

Pós-Graduação em Ciência da Computação

“Social Machines: A Unified Paradigm to

Describe, Design and Implement Emerging

Social Systems”

Por

Vanilson André de Arruda Burégio

Tese de Doutorado

Universidade Federal de Pernambuco

posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE/2014

 UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

VANILSON ANDRÉ DE ARRUDA BURÉGIO

“Social Machines: A Unified Paradigm to Describe, Design and
Implement Emerging Social Systems"

ESTE TRABALHO FOI APRESENTADO À PÓS-GRADUAÇÃO EM
CIÊNCIA DA COMPUTAÇÃO DO CENTRO DE INFORMÁTICA DA
UNIVERSIDADE FEDERAL DE PERNAMBUCO COMO REQUISITO
PARCIAL PARA OBTENÇÃO DO GRAU DE PH.D. EM CIÊNCIA DA
COMPUTAÇÃO.

 ORIENTADOR: Silvio Romero de Lemos Meira

COORIENTADOR: Nelson Souto Rosa

RECIFE/2014

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da Silva, CRB4-1217

B952s Burégio, Vanilson André de Arruda
 Social machines: a unified paradigm to describe, design and

implement emerging social systems / Vanilson André de Arruda
Burégio. – Recife: O Autor, 2014.

 187 f.: il., fig., tab.

 Orientador: Silvio Romero de Lemos Meira.
 Tese (Doutorado) – Universidade Federal de Pernambuco.

CIn, Ciência da Computação, 2014.
 Inclui referências e apêndices.

 1. Engenharia de software. 2. Arquitetura de software. 3. Redes
sociais. I. Meira, Silvio Romero de Lemos (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE- MEI 2015-04

Tese de Doutorado apresentada por Vanilson André de Arruda Burégio à Pós

Graduação em Ciência da Computação do Centro de Informática da Universidade

Federal de Pernambuco, sob o título “Social Machines: A Unified Paradigm to

Describe, Design and Implement Emerging Social Systems” orientada pelo Prof.

Silvio Romero de Lemos Meira e aprovada pela Banca Examinadora formada pelos

professores:

 Prof. André Luis de Medeiros Santos

 Centro de Informática / UFPE

 Prof. Ricardo Massa Ferreira Lima

 Centro de Informática / UFPE

 __

 Prof. Vinicius Cardoso Garcia

 Centro de Informática / UFPE

 Prof. Zakaria Maamar

 College of Information Technology / Zayed University

 __

 Prof. Gibeon Soares de Aquino Junior

 Departamento de Informática e Matemática Aplicada/UFRN

Visto e permitida a impressão.

Recife, 10 de junho de 2014.

Profa. Edna Natividade da Silva Barros
Coordenadora da Pós-Graduação em Ciência da Computação do

Centro de Informática da Universidade Federal de Pernambuco.

Acknowledgments	
A Deus, por ter guiado os meus caminhos e dado paz e tranqüilidade nos

momentos mais difíceis. Aos meus pais, José Vanilson Burégio e Maria Luiza

Burégio, e irmãos, Ana Carla Burégio e Luís Roberto Burégio, por terem me

estimulado e apoiado nessa nova jornada.

À minha esposa e companheira, Vívian Damasceno, que sempre demonstrou

amor, companheirismo e me deu muito incentivo, para que eu conseguisse

concluir esse projeto.

Ao meu orientador, Silvio Meira, por ter me guiado sempre com muita

paciência, dedicação, amizade e conversas extremamente inspiradoras.

Obrigado pela oportunidade e por me fazer acreditar que tudo seria possível.

A Nelson Rosa, um novo amigo e co-orientador que eu conheci nesta jornada,

sempre prestativo, me fazendo questionamentos e atendendo minhas

solicitações com muita dedicação. Obrigado pelos preciosos conselhos.

A todos os professores do Centro de Informática da UFPE com os quais pude

aprender bastante, em especial ao professor Vinícius Garcia e ao seu grupo de

pesquisa por proporcionar ótimas discussões e trocas de ideias.

Aos meus amigos que precisaram compreender a necessidade da minha

ausência ao longo desses anos para concluir um dos mais importantes projetos

da minha vida profissional e pessoal. A todos os amigos do SERPRO que me

deram força ao longo dessa caminhada e torceram pelo meu sucesso.

Enfim, um muito obrigado a todos que direta ou indiretamente colaboraram

para o resultado desse projeto.

 	

Resumo	

A abordagem aberta e distribuída da Web, bem como a prevalência de

relacionamentos entre aplicações e serviços estão transformando tanto a forma

como desenvolvemos software quanto como eles funcionam e interagem uns

com os outros. Como resultado, uma nova geração de aplicações está emergindo

e consequentemente novos modelos mentais se fazem necessários para lidar

elas. Neste contexto, Máquinas Sociais aparecem como um modelo promissor

para o desenvolvimento de software. Entretanto, é um tema novo, com

conceitos e definições provenientes de diferentes campos de pesquisa, o que

torna o entendimento unificado do conceito um esforço desafiador. Nesta tese,

nós fornecemos uma base conceitual mais coerente para entender máquinas

sociais como um paradigma unificado para descrever, projetar e implementar

aplicações e serviços sociais emergentes. Para isso, primeiramente revisitamos o

conceito de relacionamento e estendemos a noção de máquinas sociais como um

modelo de abstração comum a ser utilizado para fundir elementos

computacionais e sociais em software. Em segundo lugar, para descrever

máquinas sociais, apresentamos diretrizes para a análise que abordam algumas

questões relacionadas com o exercício de engenharia de sistemas existentes. Em

terceiro lugar, definimos a Social Machine-oriented Architecture (SoMAr) - um

estilo arquitetural híbrido para projetar máquinas sociais através da

combinação de diferentes princípios da prática atual da engenharia de software.

Por fim, discutimos as experiências e lições aprendidas com a aplicação do

paradigma de máquinas sociais em diferentes contextos.

Palavras-chave: Máquinas Sociais. Engenharia de Software. Arquitetura de

Software. Sistemas Sociais. Sistemas Orientados a Web.

 	

Abstract	

The open, distributed approach of the Web and the relationship’s prevalence of

applications and services are transforming both the way we develop software

and how they operate and interact with each other. As a result, a novel breed of

applications is emerging, and consequently new mental models are needed to

deal with them. In this context, Social Machines appear as a promising model

for developing software. However, it is a fresh topic, with concepts and

definitions coming from different research fields, making a unified

understanding of the concept a somewhat challenging endeavor. In this thesis

we provide a more coherent conceptual basis for understanding Social Machines

as a unified paradigm to describe, design and implement emerging social

applications and services. To do that, we revisited the concept of relationship

and extend the notion of Social Machines to establish a common abstraction

model that is used for blending computational and social elements into

software. Second, to describe social machines, this proposal presents an analysis

guideline that addresses some issues related to the engineering exercise of

existing systems. Third, we provide the Social Machine-oriented

Architecture (SoMAr) - a hybrid style to design social machines through the

combination of different principles from current software engineering practice.

Finally, we discuss the experiences and lessons learned from applying the social

machines paradigm in different contexts.

Keywords: Social Machines. Software Engineering. Software Architecture.

Social Systems. Web-oriented Systems.

 	

List	of	Figures	

Figure 1.1 – 4‐stage roadmap to guide the whole research effort 20

Figure 1.2‐ Proposed Solution Overview ... 21

Figure 2.1 ‐The waves of the Web .. 28

Figure 2.2 ‐ Evolution of Software Paradigms .. 32

Figure 3.1 ‐ The Mapping Process (adapted from (PETERSEN et al., 2007)). 42

Figure 3.2 ‐ Examples of word cloud generated using Wordle 45

Figure 3.3 ‐ Converging diagram of the different research visions of social machines .. 46

Figure 3.4 ‐ API Growth 2005 ‐ 2012 .. 48

Figure 3.5 ‐ The Social Cooler ... 49

Figure 3.6 ‐ reCAPTCHA .. 51

Figure 3.7 ‐ Ushahidi ... 54

Figure 3.8 ‐ Timeline of part of the research on software as sociable entities (2007 ‐

2013) ... 59

Figure 4.1 ‐ Example of an online store system designed as: (a) “siloed software” and

(b) “sociable software” which interacts with (c) ‐ an external existing social network . 69

Figure 4.2‐ Different views of "relationships"... 71

Figure 4.3 ‐ Relationship‐aware application: relationship determining interaction views

 .. 75

Figure 4.4 – Conceptual view of the Social Machine’s abstraction model 78

Figure 4.5 ‐ Analysis Guideline .. 83

Figure 4.6‐ Facebook's Open Graph ... 86

Figure 4.8 – Facebook’s app registration form ... 87

Figure 4.7 ‐ Facebook's Services Analysis ... 88

Figure 4.9 ‐ Facebook's 'Select Permissions' screen ... 89

Figure 4.10 ‐ Facebook's interaction views ... 90

Figure 4.11 ‐Formula to calculate the total number of Facebook's possible interaction

views ... 90

Figure 5.1 –Generic Definition of an Architectural Style .. 95

Figure 5.2 ‐ Architectural style in different contexts: (a) – building architecture; (b)

software architecture ... 96

Figure 5.3 ‐ SoMAr: Social Machine‐oriented Architecture .. 99

Figure 5.4 – SoMAr’s constraints .. 101

Figure 5.5 ‐ Design Guideline .. 106

Figure 5.6 ‐ The "love triangle" interaction model .. 109

Figure 5.7 ‐ Reference Architecture for Social Machine ... 111

Figure 5.8 ‐ Process of establishing a relationship ... 113

Figure 5.9 – Wrapper Interface designed as a set of Pipes & Filters 114

Figure 6.1 – 3‐stage approach to evaluate the Social Machine paradigm 117

Figure 6.2 – Futweet as a network of Social Machines .. 118

Figure 6.3 – Information deluge: (a) large number and types of information about you;

(b) huge effort to connect related things. .. 125

Figure 6.4 ‐ [YOU]: A Single Access point to your information 126

Figure 6.5 ‐ Conceptual view of People as “relationship‐aware” Social Machines: (a)

[YOU] Social Machine; (b) application built on top of [YOU]; (c) other [YOU]‐like Social

Machine .. 127

Figure 6.6 – Logical view of [YOU] as a composite Social Machine 129

Figure 6.7‐ [YOU]: main abstract data types .. 130

Figure 6.8 – The Wrapper Interface as a set of pipes and filters 131

Figure 6.9 – Overview of the [YOU]‐SM’s architecture ... 132

Figure 6.10 ‐ Authentication process with a source of data ... 133

Figure 6.11 ‐ Inferred Relationship ... 134

Figure 6.12 ‐ Proposed business model for the social enterprise 137

Figure 6.13 ‐ Architecture of the two‐side enterprise ... 139

Figure 6.14 ‐ Simplified authentication process using a single link functionality 141

Figure 6.15‐ Invite‐SA's lifecycle ... 142

Figure 6.16 ‐ Screenshot of the demo tool ... 144

Figure 6.17 ‐ Sequence diagram of some message exchanges 145

Figure 6.18 ‐ Representation of an individual Gov‐SM wrapping a data source 152

Figure 6.19 ‐ Example of a HTTP request for subscribing on a specific topic of interest

 .. 154

Figure 6.20 ‐ GovSM: architecture overview .. 155

Figure 6.21 ‐ Examples of Questions with an open nature ... 159

Figure 6.22 – Subjects Experience on Software Development 159

Figure 6.23 ‐ Roles of the subjects .. 160

Figure 6.24 – Informed Classification of projects ... 162

Figure 6.25‐ Obtained Properties according to the Opinion Survey 167

List	of	Tables	

Table 3.1 ‐ Research Guide for Stage 01: Understanding Social Machines 41

Table 4.1 ‐ Research Guide for Stage 02: Describing Social Machines 67

Table 4.2 ‐ Basic Elements of the Social Machine Model ... 82

Table 4.3 ‐ Facebook’s Permissions .. 89

Table 4.4 ‐ Social Machine’s abstractions mapped to Facebook.................................... 91

Table 5.1 ‐ Research Guidelines for Designing Social Machines 94

Table 5.2 ‐ Examples of architectural styles ... 97

Table 5.3 ‐ Simple example of sevice specification ... 107

Table 6.1 – Social Machine abstractions mapped to Futweet...................................... 119

Table 6.2 ‐ Core functionalities of the [YOU] Application ... 128

Table 6.3 ‐ List of Social Machines that compose the [YOU]‐SM.................................. 129

Table 6.4 ‐ CalendarYOU's provided services ... 130

Table 6.5 ‐ Example of permissions based on relationships ... 135

Table 6.6 ‐ SM's common functionalities to abstract messages between Business (B)

and Social (S) sides .. 140

Table 6.7 ‐ Invite‐SM's specialized APIs grouped into common functionalities 143

Table 6.8 ‐ List of some internal SMs considered to compose our governmental social

machine .. 151

Table 6.9 ‐ Some Deputy‐SM’s specialized APIs grouped into common functionalities 153

Table 6.10 ‐ Projects Overview ... 161

Table 6.11 ‐ Parts of the Systems were wrapped as Social Machines 162

		

 	

Contents	

1. INTRODUCTION	..	15

1.1. Motivation .. 15

1.2. Thesis Statement and Methodology .. 18

1.3. Proposed Solution Overview ... 21

1.4. Statement of Contributions ... 22

1.4.1. Actual Status of Publications .. 23

1.5. Document’s Structure .. 24

2. A	BRIEF	HISTORY	OF	THE	WEB	AND	SOFTWARE	ABSTRACTIONS	26

2.1. The Waves of the Web .. 27

2.1.1. The Read Only Web .. 28

2.1.2. The Read/Write Web .. 29

2.1.3. The Programmable Web ... 29

2.2. Evolution of Software Abstractions .. 30

2.2.1. Structured Era .. 32

2.2.2. Object‐oriented Era .. 33

2.2.3. Component‐based Era .. 33

2.2.4. Service‐oriented Era ... 34

2.2.5. Resource‐oriented Era .. 35

2.2.6. Socially‐oriented Era ... 36

2.3. Concluding remarks ... 37

3. UNDERSTANDING	SOCIAL	MACHINES	..	39

3.1. Introduction .. 40

3.2. Research Guidelines .. 41

3.2.1. The adopted mapping process in a nutshell ... 42

3.2.2. Research directives (research scope) .. 42

3.2.3. Data Collection ... 43

3.2.4. Results .. 44

3.2.5. Validation ... 45

3.3. A Classification Scheme for Social Machines .. 46

3.4. Social Software ... 47

3.4.1. Early Social Machines ... 47

3.4.2. Open API Platforms .. 47

3.4.3. Systems based on Social Data ... 48

3.4.4. Socially Connected Objects ... 49

3.5. People as Computational Units .. 50

3.5.1. Human Computation .. 50

3.5.2. Crowdsourcing and Collaborative Platforms ... 52

3.5.3. Knowledge Acquisition Systems ... 52

3.5.4. Personal APIs .. 54

3.6. Software as Sociable Entities ... 56

3.6.1. Agent‐based Web Services ... 56

3.6.2. Communities of Web Services .. 57

3.6.3. Social Network (SN) of Web Services .. 57

3.6.4. Relationship‐aware Systems ... 58

3.7. Related Reviews .. 58

3.8. Concluding remarks ... 60

4. DESCRIBING	SOCIAL	MACHINES	..	62

4.1. Introduction .. 63

4.2. Research Guidelines .. 65

4.3. Basic Concepts .. 67

4.3.1. “Sociable” and “Siloed” Software ... 68

4.3.2. Relationship ... 70

4.4. “Relationship‐aware” Applications and Services .. 72

4.4.1. Benefits from maintaining relationships ... 72

4.4.2. Analogy with Human Relationships .. 74

4.5. The Social Machine Model ... 76

4.5.1. Computation .. 78

4.5.2. Communication .. 79

4.5.3. Control ... 81

4.5.4. Discussion... 83

4.6. Analysis Guideline ... 83

4.7. Describing Social Machines In‐Action ... 85

4.7.1. Facebook: A Social Machine with 282 interaction views .. 85

4.8. Concluding Remarks .. 92

5. DESIGNING	SOCIAL	MACHINES	..	93

5.1. Research Guidelines .. 94

5.2. A Basic Framework for Defining Architectural Styles .. 95

5.3. The SoMAr Architectural Style ... 98

5.3.1. Constraints ... 99

5.3.2. Guiding Principles ... 102

5.3.3. Obtained Properties ... 104

5.4. Design Guideline ... 105

5.5. Reference Architecture and Patterns ... 109

5.5.1. Model‐View‐Control ... 111

5.5.1.1. Model .. 111

5.5.1.2. Controller ... 112

5.5.1.3. View ... 113

5.5.2. Pipes & Filters ... 113

5.5.3. Data Federation .. 114

5.6. Concluding remarks ... 115

6. EXPERIENCE	&	EVALUATION	...	116

6.1. The Evaluation Process in a Nutshell .. 117

6.2. Preliminary Experience .. 117

6.2.1. Futweet .. 118

6.2.2. Discussion... 121

6.3. Applying SM to Different Contexts ... 123

6.4. People as Social Machines ... 124

6.4.1. Motivation .. 124

6.4.2. Scenario ... 125

6.4.3. [YOU]: The Social Machine that wraps “you” .. 126

6.4.4. Realizing the [YOU]‐SM .. 128

6.4.5. Discussion... 135

6.5. The Social Enterprise ... 136

6.5.1. Motivation .. 137

6.5.2. Scenario ... 138

6.5.3. The Meet‐in‐the‐middle Social Machines ... 138

6.5.4. Realizing the Meet‐in‐the‐middle SMs ... 141

6.5.5. Discussion... 146

6.6. Government as a Social Machine ... 147

6.6.1. Motivation .. 148

6.6.2. Scenario ... 149

6.6.3. Realizing Government as a Social Machine ... 150

6.6.4. Discussion... 156

6.7. Opinion Survey Based on Practical Experiences .. 157

6.7.1. Research Methodology ... 157

6.7.2. The survey .. 158

6.7.2.1. Precondition .. 158

6.7.2.2. Target audience ... 158

6.7.2.3. Types of questions ... 158

6.8. The Survey Results .. 159

6.8.1. Audience Experience and Expertise .. 159

6.8.2. Projects .. 160

6.8.2.1. Project Classification .. 160

6.8.2.2. Social Machine’s building blocks .. 162

6.8.3. Limitations .. 163

6.8.4. Benefits .. 164

6.8.4.1. Obtained Properties ... 166

6.9. Concluding Remarks .. 167

7. CONCLUSIONS	AND	FUTURE	DEVELOPMENTS	..	169

7.1. Concluding Considerations .. 169

7.2. Future Work .. 171

REFERENCES	..	172

APPENDIX	A	:		K‐RADAR	–	THE	KNOWLEDGE	RADAR	TO	GUIDE	RESEARCH	EFFORTS	183

APPENDIX	B	:		THE	[YOU]	APPLICATION	..	186

Chapter 1 – Introduction 15

Introduction	
	
	

“Successive transition from one paradigm to another via revolution is

the usual developmental pattern of mature science.”

