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Abstract

Model-Driven Engineering (MDE) aims at improving both software productivity and
quality by shifting the concerns from platform-specific programming towards platform-
independent business modeling concerns.

Compared to code-driven agile methods, MDE methods involve an upfront investment
in specifying detailed Platform-Independent Models (PIM). The return on such investment
is clear-cut only if almost all the code is automatically generated from the PIM. However,
complete code generation from a general purpose modeling language is still remarked as
a challenge (Mohagheghi & Dehlen, 2008).

This master dissertation shows that this goal is reachable. It proposes an approach
to overcome one of the main weakness of code generators: lack of behavioral code
generation from standard modeling languages. Specifically, this dissertation proposes an
innovative use of Imperative Object Constraint Language (IOCL) to completely specify
operation bodies in UML (Unified Modeling Language) PIM. IOCL is a small subpart of
the QVT (Query-View Transformation) standard of the Object Management Group (OMG,
which also authored the UML) for model transformation specification. This work shows
that the most part of the behavioral code for the most widely used implementation platform
today, Java, can be automatically generated from IOCL expressions. It also shows that a
behaviorally complete PIM can be efficiently specified through an experimental CASE
tool that leverage a core subset of UML for structural modeling.

Within this CASE tool, the behavior code generation functionality works in synergy
with other innovative functionalities resulting from other dissertations. They include
view-driven edition of component-based models and its corresponding structural code
generation. The combination of these functionalities, validated on the engineering of a
simple information system which code was entirely generated from a PIM in UML and
IOCL, contributes to materialize the most advanced software automation of the MDE
vision.

Keywords: Model Driven Engineering; Behavioral Code Generation; Imperative Object
Constraint Language, Unified Modeling Language.
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Resumo 
 

A Engenharia Dirigida por Modelos (MDE) visa melhorar tanto a produtividade 
quanto  a  qualidade  do  software  através  do  deslocamento  de  preocupações  de  uma 
programação orientada a uma plataforma específica para uma modelagem de negócios 
independente de plataforma. 
 

Comparado a métodos ágeis, os métodos MDE envolvem um investimento inicial 
na especificação detalhada dos Modelos  Independente de Plataforma (PIM). O retorno 
de  tal  investimento  é  claro  somente  quando  se  consegue  gerar  quase  todo  o  código 
automaticamente  a  partir  do  PIM. No  entanto,  a  geração  de  código  completo  de  uma 
linguagem  de  modelagem  de  propósito  geral  continua  a  ser  considerado  como  um 
desafio (Mohagheghi & Dehlen, 2008). 
 

Esta  dissertação  de mestrado mostra  que  tal  objetivo  é  alcançável. Ela  propõe 
uma abordagem para superar uma das principais  fraquezas de geradores de código: a 
falta  de  geração  de  código  de  comportamental  de  linguagens  de  modelagem 
padrão. Especificamente, esta dissertação propõe um uso inovador da Imperative Object 
Constraint Language (IOCL) para especificar completamente o corpo das operações em 
UML  (Unified  Modeling  Language). IOCL  é  uma  pequena  parte  da  especificação  QVT 
(Query­View  Transformation),  padrão  do  Object  Management  Group  (OMG)  para  a 
especificação de transformações de modelos. Este trabalho mostra que a maior parte do 
código comportamental para a plataforma mais utilizada hoje para implementação, Java, 
pode ser gerado automaticamente a partir de expressões IOCL. Também mostra que um 
PIM completo pode ser especificado de forma eficiente através de uma ferramenta CASE 
experimental que utiliza um subconjunto de UML para modelagem estrutural. 
 

Dentro  desta  ferramenta  CASE,  a  funcionalidade  de  geração  de  código 
comportamental  funciona  em  conjunto  com  outras  funcionalidades  inovadoras 
resultantes  de  outras  dissertações. Elas  incluem  a  edição  de  modelos  baseados  em 
componentes e sua correspondente geração de código estrutural. A combinação destas 
funcionalidades, validadas a partir  da engenharia de um sistema de informação simples 
cujo código foi inteiramente gerado a partir de um PIM especificados com UML e IOCL, 
contribui  para  materializar  a  mais  avançada  automação  software  proposta  pela 
Engenharia Dirigida por Modelos. 
 
Palavras­chave: MDE, UML,  Imperative OCL, Transformações de Modelos, Geração de 
Código Comportamental. 
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1
Introduction

Software development is a challeging task. It demands several subtasks such as the full
understanding of the problem domain; the distillation of overlapping and contradictory
requirements; and fabrication of an efficient, cost-effective implementation. All these
work needs to be managed to a successful conclusion, all at the lowest possible cost in
time and money (Mellor & Balcer, 2002).

One of the approaches that leads towards the rise of development productivity is the
software abstraction (Stahl & Völter, 2006), which mainly refers to separation of the
essential aspects of the system from the non-essential.

Models are at the next higher layer of abstraction, abstracting away the platform
1 details from the development process. Models and models transformations form the
core of Model Driven Engineering (MDE). A desirable goal of MDE is to obtain the
complete application source code by model transformations. However, in order to do
so, two aspects of the model specification needs to be considered: the structural and
the behavioral features. The focus of this dissertation is the proposal of a tool to
automatically generate the behavioral part of the model specification, which is a
necessary step to achieve model executability.

This chapter contextualizes the focus of this dissertation and starts by presenting its
motivation in Section 1.1. A brief overview of the proposed solution is presented in Sec-
tion 1.3, while Section 1.3 describes some related aspects that are not directly addressed
by this work. Section 1.5 presents the main contributions and, finally, Section 1.6 outlines
the structure of the remainder of this dissertation.

1The underlying software and hardware that will run the program.
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1.1. MOTIVATION

1.1 Motivation

In 2000, Model-Driven Engineering (MDE) was put forward by the Object Management
Group (OMG, 2010c) (OMG), a consortium of companies and academic centers, under
the initiative known as Model- Driven Architecture (OMG, 2010b) (MDA). MDA defines
a set of roles for different models within an MDE project together with principles on how
to produce these models from one another. In the MDA vision, software engineering is
based on the development of (a) a Platform-Independent Model (PIM) which represents
the application’s requirements, architecture and business objects in a machine-processable
notation, plus (b) one or more model transformations from the PIM to multiples Platform-

Specific Models (PSM) and then from PSMs to code.
Over the last decade, OMG defined a coherent family of standards to support MDA.

One of these standards is the Unified Modeling Language (UML). Despite all the benefits
UML has to offer, such as its rich set of visual diagrams. UML’s notation is not sufficiently
detailed to fully determine the behavior of operations and transitions (Heitz et al. , 2007).
This means that UML models with standard notation cannot cannot completely specify
the behavior of a software system so that model transformations cannot generate 100%
of the source code.

Action Semantics (AS) are means of addressing this shortcoming. The Action
Semantics proposal aims at providing modelers with a complete, software-independent
specification for actions in their models. The goal is to make UML modeling executable
modeling, i.e. to allow designers to test and verify early and to generate 100% of the code
if desired (Sunyé et al. , 2001)

The concrete syntax for UML Action Language (OMG, 2010a), currently on its beta
version, rely on a syntax that is incoherent with the existing UML Expression language,
the Object Constraint Language (OCL) (Haustein & Pleumann, 2004).

Actually, part of the AS specification duplicates functionality that is already cov-
ered by the OCL and QVT specification and the use of two different syntaxes may be
inappropriate and confusing.

Thus, this work investigates the possibility of using the already consolidated QVT
standard, specifically the Imperative OCL package (IOCL) defined within the QVT
specification to specify the behavior of software systems.
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1.2. PROBLEM STATEMENT

1.2 Problem Statement

Motivated by the scenario presented in the previous Section, the goal of the work described
in this dissertation can be stated as:

This work defines the design and implementation of the Imperative OCL com-
piler tool, aiming at providing an alternative way to system modelers specify and
generate the software behavior of a system using for that a standard and consoli-
dated modeling language.

Consequently, it will provide a fundamental part of the tool support to reach the
model executability, and it will, along with other related code generators improve the
development productivity of the artifacts developed for the domain.

1.3 Overview of the Proposed Solution

In order to accomplish the goal of this dissertation, the IOCL (Imperative OCL) compiler
is proposed. This Section presents the context where it is regarded and outlines the
proposed solution.

1.3.1 Context

This dissertation is part of the ORCAS2 research group, led by professor Jacques Robin,
whose primarily interest is the development of methodologies, CASE tools and component
frameworks to speed-up the engineering of software systems.

This work is part of a long-term large project that bring together several Master and
PhD. students. This project called as Web Application KobrA Modeling Environment
(WAKAME) investigates open research issues involved in providing component-based,
model-driven CASE services accessible via web browsers and deployed on the a comput-
ing cloud. It started in 2008 with the MSc. dissertations of Breno Machado (Machado,
2009) and Weslei Marinho (Marinho, 2009) which together investigated the challenge
of providing ubiquitous, single user model edition and cloud persistence services for
UML/IOCL PIM following the KobrA2 (Atkinson et al. , 2008) process.

The KobrA2 process, resulting from the collaboration led by Prof. Colin Atkinson
at Universität Mannheim and Prof. Jacques at CIn-UFPE, proposes the first integration
in synergy of three complementary software engineering reuses approaches: MDE,

2http://www.cin.ufpe.br/ orcas/
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1.3. OVERVIEW OF THE PROPOSED SOLUTION

Component-Based Development and Product Line Engineering. The process advocates
orthographic (Atkinson & Stoll, 2008), component-based PIM construction. Within such
an orthographic modeling approach, also called multi-view modeling or aspect-oriented
modeling by some other authors, software engineers create and revise components through
its views, each one focused on a single design concern. They have no direct access to the
whole PIM of a component and even less of the component assembly that constitute the
while system. This whole PIM. called the Single Unified Model (SUM) gets created and
updated by automatically merging the various partial views.

In an attempt to realize the MDA vision and address the automated application code
generation, the KobrA metamodel merges the Imperative OCL (IOCL) package of QVT.
IOCL extends the OCL language and integrates the core constructs of imperative and
OO programming. In KobrA2, it is used to specify in the bodies, pre-conditions and
post-conditions of UML operations. In all these contexts, IOCL expressions constitute a
formal input to behavioral and design by contract tests (via pre and post conditions) code
generation.

1.3.2 Outline of the Proposal

As mentioned, the present work is part of the WAKAME project. Currently, the develop-
ment focus of WAKAME is its extension along two axises. The first is revision control
allowing the secure concurrent model edition by multiple users collaborating on an MDE
project. The second is the automatic generation of full web application code from UM-
L/IOCL KobrA2 PIMs edited using WAKAME. Together these two extensions are needed
to transform WAKAME from a simple visual editor of KobrA2 PIM, to a full-fledged
collaborative CASE tool delivering productivity gains for real-life component-based
MDE projects.

The code generation axis is divided into three sets of aspects. The first set distinguish
between structural code generator and deployment code. The second set distinguish
between the behavioral code generator. The third set distinguish between production
code of the presentation GUI layer.

This dissertation deals with the behavioral code generator aspect an it proposes
a compiler aiming at providing system modelers the ability to specify and generate
the software behavior based on the QVT standard through the use of the consolidated
Imperative OCL modeling language.

The proposed solution consists of modules for the front-end and back-end of the
IOCL expressions compiler, including components for the syntactical and type checking
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1.4. OUT OF THE SCOPE

analysis and the code generator. The goal also is to create a modular implementation that
makes easier further extensions to different metamodels and target languages. Also it is
included in this project, studies with the purpose to evaluate the impacts of applying the
tool to perform the automatic generation of method bodies.

1.4 Out of the Scope

As the proposed compiler uses Imperative OCL language as input language, which
inherits all constructors and standard functions of OCL and also adds several others, a
set of aspects of the OCL and IOCL specification were left out of this project scope.
However this limitation do not discard future enhancements to answer more efficiently to
its purpose. Meanwhile, the aspects not directly addressed by this work are listed in the
following:

• Ecore/UML Modeling Support. Event though system specification with Ecore
and UML metamodels are important to the purpose of this work. The implemented
compiler only includes the support for KobrA2 models;

• Incomplete OCL and IOCL Support. The OCL expressions: IfExp, LetExp,
OclMessageExp, TupleLiteralExp and the IOCL expressions: AssertExp, Collec-

torExp, UnlinkExp, UnpackExp and TupleExp are not supported;

• Round trip engineering. The automatic synchronization between different levels
programming languages abstractions is an important feature for the tool adoption
but currently this requirement is out of the scope of this work.

1.5 Statement of the Contribution

As a result of the work presented in this dissertation, a list of contributions may be
enumerated:

• Proposal of a new usage of Imperative OCL expressions. The work proposes its
utilization during the behavioral model specification at PIM level.

• Design and implementation of IOCL compiler. A tool that automatically generates
platform-specific code from IOCL language.

• Two different evaluations for verifying the the tool helpfulness to a MDA process.
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1.6. ORGANIZATION OF THE DISSERTATION

1.6 Organization of the Dissertation

The remainder of this dissertation is organized as follows:

• Chapter 2 contains a comprehensive revision of the basic concepts necessaries for
the accomplishment of this work, with topics related to Model Driven Engineering,
Model Driven Architecture and OMG standards.

• Chapter 3 presents the KobrA engineering process, KISF framework and WAKAME
tool.

• Chapter 4 details the WAKAME Code Generator project, topics such the structure
of its components and the integration of Code Generator project to the WAKAME
tool are covered in this chapter.

• Chapter 5, the PIM of the Imperative OCL compiler is described using the KobrA
methodology. This chapter also details its architecture, the implementations details
and the chosen technologies.

• Chapter 6 reports the IOCL compiler’s evaluations. Also in this Chapter there is a
description of each experiment, the expected goals, the methodology adopted, and
the findings.

• Chapter 7 focuses on the works related to this project.

• Chapter 8 concludes this dissertation by summarizing the contributions of this
work, as well the limitations and proposing future enhancements to the solution,
along with some concluding remarks.
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2
Concepts and Terminology

In this chapter we describe the concepts of software engineering we used to develop the
proposed application. We also define the terminology used in the rest of this thesis.

2.1 Model-Driven Engineering

One of the key reasons behind the success of the Object-Oriented (OO) paradigm since
the mid nineties is the co-emergence of OO software modeling languages together with
expressive and efficient imperative OO programming languages.

Since then, models have been used for software development in basically two distinct
approaches (Stahl & Völter, 2006): the model-based approach, where models are used
just as documentation and the model-driven approach, where they are used as input for
automated generation of artifacts such as other models, code and documentation.

Traditional OO methods such as the Rational Unified Process (RUP) (Kruchten, 2003)
are model-based, but not model-driven. In principle, the careful building of models as
documentation that they advocate leads to improved software quality. It allows to separate
platform-independent concerns such as business modeling, requirements elicitation and
architecture design from platform-specific concerns such as programming, testing and
deployment. This separation allows a professional to specialize in specific tasks. It
also reduces their cognitive overload, a lead cause of bad design and software defects.
However, in a model-based approach, all these artifacts need to be keep in synch manually
during the software lifecycle. Under the harsh and often unrealistic deadlines that is
the rule rather than the exception in the software industry, this manual synchronization
maintenance incurs a generally prohibitive time and cost overhead. This overhead led
model-based method to become less popular. They are progressively being replaced
by two alternatives that aim to reduce this overhead following two largely opposite
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2.2. MODEL-DRIVEN ARCHITECTURE AND OMG STANDARDS

approaches: agile methods and MDE. The first reduces this overhead by making models
less numerous, precise, persistent, machine processable, so that synching them with code
becomes superfluous. In contrast, MDE reduces this overhead by making models even
more numerous, precise, persistent and machine processable so that synching them with
code and among themselves can be automated.

In agile method, models become quickly drawn, disposable notes towards the first
version of the code (or a major update involving some redesign). Extreme version of this
approach do away with models entirely. By drastically reducing or suppressing modeling
stages, agile methods gives up on the separation of concerns that these stages brought to
software engineering at the first place. They have nevertheless become very popular for
small scale and single platform projects that still constitute the most common ones in the
software industry.

2.2 Model-Driven Architecture and OMG standards

2.2.1 Model-Driven Architecture

The Model-Driven Architecture (MDA) (OMG, 2010b), a registered trademark of the
Object Management Group OMG (OMG, 2010c), refers to model-driven engineering
approach based on the use of OMG’s modeling standard languages.

According to OMG’s directive, the two primary motivations for MDA are inter-

operability (independency from manufactures through standardization) and portability

(platform independence) of software systems. In addition OMG postulates the system
functionality specification should be separated from the implementation of its function-
ality. To this end, the MDA defines an architecture for models that provides a set of
guidelines for structuring specifications (Stahl & Völter, 2006).

The essence of MDA is the clear distinction of software aspects into different levels
of abstractions. The fundamental long-term vision of MDA is that systems may be
specified and realized in a completely refined way in a so called platform independent
model (PIM). Then this PIM is translated to platform-specific models (PSM), which in
turn are translated to source code either manually or by model transformations. The
MDA initiative expects several benefits from this shift. Among them are: platform-
independent business model reuse, increasing productivity and increasing deployment
speed, easier applications maintenance and as a consequence of all three, economic gains
in the software life-cycle as a whole.
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2.2. MODEL-DRIVEN ARCHITECTURE AND OMG STANDARDS

MDA pursues two related goals. The first is to minimize the cost of deploying the
same functionalities on a variety of platforms, i.e. modeling once and having it deployed
many times in different computational environments such as web services, EJB, .NET etc.
The second goal is to automate an ever growing part of the development process required
during the life cycle of an application.

To achieve these these goals, MDA switches the software engineering focus away
from low-level source code towards high-level models, metamodels (i.e., models of
modeling languages) and Model Transformations (MT) that automatically map one kind
of model into another.

In MDA, the software development starts with the definition of the PIM of the
application. The PIM describes the system but the model remains completely independent
of the later implementation on target platform such as Java or .NET. This step is generally
modeled using UML, possibly adapted via profiles.

Followed by the PIM definition, the PSM is created. The PSM is usually created
automatically from PIM via model transformation. In this process it incorporates concepts
specifics to the target platform and making them viable to be mapped to code. This way,
the source code can also be generated with another tool-supported transformation based
on the PSM.

Finally, it is important to emphasize MDA solves the problem of platform fragmenta-
tion by providing a proper infrastructure for the automatic mapping of multiples PSM
and latter code from each PIM definition.

2.2.2 OMG Standards

In this section we present the key OMG standards used for structuring MDA based
systems. The OCL and Imperative OCL (sub package of QVT) specifications are deeply
focused due their importance to this project scope.

UML Infrastructure

With UML 2.0’s, one of the main goals of OMG was to align MOF, UML and OCL in
a core metamodel called the UML Infra-Structure. This common metamodel contains
elements designed to be reused during the definition of the UML metamodel, as well as
other architecturally related metamodels, such as the Meta Object Facility (MOF) and the
Common Warehouse Metamodel (CWM).

The Infrastructure consists of two packages: Core and Profiles. The Core is a complete
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2.2. MODEL-DRIVEN ARCHITECTURE AND OMG STANDARDS

metamodel, particularly designed for high reusability, where other metamodels at the
same metalevel either import or specialize its specified metaclasses, benefiting from
the abstract syntax and semantics that have already been defined. The Profiles package
defines the mechanisms used to tailor existing metamodels towards specific platforms,
such as .NET or Java. Profiles have been aligned with the extension mechanism offered
by MOF, but provide a more light-weight approach once they not change the related
metamodel.

The figure 2.1 depicts the internal structure of the Core package. The package is
divided into PrimitiveTypes, Abstractions, Basic, and Constructs. Some of these are
even further dived into more fine-grained packages to make it possible to choose just the
relevant parts when defining a new metamodel.

The PrimitiveTypes package contains a few predefined types that are commonly used
when metamodeling such as Integer, Boolean, String and UnlimitedNatural types. Ab-

straction contains contains abstract metaclasses that are intended to be further specialized
or that are expected to be commonly reused by many metamodels. Constructs, on the other
hand, contains concrete metaclasses that lend themselves primarily to object-oriented
modeling (with the class and namespace diagrams for example) and the Basic represents
a few constructs that are used as the basis for UML, MOF, and other metamodels based
on the Infrastructure Library (OMG, 2010f).

Figure 2.1: UML Infrastructure - The Core Package (OMG, 2010f)

MOF, CMOF and EMOF

The Meta Object Facility (MOF) 2.0 is a central key for MDA. Built on top of the UML
Infrastructure, MOF provides a metamodeling framework, and a set of metamodeling
services to enable the development of model driven systems.
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2.2. MODEL-DRIVEN ARCHITECTURE AND OMG STANDARDS

MOF can be used to define a family of metamodels using simple class modeling
concepts. The MOF itself is defined using its constructs, as well as other models and
other metamodels (such as UML, CWM etc.).

The MOF model is made up of two main packages, Essential MOF (EMOF) and
Complete MOF (CMOF). The MOF Model also includes additional capabilities defined in
separate packages including support for, identifiers, additional primitive types, reflection,
and simple extensibility through name-value pairs. The figure 2.2 illustrates the MOF
package structure.

Figure 2.2: MOF Package Structure (OMG, 2010e)

The EMOF model provides the minimal set of elements required to model object-
oriented systems. EMOF reuses the Basic package from UML InfrastructureLibrary as its
metamodel structure without any extensions, although it does introduce some constraints.

The CMOF Model is the metamodel used to specify other metamodels such as UML2.
It is built from EMOF and the Core::Constructs of UML 2. The CMOF Model package
does not define any classes of its own. Rather, it merges packages with its extensions that
together define basic metamodeling capabilities (OMG, 2010e).

UML Superstructure

The Unified Modeling Language is a language used to specify, construct, visualize,
and document models of software systems (Weilkiens & Oestereich, 2006). UML is
specified with MOF and OCL and is composed of several graphical diagrams which
allows engineers to design different specificities of the system. These diagrams represent
the structural and behavioral aspects of the system.

The figure 2.3 depicts the UML diagrams. They are divided into two main categories:
Structure and Behavior diagrams. Structural diagrams emphasizes the static structure of
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the system using objects, attributes, operations and relationships. The Behavior diagrams
emphasizes the dynamic behavior of the system by showing collaborations among objects
and changes to the internal states of objects

Figure 2.3: Hierarchy of diagrams in UML 2.2 (Merson, 2009)

OCL

The Object Constraint Language (OCL) is a declarative language used add vital infor-
mation to models in order to make them precise enough to serve as input to automated
model checking and code generation.

Next sections we present the characteristics of OCL, how it can be used during the
modeling and finally we explain the abstract syntax of the OCL, which includes the types
and expressions packages.

OCL characteristics

A distinguishing feature of OCL is that it is a declarative language. This means
that an OCL expression simply states what should be done, but not how. This characteris-
tic brings several advantages for the modeler. An example is that the modeler can make
decisions at a high level of abstraction, without detail how something should be calculated
(Warmer & Kleppe, 2003). OCL can be used to express preconditions, postconditions,
invariants, results of method calls (body expressions) and they can be also be used to
define a derived attribute or association.
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Additionally, OCL is a strongly typed language and this means each expression has
a type. This characteristic enables OCL to be checked during modeling and before the
execution. Thus, simple errors such as an assignment of a value incompatible to a variable
type can be removed in early stages of development.

The need for constraints in PIM

In general, UML diagrams have a natural tendency to be incomplete. The concrete
visual syntax of UML only allows the expression of visibility, type and multiplicity
constraints involving two model elements of meta-class classifier, property, relationship,
operation or parameter. Precise models require the expression of constraints involving
any number of model elements and combining several aspects (e.g., type of one element,
visibility of another and multiplicity of a third).

To illustrate the need for constraints, consider the model shown in figure 2.4 (this
example is part of (Warmer & Kleppe, 2003)). There is an association between class
Flight and class Person, indicating that a certain group of persons are the passengers on a
flight. The multiplicity (0 .. *) on the Person class indicates the number of passengers is
unlimited. In real world scenario this is not true. The number of passengers on a flight is
always limited to the number of seats available on the airplane associated with the flight.

Figure 2.4: Flight Model (Warmer & Kleppe, 2003)

Such kinds of restrictions cannot be correctly specified in the diagram without the use
of OCL in the model. A precise way to describe this constraint would be as listed in 2.1:
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Listing 2.1: Flight Constraint

c o n t e x t F l i g h t
i n v : s e l f . p a s s e n g e r s −> s i z e ( ) <= p l a n e . numberOfSea ts

Expressions, like the above, written in a precise language like OCL offer a number of
benefits, such as: they are never ambiguous; they can be automatically checked by tools
to ensure they are consistent with the model elements and perhaps, the most important is
they can be automatically processed by a compiler and transformed to source code.

Constraint Definition

OCL expressions consist of several rules expressions. There are different contexts
these rules can refer to. In this section we present them grouped by its respective context.

Classes

• Invariant - Invariants are boolean rules that must be true for each instance of the
classifier at any moment of time.

• Definition - A definition is a construction that creates a new attribute or a new
operation.

Attributes and Association Ends

• Initialization - Initialization expressions define the initial value for the attributes
or association end it refers to. Also, the type of the expression acting as the initial
value must be compatible to the type defined in the model.

• Derivation - Derivation rules specify the value of a derived element. An OCL
expression acting as a derived value of an attribute end must conform to the type of
the attribute.

