed. 

 Refine each context using the following notation 

 

Fact Statement
AND OR Supports

Legenda
Imply

Supports: used to connect facts and statements. 

Imply: used to connects facts or statements to the context. 

Fact: it is possible to check if its value is true ou false directly. 

Statement: its value (V or F) is infered through the facts. 

Overall Process 

Construction 
of design 

goal model 

Specification 
of contextual 

variation 
points 

Specification 
of 

adaptation 
and 

monitoring  

Specification 
of flow 

expressions 

Statechart 
derivation 

and 
refinement 
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3º Passo do processo 

 Steps: 
 Define the requirements that requires na action in case of failure 

(critical requirements for the system) 

 Represente the adaptation management 

 Adid a new goal in the root node to the management 

 Add subgoals for each critical goal that must be monitored and 
adapted (in case of more than one critical requirement) 

 Add design tasks to represent the adaptation actions 

 Associate the adaptation goals and taskswith a context label. 

 Refine each context 
 

Visitante é 

assistido no 

museu

AND

Alternar link de 

dados

Alterar servidor

Gerenciar adaptação 

do tempo de resposta 

do terminal

OR

C13

C14

C12

....

Exemplo: 

3º Step of the process 

 Steps: 

 Identify the dynamic contextual elements (properties of real-world 
present in the refinements of the contexts facts that need to be 
monitored all the time from the system because its value constantly 
changes at runtime) 

 Represent the context monitoring 

 Add a new goal in the root node 

 Adddesign tasks to monitor each dynamic contextual element 

Visitante é 

assistido no 

museu

AND

...

Contexto 

Monitorado

Monitorar 

Tempo de 

resposta

Monitorar 

número de 

acessos Monitorar 

tempo de 

Resposta do 

link

AND
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Overall Process 

Construction 
of design 

goal model 

Specification 
of contextual 

variation 
points 

Specification 
of 

adaptation 
and 

monitoring  

Specification 
of flow 

expressions 

Statechart 
derivation 

and 
refinement 

Top-down 

Write in the parent 

the bevhavior of its 

children. 

Assign a code for 

each goal and task. 
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Flow Expressions [Notation] 

 A B   sequence (first A, then B) 

 A | B  alternative (A or B) 

 A?   A is optional 

 A+  repetition (1 or more times) 

 A*  repetition (zero or more times) 

 A – B   A and B in parallel (ortogonal) 

 i1   idle state 

 

1) Sequence (result) 

 Goal model: 

 Statechart: 

g2 g7 g10 
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2) Alternatives (result) 

 Goal model: 

 Statechart: 

(dt11 | dt12) 
 

3) Optional (result) 

 Goal model: 

 Statechart: 

t27 t28? 
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4) Repetition 1 or more (result) 

 Goal model: 

 Statechart: 

(g8 g9)+ 
 

5) Repetition 0 or more (result) 

 Goal model: 

 Statechart: 

g2 g7* g10 
 

Iniciar 
ATM

Atender 
Clientes

Desligar 
ATM

Fornecer ATM
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Comparison between 1+  e  0+ 

 A B+ C    (1 or more times) 

A B C

 A B* C    (zero or more times) 

A B C

6) Paralell (result) 

 Goal model: 

 Statechart: 

(g2 g7* g10)-(dt155) 

 
 

Iniciar 
ATM

Atender 
Clientes

Desligar 
ATM

Fornecer ATM

Testar 
Conexão com 

o Banco
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7) Idle states  

 Case: when a state in which nothing will be done is 

needed - the system is just waiting for the occurrence of 
any event or context to be true. 

 Example: 

 

 Expression: 

 Use iX (where X is a number) to add a idle 
state: 

(i1 dt84)+ 

7) Idle states (result) 

 Goal model: 

 Statechart: 

(i1 dt84)+ 

Testar 
Conexão com 

o Banco

Idle

Fornecer ATM
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Comparison... 

Without idle With idle 

Test 
connection 

with the bank

Idle

Provide ATM

(i1 dt84)+ dt84+ 

Test 
connection to 

the Bank

Provide ATM

Overall Process 

Construction 
of design 

goal model 

Specification 
of contextual 

variation 
points 

Specification 
of 

adaptation 
and 

monitoring  

Specification 
of flow 

expressions 

Statechart 
derivation 

and 
refinement 
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5º Step of the process: Derivation strategy 

 Create statechart from the goal model: 

 Model the goals/tasks in refinements as super-states 
 The children elements of these elements should be sub-states of 

the parent. 

 

 Model the tarefas states 
 

 Criate idle states  to wait until the context be 
true to occur state change. 

Combining expressions 

t3 t4 t6 
 

(dt11 | dt12) 
 

Usar Sensor 
Automático 

(dt11)

Usar Input 
Manual
(dt12)

Detectar Cédulas Disponíveis (t4)

Ligar 
Equipamento 

(t3)

Autorizar 
Operação 

(t6)

Iniciar ATM (g2)

Tip: start creating 

the statechart the 

root of the goal 

model to facilitate 

the creation of 

superstates in the 

yakindu tool. 
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5º step of the process: statechart derivation patterns 

5º step of the process: events and conditions 

 After generating the statechart, it is necessary to write the events and 
conditions of the transitions. 

 The context monitoring and the management of adaptation actions should be 
represented in parallel. 

Example: 
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5º step of the process: events and conditions 

Exemplo: 

Sources of inspiration for defining events 

 Context is true/false 

 Task accomplished 

 Task request by a user 

 Timer 
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