Thomas S. Kuhn (1922 – 1996)
Philosopher of Science

1. Introduction	

In his classic book "The Structure of Scientific Revolutions" (KUHN, 1970),

Thomas S. Kuhn, considered by many to be the father of paradigms, suggests

that scientific progress is a process of “paradigm shift”. Basically, he claims that

researchers in a branch of science accept as normal a set of "established beliefs"

that conduct and limit their investigations into new phenomena. Because of this

set of accepted beliefs and assumptions, new ways of looking at the world are

often suppressed or ignored. These facts also take place in the context of

software. When software paradigms evolve, revolutionary challenges and

opportunities emerge in the theory and practice of software development. Then,

inspired by Kuhn’s thoughts, from time to time it is important to look back and

see the progress of software engineering over the years in order to be prepared

and to better understand how to anticipate and turn our attention to the next

possible “paradigm shift”. Excited by such idea, this chapter summarizes the

motivation and objectives of this thesis and highlights the structure of the

document.

1.1. Motivation

In the last decades, the classic notion of software has been changing in a

significant way. From the seminal definition of computing machine specified by

Turing (TURING, 1936) to the present, software started to become part of our

daily lives and has been turned pervasive and ubiquitous with the introduction

of personal computers, the Internet, smartphones and, later, the Internet of

1

Chapter 1 – Introduction 16

Things (IoT). In fact, one can say that software and the internet have changed

the way we communicate and the way business is done. Indeed, the internet is

even now changing the way software is developed, deployed, and used. Recently,

computing means connecting (ROUSH, 2005). Therefore it is possible that

developing software is now as simple as connecting existing services.

The early internet was a Web of mostly static content, basically HTML

pages presented in a read-only mode or possibly systems with a very simple

transactional capability from the user’s point of view. This is the Web we could

classify as “1.0” (NATH; DHAR; BASISHTHA, 2014). As a further development,

simultaneously with the appearance of new technologies, Web pages became

more interactive and allowed content sharing, social interaction and

collaboration, which led to blogs, wikis and social networks. This is the

read/write Web, which is also known as Web “2.0” (MURUGESAN, 2007).

Recently, a new phase has been emerging, the Web “3.0” (PATTAL; LI;

ZENG, 2009)(NATH; DHAR; BASISHTHA, 2014), the Web as a programming

platform (BENIOFF, 2008) and networks as infrastructures for innovation. As

a result, anyone and everyone can start developing, deploying and providing

information services using the infrastructures for computing, communicating,

and controlling in a manner not unlike utilities, such as electricity.

The Web 3.0 is the networked space-time where innovation lies on the

power of developing software for the Web, through the Web, and in the Web,

using the Web as both programming platform (in lieu of the usual

computer/operating system/development environment platform) and

deployment and execution environment. Several examples of this scenario are

current developments in Facebook, Twitter, Yahoo!, Salesforce, Google,

Amazon and many other corporations that are making their APIs available for

anyone to develop applications that interact with their services.

Although there have been many studies about the future of the internet

and concepts such as Web 3.0, programmable Web (YU; WOODARD, 2009)

(HWANG; ALTMANN; KIM, 2009), linked data (BIZER; HEATH; BERNERS-

LEE, 2009) (HALB; RAIMOND; HAUSENBLAS, 2008) and semantic Web

(HITZLER; KRÖTZSCH; RUDOLPH, 2009), the segmentation of data and the

issues regarding the communication among systems obfuscates the

Chapter 1 – Introduction 17

interpretation of this future. Kevin Kelly, of Wired fame, is quoted as having

said once:

“The internet is the most reliable machine ever made. It's made from

imperfect, unreliable parts, connected together, to make the most reliable thing

we have”.

Unstructured data, unreliable parts and problematic, non-scalable

protocols are all native characteristics of the internet that has been evolving for

40 years; at the same time, they are the good, the bad and the ugly of a Web in

which we rely more and more in the everyday life of everything, that needs a

unifying view and explanations in order to be developed, deployed and used in a

more efficient and effective way.

Indeed, the Web is changing in a fundamental way and approaches such

as SOA(ERL, 2007), REST(FIELDING, 2000), XaaS(HAZRA, 2009) and Cloud

Computing(HAYES, 2008) play important roles in this emerging Web.

Nowadays, the Web is experiencing a new wave of applications associated with

the proliferation of social networks and the growth of relationship’s prevalence

among people, applications and services. As a result, almost “everything” is

getting social and a novel breed of socially connected applications is emerging,

what led us to think about new software abstractions to deal with them. In this

context, Social Machines has appeared as a promising option for blending

computational and social aspects into software. “Social Machine” is a term

firstly introduced by Tim Berners-Lee (BERNERS-LEE, 1999) in his book,

“Weaving the Web”, in which he states that:

“Real life is and must be full of all kinds of social constraint – the very

processes from which society arises. Computers can help if we use them to

create abstract social machines on the Web: processes in which the people do

the creative work and the machine does the administration …”

Recently, the term has gained momentum and used to designate lots of

different social-technical systems enabled on the Web, ranging from social

networks to crowdsourcing and collaborative platforms of personal APIs and

socially connected objects. Thus, as a research area, it is a fresh topic, with

concepts and definitions coming from different research fields, making a unified

understanding of the concept a somewhat challenging endeavor.

Chapter 1 – Introduction 18

Social Machines are recent enough to represent very serious difficulties in

understanding their basic elements and how they can be efficiently combined to

develop real, practical systems in either personal, social or enterprise contexts.

There has not been a clear, precise description of each and every entity on this

new rising Web and we believe it is necessary to create new mental models of

such a Web as a platform, in order to better understand this young, upcoming

and possibly highly innovative phase of software development.

In practice, interested researchers and practitioners often raise several

questions when they hear about Social Machines. What do Social Machines

really mean? How to describe them? Which are their main elements? What are

the principles that guide the analysis and design of Social Machines? How to

implement them?

Social Machines are indeed in their infancy, experiencing a number of

new emerging trends and visions. As this paradigm matures, we expect that any

entity, be it software, a person or object, can be socially connected with each

other, making relationships and determining different levels of interactions.

Social Machines will eventually become a simple, formal and unified manner to

explain networks of social systems; an informational paradigm to deal with the

complexity of this new emerging Web around us, and a practical way to explain

each and every entity connected to it.

1.2. Thesis Statement and Methodology

Motivated by the aforementioned issues and thoughts, this thesis aims to

provide a more common and coherent conceptual basis for

understanding Social Machines as a unified paradigm to describe,

design and implement emerging social systems.

In order to achieve this aim, we defined a set of goals, questions and

evidences that guided our research roadmap as a whole. In this case,

“evidences” represent acceptable outcomes (e.g., an artifact, model, taxonomy,

etc.) obtained via the process of answering the established questions. Figure 1.1

shows the final result from this process which, in a general way, helped us to

determine a 4-stage roadmap for our research effort, as follows:

Chapter 1 – Introduction 19

1. Understanding. First of all, we aimed at providing a common conceptual

basis of understanding which relates the main concepts and existing

approaches in order to categorize the types of systems as well as map the

different existing views of social machines;

2. Describing. Our second stage consisted of explaining the “world” though

the lens of the proposed paradigm by describing existing systems under a

unified perspective of social machines;

3. Designing. This stage involved the design of systems as social machines.

Here we defined an architectural style with general principles, constraints

and guidelines to the design of social machine-oriented architectures;

4. Implementing. Finally, this stage consisted of experiences and evaluation

of the proposed paradigm through the implementation of systems within

different contexts.

The 4-stage roadmap in Figure 1.1 was used during the development of

this work as a reference guide to the research effort. In order to reach each

established goal we used specific research methodologies, which are explained

along this document, such as mapping study (BUDGEN et al., 2007),

brainstorming and focus groups (SINGER; SIM; LETHBRIDGE, 2008), survey

with experts, case studies (HOST; RUNESON, 2007) and others.

Chapter 1 – Introduction
 20

Figure 1.1 – 4-stage roadmap to guide the whole research effort

Chapter 1 – Introduction 21

1.3. Proposed Solution Overview

The main evidences obtained from this 4-stage process can be seen in our

proposed solution overview, illustrated in Figure 1.2. As shown, on top of a

common base of understanding, we proposed the idea of sociable software and

also revisited the concept of relationship. These [re]definitions of basic concepts

were fundamental to extend the notion of Social Machines through the

establishment of a unified abstraction model that was used for blending

computational and social elements into software. Then, to describe social

machines with such model, we provided an analysis guideline to address some

issues related to the engineering exercise of existing systems. On top of the

unified abstraction model, we also defined the Social Machine-oriented

Architecture (SoMAr) - a hybrid style used to design social machines through

the combination of different principles and constraints from current software

engineering practice. A design guideline is specified as well, and the

implementations of some systems are proposed with the aim of discussing the

experiences and lessons learned from applying the social machines paradigm in

different contexts.

Figure 1.2- Proposed Solution Overview

Chapter 1 – Introduction 22

1.4. Statement of Contributions

As a result of the work presented in this thesis, the following contributions can

be enumerated:

 A study of the key developments in the field of Social Machines, in

order to analyze this research area and identify the main visions,

concepts, and approaches;

 A common and coherent conceptual basis for understanding Social

Machines as a paradigm;

 The definition of a classification scheme to characterize the different

kinds of existing Social Machines;

 The establishment of the concept of sociable and “relationship-aware”

software;

 The definition of a unified building block to describe Social Machines

as socially connected computing units;

 An analysis guideline for supporting the description of systems as

Social Machines;

 The establishment of Social Machine-oriented Architecture (SoMAr)

as a hybrid architectural style that defines a set of constraints,

principles and desired properties;

 A design guideline for supporting the creation of Social Machine-

oriented architectures;

 A reference architecture that generalizes a set of adopted solutions

and defines a higher level template that can be used as reference for

instantiating specific Social Machines;

 An analysis of existing systems (e.g., Facebook, Twitter, Dropbox) as

relationship-aware Social Machines;

 A discussion on the design and implementations of systems following

the Social Machines paradigm in different scenarios;

 An analysis of practical developments of Social Machines in both

academic and industrial context;

Indirect contributions

Chapter 1 – Introduction 23

 The adaptation of a mapping study process by including word cloud to

support the definition of classification schemes;

 The establishment of the Knowledge Radar (K-RADAR) - a

monitoring approach for measuring research progress (Appendix A);

1.4.1. Actual Status of Publications

As a partial result related to the work presented in this thesis, the following

direct and indirect results can be enumerated:

● IEEE IC Magazine: V. A. Burégio, Z. Maamar, and S. L. Meira. An

Architecture and Guiding Framework for the Social Enterprise. IEEE
Internet Computing Magazine, 2015

● Maamar, Z., Buregio, V.A., Rosa, N.S.: From Business Artifacts to Social
Artifacts. (To be published), 2015.

● WWW 2014: Buregio, V., Nascimento, L., Rosa, N., Meira, S.: “Personal
APIs as an Enabler for Designing and Implementing People as Social
Machine”, in the proceedings of the 23rd International World Wide Web
Conference Companion (WWW’14 Companion), Seoul, Korea, pp. 867–
872, 2014.

● WWW 2014: Nascimento, L., Buregio, V., Garcia, V., Meira, S.: “A New
Architecture Description Language for Social Machines”, in the
proceedings of the 23rd International World Wide Web Conference
Companion (WWW’14 Companion), Seoul, Korea, 2014

● EDOCW 2013: Buregio, V.A., Meira, S.L., Rosa, N.S., Garcia, V.C.:
Moving Towards “Relationship-aware” Applications and Services: A
Social Machine-oriented Approach. 17th IEEE International EDOC
Conference (EDOCW2013), Vancouver, Canada, pp. 43–52, 2013.

● WWW 2013: Buregio, V.A.A., Meira, S., Rosa, N.: “Social Machines: A

Unified Paradigm to Describe Social Web-oriented Systems”, 22nd
International World Wide Web Conference (WWW 2013 Companion),
pp. 885–890, 2013.

● Open Session at sociam 2013: presentation in the open session of
the First Internatinal Workshop on the Theory and Practice of Social
Machines, http://sociam.org/www2013/;

Chapter 1 – Introduction 24

● Academia.edu 2013: Meira, S., Burégio V.A., Nascimento L., Araújo S.,
“On the Internet, Privacy and the Need for a New Architecture of
Networked Information Services”, 2013.

● SEKE 2012: K. S. Brito, L. E. Abadie, P. F. Muniz, L. Marques, V.A. de
A. Buregio, C. Vinicius, and S. Meira, “ImplementingWeb Applications as
Social Machines Composition: a CaseStudy,” The 24th International
Conference on Software Engineering and Knowledge Engineering, vol.
(SEKE'2012), pp. 311–314, 2012

● COMPSAC 2011: Meira S., Buregio V. A., Nascimento L. M., Figueiredo

E., Neto M., Encarnacao B., and Garcia V. C., “The Emerging Web of
Social Machines,” in 2011 IEEE 35th Annual Computer Software and
Applications Conference, 2011.

● Seminal Paper (2010): S. R. L. Meira, V. A. A. Buregio, L. M.

Nascimento, E. G.M. de Figueiredo, M. Neto, B. P. Encarnação, and V.
Garcia,“The Emerging Web of Social Machines”, Cornell University
Library, vol.abs/1010.3, Oct. 2010

● SPLC 2010: Buregio, V. A. A. ; Almeida, E. ; Meira, S. R. L.

Characterizing Dynamic Software Product Lines: A Preliminary
Mapping Study. Proceedings of the 14th Software Product Lines, 2010. v.
2. p. 53-60, 2010, Jeju Island.

1.5. Document’s Structure

The remaining chapters of this proposal are organized as follows.

 Chapter 2 presents a brief history about the Web’s evolution and

conducts an investigation on the popular abstraction models for

developing and designing software;

 Chapter 3 presents the results of a mapping study performed on related

topics in order to build a classification scheme that structures the science

of Social Machines;

 Chapter 4 revisits the concept of relationship and define a common

abstraction model that is used as basis for establishing Social Machines

as a unified paradigm to describe the emerging Web-oriented systems;

Chapter 1 – Introduction 25

 Chapter 5 presents and discusses the Social Machine-oriented

Architecture (SoMAr) - an architectural style that serves as an

abstracting framework for guiding the design of Social Machines;

 Chapter 6 describes the experiences and evaluation from applying

Social Machines into different contexts;

 Chapter 7 concludes the thesis, discussing our contribution and offering

directions for the next steps.

Chapter 2 – A Brief History of the Web and Software Abstractions 26

A	Brief	History	of	the	
Web	and	Software	
Abstractions	

“A Master is not he who always teaches, but he who suddenly learns...”

João Guimarães Rosa (1908 – 1967)
Brazilian novelist

2. A	Brief	History	of	the	Web	and	Software	Abstractions	

This chapter provides a brief history about the Web’s evolution and conducts an

investigation on the popular abstraction models for developing and designing

software. It categorizes the paradigms along the time and identifies their main

characteristics. Based on the influences of the Web’s evolution and the analysis

of paradigms found, we propose some directions in order to evolve the state of

the art of software development.

2

Chapter 2 – A Brief History of the Web and Software Abstractions 27

2.1. The Waves of the Web

 The conceptual and technological foundations of the World Wide Web’s (aka

‘The Web’) were built during the first years of 90s. Since of then, a number of

developments have significantly changed the Web and made it much bigger

than Tim Berners-Lee’s original idea of creating a collaborative space in which

people could communicate through sharing information (BERNERS-LEE,

1996).

Recently, the emergence of mashups (YU et al., 2008), the popularization

of Web-based systems providing Open APIs for third-party developers (CHEN

et al., 2009; KIWON LEE, 2009; YE ZHOU; YANG JI, 2011) and other concepts,

such as Software as a Service (TURNER; BUDGEN; BRERETON, 2003) and

Cloud Computing (PATTERSON; FOX, 2012) have played an important role in

the way the Web has been influential on software development. In fact, the Web

has spread from a global system of interlinked hypertext documents to a

platform for open, interactive, distributed applications and services

(MAXIMILIEN; RANABAHU; GOMADAM, 2008).

As a consequence, the modern Web has transformed the way we think

about software. Nowadays, several software products became “services avatars”

(GRAY, 2012), what means that there is no need to “physically” install and

configure them in local workstations, instead of that, they are provided and

consumed as services on the Web. Lots of static websites have also evolved for

dynamic and sophisticated systems and the Web has moved towards a global

programmable platform.

With the aim of facilitating the study of the transformations that led to

the current stage of maturity of Web applications and services, we can assume

an adaptation of Marc Benioff’s taxonomy (BENIOFF, 2008) by dividing the

Web’s history into three main waves, namely: Read Only; Read/Write and

Programmable. We summarize such waves in Figure 2.1. As can be seen, these

three waves are not defined by precise periods of time. Actually, they represent

overlapping waves in the Web’s history, each of them with its own set of

features. Furthermore, these historical waves are not mutually exclusive. Thus,

even today, it is possible to have the coexistence of applications and services in

various stages of this Web’s taxonomy.

Chapter 2 – A Brief History of the Web and Software Abstractions 28

Figure 2.1 -The waves of the Web

2.1.1. The Read Only Web

The first wave of the Web is characterized by the read-only websites, which

emerged in the 1990s. According to Benioff (BENIOFF, 2008), it is the Web 1.0

in which anyone can read and transact. The read only Web comprises the first

search engines, e-commerce services and other examples of Web applications

that present to users the possibility to interact with the presented information,

but without allowing them to update or add new content. Such Web 1.0

applications allow little interaction and communication among users, given that

their main goal is to provide some kind of information in a one-way direction.

This phase also includes applications that allow users to transact on the

Web. Companies like eBay, Amazon.com and Google were the forerunners of

launching Web-based systems in which anyone could make transactions of

goods and knowledge as well (BENIOFF, 2008). Searching on Google and

Chapter 2 – A Brief History of the Web and Software Abstractions 29

making a purchase on Amazon.com are good examples of the kinds of

transactions that emerged at that time. Even today the Web 1.0 remains present

in our lives and will continue to exist for some time.