Operations

• Precondition - A precondition is a Boolean expression that must be true whenever
the operation starts executing, but only for the instance that will execute the
operation.
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• Postcondition - A postcondition is a Boolean expression that must be true at the
moment the operation stops executing, but only for the instance that just executed
the operation.

When defining the postconditions expressions, the modeler can make use of the
“@pre” keyword; this turns possible to make reference to values at the precondition
time. The variable result may also be used an it refers to the return value of the
operation if there is any.

• Body expression - A body expression defines the body of an read-only operation.
As OCL is a side-effect free language OCL expression cannot be used to define
the body of a read/write operation. Body expression type, as occurs in others rules,
must also be conformant to the type of the operation defined in the model.

OCL Abstract Syntax

The abstract syntax of OCL is divided into two different packages:

• The Type package describes the concepts that define the type system of OCL. It
shows which types are predefined in OCL and which types are deduced from the
UML models.

• The Expressions package describes the structure of all OCL expressions.

We will not detail each expression or type defined in the abstract syntax of OCL.
Instead we will focus on the expressions currently supported by the IOCL compiler.

The Type Package

OCL is a typed language. Each OCL expression has a type which is either explicitly
declared or can be statically derived. The figure 2.5 shows the defined OCL types.

PrimitiveTypes

The primitive types defined in the OCL standard library are Integer, Real, String
and Boolean. They are all instance of the metaclass Primitive from the UML core
package.
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Figure 2.5: OCL Types package (OMG, 2010d)

CollectionType

Collection play an important role in OCL expressions. There are four different
collection types in OCL 2.0 specification: SetType, OrderedSetType, SequenceType,
and BagType. Set is equivalent to the mathematical definition of set (it does not
contain duplicate elements), OrderedSet shares the same characteristics of Set by
with notion of elements order. Bags differs from Set because their elements can
appear more than once and Sequences are like Bags in which elements are ordered.

To illustrate the use of collections, consider a user writing expressions that navigates
through a simple association defined in the model. In this case, the result type of
that expression would be a Set collection type. Now if the mentioned association
were adorned with the ordered the result type would be an Ordered Set collection
type.

Additionally, OCL defines a large number of operations to enable the modeler to
manipulate collections 1. All the operations are invoked by the arrow (->) symbol.
It is important to emphasize that all expressions defined using these operations
never change the collections. They may even result in a collection, but rather than
change the original collection, they project the result in a new one.

1A complete list of the operations can be found in (OMG, 2010d).
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The Expressions Package

The figure 2.6 depicts the Expressions package of OCL. Next, we detail the most
relevant expressions accepted by the current implementation of the IOCL compiler.

Figure 2.6: OCL Expressions package (OMG, 2010d)

LiteralExp

LiteralExp is an expression with no arguments producing a value. In general
the result value is identical with the expression symbol. This includes things like
the integer 1 or literal strings like ‘this is a string’.

ModelPropertyCallExp

ModelPropertyCallExp is an abstract class and it can refer to any subtype of
Feature as defined in UML.There are three classes that specialize ModelProper-
tyCallExp in the OCL specification: AttributeCallExp, NavigationCallExp and
OperationCallExp.
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An AttributeCallExp is a reference to an Attribute of a Classifier defined in a UML
model. The listing 2.1 illustrates its usage. The plane.numberOfSeats expression is
an AttrubuteCallExpression because numberOfSeats is an attribute of Airplane.

A NavigationCallExp is a reference to an AssociationEnd or an AssociationClass
defined in a UML model. The self.passengers expression also listed in 2.1 is an
example of a NavigationCallExp because passengers is an association of Flight
classifier.

A OperationCallExp refers to an operation defined in a Classifier. The expression
may contain a list of argument expressions if the operation is defined to have
parameters. The expression self.passengers->size() in an example of an operation
call applied to the Set type 2.

There are several predefined operations available for OCL types. They are specified
by the OCL Standard Library (OMG, 2010d). The OCL Library plays a crucial
role for achieving models sufficiently precise to serve as input to code generation
from PIM. This stems from the fact that substantial part of the application code are
calls to operations from high-level API, frameworks or libraries and since UML
has no library, the only way to be able to pursue the model executability is through
the OCL.

IterateExp and IteratorExp

An IterateExp is an expression which evaluates its body expression for each element
of a collection. It acts as a loop construct that iterates over the elements of its
source collection and results in a value. An iterate expression evaluates its body
expression for each element of its source collection. The IteratorExp are special
pre defined types of IterateExp. The OCL standard library defines several Iterators
depending on the type of the source collection. This includes select, collect, reject,
forAll, exists, etc.

QVT and Imperative OCL

Query/View/Transformations (QVT) defines a standard model transformation language.
QVT is a hybrid declarative/imperative language. The declarative part is structured in
two packages: Core and Relations. Relations supports complex pattern matching and
object template creation while the Core language, defined using minimal extensions of

2By default, navigation will result in a Set
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EMOF and OCL, only supports pattern matching over a set of variables by evaluating
conditions over those variables against a set of models. In spite of the different level of
abstraction, both languages embody the same semantics and they are equally powerful.

In addition to the declarative languages, there are two mechanisms for invoking
imperative implementations of transformations from Relations or Core: the QVT internal
language, Operational Mappings, and the external call mechanism Black-box MOF op-
eration implementations. The Operational Mappings language specify a standard way
of providing imperative implementations. It defines a OCL extension with side effects,
named Imperative OCL, that allow a more procedural style, and a concrete syntax that
looks familiar for imperative programmers. Black box implementations is also another
important part of the specification because it makes possible for integrating transfor-
mations expressed in other languages to QVT libraries. This allows transformations
leverage powerful libraries in other languages than IOCL library. The figure 2.7 depicts
the relationships between the metamodels.

Figure 2.7: Relationships between QVT metamodels (OMG, 2009)

Imperative OCL

As already stated, the imperative OCL language is defined inside the Operational
Mappings Language, in QVT (OMG, 2009) specification. It extends the OCL language
with imperative expressions and algorithm constructs such as variable assignments, block,
loops, etc. It reuses OCL for OO structure navigation and functional expressions that can
be nested in the imperative expressions. It also extends the type hierarchy of OCL with
additional facilities such as dictionaries (hash tables), as well as the OCL standard library
with new operations on both OCL types and IOCL types.

The metaclasses defined in the Imperative OCL specification are divided in two groups.
The first concerns the imperative expressions and second deals with the extensions made
to the OCL types

The figure 2.8 depicts all the class hierarchy defined in the package. The abstract class
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ImperativeExpression specializes the OclExpresion to serve as the base for the definition
of all other side-effect expressions.

Figure 2.8: Imperative OCL Package - Side-effect expressions

The figure 2.9 details the expressions responsible for the program flow and instantia-
tions facilities. In the following subsections we will explain each one of them.

Figure 2.9: Imperative OCL Package - Control and Instantiation constructs

Block Expressions

A block expression (BlockExp) is a sequence of other IOCL expressions. The ex-
pressions defined in the body are executed sequentially in the order they are defined until
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the end of the block. However this execution can be interrupted by a break, a continue or
a return expression.

The block expression notation uses the do keyword followed by braces to delimit the
sequence of expressions. The listing 2.2 shows an example.

Listing 2.2: Block Expression Syntax

do {
. . .
}

The do keyword can be sometimes skipped if the block expression is defined within
the switch, compute and for expressions. The listing 2.3 shows an example of the do

keyword being skipped by the use of a switch expression

Listing 2.3: Block Expression Syntax within Switch Expression

i f ( some th ing ) t h e n {
. . .
}

Compute Expressions

Compute expressions are used to define a variable, possibly initializing it and a body to
update its value. The result of a compute expression is the variable at the end of execution
of the body.

The notation used for compute expressions is the compute keyword followed by the
variable definition in parenthesis, followed by the body expression. The listing 2.4 shows
an example of the concrete syntax.

Listing 2.4: Compute Expression Syntax

compute ( x : S t r i n g = ‘ ’ ) {
. . .
}

Imperative Loop Expressions

IOCL defines four types of Imperative Loop expressions: forEach, forOne, collectedS-

elect and collectedSelectedOne.
The loop is always applied to a collection. It declares iterators, a body and a condition.

The execution may also be interrupted by a break, continue or return expression. The
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listing 2.5 shows an example of the forEach construct being applied to a source collection.
The expression iterates through all elements of the set collection a selects the even ones.

Listing 2.5: Imperative Loop Expression Syntax

S e t {1 , 2 , 3 , 4}−> f o r E a c h ( i | i . mod ( 2 ) = 0) { . . . }

Instantiation Expressions

Instantiation expressions create an instance of the class, by invoking its class con-
structor and returns the created object. The listing 2.6 shows an example of its concrete
syntax. The expression invokes the Person::Person(String, String) constructor and returns
an instance class.

Listing 2.6: Instantiation Expression Syntax

p e r s o n := new P er s on ( ‘ f i r s t N a m e ’ , ‘ las tName ’ )

Switch Expressions

Switch expressions are used to express alternatives (alternative expressions) that de-
pend on conditions to evaluate. The behavior is similar to an OCL if expression but
with three main differences: a) interrupt expressions (break, continue raise and return
expressions) can be added to its alternatives b) the else part is not mandatory as in OCL
specification c) it allows calls of operations with side-effects.

There are two available notation styles: the first may use the if-else and the latter the
switch keyword. Both notations are showed in the listing 2.7.

Listing 2.7: Switch Expression Syntax

i f ( c o n d i t i o n 1 ) exp1
e l i f ( c o n d i t i o n 2 ) exp2
e l s e expN
e n d i f

s w i t c h {
( cond1 ) ? exp1 ;
( cond2 ) ? exp2 ;
e l s e ? : expn ;
}
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While Expressions

While expressions are control expressions used to iterate on a block until a con-
dition becomes false. Break and Continue expressions are two commands that can also
be used within the block to alter the normal program flow. When a break command is
executed it provokes the termination of the while expression, a continue expressions
provokes the execution of the next iteration without executing the remaining instructions
in the block. The listing 2.8 shows an example of the while concrete syntax.

Listing 2.8: While Expression Syntax

w h i l e ( n o t node . i s F i n a l ( ) ) {
. . .
}

w h i l e ( x : MyClass := s e l f . g e t F i r s t I t e m ( ) ; x <> n u l l ) {
. . .
}

Additional Facilities

Imperative OCL also provides additional facilities to be used to express the pro-
gram logic. The figure 2.10 depicts additional expressions. They provide constructs for
variables initialization, assignments, exception managements and logging.

Assignment Expressions

Assignment expressions represent the assignment of a variable or a Property. There
are two possible semantics of its execution depending whether the variable or property is
monovalued or not. If the variable is monovalued, the effect is to reset the variable value
with the new value. If the variable is multivalued, the effect is to reset the value or append
it depending on the isReset property set for expression. This property is configured
according the operator defined for the concrete syntax, the := symbol set the isReset
property to true and += otherwise. The listing 2.9 show examples of its usage.

Listing 2.9: Assignment Expression Syntax

m y m u l t i v a l u e d p r o p e r t y += { . . . } ;
m y s i m p l e p r o p e r t y := ‘ H e l l o World ! ’ ;
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Figure 2.10: Imperative OCL Package - Additional Facilities

Variable Initialization Expressions

Variable initialization expressions represent the declaration of a variable with an
optional initialization value. The variable’s type can be omitted as long it can be derived
from the initialization expression. A variable may also not specify the initialization value.
In this case the default value is assumed (an empty collection for a collection variable,
zero for numeric types, false for boolean types, empty string for string typed variables
and null for all other elements). The listing 2.10 shows an example of its concrete syntax.

Listing 2.10: Variable Initialization Expression Syntax

v a r x : S t r i n g := ‘ a b r a c a d a b r a ’ ;

Unlink and Unpack Expressions

Unlink expressions represent the explicit removal of a value from a multivalued
property link. The notation used a call to the unlink operation and is exemplified in the
listing 2.11.

Listing 2.11: Unlink Expression Syntax

f e a t u r e . u n l i n k ( m y a t t r i b u t e ) ;
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The unpack expression is used to unpack an ordered tuple by assigning a list of
variables with the new value of the tuple elements. The listing 2.12 shows an example of
the notation.

Listing 2.12: Unpack Expression Syntax

v a r ( x , y , z ) := s e l f . foo ( ) ;
−− assuming foo ( ) r e t u r n s a t u p l e o f t h r e e e l e m e n e t s

v a r ( x :X, y :Y, z : Z ) := s e l f . foo ( ) ;
−− s h o r t h a n d i n which v a r i a b l e s a r e bo th d e c l a r e d and a s s i g n e d

Try, Catch and Raise Expressions

Try expressions are used to define exception aware blocks. Any exception that may
occur during the block execution can be handled property a list of catch clauses. Therefore,
a catch expression represents the coded to be executed when a exception matching is fired
during try block. The listing 2.13 exemplifies scenario where the exception1 is handled
by expression2 block in the case it is fired during the expression1 execution.

Listing 2.13: Try Expression Syntax

t r y { e x p r e s s i o n 1 } e x c e p t ( e x c e p t i o n 1 ) { e x p r e s s i o n 2 }

Raises expression are used to produce an exception. The notation used the raise
keyword with the exception name as body. The exceptions can also be provided as a
simple string. An example is shown in the listing 2.14.

Listing 2.14: Raise Expression Syntax

r a i s e ‘ Problem Here ’ ;

Log Expressions

A log expression is an expression used to print a log record to the environment.
It is often used for debug. A log may only be sent when a condition holds. A log
expression receives three arguments, the first is the message, the second is the model
object to be printed and the third gives the level of severity of the message. Despite the
three arguments, only the first is mandatory. The notation used the log keyword and is
exemplified in the listing 2.15.
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Listing 2.15: Log Expression Syntax

l o g ( ‘ p r o p e r t y bob i s n u l l ’ , r e s u l t ) when r e s u l t . bob = n u l l ;

Assert Expressions

A assert expression is an expression that checks whether a condition holds. If the
assertion fails an error message is generated - possibly accompanied with a log record.
If the assertion fails with fatal severity, the execution terminates with the exception
AssertionFailed. In all other cases the expression returns null. The notation uses the assert
keyword. It may also be followed by the severity indication (warning or fatal identifiers)
and the log expression introduced by the with keyword as shown in the listing 2.16.

Listing 2.16: Assert Expression Syntax

a s s e r t r e s u l t . bob <> n u l l w i th l o g ( ‘ ‘ non n u l l ’ bob ’ expec t ed ’ ’ , r e s u l t ) ;

XML Metadata Interchange

The XML Metadata Interchange (XMI) specification (OMG, 2010g) defines a bi-directional
serialization/deserialization standard between models whose abstract syntax is defined
by a MOF metamodel and a textual document in XML syntax. Roughly speaking, (1)
each model element is mapped to a XML element in the document. That way, each
XML element is tagged by the name of the element’s metaclass, each property in a
model element is mapped to a XML attribute in the opening tag of the XML element
representing the model element and each reference from a source model element to a
target model element is mapped onto an XML reference (href) element.

2.2.3 Metamodeling

Metamodels describe the possible structure of models. In an abstract way, it defines
the constructs of a modeling language and their relationships, as well as constraints and
modeling rules. In order to define a metamodel, an metamodel language is required that
in turn is described by a meta meta model. OMG defines UML and the related standards
in a four metalevels architecture as can been observed in figure 2.11.

In the OMG stack, MOF is at the M3 level and it is used to define modeling languages
such as for example UML or CWM (M2 level). The UML models are located at the M1
level and the instances of this model, usually created at program runtime, are at level M0.
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The idea behind this is to not tie UML as the only modeling language, but enable
additional domain specific and possibly standardized languages to be defined based on
MOF.

Figure 2.11: Model levels (OMG, 2010f)

2.3 Model Transformations

Models transformations map models to the respective next level representation, be it other
model our even source code (Stahl & Völter, 2006). The MDA vision pursues the goal
of obtaining the application source code via several subsequent transformations. Code
generation from PIM is thus central to this vision.

All the productivity gain promoted by MDA is achieved thanks to model transfor-
mations. The figure 2.12 depicts one of the transformation paths between the MDA
models.

In spite of the figure 2.12 details only one classification of transformation, in the case
a vertical transformation, where level of abstraction of the model is changed, a number
of other transformations are possible such as PIM to PIM, PSM to PIM, PSM to PSM,
etc. According to MDA specification (OMG, 2003) it is also possible to generate code
from PIM. This approach is usually the preferred approach due its simplicity (Stahl &
Völter, 2006). More detailed studies about transformations can be found at (Metzger,
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Figure 2.12: Model transformations

2005) (Czarnecki & Helsen, 2003) (Mens et al. , 2004).
It is the transformation that maps the concepts defined at one level to its next level of

representation. During PIM to PSM transformations, for example, additional constructs
and elements related to a determined platform are added to model. This kind of informa-
tions are encoded into the transformations engines, which makes it possible of having
multiple PSMs generated from a single PIM.

2.3.1 Code Generation

Code generation tools are used to increase the software development productivity. When
generators are not bound to models, this objective is achieved through automatic genera-
tion of repetitive source code parts and generally these solutions are limited to common
problems in simple domains (Herrington, 2003).

MDA pursues the goal of full application code generation from PIM, which includes
all the aspects of the system, such as structural and behavioral codes, configuration files
and tests.

Transformations when applied to PIM enables to capture the knowledge the specialists
have on the target platform, making it possible to have high quality code generation in a
standardized way (Kleppe et al. , 2003). Also, once the platform code is independent of
the business logic, it makes easier the transitions to newer and potentially better platforms.

There are two well-known approaches for generating code from PIM and both are
stated in (OMG, 2003). First approach is the multi-staged transformation. In this case
there are two sequential transformations to produce the source code: PIM to PSM and
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latter PSM to code. The second approach is the single stage PIM to code transformation.
The first option makes the generator more modular by dividing the transformation

into three different phases (Stahl & Völter, 2006):

• First, the source model (concrete syntax) is parsed and an abstract representation
of the model is created in the generator, typically in the form of an object structure,
for example through instantiation of the metamodel classes;

• The parsed model is transformed into the target model, working only on the object
graph representation;

• Finally, the target model is rendered into the concrete syntax of the target language.

The first step of this approach is usually achieved through the use of a model-to-
model(M2M) technology. The ATLAS Transformation Language (ATL) (ATL, 2009) is
one of these alternatives. ATL is a full implementation of a rule-based and declarative-
procedural language used to define model transformations. ATL was proposed as a
response to the OMG QVT RFP Section 2.2.2 but it was not adopted as a standard,
instead it became a project of the Eclipse Foundation.

The transformation definition in ATL is based on the source and target metamodels
and it is defined by a set of rules that specify how a given source model produce a
target model. In order to use ATL, both models need to be in agreement to its respective
metamodels, which are associated with the transformation.

The second option translates the PIM directly to source code. In this case, the
transformation is more rigid because it comprises all steps in only a single one.

In 2008, the OMG released the Request for Proposal (RFP) to MOF Model to Text
transformations (MOFM2T, 2010) to address the problem of how to translate a models
into text artifacts. The most accepted submission to this RFP by the MDA community is
the MOFScript (MOFScript, 2010), that will be detailed in 3.3.2.

Code Generation Techniques

We have identified several approaches for dealing with code generation (Stahl & Völter,
2006). In this section we will detail some of them.

Templates and Filtering
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This technique describes the simplest case of code generation. It uses templates
to iterate over the relevant parts of a textually represented model. One example is
the use of XML (XML, 2010) models on a XSLT (XSLT, 2010) transformation. In
this case, the models are used as input in XSTL engines and the generated code is
based on XSLT templates.

Despite this technique is fairly straightforward, the templates soon become very
complex and hard to maintain. For this reason this approach is totally unusable for
larger systems, especially if the specification is based on XMI files (Stahl & Völter,
2006).

Templates and Metamodel

This technique is used to avoid the problems related to the direct code generation
from XML models. This approach implements a multi-stage generator that first
parses the file, then instantiates the metamodel, and finally uses it together with the
templates for generation. The figure 2.13 illustrates the principle.

There are two advantages of using this technique: first is the independence from the
model’s concrete syntax, for example UML and its different XMI versions. Second,
an imperative programming language, such as Java, can be used for performing
additional model verifications.

Figure 2.13: Templates and metamodel. Adapted from (Stahl & Völter, 2006).

API-based generators

API-based generators are the most popular types of code generators. Generally,
this approach uses an API, based on the abstract syntax of the target language
(metamodel), with which the elements of the target platform can be generated.
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Therefore, they are always specific to one language. The figure 2.14 illustrates this
method.

Typically the generation process begins to a set of call to the API to build an internal
representation of the code (AST) and then a call to a helper function initiates the
actual code generation. There are two main benefits of following this technique: a)
it is very easy to use; b) only syntactically corrected codes are generated, this is
guaranteed by the API in combination with the compiler of the generator code.

Figure 2.14: API-based generators. Adapted from (Stahl & Völter, 2006).

2.4 Reuse-based Engineering

“A program that is used in a real world environment must change or become progressively
less useful in that environment.” (Lehman & Belady, 1985) The Lehman law, first
postulated in 1985, could not be more valid in today’s competitive software industry.
With the constant changes in the user requirements for great part of the projects, the
software engineering had been trying over the last years to find a way to solve this issue.

One of the most effective methods for addressing the demand for change is software
reuse. It is clear that a higher proportion of software assets that can be adapted or
assembled to build a new product, leads to a greater competitive position of the company.

There are a quite number of technologies posed as solutions to the software reuse.
However only a few have a significant impact in the industry. They are described in the
following subsections.

2.4.1 Component-based development

The component-based development proposes a software development based on assemblies
of existent executable software units (Crnkovic et al. , 2006). This approach can be
viewed as an extension of the traditional object orientation paradigm. In this case, new
applications are not only built using object orientation mechanisms such as inheritance,
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polymorphism and dynamic binding but also using what is called service-orientation,
where greater component or main program is composed of a set of others ready-to-
assemble or ready-to-run components.

Therefore, the component paradigm promotes the reuse in lowest level of granularity,
since components represents the smallest package of software that makes sense as a
stand-alone and reusable entity.

2.4.2 Product line engineering

Product lines promote the reuse at the largest level of granularity. This approach is based
on the fact that most softwares companies build or maintain a family of similar products
rather than a single product. The development of new software is consequently based on
the integration or tailoring of variables softwares parts to a common reusable core (Pohl
et al. , 2005).

OO frameworks constitute one way of developing product line based softwares.
Through class specialization and interface realization, these mechanisms represent the
relationship between the domain-specific but application independent common core
of a product line and its application-specific variants. The framework corresponds to
the product line core and the product line variants are different instantiations of the
framework.

2.5 Orthographic Engineering

Different paradigms have been experimented by IT industry over the last years in an
effort to accommodate the market expectation for high quality and complex application at
low cost. All the models of development discussed before such as model-driven engineer-
ing, component-based development and product line engineering try to use a different
combination of abstraction and decomposition techniques to break a complex system into
manageable unities in an attempt to achieve this goal. Model-driven Engineering intro-
duces views at the various levels of platform specificity together with the transformations
and Product Line Engineering introduces the family wide and product specific views of
systems. However, one consequence is that all of these approaches increase the number
of artifacts (views) created the development process.

Multiple views approach for software development has been recognized for long time.
Even the first generation object-oriented methods such as Booch (Booch et al. , 2007)
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and later with Fusion (Coleman et al. , 1994a) and RUP (Kruchten, 2003) supported a
number of different diagrams for capturing distinct aspects of the system.

When these methodologies are used together the number of views quickly grows in an
exponential way and the lack of one view management tool to deal with these challenges
may prevent the developer to take the advantages of each method.

The (C. Atkinson & Bostan, 2009) proposes the Orthographic Software Modeling
(OSM) as alternative to deal with the different views of the system in a systematic and
flexible way. OSM is grounded in the Single Underlying Model (SUM), that contains
all informations exhibited through different views of the system. Users of OSM tools,
however, never have access to the SUM, instead they are only able to manipulate the
model is through the views. This approach decreases the system development complexity
as whole and is illustrated in the figure 2.15.

Figure 2.15: Orthographic software modeling

2.6 Chapter Summary

This chapter exhibited some of the software engineering concepts used as background for
this work. It was presented the Model Driven Engineering and its principles, standards
and technologies, Reuse-based Engineering, Model transformations and Code generation
techniques.

All this concepts are useful to understand the KobrA methodology and the projects
that are being developed by the ORCAS research group in which this research is part of.
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KobrA2, KISF and WAKAME

3.1 KobrA2

KobrA2 is software engineering method jointly developed by Universität Mannheim
and Universidade Federal de Pernambuco that aims at filling the methodological gaps
of popular methods such as XP(Beck & Andres, 2004), SCRUM(Schwaber & Beedle,
2002) or RUP(Kruchten, 2003).

The three mentioned methodologies provide very little or no guidelines at all for
two practices that are critical to sustain long-term software productivity. They are: the
software reuse, and the software decomposition1.

Model-based methods such as RUP require building models, however they provide
no precise guidelines to define what artifact to build and which part of the huge UML2
metamodel to use during the software development process steps. This prevents the
productivity gain that can be obtained through automation from models proposed by
MDE based approaches.

KobrA2 leverages the modularity of the UML2 metamodel to select a general purpose
yet minimal subset of constructs from the UML2 to use to construct PIMs. KobrA2
also leverages the OCL standard to build completely precise and formal models, refined
enough to serve as input for full framework and tool code generation.