2.1.2. The Read/Write Web

The second wave of the Web is characterized by applications and services that

transformed the semantics of “content” on the Web: content is no more static at

the point of publication; instead, it is dynamic and can be changed by users as

we do, for example, in Wiki-based systems. Then, it is the Web in which anyone

can participate. The centerpiece of this wave is featured by a culture of

community, participation, collaboration and co-creation of content. Given the

level of transformation enabled by these tools, Tim Oreilly call them as the “Web

2.0” (O’REILLY, 2005), using the term “2.0” to emphasize the evolving nature

of these next generation of systems, similar to what we do with software

versions.

The Web 2.0 features formed the basis to the construction of other

interactive tools like online social networks, blogs and other services that have

completely changed the way we communicate and share information with each

other. Nowadays, online social networks such as Facebook, Twitter, Google+,

LinkedIn, and Foursquare have become really popular all over the world and

play a significant role in people’s daily lives. Facebook is a proof of that, the

world’s biggest online social network of today, with more than one billion active

users (LEE, 2012).

2.1.3. The Programmable Web

This is the Web 3.0, in which anyone can innovate. This is because the entire

needed infrastructure to code, deploy and evolve a system is provided on the

Web. The infrastructure of this programmable Web is supported by some

interrelated concepts, such as Cloud Computing, Utility Computing and XaaS

(Everything-as-a-service), which have risen to prominence recently by the

emergence of services like Amazon EC2, Google App Engine, Salesforce,

Microsoft Azure and so on. The main idea of these concepts, and therefore the

services that implement them, is to enable the widely availability of

Chapter 2 – A Brief History of the Web and Software Abstractions 30

computational resources that can be accessed on demand to create and connect

lots of systems.

Thus, the Web 3.0 is characterized by the progressive migration from the

concept of a Web as a large-scale information system to a Web that is now

emerging as a means of connecting distributed applications and services.

Currently, more and more Web-based systems have published APIs that enable

software developers to easily integrate data and services instead of building

them from scratch. Hence, in the Web 3.0, the successful large-scale

information system gives place to a platform for an ecosystem of connected

people, applications, services and also “physical objects” (i.e., things)

(AGRAWAL; DAS, 2011). These huge numbers of online connections among

different entities have radically redefined the way we think about connectivity,

including new forms of relationships and interactions that have also led us to

significantly transform the way we develop software (BURÉGIO et al., 2013b).

Hence, in the context of software engineering, one question is how

software and its abstractions have been changed to meet this new trend? The

next section provides an overview of software evolution and conducts a brief

investigation on the popular abstraction models for developing and designing

software, presenting some directions in order to evolve the state of the art on

software development.

2.2. Evolution of Software Abstractions

The abstraction notion is central to understanding the semantics of software.

Abstracting can be defined by the process of understanding and expressing the

world around us under the perspective of specific mental models. This process

involves questions (as abstractions of problems) and answers (as abstractions

of solutions).

During this work, we “philosophically” define software and its

development in terms of abstractions, and our conclusion is that:

“Software is the creative and evolutionary abstraction of

‘everything’; its development involves a process of abstractions which consists

on making questions and providing answers about the real (virtual and

concrete) world.”

Chapter 2 – A Brief History of the Web and Software Abstractions 31

We need to creatively make the correct questions in order to try to

understand the (sometimes unknown) world around us. Furthermore, even

more important, we should use appropriate mental models due to the dynamic

evolution of such world. In fact, we indeed live in a constant changing

environment and from time to time we need to look at the world around us

under a different perspective that better fits the current reality. Occasionally

these different thinking processes form the basis for creating new mental

models and possibly the establishment of new paradigms.

Software Paradigms

There are many meanings associated with the term ‘paradigm’. In a general way,

it can be seen as an approach to something, a school of thought about something

or a combined set of rules applied within a predefined scope. In the context of

software engineering, a paradigm can be considered as an approach that

governs the design of logic (ERL, 2007). It usually is accomplished by building

upon an abstraction model which is used as building blocks for the development

of software. The object orientation is a typical example of an accepted paradigm

of software development. It defines a common abstraction model (i.e., object)

and provides a set of principles that drives the analysis and design of solutions

in a way that is possible to achieve specific goals.

With the rapid increase in complexity of software systems and

technology, the models for developing and integrating software evolve as well.

In Figure 2.2, we highlight some popular software paradigms. It is important to

note that we do not have the intention to make a comprehensive list of all

programming paradigms, but instead summarize the development of the

practice of software engineering along the time via what, in the diagram, we call

“era”.

As can be seen in Figure 2.2, the evolution of software paradigms has

passed through various eras, including structured programming, object-

oriented era, component-based development, service-oriented era, resource-

oriented era and, more recently, the social era.

Chapter 2 – A Brief History of the Web and Software Abstractions 32

2.2.1. Structured Era

 The “boom” of the era of structured development can be placed at the 1970s. It

represents a software paradigm in which there is a clear view of code operating

on data. It permits us to abstract and express the essentials of an algorithm and,

therefore, to partition a program into meaningful manageable units (e.g.,

subroutines, block structures) with the aim of improving the clarity and quality

of software.

Figure 2.2 - Evolution of Software Paradigms

In such period, the practical concepts of software development were

focused on structured coding (MCGOWAN, 1975), in which program logic is

expressed in terms of flow-of-control forms, such as SEQUENCE, IF-THEN-

ELSE, WHILE-DO, and other structures that continue present in the existing

contemporary programming languages. This era also includes structured

analysis and design, and some variations between process orientation

(DEMARCO, 1979) and data orientation (YOURDON, 1988) until it finally

brought us to the notion of object orientation, where data and functions come

Chapter 2 – A Brief History of the Web and Software Abstractions 33

together to form objects (classes), and create the basis of the well-known object-

oriented paradigm.

2.2.2. Object-oriented Era

The Object-oriented (OO) paradigm became popular in the 1980s (TSAI;

ZUALKERNAN, 1988) with the promises of improving productivity and

reducing maintenance costs (SCHIEL; MISTRIK, 1990). It uses objects as its

key abstraction for analysis and design of solutions. An object encapsulates data

structures and exposes a set of methods that can be invoked to manipulate such

data structures whose implementations are hidden from the invoker. During

this period, lots of issues could be realized in the way objects were used to build

systems (GOYAL, 1991).

Initially, statefull objects (i.e., objects that keep state) came up as a

natural manner to model objects in the real world. However, the use of stateless

objects (i.e., objects that not keep state) started to become more frequent due to

the necessity of representing stateless functions (which do not retain any

information from one method call to the next), and, after, influenced by the

intrinsic stateless interaction model of the first Web-based systems (i.e., each

request from a user for a Web page results in the requested pages being served,

but without the server remembering the previous request). In this context, the

necessity to create distributed objects also became evident (NICOL; WILKES;

MANOLA, 1993), what created the basis for the introduction of distributed

software components.

2.2.3. Component-based Era

Component-based software engineering, built on the foundation of object

orientation, improved the state of the art by providing the idea of components

as units of deployments (SZYPERSKI, 2002). The essence of componentization

is to breakdown a system into reusable pieces of software that can be plugged

into other software components with relatively little effort. Component-based

technologies made a substantial impact on the design and engineering of many

kinds of software systems (HEINEMAN; COUNCILL, 2001). With the premise

of improving reuse, the techniques of component-based programming have

interoperability as one of their goals.

Chapter 2 – A Brief History of the Web and Software Abstractions 34

The use of components as units of deployment progressively gave way to

a protocol of remote invocation of those components over distributed network.

Several standards for remote invocation of distributed components emerged at

that time such as CORBA, Microsoft Component Object Model (COM) and Java

Remote Method Invocation (RMI).

With the aim of bringing the flexible, open-standards-based, distributed

computing to the Internet, Web Services (WS) emerged as a new breed of

“application components” accessible over open protocols. In the Web service

model, providers and consumers of services are separated by an interface (i.e.,

contract) that allows more flexibility for the underlying technology to be used.

Lots of standards emerged under the umbrella of Web services such as, e.g.,

SOAP, WSDL and UDDI, facilitating the invocation of WS over a network. With

the broad use of Web services, software development reaches its next stage of

evolution: the service-oriented era.

2.2.4. Service-oriented Era

In this era, more and more organizations started to offer access to their

information through Web services. By combining different Web services, it is

possible to conduct business transactions and also create other value-added

services or applications to provide functionalities that were not designed earlier

(LANTHALER; GRANITZER; GUETL, 2010). In the enterprise context, Web

services became the default implementation of service-oriented architectures

(SOA) (ERL, 2005).

SOA is a software architecture style that defines the use of services as a

reusable software component to automate business processes and consequently

increase productivity. The concepts of SOA can be implemented using any

service-based technologies. However in practice, most efforts on implementing

SOA are focused on Web services that use SOAP (Simple Object Access

Protocol) as the messaging protocol responsible for transferring data between

different Web services (CHUNG, 2005).

Despite SOAP being built using XML and relying on common Internet

transport protocol like HTTP to transport its messages, the usage of SOAP-

based services is traditionally mainly appropriate to the integration of legacy

Chapter 2 – A Brief History of the Web and Software Abstractions 35

systems within and across enterprise environments, rather than in the open

context of the Web. According to Lanthaler and Gütl (LANTHALER; GÜTL,

2010), one of the reasons for this is the high complexity of the SOAP stack on

handling the serialization and transport of XML-encoded data.

Because of that, lightweight protocols like ATOM (SAYRE, 2005) and

RSS (PREECHAVEERAKUL; KAEWNOPPARAT, 2009) to push data to

consumers started to be used by major Web service providers like Amazon,

Google, Microsoft, Yahoo and others. Such providers also began to expose their

services as simple and lightweight REST-style APIs, and, in some cases, to

replace their exiting SOAP-based services with REST services (DANIEL;

PRZEMYSLAW; LARS, 2010), giving rise to what we call the resource-oriented

era.

2.2.5. Resource-oriented Era

REST (Representational State Transfer) (FIELDING, 2000) has been growing

in popularity since 2005, when it inspired the design of services like Twitter

API. However, its massive use was consolidated in 2010 (almost ten years later

of its definition) with a significant amount of attention from industry

(WEBBER; PARASTATIDIS; ROBINSON, 2010) and academia (WS-REST,

2010). In spite of being based on the principles of service computing, the

introduction of REST significantly changes the manner we abstract software

solutions on the Web, and, for this reason, we consider it as a paradigmatic

milestone in software development.

REST defines a novel architectural style and an alternative way for

enabling services on the Web (aka, ‘RESTful Web services’) by using the

standard Web infrastructure. It basically uses the existing HTTP methods to

apply CRUD operations (Create, Read, Update and Delete) to resources (any

entity on the Web) defined by their URI. The main advantages of REST are its

uniform service interface and universality (DANIEL; PRZEMYSLAW; LARS,

2010) and also the fact that it improves system flexibility, scalability, and

performance as compared to the SOAP-based Web services (UPADHYAYA et

al., 2011).

Chapter 2 – A Brief History of the Web and Software Abstractions 36

Nevertheless, it addresses only basic distributed interaction/coordination

(ISSARNY et al., 2011), leaving open some issues that have to be tackled in the

context of the social Web ecosystem, such as dealing with the establishment of

relationships in globally connected and interacting systems that offer real

platforms of services such as, e.g., Facebook and Twitter, which is one of the

aspects of the current social era of software.

2.2.6. Socially-oriented Era

We have never been so connected as nowadays. Actually, we are becoming more

and more social. It means that we are not simply connected, but establishing

different levels of relationships and interactions to share information with each

other. The Web is the backbone of this "new" socially-oriented era, what

suggests that “everything” connected to the Web is getting more social. We

believe that we are in the beginning of an age in which almost “everything” will

be socially connected. That is the case of people, software and things, all of them

considered social entities in this age. More than one decade ago, some

researchers such as Zakaria Maamar (MAAMAR, 2003) insisted on the fact that

in the near future social aspects should be considered a significant element of

any software development. Since then, his opinion has reinforced the thought

that both people’s mentalities as well as software engineering practices need to

be changed. More recently, and exactly one decade after Maamar’s claim, Tan et

al. (TAN et al., 2013) support his thought by stating that:

 “... Currently, most social networks connect people or groups who

expose similar interests or features. In the near future, we expect that such

networks will connect other entities, such as software components, Web-based

services, data resources, and workflows.”

In the context of the Web, platforms of services like Twitter, Salesforce

and Facebook - with the ecosystem of connected people and third-party

applications created around them - can be seen as current examples of software

that represent this new socially-oriented era. Today, every product is a platform

(SEMMELHACK, 2013) and we cannot build a product in this day and age

without focusing on the open platform requirements, because lots of the best

products are platforms by themselves; Google, YouTube, Facebook.

Chapter 2 – A Brief History of the Web and Software Abstractions 37

Twitter, for example, revealed that 75% of all their traffic is outside of

twitter.com and comes from their platform’s REST API (i.e., 3 billion calls every

day, according to DuVander (DUVANDER, 2010)). This indicates that REST

may continue to be the “foundational network protocol” of this era. However,

there are other fundamental elements of these social entities that also have to be

considered such as, e.g., the persistent relationships that exist among them

(Facebook’s platform, for example, establishes different relationships and

interactions not only between its users, but also among its third-party

applications). As a consequence, new mental models need to be created in order

to better abstract these social entities and improve the practice of software

development in this upcoming era that clearly needs to blend computational

and social processes into single socially connected units.

2.3. Concluding remarks

The evolution of software in Computer Science is accomplished by building

upon existing research to produce new and innovative solutions. During the

history of software development there has been a continuous stream of

innovations that have pushed forward the abstraction models used to improve

software development practices. From subroutines in the 1970s to objects in the

1980s, components in the 1990s, services in the 2000s and resources in the

2010s, software development has been a story of continuous evolution and

changing abstraction models used to better fit the current reality and deal with

the increasing complexity of systems.

Nowadays, we are living in a “socially-oriented era” and there are no

doubts that existing software development practices need to be revisited in

preparation for the transition from the traditional (no-social) model to the

social model of development. In this context, the Web has been influential in the

way we develop software. It is becoming a more open, global, ubiquitous and

pervasive platform for our society and world. Such “Social Web” requires

considerable enhancements in software characteristics which challenge existing

software paradigms, including abstraction models, architecture and engineering

approaches. The expansion of software engineering research into the socially-

oriented era is a natural evolution of the endeavor to understand how to wave

social elements into software in order to systematically enable the development

Chapter 2 – A Brief History of the Web and Software Abstractions 38

of this new breed of social computing entities. In this thesis, Social Machines is

presented as a possible option of these future directions. SMs são sistemas

habilitados na Web e não devem ser comparados com ou vistos como uma fase

independente da Web (Web 3.0, 4.0, etc). As diferentes características dessas

fases têm habilitado diferentes SMs. As máquinas sociais emergentes, por

exemplo, se beneficiam das novas formas de interação e relacionamentos para

criar diferentes sistemas na Web que são governados por combinações de

processos computacionais e sociais.

SMs are systems enabled on the Web and should not be compared with

nor seen as a specific wave of the Web (i.e., Web 2.0, 3.0, etc). In practice, the

different characteristics of these waves have enabled different SMs along the

way. Emerging Social Machines, for example, benefit from novel forms of

interactions and relationships to create new breed of systems on the Web which

are driven by combinations of computational and social processes into software.

In the next Chapter, we present the results of a mapping study performed

on efforts related to the topic of blending social and computational elements

into software, having the aim of identifying existing approaches and

understanding the main concepts that shape the Social Machine area.

Chapter 3 – Understanding Social Machines 39

Understanding	Social	
Machines	

“Life can only be understood backwards; but it must

be lived forwards.”

Søren Kierkegaard (1813 – 1855)
Danish philosopher

3. Understanding	Social	Machines	

Blending computational and social elements into software has gained significant

attention in key conferences and journals. In this context, “Social Machines”

appears as a promising model for unifying both computational and social

processes. However, it is a fresh topic, with concepts and definitions coming

from different research fields, making a unified understanding of the concept a

somewhat challenging endeavor.

This chapter aims to investigate efforts related to this topic and build a

classification scheme to structure the science of Social Machines. We provide an

overview of this research area through the identification of the main visions,

concepts, and approaches; we additionally examine the result of the

convergence of existing contributions. With the field still in its early stage, the

first part of this work collaborates to the process of providing a more common

and coherent conceptual basis for understanding Social Machines as a topic of

research inquiry. Furthermore, this study helps detect important research issues

and gaps in the area.

3

Chapter 3 – Understanding Social Machines 40

3.1. Introduction

We have discussed so far that the emergence of a new generation of Web-based

technologies relying on social computing is changing the semantics of

computation. Nowadays, more than ever, computing means connecting

(ROUSH, 2005). In fact, the Social Web has fueled the growth of systems that

not only make use of concepts from computing, but also are guided by social

processes. As a consequence, novel breeds of applications are rapidly emerging

and new computational models and paradigms are needed to deal with them.

Several studies (e.g., (SCHALL; TRUONG; DUSTDAR, 2008),

(MAAMAR et al., 2009),(HENDLER; BERNERS-LEE, 2010), (MEIRA et al.,

2011), (IAMNITCHI; BLACKBURN; KOURTELLIS, 2012), (THALER;

SIMPERL; WÖLGER, 2012), (SHADBOLT, 2013),(KAJAN et al., 2014)) that

adopt different visions have been conducted with the aim of creating innovative

approaches to support the blending of computational and social elements into

software. Consequently, these visions deal with the challenges of building this

new generation of social systems. In this sense, the topic of “Social Machines”

has been investigated as a way to address this challenge, appearing as a

promising model for unifying both computational and social processes.

However, in spite of being a promising topic, the concepts behind Social

Machines overlap different research fields and, consequently, have created

confusion and raised several questions. For instance, we have found some

researchers that have had difficulties in understanding the boundaries of this

research topic and how it can contribute to their research fields.

Thus, with the intention of minimizing such problems, this chapter

proposes to investigate existing efforts related to Social Machines and

characterize such topic, systematically mapping foundational studies into a

common and convergent classification scheme. As a result, we provide an initial

overview of the research area, identifying the different visions of Social

Machines as well as unifying them into a central idea within the field of

computer science. Furthermore, this study provides a basis for the process of

defining Social Machines as a paradigm.

Chapter 3 – Understanding Social Machines 41

The remainder of this chapter is organized as follows. Section 3.2 outlines

the adopted research methodology. Section 3.3 shows the different visions of the

"Social Machines" paradigm. Section 3.7 introduces some existing related

reviews and, finally, Section 3.8 presents some concluding remarks and

directions for the research.