3.1.1 KobrA2 goals and principles

The larger goal of KobrA2 is to improve software productivity through code generation
from PIM reuse. KobrA2 focuses on models constructed within the Object-Oriented

1Separation of the software model (or code, in the case of agile methods) into independent concerns
(e.g., business vs. platform concerns, structural vs. functional vs. behavioral concerns etc.) that are able to
be manageable from different teams
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(OO) software engineering paradigm and the family of standards defined by the Object
Management Group, in particular UML2, OCL2 and MOF2.

In addition to MDE and OO, KobrA2 is based on seven other main principles:

Multi-dimensional, systematic separation of concerns

Separating concerns in distinct artifacts improves software productivity in two key ways.
First, it allows artifact reuse at arbitrary granularity level. The second benefit of separation
of concerns is to minimize developer cognitive overload both in terms of artifact size and
heterogeneity. In this sense, KobrA2 separates:

1. The common framework functionalities that recur across applications of a given
domain or product line, from the specific functionalities proper to each application;

2. The PIM of a component from its PSM and its source code;

3. The public specification of a component that describes the functionalities that it
provides to external client components and requires from external server compo-
nents, from the private realization of the component that describes how it internally
assembles its externally provided services from its externally required and hidden
services;

4. The static structural decomposition of a component from its dynamic behavioral
decomposition and its operational decomposition that bridges its structural and
behavioral elements;

Top-down decomposition

Each component realization can be recursively decomposed as an internally encapsulated
assembly of finer-grained components not visible from the outside.

Standard Reuse

This principle fosters to reuse existing standard languages that are compatible with its
chosen OO MDE orthographic paradigm. KobrA2 only reuses the most consolidated
standard languages and within these the most consolidated constructs.
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Parsimony

Every descriptive artifact should contain the only needed amount of information to
describe the necessary properties for that artifact, but no more. To do this, KobrA2
choose a minimum model elements and diagram subsets of UML2, able to cover the key
aspects/concerns of a software component.

Uniformity

By this principle every entity is treated as a component and every component is treated
uniformly regardless its granularity or location in the component tree. In KobrA2 the
whole system is viewed and modeled as a component and any component is viewed as an
independent system.

Locality

By the locality principle, each component model contains only properties about itself.
This means that in KobrA2, there is no model covering all system aspects. Even the root
component in the component tree has only black box view of its sub components. To
specify component owner of the view, KobrA used the «subject» stereotype.

Encapsulation

The description of what a software unit does is separated from the description of how it
does it. Encapsulating and hiding the details of how a unit works facilitates a “divide
and conquer” approach in which a software unit can be developed independently from its
users. This allows new versions of a unit to be interchanged with old versions provided
that they do the same thing.

3.1.2 KobrA views

Following the Multi-dimensional principle stated in 3.1.1 and OSM 2.5, KobrA2 defines
sixteen views to tackle different concerns of the software. In this subsection, we present
just the views used for modeling the system proposed by this work:

• Specification Structural Class Service View Specifies the local assembly connec-
tions of the subject component class, and its interface. Allow only public operations
and attributes.
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• Specification Structural Class Type View Defines the non-primitive data types
used by the subject component class in the Specification Structural Class Service
View. The operations and attributes need to be public.

• Specification Operational Service View Declaratively specifies the behavioral
contracts between the component classes of the Specification Structural Class
Service View of the subject component class. It shows the OCL precondition,
post-condition or body IOCL expressions of the operations.

• Specification Operational Type View Declaratively specifies the behavioral con-
tracts between the component classes, (data) classes and association classes of the
Specification Structural Type View of the subject component class. It shows the
OCL precondition, post-condition or bodies IOCL expressions of the operations.

• Realization Structural Class Service View Defines the internal component as-
sembly that realizes the services described in the Specification Structural Class
Service View of the subject component. It shows the private attributes and opera-
tions signatures of the subject component; the nested components of the subject
with their public attributes and operations. It allows ComponentClass, Class, Gen-
eralization, stereotyped associations with «acquires», «creates» and «nests», and
structural OCL constraints.

• Realization Structural Class Type View It is for the Realization Structural Class
Service View what the Specification Structural Class Type View is for the Specifi-
cation Structural Class Service View. Defines the non-primitive data types used by
either: (a) the private operations of subject component class; (b) the internal assem-
bly of the subject component class; (c) but not used neither by its public operation
nor by its external server components. The elements allowed are Enumerations,
Classes, Association Classes, Associations, Generalizations, and structural OCL
constraints.

• Realization Operational Service View Declaratively specifies the behavioral con-
tracts between the component classes of the Realization Structural Class Service
View of the subject component class. It shows the OCL precondition, post-condition
or body IOCL expressions of the operations.

• Realization Operational Type View Declaratively specifies the behavioral con-
tracts between the component classes of the Realization Structural Class Type View
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of the subject component class. It shows the OCL precondition, post-condition or
body IOCL expressions of the operations.

3.2 KISF

KISF, an acronym for KobrA Information System Framework, is a framework designed as
an extension of KWAF (Marinho et al. , 2009), aimed to provide a generic and domain-
independent infrastructure for the development of Information Systems. It shapes aspects
of a generic Information System, from the GUI to the Web services, through the data
model. The main idea is that through the specialization of the KISF abstract models,
new models for specific web platforms could be generated, increasing productivity and
reducing development costs. Main issues related in development of Web applications are
presented, abstracted and mapped to the KISF framework. The use of KISF is illustrated
by the case study of this work.

The idea behind KISF is to abstract any Information System. The KISF is composed
by two nested two sub-components. The first is responsible for performing the graphical
user interface presentation and user interaction (PresentationLogic), while the second
sub-component handles business services (BusinessService). The organization of these
component is shown in the figure 3.1.

Figure 3.1: KISF Top Level

The following sections we present each one of this components and subcomponents.
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3.2.1 Business Service Component

The BusinessService component is responsible for handling services that the system
will provide. According to the definition shown by Lewandowski (Lewandowski, 1998),
we can consider this component being at the server side in terms of the Client/Server
architecture. The BusinessService component provides a single interface for communi-
cation, where any client can request the available services. This interface is provided
through only one method, the process(request: Message) : Message. In this method all
the exchange of information will be done through the Message class. A message is an
object that encapsulates information about the action to be executed and a map that holds
data such as the operation parameters and the operation results. After the process method
is invoked, the BusinessService delegates the responsibility to fulfill that operation to
the same method signature of the BusinessFacade component, which is responsible in
turn for redirecting the message according to the action specified through the appropri-
ate BusinessLogic component. The last one can also acquires the PersistentDataModel

component in order to perform operations with the database. In short, KISF defines
the BusinessService being composed of a BusinessFacade, several BusinessLogics, and
one PersistentDataModel component. The Realization Structural Class Service of the
BusinessService, figure 3.2, illustrates these relationships.

Figure 3.2: BusinessService - Realization Structural Class Service

Business Facade Component

The BusinessFacade can be considered part of the controller role in the MVC architec-
tural pattern (Gamma et al. , 1995) at the server side. The BusinessFacade contains a
single method with the same signature of the BusinessService component, and it has
the responsibility of redirect the client’s requests to the appropriate BusinessLogic that
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will handle this request. In the KIF the process method is abstract and it is up to its
specialization to implement the logic. The process() method of this component will check
which is the action requested by the client, and call the BusinessLogic method execute()

of the corresponding action, passing the Message object received. The figure 3.3 depicts
the Specification Structural Class Service view of this component.

Figure 3.3: BusinessFacade - Specification Structural Class Service

Business Logic Component

The BusinessLogic component, depicted in figure 3.4, performs all the services provided
by the application, it represents part of the model in the MVC architectural pattern,
handling the business rules. The developer that uses the KISF framework needs to
specialize this component to every action that may be performed, so different applications
using this framework will have different components that are specializations of it. The
execute(message: Message):Message method should be specified to perform the action
in question, and this is the method called by the BusinessFacade.

For the persistent data access, the BusinessLogic component manipulates the entities
defined in the PersistentDataModel component, for both: recovery and persistence of
data.

Figure 3.4: BusinessLogic - Specification Structural Class Service

Persistent Data Model Component

The PersistentDataModel component, depicted in figure 3.5, is responsible for keeping
the entities and data types of the application, which requires persistence capabilities.
It represents the Model in the MVC architectural pattern. The PersistentDataModel
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component has the class Entity which represents an persistent entity of the application to
be shared across all the application, in the server side as well on the client side. Every
entity the KISF users needs to be persistent, they must specialize the KISF Entity class.

Figure 3.5: Persistent Data Model - Specification Structural Class Type

3.2.2 Presentation Logic Component

The Presentation Logic component, presented in figure 3.6, is responsible for modeling
the client side of the application and it is composed by two nested subcomponents, the
PresentationView, corresponding the view in the MVC (Gamma et al. , 1995) architectural
pattern and the PresentationController, representing the client part of the controller role
in the MVC pattern. PresentationView is responsible for modeling the graphical user
interface and the PresentationController is responsible for modeling of events and treat
user interaction with the application in the GUI.

Figure 3.6: Presentation Logic - Realization Structural Class Service
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Presentation View Component

The PresentationView is composed of sub-components that represent the application
windows and its navigation models. Each of these components is modeled using a
framework for GUI modeling elements called GUIPIMUF (GUI PIM Profiled UML2
Framework). The GUIPIMUF contains a number of elements for modeling the structural,
navigation, and behavioral aspects of the GUI. More information about this framework
can be found in (Lacerda, 2007)

Presentation Controller Component

The PresentationController component is responsible for making the connection between
the GUI elements and the server side of the web application. It is composed by several
sub-components carrying out the mapping between actions performed by users (for mouse
events, keyboard, window, etc.) and calls to the server (BusinessService) as well the
handling of presentation logic, such as control widgets behavior or appearance. The
behavior of all these actions is defined with the use of Imperative OCL. More information
about the sub-components that make part of the PresentationLogic can also be found in
(Lacerda, 2007).

3.3 Modeling Frameworks

Among the various Model-Driven Engineering CASE tools existing, just those focusing
on the following characteristic were taken for analysis:

• Model Store - tools that provide support for the creation of repositories of models
for a specific metamodel. Moreover, we seek the tools that allow the instantiation
of the elements of the model, in addition to functionalities to load and save them
in XMI format. In this category we just take into account the Eclipse Modeling
Framework (EMF) (EMF, 2010), the model store framework used by WAKAME.

• Engines for Model Transformation - this category addresses the tools specialized
in carrying transformations of models, specifically related to text generation from
Platform Independent Model. Amongst the various tools available in this category,
we selected to present the MOFScript (MOFScript, 2010) tool.
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3.3.1 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) (EMF, 2010) in one of many open-source
projects being developed by Eclipse Foundation. Simply put, the EMF is a modeling
framework and code generator facility for building models repositories.

With EMF, the user is able to define models and generate a repository from it. The
EMF API makes possible to serialize (using the XMI standard), store and retrieve models.

The model used to represent models in EMF is called Ecore. Ecore is itself an EMF
model, and thus is its own metamodel. The Ecore metamodel is depicted in figure 3.7.

Figure 3.7: Ecore Metamodel (EMF, 2010)

Ecore metamodel is very similar to EMOF metamodel, from MOF specification. The
main difference stems from the fact Ecore explicitly differentiates an attribute (EAttribute)
from a reference (EReference) while in EMOF both are equivalent to Attribute.

Perhaps one of the most important benefits of EMF is the java code generation
capability. The metamodels created serves as input to the EMF engine that generates all
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the code for the repository. This step specifically involves another model type of model
called GenModel. The GenModel is an Ecore model specifically used for code generation.
The GenModel adds the the missing information that is not stored in the Ecore model
such as where to put the generated code what prefix to use for the generate factory and
package class names.

For each modeled class, EMF generates one interface and a class to realize it. Other
thing to notice about the generated interface is that it extends directly or indirectly from
the base EObject interface. The EObject interface is the basis of all modeled object.

Additionally, the EObject extends another interface, the Notifier. The Notifier in-
terface introduces the model change characteristic, as in the Observer design pattern
(Freeman et al. , 2004) for every modeled object. So, like the object persistence, notifica-
tion is an important feature of an EMF object.

There are two other important classes generated for a model: a factory and a package.
The generated factory introduces the create method for each class in the model and the
generated package provides convenient accessors for all the Ecore metadata for the model.

3.3.2 MOFScript

MOFScript is a complete tool for model to text transformations. Its language responded
to the OMG’s RFP process to define a MOF Model to Text Transformation Language
(MOFM2T, 2010). This RFP intended to standardize the transformation of models into
a textual representation. Several mandatory requirements were listed in the request
specification, such as:

• Alignment to existing OMG standards (e.g. QVT)

• Generation of text from MOF-based models

• Transformations should be defined at the metalevel of the source model

• String manipulation (i.e. The ability to manipulate string values)

The MOFScript tool is composed by two main architectural parts: the tool components
and services component. The tool components are end user tools that provide the editing
capabilities and interaction with the services. The services provide capabilities for parsing,
checking, and executing the transformation language. The language is represented by a
model (the MOFScript model), an Eclipse Modeling Framework (EMF) model populated
by the parser and this model is the basis for semantic checking and execution (MOFScript,
2010).
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3.4 WAKAME

All the idea of KobrA and dynamic view management would not be possible without a
CASE (Wikipedia, 2011a) tool to assist users during the PIM specification. Originally
developed during two master’s degree students, mainly due the nonexistence of a tool
with support for the KobrA methodology, the Web App for KobrA Model Engineering
(WAKAME) project, came to fill this gap.

Thus, with intention to cover the KobrA principles, the WAKAME application has
the following features (Machado, 2009) (Marinho, 2009):

• Draw diagrams The tool supports easy rendering of the diagrams in the modeling
language. The tool is “intelligent” enough to understand the purpose of the diagrams
and know simple semantics and rules, so it can warn the user and prohibit the
inappropriate or incorrect use of the model elements.

• Multi-views support For each component, WAKAME provides one view for each
point in the multi -dimensional space of separate concerns;

• Consistency between SUM and view The tool maintains this consistency through
transformations of models;

• To maintain consistency among the views Due the fact the views are dynamically
generated, when the user switched between view the information shared between
them are consistent;

• Local visions Each view of a component in WAKAME only brings the necessary
information for understating the same;

• Navigation WAKAME tool also allows the navigation between component, and
through views of each component;

• Store models The tool must support storing models to the database. This feature
was specially implemented thanks to Eclipse Modeling Framework project (EMF,
2010).

WAKAME is a Google App Engine application written in Java, deployed entirely on
Google’s infrastructure and it is available through the link http://wakametool.appspot.com.
This decision of choosing Google App Engine was made to take advantage of the
scalability offered for applications developed on top of this environment.
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Google launched this project in April 2008 with the proposal of making easy to build
an application that runs reliably, even under high intense with larges amount of data
access. This is achieved by replicating the application to other nodes when needed and
by the use of the Bigtable storage(Chang et al. , 2006), a high performance and extremely
large-scale database system.

The figure 3.8 shows a screen shot taken from WAKAME during the modeling of
a component. On the left menu, the user is able to select the appropriate view to work
on. The Component Navigation Tree on the top right shows the nesting of components
and it is used to select the subject component. The Element Selection Tree shows all
the elements available for selection (i.e. classes, enumerations, components) that could
be reused, during the specification of views of other components, for example. On the
bottom of the screen there is a console that logs all server side operations. Finally, the
fromCloud and toCloud buttons are used for retrieve and save the model to the Google’s
cloud respectively.

Figure 3.8: WAKAME Edition Screen
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3.5 Chapter Summary

This Chapter presented a brief review of this research context. On Section 3.1 the KobrA2
methodology was discussed. We showed its principles and views that where observed
in practice on the Section 3.2 that discuss a generic framework for the development of
Information Systems (KISF).

At the end of the chapter we showed the WAKAME tool, project of the ORCAS
group, developed to fill the lack of a case tool that supported the KobrA process. However,
WAKAME still need a code generation tool to completely generate a ready-to-deploy
application.

It is in this context that WAKAME Code Generator project emerged and its goals and
architecture will be further be presented in Chapter 4.
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WAKAME Code Generator

In this chapter we describe the foundations and requirements of the WAKAME Code
Generator tool together with the code generation techniques used to accomplish the
project objective. In addition, the last section shows the KobrA top-level PIM of the
WAKAME Code Generator component.

4.1 Long-Term Goals

The goal of the WAKAME generator component is to generate automatically the complete
code of an application from a KobrA PIM SUM. The SUM model results from editing
KobrA PIM views using the WAKAME view editor component and then merging them
together into a single model (SUM) using the WAKAME view merging component. It
consists of a UML2 components and class assembly where the operation constraints,
preconditions, postconditions and bodies, are specified in IOCL.

The target code platform is the restricted version of the Java Runtime Environment
that can be transparently deployed on Google’s cloud through the Google App Engine
(GAE) (Google, 2011). The code to generate include:

1. the application GUI;

2. the structural code of the Java classes and interfaces that implement the UML2
component;

3. the behavioral code of the Java methods that implement the IOCL bodies of the
UML2 operations;

4. the calls to the GAE persistence operations implementing the CRUD operations on
the UML2 classes that represent the persistent data of the application at the PIM
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level;

5. deployment artifacts (i.e configurations files);

6. units tests and application documentation.

In order to accomplish these goals, the WAKAME Code Generator was divided into
three main components:

1. generator of the structural and deployment code of an information system from
KobrA2-UML2 components and classes specializing the business services compo-
nent of KISF framework;

2. generator of the behavioral code of an information system from IOCL expressions
representing in platform-independent fashion the algorithms of the operations
contained by these KobrA2-UML2 components and classes;

3. generator of the GUI layout and navigation code of an information system special-
izing the presentation layout component of the KISF framework.

The figure 4.1 illustrates the general architecture of the WAKAME generator compo-
nent.

Figure 4.1: WAKAME Generator Structure

Based on (Calic et al. , 2008) and on the code generator tools analyzed, we have
outlined a set of requirements the WAKAME Code Generator tool should have:

1. To be a KobrA2 driven method;
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2. To generate the entire application code and project infrastructure required for
running the application.

3. To support automatic generation of the API project documentation (Javadoc 1);

4. To have a good performance even when generating code from a big KobrA2
structure graph, which could require a fairly amount of memory footprint.

My MSc. dissertation contributes to this second component. The MSc. dissertation
of Thiago Oliveira (Oliveira, 2011) contributes to the first component. The issues raised
by the third component will be tackled in a future work.

4.2 Imperative OCL Compiler Architecture

The Imperative OCL Compiler was divided into the Imperative OCL Engine and the Code
Generator components. The idea is to create an independent component for performing
IOCL related operations but not tied to any code generation technologies. The first
component is responsible for parsing and performing type checking analysis of IOCL
expressions. It also has operations for performing completion to partially input expres-
sions, in the same manner as modern IDEs. This feature is important for WAKAME users
because it provides not only suggestions about the available operations or navigations
the user could write but it also performs real time syntax and semantic checking for the
pre-entered expressions and therefore, allowing early error detection and increasing the
productivity in a general way. The second component consists of a code generator core,
which performs the code generation flow and a number of languages catridges, which
allows the compiler to generate code to different target languages.

The figure 4.2 illustrates the separation of compiler into two independent components.
Although they are independents, the CodeGenerator requires the use of the IO-

CLEngine to work properly. The reason is because the CodeGenerator receives as input a
parse tree of the IOCL engine. All the details will be formally specified when the KobrA
PIM of both components is presented in the chapter 5.

1http://en.wikipedia.org/wiki/Javadoc
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Figure 4.2: Imperative OCL Compiler Architecture

4.2.1 Imperative OCL Input

The declaration of the Imperative OCL expressions in the WAKAME tool is done through
the Operational Views 3.1.2. Such view contain all three types of UML operation
constraints: pre and post conditions and body expressions. This can be seen in the
figure 4.3.

Figure 4.3: WAKAME Operational View

The image 4.3 illustrates the tree function types available for completion. After saving
this view, the IOCL expressions will be stored in the KobrA models as String, to be
further used for code generations purposes.
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4.2.2 Code Generation Strategy: PIM to Code

The adoption of the multi-staged transformation described in Section 2.3.1 was evaluated
during the early phases of this work. Our first prototype involved the usage of ATL for
performing the firsts steps of the compiler and utilization of MOFScript (MOFScript,
2010) to execute the model-to-text transformation step.

However the need of several metamodel definitions contributed to rejection of this
alternative. The PSM metamodel definition involved several internal discussion among
the ORCAS group members, mainly related to the necessaries PSM elements that should
be present at the target language metamodel and the necessaries APIs that needed to be
further specified. Even before the conclusion of this step this approach ended up to be
discredited.

The lack of maturity of the IDEs to work with this kind of transformation along with
the high level of experience and Java skills programming by the author when compared
with M2M technologies also influenced this decision. ATL and also the Epsilon (Epsilon,
2011) tool, which was analyzed during this work, both sinned by the deficiency of good
editors and debuggers, fundamental requirement during the development stages.

After taking above reasons into consideration, we decided to go with the single-stage
or PIM to code approach. The decision is also adopted by several others MDA code
generators tools (Stahl & Völter, 2006).

Our option although does not discard the the multi-staged transformation at all. As a
future work, the IOCL compiler could be extended to support it.

4.2.3 Adopted techniques

After deciding by the PIM to code approach, we had to choose among the code generation
techniques presented in 2.3.1 to see the best one applicable in our case.

Since WAKAME stores the IOCL expressions as String in its models, we had two
necessary steps in the development: the parsing and semantic analysis of the expres-
sions, which typically involves context evaluation. After that, we can transform the
IOCL expression into either generate a XMI representation and reuse any model-to-text
technologies such as MOFScript (MOFScript, 2010) or transform it directly into source
code using consolidated patterns such as the Visitor (Gamma et al. , 1995).

The first option was evaluated but it involved an extra step which would not bring any
real benefit to the work. Also, M2T technologies such as MOFScript still lack of a good
development environment for writing transformation and debugging them. This was the
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key reasons why we do not adopted M2T.
However, during the evaluation of the M2T tools, it was observed that the use of

templates 2 for text generation purposes simplifies the transformation and we also chose
this approach.

This led us to adopt the Template and Metamodel technique presented in 2.3.1 for the
development of the IOCL Compiler. After the model instantiation, we use the Visitor
pattern to traverse the expression tree and templates to help with code generation. The
Figure 4.4 depicts the adopted transformation flow.

Figure 4.4: AST-based generator’s mode of execution. Adapted from (Stahl & Völter,
2006)

4.2.4 Dealing with pre and post conditions

Imperative OCL expressions are used to specify constraints in KobrA models. As we
said in 4.2.1, pre and post conditions are supported by WAKAME. They are a form
of specifying runtime constraint checking of the WAKAME generated applications.
However for these checks to be effective, they must satisfy some requirements including
transparency and modularity (Yoonsik Cheon, 2009).

Transparency states that the execution of the checking code should not change the
behavior of the program unless the constraint is violated. Modularity is related to code
checking organization and it means that the constraint checking code should be organized
in modules separated from the main program to improve maintainability by enforcing the
separation of concerns.

2Technique employed by many of the M2T tools such as MOFScript, JET(JET, 2011), etc.
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The WAKAME Generator approach to deal with runtime constraint checking is
based on Aspect Oriented Programming (AOP) (Kiczales et al. , 1997). Specifically,
by translating OCL expressions to AspectJ 3. AspectJ is an aspect-oriented extension
developed for the Java programming language.

Others approaches are also studied in Carmen Avila (2010) for dealing with constraint
checking and in spite of the aspect solution is not being considered best in terms of
performance, this approach offers the transparency and modularity characteristics to the
software and therefore it is rated as a good solution in terms of software quality.

There are three types of advices available in AspectJ: before, after and around. Each
one is related to the order of execution of the advice. The before advice is executed is
executed just before the joint point is executed. After advice is executed right after the
joint point executed. The around advice is executed as the program flow reaches the joint
point, but unlike the before and after advice, the around takes control of the joint point
execution, deciding whether it will be executed or not.

For the WAKAME generator tool, we took the advantage provided by the before
and after advice over method calls for implementing the pre and post runtime checking
respectively.

4.3 WAKAME Architecture

The PIM of WAKAME was defined using the KISF framework 3.2. For the realization of
the WAKAME component, the sub-components BusinessService and PresentationLogic
of KISF were redefined to WAKAMEBusinessService and WAKAMEPresentationLogic

respectively.
In this section we detail the server side of WAKAME where the WAKAME Code

generator is located.

4.3.1 The WAKAME Business Service

The WAKAMEBusinessService component is responsible for processing the services
requested by WAKAMEPresentationController component and for the persistence of the
data. Figure 4.5 shows its integration with the WAKAMEGenerator component. It is done
by a new specialization of the BusinessLogic component of the KISF called GenerateAp-

plicationAction. This component calls the specific methods on the WAKAMEGerator,

3http://www.eclipse.org/aspectj/
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based on attributes provided by the Message object.