3.2. Research Guidelines

By browsing the literature, an interested reader might experience difficulty in

understanding what Social Machines really mean. In (HENDLER; BERNERS-

LEE, 2010), Hendler and Berners-Lee suggest that social machines are systems

that blend computational and social processes. Motivated by this position and

some related works, the initial stage of this research adopts Mapping Study

(BUDGEN et al., 2007) (PETERSEN et al., 2007) as the main research method

to identify how existing efforts have been blending computational and social

elements into software. Table 3.1 summarizes the research guidelines adopted

in this first stage, which we refer to as “Understanding Social Machines”, as

defined in our roadmap presented in Chapter 1 (Figure 1.2).

Table 3.1 - Research Guide for Stage 01: Understanding Social Machines

Stage 01: Understanding Social Machines

Goal Define a common conceptual basis of understanding

Question How have the existing approaches been blending

computational and social elements into software?

Research Method Mapping Study;

Evidences Categorization of existing systems; Description of different

views, concepts and approaches.

 Mapping Study is a helpful method used by the software engineering

community with the aim of building a classification scheme and structure a

software engineering field of interest (PETERSEN et al., 2007). In this chapter

we present the results of an adaptation of this process whose main goal is to

provide an overview of the Social Machines research area, focusing on the

Chapter 3 – Understanding Social Machines 42

different visions we identified during the mapping process. Next, some details of

the adopted process are presented.

3.2.1. The adopted mapping process in a nutshell

The experimental software engineering community has been working

towards the definition of standard processes for conducting mapping studies

(MS). An example of this processes can be seen in (PETERSEN et al., 2007),

which describes how to conduct mapping studies in software engineering.

Petersen et al.’s process steps include definition of research question,

conducting the search for relevant papers, screening of papers, keywording of

abstracts, data extraction and mapping.

In our case, we merged the process defined by Petersen et al.

(PETERSEN et al., 2007) with a word cloud-based approach (MCNAUGHT;

LAM, 2010) that was used to automate the step of keywording (see Figure 3.1).

Beyond that, in order to improve the final obtained mapping, we gathered

experts’ opinion though conducting, for example, live online polls during

presentations at conferences and specific forums of discussion. Figure 3.1 shows

the outcome of each process step as well as the adaptations we made.

Figure 3.1 - The Mapping Process (adapted from (PETERSEN et al., 2007)).

3.2.2. Research directives (research scope)

An essential step of any mapping study is the definition of its research question.

This question is responsible for scoping the review and driving all the

subsequent steps of the process. Therefore, this mapping study is focus on

answering the following question:

How have the existing approaches been blending

computational and social elements into software?

Chapter 3 – Understanding Social Machines 43

This question aims to identify the main social machine-related topic and

how representative such topics are, in order to outline the area and form the

basis to build a classification scheme of the main existing visions, types of

systems and approaches.

3.2.3. Data Collection

Search Strategy

We defined a search strings to be used for searching articles on scientific

databases. The search strings were derived from the aforementioned research

question and constructed using Boolean ANDs and ORs operators in

combination with relevant keywords such as the following instance:

(“Social” OR “Human” OR “People” OR “Crowd”)
AND

(“Computing” OR “Computation” OR “Computational”)
AND

(“Machine” OR “Unit” OR “Service” OR “Process” OR “System”)
AND
“Web”

The possible sources of articles included journals, conferences proceedings,

books, theses and technical reports. Furthermore, some initiatives in the

industry and practical tools were also considered in the review, and relevant

researchers were also directly contacted, as a way to get more information or

request some specific material of interest.

Screening of papers for Inclusion and Exclusion

Inclusion and exclusion criteria need to be used in order to discard studies that

are not relevant to answer the research question. Accordingly to Budgen et al.

(BUDGEN et al., 2007), it is helpful to exclude articles that, for example, only

point out the focus of the mapping study in the abstracts without developing it

through the document, i.e., misleading abstracts. In this study, we adopted the

following selection criteria:

1) Inclusion criteria: The abstract explicitly mentions the blending of social

and computing elements in the context of Web-based systems. From the

abstract, the researcher is able to infer that the focus of the paper contributes

to the social machine area.

Chapter 3 – Understanding Social Machines 44

2) Exclusion criteria: The article lies outside the software engineering

and/or Web domain. Social elements are not part of the contributions of the

paper and social related terms are only mentioned in the general introductory

sentences of the abstracts.

Based on these criteria and the initial focus of our mapping study, we screened

the studies and after the screening process, a total of 64 references remained.

After that, we started the mapping process with the creation of our own

classification scheme following the keywording strategy described next.

3.2.4. Results

Keywording, data extraction and mapping

Word cloud is an efficient visual representation to depict keywords or tags based

on the frequency of words in a given text. In such representation the more

frequently used words are highlighted by occupying more prominence in the

obtained diagram. In (MCNAUGHT; LAM, 2010), a word-cloud analysis is used

as a supplementary research tool to improve researchers’ understanding of data

from different research projects. Hence, in order to automate part of the

process of creating a classification scheme, we made use of a keywording

approach supported by the free online tool of word cloud called Wordle1. Figure

3.2 shows some examples of word clouds extracted from content of different

articles/webpages considered by this mapping study. The obtained word clouds

guided us in the preliminary stage of defining our classification schema, once

they helped to elicit the initial keywords we used in search strings.

Thus, this adopted strategy not only reduced the time needed to develop

the classification scheme for the social machine area but also contributed to

refine search strings used to gather relevant papers. The process consists of two

steps. First, we create individual word cloud using paper content with the aim of

identifying the main topics that reflect the contribution of the paper. After that,

the set of generated word cloud diagrams of different papers are analyzed and

possibly combined together to develop a “research cluster” in our mapping

study. Such “research clusters” represent categories with a high level

understanding about the nature and contribution of a specific research topic.

1 http://www.wordle.net/create

Chapter 3 – Understanding Social Machines 45

Figure 3.2 - Examples of word cloud generated using Wordle

Data extraction and mapping start when the first version of the

classification scheme is defined. Then, the considered relevant studies are

mapped into the scheme. It is important to note that the classification scheme

changes while doing the data extraction and mapping. New categories can be

added to the scheme and the existing ones can be merged or spitted as well.

3.2.5. Validation

In order to validate the obtained results we also incorporated to the process a

step of “gathering experts’ opinion”. In this step we made use of online live

polls2 which were launched during presentations in conferences and/or specific

forums of discussion.

Particularly in this case, different live polls (which we refer to as “social

slides”) were launched in the open session of the First International Workshop

of the Theory and Practice of Social Machines3, when the results of this

mapping study were presented. Such live polls were answered by an audience of

more than 40 researchers and practitioners. In such pools we presented our

general classification scheme and asked the audience, for example, how their

solutions (i.e., already implemented SMs) better fit into our classification. These

pools helped us in the process of characterizing Social Machines through the

identification of the most chosen visions/keywords of our classification scheme

2 http://www.polleverywhere.com/
3 http://sociam.org/www2013/

Chapter 3 – Understanding Social Machines 46

as well as new terms to be considered. In general, this strategy has shown to be

an excellent option to get faster feedback from experts in the field and a

practical way to improve the obtained results. The next section discusses the

obtained classification scheme for characterizing social machines.

3.3. A Classification Scheme for Social Machines

By performing the aforementioned mapping process, we characterize the “Social

Machines” paradigm as a result of the convergence of three different visions: i)

Social Software; ii) People as Computational Units and iii) Software as

Sociable Entities. To better visualize this convergence, we use a similar diagram

illustrating approach presented in (ATZORI; IERA; MORABITO, 2010). In this

way, it is possible to clearly highlight and classify the main concepts,

technologies and standards with reference to the various visions of Social

Machines that are best characterized by this mapping. Figure 3.3 shows the

result of this process of convergence.

Figure 3.3 - Converging diagram of the different research visions of social machines

Chapter 3 – Understanding Social Machines 47

3.4. Social Software

This vision refers to the foundations of Social Machines. It includes initial

research efforts and solutions that can be used to enable the creation of other

socio-technical systems, which is the case for example of “Open API Platforms”.

Systems built on top of these platforms and evolutions of current social network

of people are also considered in this category.

3.4.1. Early Social Machines

Social Machines has its origins on social computing (ROUSH, 2005). Thus,

some initial generation of Web-based social software (collectively called “Web

2.0” which consists of blogs, social networking websites, video sharing, etc.)

can be seen as early versions of Social Machines. These technologies have

allowed users to interact and collaborate with each other by storing and sharing

various types of content, including messages, photos and videos. In fact, social

media such as Twitter and Facebook have substantially changed the way we

communicate and engage with others. They are now an important resource of

everyday life and work, and one of the main enablers for creating an ecosystem

of people, enterprises, and possibly things that collaborate in extraordinary

innovative ways. In this sense, a recent work by Judith Donath (DONATH,

2014) – titled “The Social Machine: Designs for Living Online” – makes an

analysis of social machines under the perspective of designing innovative

interfaces for social online environments that explore new ways of interacting

and communicating.

3.4.2. Open API Platforms

Besides transforming the manner we communicate, these systems have also

been changing the way we develop software. This is because some of them,

mainly social networking sites (e.g., Twitter, Facebook), have started a

movement to expose their internal capabilities as Web Services in the form of

open online application programming interfaces (Open API Platforms). Indeed,

such concept of platform of services has completely transformed industry and

society (JACOBS; JAFFE; HEGARET, 2012) and, as a consequence, it has been

especially influential in the way we develop software (MAXIMILIEN;

RANABAHU; GOMADAM, 2008). The Open API Platforms allow third-party

Chapter 3 – Understanding Social Machines 48

developers to interact with social-networking sites, access information and

media posted by their users, and create other applications and services, on top

of the platform, that aggregate, process, and generate content based on users’

interests. That just may be the case in which computing literally means

connecting services (KO et al., 2010). Figure 3.4 uses data from

ProgrammableWeb4 and shows the dramatic increase in the number of

available APIs from 2005 to 2012. According to DuVander (DUVANDER, 2012),

in 2012, almost 15% of all APIs were added in only three months, with almost

one per day added during the month of May.

Figure 3.4 - API Growth 2005 - 2012

3.4.3. Systems based on Social Data

In practice, the direct consequence of the API growth was the rapid

development of a mashup ecosystem (YU; WOODARD, 2009) in which Web-

based mashups are created by integrating data from one or more sources to

build new applications. ProgrammableWeb, the largest online repository of

information about mashups and APIs, is concrete proof. Clearly, the

combination of social information from multiple sources has enabled the

creation of a novel breed of applications and service based on social data. In

(ANDERSON et al., 2010), Anderson et al. present systems that take advantage

of social data to infer preferences, trust between individuals, and incentives for

resource sharing. Based on the results of their social inference functions, such

systems can provide social knowledge to support other applications in their

decision making processes, as per presented in (IAMNITCHI; BLACKBURN;

4 www.programmableweb.com/

Chapter 3 – Understanding Social Machines 49

KOURTELLIS, 2012). In this sense, we can also find some initiatives on “social

search” (GHADERI; YAZDANI; MOSHIRI, 2010; JIANDONG CAO; YANG

TANG; BINBIN LOU, 2010; ZHANG; LI; XING, 2012), in which a combination

of social network services (SNS) and search engines is made to improve web

search results. These social search engines take into account the users' social

graph and other data generated by existing social applications such as the

Google+, Facebook and Twitter with the aim of helping users to quickly get the

information they need.

3.4.4. Socially Connected Objects

Other examples of systems based on social data (in this case, using physical

objects) have indeed been created by a digital agency called iStrategyLabs5,

which transforms real-world objects into machines controlled by social data.

This combination of physical objects and social data is referred to as “Social

Machines”6, machines that turn a Facebook like, a Tweet or a FourSquare

check-in into events to trigger actions on physical objects. Figure 3.5 is a picture

of the “social cooler”, one of the social machines created by iStrategyLabs. It is

“hacked” to open according to certain rules as, for example, when a group of

friends (using a location-based social network like Foursquare) do check in at a

specific place. As can be seen, personal relationships and social interactions

have also been evolving to include inanimate objects.

Figure 3.5 - The Social Cooler

5 http://istrategylabs.com/
6 www.facebook.com/socialmachines

Chapter 3 – Understanding Social Machines 50

Also inspired by this idea that almost everything will get socially

connected, Peter Semmelhack (SEMMELHACK, 2013) defines social machines

as an extension of the current social networks, in a way that includes not just

other people but Internet-connected machines and all kinds of products and

eletronic devices. According to Semmelhack, social machines represent an

evolution of the relationships we have been building with machines for a long

time. In practice, they are defined by Semmelhack as products that combine

useful features with social networking as, for example, the Nike+ product line7,

which if formed by socially connected products that share performance metrics

and other fitness data of their users.

Still in this context, and with the aim of supporting companies in the

development of next-generation products, Salesforce makes available “The

Social Machine”8- a cloud-based platform that provides products with a “voice”

and enables organizations to “listen” their connected products. The Social

Machine allows businesses to connect, control and engage machines into core

business process via the Salesforce Platform. Using such platform makes

possible to integrate machines as part of the business conversation and to be

automatically notified by a connected machine before it breaks down, for

example.

3.5. People as Computational Units

This vision refers to research efforts that integrate people, in the form of

human-based computing, and software into one composite system. In this

vision, the relevant computing (or even part of it) is performed by people.

3.5.1. Human Computation

The centerpiece of this vision is the idea of Human Computation which relies on

systems that makes use of human abilities for computation to solve problems

that are trivial for humans, but complex for machines (YUEN; CHEN; KING,

2009).

7 http://nikeplus.nike.com
8 http://www.etherios.com/products/the_social_machine/

Chapter 3 – Understanding Social Machines 51

Adopting this vision, CAPTCHA (LUIS VON AHN et al., 2003) and its

extensions (i.e. reCAPTCHA9 (VON AHN et al., 2008), KA-CAPTCHA (DA

SILVA; CRISTINA; GARCIA, 2007)) can be considered kinds of Social Machines

that use human computation to solve a challenge response test in order to make

a distinction between humans and computers. The reCAPTCHA System (Figure

3.6), for example, has been successfully used to help to digitize old printed

books and old editions of newspapers. It improves the process of digitizing

books by displaying words (from scanned texts that cannot be read by

computers) to the Web in the form of CAPTCHAs for humans to decipher. It is

estimated that about 200 million CAPTCHAs are solved by humans around the

world every day10.

Figure 3.6 - reCAPTCHA

Duolingo11, a free language education tool, is another example of system

that uses the same principle from CAPTACHA. Its users create value by

translating real-world documents while they are learning. Here is a summary of

the Duolingo’s business model12:

“Somebody who needs a webpage translated uploads it to Duolingo.

That document then gets presented to Duolingo students who can translate it

in order to practice the language they are learning. When the document is fully

translated, Duolingo returns it to the original content owner who, depending

on the type of document they uploaded, pays for the translation.”

Standards such as WS-HumanTask (AGRAWAL et al., 2007a) and

BPEL4People (AGRAWAL et al., 2007b) have also introduced specifications

that consider human interaction in the compositions of services in Service-

oriented Architecture (SOA) environments (SKOPIK et al., 2011). In the same

9 http://recaptcha.net/
10 http://www.google.com/recaptcha/learnmore
11 http://www.duolingo.com
12 Extracted from http://www.duolingo.com

Chapter 3 – Understanding Social Machines 52

context, other studies (DUSTDAR; BHATTACHARYA, 2011)(SCHALL;

TRUONG; DUSTDAR, 2008)(SCHALL; DUSTDAR; BLAKE, 2010) also

propose models, such as the Social Compute Unit (SCU) (DUSTDAR;

BHATTACHARYA, 2011) and Human-Provided Services (HPSs) (SCHALL;

DUSTDAR; BLAKE, 2010), in conjunction with frameworks to deal with the

seamless integration of human capabilities into a cross-organizational

collaboration. In general, we can see these kinds of collaborative computing

systems as Social Machines, since they incorporate the vision of people as

computational units that make collaborations, which typically involve both

humans and software as computational units.

3.5.2. Crowdsourcing and Collaborative Platforms

Other examples of systems that consider people as computational units can be

seen in practice, such as the games with a purpose (GWAP) (VON AHN;

DABBISH, 2008). GWAP are systems in which a computational process

transforms some of its tasks into an enjoyable game and delegates them to

human game players. In (THALER; SIMPERL; WÖLGER, 2012), Thaler et al.

evaluate such human-computation techniques and argue that:

“Human computation lets organizations outsource tasks traditionally

performed by specific individuals or experts teams to an undefined group of

remote workers over the internet.”

This is the case of microtask (another human-computation technique)

which is the basis of some crowdsoursing and collaborative Web-based

platforms such as Amazon Mechanical Turk13. According to Shadbolt

(SHADBOLT, 2013), crowdsourcing and collaborative Web-based platforms can

be seen, in a general way, as knowledge acquisition systems in the age of Social

Machines.

3.5.3. Knowledge Acquisition Systems

In Shadbolt’s review of Knowledge Acquiring Systems (SHADBOLT, 2013), he

concludes that:

13 https://www.mturk.com/

Chapter 3 – Understanding Social Machines 53

“These social machines are knowledge acquisition systems at scale and

machines that are socially contextualized.”

Therefore wikis, which also are knowledge acquisition systems, can be

considered Social Machines that make use of human computation, through the

distributed co-creation of content. According to (YUEN; CHEN; KING, 2009),

other examples of distributed human computation can be found in some anti-

spam mechanisms (e.g. Vipul’s Razor14) and systems with the aim of eliminating

optical character recognition errors, such as Proofreader15 used in the Project

Gutenberg16.

Furthermore, in terms of complexity, Shadbolt suggests that the result of

combining different social computation approaches (e.g., crowd sourcing, co-

creation and social network) might create real Social Machines with relatively

unsophisticated software (i.e., comparatively lower compute complexity), but

with a stronger social engagement (i.e., higher social complexity). Relying on

this idea, he highlights Ushahidi17, an open crowdsourcing platform for mapping

crisis situations, as an example of a more sophisticated Social Machine, in terms

of social complexity.

Ushahidi is a Social Machine that combines social networking,

crowdsourcing and co-creation to build a unique open source platform on the

web for changing the way information flows in the world. Figure 3.7 shows some

examples of major events around the globe in which Ushahidi engine was used.

This includes the “Swine Flu” incident around the world, the 2009 Indian

general elections, the war on Gaza in 2009 and xenophobic attacks mapping on

South Africa.

14 http://sourceforge.net/projects/razor
15 http://www.pgdp.net/c/
16 http://www.gutenberg.net/
17 http://www.ushahidi.com/

Chapter 3 – Understanding Social Machines 54

Figure 3.7 - Ushahidi18

3.5.4. Personal APIs

Recently, some practical initiatives have been wrapping people (their

information and/or human capabilities) to provide a set of services through

simple, clean, stable APIs on the Web. We can call these kinds of solutions as

Personal APIs. The term Personal APIs19 is used here to designate Open

Application Programming Interfaces (Open APIs) that allows third-parties to

programmatically access information about a person (e.g., personal basic info,

health-related statistics, busy data) and/or trigger his/her human capabilities in

a standardized way.

We believe that “APIzing" people is also a way of “PERSONifying"

software. Personal APIs can indeed be used to blend computational and social

aspects into Web-enabled systems and, consequently, support the development

of certain families of Social Machines (BURÉGIO et al., 2014a). Based on this

fact, Figure 3.3 presents Personal APIs in the intersection of the vision of

“People as Computational Units” and “Software as Sociable Entities”.

18 bit.ly/19Gjj2B
19 This term has already been used in the Web industry to specify a set of APIs

(http://api.naveen.com/) that access real-time personal statistics.

Chapter 3 – Understanding Social Machines 55

Despite it is a fresh topic, in practice, we can find different types of

Personal APIs in the Web, depending on both the nature of data they deal with

and the type of provided services. On one hand, regarding the nature of data, we

can highlight different kinds of data such as health-related statistics (e.g., heart

rate, weight, sleep patterns), basic personal information (e.g., name, job, age,

address), busy data (e.g., agenda, availability, activities) and so on. On the other

hand, the provided services range from services that only allow access to

wrapped data (through read-only and queryable APIs) to services that expose

human capabilities and consequently make possible to request the execution of

actions by a person (e.g., request a person to transcript a speech from an audio

file into a text document). In the following, we briefly present some existing

practical initiatives built upon the concept of Personal APIs, namely: The

Human API, Naveen Selvadurai‘s API, Personal assistants and VoiceBunny.

The Human API20 use APIs to access personal health data. It allows

application developers to create meaning from personal data (e.g., heart rate,

active minutes, sleep, genetic makeup or blood glucose) through a simple API.

The Human API's data infrastructure collects patient data from different

sources and unifies them into a single API by providing analytics-based and

dynamic-care experiences for all patients. Each data stream is exposed as an

endpoint that can be invoked as a service to build mashups that deal with

human health data.

Naveen Selvadurai’s API21 is another example of Personal API that

tracks health-related data. This API manages Selvadurai’s busy life and

periodically sends to his company (or to anyone who desires to be notified)

updates about his real-time personal statistics such as weight, sleep time,

personal activities, checkins, heart rate and others.

Personal Assistants - as a way to improve their communication and

engagement with others, some professionals, such as the journalist Brian

Proffitt22 and the technologist Jay Cousins23 have started specifying their own

personal interfaces as a set of APIs on the Web. Under some communication

20 Human API: A platform for human health data, available at http://humanapi.co.
21 Naveen Selvadurai's API available at http://api.naveen.com/
22 http://readwrite.com/2013/08/23/building-personal-api
23 http://jaycousins.wordpress.com/about/personal-api-personality-interface/

Chapter 3 – Understanding Social Machines 56

constraints, these APIs have been conceived as features of a personal assistant.

It seems that, in the future, they expect that such APIs may substitute, for

example, a human secretary.

As aforementioned, beyond allowing access to personal data, there also

have been APIs to trigger human capabilities. In this context, we can highlight

VoiceBunny24 whose APIs expose human capabilities as a service on the Web.

VoiceBunny is a crowdsourced platform that uses thousands of voice actors

working from home studios to provide professional “voice as a service” on the

Web. It offers RESTful APIs through which is possible to create third-party

applications that interact with and consume VoiceBunny's provided services.

3.6. Software as Sociable Entities

This vision is focused on works that try to weave social elements into software in

order to enable their “socialization”, mainly in terms of having “social”

relationships with other software and interacting with each other. As a

preliminary result, it is important to highlight that we are only considering the

Web context. Other topics such as affective intelligent Social Machines (DUFFY,

2008), which refer to machines that speak our language and perceive our

emotions, were not considered here.

3.6.1. Agent-based Web Services

Agent-based semantic Web Services (GIBBINS; HARRIS; SHADBOLT, 2004) is

a research effort in this vision, since it represents an approach in which

semantic Web technologies are used to improve the meaning of Web Services’

descriptions and, consequently, to facilitate the interactions of loosely-coupled

Web Services (at least in terms of discovery, reuse and composition

(YAHYAOUI, 2005)). Some ideas regarding the use of a social unit to facilitate

and improve the discovery of Web Services in an open environment like the

Internet can be found in the research efforts of Benatallah et al. (BENTAHAR et

al., 2007). In that work it is suggested to gather similar Web Services (WS) into

groups known as communities.

24 Voice actors and professional voice over recordings, available at

http://voicebunny.com

Chapter 3 – Understanding Social Machines 57

3.6.2. Communities of Web Services

Maamar et al. (MAAMAR et al., 2007), motivated by the idea of communities,

present the concepts and operations to specify and manage communities of Web

Services. Hence, the involved Web Services interact with each other, in

communities, to decide who will be responsible for treating a specific request.

Under this Social Machines’ perspective, these WSs represent services as

sociable entities that are related in communities and interact with each other.

Agent-based Web Services and the concept of communities formed the basis for

the definition of reputation and trust models (e.g., (DUSTDAR;

BHATTACHARYA, 2011) and (SCHALL; TRUONG; DUSTDAR, 2008)) that

drive the discovery and composition processes of Web Services. More recently,

the metaphor of “social networks” has been considered as an alternative to the

use of communities of Web Services. (MAAMAR et al., 2010).

3.6.3. Social Network (SN) of Web Services

In order to support the process of discovery and composition, some works (e.g.,

(MAAMAR et al., 2011), (MAARADJI; HACID; DAIGREMONT, 2010),

(MAAMAR et al., 2010), (MAAMAR; HACID; HUHNS, 2011)) suggest the use

of historical records of Web Services interactions, in a SOA composition

environment, as basis for extracting Social Networks of Web Services. Actually,

Maamar et al. (MAAMAR et al., 2009) are one of the first researchers to

advocate for the notion of social Web services. Different types of SNs (having

Web Services as nodes) are captured, and the basic idea is to make a service

recognize the relationships it participates in, and make recommendations about

relevant peers. A service's peers include those that it can collaborate with, those

that could substitute for it in case of failure, and those that it competes against

(in the case of a selective environment). These approaches represent an

important aspect for this vision of Social Machines. Once, such approaches turn

Web Services into nodes of different social networks (e.g., similarity-based SN,

collaboration-based SN) and make them aware of their relations with other

peers, in this case, to support the process of discovery, composition and other

collaborative processes.

Chapter 3 – Understanding Social Machines 58

3.6.4. Relationship-aware Systems

 in this vision. In (MEIRA et al., 2011), the idea of Social Machine - as a unifying

mental model for understanding, describing and designing each and every

entity connected to the Web - points relationship as a fundamental element of

such model. In fact, turning software into services on the Web means allowing it

to interact with a huge number of other independently owned (and sometimes

unknown) applications and services, and possibly establishing a plethora of

“social” relationships with them. In this sense, a system can be viewed as a

sociable entity whose interactions with each other are determined by their

“social” relationships, just like people. In a more general sense, it inspires the

idea of what we refer to as Relationship-aware Systems, which are an option for

describing possibly related and interacting Social Machines that make use of

notions from computing, communication (in the form of relationships and

interactions) and control.

Figure 3.8 summarizes the timeline of part of the research adopting this

vision of software as sociable entity. We mark (with “X”) the milestones of

research in the area. As can be seen, the research on relationship-aware systems

started to gain momentum recently with the first edition of the International

Workshop on the Theory & Practice of Social Machines, realized at the WWW

Conference in May 2013.

3.7. Related Reviews

Although the concept of Social Machines overlaps other research fields and

issues currently studied such as SaaS, Cloud Computing, SOA and Social

Networks, we have not found any research that deals with the concept as we do

propose herein. Some authors had already mentioned the term ‘Social

Machines’ (ROUSH, 2006). However, the expression has been used with a

different meaning, representing human operated machines responsible for

socializing information among communities, that is, an intersection of the areas

and studies of social behavior and computational systems.

Chapter 3 – Understanding Social Machines 59

Figure 3.8 - Timeline of part of the research on software as sociable

entities (2007 - 2013)

Initial ideas of Social Machines are also presented in (HENDLER;

BERNERS-LEE, 2010), but currently there is no mapping study characterizing

the Social Machine area as a whole. However, there are some studies that

analyze and categorize specific aspects of related topics such as human

computation (YUEN; CHEN; KING, 2009)(THALER; SIMPERL; WÖLGER,

2012) and knowledge acquiring systems (SHADBOLT, 2013). Yuen et al.

(YUEN; CHEN; KING, 2009) give a survey on various human computational

systems, defining the categories and their characteristics. They also present a

discussion on performance aspects of human computation systems. In order to

answer which technique is better in terms of costs and benefits, Thaler et al.

(THALER; SIMPERL; WÖLGER, 2012) evaluate two prominent human-

computation techniques: GWAP and microtask. Shadbolt (SHADBOLT, 2013)

provides a comprehensive review of Knowledge Acquiring (KA) Systems and

characterizes new kinds of emergent and collective problem solving. In this

context, he presents a vision of Social Machines as KA Systems.

Chapter 3 – Understanding Social Machines 60

3.8. Concluding remarks

In this chapter, we have set the scenario to discuss Social Machine as a proper

research area, including scientific inquiries and possible and different views of

research topics. We characterized the Social Machine area through a mapping

study on a set of existing work, outlined our adopted research methodology and

made a discussion about the outcomes.

From our literature review, it clearly appears that the Social Machine

paradigm relies on social computing and shall be the result of the convergence

of the three main visions: i) Social Software (as its foundations), ii) People as

Computational Units and iii) Software as Sociable Entities. In practice, Social

machines are all about the emerging Web-enabled systems capable of blending

computational and social elements into a variety of different socially connected

computing units (e.g., software systems, hardware, people, physical objects and

so on).

However, in the context of software engineering, the science, technology

and implementations of Social Machines are in a very early stage, and there still

is a need to provide a unified conceptual basis to describe, design and

implement such emerging social systems.

According to Jifeng and Hoare's unifying theories (HOARE; JIFENG,

1998), understanding and defining a common conceptual model enables

experience gained in the successful practice of software engineering to be

rapidly generalized to new applications and to new developments in technology.

Currently, we have different visions of social machine, however, based on our

converging diagram, one question raises: would it be possible to define a unified

mental model of Social Machine capable of commonly describing, designing

and implementing each and every socially connected entity that compose such

emerging social systems?

From a software engineering point of view, this unified perspective of

Social Machines has meaningful implications on our concepts of what kinds of

building blocks it might be possible to work with in the near future. While we do

not have a unified model that converges the existing visions of social machines,

questions still arise in this context, such as: What are the elements that better

Chapter 3 – Understanding Social Machines 61

represent a Social Machine? Which principles and constraints should be

considered in order to build such kind of systems? What are the guidelines to

describe and design Social Machines?

Thus, to start with, the next chapter proposes a common abstraction

model that we have used as basis for establishing social machines as a unified

paradigm to describe the emerging Web around us.

Chapter 4 – Describing Social Machines 62

Describing	Social	
Machines	

“The world as we have created it is a process of our

thinking. It cannot be changed without changing our thinking.”

Albert Einstein (1879 – 1955)
Theoretical Physicist

4. Describing	Social	Machines	

In the previous chapter we explored different visions of social machines and

also motivated the need for a unified perspective capable of describing,

designing and implementing social machines through a common abstraction

model. Under the point of view of software engineering, defining a common

model to describe systems involves thinking in high-level abstractions that can

be used as building blocks to generalize both the system as a whole as well as the

parts that compose it.

In the case of social machines, such parts can be viewed as the different

socially connected entities (e.g., people, software, physical objects) which

together compose this new breed of social systems. The current social machines

are indeed all about this emerging kinds of Web-enabled systems that

incorporate novel forms of relationships and interactions among a plurality of

socially connected computing units.

Adopting a software engineering perspective, this chapter weaves “social”

relationships into software, leading to the notion of “relationship-aware”

systems. Relationship-aware systems use the metaphor of human social

relationships and, at the simplest level, is software whose behavior takes into

account other software it interacts with. Here, we revisit the concept of

relationship and, based on that, we define a common abstraction model that is

used as a foundation to establish social machines as a unified paradigm to

describe each and every entity socially connected to this emerging Web around

us.

4

Chapter 4 – Describing Social Machines 63

4.1. Introduction

As aforementioned in Chapter 2, the Web has spread from a collection of

documents to a platform for open, interactive, distributed applications and

services. Such concept of platform of services has completely grounded up and

increasingly transformed industry and society (JACOBS; JAFFE; HEGARET,

2012). Today, the Web is the dominant platform – an open programmable one -

and, as a consequence, it has been especially influential in the way we develop

software (MAXIMILIEN; RANABAHU; GOMADAM, 2008) (YU; WOODARD,

2009). In fact, since its conception the Web was open and decentralized, thus

anyone could write new Web software without needing permission. This open

approach is the main responsible for fostering widespread creativity,

contributing to the current proliferation of distributed applications and services

on the Web. Nowadays, we are facing a transition from “siloed software” to

what we call “sociable software”. Actually, we are writing such a transition,

albeit in an ad-hoc way.

The term “sociable” does not necessarily refer to social applications or

social networks. Here, it has a broader meaning. “Sociable software” means

software designed and built from the ground up to (1) publish its internal

capabilities (i.e., core functionalities) to its environment, (2) allowing the easy

creation of other applications on top of its externalized capabilities and (3)

being aware about its relationships with other software, changing its behavior

accordingly.

The opposite implementation is considered “siloed software”, a term

used in (PATTERSON; FOX, 2012) to designate software that does not expose

its internal components to other applications in the outside world. Leading

companies like Facebook, Google, Salesforce, Amazon, Twitter can be

considered seminal contributors to such a transition from siloed to sociable

software. They recognized the world had changed and started a movement to

externalize their systems’ functionalities as platforms of services (KORIS;

HODDINOTT, 2008)(KO et al., 2010). Indeed, they provide interfaces to many

of their services at little or no cost, which allows individuals and other

Chapter 4 – Describing Social Machines 64

businesses to create a multitude of other applications by [re]using and

combining their provided services.

However, although the open Web platform offers many opportunities,

publishing internal capabilities of a system on the Web presents considerable

challenges(SIMOES; WAHLE, 2011)(LANTHALER; GÜTL, 2010)(ISSARNY et

al., 2011). One of these challenges is related to a change in the semantics of

relationship, which is the centerpiece of the modern Web. In fact, the Web of

today can be interpreted as a “dynamic set of relationships” (TAYLOR;

MEDVIDOVIC; DASHOFY, 2009) among collections of information, services,

people and so on.

Hence, turning software into a “sociable” platform of services on the Web

means making it able to interact with a huge number of other independently

owned and sometimes unknown applications and services, and consequently

establishes a plethora of relationships with them. In practice, it is increasing the

number of applications on the Web that take into account their relationships

with others. In our investigation, we discovered that Facebook is capable of

establishing 282 different kinds of relationships with other applications,

changing its interactions with them accordingly.

This transition on the practice of software development leads to

discussions in the field of software engineering including, among other things,

the necessity of creating new mental models to describe and engineer this

emerging sociable systems and their relationship-awareness features. Given

that, one problem, in the context of software engineering, is how we could

incorporate the notion of “social relationship” into the development of software,

taking into account its implications on the way they will interact with each other

as well as other socially connected computing units (e.g., people, physical

objects).

In this chapter we discuss the weaving of “social” relationships into

software, leading to the notion of “relationship-aware” applications and services

which are a type of sociable software whose behavior takes into account other

software it interacts with. Initially, we outline the adopted research guide and

then we revisit the concept of relationship with the aim of establishing a

unifying abstraction model for social machines in order to be used as basis for

Chapter 4 – Describing Social Machines 65

specifying relationship-aware systems. The Social Machines' building blocks are

defined as kinds of interacting social service components, and we set up their

main elements, characteristics, types and guidelines for their analysis.

4.2. Research Guidelines

In this stage of research the main goal was to specify a unified abstraction model
for describing social machines. Brainstorming and focus groups were used as
the main techniques during this stage of our research. In the context of
empirical software engineering, such techniques are often used to bring groups
of people together in order to discuss specific topics. In this case, brainstorming
is considered to generate ideas to answer a given question and focus group is
similar to a brainstorming but – as its name says – it focuses on just one of the
brainstorm particular ideas. According to Singer et al. (SINGER; SIM;
LETHBRIDGE, 2008) they are excellent data collection techniques to use when
one is new to a domain and seeking ideas for improvements. In our case, we
collected experiences from focus group studies we conducted during three
different postgraduate subjects on social machines that we offered along this
research effort. Our studies also used these techniques for gathering experience
from practitioners of companies like, for example, SODET25. Beyond
brainstorming and focus group sessions, we also performed some hands-on
activities to describe existing systems under the perspective of our proposed
model. In general, all of these activities resulted in relevant and usable findings
that supported us in the process of describing social machines.

25 Shifting Business into Social Machines: http://sodet.biz/en/

Chapter 4 – Describing Social Machines 66

Table 4.1 summarizes the research guideline adopted in this stage of research, as

per defined in our research roadmap (Figure 1.1).

Chapter 4 – Describing Social Machines 67

Table 4.1 - Research Guide for Stage 02: Describing Social Machines

Stage 02: Describing Social Machines

Goal Specify a unified abstraction model to describe social machines

Questions How to merge both social and computational aspects into a unified

abstraction model?

How to describe existing applications with such unified model?

Evidences Establishment of Basic Concepts; Definition of a common building

block; Analysis Guideline; Description of existing applications

(e.g., Facebook)

Main

Methods

Brainstorming and focus group; Hands-on activities

4.3. Basic Concepts

As can be concluded from the previous chapter, the emerging social machines

are Web-enabled systems that blend both computational and social elements,

and possibly use a combination of different socially connected computing units

(e.g., applications, services, people, and objects). In order to facilitate unified

understanding, what about we abstract each of these different socially

connected computing units into a high-level building block capable of

describing the common features of such units? This question led us to think in a

mental model for social machine that could be used to not only abstractly

describe a social machine as a whole but also each of its socially connected

entities.

We assume the context of software development to start conducting this

process of abstraction. Then, prior to defining and detailing the elements of the

social machine abstraction model, it is important to outline some basic concepts

(e.g., “sociable” and “siloed” software) that we adopted in this process. For now,

in order to understand the example used in the next section to illustrate the

notion of “sociable” software, it is enough to just consider a social machine as an

abstraction of a socially connected entity.