Figure 4.5: WAKAME Business Service - Realization Structural Class Service View

4.4 WAKAME Code Generator Top-Level PIM

Figure 4.6 shows the Realizations Structural Class Service 3.1.2 of the WAKAMEGen-

erator component. The WAKAMEGenerator is a top-level component and it acts as an
interface, redirecting all the operations to the StructuralGenerator component. Thus,
StrucutalGenerator implement its three main operations, each one related to a specific
development cycle. They are: generate, test and deploy. The generate() receives a
KobrA model as input and outputs the structural Java code together with deployment
artifacts (such as XML or property files). It works by performing a top-down traversal
of the model element containment tree. When it encounters an IOCL expression node
in this tree, it calls the IOCLCompiler. The test() method checks whether the generated
persistent entities are being stored or removed accordingly in the cloud data store or not.
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The deploy() operation packs all the generated code into a war (Web Archive) file 4 and
sends it to the Google’s cloud in order to the application be deployed.

Figure 4.6: WAKAME Generator - Realization Structural Class Service View

4.5 Chapter Summary

In this chapter we exhibited the long terms goals and the submodules of the WAKAME
Code Generator project, which this work is part of. After that, we showed the top level
architecture of the IOCL Compiler and the techniques employed for the implementation.
Finally, it was illustrated the integration of WAKAME Generator in the WAKAME tool.
Next chapter the IOCL compiler will be more detailed.

4Standard format for Java web applications
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In this chapter, we specify the IOCLCompiler component using KobrA methodology,
showing its sub-components and the underlying decisions made to implement it. The
component implementation is open source and the code repository could be accessed
through the link https://github.com/marcellustavares/imperative-ocl.

5.1 IOCLCompiler PIM

According to KobrA method, a model is composed by nesting minor sub-components, and
for this specific model, the top-level component is the IOCLCompiler. This component
will encapsulate all other sub-components related to the expression parsing, type checking,
code suggestions and code generation. The figure 5.1 shows its Specification Structural

Class Service view. As stated in 3.1.2, this view specifies the public interface of the
component, i.e. all the component’s externalized operations.

Figure 5.1: IOCLCompiler - Specification Structural Class Service

The first defined operation is compile(). This is the main operation of the component
and it is responsible for transforming the IOCL expression into code that is dependent of
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platform. The second operation, getSyntaxhelp(), is the one responsible for retrieving the
available alternatives (represented as the Choice class in the model) for the incomplete
typed expression.

In the realization of the IOCLCompiler component, namely the Realization Structural
Class Service view, shown in figure 5.2, we detail its two nested components: IOCLEngine

and the CodeGenerator.

Figure 5.2: IOCLCompiler - Realization Structural Class Service

Both components will be further detailed in the next subsections.

5.1.1 IOCLEngine

The IOCLEngine component is responsible for parsing and performing the type checking
of the IOCL expressions input in the WAKAME’s operational views. Also, it has a
helper function to help users to write their IOCL expressions. This is operation, called as
getSyntaxHelp(), generates suggestions for the incomplete expressions.

In the realization of the IOCLEngine component, depicted in figure 5.3, shows its three
nested components: IOCLLexer, IOCLParser and IOCLAnalyzer. Each component plays
a different role inside the compilation process. IOCLLexer is responsible for converting
the string source into a sequence of tokens and the purpose of the IOCLParser is to get
the tokens generate by the lexer and create the abstract syntax tree representation of the
Imperative OCL expression. Finally, IOCLAnalyzer deals with the semantic analysis of
the AST.
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Figure 5.3: IOCLEngine - Realization Structural Class Service

The Specification Structural Service Type view, depicted in 5.4, shows the non-
primitive data types used by the IOCLEngine.

Figure 5.4: IOCLEngine - Specification Structural Class Type

The Choice class, as already mentioned, represents one alternative presented to the
user to complete expression and getSyntaxHelp() is the operation that retrieves this
information. Internally, the getSyntaxHelp() uses the IOCLAnalyzer to deal with this
context sensitive query. The details of the IOCLAnalyzer will be explained in section
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5.1.1. The figure 5.5 simulates the end result where the choices are displayed to the user
through a pop-up window in the WAKAME Operational views.

Figure 5.5: WAKAME Autocomplete

The IOCLException represents the problems that may arise during the IOCLEngine
operations. SyntaticException represents any syntactic error encountered for the expres-
sion passed as argument, while the other constitutes a semantic error. An example of
semantic error would be an assignment expression for two different types of operands.

Finally the OCLExpression is the top-level abstraction for all OCL an Imperative OCL
expressions, exactly as specified in Section 2.2.2. However, two details are important to
mention:

1. All OCL expressions and Imperative OCL expressions were modeled in Ecore, as
depicted in figure 5.6. This way we could take advantage of two built-in features
provided by the EMF framework: the serialization, which is needed to store the
parsed expression into the GAE data store, together with the other parts of the
model, and the code generator tool, responsible for generate all the expressions
Java classes

2. OCLExpression realizes the Visitable interface 1 as defined in the picture 5.4. The
Visitable interface is part of the Visitor pattern (Gamma et al. , 1995) used for the

1In spite of Visitable being defined as an interface in UML, we represented it as an abstract class
because interfaces are no allowed in KobrA models, according to KobrA metamodel (Robin, 2009).
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code generations of the expressions and will be discussed in the IOCLGenerator
component.

Figure 5.6: Imperative OCL expressions in Ecore

IOCLLexer and IOCLParser Component

The IOCLLexer is the component responsible for breaking up the input stream into a
sequence of tokens. These tokens, called in our model as TokenStream, are then used to
feed the IOCLParser component that in turn tries to recognize the expression structure. If
the recognition is completed successfully, the IOCLParser is able to return the abstract
syntax tree representation of the IOCL expression through the createOclExpression()

operation, otherwise a syntactic error message is thrown to the user.
For the development of both components, two parsers generators were evaluated to be

used in the project: ANTLR (Parr, 2007) and JavaCC (JavaCC, 2011). The criteria used
for choice resulted from the analysis of three factors: user documentation, development

IDE and ease of use.

• User documentation - The documentation found for ANLTR was more compre-
hensive than JavaCC. The ANTLR’s site display several grammars examples,
discussion lists and articles while JavaCC documentation is restricted to books.
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• Development IDE - ANTLR offers a better development support when compared
to JavaCC. The tooling support for specifying JavaCC grammars is based on
Eclipse plugins. The plug-in includes features such as grammar formatting, syntax
coloring, an outline view for JavaCC source, etc. ANTLR support is based on
the ANTLRWorks project, a GUI development environment that helps edition,
navigation, and debugging of grammars. Most importantly, ANTLRWorks helps
the resolution of grammar analysis errors. The tool includes features such as:
Grammar-aware editor, language-agnostic debugger for isolating grammar errors,
Nondeterministic path highlighter for the syntax diagram view, Refactoring patterns
for many common operations such as “remove left-recursion” and “in-line rule”,
etc. The figure 5.7 illustrates the environment.

• Ease of Use - The ease of use is much related of a good development IDE availability
and the simplicity to define the grammars. Both tools supports Extended BNF
(EBNF) notation that allows optional and repeated elements. However, the parsing
strategy used by ANTLR makes easier to write grammars when compared to
JavaCC. ANTLR uses LL(*) parsing and JavaCC uses LL(k). which is more
powerful than traditional LL(k)-based parsers. The latter is limited limited to a
finite amount of lookahead (k), while LL(*) allows the lookahead to roam arbitrarily
far ahead, relieving the programmer of the responsibility of specifying k. LL(*)
does not alter the recursive-descent parsing strategy itself, it just enhances an LL
decision’s predictive capabilities. Additionally, ANTLR is able to generate a default
AST through a simpler notation (ANLTR’s tree description language) than JavaCC,
that have this job done through the JJTree preprocessor.

All the factors described above revealed ANTLR to be a less risky tool solution to be
adopted for defining the IOCL grammar. Our choice, however, does not implies that the
tool or even the parser generated by ANTLR is better than JavaCC. The analysis of the
alternatives were based on own requirements in order to select the tool that best fit in our
development process.

After the technological choice and the subsequent grammar definition, ANLTR
automatically generates a lexer and parser Java file. Both files were used without changes
in the IOCLLexer and IOCLParser respectively. However, an additional operation had
to be implemented for the last component. This operation coverts the ANLTR AST tree
to our proper IOCL tree structure and is achieved by traversing the ANTLR tree and
transforming its proprietary object nodes into IOCL objects defined in EMF as depicted
in Figure 5.6.
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Figure 5.7: ANLTRWorks Environment

IOCLAnalyzer Component

All semantic analysis for the successfully parsed expressions is performed by the IO-

CLAnalyzer component. IOCLAnalyzer is an abstract component an its Specification

Structural Class Service is illustrated in the figure 5.8.
Besides the check() method, which contains the abstract logic for transversing the AST

representation and search for semantic incompatibilities, the component also contains
the getChoices() operation. The latter deals with the generation of possible alternatives
presented to users in order to facilitate the IOCL expression coding.

It is important to highlight what we mean for abstract logic. We put this way because
the IOCLAnalyzer is an abstract component and it is not tied to any metamodel. All
method implementations defined in this class have a common logic independently whether
we change the underlying metamodel or not. An example is the type checking for an
assignment expression. If we use the KobrA metamodel, we will be checking KobrA
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Figure 5.8: IOCLAnalyzer - Specification Structural Class Service

types. If we switch the metamodel for UML, we will be checking UML types. However
both operations have same logic.

The metamodel configuration, i.e. the concrete IOCLAnalyzer, is done through a
property file defined in the IOCLEngine component. Inside this file we specify the
IOCLAnalyzer subclass, which will handle with the specificities brought by the custom
metamodel. The figure 5.9 illustrates the Specification Structural Class Service view of
the KobraAnalyzer.

Figure 5.9: KobraAnalyzer - Specification Structural Class Service
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The TypeHelper class presented in this view represents an interface with operations
for dealing with the symbol table and for resolving types, operations and properties based
on the passed context. This class is detailed in the Specification Structural Class Type,
figure 5.10, of the component.

Figure 5.10: IOCLAnalyzer - Specification Structural Class Type

Finally, the KobraTypeHelper specializes all the abstract operations defined by the
TypeHelper. This class is tied to the KobrA metamodel and it is responsible for performing
the analysis of the KobrA classifiers passed as context of the IOCLEngine parse()

operation. This is depicted in 5.9.

5.1.2 CodeGenerator Component

The CodeGenerator component is responsible for generating code for a specific target
platform. The code it generates is determined by class that specializes the Handler

abstract class. The Handler class defines several methods whose purpose is to generate
target code for each type of expression. These methods are called by a Visitor class
implementation, which traverses the entire expression tree structure and then call the
handle() methods when appropriate. The Handler class implementation is configurable
through a properties file called ioclgenerator.properties. The figure 5.12 shows the content
of the property file.
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Figure 5.11: KobraAnalyzer - Specification Structural Class Type

#
# Code g e n e r a t o r c l a s s
#
i o c l . h a n d l e r . c l a s s = org . o r c a s . i o c l g e n e r a t o r . j a v a . J a v a H a n d l e r

Figure 5.12: IOCLGenerator Configuration file

The Specification Structural Class Service 5.13 of the CodeGenerator shows its public
method generate(). This method receives the OCLExpression AST properly parsed and
checked by the IOCLEngine component and generates appropriate target code based on
the handler class implementation as described before.

Figure 5.13: CodeGenerator - Specification Structural Class Service

The Realization Structural Class Service 5.14, shows the nesting of the CodeGenerator
component with the Visitor component.
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Figure 5.14: CodeGenerator - Realization Structural Class Service

As we described before, there is a clear separation in the API between the methods
responsible for transversing the AST, which are all implemented in the Visitor component
and the ones dealing with code generation, which are implemented by a the Handler
component. The figure 5.15 illustrates the Specification Structural Class Service of the
Visitor component.

We took this approach in order to isolate the logic involved in transversing the AST
from the code generation capabilities. This way the customization to other target generator
is easier to maintain.

The specialization of the Handler is illustrated in the Specification Structural Class
Service of the JavaHandler component in the figure 5.16.

In addition, the JavaHandler component acquires the TemplateEngine component. All
the handle methods presented in JavaHandler have direct calls to the TemplateEngine
component. This last component deals with the templates defined for the Java platform to
make even easier the code generation.
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Figure 5.15: Visitor - Specification Structural Class Service

Figure 5.16: JavaHandler - Specification Structural Class Service

During the development of this component two templates engines for Java were
analyzed: Velocity (Apache, 2011) and FreeMarker 2 (FreeMarker, 2011). Both tools
analyzed are general-purporse template engines with very similar characteristics. Thus,
the selection of one of them was based on the evaluation of two factors: expressivity

2Velocity and FreeMarker were selected because they are the most used templates engines in Java
projects.
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power and ease of use.

• Expressivity Power - Both tool are similar in terms of expressivity. In FreeMarker
although, the macros functions can be called recursively, which is not possible in
Velocity. In general FreeMarker has more built-in functionalities when compared to
the other, such as: possibility of break statements out of loops, detect if the current
iteration is the last in the loop, several String and Lists manipulation utilities, etc.
FreeMarker also allows using multiple namespace for variables, which is useful for
structuring libraries a of macros. The negative factor is that the learning curve for
FreeMarker is a little steeper than the one for Velocity.

• Easy of use - Several factors contribute to a tool be easy to use: ease of install,
consistency of the API, and the quality of the documentation. The installation
process of both tools are easy. The process involves only the addition of the engine
dependency to the classpath. The difference of between the two is that velocity
requires additional libraries that should also be present at the classpath in order to
run properly. API documentation of both Velocity and FreeMarker is available in
API doc format and they are equally informative. Both contains an overview of the
languages and examples of use. In this point both tools are equivalent.

In sum, both tools very similar in terms of functionality. Velocity enjoys a larger use
base, but FreeMarker is more sophisticated and faster 3, specially when parsing larger
templates.

After taking this into consideration together with my previous experience with
FreeMarker, the last was chosen to serve as a underlying technology of the Templa-

teEngine component.
For the development of this class we used the open source FreeMarker (FreeMarker,

2011) project. FreeMarker is a Java-based template engine used for any kind of text
generation.

The use of templates during this work added a good level of isolation of the generator
program from the syntax specificity of the target language. That way, target language
constructs, such as the if, while or a variable definition, resides on templates. The only
point of the parameterization is done by the DictionaryType object, from the Imperative
OCL package, passed as argument for the TemplateEngine process() method.

An example of the use of templates is been shown in the figures 5.17 and 5.18. The
first template generates the alternatives (i.e. boolean conditions) that will be used in order

3http://www.javaworld.com/javaworld/jw-11-2007/jw-11-java-template-engines.html
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to generate the compiled switch expression. The switch expression template receives
as context the list of the possible alternatives (altPartResults), that will be printed as if

and else if in the Java target language, and the elseResult if there is one. The compress

directive is a FreeMarker command and it is useful for removing superfluous white-space
of the template.

<# compress >
( ${ c o n d i t i o n R e s u l t } ) {

${ b o d y R e s u l t }
}
</# compress >

Figure 5.17: Alt Expression Template

<# compress >
<# l i s t a l t P a r t R e s u l t s a s a l t P a r t R e s u l t >

<# i f a l t P a r t R e s u l t _ i n d e x == 0>
i f ${ a l t P a r t R e s u l t }

<# e l s e >
e l s e i f ${ a l t P a r t R e s u l t }

</# i f >
</# l i s t >
<# i f e l s e R e s u l t ? h a s _ c o n t e n t >

e l s e {
${ e l s e R e s u l t }

}
</# i f >

</# compress >

Figure 5.18: Switch Template

5.2 Tests

In order to ensure the correct functioning of the IOCLEngine, there were defined several
unit tests for checking the parsing and semantic analysis operations. For the development
of these unit test we used the JUnit Framework (JUnit, 2011).

JUnit provides a complete infrastructure that facilitate tests execution and results
visualization. The figure 5.19 details one of the implemented tests used to check operation
calls. The purpose of this test is to verify whether the Semantic Exceptions is being
thrown when an expression refers to a nonexistent operation on a classifier or not.

We begin the test creating a component named Test that owns the sayHello() operation.
After, we define the “self.sayHello();” expression and then the call the parse() method
of the IOCLEngine component is executed. The method should run without exceptions
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because the expression defines a call of an operation that exists, while the second execution
o the parse() should raise an exception because the call is on an operation that does not
exists.

All the implemented test are also available at https://github.com/marcellustavares/imperative-
ocl.

/ / i m p o r t s o m i t t e d

p u b l i c c l a s s O p e r a t i o n C a l l T e s t ex tends T e s t C a s e {

p u b l i c vo id t e s t N o n e x i s t e n t O p C a l l ( ) {
ComponentClass component =

g e t F a c t o r y ( ) . c r e a t e C o m p o n e n t C l a s s ( ) ;

component . setName ( " Hel loWor ld " ) ;

O p e r a t i o n p r o c e s s = c r e a t e O p e r a t i o n (
" s a y H e l l o " , V i s i b i l i t y K i n d . PUBLIC , nul l , f a l s e ) ;

L i s t < O p e r a t i o n > o p e r a t i o n s = b u s i n e s s F a c a d e . ge tOwnedOpera t ion ( ) ;

o p e r a t i o n s . add ( p r o c e s s ) ;

S t r i n g e x p r e s s i o n = " s e l f . s a y H e l l o ( ) ; " ;

t r y {
IOCLEngine . p a r s e ( b u s i n e s s F a c a d e , e x p r e s s i o n ) ;

}
catch ( E x c e p t i o n e ) {

f a i l ( " E x c e p t i o n s h o u l d n o t be r a i s e d . " ) ;
}

e x p r e s s i o n = " s e l f . n o n E x i s t e n t O p e r a t i o n ( ) ; " ;

t r y {
IOCLEngine . p a r s e ( b u s i n e s s F a c a d e , e x p r e s s i o n ) ;

f a i l ( " Seman t i c e x c e p t i o n n o t r a i s e d . " ) ;
}
catch ( E x c e p t i o n e ) {

a s s e r t T r u e ( e i n s t a n c e o f S e m a n t i c E x c e p t i o n ) ;
}

}

}

Figure 5.19: Operation Call Unit Test
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The figure 5.20 exemplifies one of the reports generated by JUnit for the IOCLCom-
piler parser component.

Figure 5.20: IOCLEngine Parser Test Report

5.3 Chapter Summary

This Chapter presented the main aspects of IOCLCompiler component. The architecture
and the set of technologies employed during its construction were discussed. Next Chapter
presents the evaluations performed to verify the tool’s correctness and its helpfulness to
the process of generating behavioral implementations.
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IOCL Compiler Evaluations

In this chapter, the experiments performed are described in order to evaluate the IOCL
Compiler tool. The experiments aim at validating the thesis that the code generated
by the IOCL Compiler tool have same or better characteristics when compared to the
handwritten code with respect to quality of the code.

This Chapter is organized as follows: Section 6.1 describes the process used in order
to execute the experiments described in this chapter. Section 6.2 defines the goals, metrics
and threats of the experiments and latter on this chapter, specifically on Section 6.4 and
Section 6.5, the two experiments are discussed. Its subsections describe the experiments
and the results obtained. Finally Section 6.6 draws the chapter summary.

6.1 Experiment Process

In order to perform an experiment, several tasks have to be done in certain order. In
this Chapter we followed the process defined by (Wohlin et al. , 2001), which can be
divided into the main activities: Definition, where the experiment is defined in terms
of problem, objective and goals. Planning, where the design of the experiment is
determined, the instrumentation is considered and the threats to the experiment are
evaluated. Operation, in which measurements are collected, analyzed and evaluated in
the analysis and interpretation. Finally, the results are presented and packaged in the
presentation and package. The process is depicted in Figure 6.1

Next Section presents the definition step common to both of the experiments.
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Figure 6.1: Experiment process (Wohlin et al. , 2001)

6.2 Definition

In the definition step, it is defined the objectives and goals of the experiment. To achieve
it, (Wohlin et al. , 2001) follow the GQM (Goal-Question Metric) approach (Basili et al. ,
1994). The GQM is based upon the assumption that for an organization to measure in a
purposeful way, it must first specify the goals for itself and its projects, then it must trace
those goals to the data that are intended to define those goals operationally, and finally
provides a framework for interpreting the data with respect to the stated goals.

Thus, following the GQM template, one goal was defined for this evaluation, further
detailed and described by its respective questions and metrics.

Goal. The goal of both experiments is to to analyze the IOCL Compiler tool with the
goal of determine if the tool promotes an improvement of quality of code when compared
to a handwritten code from the point of view of system analysts.

Question. To achieve this goal, the following question were defined:

• Q1. Is the quality of the generated artifacts better than to the manual code?

Metrics. After have the questions, we look for metrics that could provide evidences
about the formulated questions. Thus for both experiments we have defined the following
metrics for the question related to the purpose of the evaluation:
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• M1. Instability - According to Martin (Martin, 2002), what makes software to be
unstable and hard to be reused is the dependencies among its modules. A change
in one module, for example, would cause changes in many other different modules.
The instability metric (I) pursues to estimate this characteristics of software. The
instability is defined as: I = Ce/(Ca +Ce), where Ce means Afferent Couplings

or the number of classes outside this package that depend upon classes within this
package and Ce means Efferent Couplings or the number of classes inside this
package that depend upon classes outside this package. The instability metric has
the range between 0 an 1. I = 0 indicates a maximally stable package and I = 1
indicates a maximally unstable package;

• M2. Cyclomatic complexity - This metric, introduced by (McCabe, 1976) measures
the structural complexity of a method. It is calculated from a graph that represents
the execution flow of the program by the following rule: M = E−N +P where E

is the number of edges of the graph, N is the e number of nodes of the graph and P

is the number of connected components. For this metric, values ranging from 1 to
10 represents a low risk method, 11 to 20 a moderate risk, 21 to 50 a high risk and
values greater than 50 represents highly unstable methods;

• M3. Maintainability Index - It is a compound metric designed with primary aim to
determine how easy it will be to maintain a particular body of code. The Maintain-
ability index is defined as (Coleman et al. , 1994b): MI = 171− 5.2ln(aveV )−
0.23aveV (g′)−16.2ln(aveLOC)+(50∗ sin(sqrt(2.46∗ perCM)), where aveV is
the average Halstead volume per module, aveV(g’) is the average extended cyclo-
matic complexity per module, aveLOC is the average numbers of lines of code
per module and perCM is the average percent of comments of comment lines per
module. According to this metric modules with MI less than 65 are harder to be
maintained, modules ranging between 65 to 85 have moderate maintainability and
values greater than 85 and more: good maintainability;

• M4. % of successful unit tests - This metrics calculates the number of successful
unit tests divided by the total tests defined for the application. Generally unit tests
are defined for each operation existing in the application. Therefore, this metric
evidences the overall correctness of the software.
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6.3 Hypothesis

The practice of science involves formulating and testing hypotheses, assertions that are
falsifiable using a test of observed data (Wikipedia, 2011b).

Null hypotheses typically corresponds to assumptions that the researcher wants to
reject. In this research, we used the concept of null hypothesis in order to validate the
thesis set this work. Thus, the null hypotheses for this evaluation were based on the
questions and metrics defined earlier and they were defined as:

• H0a: Instability(generated) ≥ Instability(manual)

• H0b: Cyclomatic complexity(generated) ≥ Cyclomatic complexity(manual)

• H0c: Maintainability Index(generated) ≤Maintainability Index(manual)

• H0d: % of successful unit tests(generated) ≤% of successful unit tests(manual)

Alternative Hypothesis is the hypothesis in favor of which the null hypothesis is
rejected. In this study, the alternative hypothesis determines that the use of the tool
produces benefits that justify its use. They were:

• H1a: Instability(generated) ≤ Instability(manual)

• H1b: Cyclomatic complexity(generated) ≤ Cyclomatic complexity(manual)

• H0c: Maintainability Index(generated) ≥Maintainability Index(manual)

• H1d: % of successful unit tests(generated) ≥% of successful unit tests(manual)

6.4 First Experiment - Web Agency

The first experiment was conducted at the university lab from October, 2010 to December,
2010. However, further minors refinements were done in the model until April, 2011.
The domain of this experiment involves a typical Information System with business rules
and persistence requirements. Specifically, the project was developed to simulate an
on-line credit agency (Web Agency). We considered this domain representative because
it contains requirements present on the majority of web applications and also because it
covers several variety of IOCL expressions.
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The Web Agency is a illustrative example of an application that simulates an online
credit agency. It was also conceived to be used as experiment to the related research to
this work (Oliveira, 2011). The Web Agency possesses the the following requirements: a)
Add, list and remove clients; b) Request Loans based on client requests and profiles;
c) Add and remove loans; d) List loans taken by a specific client.

Most of the requirements involved in the Web Agency are related to persistence
operations, one of the exceptions is the request loan method. In this method, the client
requests a loan value and the number of parcels he wishes to pay the debt. The application
processes this request and responds to it according the following business rule: the loan
request is accepted if the value of this loan plus the value of the previous client’s loans
does not exceed a certain limit. The limit is derived by the salary and the social class
of the client (calculated having as base the salary and the number of dependents of the
client). If the loans request is according to this rule the system responds to the request by
allowing the client borrow that sum, otherwise the system proposes an alternative loan
value that is in accordance to the previous rule.

6.4.1 Planning

The experiment was planned to be accomplished at the university lab by the Thiago
Oliveira (Oliveira, 2011) and the author of this dissertation. Initially, a complete PIM
specification of the Web Agency was defined with the purpose of being used as input to
the WAKAME Generator and also to serve as reference to the manual implementation.

Based on the generated applications, the data extraction was conducted, followed by
the interpretation of the results from the numbers obtained from the manual and automatic
implementation.