Chapter 4 – Describing Social Machines 68

4.3.1. “Sociable” and “Siloed” Software

 “Sociable software” is a term we have used to refer to a kind software that

embraces the principles of service-oriented computing (ERL, 2005) and also, at

the simplest level, was designed and built from the ground up to interact with

other software, satisfying the following properties:

i) publishing its internal capabilities (i.e. core functionalities) to its

environment;

ii) allowing the easy creation of other applications by [re]using and

combining its provided services;

iii) being aware about its relationships with other software, changing its

behavior accordingly.

We call “siloed software” – a term also used in (PATTERSON; FOX,

2012) - the opposite implementation of sociable software. To make the notion of

“sociable” and “siloed” more concrete, Figure 4.1 illustrates a hypothetical

online store system designed in both ways: Figure 4.1 (a) - as “siloed software”,

and Figure 4.1 (b) – as “sociable software”. As we can see in Figure 4.1 (a), the

siloed version is a monolithic piece of software with all the components built

inside, behind a “wall”. All its components have strong connections and can

share and collect data together, which are what makes them all mutually

coupled. Often, siloed software has only one access point to its functionalities

and rarely exposes its internal components to other applications in the outside

world. Thus, it is not designed early to be “sociable” much less to “know” its

relationships with others.

Chapter 4 – Describing Social Machines 69

Figure 4.1 - Example of an online store system designed as: (a) “siloed software” and (b)

“sociable software” which interacts with (c) - an external existing social network

On the other hand, the sociable version –Figure 4.1 (b) - is composed by

connectable entities (Social Machines26) that interact with each other and

implement the same original Online Shopping Application. Beyond that, they

facilitate the creation of other external applications and services by allowing the

reuse of the system’s functionalities externalized to the outside world. In Figure

4.1 (c), for example, an external Social Machine (wrapping an existing social

network) is being used in combination with the “Customer Review SM” to

create a “Friends Favorite Products” service - a new service made by combining

existing ones.

As one of the ideas behind Social Machines is taking advantage of the

networked environment to facilitate the combination and reuse of existing

26 We will detail the elements of a Social Machine; for now, just consider them as

networked application building blocks.

Chapter 4 – Describing Social Machines 70

services provided by other SMs, the SM’s model has to embrace the principles of

service-oriented computing as well as component-based software development

to support the properties (i) and (ii) established for sociable software.

Furthermore, some extensions are required into the SM’s model to better

incorporate property (iii) - being aware about its relationships with other

software, changing its behavior accordingly. Figure 4.1 does not show clearly

the property (iii). Such a property is associated to the notion of relationship and

relationship-aware software, which we discuss next.

4.3.2. Relationship

Relationship is an essential element in the Social Machine model. However,

after some preliminary practical experiments (BRITO et al., 2012; MEIRA et al.,

2011), we identified a need to extend its notion in order to better weave

relationship into the SM’s model, and consequently better satisfy the property

(iii) of sociable software. In this sense, the first step was to give a clear definition

for the relationship element. For that reason, with the purpose of providing

subsidies needed to [re]define the idea of relationship to be adopted here, we

analyzed its existing common definitions and different views along software

engineering evolution.

Firstly, relationship, in general, can be defined as “the way things are

connected” and, in this sense, it is often used interchangeable with terms such

as “connection”, “association”, “link”, “relation”, and so on. On the other hand,

focusing on a software engineering evolution’s perspective, we recognized at

least five different views of relationship:

Data-oriented view: relationship is a tuple of entities. This is the

classic, relational algebra-based definition adopted by Peter Chen on the E-R

Data Model in 1976(CHEN, 1976);

Object-oriented view: here, relationships represent different

strengths of dependencies among classes of objects. UML offers five different

types of class relationship for object oriented analysis and design, ranging from

weaker to stronger dependencies (MILES; HAMILTON, 2006);

Architecture-oriented view: in the seminal Perry and Wolf's paper

on software architecture (PERRY; WOLF, 1992), relationships are introduced as

Chapter 4 – Describing Social Machines 71

basis for restrictions on software structure and the formal arrangements of its

design elements. Formal relationships can be used to define different topologies

of network architectures, components and data element associations;

 User-oriented view: in social networks and applications,

relationships correspond to connections between users. Actually, they form

graphs of relations among people, organizations, states and other units. In this

context, different applications describe user relationships using different

terminologies such as “contact”, “friend”, “circle”, “follower”, “co-worker, and so

on;

Service-oriented view: with regard to distributed and service-

oriented systems, relationship underlies reasoning on trustworthiness. In these

systems, trust relationships are used to infer reputation and control access to

services and resources (SURYANARAYANA et al., 2004).

Figure 4.2 sums up the different views of relationship along software

engineering evolution. As we can see, most of the views present a static aspect

and have little or no focus on how software behaves and interacts with others.

Therefore, after this analysis, we introduce the following general definition of

relationship in the context of Social Machines:

“A relationship is a particular type of connection that constrains

the way of how two or more Social Machines are associated to or have

interactions with each other.”

Figure 4.2- Different views of "relationships"

As aforementioned, our main objective is to weave this concept of

relationship into the development of sociable software. In order to do this, we

created the notion of relationship-aware application and services, which is a

Chapter 4 – Describing Social Machines 72

kind of sociable software that satisfies its property (iii) – being aware about its

relationships with others - and also establishes other relevant capabilities.

During our definition process, we identified some challenges and issues that

should be highlighted: (1) how applications can benefit from maintaining these

relationships; (2) which is really the main idea behind being aware of

relationships; (3) how to define a unified mental model that incorporates this

notion; (4) which are the steps for analysis of relationship-aware software; (5)

how existing applications can be described under this new perspective. We

discuss all these issues along the next Sections.

4.4. “Relationship-aware” Applications and Services

4.4.1. Benefits from maintaining relationships

Based on our investigations of the concept of relationship and existing

approaches (BUREGIO; MEIRA; ALMEIDA, 2010)(LEE; KOTONYA;

ROBINSON, 2012)(MAAMAR et al., 2011)(MAARADJI; HACID;

DAIGREMONT, 2010)(MAAMAR et al., 2010) (ANDERSON et al., 2010), we

believe that giving preeminence to “social” relationships can enable new classes

of systems and offer the potential for creating “relationship-aware” applications

and services capable of: (1) determining dynamic interaction views, (2)

supporting the process of discovery and composition, and (3) reasoning on

trustworthiness and privacy.

1) Determining dynamic interactions views: inspired by the idea of

dynamically providing different views (products) of the same system

(BUREGIO; MEIRA; ALMEIDA, 2010)(LEE; KOTONYA; ROBINSON,

2012), and based on observations on existing open Web platforms (e.g.,

Twitter, Facebook), we recognized that establishing and being aware

about different relationships with other applications and services is key

for an application to determine its different interaction views (e.g., set of

services under specific constraints) to be made available to its client

applications. This is the main general aspect explored in this chapter and

Facebook is a practical example of an application that deals with that;

2) Supporting the process of discovery and composition: extracting Social

Networks (SNs) from the historical records of Web services interactions

Chapter 4 – Describing Social Machines 73

in a SOA composition environment has been suggested in some work

(e.g., (MAAMAR et al., 2011), (MAARADJI; HACID; DAIGREMONT,

2010) and (MAAMAR et al., 2010)) as an useful way to facilitate the

process of discovery and composition of services. Different types of SNs

(having Web services as nodes) are captured, and the basic idea is to

make a service recognizes its relationships in the social networks it

participates in, and makes recommendations about the peers with whom

it would like to collaborate in case of compositions; the peers that can

substitute for it in case of failure; and finally be aware of the peers that

compete against it in case of selection. In conclusion, these approaches

turn Web services into nodes of different social networks (e.g. similarity-

based SN, collaboration-based SN) and make them aware of their

relationships with others to support the process of discovery and

composition. For this reason, they also represent an important aspect of

“relationship-aware” software.

3) Reasoning on trustworthy and privacy: nowadays, we have much social

information available connecting people or other entities through

relationships. Hence, another capability of relationship-aware

applications could be to consider the connections between their owners

with the aim of assessing trustworthiness and privacy, as well as

supporting other decision making processes. The idea is to enable the

easy implementation of scenarios like: “Allow access to functionalities

provided by my research agenda service only to client applications that

belong to professors defined as partners of mine in any private

collaborating group on Mendeley27”. Some research efforts aiming at

modeling user’s social data can be found in the field of semantic Web

technologies (e.g., SIOC28, FOAF29) and social network (ANDERSON et

al., 2010). They can be considered options to enable the kinds of

scenarios we raised, and consequently achieve another benefit from

making software aware of social relationships. In (ROMERO et al., 2013),

the notion of Social Machines is used to propose a novel architecture for

networked information systems that makes easier for users to control

27 Open platform/social network for researchers http://www.mendeley.com
28 SIOC: http://sioc-project.org/
29 FOAF: http://www.foaf-project.org/

Chapter 4 – Describing Social Machines 74

access to their data and, for most purposes, including government spying

on individuals, significantly increase the cost and complexity of

information gathering from personal sources if not authorized by their

true owners.

It is important to note that the capabilities described above do not

represent an exhaustive list of all features that can be enabled in relationship-

aware applications. Actually, such capabilities represent different general

aspects of the concept of relationship-awareness and examples of how

applications can benefit from maintaining their social relationships with others.

We know that each aspect may involve a wide field of research. For this reason,

the initial focus of this chapter is to address only the first aspect, in order to

understand, in a general way, how software’s relationships can determine its

dynamic interaction views. In the next Section we explain the idea behind such

aspect with a simple analogy.

4.4.2. Analogy with Human Relationships

In Chapter 2, we realized that each software paradigm has its own abstractions

and sometimes they rely on real-world metaphors. This section introduces the

central idea of the “relationship-aware” aspect of sociable software, i.e.,

determining dynamic interactions views. It does so by first exploring a simple

analogy between social relationships among people and relationships among

software. We believe that understanding human social relationships offers a

simple base of concepts from which Social Machines, and more generally,

software interactions as a whole has performed. This analogy is useful to show

that almost every software interactions can be explained under the perspective

of social relationships. It is also valuable to introduce the elements that help

understanding other concepts explored along this thesis.

The idea is as follows: in human society, the different kinds of

relationships between people are keys to determine the different sets of

interactions between them. For example, the possible set of interactions

between a man and his daughter is for sure different from the expected set of

interactions between him and his boss. This analogy is quite aligned with our

definition for "relationship", once it constraints the way of how two or more

people have interactions with each other. Due to that reality, a same person can

Chapter 4 – Describing Social Machines 75

exhibit several sets of interactions, depending on the existing relationship with

whom he/she is interacting with. Thus, how could we map this into software?

An easy way to put the same idea in the context of software is by mapping

the different sets of interactions of a person to the different interaction views

(i.e. set of services/functionalities) that an application can make available. Thus,

just as with people, different interaction views can be provided by software

according to the types of relationships it establishes with applications that use

its services. This is a very common behavior in the Web today, especially

regarding open Web platforms. Figure 4.3 illustrates a sociable application

providing different interaction views (V1 to Vn), whose properties (e.g., set of

services, rate limiting, performance) are determined according to the

relationship between it and its client applications.

Figure 4.3 - Relationship-aware application: relationship determining interaction views

It is important to note that, in this context, two different interaction

views mean either i) two sets of different services or even ii) the same set of

services being provided under different quality constraints. Twitter.com, for

example, implements the latter by establishing feature-based rate limit which

enforces a rate limit for third party applications through restricting the number

of Twitter API requests that can be performed within the application. This rate

limit varies based upon the type of operation being performed as well as the

third party application. On the other hand, Facebook provides different options

of “relationships” to its client applications, determining the set of accessible

services (different interaction views) accordingly.

Another aspect to be noticed here is that different interaction views can

be seen as different dynamically provided “products”, composed by different

sets of services and properties. Thus, a sociable application, under this

Chapter 4 – Describing Social Machines 76

perspective, can also be viewed as a system that incorporates somehow the

concepts of Dynamic Software Product Lines (DSPL) (BUREGIO; MEIRA;

ALMEIDA, 2010), more specifically, it can be considered as a dynamic service-

oriented product line.

In practice, we have been writing different kinds of “relationship-aware”

software, albeit in most cases in an ad-hoc way. The spreading of the Web as a

software development platform along with the increased interactivity and

connectivity of applications and services has changed our understanding of the

nature of computing. Many computational processes are nowadays Web-based,

autonomous and concurrent. The status of the digital universe cannot be

properly accounted for, from the engineering point of view, by the use of the

computing metaphor alone. In today’s highly interconnected software

architectures we should consider interactions, relationships and their

constraints on software behavior.

However, in the context of the new emerging Web developments, there

has not been a clear, precise description that incorporates these concepts into

each and every entity used to compose applications and services. For this

reason, we believe it is necessary to provide new mental models capable of

representing such aspects as well as providing a common and coherent

conceptual basis for the understanding of this young, upcoming and possibly

highly innovative phase of software development.

Thus, inspired by the notion of Social Machines and based on some

practical developments with it [Burégio et al. 2014; Burégio et al. 2013b; Meira

et al. 2013; Brito et al. 2012; Nascimento et al. 2012], we extended its initial

model as well as its core elements to create a common abstraction that has the

potential to describe any existing application or service through a unifying

building block that makes use of concepts from computing, communication

and control in order to specify possibly related and interacting entities.

4.5. The Social Machine Model

We understand the Social Machine model as a high-level abstraction that

provides the elements for transforming any computing unit (e.g., a piece of

software, hardware or even a person) into a socially connected information

Chapter 4 – Describing Social Machines 77

processing system. In this sense, our abstraction model blends the principles of

component-based development (HEINEMAN; COUNCILL, 2001)(LAU; WANG,

2007)(MCGOWAN, 1975)(SZYPERSKI, 2002) with those of service-oriented

design (ERL, 2007)(PATTERSON; FOX, 2012) through a new software

abstraction that considers social aspects in the form of relationships and

interactions. This abstraction model is defines as:

“A connectable and programmable building block that wraps (WI) an

information processing system (IPS) and defines a set of required (RS) and

provided services (PS), dynamically available under constraints (C) which

are determined by, among other things, its relationships (Rel) with others.”

Because of the fact that this model weaves a social aspect into a single

unit that blends principles of software componentization with principles of

service-oriented development, we often refer to this social machine’s

abstraction model as a Social Service Component (SSC), i.e., a software building

block (component) that provides a set of services which can vary according to its

“social” relationships with others. Together, such building blocks interact to

compose new social systems, as illustrated in Figure 4.4.

The social machine’s abstraction model is built on three key concepts:

computation; communication and control. Understanding the role each

plays is fundamental to describe the model as a whole. In this section, we

provide an overview of these concepts relating them to the elements presented

in Figure 4.4. After that, we proceed to a more detailed look at how applications

can be analyzed using the model.

Chapter 4 – Describing Social Machines 78

Figure 4.4 – Conceptual view of the Social Machine’s abstraction model

4.5.1. Computation

The daily practice tells us that higher levels of abstraction are needed to

properly deal with real-life situations. Therefore, the traditional notion of

algorithmic Turing Machine was generalized and represented in Figure 4.4 by a

single element: the Information Processing System.

Information Processing System (IPS) abstracts any computational unit

whose behavior is defined by the functional relationship between inputs and

outputs. It can be either a piece of hardware or software, or even a person. To

better understand the wide scope of this element we can adopt the three

components of information processing systems defined by Burgin (BURGIN,

2005): hardware (physical devices), software (programs that control its

operation) and infoware that represents information processed by the system.

(DODIG-CRNKOVIC, 2011). Hence, an IPS can be represented, for example, by

an algorithm, a Web service or even a network of computer processes at

different scales or levels of granularity. As seen, in general, any mechanism

which ensures definability of the Social Machine’s business logic.

Chapter 4 – Describing Social Machines 79

4.5.2. Communication

Bohan Broderick (BOHAN BRODERICK, 2004) distinguishes computation and

communication by considering that the former is limited to actions within a

system, and the latter is an interaction between a system and its environment.

Hence, wrapping an Information Processing System, a Social Machine goes

beyond computation and incorporates the notion of communication, having

relationship as its fundamental element. Figure 4.4 illustrates the common set

of abstractions related to this notion of communication in the Social Machine

model, which are: Relationship, Wrapper Interface, Provided and Required

Services.

Relationship (Rel) is the centerpiece of the Social Machine model.

Dealing with relationships enables the establishment of a multitude of different

kinds of interactions between the computing process and its environment and,

as a result, provides a vision of engineering software which involves

communication and information processing. In practice, a relationship between

two Social Machines can be obtained by prior establishing a true persistent

relation between them. For example, to have specific kinds of interactions with

applications, such as Twiiter, Facebook, Dropbox, a client application needs to

be registered before calling their provided services, and, in most cases, different

constraints are associated to these relationships in order to determine specific

interaction views. Other types of relationships can also be considered. Thus, the

characterization of relationships can be made in several dimensions by

classification into orthogonal types: persistent/temporary, directed/undirected,

and explicit/implicit. However, regardless of the types, the main idea to be

highlighted here is the notion of relationship as key to determine the different

sets of interaction views, as we have already explained before. The concept of

relationships between SMs is similar to that of relationships between people; we

can view them as trusted relations between different SMs, satisfying established

constraints. In Section 4.7 we show how Facebook implement such behavior.

Wrapper Interface (WI) encapsulates the SMs computational unit

(i.e., Information Processing System) and provides an interface of

functionalities to be used by the SM’s services. It also comprises a mapping

layer which is responsible for dealing with data (converting, formatting, etc.)

Chapter 4 – Describing Social Machines 80

that flow from the SM’s services to the wrapped computational unit, and vice

versa. Then, it maps requests to the IFP’s inputs, and the IFP’s outputs to the

corresponding responses.

Provided Services (PS) represents the SM’s business logic that is

exposed as a dynamic set of services. For example, considering Twitter as a SM,

the API it provides could be considered a kind of provided service. Through

Twitter’s API it is possible a client application to interact with its main services

(e.g., search, tweet, direct messaging, retweet). In general, the Provided Services

can be categorized into two main types:

 Open Common Services: represent publicly available services whose

access to them does not require the prior establishment of a specific

relationship between the provider Social Machine and its client

applications. In practice, open services accept requests from

“unknown” and unauthenticated applications. Yahoo and Google

Maps are good examples of providers that offer fairly open services

accessible by any application through their public APIs. Taking our

analogy with human relationships, open services could represent, for

example, the general set of interactions we set up for unfamiliar or

unknown people. In the case of Social Machines, this set of services

forms a single and common interaction view whose access is limited

by a general set of constraints. As an example, a Social Machine can

limit the number of requests from a specific IP address to its open

services. Google, for example, impose rate limiting on its public APIs,

as well as Twitter, Yahoo, Facebook and others.

 Relationship-driven Services: beyond the open common services, a

Social Machine can make available a group of services whose access to

them are constrained according to the relationships established

between the SM and the client applications interacting with it. This is

the case of a SM dynamically provides different interaction views in

accordance with its relationships with others. Twitter’s API, for

example, is open for looking up public information about a user, but

other operations and conditions require a prior establishment of a

Chapter 4 – Describing Social Machines 81

relationship between Twitter and the application intended to call its

services. Each set of different services represents a specific interaction

view, but different interaction views can also be created by the same

set of services when they are provided under different quality

attributes. This behavior follows the aforementioned interaction

pattern, illustrated in Figure 4.3.

Required Services (RS) is an optional element defined by the

proposed model. It represents the set of services that a Social Machine needs to

invoke in order to work properly. It has the same semantics of required

interfaces which is a generally accepted element adopted in most software

component models (LAU; WANG, 2007). Assuming this concept is very useful

because it facilitates the specification of functional and structural dependencies

between SMs.

4.5.3. Control

In the Social Machine model, the semantics of control is related to any

restrictions or rules that a given SM establishes in order to influence or

determine its interaction views with others it relates to. Such restrictions are

represented by the element Constraints.

Constraints (C) specify the rules or limitations that take place during

the establishment of relationships and definition of the interaction views among

different SMs. We consider two main types of constraints: Visibility and

Quality.

 Visibility Constraints: this kind of constraints is related to the

visibility restrictions on the services provided by a Social Machine.

Often they specify different types of access modifiers or

permissions that determine the different sets of services (i.e.,

interaction views) to be accessed by others (according to the

relationship established between them).

 Quality Constraints: this type of constraints encompasses the

restrictions that influence the quality attributes of the services

provided by an interaction view. They can specify, for instance,

authorization protocols (for security), number of requests per hour

Chapter 4 – Describing Social Machines 82

(for performance) or any additional properties that can influence

any other quality attribute. The Twitter API platform, for example,

provides different options of rate limits, according to the kind of

relationship established with the applications that access its

services.

Table 4.2 summarizes the basic elements of a Social Machine model.

Table 4.2 - Basic Elements of the Social Machine Model

Element Description

Information

Processing System

(IPS)

Represents an abstraction of any computing unit

(e.g., a piece of hardware, software, person, things).

Relationship (Rel) A persistent type of connection between two Social

Machines. Relationships are responsible for

determining the degree of interactions between

SMs. They can be registered or inferred

relationships.

Wrapper Interface

(WI)

The interface of functionalities that encapsulates the

information processing system and forms the basis

for the SM’s services.

Provided Services (PS) Dynamic set of services provided by the SM to the

external world. They can be categorized into

relationship-driven or open common services.

Required Services (RS) The optional set of services required by the SM to

work properly. In some SMs these required services

are used internally and are not exposed like the

provided services.

Constraints (C) Rules or limitations that constraints the interactions

with the Social Machine’s services.

Chapter 4 – Describing Social Machines 83

4.5.4. Discussion

The conceptual view of social machine depicted in Figure 4.4 helps in

describing and designing both an entire system as a relationship-aware social

machine (BURÉGIO et al., 2013b) (e.g., the facebook platform as per presented

in Section 4.7) as well as each of its possible socially connected parts (e.g.,

modules, subsystems, users).

In practice, any computing unit that makes sense to establish

relationships with others and interact according to such relationships, can be

socially wrapped up into a set of dynamic and specialized services, and so

described as a relationship-aware social machine, following our SM abstraction

model. These entities include, for example, a source of information, a stateless

service, a collection of other socially wrapped entities, and people with their

information/behaviors.

In a meta-level architecture, our model can also be used to compose

existing Social Machines into new ones. In this way, the obtained system is the

result of a set of SMs working together.

4.6. Analysis Guideline

The main steps we use to analyze a system as a social machine are grouped in

Figure 4.5.

Figure 4.5 - Analysis Guideline

Each step can be summarized as following:

Chapter 4 – Describing Social Machines 84

1. IPS Understanding: The first step is to identify the kinds of information

the IPS deals with and, when viable, how such information are internally

represented and which are the possible operations over them.

Understanding the Information Processing System, the information it

deals with and its operations, helps the task of grouping the services that

expose to the outside world its internal functionalities. An acceptable

result of this step can be a description of the different types of identified

information and, if possible, a representation of how such information is

internally structured.

2. Services Identification and Grouping: The objectives of this step are both

analyzing how the IPS’s internal functionalities are exposed (i.e., which

kind of Wrapper Interface should be considered) and identifying and

grouping the set of Provided Services and, when applicable, the set of

Required ones. At the end of this step, an abstract model, containing the

groups of related services and the operations they perform, should be

provided.

3. Relationship Establishment: This step involves describing how

relationships among Social Machines are established. In practice, we

have realized two types of relationships:

 Registered relationships: represents the relationships that are

established through a manual (in opposite to inferred) registration

process. In this case, before two applications start to interact, the

owner of one of them should initiate a process (provided by the other

application) to register his application as a valid pair to interact with.

It is the typical case of the registration processes offered, for example,

by Facebook, Google APIs, Twitter and other Open API Platforms

(BURÉGIO et al., 2013a) in order to allow third part application to

interact with their provided services.

 Inferred relationships: are those relationships automatically

established between SMs based on existing data of the owners of the

involved applications. Systems based on Social Data (BURÉGIO et al.,

2013a) are an example of systems that take advantage of social data of

their users to infer preferences, trust between individuals, and

incentives for resource sharing. Based on the results of their social

Chapter 4 – Describing Social Machines 85

inference functions (IAMNITCHI; BLACKBURN; KOURTELLIS,

2012), such systems can provide social knowledge to support the

automatic establishment of relationships among different

applications.

4. Constraints & Interaction Views Definition: This step corresponds to the

definition of the constraints that somehow influence the formation of the

different interaction views provided by a Social Machine. Optionally, they

can also be classified into the types aforementioned (i.e., Feature-based,

Visibility and Quality).

Based on this analysis guideline, an experience report describing an existing

system (i.e., Facebook) as a Relationship-aware Social Machine with 282

interaction views is showed in the next Section.

4.7. Describing Social Machines In-Action

The Social Machine building block is indeed a way of modeling the social Web.

As it establishes a new perspective, one question is how to describe existing

social systems as Social Machines. Motivated by this question and prior to

starting some implementation cases, we made an effort to describe some

existing Web-enabled social systems under the perspective of our Social

Machine model. This included systems like Twitter, Dropbox, Facebook and

others. The next section shows part of the analysis of Facebook as a SM.

4.7.1. Facebook: A Social Machine with 282 interaction views

A primary example of the power of Social Machines as a model for describing

the emerging social systems can be seen in an application most of us are familiar

with: Facebook. Facebook is one of the most complete Social Machines in the

Web of today. It knows not just the relationships among its users, but it also

“knows” its relationships with other applications, what make it a true

relationship-aware Social Machine with 282 interaction views. Because of that,

we adopted it as an example of how we could describe an existing application

under the perspective of our Social Machine model. Thus, in order to do that, we

performed the steps defined in our proposed analysis guideline, described in

Section 4.6, which includes the following steps:

1. IPS Understanding;

Chapter 4 – Describing Social Machines 86

2. Services Identification and Grouping;

3. Relationship Establishment and

4. Constraints & Interaction Views Definition.

1. IPS Understanding: The Facebook’s Information Processing System

deals with the relationships among its users and other objects. To do so, it

uses the notion of Open Graph as its main core concept. The Open Graph

models User’s activities based on Actions (the interactions users can

perform), and Objects (the target for actions taken by users). In this sense, it

defines an open model for relating users to objects. In this model any user’s

action on an object can be mapped as a relationship in the graph. For

example, suppose a user is using a Facebook integrated app about cooking

recipes, which allows users to publish on Facebook when they cook

something. Once a story like that is published by the app, a relationship of

type ‘cook’ between the user and the recipe cooked (the object) is created on

the Open Graph’s structure. A general representation of Facebook’s Open

Graph and its abstractions (user, action and object) are shown in Figure 4.6.

Figure 4.6- Facebook's Open Graph30

2. Services Identification and Grouping: Facebook externalizes its

functionalities through a communication layer composed by a set of

Application Programming Interfaces (APIs). Such APIs forms the Provided

30 Adapted from http://developers.facebook.com

Chapter 4 – Describing Social Machines 87

Services that enables client applications to interact with Facebook

programmatically via HTTP requests. It is also possible to use several

methods in the JavaScript or mobile SDKs to build lots of other applications

on top of this communication layer. This is what makes Facebook an open

platform for development of interacting sociable applications on the Web.

Regarding its services, in this analysis, we focused on the Provided Services.

Based on the kinds of information that Facebook deals with (step 1) and the

functionalities it offers, we identified and grouped its Provided Services, and

built a mind map with them, as showed in Figure 4.8.

5. Relationship Establishment: In this step we analyzed how applications

establish relationships with Facebook. Relationships between Facebook and

other applications are of the type registered relationship. Hence, prior to

accessing Facebook’s services, developers need to perform a registration

process in order to create the desired relationship between Facebook and

his/her application. Thus, an application to interact with Facebook needs, at

least:

(I) To be registered in Facebook: developers should fill out a form in

the Facebook’s website which requests basic information about the

application, such as App Display Name, App Namespace, App

Domain, Category and so on. Figure 4.7 shows an example of

Facebook’s App registration form.

Figure 4.7 – Facebook’s app registration form

Chapter 4 – Describing Social Machines 88

Figure 4.8 - Facebook's Services Analysis

Chapter 4 – Describing Social Machines 89

(II) To have its permissions set up: besides register the application,

developers should choose its permissions. Basic permissions are already

established by default, i.e., the application will have access to only the

user’s basic information. Beyond that, any combination of additional

permissions can also be set (Figure 4.9).

Figure 4.9 - Facebook's 'Select Permissions' screen

Doing these two tasks above a relationship is established between Facebook

and an application. But, how such registered relationships determine 282

interaction views?

6. Constraints & Interaction Views Definition: In Facebook, most of

the restrictions used to control its interaction views (i.e. different sets of

provided services) are of the type ‘Visibility Constraints’. These visibility

constraints, in the case of Facebook, represent the different types of

permissions that Facebook offers to characterize its relationships with other

applications. The set of permissions is one of the properties of a relationship

established between Facebook and third-party applications. Table 4.3

summarizes our analysis on all the permissions defined by Facebook,

including the total number of available permissions grouped by their types.

Table 4.3 - Facebook’s Permissions31

31 For more details, access: http://bit.ly/fb_perms

Type Permission Quantity

Default Basic Information 1

Additional
(total of 82)

User Data 27

Friends Data 24

Extended 25

Open Graph 6

Chapter 4 – Describing Social Machines 90

Figure 4.10 illustrates how Facebook’s relationships are used to

determine the different interaction views accessed by third-party apps.

Figure 4.10 - Facebook's interaction views

In practice, beyond the default permission (basic information), each

application can select any combination of additional permissions. Therefore, the

total number of possible interaction views is given by the sum combinations

presented in Figure 4.11.

Figure 4.11 -Formula to calculate the total number of Facebook's possible interaction views

As can be seen in Table 4.3, the total number (n) of Facebook’s additional

permissions is 82 (n=82). Hence, using the combinatorial interpretation

presented in Figure 4.11, the total number of Facebook’s possible interaction

views can be given by:

Chapter 4 – Describing Social Machines 91

Considerations

The analysis of Facebook as a Social Machine was very important in the process

of characterizing Social Machines on the Web. It helped us to better understand

the social aspects of a system that well represents this new generation of

relationship-aware software. Facebook is not only a useful social network for its

users, but it is also a platform for developers. Actually, Facebook is one of the

most important general-purpose Social Machines (SHADBOLT et al., 2013) in

the Web today, because it enables the formation of other Social Machines in the

Web’s ecosystem. The result of this analysis points not only to the

relationship-awareness and “sociability” of the whole software, but also to the

degree of sophistication and complexity that can be enabled by a certain family

of Social Machines. In Table 4.4, the main abstractions of the social machine

model are mapped to the Facebook’s elements.

Table 4.4 - Social Machine’s abstractions mapped to Facebook

Social Machine

abstractions

Facebook

Information

Processing System

(IPS)

It consists of the Facebook’s Open Graph (including
operations on it) and the Facebook’s internal
functionalities.

Wrapper Interface It is represented by Facebook’s communication layer
responsible for mapping requests and responses to the
internal Open Graph’ operations.

Relationship Facebook knows the relationships among its users and also
its relationships with third-party applications. The latter
is obtained through a registration process and
characterizes Facebook as a relationship-aware system.

Constraints Visibility Constraints (i.e., permissions) are used to
determine Facebook’s interaction views with third-party
applications.

Required Services Not analyzed, because they are not exposed and we do not
have access to Facebook internal code.

Provided Services Set of Facebook’s provided services (Figure 4.8).

Chapter 4 – Describing Social Machines 92

4.8. Concluding Remarks

In this chapter, we established a unifying abstraction model for Social Machines

that can be used for specifying what we refer to as relationship-aware

applications and services. We outlined the notion of sociable software and

[re]defined the semantics of relationship as a way to weave “sociability” aspects

into software. Furthermore, we presented an engineering guideline for

supporting the analysis of existing systems under the perspective of Social

Machines.

Our abstraction model generalizes the traditional algorithmic Turing

Machine model of computation (i.e., the element IPS) and provides a new

conceptualization of computational phenomena which involve possibly related

and interacting building blocks that make use of notions from computing,

communication (in the form of relationships and interactions) and control.

In more than one sense, what we discussed in this chapter contributes to

the process of blending computational and social elements into software, and

further an attempt to give some foundations to systematically engineering the

emerging social systems. Next chapter establishes the basis for the creation of

SoMAr – an architectural style for the design of Social Machine.

Chapter 5 – Designing Social Machines 93

Desigining	Social	
Machines	

“Every great architect is - necessarily - a great poet.

He must be a great original interpreter of his time, his day, his age.”

Frank Lloyd Wright (1867– 1959)
American Architect, writer & educator

5. Designing	Social	Machines	

The previous chapters have laid the foundations for social machine. However,

we have not explicitly presented how architectures of social machines should be

designed. What are the constraints, principles and properties of such

architectures? Which guidelines and patterns should be considered to derive

systems as social machines?

Motivated by these questions, this chapter presents the third stage of our

research which involves the design of systems as social machines. This chapter

introduces SoMAr (Social Machine-oriented Architecture) and characterizes

its constraints, principles and properties. Furthermore, it also presents a

lightweight design guideline in conjunction with a reference architecture and

patterns as a way to support the process of deriving social machine-oriented

architectures.

5

Chapter 5 – Designing Social Machines 94

5.1. Research Guidelines

As shown in Chapter 1, our proposal includes four main stages and this chapter

presents stage 3, which is referred to as “Designing Social Machines”, as per

depicted in our research roadmap. In this stage we began our study by looking

in existing works for a common definition to the concept of architectural style.

Then, in the first step we adopt a basic framework to guide our definition of the

elements that compose an architectural style for social machines.

Brainstorming and focus groups were performed during this stage.

Furthermore, we used personal opinion surveys as an instrument for gathering

information about projects built with our model of social machines. This

includes projects developed during Graduate subjects and industry projects

such as Futweet32. A system called [YOU] was built as a case study just after

defining the guiding principles of social machines. Table 5.1 summarizes the

research guidelines adopted in this stage of designing Social Machines.

Table 5.1 - Research Guidelines for Designing Social Machines

Stage 03: Designing Social Machines

Goal Design systems as social machines

Questions How to design systems with the proposed paradigm?

Evidences Architectural style (principles, constraints, properties);

Design guidelines; Practical example (e.g., [YOU] is

described in Chapter 6)

Research

Methodology

Brainstorming and focus group; personal opinion surveys;

Case Studies

32 https://twitter.com/futweet

Chapter 5 – Designing Social Machines 95

5.2. A Basic Framework for Defining Architectural Styles

One of the most challenging aspects of writing about software architecture is the

adoption a common terminology. Often, many design-related terms suffer from

wide-spread ambiguity, which sometimes makes difficult the use of a common

vocabulary.

As one of the main goals of this chapter is to define an architectural style

that guides the design of systems as Social Machines, we need to establish a

common definition of the notion of architectural style prior to exploring the

details of the style we refer to as Social Machine-oriented Architecture (SoMAr).

Given that, we have to answer at least two questions: “What exactly do we mean

by an architecture style?” and “What are its key elements?”

Based on our discussions and investigations on software architecture and

architecture styles (GARLAN; SHAW, 1994)(SHAW; CLEMENTS,

1997)(TAYLOR; MEDVIDOVIC; DASHOFY, 2009)(FIELDING; TAYLOR,

2000)(BASS; CLEMENTS; KAZMAN, 2012), we can generalize the concept of

an architectural style into the following common definition:

“An architectural style comprises a set of constraints and

principles imposed on the design of a product to obtain desired

properties”

Figure 5.1 illustrates this definition and reinforces that a style limits/guides the

development of a product with the aim of obtaining beneficial properties.

Figure 5.1 –Generic Definition of an Architectural Style

Chapter 5 – Designing Social Machines 96

The aforementioned definition can be applied to several contexts,

including building architecture, for example. To support this claim, Figure

5.2(a) illustrates the elements of this definition in the context of a Swiss Chalet

style, which is an analogy from building architecture, used by a UC Irvine’s

software architectures group33:

“…buildings constructed in the Swiss Chalet style are constrained to

have steep roofs. This constraint elicits a particular beneficial property: snow

will slide off the roof, rather than building up crushing the structure.”

Figure 5.2 - Architectural style in different contexts: (a) – building architecture; (b)

software architecture

As can be seen in Figure 5.2(a), the Swiss Chalet style has steep roofs as

its basic constraint. This constraint limits the design of house architectures

guided by this style with the aim of allowing snow slide off the root (desired

property). In this way, it is worth noting that it is possible to have several

distinct products (i.e., house architectures), yet following the same style.

This is exactly what happens in the context of software. Software

architectural styles (Figure 5.2 (b)) define a set of constraints and design

principles that limit the design of software with the aim of satisfying different

quality attributes (desired properties such as high availability, performance,

security and so on). A software architecture style limits/guides how a software

system should be built and how its components and connectors should

communicate. However it is also possible to have different (specific) system’s

architectures following the same software architecture style.

33 http://isr.uci.edu/projects/archstudio/myx.html

Chapter 5 – Designing Social Machines 97

As architectural styles define high level patterns and principles

commonly used to develop applications, they include, for example, the different

styles derived from software paradigms, such as SOA (service-oriented

architecture), component-based architectures, REST and so on (see Chapter 2).