The collection of metrics M1, M2 and M3 was performed with the aid of different
tools. Because the artifacts were written in Java, we used the Eclipse Metrics1 (cyclomatic
complexity and instability) and JHawk2 (Maintainability Index). Both tools work with
source code in Java.

The test reports used to calculate the metric M4 were obtained by the testing frame-
work JUnit3. The tests simulate possible scenarios of the application services and
although they are unitary the fact they were applied on the top level component gives
them characteristics of a system test.

1http://metrics2.sourceforge.net/
2http://www.virtualmachinery.com/
3http://junit.org/
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Also it should be mentioned that the participation of the author of the dissertation
in the experiment, may have influenced the results, being a threat to the validity. Yet,
it it was considered that the results are valid, since many of them were obtained from
objective metrics, which do not suffer the influence of the researcher.

6.4.2 Operation

The experiment ran during the part of M.Sc. course at Federal University of Pernambuco
and the execution consisted into three parts:

1. PIM specification of the Web Agency;

2. Manual implementation of the application from PIM;

3. Automatic code generation from PIM.

Web Agency - PIM

In this section we detail the most relevant elements of the Web Agency PIM. The complete
PIM of this project is described in Appendix B and it is also available at the WAKAME
under a project with the same name and it can be accessed via the following web address:
http://wakametool.appspot.com/.

The Web Agency is an instance of KISF, and by so, it is decomposed according the
MVC pattern and the client/server architecture used in KISF. In this sense, the client
would be the components of the Graphical User Interface (GUI) while the server would
be the component responsible for running the services requested by the GUI component.

The Figure 6.2, depicts the Realization Structural Service View of the WebAgency-

BusinessService component. In the realization, we can observe the projects requirements
being modeled as operations of the WebAgencyBusinessLogic, component that special-
izes the KISF BusinessLogic component. Two more components complete this view:
WebAgencyBusinessFacade and WebAgencyPersistence.

The first one, as already discussed in Figure 3.2.1 has the responsibility of redirecting
the client’s requests to the appropriate BusinessLogic classifier. The Figure 6.3 details
the specification of the process() method in Imperative OCL.
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Figure 6.2: WebAgencyBusinessService - Realization Structural Class Service

c o n t e x t : WebAgencyBusinessFacade : : p r o c e s s ( message : Message ) : Message
body :
do {

v a r c l a s s i f i e r : S t r i n g := message . g e t C l a s s i f i e r ( ) ;

t r y {
i f ( c l a s s i f i e r = ’ webAgencyBusinessLogic ’ ) {

r e t u r n s e l f . webAgencyBusinessLogic . e x c u t e ( message ) ;
}

}
e x c e p t ( E x c e p t i o n ) {

r a i s e ’ A c t i on e x e c u t i o n r a i s e d an e r r o r . ’ ;
}

}

Figure 6.3: WebAgencyBusinessFacade - Specification Operational Service View

The WebAgencyPersistence component in particular, illustrated in the Figure 6.4 is
acquired by the WebAgencyBusinessLogic because some of its operations requires persis-
tence capabilities, i.e. AddClient, AddLoan. This is because the WebAgencyPersistence
is a specialization of the KISF PersistentDataModel component, and by so, it inherits all
datastore operations that will be used by the BusinessLogics components.

79



6.4. FIRST EXPERIMENT - WEB AGENCY

Figure 6.4: WebAgencyPersistence - Specification Structural Service

All the classes and entities handled by the WebAgencyBusinessService as its sub-
components are depicted in Figure 6.5. The figure shows domain concepts existing the
credit agency context such as Client and Loan. Classes in the model that specializes
the Entity class of KISF will have persistent capabilities granted automatically. That
way, the modeler can pass one of the classes to be stored in the database through the
WebAgencyPersistence.

Figure 6.5: WebAgencyBusinessService - Realization Structural Type
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In order to illustrate the business rules of the WebAgency, we show in the figure Fig-
ure 6.6 the specification of the Appraiser operations. In sum, the code shows the method
proposeLoan definition. The operation response follows the requirement described in
Section 6.4. The calculateMaxParcelValue() and getMaxBorrowingBySocialClass are
auxiliary operations that makes part of the algorithm.

c o n t e x t : A p p r a i s e r : : c a l c u l a t e M a x P a r c e l V a l u e ( c : C l i e n t ) : Rea l
body : do {

v a r max : Rea l := c l i e n t . g e t S a l a r y ( ) *
s e l f . ge tMaxBor rowingBySoc ia lC la s s ( c . g e t S o c i a l C l a s s ( ) ) ) ;

v a r t o t a l P e n d i n g : Rea l = 0 . 0 ;

( c l i e n t . l o a n s )−> f o r E a c h ( l o a n : Loan ) {
t o t a l P e n d i n g := t o t a l P e n d i n g + l o a n . p a r c e l V a l u e ;

}

r e t u r n ( max − t o t a l P e n d i n g ) ;
}
c o n t e x t : A p p r a i s e r : : p roposeLoan ( c : C l i e n t , numParce l s : I n t e g e r , v a l u e : Rea l ) : Loan
body : do {

v a r maxParce lVa lue : Rea l := s e l f . c a l c u l a t e M a x P a r c e l V a l u e ( c ) ;

v a r r e q u e s t e d P a r c e l V a l u e := v a l u e / numParce l s ;
v a r l o a n : Loan = new Loan ( )

i f ( r e q u e s t e d P a r c e l V a l u e <= maxParce lVa lue ) {
l o a n . s e t P a r c e l V a l u e ( r e q u e s t e d P a r c e l V a l u e ) ;
l o a n . s e t N u m P a r c e l s ( numParce l s ) ;
r e t u r n l o a n ;

}
e l s e {

l o a n . s e t P a r c e l V a l u e ( maxParce lVa lue ) ;
l o a n . s e t N u m P a r c e l s ( numParce l s ) ;
r e t u r n l o a n ;

}
}
c o n t e x t : A p p r a i s e r : : ge tMaxBor rowingBySoc i a lC la s s ( s o c i a l C l a s s : S o c i a l C l a s s K i n d ) : Rea l
body : do {

i f ( s o c i a l C l a s s = S o c i a l C l a s s K i n d : : A) {
r e t u r n 0 . 5 ;

}
e l i f ( s o c i a l C l a s s = S o c i a l C l a s s K i n d : : B) {

r e t u r n 0 . 4 ;
}
e l i f ( s o c i a l C l a s s = S o c i a l C l a s s K i n d : : C) {

r e t u r n 0 . 3 ;
}
e l i f ( s o c i a l C l a s s = S o c i a l C l a s s K i n d : : D) {

r e t u r n 0 . 2 ;
}
e l s e {

r e t u r n 0 . 1 ;
}

}

Figure 6.6: Appraiser - Specification Operational Service View
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The calculateMaxParcelValue() returns the maximum parcel value of the loan the
client is allowed to have. In this case, the parcel cannot exceed a maximum value that is
calculated based on the client’s salary and its social class, represented in the model as
SocialClassKind. Subjects that are classified in the “A” social class, for example, can
only compromise 50% of its salary with debts.

The remaining views and operations are specified in the Appendix B.

Web Agency - Manual Implementation

After the previous step and taking the Web Agency PIM as reference, we proceeded with
the manual implementation. This task also was executed by the Thiago Oliveira and the
author of this dissertation.

For this phase, we have used the same target language (Java) for implementation and
we also used the same technologies (JPA) for implementing the persistence layer. It is
also valid to mention the application GUI was also implemented during this phase.

Several unit tests were also manually written in order to test the correctness of the
Web Agency. Each test checks whether the operation is valid or not. The criteria used to
evaluate the validity on a non-persistence operation was based on the PIM specification.

For the operations related to the persistence of the entities of the model, the unit tests
were based on the following assumption:

• Add operation - For a specific entity, the size of its stored list after the execution
of the operation is equal to the value the list size before the operation was executed
plus one.

• Remove operation - For a specific entity, the size of its stored list after the exe-
cution of the operation is equal to the value the list size before the operation was
executed minus one.

• List operation - For a specific entity, the size of list returned by the datastore is
greater if an add operation is executed.
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With that in mind, the Table 6.1 summarize tests results:

Operation Success Failure
Add Client x
Add Loan x

List Clients x
List Loans x

Request Loan x
Remove Client x

Table 6.1: Web Agency (Manual) - Unit Tests

Also, several quality metrics were collected after the implementation, the Table 6.2
lists the results for the metrics described in Section 6.1.

Metric Value
Instability 0.37

Cyclomatic Complexity 1.22
Maintainability Index 145.26

Table 6.2: Web Agency (Manual) - Metrics

Web Agency - Automatic Generation

After the PIM specification, the SUM model, serialized as a XMI file, was the passed as
input to the WAKAME Code Generator for the automatic generation of the application.
Within the WAKAME Code Generator, the Structural Generator (Oliveira, 2011) works
is parallel with the IOCL Compiler in order to generate all parts of the applications.

For each component, a Java interface and an interface realization is created by the
Structural Generator. The figures 6.7 and 6.8 details the specification and realization
code of the RequestLoan component respectively. All the structural features such as class
definition, attributes definition and operation definition are generated by the Structural
Generator. The IOCL Generator is used in the meantime to generate the operation
implementations and the body of the aspects, which are created when a pre or post
condition is present in the model.

In this model, the IOCL compiler was used to generate various types of Java expres-
sions. In this section we illustrate compiled codes of expressions showed in Section 6.4.2.
The Figure 6.9 for example, illustrates the compiled expressions of the Appraiser compo-
nent.
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package w e b a g e n c y b u s i n e s s s e r v i c e . n e s t s . r e q u e s t l o a n ;

p u b l i c i n t e r f a c e Reques tLoan ex tends KComponent ,
w e b a g e n c y b u s i n e s s s e r v i c e . n e s t s . b u s i n e s s s e r v i c e . n e s t s . b u s i n e s s l o g i c . B u s i n e s s L o g i c {

p u b l i c w e b a g e n c y b u s i n e s s s e r v i c e . n e s t s . b u s i n e s s s e r v i c e . Message e x e c u t e (
w e b a g e n c y b u s i n e s s s e r v i c e . n e s t s . b u s i n e s s s e r v i c e . Message message )
throws E x c e p t i o n ;

}

Figure 6.7: RequestLoan - Specification

/ / i m p o r t s o m i t t e d
@Component
p u b l i c c l a s s Reques tLoanImpl ex tends
w e b a g e n c y b u s i n e s s s e r v i c e . n e s t s . b u s i n e s s s e r v i c e . n e s t s . b u s i n e s s l o g i c . impl . B u s i n e s s L o g i c I m p l

implements w e b a g e n c y b u s i n e s s s e r v i c e . n e s t s . r e q u e s t l o a n . Reques tLoan {
@In jec t
@acqui res
p u b l i c w e b a g e n c y b u s i n e s s s e r v i c e . n e s t s . w e b a g e n c y p e r s i s t e n c e . WebAgencyPer s i s t ence
w e b A g e n c y P e r s i s t e n c e ;
@In j ec t
@nests
p u b l i c w e b a g e n c y b u s i n e s s s e r v i c e . n e s t s . r e q u e s t l o a n . n e s t s . a p p r a i s e r . A p p r a i s e r
a p p r a i s e r ;

p u b l i c w e b a g e n c y b u s i n e s s s e r v i c e . n e s t s . b u s i n e s s s e r v i c e . Message e x e c u t e (
w e b a g e n c y b u s i n e s s s e r v i c e . n e s t s . b u s i n e s s s e r v i c e . Message message )
throws E x c e p t i o n {

w e b a g e n c y b u s i n e s s s e r v i c e . C l i e n t c l i e n t =
( w e b a g e n c y b u s i n e s s s e r v i c e . C l i e n t ) message . g e t A t t r i b u t e (

" c l i e n t " ) ;
I n t e g e r numParce l s = ( I n t e g e r ) message . g e t A t t r i b u t e ( " numParce l s " ) ;
Double v a l u e = ( Double ) message . g e t A t t r i b u t e ( " v a l u e " ) ;
w e b a g e n c y b u s i n e s s s e r v i c e . Loan l o a n = t h i s . a p p r a i s e r . p roposeLoan (

c l i e n t , numParce ls , v a l u e ) ;
message . se tMessageKind (
w e b a g e n c y b u s i n e s s s e r v i c e . n e s t s . b u s i n e s s s e r v i c e . MessageKind . SUCCESS ) ;
message . s e t A t t r i b u t e ( " r e s u l t " , l o a n ) ;

re turn message ;
}

}

Figure 6.8: RequestLoan - Realization

Runtime constraint checks are also generated from pre and post condition expressions.
The Figure 6.10 shows an AspectJ code created from a pre condition applied to the
calculateSocialClass() operation in order to guarantee non negative integers for the
dependents argument.
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p u b l i c j a v a . l a n g . Double c a l c u l a t e M a x P a r c e l V a l u e (
w e b a g e n c y b u s i n e s s s e r v i c e . C l i e n t c ) {

Double max = ( c . g e t J o b ( ) . g e t S a l a r y ( ) *
t h i s . g e tMaxBor rowingBySoc ia lC la s s ( c . g e t S o c i a l C l a s s ( ) ) ) ;
Double t o t a l P e n d i n g = 0 . 0 ;
w e b a g e n c y b u s i n e s s s e r v i c e . Loan l o a n = n u l l ;

f o r ( j a v a . u t i l . I t e r a t o r < w e b a g e n c y b u s i n e s s s e r v i c e . Loan > i t = c . l o a n s . i t e r a t o r ( ) ;
i t . hasNext ( ) ; ) {

l o a n = i t . n e x t ( ) ;

t o t a l P e n d i n g = ( t o t a l P e n d i n g + l o a n . p a r c e l V a l u e ) ;
}

re turn ( max − t o t a l P e n d i n g ) ;
}

p u b l i c w e b a g e n c y b u s i n e s s s e r v i c e . Loan proposeLoan (
w e b a g e n c y b u s i n e s s s e r v i c e . C l i e n t c , j a v a . l a n g . I n t e g e r numParce ls ,
j a v a . l a n g . Double v a l u e ) {

Double maxParce lVa lue = t h i s . c a l c u l a t e M a x P a r c e l V a l u e ( c ) ;
Double r e q u e s t e d P a r c e l V a l u e = ( v a l u e / numParce l s ) ;

w e b a g e n c y b u s i n e s s s e r v i c e . Loan l o a n = new w e b a g e n c y b u s i n e s s s e r v i c e . Loan ( ) ;

i f ( ( r e q u e s t e d P a r c e l V a l u e <= maxParce lVa lue ) ) {
l o a n . s e t P a r c e l V a l u e ( r e q u e s t e d P a r c e l V a l u e ) ;
l o a n . s e t N u m P a r c e l s ( numParce l s ) ;
re turn l o a n ;

}
e l s e {

l o a n . s e t P a r c e l V a l u e ( maxParce lVa lue ) ;
l o a n . s e t N u m P a r c e l s ( numParce l s ) ;
re turn l o a n ;

}
}

p u b l i c j a v a . l a n g . Double ge tMaxBor rowingBySoc i a lC la s s (
w e b a g e n c y b u s i n e s s s e r v i c e . S o c i a l C l a s s K i n d s o c i a l C l a s s ) {

i f ( ( s o c i a l C l a s s . e q u a l s ( w e b a g e n c y b u s i n e s s s e r v i c e . S o c i a l C l a s s K i n d .A ) ) ) {
re turn 0 . 5 ;

}
e l s e i f ( ( s o c i a l C l a s s . e q u a l s ( w e b a g e n c y b u s i n e s s s e r v i c e . S o c i a l C l a s s K i n d . B ) ) ) {

re turn 0 . 4 ;
}
e l s e i f ( ( s o c i a l C l a s s . e q u a l s ( w e b a g e n c y b u s i n e s s s e r v i c e . S o c i a l C l a s s K i n d . C ) ) ) {

re turn 0 . 3 ;
}
e l s e i f ( ( s o c i a l C l a s s . e q u a l s ( w e b a g e n c y b u s i n e s s s e r v i c e . S o c i a l C l a s s K i n d .D ) ) ) {

re turn 0 . 2 ;
}
e l s e {

re turn 0 . 1 ;
}

}

Figure 6.9: Appraiser - Compiled Expressions

After generation, the same unit tests implemented during the manual step were also
applied for testing the generated artifacts. The Table 6.3 lists the results:
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package a s p e c t s . c o n s t r a i n t s . w e b a g e n c y b u s i n e s s s e r v i c e . n e s t s . a d d c l i e n t ;

/ / i m p o r t s o m i t t e d

p u b l i c p r i v i l e g e d a s p e c t AddCl ien tCheck {

p o i n t c u t c a l c u l a t e S o c i a l C l a s s ( ) : ( c a l l (
p u b l i c w e b a g e n c y b u s i n e s s s e r v i c e . S o c i a l C l a s s K i n d

w e b a g e n c y b u s i n e s s s e r v i c e . n e s t s . a d d c l i e n t . impl . AddCl i en t Imp l . c a l c u l a t e S o c i a l C l a s s (
j a v a . l a n g . I n t e g e r , j a v a . l a n g . Double ) ) ) ;
b e f o r e ( w e b a g e n c y b u s i n e s s s e r v i c e . n e s t s . a d d c l i e n t . impl . AddCl i en t Imp l a d d C l i e n t ,
j a v a . l a n g . I n t e g e r de penden t s , j a v a . l a n g . Double s a l a r y )
: t a r g e t ( a d d C l i e n t ) && c a l c u l a t e S o c i a l C l a s s ( ) && a r g s ( d ependen t s , s a l a r y ) {

Boolean h a s V i o l a t i o n s = ! ( ( ( I n t e g e r ) message . g e t A t t r i b u t e ( ’ d e p e n d e n t s ’ ) ) > 0 ) ;

i f ( h a s V i o l a t i o n s ) throw new V i o l a t i o n P r e E x c e p t i o n ( ) ;
}

/ / o t h e r methods o m i t t e d
}

Figure 6.10: AddClient - Pre condition check

Operation Success Failure
Add Client x
Add Loan x

List Clients x
List Loans x

Request Loan x
Remove Client x

Table 6.3: Web Agency (Generated) - Unit Tests

The metrics were also collected after the automatic generation, the Table 6.4 summa-
rizes the results obtained.

Metric Value
Instability 0.35

Cyclomatic Complexity 1.17
Maintainability Index 169.3

Table 6.4: Web Agency - Metrics

6.4.3 Analysis and Interpretation

The Figures 6.11, 6.12 and 6.13 depicts the data obtained from Eclipse Metrics and JHawk
categorized by the nature of the source code. It is shown the values of metrics related to
the quality of the system, such as: instability, cyclomatic complexity and maintainability
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index obtained from the artifacts built with and without automatic generation.

Figure 6.11: Web Agency - Instability metric comparison

Figure 6.12: Web Agency - Cyclomatic Complexity metric comparison

Figure 6.13: Web Agency - Maintainability Index metric comparison

It was verified that there was no significative changes on metrics of instability and
cyclomatic complexity. However they appear slightly lower when the automatic genera-
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tion is used. Similarly, the maintainability index number are close, with the index being a
little greater when automatic generation is used instead of manual implementation.

The lack of significative changes in the numbers can be explained by two reasons:
1) the manual implementation of the web agency was strictly written according the PIM
specification; 2) the same knowledge used to build the IOCL Compiler tool was also used
to write the manual code. Even so, the numbers rejects the null hypothesis that the tool
degrades the quality of the system.

The difference of the numbers though, can be explained by the good programming
practices contained into the code the generator such as: patterns, source formatting and
the use utilities libraries to perform similar tasks. The values, however, pointed another
benefit brought by the generator: the quality of the code is consistent through all the
code base.

Finally, the Table 6.5 lists the comparison of the tests results of both applications. It is
showed that the two application implementations passed in all tests, which was expected
due the same level of experience of the tool implementors and the experiment executors.

Operation Manual Impl. Automatic Impl.
Add Client Success Success
Add Loan Success Success

List Clients Success Success
List Loans Success Success

Request Loan Success Success
Remove Client Success Success

Table 6.5: Web Agency - Unit tests comparison

The Web Agency experiment confirmed our thesis that the IOCL compiler main-
tains the same or improves the quality characteristics when compared to the hand-
written code. However, it was experienced that for simple system may not be worthwhile
the extra work of building the complete PIM specification but if the modeling is a manda-
tory step, then the compiler could be used without compromising the quality of the
system.

6.5 Second Experiment - CHROME

The second experiment was executed from March, 2011 to April, 2011. The experiment
involved the automatic generation of the CHROME (Constraint Handling Rule Online
Model-driven Engine) inference engine (Vitorino, 2009). CHROME is a CHRV engine
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written in Java with a complete search algorithm (e.g. the conflict-directed back jumping
algorithm) and it is the first rule-based engine that integrates production rules, rewrite
rules and Constraint Logic Programming (CLP).

Constraint Handling Rules (CHR) is a high-level programming language based on
multi-headed rewrite rules. CHR was originally designed by (Frühwirth, 1994) for the
special purpose of adding user-defined constraint solvers to a host-language.

That said, the CHROME, in the context of this dissertation, has the purpose of evaluate
IOCL Compiler tool with respect to the quality of the generated artifacts when it is used
for generating complex algorithms.

Also, it is worth mentioning that this experiment is not an instance of KISF and a
developed version of this project already exists in Java. Another important characteristic
for its choice as experiment is that all of its code is self-contained, i.e. there is no
dependencies to third-party libraries.

6.5.1 Planning

The experiment was planned to be conducted by Armando Gonçalves, M.Sc. student
in Software Engineering from Federal University of Pernambuco, also a member of the
ORCAS group. In his master’s project, he plans to extend the CHROME project. As
group member, he has familiarity with WAKAME tool, OCL and KobrA2 method. To run
this experiment, we also provided some training about Imperative OCL aiming Gonçalves
have a better understanding on language and its constructs.

After this step, the activities assigned to Gonçalves were:

1. Definition of the CHROME PIM in the WAKAME tool;

2. Execution of the WAKAME Code Generator;

3. Execution of manual tests, both in the manual and the generated version of
CHROME;

4. Collect the metrics defined in Section 6.2 of both application versions using Eclipse
Metrics and JHawk tool.

Some threats to validity and execution of this experiment were identified, such as: 1)
Difficulty in performing tests in CHROME, threat identified by Gonçalves; 2) Lack of
knowledge of the executor of the experiment in IOCL; 3) Time restrictions to complete
the experiment.
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6.5.2 Operation

The first step for achieving this second experiment were the training given to Gonçalves
about topics including WAKAME, IOCL and WAKAME Code Generator tool. After
that, all necessary tools for the experiment execution were provided to the executor. The
first activity performed was the creation of CHROME PIM, that will be briefly described
in the Section 6.5.2.

CHROME PIM

The CHROME PIM is fully described in (Vitorino, 2009) thesis and it was used as
reference to specify the CHROME in the WAKAME4 tool. Despite the existence of the
PIM there was no possible way of reuse the existing one in WAKAME due incompatibility
of the files formats. Thus the PIM definition had to be created from scratch.

The Figure 6.14, depicts the Realization Structural Services View of the top-level
component.

Figure 6.14: CHROME top-level component

4http://wakametool.appspot.com
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The top-level CHROME component encapsulates all sub-components that compose
the CHROME environment. Its interface provides methods to compile a rule base, to
solve a query (displaying one or more solutions for such query), to adapt a solution when
a given set of justified constraints is deleted and to clear the constraint store for processing
a new query.

The main component for the CHROME run-time is the QueryProcessor. Its imple-
ments several operations defined in CHROME top-level, such as: solve query and clear
the constraint store.

The Compiler component is a pipe-line of 4 ATL(ATL, 2009) transformations. The
Specification of the component compiler provides only one operation, namely compile(),
that writes a Java file operationally equivalent to the CHRV base.

Finally, the ConstraintStore component provides the data structures to store constraints
either processed or generated by rules.

The QueryProcessor component is composed of four nested subcomponents, depicted
in Figure 6.14: Entailment, FiredRules, PropagationHistory and CDBJSearch.

Figure 6.15: QueryProcessor - Realization Structural Class Service

The Entailment component encapsulates entailment services that is used every time a
guard must be checked. It takes as parameters a set of existential variables (the ones that
may be bound during the procedure) plus two terms instances (Abdennadher, 2001). The
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goal of this component is to check if these two terms are syntactically equivalent given
the current state of all variable bindings in the constraint store. The Figure 6.16 depicts
its main operation.

c o n t e x t E n t a i l m e n t : : e n t a i l s (
l o c a l V a r s : Sequence ( V a r i a b l e ) , t 1 : Term , t 2 : Term , j s : J u s t i f i c a t i o n ) : Boolean
body :
do {

v a r j 1 : J u s t i f i c a t i o n := new J u s t i f i c a t i o n ( ) ;
v a r j 2 : J u s t i f i c a t i o n := new J u s t i f i c a t i o n ( ) ;
v a r d1 : Term := s e l f . d e r e f ( t1 , j 1 ) ;
v a r d2 : Term := s e l f . d e r e f ( t1 , j 2 ) ;
j s . m e r g e J u s t i f i c a t i o n ( j 1 ) ;
j s . m e r g e J u s t i f i c a t i o n ( j 2 ) ;
i f ( ( d1 = d2 ) and ( n o t ( d1 . o c l I s K i n d O f ( F u n c t i o n )

and d2 . o c l I s K i n d O f ( F u n c t i o n ) ) ) ) {
re turn true ;

}
i f ( d1 . o c l I s K i n d O f ( V a r i a b l e ) ) {

i f ( ( s e l f . i s V a r L o c a l ( t 1 . oclAsType ( V a r i a b l e ) , l o c a l V a r s ) ) and
( n o t ( d1 . oclAsType ( V a r i a b l e ) . v a l u e . o c l I s U n d e f i n e d ( ) ) ) ) {
s e l f . b ind ( d1 . oclAsType ( V a r i a b l e ) , t2 , j s ) ;
re turn true ;

}
}
i f ( d2 . o c l I s K i n d O f ( V a r i a b l e ) ) {

i f ( ( s e l f . i s V a r L o c a l ( t 2 . oclAsType ( V a r i a b l e ) , l o c a l V a r s ) ) and
( n o t ( d2 . oclAsType ( V a r i a b l e ) . v a l u e . o c l I s U n d e f i n e d ( ) ) ) ) {
s e l f . b ind ( d2 . oclAsType ( V a r i a b l e ) , t1 , j s ) ;
re turn true ;

}
}
i f ( ( d1 . o c l I s K i n d O f ( F u n c t i o n ) ) and ( d2 . o c l I s K i n d O f ( F u n c t i o n ) ) ) {

i f ( ( d1 . oclAsType ( F u n c t i o n ) . a rgs−> s i z e ( ) =
d2 . oclAsType ( F u n c t i o n ) . a rg s−> s i z e ( ) ) and ( d1 . name = d2 . name ) ) {
v a r i : I n t e g e r := 0 ;
v a r r : Boolean := t rue ;
whi le ( ( i < d1 . oclAsType ( F u n c t i o n ) . a rg s−> s i z e ( ) ) and r ) {

v a r l o c a l T e r m 1 := d1 . oclAsType ( F u n c t i o n ) . a rgs−>a t ( i ) ;
v a r l o c a l T e r m 2 := d2 . oclAsType ( F u n c t i o n ) . a rgs−>a t ( i ) ;
r := r and s e l f . e n t a i l s (

l o c a l V a r s , loca lTerm1 , loca lTerm2 , j s ) ;
i := i + 1 ;

}
re turn r ;

}
e l s e {

re turn f a l s e ;
}

}
}

Figure 6.16: Entailment - Realization Operational View

The main purpose of FiredRules component is to store the fired rules history in order
to undo any rules in case of a backtracking event. The Component keeps internally
a collection of entries, each of which stores the rule Id from a given fired rule, the
corresponding removed constraints, if any, that must be re-added in case of backtracking,
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the justification of the constraints used to fire the rule and whether the rule is either
disjunctive or composed only by conjunctions. The Figure 6.17 depicts its operational
view.

c o n t e x t F i r e d R u l e s : : add ( r u l e I d : I n t e g e r , a l l J s : J u s t i f i c a t i o n ,
r e m o v e d C o n s t r a i n t s : Sequence ( C o n s t r a i n t ) , i d r : Boolean )
body :
do {

v a r e l e m e n t : F i r e d R u l e s E n t r y := new F i r e d R u l e s E n t r y (
r u l e I d , a l l J s , r e m o v e d C o n s t r a i n t s , i d r ) ;

c o n t e n t s := c o n t e n t s −> i n c l u d i n g ( e l e m e n t ) ;
s e l f . l a s t E n t r y := s e l f . l a s t E n t r y + 1 ;

}
c o n t e x t F i r e d R u l e s : : r e m o v e N e x t L a t e s t D e p e n d e n t R u l e (
j u s t i f i c a t i o n : J u s t i f i c a t i o n ) : F i r e d R u l e s E n t r y
body :
do {

v a r i : I n t e g e r := s e l f . l a s t E n t r y ;
whi le ( i > 0 ) {

v a r e l e m e n t : F i r e d R u l e s E n t r y := c o n t e n t s −>a t ( i ) ;
i f ( e l e m e n t . j s . i s J u s t i f i e d B y ( j s ) ) {

c o n t e n t s := c o n t e n t s −>e x c l u d i n g ( e l e m e n t ) ;
s e l f . l a s t E n t r y := s e l f . l a s t E n t r y −1;
re turn e l e m e n t ;

}
i := i −1;

}
re turn n u l l ;

}

c o n t e x t F i r e d R u l e s : : removeDependentRules ( j u s t i f i c a t i o n : J u s t i f i c a t i o n ) : F i r e d R u l e s E n t r y
body :
do {

v a r i : I n t e g e r := s e l f . l a s t E n t r y ;
v a r e l e m e n t : F i r e d R u l e s E n t r y = new F i r e d R u l e s E n t r y ( ) ;
v a r l a s t E l e m e n t : F i r e d R u l e s E n t r y := new F i r e d R u l e s E n t r y ( ) ;
v a r r e s u l t : Sequence ( C o n s t r a i n t ) := Sequence { } ;
whi le ( i > 0 ) {

e l e m e n t := c o n t e n t s −>a t ( i ) ;
i f ( e l e m e n t . j s . i s J u s t i f i e d B y ( j s ) ) {

e l e m e n t := c o n t e n t s > e c l u d i n g ( e l e m e n t ) ;
s e l f . l a s t E n t r y := s e l f . l a s t E n t r y − 1 ;
r e s u l t := r e s u l t −>un ion ( e l e m e n t . c o n s t r a i n t s T o B e R e a d d e d ) ;
l a s t E l e m e n t := e l e m e n t ;

}
i := i −1;

}
i f ( l a s t E l e m e n t . i s A D i s j u n c t i v e R u l e ) {

c o n t e n t s := c o n t e n t s −> i n c l u d i n g ( l a s t E l e m e n t ) ;
( l a s t E l e m e n t . r e m o v e d C o n s t r a i n t s )−> f o r E a c h ( c : C o n s t r a i n t ) {

r e s u l t := r e s u l t −>e x c l u d i n g ( c ) ;
}
s e l f . l a s t E n t r y := s e l f . l a s t E n t r y +1;

}
re turn r e s u l t ;

}

Figure 6.17: Fired Rules - Realization Operational View

Every time a combination of keep constraints fires a rule they have to be stored in
order to assure that future applications of the same rule will not be used the exact same
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combination of keep constraints. The reason for that is to avoid trivial non-termination of
propagation rules.

The PropagationHistory component tracks each combination of keep constraints that
were used to fire a given rule.

Finally, the CDBJSearch component provides the functionality to perform either
chronological backtracking or backjumping to handle disjunctive bodies.

The remaining views and operations are specified on the Appendix C.

CHROME - Manual implementation

As stated, the CHROME already had an implemented version developed by (Vitorino,
2009). Currently CHROME is being extended to its second version by Gonçalves,
executor of this experiment. The first version however, has two important characteristic
that needs to be hightailed.

The first stems from the fact that despite the built PIM follows the KobrA2 method,
the first implementation version of CHROME did not followed completely recommended
implementation patterns for dealing with components (Fowler, 2002). There is no
distinction at code level between the component specification (interfaces) and component
realizations, for example. The second distinction is the lack of test for the implemented
application and the difficulty of the experimenter to create a set of tests that were useful
to cover the main features of CHROME.

In spite of that, Gonçalves could extract several metrics related to code quality. The
result, grouped by components, is listed in Table 6.6.

Constraint Store
Instability 0.5
Cyclomatic Complexity 3.77
Maintainability Index 121.25

CDBJ Search
Instability 0.33
Cyclomatic Complexity 5.0
Maintainability Index 37.22

Propag. History
Instability 0.5
Cyclomatic Complexity 3.5
Maintainability Index 141.09

Entailment
Instability 0.25
Cyclomatic Complexity 5.75
Maintainability Index 81.27

Fired Rules
Instability 0.25
Cyclomatic Complexity 2.67
Maintainability Index 150.21

Table 6.6: CHROME (Manual) - Metrics
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CHROME - Automatic generation

During this phase of the experiment, Gonçalves has used an incomplete version of the
CHROME PIM. The reason for that is the confirmation of the second and third threat
described in Section 6.5.1. The version used as input to the WAKAME Code Generator
tool contains all the structural specification describes but it lacks of some operational
views specifications. Nevertheless, the experimenter could specify 50% components
completely: Propagation History, Fired Rules, Constraint Store and Entailment. Thus
this section describes some artifacts generated from these components as well the quality
metrics obtained from them.

The Figure 6.18 depicts the interface of the Fired Rules component generated by
the Structural Generator. Its implementation, Figure 6.19, shows the method body
implementations generated by the IOCL Compiler tool.

/ / i m p o r t s o m i t t e d

p u b l i c i n t e r f a c e F i r e d R u l e s ex tends KComponent {
p u b l i c vo id add (

j a v a . l a n g . I n t e g e r r u l e I d , chromev4 . J u s t i f i c a t i o n a l l J s ,
chromev4 . n e s t s . c o n s t r a i n t s t o r e . C o n s t r a i n t r e m o v e d C o n s t r a i n t s ,
chromev4 . J u s t i f i c a t i o n j s , j a v a . l a n g . Boolean i d r )

throws E x c e p t i o n ;

p u b l i c L i s t <chromev4 . n e s t s . c o n s t r a i n t s t o r e . C o n s t r a i n t > removeDependentRules (
chromev4 . J u s t i f i c a t i o n j s )

throws E x c e p t i o n ;

p u b l i c chromev4 . n e s t s . q u e r y p r o c e s s o r . n e s t s . f i r e d r u l e s . F i r e d R u l e s E n t r y
r e m o v e N e x t L a t e s t D e p e n d e n t R u l e ( chromev4 . J u s t i f i c a t i o n j s ) throws E x c e p t i o n ;

}

Figure 6.18: Fired Rules - Specification

During the execution of this phase, Gonçalves reported some issues involving the
IOCLCompiler, all of them were completely resolved and they were registered in the
issue tracker of the IOCL Compiler tool. The issue tracker was used to manage the
bugs found, but also to allow requests for improvements in the tool. This tracker can be
accessed through the address https://github.com/marcellustavares/imperative-ocl/issues.
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/ / i m p o r t s o m i t t e d
@Component
p u b l i c c l a s s F i r e d R u l e s I m p l
implements chromev4 . n e s t s . q u e r y p r o c e s s o r . n e s t s . f i r e d r u l e s . F i r e d R u l e s {

p r i v a t e j a v a . l a n g . I n t e g e r l a s t E n t r y ;
p u b l i c j a v a . u t i l . L i s t <
chromev4 . n e s t s . q u e r y p r o c e s s o r . n e s t s . f i r e d r u l e s . F i r e d R u l e s E n t r y > c o n t e n t s ;

p u b l i c vo id add ( j a v a . l a n g . I n t e g e r r u l e I d , chromev4 . J u s t i f i c a t i o n a l l J s ,
chromev4 . n e s t s . c o n s t r a i n t s t o r e . C o n s t r a i n t r e m o v e d C o n s t r a i n t s ,
chromev4 . J u s t i f i c a t i o n j s , j a v a . l a n g . Boolean i d r )
throws E x c e p t i o n {

chromev4 . n e s t s . q u e r y p r o c e s s o r . n e s t s . f i r e d r u l e s . F i r e d R u l e s E n t r y e l e m e n t =
new chromev4 . n e s t s . q u e r y p r o c e s s o r . n e s t s . f i r e d r u l e s . F i r e d R u l e s E n t r y ( ) ;
e l e m e n t . r u l e I d = r u l e I d ;
e l e m e n t . j s = a l l J s ;
e l e m e n t . i s A D i s j u n c t i v e R u l e = i d r ;
t h i s . c o n t e n t s =
org . o r c a s . commons . c o l l e c t i o n s . C o l l e c t i o n U t i l s . i n c l u d i n g ( t h i s . c o n t e n t s , e l e m e n t ) ;
t h i s . l a s t E n t r y = ( t h i s . l a s t E n t r y + 1 ) ;

}

p u b l i c L i s t <chromev4 . n e s t s . c o n s t r a i n t s t o r e . C o n s t r a i n t > removeDependentRules (
chromev4 . J u s t i f i c a t i o n j s ) throws E x c e p t i o n {

I n t e g e r i = l a s t E n t r y ;
chromev4 . n e s t s . q u e r y p r o c e s s o r . n e s t s . f i r e d r u l e s . F i r e d R u l e s E n t r y e l e m e n t =
new chromev4 . n e s t s . q u e r y p r o c e s s o r . n e s t s . f i r e d r u l e s . F i r e d R u l e s E n t r y ( ) ;
chromev4 . n e s t s . q u e r y p r o c e s s o r . n e s t s . f i r e d r u l e s . F i r e d R u l e s E n t r y l a s t E l e m e n t =
new chromev4 . n e s t s . q u e r y p r o c e s s o r . n e s t s . f i r e d r u l e s . F i r e d R u l e s E n t r y ( ) ;
j a v a . u t i l . L i s t <chromev4 . n e s t s . c o n s t r a i n t s t o r e . C o n s t r a i n t > r e s u l t =
new org . o r c a s . commons . c o l l e c t i o n s . l i s t . T r e e L i s t ( j a v a . u t i l . A r r ay s . a s L i s t ( ) ) ;

whi le ( ( i > 0 ) ) {
e l e m e n t = org . o r c a s . commons . c o l l e c t i o n s . C o l l e c t i o n U t i l s . a t ( c o n t e n t s , i ) ;
i f ( e l e m e n t . j s . i s J u s t i f i e d B y ( j s ) ) {

c o n t e n t s = org . o r c a s . commons . c o l l e c t i o n s . C o l l e c t i o n U t i l s . e x c l u d i n g (
c o n t e n t s , e l e m e n t ) ;

l a s t E n t r y = ( l a s t E n t r y − 1 ) ;
r e s u l t = org . o r c a s . commons . c o l l e c t i o n s . C o l l e c t i o n U t i l s . un ion (

r e s u l t , e l e m e n t . r e m o v e d C o n s t r a i n t s ) ;
l a s t E l e m e n t = e l e m e n t ;

}
i = ( i − 1 ) ;

}

i f ( l a s t E l e m e n t . i s A D i s j u n c t i v e R u l e ) {
c o n t e n t s = org . o r c a s . commons . c o l l e c t i o n s . C o l l e c t i o n U t i l s . i n c l u d i n g (

c o n t e n t s , l a s t E l e m e n t ) ;
chromev4 . n e s t s . c o n s t r a i n t s t o r e . C o n s t r a i n t c = n u l l ;
f o r ( j a v a . u t i l . I t e r a t o r <chromev4 . n e s t s . c o n s t r a i n t s t o r e . C o n s t r a i n t > i t =

l a s t E l e m e n t . r e m o v e d C o n s t r a i n t s . i t e r a t o r ( ) ; i t . hasNext ( ) ; ) {
c = i t . n e x t ( ) ;
r e s u l t = org . o r c a s . commons . c o l l e c t i o n s . C o l l e c t i o n U t i l s . e x c l u d i n g (

r e s u l t , c ) ;
}
t h i s . l a s t E n t r y = ( t h i s . l a s t E n t r y + 1 ) ;

}
re turn r e s u l t ;
}

p u b l i c chromev4 . n e s t s . q u e r y p r o c e s s o r . n e s t s . f i r e d r u l e s . F i r e d R u l e s E n t r y
r e m o v e N e x t L a t e s t D e p e n d e n t R u l e (

chromev4 . J u s t i f i c a t i o n j s ) throws E x c e p t i o n {

I n t e g e r i = t h i s . l a s t E n t r y ;

whi le ( ( i > 0 ) ) {
chromev4 . n e s t s . q u e r y p r o c e s s o r . n e s t s . f i r e d r u l e s . F i r e d R u l e s E n t r y e l e m e n t =
org . o r c a s . commons . c o l l e c t i o n s . C o l l e c t i o n U t i l s . a t ( c o n t e n t s , i ) ;
i f ( e l e m e n t . j s . i s J u s t i f i e d B y ( j s ) ) {

c o n t e n t s = org . o r c a s . commons . c o l l e c t i o n s . C o l l e c t i o n U t i l s . e x c l u d i n g (
c o n t e n t s , e l e m e n t ) ;

t h i s . l a s t E n t r y = ( t h i s . l a s t E n t r y − 1 ) ;
re turn e l e m e n t ;

}
i = ( i − 1 ) ;

}
re turn n u l l ;

}
}

Figure 6.19: Fired Rules - Realization
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Finally the Table 6.7 summarizes the quality metrics obtained from these four compo-
nents.

Constraint Store
Instability 0.25
Cyclomatic Complexity 1.41
Maintainability Index 122.01

Propag. History
Instability 0.25
Cyclomatic Complexity 2.25
Maintainability Index 156.88

Entailment
Instability 0.33
Cyclomatic Complexity 4.17
Maintainability Index 102.94

Fired Rules
Instability 0.25
Cyclomatic Complexity 2.2
Maintainability Index 103.24

Table 6.7: CHROME (Generated) - Metrics

Analysis and Interpretation

The analysis of the data of CHROME just considered the numbers (average) of the four
QueryProcessor subcomponents. With that in mind, the Figure 6.20, 6.21 and 6.22 depicts
the values of the metrics obtained from the manual and automatic implementation of
these components.

Figure 6.20: CHROME - Instability metric comparison

Similarly to the Web Agency experiment, the numbers reveal that there is no real
discrepancy related to these metrics in analysis. Both the Instability and Cyclomatic

Complexity indexes are slightly better in the automatic generation. Both values rejects
the H0a and H0b respectively.
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Figure 6.21: CHROME - Cyclomatic Complexity metric comparison

Figure 6.22: CHROME - Maintainability Index metric comparison

However, one of the metrics showed different result from what was obtained during
the Web Agency experiment. The Maintainability index dropped from 123.785 in the
manual implementation to 121.26 in the automatic version. The number in absolute value
confirms the null hypothesis H0c, but considering the scale of the index this represents
a very small variation and both values still are in the range considered as modules with
good maintainability.

A detailed analysis of the Maintainability index, depicted in Figure 6.23 shows the
index values by component. The values shows an improvement of the index in 75% of
the components, being lower only in the Fired Rules Component.

A further investigation in the source code showed us that the manual implementation
of Fired Rules component is not 100% compatible with the specification described in the
PIM and this reason helps to explain the root cause of the difference. All other components
were implemented according to the specification. The lack of a complete PIM, however,
prevented the calculus of an average the metrics of all components and a final evaluation
of the experiment, but the values collect until this phase of the experiment still provides
us evidences that IOCL Compiler maintained the same quality characteristics when

98



6.6. CHAPTER SUMMARY

Figure 6.23: CHROME - Maintainability Index by components

compared to the handwritten code.
The non conclusion of the complete PIM and also the non existence of unit tests

prevented its execution in both versions of the application. Thus we could not prove the
correctness of the versions and a further research in this area is still needed.

6.6 Chapter Summary

In this Chapter was presented all the evaluations performed for IOCL Compiler. All exper-
iments brought valid consideration about the tool, the second experiments although, could
not be fulfilled because one of its threats (time restrictions to complete the experiment)
could not be resolved.

Even though, the quality metrics collected provided good evidences about the benefits
of the tool. It was observed a quality improvement in most of components evaluated
and the second experiment in particular provided us the opportunity to resolve some
issues found by the experimenter when using the tool. It is worthwhile mentioning that
additional experiments can be also be done in the future, mainly to provide us data about
the tool helpfulness in the process execution and to evaluate the advantages/disadvantages
of the usage of Imperative OCL to describe the system behavior.

Next Chapter presents the works found in the literature that are related to this disser-
tation.
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7
Related Work

During the development of this work, several works and tools were identified as related
to the context of this research. In this chapter we present the selected ones. Section 7.1
presents the works related to the behavioral modeling. Section 7.2 describes the most
adopted OCL tools and Section 7.3 details the Eclipse M2M project, which includes an
implementation the QVT specification. Finally, Section 7.4 draws the chapter summary.

7.1 Previous Studies on Behavioral Modeling

Several previous studies discussed approaches for behavioral modeling in platform-
independent models. The main approach advocated by the OMG group is the use of the
Action Language (OMG, 2010a) that conforms to the UML Action Semantics.

However, criticisms to action languages are raised since 2004 by (Haustein & Pleu-
mann, 2004). The authors propose a surface language that is based on and aligned with
OCL. They claim that all semantic language rely on a syntax that is incoherent with
the existing OMG standard such as the Object Constraint Language (OCL). Thus, in
his article he discusses a proposal of an action surface language by embedding OCL
expressions in new syntax constructs for actions.

(Jiang et al. , 2008) also propose an OCL-based executable UML (OxUML). He
suggests that that OCL can be partly used for ASL, and the capability of model execution
can be provided by extending OCL. Thus he defines an new language called OCL
for Execution (OCL4X) by extending OCL with the expressions present in the AS
specification but not in OCL.

(Kelsen et al. , 2008) follows the same direction the PIM executability by using OCL.
It is proposed a declarative language for describing the behavior of platform-independent
models based on a hybrid notation that uses graphical elements as well as textual elements
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in the form of OCL code snippets.
Different approaches like (Riccobene & Scandurra, 2009) seek to use an ASM-

based extension of the UML and its Action Semantics to define a high level behavioral
formalism for the construction of executable PIMs. The executability in this case is
achieved by weaving behavioral aspects expressed in terms of ASM elements into the
UML metamodel.

All the techniques described above seeks to reuse existing standards to achieve PIM
executability. However all the approaches found pursues this goal by either creating
concrete syntax for AS or extending behavior diagrams and OCL languages with action
constructors.

In our approach, we propose the usage of Imperative OCL Language to specify the
system behavior. As discussed along this dissertation, IOCL is a consolidated standard
and it also has all necessary requirements to achieve the model executability at PIM level.
Through the combination of IOCL and KobrA/UML we also attempt to ease the adoption
of the developed solution.

Although we were not able to find any downloadable tool capable of compile IOCL
expressions to target languages, a tool was proposed by (Vajk & Levendovszky, 2006).
However, in this work, IOCL is used to specify model transformations and the compiler
is designed to run inside an environment called Visual Modeling and Transformation
System (VMTS) (VTMS, 2011), features that make this project out of the scope of this
work.

7.2 Works related with the use of OCL

In this section we present the most adopted OCL tools by the MDA community. Its usage
as the base of the development of the IOCL Compiler was considered during the early
phases of this work but due the lack of documentation related to the modules extension
and specially because a high level intrusion was required in the project’s source code
to extend the OCL to IOCL in these tools led us to just adopt them as reference to the
implementation of our work.

7.2.1 Eclipse OCL

Nowadays, Eclipse (Eclipse, 2010a) is much more than Integrated Development Envi-
ronments (IDEs). The Eclipse foundation also supports several open-source projects and
some of them related do Model Driven Engineering.
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Eclipse OCL (MDT, 2010) is one of the many projects comprised in the Eclipse
Modeling Project (EMP). This project focuses on the evolution and promotion of model-
based development technologies within the Eclipse community. Also, it unites projects
failing into this classification to bring holistic model-based capabilities to Java community.
It is a strong effort of the Eclipse foundation in realizing the MDA mission.

The EMP project is subdivided in several areas, which in turn comprises other
several subprojects, involving fields such Abstract Syntax Development, Concrete Syntax
Development and Model Transformations technologies. The Eclipse OCL is one of them.

The Eclipse OCL is an implementation of the OCL OMG standard for EMF-based
models. It provides the entire infrastructure for parsing, validating and evaluating OCL
expressions. It also provides a Visitor API for transforming the AST model of the input
OCL expression. The Figure 7.1 shows the basic API for handling OCL expression in
Eclipse OCL.

Figure 7.1: Eclipse OCL API (MDT, 2010)

In this figure we can see the OCL class serves as the main entrypoint into the parsing
API. From the OCL instance the OCLHelper object can be created to parse constraints
and query expressions. Each type of constraint is handled by its specific method in the
OCLHelper interface.

An important aspect is that different kind of constraints requires different contexts
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definitions. The setContext(), setOperationContext(), and setAttributeContext() methods
are responsible for configuring the appropriate environment to the further analysis of the
parsed expressions. During the parsing and evaluation of the expressions, the ParserEx-
ception can be raised. There are two possible reasons for that(Eclipse, 2010b): syntactic
or contextual problems. The former detects errors in providing a proper OCL syntax,
such as closing parenthesis, wrong operation names, etc. The latter detects errors such as
wrong operands types, invalid context navigation, etc.

After the OCL expression is parsed, it is transformed to an AST using EMF. Once
the AST is built, the evaluation uses the Visitor pattern (Gamma et al. , 1995) to visit
all expression elements and do the evaluation task of the given element. The interface
EvaluationVisitor is responsible for doing this job. The Visitor interface provided by
Eclipse OCL can be easily extended to perform other kinds of functions such as code
generation.

The Eclipse OCL tool does not provide any built-in facility to compile OCL expres-
sions to platform-specific code, but other tools were found in literature aiming filling this
gap, such as: (Garcia & Shidqie, 2007) and (Shidqie, 2007).

7.2.2 Dresden OCL

The Dresden OCL toolkit (Dresden, 2011) has been developed at Technische Universität
Dresden since 1999. The latest version is called Dresden OCL2 for Eclipse and includes
the OCL parser, interpreter and code generator. Its architecture is shown in figure 7.2.

The back-end represents the meta-model used to load models and constraints into
the toolkit. There is a total independence of model repositories used with the framework
due the implementation of a pivot model, the pivot model responsible for making the
toolkit independent of the meta-model used. This architecture makes the repository easily
exchanged for example between EMF and the UML repository from Eclipse Model
Development Tools Project (Eclipse, 2011b).

The toolkit basis layer represents the project kernel. It is divided into three modules:
the Pivot Model, Essential OCL and the Model Bus. This layer provides core functionali-
ties to load models and constraints intro the toolkit. The Pivot Model use was mentioned
before; the Essential OCL extends the Pivot Model to define a meta-model, based on the
OCL 2.0 standard library for OCL constraints. Several types of expressions are supported
by the toolkit, such as invariants, pre and postconditions, definitions and body expressions.
Finally, the Model Bus provides access to models or model instances that have been
loaded into the toolkit.
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Figure 7.2: Dresden OCL Packages Structure (Dresden, 2011)

The top layer contains the built-in tools provided by the toolkit. The last stable version
of the project is 2.2 and it provides three tools: OCL2 Parser, OCL2 Interpreter and OCL2
java code generator. The parser and the interpreter are used to load, interpret and verify
OCL constraints, the OCL2Java is the code generator module, and it is used to generate
Java code for the successful parsed OCL constraints. The OCL2Java uses aspect-oriented
language AspectJ to instrument the Java code generation for the imported model.

7.3 Works related with the use of IOCL

7.3.1 Eclipse M2M

The Eclipse M2M project (Eclipse, 2011a), as Eclipse OCL, is one subproject of Eclipse
Modeling Project (EMP). The main purpose of this project is to develop a framework
for model-to-model transformation languages. The project is composed of a core trans-
formation infrastructure and several pluggable transformation engines that will execute
the transformations. There are three transformation engines developed in this context:
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ATL(ATL, 2009), Procedural QVT and Declarative QVT.
The ATL component of the M2M project aims at providing a set of model-to-model

transformation tools. These include some sample ATL transformations, an ATL transfor-
mation engine, and an IDE for ATL.

The procedural QVT (QVTO) component is an implementation of the Operational
part of the QVT specification. The QVTO operates with EMF models and it is composed
of three packages:

• QVT Operational package General structuring elements and top-level construc-
tions;

• Imperative OCL Package extension to OCL expressions and type system;

• Standard Library Several utility functions used to specify the transformations.

The QVT Operational package tackles the parsing and execution of the QVT op-
erational transformations. Operational transformations contains several of imperative
operations (mappings, helpers, queries, constructors) that makes easier the specification
of the transformation. There are five types of imperative operations inside the QVTO:
Entry Operation, Mapping, helpers, Queries and Constructors

An entry operation is the entry point for the execution of a transformation. Typically
refers to model parameters and invokes top-level mappings. A helper is an operation that
performs a computation on one or more source objects and provides a result. A query is a
“read-only” helper which is not allowed to create or update any objects. A constructor is
an operation that defines how to create and populate the properties of an instance of a
given class. Mapping is a special constructor that defines a A mapping between one or
more source model elements into one or more target model elements.

Imperative OCL packages handles the IOCL expressions. The IOCL expressions are
meant to be used for the definition of the operational M2M transformations. The package
also includes a parser for all the expressions presented in Section 2.2.2. However, the
project does not provide any external access to this module. The rigid implementation
and the lack of user documentation prevented its usage and extension in this project.

in our project to reuse this package to implement the IOCL Compiler.
The QVT Declarative (QVTd) component aims to provide a complete Eclipse based

IDE for the Core and Relations Languages defined by the OMG QVT Relations language.
The goal includes all development components necessary for development of QVT core
and QVT relation programs and APIs to facilitate extension and reuse
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The main difference between QVTO an QVTR is that QVTO contains fully-described
detailed execution instructions. On the contrary, QVTR omits these explicit steps and
relies on individual correspondence between elements of the input and output domain.
Consequently, QVTO scripts require a complete algorithm (i.e. how to produce an
output model given the whole input model) while QVTR contains routines for element-
to-element mapping.

7.4 Chapter Summary

All two OCL tools evaluated during this work have similar features that includes pars-
ing and evaluation of OCL expression. However, the Dresden toolkit and the Object
Constraint Language Environment also have the ability tho generate Java code from the
expressions.

Compared with the Imperative OCL compiler, both Eclipse OCL and Dresden toolkit
show a higher level of stability a grater number of OCL expressions supported. However
none of them are able to parse and generate code from Imperative OCL expressions.

In spite the Eclipse M2M supports IOCL for writing transformations, M2M is scoped
to model-to-model transformation, the usage of IOCL is treated differently from what
this work proposes, which advocates its usage for describing the system behavior at PIM
level.

Next Chapter concludes this dissertation by summarizing the work performed, review-
ing some related works, pointing directions for future enhancements to the environment
and presenting some final considerations.
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Conclusion

This chapter presents the contributions and limitations of the Imperative OCL Engine and
Imperative OCL Generator components, the future work of these modules and concluding
remarks.

8.1 Contribution

This work presents contributions that were organized and classified as contributions to
the WAKAME CASE tool, to MDE and KobrA.

The identified contributions to WAKAME CASE tool were:

• Proposal of a innovative usage of Imperative OCL expressions. The work proposes
its utilization during the behavioral model specification at PIM level;

• Design and implementation of IOCL compiler. A tool that automatically generates
platform-specific code from IOCL language.

• Two different evaluations for verifying the the tool helpfulness to a MDA process.

Identified contributions to MDE and KobrA:

• Creation and publication of the compiler component from IOCL expressions. IOCL
expressions was proved to be a interesting way to simplify the specification of
behavioral algorithms. The difficulty of draw behavioral diagrams and generate
platform-specific code from them is one of the cause the lack of the tools capable
of generate the full code of the application.

• Update of KobrA metamodel with Imperative OCL expressions.
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• Validation of KobrA method through the accomplished of the models elaborated in
this work, KISF, Web Agency and the IOCLEngine and IOCLGenerator compo-
nents

8.2 Limitations

There are some known limitations of this initial version of the IOCLCompiler. The
reasons for these limitations were not technical but resulting of time restrictions for the
development. They are:

• The IOCLEngine current implementation does not support all Imperative OCL
expressions, with all the syntax variations as presented in QVT specification. The
figures 8.1 and 8.2 shows which expressions are not currently supported by this
compiler. The red marks show the expressions not yet covered by the compiler and
the orange marks identify expressions that are partially implemented. By partially
we mean: a) some expressions provide different types of syntax flavors, such the
Switch expression in the Imperative OCL package and for this cases and only one
flavor was contemplated; b) complex iterator expressions are not fully supported at
this stage of development.

• The IOCLAnalyzer subcomponent, which deals with the semantics checking, is
only available for KobrA models.

• The CodeGenerator component does not map all operations available in QVT
operational mappings standard library to Java standard library calls.
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Figure 8.1: Unsupported part of OCL expressions

Figure 8.2: Unsupported part of IOCL expressions

8.3 Future Work

In spite of the commitment to develop the tool, some improvements are visualized. They
were not included in the initial tool development because some of them were considered
out of the scope of the master degree, but are important to a full industrial tool, and others
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were comments/feedbacks from users. In this fashion, some important aspects that were
left out of this version are enumerated:

• Extend the IOCLAnalyzer implementation to other metamodels such as UML or
EMF.

• Extend the IOCL grammar to include the missing expressions and syntax variations
not yet covered

• Complete the CodeGenerator to handle the missing expressions, depicted in figures
8.1 and 8.2.

• Complete the remaining operations mapping from QVT standard library to Java

• Integrate the WAKAMECodeGenerator in the WAKAME tool.

8.4 Concluding Remarks

The development of the WAKAME Code Generator tool involved the collaboration of
two master’s degree students. The focus of this work, which is part of this project, was
the development of IOCL components able to handle the parsing, semantic analysis and
code generation of imperative OCL expressions into Java code.

We divided this work into two components: the first one responsible for the parsing,
semantic analysis and syntax suggestions of the input expressions and the second that
provides a reusable infrastructure for code generation together with a built-in IOCL to
Java generator.

The work was accomplished in three stages. The first consisted of the bibliographical
rising of the related areas to the subject of the research. The second stage was the
accomplishment of the modeling and implementation of both components described in
chapter 5. And the third and last stage was accomplished a case study for the evaluation
of the implemented applications, and of this case study it was obtained positive results in
relation to what we proposed.

The main contributions at the end of this work were the development of the first
Imperative OCL to Java generator, which was proved to be a good way to simplify the
behavioral specification of the application to finally achieve the full code generation
proposed by MDA.
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A
Imperative OCL Grammar

grammar I o c l ;

o p t i o n s {
b a c k t r a c k = t r u e ;
memoize= t r u e ;
o u t p u t =AST ;
}

t o k e n s {
ALT_EXP ;
AND = ’ and ’ ;
APPEND = ’+= ’ ;
ARROW = ’−> ’;
ATTRIBUTE_CALL ;
BLOCK;
BREAK = ’ break ’ ;
COLLECTION_LITERAL ;
COLLECTION_TYPE ;
COLON = ’ : ’ ;
COMPUTE = ’ compute ’ ;
CONTINUE = ’ c o n t i n u e ’ ;
DICT = ’ Dic t ’ ;
DICT_LITERAL_EXP ;
DIV = ’ / ’ ;
DO = ’ do ’ ;
DOT = ’ . ’ ;
ENDIF = ’ e n d i f ’ ;
ENUM_LITERAL ;
ELIF = ’ e l i f ’ ;
ELSE = ’ e l s e ’ ;
EQUAL = ’ = ’ ;
EXCEPT = ’ excep t ’ ;
FOR = ’ f o r ’ ;
GT = ’ > ’ ;
GTE = ’ >= ’;
IF = ’ i f ’ ;
IMPERATIVE_OPERATION_CALL ;
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ITERATE = ’ i t e r a t e ’ ;
ITERATOR ;
IS = ’ : = ’ ;
LOG = ’ log ’ ;
LCURLY = ’ { ’ ;
LPAREN = ’ ( ’ ;
LT = ’ < ’ ;
LTE = ’ <= ’;
MINUS = ’− ’;
NEW = ’new ’ ;
NOT = ’ not ’ ;
NOT_EQUAL = ’ < > ’;
MULT = ’ * ’ ;
OPERATION_CALL ;
OR = ’ or ’ ;
PATH_NAME;
PLUS = ’ + ’ ;
RAISE = ’ r a i s e ’ ;
RCURLY = ’ } ’ ;
RETURN = ’ r e t u r n ’ ;
RPAREN = ’ ) ’ ;
SCOPE = ’ : : ’ ;
SELF = ’ s e l f ’ ;
SEMICOLON = ’ ; ’ ;
TRY = ’ t r y ’ ;
VAR = ’ var ’ ;
VARIABLE ;
WHILE = ’ whi le ’ ;
XOR = ’ xor ’ ;
}

@lexer : : h e a d e r {
package org . o r c a s . i o c l e n g i n e . p a r s e r . a n t l r ;
}

@header {
package org . o r c a s . i o c l e n g i n e . p a r s e r . a n t l r ;
}

@members {
p r o t e c t e d vo id mismatch ( I n t S t r e a m i n p u t , i n t t t y p e , B i t S e t f o l l o w )

th ro ws R e c o g n i t i o n E x c e p t i o n
{

throw new MismatchedTokenExcept ion ( t t y p e , i n p u t ) ;
}

p u b l i c O b j e c t r ecove rFromMismatchedSe t ( I n t S t r e a m i n p u t , R e c o g n i t i o n E x c e p t i o n e , B i t S e t f o l l o w )
th ro ws R e c o g n i t i o n E x c e p t i o n

{
throw e ;

}
}

@ r u l e c a t c h {
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c a t c h ( R e c o g n i t i o n E x c e p t i o n e ) {
throw e ;

}
}

o c l E x p r e s s i o n
: i m p e r a t i v e E x p
| l o g i c a l E x p
;

l o g i c a l E x p
: e q u a l i t y E x p ( (AND | OR | XOR) ^ e q u a l i t y E x p )*
;

e q u a l i t y E x p
: r e l a t i o n a l E x p ( (EQUAL | NOT_EQUAL) ^ r e l a t i o n a l E x p )*
;

r e l a t i o n a l E x p
: a d d i t i v e E x p ( ( LT | LTE | GT | GTE) ^ a d d i t i v e E x p )*
;

a d d i t i v e E x p
: m u l t i p l i c a t i v e E x p ( ( PLUS | MINUS) ^ m u l t i p l i c a t i v e E x p )*
;

m u l t i p l i c a t i v e E x p
: unaryExp ( (MULT | DIV ) ^ unaryExp )*
;

unaryExp
: (MINUS | NOT) ^ unaryExp
| i n s t a n t i a t i o n E x p
| d i c t L i t e r a l E x p
| dotArrowExp
;

i n s t a n t i a t i o n E x p
: NEW^ pathName ’ ( ’ ! a rgumen t s ? ’ ) ’ !
;

d i c t L i t e r a l E x p
: DICT LCURLY RCURLY −> ^ ( DICT_LITERAL_EXP )
;

dotArrowExp
: oc lExp p r o p e r t y C a l l E x p ^+
| oc lExp
;

p r o p e r t y C a l l E x p
: (DOT | ARROW) ! m o d e l P r o p e r t y C a l l E x p
| ARROW! loopExp
;
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m o d e l P r o p e r t y C a l l E x p
: o p e r a t i o n C a l l E x p
| a t t r i b u t e C a l l E x p
;

o p e r a t i o n C a l l E x p
: NUMERIC_OPERATION ’ ( ’ a rgumen t s ? ’ ) ’ −> ^ (NUMERIC_OPERATION argumen t s ? )
| simpleName ’ ( ’ a rgumen t s ? ’ ) ’ −> ^ (OPERATION_CALL simpleName argumen t s ? )
;

a t t r i b u t e C a l l E x p
: simpleName −> ^ (ATTRIBUTE_CALL simpleName )
;

oc lExp
: l i t e r a l E x p
| v a r i a b l e E x p
| t y p e
| ’ ( ’ o c l E x p r e s s i o n ’ ) ’ −> o c l E x p r e s s i o n
;

v a r i a b l e E x p
: simpleName −> ^ (VARIABLE simpleName )
;

l i t e r a l E x p
: e n u m e r a t i o n L i t e r a l E x p
| c o l l e c t i o n L i t e r a l E x p
| p r i m i t i v e L i t e r a l E x p
| n u l l L i t e r a l E x p
;

c o l l e c t i o n L i t e r a l E x p
: c o l l e c t i o n T y p e I d e n t i f i e r ’{ ’ c o l l e c t i o n L i t e r a l P a r t s ? ’} ’ −> ^ (COLLECTION_LITERAL c o l l e c t i o n T y p e I d e n t i f i e r c o l l e c t i o n L i t e r a l P a r t s ? )
;

c o l l e c t i o n T y p e I d e n t i f i e r
: COLLECTION_TYPE_LITERAL
;

c o l l e c t i o n L i t e r a l P a r t s
: c o l l e c t i o n L i t e r a l P a r t ( ’ , ’ ! c o l l e c t i o n L i t e r a l P a r t s )*
;

c o l l e c t i o n L i t e r a l P a r t
: o c l E x p r e s s i o n
;

p r i m i t i v e L i t e r a l E x p
: n u m e r i c L i t e r a l E x p
| s t r i n g L i t e r a l E x p
| b o o l e a n L i t e r a l E x p
;
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n u l l L i t e r a l E x p
: NULL_LITERAL
;

n u m e r i c L i t e r a l E x p
: i n t e g e r L i t e r a l E x p
| r e a l L i t e r a l E x p
;

s t r i n g L i t e r a l E x p
: STRING_LITERAL
;

b o o l e a n L i t e r a l E x p
: BOOLEAN_LITERAL
;

i n t e g e r L i t e r a l E x p
: INTEGER_LITERAL
;

r e a l L i t e r a l E x p
: REAL_LITERAL
;

e n u m e r a t i o n L i t e r a l E x p
: IDENTIFIER (SCOPE IDENTIFIER )+ −> ^ (ENUM_LITERAL IDENTIFIER IDENTIFIER +)
;

loopExp
: i t e r a t o r E x p
| i t e r a t e E x p
;

i t e r a t o r E x p
: ITERATOR_NAME LPAREN ( ( v1 = v a r i a b l e D e c l a r a t i o n ’ , ’ ) ? v2 = v a r i a b l e D e c l a r a t i o n ’ | ’ ) ? o c l E x p r e s s i o n RPAREN

−> ^ ( ITERATOR ITERATOR_NAME $v1 ? $v2 ? o c l E x p r e s s i o n )
;

i t e r a t e E x p
: ITERATE LPAREN ( v1 = v a r i a b l e D e c l a r a t i o n SEMICOLON) ? v2 = v a r i a b l e D e c l a r a t i o n ’ | ’ o c l E x p r e s s i o n RPAREN

−> ^ ( ITERATE $v1 ? $v2 o c l E x p r e s s i o n )
;

v a r i a b l e D e c l a r a t i o n
: IDENTIFIER ( ’ : ’ t y p e ) ? ( ’= ’ o c l E x p r e s s i o n ) ? −> ^ (VARIABLE IDENTIFIER t y p e ? o c l E x p r e s s i o n ? )
;

a rgumen t s
: o c l E x p r e s s i o n ( ’ , ’ ! o c l E x p r e s s i o n )*
;

simpleName
: SELF
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| IDENTIFIER
;

p r i m i t i v e T y p e
: PRIMITIVE_TYPE_LITERAL
;

c o l l e c t i o n T y p e
: c o l l e c t i o n T y p e I d e n t i f i e r (LPAREN t y p e RPAREN) ? −> ^ (COLLECTION_TYPE c o l l e c t i o n T y p e I d e n t i f i e r t y p e ? )
;

t y p e
: p r i m i t i v e T y p e
| c o l l e c t i o n T y p e
| DICT (LPAREN keyType= t y p e ’ , ’ va lueType = t y p e RPAREN) ? −> ^ ( DICT $keyType ? $va lueType ? )
| pathName
;

pathName
: IDENTIFIER (SCOPE IDENTIFIER )* −> ^ (PATH_NAME IDENTIFIER IDENTIFIER *)
;

/ / I m p e r a t i v e E x p r e s s i o n s

i m p e r a t i v e E x p
: blockExp
| breakExp
| computeExp
| c o n t i n u e E x p
| r e t u r n E x p
| v a r i a b l e I n i t E x p
| a s s i g n E x p
| r a i s e E x p
| whi leExp
| i f E x p
| t r y Ex p
| fo rExp
| logExp
| i m p e r a t i v e O p e r a t i o n C a l l E x p
;

blockExp
: DO? LCURLY i m p e r a t i v e E x p * RCURLY −> ^ (BLOCK i m p e r a t i v e E x p *)
;

breakExp
: BREAK^ SEMICOLON
;

computeExp
: COMPUTE LPAREN v a r i a b l e D e c l a r a t i o n RPAREN o c l E x p r e s s i o n −> ^ (COMPUTE v a r i a b l e D e c l a r a t i o n o c l E x p r e s s i o n )
;

c o n t i n u e E x p
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: CONTINUE^ SEMICOLON
;

r e t u r n E x p
: RETURN l o g i c a l E x p ? SEMICOLON −> ^ (RETURN l o g i c a l E x p ? )
;

v a r i a b l e I n i t E x p
: VAR^ i m p e r a t i v e V a r D e c l a r a t i o n s SEMICOLON!
;

i m p e r a t i v e V a r D e c l a r a t i o n s
: i m p e r a t i v e V a r D e c l a r a t i o n ( ’ , ’ ! i m p e r a t i v e V a r D e c l a r a t i o n )*
;

i m p e r a t i v e V a r D e c l a r a t i o n
: IDENTIFIER ( ’ : ’ t y p e ) ? ( (EQUAL | IS ) l o g i c a l E x p ) ? −> ^ (VARIABLE IDENTIFIER t y p e ? l o g i c a l E x p ? )
;

a s s i g n E x p
: dotArrowExp ( IS | APPEND) ^ l o g i c a l E x p SEMICOLON!
;

r a i s e E x p
: RAISE^ ( t y p e | STRING_LITERAL ) SEMICOLON!
;

whi leExp
: WHILE LPAREN c o n d i t i o n = l o g i c a l E x p RPAREN

body = i m p e r a t i v e E x p −> ^ (WHILE $ c o n d i t i o n $body )
;

i f E x p
: IF a l t E x p ( e l i f E x p )* ( e l s e E x p ) ? ENDIF? −> ^ ( IF a l t E x p e l i f E x p * e l s e E x p ? )
;

e l i f E x p
: ELIF ! a l t E x p
;

e l s e E x p
: ELSE ! o c l E x p r e s s i o n
;

a l t E x p
: LPAREN c o n d i t i o n = l o g i c a l E x p RPAREN body = i m p e r a t i v e E x p −> ^ (ALT_EXP $ c o n d i t i o n $body )
;

t r yE xp
: TRY LCURLY i m p e r a t i v e E x p * RCURLY e x c e p t −> ^ (TRY i m p e r a t i v e E x p * e x c e p t )
;

e x c e p t
: EXCEPT LPAREN t y p e RPAREN LCURLY i m p e r a t i v e E x p * RCURLY −> ^ (EXCEPT t y p e i m p e r a t i v e E x p *)
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;

fo rExp
: oc lExp ARROW FOR_NAME LPAREN i t e r a t o r L i s t ( ’ | ’ c o n d i t i o n = o c l E x p r e s s i o n ) ? RPAREN body = o c l E x p r e s s i o n

−> ^ (FOR FOR_NAME oclExp i t e r a t o r L i s t $ c o n d i t i o n ? $body )
;

i t e r a t o r L i s t
: v a r i a b l e D e c l a r a t i o n ( ’ , ’ ! v a r i a b l e D e c l a r a t i o n )*
;

logExp
: LOG LPAREN STRING_LITERAL ( ’ , ’ IDENTIFIER ) ? ( ’ , ’ INTEGER_LITERAL ) ? RPAREN SEMICOLON −> ^ (LOG STRING_LITERAL? INTEGER_LITERAL ? )
;

i m p e r a t i v e O p e r a t i o n C a l l E x p
: dotArrowExp SEMICOLON −> ^ ( IMPERATIVE_OPERATION_CALL dotArrowExp )
;

BOOLEAN_LITERAL
: ’ t r u e ’
| ’ f a l s e ’
;

COLLECTION_TYPE_LITERAL
: ’ Bag ’
| ’ C o l l e c t i o n ’
| ’ Orde redSe t ’
| ’ Sequence ’
| ’ Set ’
;

PRIMITIVE_TYPE_LITERAL
: ’ I n t e g e r ’
| ’ S t r i n g ’
| ’ Real ’
| ’ Boolean ’
| ’ OclAny ’
;

INTEGER_LITERAL
: ’ 0 ’ . . ’ 9 ’ +
;

REAL_LITERAL
: ( ’ 0 ’ . . ’ 9 ’ ) + ’ . ’ ( ’ 0 ’ . . ’ 9 ’ ) + EXPONENT?
| ’ . ’ ( ’ 0 ’ . . ’ 9 ’ ) + EXPONENT?
| ( ’ 0 ’ . . ’ 9 ’ ) + EXPONENT
;

STRING_LITERAL
: ’ \ ’ ’ ( ESC_SEQ | ~ ( ’ \ \ ’ | ’ \ ’ ’ ) )* ’ \ ’ ’
;
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NULL_LITERAL
: ’ n u l l ’
;

ITERATOR_NAME
: ’ any ’
| ’ c l o s u r e ’
| ’ c o l l e c t ’
| ’ c o l l e c t N e s t e d ’
| ’ e x i s t s ’
| ’ f o r A l l ’
| ’ i sUnique ’
| ’ one ’
| ’ s e l e c t ’
| ’ so r t edBy ’
| ’ r e j e c t ’
;

FOR_NAME
: ’ forEach ’
| ’ forOne ’
;

IDENTIFIER
: ( ’ a ’ . . ’ z ’ | ’ A’ . . ’ Z ’ | ’ _ ’ ) ( ’ a ’ . . ’ z ’ | ’ A’ . . ’ Z ’ | ’ 0 ’ . . ’ 9 ’ | ’ _ ’ ) *

;

NUMERIC_OPERATION
: INTEGER_LITERAL ’ . ’ IDENTIFIER
;

WS
: ( ’ ’

| ’ \ t ’
| ’ \ r ’
| ’ \ n ’
) { $ c h a n n e l =HIDDEN; }

;

f r a g m e n t
EXPONENT

: ( ’ e ’ | ’ E ’ ) ( ’ + ’ | ’ − ’ ) ? ( ’ 0 ’ . . ’ 9 ’ ) +
;

f r a g m e n t
HEX_DIGIT

: ( ’ 0 ’ . . ’ 9 ’ | ’ a ’ . . ’ f ’ | ’ A’ . . ’ F ’ ) ;

f r a g m e n t
ESC_SEQ

: ’ \ \ ’ ( ’ b ’ | ’ t ’ | ’ n ’ | ’ f ’ | ’ r ’ | ’ \ " ’ | ’ \ ’ ’ | ’ \ \ ’ )
| UNICODE_ESC
| OCTAL_ESC
;
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f r a g m e n t
OCTAL_ESC

: ’ \ \ ’ ( ’ 0 ’ . . ’ 3 ’ ) ( ’ 0 ’ . . ’ 7 ’ ) ( ’ 0 ’ . . ’ 7 ’ )
| ’ \ \ ’ ( ’ 0 ’ . . ’ 7 ’ ) ( ’ 0 ’ . . ’ 7 ’ )
| ’ \ \ ’ ( ’ 0 ’ . . ’ 7 ’ )
;

f r a g m e n t
UNICODE_ESC

: ’ \ \ ’ ’u ’ HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT
;
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B
Web Agency - PIM

B.1 Structural Specification

Figure B.1: WebAgencyBusinessService - Specification Structural Class Service
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B.1. STRUCTURAL SPECIFICATION

Figure B.2: WebAgencyBusinessService - Realization Structural Class Service

Figure B.3: WebAgencyBusinessService - Realization Structural Class Type
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B.1. STRUCTURAL SPECIFICATION

Figure B.4: WebAgencyBusinessFacade - Specification Structural Class Service

Figure B.5: WebAgencyBusinessLogic - Specification Structural Class Service

Figure B.6: WebAgencyBusinessPersistence - Specification Structural Class Service
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B.2. OPERATIONAL SPECIFICATION

B.2 Operational Specification

c o n t e x t : WebAgencyBus inessServ ice : : p r o c e s s ( message : Message ) : Message
body : re turn s e l f . webAgencyBusinessFacade . p r o c e s s ( message ) ;

c o n t e x t : WebAgencyBusinessFacade : : p r o c e s s ( message : Message ) : Message
body : do {

v a r c l a s s i f i e r : S t r i n g := message . g e t C l a s s i f i e r ( ) ;

t r y {
i f ( c l a s s i f i e r = ’ webAgencyBusinessLogic ’ ) {

re turn s e l f . webAgencyBusinessLogic . p r o c e s s ( message ) ;
}

}
e x c e p t ( E x c e p t i o n ) {

r a i s e ’ A c t i on e x e c u t i o n r a i s e d an e r r o r . ’ ;
}

}

c o n t e x t : WebAgencyBusinessLogic : : e x e c u t e ( message : Message ) : Message
body : do {

v a r o p e r a t i o n : S t r i n g := message . g e t O p e r a t i o n ( ) ;

i f ( o p e r a t i o n = ’ a d d C l i e n t ’ ) {
re turn s e l f . a d d C l i e n t ( message ) ;

}
e l i f ( o p e r a t i o n = ’ addLoan ’ ) {

re turn s e l f . addLoan ( message ) ;
}
e l i f ( o p e r a t i o n = ’ l i s t C l i e n t s ’ ) {

re turn s e l f . l i s t C l i e n t s ( message ) ;
}
e l i f ( o p e r a t i o n = ’ l i s t L o a n s ’ ) {

re turn s e l f . l i s t L o a n s ( message ) ;
}
e l i f ( o p e r a t i o n = ’ r e q u e s t L o a n ’ ) {

re turn s e l f . r e q u e s t L o a n ( message ) ;
}
e l i f ( o p e r a t i o n = ’ r e m o v e C l i e n t ’ ) {

re turn s e l f . r e m o v e C l i e n t ( message ) ;
}

r a i s e ’ O p e r a t i o n n o t found ! ’ ;
}
c o n t e x t : WebAgencyBusinessLogic : : a d d C l i e n t ( message : Message ) : Message
p r e : message . g e t A t t r i b u t e ( ’ d e p e n d e n t s ’ ) . oclAsType ( I n t e g e r ) > 0
body : do {

v a r f i r s t N a m e : S t r i n g := message . g e t A t t r i b u t e ( ’ f i r s t N a m e ’ ) . oclAsType ( S t r i n g ) ;
v a r las tName : S t r i n g := message . g e t A t t r i b u t e ( ’ l as tName ’ ) . oclAsType ( S t r i n g ) ;
v a r SSN : S t r i n g := message . g e t A t t r i b u t e ( ’SSN ’ ) . oclAsType ( S t r i n g ) ;

v a r company : S t r i n g := message . g e t A t t r i b u t e ( ’ company ’ ) . oclAsType ( S t r i n g ) ;
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v a r s a l a r y : S t r i n g := message . g e t A t t r i b u t e ( ’ s a l a r y ’ ) . oclAsType ( S t r i n g ) ;
v a r d e p e n d e n t s : I n t e g e r := message . g e t A t t r i b u t e ( ’ d e p e n d e n t s ’ ) . oclAsType ( I n t e g e r ) ;

v a r c l i e n t : C l i e n t := new C l i e n t ( ) ;

c l i e n t . s e t F i r s t N a m e ( f i r s t N a m e ) ;
c l i e n t . se tLas tName ( las tName ) ;
c l i e n t . setSSN (SSN ) ;

c l i e n t . s e t S o c i a l C l a s s K i n d ( s e l f . c a l c u l a t e S o c i a l C l a s s K i n d ( dependen t s , s a l a r y ) ) ;

v a r j o b : Job := new Job ( ) ;

j o b . setCompany ( company ) ;
j o b . s e t S a l a r y ( s a l a r y ) ;

c l i e n t . s e t J o b ( j o b ) ;

s e l f . w e b A g e n c y P e r s i s t e n c e . p e r s i s t ( c l i e n t ) ;

message . se tMessageKind ( MessageKind : : SUCCESS ) ;
message . s e t A t t r i b u t e ( ’ r e s u l t ’ , c l i e n t ) ;

re turn message ;
}

c o n t e x t : WebAgencyBusinessLogic : : addLoan ( message : Message ) : Message
body : do {

v a r l o a n : Loan := message . g e t A t t r i b u t e ( ’ l o a n ’ ) . oclAsType ( Loan ) ;

s e l f . w e b A g e n c y P e r s i s t e n c e . p e r s i s t ( l o a n ) ;

message . se tMessageKind ( MessageKind : : SUCCESS ) ;
message . s e t A t t r i b u t e ( ’ r e s u l t ’ , l o a n ) ;

re turn message ;
}

c o n t e x t : WebAgencyBusinessLogic : : l i s t C l i e n t ( message : Message ) : Message
body : do {

v a r c l i e n t s : Sequence := s e l f . w e b A g e n c y P e r s i s t e n c e . a l l (
’ w e b a g e n c y b u s i n e s s s e r v i c e . C l i e n t ’ ) ;

message . se tMessageKind ( MessageKind : : SUCCESS ) ;
message . s e t A t t r i b u t e ( ’ r e s u l t ’ , c l i e n t s ) ;

re turn message ;
}

c o n t e x t : WebAgencyBusinessLogic : : l i s t L o a n s ( message : Message ) : Message
body : do {

v a r l o a n s : Sequence := s e l f . w e b A g e n c y P e r s i s t e n c e . a l l (
’ w e b a g e n c y b u s i n e s s s e r v i c e . Loan ’ ) ;
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v a r SSN : S t r i n g := message . g e t A t t r i b u t e ( ’SSN ’ ) . oclAsType ( S t r i n g ) ;

v a r s e l e c t e d L o a n s : Sequence := l o a n s−> s e l e c t ( l o a n | l o a n . g e t C l i e n t S S N ( ) = SSN ) ;

message . se tMessageKind ( MessageKind : : SUCCESS ) ;
message . s e t A t t r i b u t e ( ’ r e s u l t ’ , s e l e c t e d L o a n s ) ;

re turn message
}

c o n t e x t : WebAgencyBusinessLogic : : r e q u e s t L o a n ( message : Message ) : Message
body : do {

v a r c l i e n t : C l i e n t := message . g e t A t t r i b u t e ( ’ c l i e n t ’ ) . oclAsType ( C l i e n t ) ;
v a r numParce l s : I n t e g e r := message . g e t A t t r i b u t e ( ’ numParce l s ’ ) . oclAsType ( I n t e g e r ) ;
v a r v a l u e : Rea l := message . g e t A t t r i b u t e ( ’ v a l u e ’ ) . oclAsType ( Rea l ) ;

v a r l o a n : Loan := s e l f . a p p r a i s e r . p roposeLoan ( c l i e n t , numParce ls , v a l u e ) ;

message . se tMessageKind ( MessageKind : : SUCCESS ) ;
message . s e t A t t r i b u t e ( ’ r e s u l t ’ , l o a n ) ;

re turn message ;
}

c o n t e x t : WebAgencyBusinessLogic : : r e m o v e C l i e n t ( message : Message ) : Message
body : do {

v a r SSN : S t r i n g := message . g e t A t t r i b u t e ( ’SSN ’ ) . oclAsType ( S t r i n g ) ;

v a r c l i e n t := s e l f . w e b A g e n c y P e r s i s t e n c e . g e t E n t i t y (
’ w e b a g e n c y b u s i n e s s s e r v i c e . C l i e n t ’ , SSN . oclAsType ( I n t e g e r ) ) ;

s e l f . w e b A g e n c y P e r s i s t e n c e . remove ( c l i e n t ) ;

message . se tMessageKind ( MessageKind : : SUCCESS ) ;

re turn message
}

c o n t e x t : WebAgencyBusinessLogic : : c a l c u l a t e S o c i a l C l a s s K i n d ( message : Message ) : Message
body : do {

v a r v a l u e : Rea l := 1 + ( d e p e n d e n t s / 5 ) + (5000 / s a l a r y ) ;
v a r i n d i c a t o r : Rea l := 10 * (2 / v a l u e ) ;

i f ( i n d i c a t o r >= 8) {
re turn S o c i a l C l a s s K i n d : : A;

}
e l i f ( i n d i c a t o r >= 6 and i n d i c a t o r < 8) {

re turn S o c i a l C l a s s K i n d : : B ;
}
e l i f ( i n d i c a t o r >= 4 and i n d i c a t o r < 6) {

re turn S o c i a l C l a s s K i n d : : C ;
}
e l i f ( i n d i c a t o r >= 2 and i n d i c a t o r < 4) {

re turn S o c i a l C l a s s K i n d : : D;
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}
e l s e {

re turn S o c i a l C l a s s K i n d : : E ;
}

}

c o n t e x t : A p p r a i s e r : : c a l c u l a t e M a x P a r c e l V a l u e ( c l i e n t : C l i e n t ) : Rea l
body : do {

v a r max : Rea l := c l i e n t . g e t J o b ( ) . g e t S a l a r y ( ) *
s e l f . ge tMaxBor rowingVa lueBySoc ia lC la s s ( c l i e n t . g e t S o c i a l C l a s s K i n d ( ) ) ;

v a r t o t a l P e n d i n g : Rea l := 0 . 0 ;

( c l i e n t . l o a n s )−> f o r E a c h ( l o a n : Loan ) {
t o t a l P e n d i n g = t o t a l P e n d i n g + l o a n . g e t P a r c e l V a l u e ( ) ;

}

re turn ( max − t o t a l P e n d i n g ) ;
}

c o n t e x t : A p p r a i s e r : : p roposeLoan ( c l i e n t : C l i e n t , numParce l s : I n t e g e r , v a l u e : Rea l ) : Loan
body : do {

v a r maxParce lVa lue : Rea l := s e l f . c a l c u l a t e M a x P a r c e l V a l u e ( x l i e n t ) ;

v a r r e q u e s t e d P a r c e l V a l u e := v a l u e / numParce l s ;
v a r l o a n : Loan = new Loan ( ) ;

i f ( r e q u e s t e d P a r c e l V a l u e <= maxParce lVa lue ) {
l o a n . s e t P a r c e l V a l u e ( r e q u e s t e d P a r c e l V a l u e ) ;
l o a n . s e t N u m P a r c e l s ( numParce l s ) ;

re turn l o a n ;
}
e l s e {

l o a n . s e t P a r c e l V a l u e ( maxParce lVa lue ) ;
l o a n . s e t N u m P a r c e l s ( numParce l s ) ;

re turn l o a n ;
}

}

c o n t e x t : A p p r a i s e r : : ge tMaxBor rowingVa lueBySoc i a lC la s s (
s o c i a l C l a s s : S o c i a l C l a s s K i n d ) : Rea l

body : do {
i f ( s o c i a l C l a s s = S o c i a l C l a s s K i n d : : A) {

re turn 0 . 5 ;
}
e l i f ( s o c i a l C l a s s = S o c i a l C l a s s K i n d : : B) {

re turn 0 . 4 ;
}
e l i f ( s o c i a l C l a s s = S o c i a l C l a s s K i n d : : C) {

re turn 0 . 3 ;
}
e l i f ( s o c i a l C l a s s = S o c i a l C l a s s K i n d : : D) {
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re turn 0 . 2 ;
}
e l s e {

re turn 0 . 1 ;
}

}
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CHROME - PIM

C.1 Structural Specification

Figure C.1: CHROME - Specification Structural Class Service
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Figure C.2: CHROME - Specification Structural Class Type

Figure C.3: CHROME - Realization Structural Class Service
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Figure C.4: QueryProcessor - Realization Structural Class Service
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C.2 Operational Specification

c o n t e x t C o n s t r a i n t S t o r e : : add ( c o n s t r a i n t : C o n s t r a i n t )
body :
do {

i f ( c o n s t r a i n t T a b l e 2 . hasKey ( c . getName ( ) ) ) {
v a r h t : D i c t := s e l f . c o n s t r a i n t T a b l e 2 . g e t ( c . getName ( ) ) ;

h t . p u t ( c . hashCode ( ) , c ) ;
}
e l s e {

v a r h t : D i c t := new D i c t i o n a r y T y p e ( ) ;

h t . p u t ( c . hashCode ( ) , c ) ;

c o n s t r a i n t T a b l e 2 . p u t ( c . getName ( ) , h t ) ;
}

}

c o n t e x t C o n s t r a i n t S t o r e : : g e t P a r t n e r s (
c o n s t r a i n t : C o n s t r a i n t , c o n s t r a i n t A r i t y : I n t e g e r ) : Sequence ( C o n s t r a i n t )

body :
do {

v a r r e s u l t : Sequence ( C o n s t r a i n t ) = Sequence { } ;

i f ( s e l f . c o n s t r a i n t T a b l e 2 . hasKey ( c . getName ( ) ) ) {
v a r h t : D i c t := s e l f . c o n s t r a i n t T a b l e 2 . g e t ( c . getName ( ) ) ;

v a r c o n s t r a i n t s : Sequence ( C o n s t r a i n t ) := h t . v a l u e s ( ) ;

c o n s t r a i n t s −>f o r E a c h ( c o n s t r a i n t : C o n s t r a i n t ) {
i f ( ( n o t c o n s t r a i n t . removed ) and ( c o n s t r a i n t . a r g s . s i z e ( ) = c o n s t r a i n t A r i t y ) ) {

r e s u l t := r e s u l t −> i n c l u d i n g ( c o n s t r a i n t ) ;
}

}
}

re turn r e s u l t ;
}

c o n t e x t C o n s t r a i n t S t o r e : : d e l ( c o n s t r a i n t : C o n s t r a i n t )
body :
do {

i f ( s e l f . c o n s t r a i n t T a b l e 2 . hasKey ( c . getName ( ) ) ) {
v a r h t : D i c t := s e l f . c o n s t r a i n t T a b l e 2 . g e t ( c . getName ( ) ) ;

i f ( h t . hasKey ( c . hashCode ( ) ) ) {
h t . remove ( c o n s t r a i n t ) ;

}
}

}
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c o n t e x t C o n s t r a i n t S t o r e : : g e t S t o r e ( ) : C o n s t r a i n t
body :
do {

v a r r e s u l t : Sequence ( C o n s t r a i n t ) = Sequence { } ;

v a r c o n s t r a i n t M a p s : Sequence ( D i c t i o n a r y T y p e ) := s e l f . c o n s t r a i n t T a b l e 2 . v a l u e s ( ) ;

c o n s t r a i n t M a p s −>f o r E a c h ( c o n s t r a i n t M a p : D i c t i o n a r y T y p e ) {
v a r c o n s t r a i n t s : Sequence ( C o n s t r a i n t ) := c o n s t r a i n t M a p . v a l u e s ( )

c o n s t r a i n t s −>f o r E a c h ( c o n s t r a i n t : C o n s t r a i n t ) {
r e s u l t := r e s u l t −> i n c l u d i n g ( c o n s t r a i n t ) ;

}
}

re turn r e s u l t ;
}

c o n t e x t F i r e d R u l e s : : add ( r u l e I d : I n t e g e r , a l l J s : J u s t i f i c a t i o n ,
r e m o v e d C o n s t r a i n t s : Sequence ( C o n s t r a i n t ) , i d r : Boolean )
body :
do {

v a r e l e m e n t : F i r e d R u l e s E n t r y := new F i r e d R u l e s E n t r y (
r u l e I d , a l l J s , r e m o v e d C o n s t r a i n t s , i d r ) ;

c o n t e n t s := c o n t e n t s −> i n c l u d i n g ( e l e m e n t ) ;
s e l f . l a s t E n t r y := s e l f . l a s t E n t r y + 1 ;

}

c o n t e x t F i r e d R u l e s : : r e m o v e N e x t L a t e s t D e p e n d e n t R u l e (
j u s t i f i c a t i o n : J u s t i f i c a t i o n ) : F i r e d R u l e s E n t r y
body :
do {

v a r i : I n t e g e r := s e l f . l a s t E n t r y ;
whi le ( i > 0 ) {

v a r e l e m e n t : F i r e d R u l e s E n t r y := c o n t e n t s −>a t ( i ) ;
i f ( e l e m e n t . j s . i s J u s t i f i e d B y ( j s ) ) {

c o n t e n t s := c o n t e n t s −>e x c l u d i n g ( e l e m e n t ) ;
s e l f . l a s t E n t r y := s e l f . l a s t E n t r y −1;
re turn e l e m e n t ;

}
i := i −1;

}
re turn n u l l ;

}

c o n t e x t F i r e d R u l e s : : removeDependentRules ( j u s t i f i c a t i o n : J u s t i f i c a t i o n ) : F i r e d R u l e s E n t r y
body :
do {

v a r i : I n t e g e r := s e l f . l a s t E n t r y ;
v a r e l e m e n t : F i r e d R u l e s E n t r y = new F i r e d R u l e s E n t r y ( ) ;
v a r l a s t E l e m e n t : F i r e d R u l e s E n t r y := new F i r e d R u l e s E n t r y ( ) ;
v a r r e s u l t : Sequence ( C o n s t r a i n t ) := Sequence { } ;
whi le ( i > 0 ) {

e l e m e n t := c o n t e n t s −>a t ( i ) ;
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i f ( e l e m e n t . j s . i s J u s t i f i e d B y ( j s ) ) {
e l e m e n t := c o n t e n t s > e c l u d i n g ( e l e m e n t ) ;
s e l f . l a s t E n t r y := s e l f . l a s t E n t r y − 1 ;
r e s u l t := r e s u l t −>un ion ( e l e m e n t . c o n s t r a i n t s T o B e R e a d d e d ) ;
l a s t E l e m e n t := e l e m e n t ;

}
i := i −1;

}
i f ( l a s t E l e m e n t . i s A D i s j u n c t i v e R u l e ) {

c o n t e n t s := c o n t e n t s −> i n c l u d i n g ( l a s t E l e m e n t ) ;
( l a s t E l e m e n t . r e m o v e d C o n s t r a i n t s )−> f o r E a c h ( c : C o n s t r a i n t ) {

r e s u l t := r e s u l t −>e x c l u d i n g ( c ) ;
}
s e l f . l a s t E n t r y := s e l f . l a s t E n t r y +1;

}
re turn r e s u l t ;

}

c o n t e x t E n t a i l m e n t : : d e r e f ( t : Term , j s : J u s t i f i c a t i o n ) : Term
body :
do {

i f ( t . o c l I s K i n d O f ( V a r i a b l e ) and t . oclAsType ( V a r i a b l e ) <> n u l l ) {
i f ( ( t . oclAsType ( V a r i a b l e ) . v a l u e ) . o c l I s K i n d O f ( V a r i a b l e ) ) {

re turn s e l f . d e r e f ( t . oclAsType ( V a r i a b l e ) . va lue , j s ) ;
}
e l s e {

j s . m e r g e J u s t i f i c a t i o n ( t . oclAsType ( V a r i a b l e ) . j s ) ;

re turn t . oclAsType ( V a r i a b l e ) . v a l u e ;
}

}
e l s e {

re turn t ;
}

}

c o n t e x t E n t a i l m e n t : : i s V a r L o c a l ( v : V a r i a b l e , l o c a l V a r s : Sequence ( V a r i a b l e ) ) : Boolean
body : re turn s e l f . l o c a l V a r s −> i n c l u d e s ( v ) ;

c o n t e x t E n t a i l m e n t : : b ind ( v : V a r i a b l e , t : Term , j s : J u s t i f i c a t i o n )
body :
do {

v . v a l u e = t ;
v . j s . m e r g e J u s t i f i c a t i o n ( j s ) ;

}

c o n t e x t E n t a i l m e n t : : e n t a i l s (
l o c a l V a r s : Sequence ( V a r i a b l e ) , t 1 : Term , t 2 : Term , j s : J u s t i f i c a t i o n ) : Boolean
body :
do {

v a r j 1 : J u s t i f i c a t i o n := new J u s t i f i c a t i o n ( ) ;
v a r j 2 : J u s t i f i c a t i o n := new J u s t i f i c a t i o n ( ) ;
v a r d1 : Term := s e l f . d e r e f ( t1 , j 1 ) ;
v a r d2 : Term := s e l f . d e r e f ( t1 , j 2 ) ;
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j s . m e r g e J u s t i f i c a t i o n ( j 1 ) ;
j s . m e r g e J u s t i f i c a t i o n ( j 2 ) ;
i f ( ( d1 = d2 ) and ( n o t ( d1 . o c l I s K i n d O f ( F u n c t i o n )

and d2 . o c l I s K i n d O f ( F u n c t i o n ) ) ) ) {
re turn true ;

}
i f ( d1 . o c l I s K i n d O f ( V a r i a b l e ) ) {

i f ( ( s e l f . i s V a r L o c a l ( t 1 . oclAsType ( V a r i a b l e ) , l o c a l V a r s ) ) and
( n o t ( d1 . oclAsType ( V a r i a b l e ) . v a l u e . o c l I s U n d e f i n e d ( ) ) ) ) {
s e l f . b ind ( d1 . oclAsType ( V a r i a b l e ) , t2 , j s ) ;
re turn true ;

}
}
i f ( d2 . o c l I s K i n d O f ( V a r i a b l e ) ) {

i f ( ( s e l f . i s V a r L o c a l ( t 2 . oclAsType ( V a r i a b l e ) , l o c a l V a r s ) ) and
( n o t ( d2 . oclAsType ( V a r i a b l e ) . v a l u e . o c l I s U n d e f i n e d ( ) ) ) ) {
s e l f . b ind ( d2 . oclAsType ( V a r i a b l e ) , t1 , j s ) ;
re turn true ;

}
}
i f ( ( d1 . o c l I s K i n d O f ( F u n c t i o n ) ) and ( d2 . o c l I s K i n d O f ( F u n c t i o n ) ) ) {

i f ( ( d1 . oclAsType ( F u n c t i o n ) . a rgs−> s i z e ( ) =
d2 . oclAsType ( F u n c t i o n ) . a rg s−> s i z e ( ) ) and ( d1 . name = d2 . name ) ) {
v a r i : I n t e g e r := 0 ;
v a r r : Boolean := t rue ;
whi le ( ( i < d1 . oclAsType ( F u n c t i o n ) . a rg s−> s i z e ( ) ) and r ) {

v a r l o c a l T e r m 1 := d1 . oclAsType ( F u n c t i o n ) . a rgs−>a t ( i ) ;
v a r l o c a l T e r m 2 := d2 . oclAsType ( F u n c t i o n ) . a rgs−>a t ( i ) ;
r := r and s e l f . e n t a i l s (

l o c a l V a r s , loca lTerm1 , loca lTerm2 , j s ) ;
i := i + 1 ;

}
re turn r ;

}
e l s e {

re turn f a l s e ;
}

}
}

c o n t e x t P r o p a g H i s t : : add ( key : I n t e g e r , l : Sequence ( C o n s t r a i n t ) )
body :
do {

v a r h t : D i c t i o n a r y T y p e := s e l f . p r o p a g a t i o n T a b l e . g e t ( key ) ;

i f ( n o t h t . o c l I s U n d e f i n e d ( ) ) {
h t . p u t ( l . hashCode ( ) , l ) ;

} e l s e {
h t := D i c t { } ;

h t . p u t ( l . hashCode ( ) , l ) ;

s e l f . p r o p a g a t i o n T a b l e . p u t ( key , h t ) ;
}
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}

c o n t e x t P r o p a g H i s t : : a p p l i e d ( key : I n t e g e r , l : Sequence ( C o n s t r a i n t ) ) : Boolean
body :
do {

v a r h t : D i c t := s e l f . p r o p a g a t i o n T a b l e . g e t ( key ) ;

i f ( h t . o c l I s U n d e f i n e d ( ) ) {
re turn f a l s e ;

}
e l s e {

v a r c l i s t : Sequence ( Sequence ( C o n s t r a i n t ) ) := h t . v a l u e s ( ) ;

c l i s t −>f o r E a c h ( s t o r e d C o n s t r a i n t s : Sequence ( C o n s t r a i n t ) ) {
i f ( ( s t o r e d C o n s t r a i n t s −> i n c l u d e s A l l ( l ) && ( s t o r e d C o n s t r a i n t s −> s i z e ( ) = l . s i z e ( ) ) ) {

re turn true ;
}

}
}

}
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