Each of them with its own set of constraints/principles that imposed on the

design of software obtains desired quality attributes. Table 5.2 lists some

examples of what we consider architectural styles and organizes them by

category, namely communication, deployment and structure.

Table 5.2 - Examples of architectural styles

Category Architecture Style Description

Communication SOA

(ERL, 2005)

Refers to the architecture style of systems that expose and

consume functionalities as services using contracts and

messages.

REST

(FIELDING; TAYLOR,

2000)

Architectural style that uses existing HTTP methods as

application protocol to apply CRUD operations (Create,

Read, Update and Delete) to information resources

defined by their URI.

Deployment Client/Server

(SHAW; CLEMENTS,

1997)

It segregates the system into two applications, where the

client makes requests to the server. It is possible to have

variations on the client/server style including, for example,

Peer-to-Peer style that allows the client and server to

exchange their roles to share information.

Structure Pipes & Filters

(SHAW; CLEMENTS,

1997)

It designs a system as a set of independent and stateless

filters that transform input data stream into an output

data stream and the pipes conduct such streams.

Layered

Architecture

(SAVOLAINEN;

MYLLARNIEMI,

2009)

It partitions the concerns of applications into stacked

groups (layers). Each of them with its own responsibilities.

MVC (Model-View-Control) is the most common layered

architecture.

Object-Oriented

(TSAI;

ZUALKERNAN, 1988)

An architectural style based on the division of

responsibilities for an application or system into individual

reusable and self-sufficient objects, each containing the

data and the behavior relevant to the object.

Component-Based

Architecture

(SZYPERSKI, 2002).

It decomposes application design into reusable functional

or logical components that expose well-defined

communication interfaces.

Chapter 5 – Designing Social Machines 98

As we adopted this notion of architectural style for defining SoMAr , next

section provides an overview of this style, presenting some of its constraints,

guiding principles and desired properties.

5.3. The SoMAr Architectural Style

The motivation for developing SoMAr (Social Machine-oriented Architecture)

is to create an architectural style that could serve as an abstracting framework

for guiding the design of Social Machines as a proper family of systems. This

section makes clearer the constraints, principles and desired properties

considered by SoMAr.

First of all, it is important to note that SoMAr is a hybrid style, which

means it combines principles from other existing styles as a way of yielding

more powerful design. Actually, some software paradigms such as object-

oriented, service-oriented and component-based paradigms provide us with

substantial practices that can successfully support the identification and

description of appropriate abstractions within architecture. However, according

to Taylor et al. (TAYLOR; MEDVIDOVIC; DASHOFY, 2009) existing

experiences show that these practices are rarely applied independent from each

other, mainly when more complex systems are considered.

Supporting this thought, J.D. Meyer (MEYER et al., 2009) states :

“…the architecture of a software system is almost never limited to a

single architectural style, but is often a combination of architectural styles that

make up the complete system. For example, you might have a SOA design

composed of services developed using a layered architecture approach and an

object-oriented architecture style.”

In fact, there is a great number of architectural styles, whilst a high-

quality software design inevitably includes more than one style. As a

consequence, during the definition of SoMar we investigated suitable elements

from OO, SOA, REST and other existing styles in order to support our

motivation for creating a hybrid one. The resulting, style has successfully

Chapter 5 – Designing Social Machines 99

facilitated the design of social machines. As illustrated in Figure 5.3, SoMAr34

is the combination of different principles from existing styles,

constrained by the unified vision of Social Machines.

Figure 5.3 - SoMAr: Social Machine-oriented Architecture

The unified aspect of the Social Machine paradigm is accomplished by

both the SoMAr’s combination of principles from existing styles and the unified

arrangement of elements of its building blocks (i.e., the Social Machine model

discussed in the previous chapter), once such building blocks also embody

elements from services, components, REST, and other paradigms to wrap any

kind of socially connected computing unit.

5.3.1. Constraints

The Social Machine model, introduced in Chapter 4, is the architectural building

block native to our proposed style. It is important to have its elements in mind

in order to better understand the SoMAr’s constraints. Social Machine is not

only a possible foundation for describing the emerging socially connected

computing units but it also should provide some general constraints to guide

the design of such units.

Hence, systems should be designed as networks of related Social

Machines in SoMAr as follows:

34 SoMAr lives up to its name, once the word “somar” in Portuguese means “to sum”,

what makes sense to think about a hybrid style that combines different principles from other
existing ones.

Chapter 5 – Designing Social Machines 100

 Sociable. By the very nature of the concept we are proposing, SMs are

sociable stuffs and, in nearly all cases, each one should provide means to

make relationships (see Chapter 4) and interact with one another. The

isolated Social Machine is an exception.

 Identified & accessible. Any Social Machine on the Web is an entity

at some URI and can have its services accessed in a standard way (e.g.,

via HTTP operations).

 Autonomous. Each Social Machine can be maintained, developed,

deployed, and versioned independently.

 Composable. Social Machines can be composed by other Social

Machines. This can be obtained by integrating data from different Social

Machines or by connecting their services together, i.e., connecting the

provided services of one Social Machine to the required services of other.

 Loose coupled. Each Social Machine should be independent from each

other, and can be replaced or updated without breaking applications that

use it as long as its “provided services” are still compatible.

 Encapsulated. Social Machines expose services that allow the caller to

use its functionality, but such services should not reveal details of the

wrapped computational unit’s processes, internal variables or state.

 Extensible. A Social Machine can be extended from existing Social

Machines to provide new behavior.

 Highly cohesive. Well-defined responsibility boundaries for each

Social Machine, and to ensure that each SM contains functionality

directly related to the tasks it is responsible for. This fact helps to

maximize cohesion within the Social Machine.

 Not context specific. Social Machines are designed to operate in

different environments and contexts. Specific information, such as state

data, should be passed to the Social Machine’s services instead of being

included in or directly accessed by the Social Machine.

 Reusable. Social Machines should be designed to be reused in different

contexts by different systems.

Chapter 5 – Designing Social Machines 101

Figure 5.4 presents the constraints defined by the SoMAr architectural

style and illustrates how they are mapped into some popular existing

architectural styles, i.e., styles derived from the paradigms discussed in Chapter

2. It is worth noting that a constraint can simultaneously belong to more than

one architectural style and in Figure 5.4 they are positioned in the place they

better fit into. For example, “loose coupled” is a typical constraint from SOA and

CBD, and “reusable” is a constraint almost equally considered on the

development of building blocks of all the listed architectural styles.

Figure 5.4 – SoMAr’s constraints

Another important point is that such list of general constraints serves as

guideline and it is not fixed or fully comprehensive. It means that variations of

constraints from other styles can also be added to such list in order to

instantiate different software architectures. For example, considering the

client/server deployment style (Table 5.1), it is possible to build a Social

Machine-oriented architecture in which the socially connected entities can act

as servers (providers), clients (consumers) or even both (prosumers35).

Prosumer SMs support the peer-to-peer architectural style, which is a variation

of the client/server style, to enable the deployment and management of multiple

35 “Prosumer” is a term originally proposed by Alvin Toffler (TOFFLER, 1980) to

designate someone who blends the roles of "consumer” and “producer". Thus, this term is used
herein to refer to connectable entities that are capable of both consuming as well providing
service.

Chapter 5 – Designing Social Machines 102

federations of Social Machines. A multi-layered style can also be used to support

the definition of a reference architecture (introduced in Section 5.5) for Social

Machine through the combination of further styles. Next, some guiding

principles are provided.

5.3.2. Guiding Principles

Social Machines presents a vision of a world in which systems are cleanly

partitioned and consistently represented as connectable and sociable entities,

and the following principles should also be considered for guiding the design of

such entities:

Embracing relationships

Social Machines is about embracing different kinds of relationships. For many

years, connected entities have been accommodated inside information

processing systems. Relationships do exist in the core of such systems, but often

only as a means of defining dependencies among them. In our discussion about

‘relationship-aware’ software in chapter 4, we mentioned the need to

disambiguate the semantics of relationships that connect entities and to qualify

their capacity to determine different levels of interactions between them. Like

users, we can understand semantic dependencies between entities, but

software—the building blocks themselves— are “blind” to these relations, i.e.,

they are not aware about them. Social Machine-oriented systems must be aware

of their relationships with others and create a way to deal with them in order to

infer the different sets of interactions that should take place among a plurality of

socially connected entities.

Neutrality

A Social Machine should provide its services in a way that SMs using such

services do not take care about how they were implemented, whilst it should

define services with interfaces that also abstract away application-specific

details. It means that beyond implementation neutrality the SM’s services

should emphasize application neutrality. Application neutrality enables

shareability by providing a generic and application-neutral protocol. It is

desirable that SMs use well defined and de facto standard protocols in such way

that the communication between them is as simple as possible. REST is an

Chapter 5 – Designing Social Machines 103

example of an existing style that implicitly makes use of such concern by

providing an application protocol build upon the core HTTP methods which, by

their turn, are used with associated semantics. Atom Publishing Protocol

(APP)(SAYRE, 2005) and Google’s gdata Protocol36 are examples of generic,

application-neutral protocols. By designing Social Machines we should not only

put emphasis on implementation neutrality, but also on the generic interface

constraint of application neutrality which should be the main goal of the

definition of a service interface. Social Machines’ provided services should be

legible, neutral and consequently easy to use; the clearer a SM is in providing

access to its services, the easier will be for developers use their services.

Transparent Blending

As aforementioned, Social Machines integrate both social and computational

processes. However, to be considered a Social Machine this blending should be

transparent as much as possible. We could realize such fact during the First

International Workshop on the Theory and Practice of Social Machines

(SOCM2013). At that time, we presented the concept of “social slide” - a slide

connected to the Web that blended two existing systems, i.e., a slide show

presentation program and a polling service. Such “social slide” had an URL that

allows users to submit votes/comments to the slide and change its content on

the fly. The “social slide” was indeed a transparent way of blending a

computational process (i.e., the process of computing users’ input to

automatically update the slide’s content) and a social process (i.e., the process

of directly “co-authoring” a shared content). During the discussion, 80% of the

audience (more than 40 experts) answered “Yes”, when asked whether the

“social slide” could be considered a kind of Social Machine or not. The main

reason for that was the transparent blending between the two existing systems,

i.e., the slide show presentation program and polling service. Such transparent

blending gave the impression that the slide was a single socially computing unit

that updated itself in response to the interactions of the audience. Based on this

result, we concluded that sometimes the degree of novelty (innovation) of

something relies (almost exclusively) on the way it blends existing thing. Maybe

it is the case of both our proposed unified model and architectural style that in

36 https://developers.google.com/gdata/

Chapter 5 – Designing Social Machines 104

more than one sense blend concepts from existing approaches in order to

establish a new one.

5.3.3. Obtained Properties

As stated in Section 5.2, an architectural style comprises a set of constraints and

principles imposed on the design of a product to obtain desired properties. We

discussed the general set of constraints (Subsection 5.3.1) and guiding

principles (Subsection 5.3.2). However, which are the obtained properties when

applying such constraints? In order to answer this question, we realized some

practical experiments in which developers used our proposed approach and

answered an opinion survey (as presented in Chapter 6). We collected a set of

benefits that could be observed by developers during the development of the

different case studies, and we can highlight the following cited properties:

 “Sociablility” as a quality attribute of software. By creating a

Social Machine implies much more than just connecting software to the

Web, it allows the creation of software that accounts for the fact that it

will exist in a world of multiples peers. Then, a Social Machine design

places the idea of sociability as it core. By "sociability" we mean the

ability of a system to "socialize" with others, which could involve four

things:

1. Ability to establish (different) relationships;

2. Ability to recognize its relationships with others;

3. Ability to provide different interactions according to the

relationship with the peer it interacts with; and

4. Ability to disengage from a relationship (i.e., break it up).

In our exercise to describe Facebook as a Social Machine with 282

interaction views (Chapter 4), it was possible to realize how the different

types of relationships established with third-party applications can impact

the number of interaction views. We believe that to define “sociability” as a

software quality attribute such as performance, security and others, is

important to the success of any social system on the Web. In practical terms,

Chapter 5 – Designing Social Machines 105

sociability can be a composed quality attribute of software, which can be

broken down into other attributes like reusability and adaptability.

 Abstraction. SoMAr can abstract the view of a system as whole while

providing enough detail to understand the services and responsibilities

of individual Social Machines and the relationships between them and

other entities. This allows a reduction of complexity into a generalization

that retains the base characteristics of its core functionalities.

 Understandable. It maps the application more closely to the socially

connected real world entities that make relationships and interact,

making it more understandable.

 Interoperability. Given their neutrality and the adoption of standard

protocols and data formats, the provider and consumer of Social

Machines' services can be built and deployed on different platforms.

 Ease of deployment. As new compatible versions become available,

one can replace existing versions without impacting on neither the other

Social Machines nor the whole system.

 Ease of development. Social Machines implement well-established

interfaces to provide defined services by allowing the development

without impacting other parts of the system.

 Reusability. The idea behind Social Machines is to take advantage of

the networked environment where they are to make easier to combine

and reuse exiting services from different SMs and use them to

implement new ones. The use of reusable Social Machines means that

they can be [re]used to spread the development and maintenance cost

across different systems or applications.

Having the aforementioned principles, constraints and properties in mind, next

section presents a guideline for supporting the design of Social Machines.

5.4. Design Guideline

As a software development guideline for designing Social Machine-oriented

architectures, we have considered the steps illustrated in Figure 5.5 as the basis

for the design exercise of Social Machines.

Chapter 5 – Designing Social Machines 106

Figure 5.5 - Design Guideline

1. Define building blocks

The key step to design a SM-oriented architecture is to define which parts of the

system should be socially wrapped. Our high-level abstraction model helps in

designing the whole Social Machine as a single social service component and

parts of the Social Machine (e.g., its modules, subsystems and participants) as

relationship-aware entities. In practice, any entity that has the potential to

establish relationships with others and interact according to such relationships

can be wrapped up into a set of specialized APIs and be defined as a

relationship-aware entity. These entities include, for example, a source of

information, a stateless service, a collection of socially wrapped entities and

people and their information/behaviors. In a meta-level architecture, our model

can also be used to compose existing Social Machines into new Social Machines.

In this way, the obtained system is the result of a set of SMs working together.

To decide what should be socially wrapped, it is necessary to analyze which

parts indeed make sense to involve with a “social layer”. This layer should allow

the creation of an independent and autonomous entity capable of establishing

relationships with others to define its different interaction views. During the

design process, each SM should have a unique identifier, often a URI, which is

used as basis for accessing its provided services/APIs.

2. Specify services

During this step, the set of services to be provided by each Social Machine

(identified in the Step 1) needs to be designed. High-level design as well as

significant parts of the detailed design of the services provided by each Social

Machine is included in this step. The Social Machine’s services can be specified

in terms of endpoints, its relative URIs, type of request (GET, POST, etc),

possible parameters and description. Often a common URI syntax is adopted to

identify Social Machines and its services.

Chapter 5 – Designing Social Machines 107

Table 5.3 shows an example of the set of services provided by a Social Machine

called CalendarYOU which wraps users’ agendas on Google Calendar37.

Table 5.3 - Simple example of sevice specification

3. Design integrations

Generally, the process of composing Social Machines deals with both structured

and unstructured data from multiple sources. As there is a need to integrate

heterogeneous data from existing infrastructures, the architecture design of

composite Social Machines encompasses some integration issues. For example,

the architecture has to deal with integration issues as collecting and filtering the

flows of data from wrapped computational units and/or converting data into

common and consistent formats for Social Machine manipulation.

 In this step, a common view of relevant data - that occurs when

designing Social Machine-oriented applications - should be defined. Often, a

diagram containing the set of abstract data type is enough to define the kind of

37 www.google.com/calendar

Chapter 5 – Designing Social Machines 108

data to be manipulated by each Social Machine. Once the abstraction data types

are defined, the mechanisms of converting, mapping and formatting specific

data should be designed. It is common to have a combination of different

architecture patterns to deal with integrations issues, as will be shown in the

reference architecture depicted in Section 5.5.

4. Design interaction models

To define how the components and actions that make up a system interrelate is

very important to understand and support the real-life user and other

application interactions with a system. In the context of Social Machines, these

interactions are intensified due to the large number of possible relationships

among the Social Machine, its users and third-party applications. Because of

that, designing the possible interaction models is a fundamental task of the

Social Machine design. An interaction model defines how the interactions

among different parts take place. For example, it includes the definition of

communication protocols and how such parts establish relationships to interact

with each other.

Social Machines define different interaction models, but some patterns of

interactions can be observed and are worth highlighting. One of these patterns

is what we call the “love triangle" interaction model, which is accomplished by

an authentication model involving the Social Machine, its users and third-party

applications.

The “love triangle” model

The “love triangle” model is a generalization of the OAuth model (LEIBA,

2012) and defines three roles, namely: API Provider (the Social Machine), Data

Owner (Users) and API Consumer (Third-party Applications), as illustrated in

Figure 5.6.

Chapter 5 – Designing Social Machines 109

Figure 5.6 - The "love triangle" interaction model

As can be seen in Figure 5.6, the Social Machine wraps a system - which

keeps the user data - and exposes a set of APIs to be accessed by third-party

applications. Such applications should be previously registered in the Social

Machines and some credentials (e.g., username and a password) should also be

established in advance.

In this model, the same registered application can be used by different

users. Actually, third-party applications act on behalf of a user. They do not

access their own data but those of the user (the data owner). In this case,

instead of using its credentials, an application should use the data owner’s

credentials to make requests - pretending to be the user.

The “love triangle” interaction model is commonly used when a Social

Machine exposes users’ data in the form of a platform of Application

Programming Interfaces (APIs) to be accessed by other applications. In this

case, there is a need to establish an authentication model that involves these

different parts. Currently, this model is supported by protocols for

authentication and authorization like OpenID and OAuth (LEIBA, 2012), which

recently have gained wide popularity on the Web. Next, we describe a reference

architecture that combines different design patterns in order to support the

design of systems as Social Machines.

5.5. Reference Architecture and Patterns

A reference architecture can be extracted from practical developments on

applying architectural styles and acts as a template solution for the design of

Chapter 5 – Designing Social Machines 110

architectures of related applications that possibly belong to a certain domain or

family of systems. In practice, a reference architecture has substantial

knowledge, acquired through the use of a set of design decisions and patterns to

structure different applications within a particular domain (TAYLOR;

MEDVIDOVIC; DASHOFY, 2009).

Hence, based on practical experiences and case studies in the context of

social machines, it is possible to generalize the set of adopted solutions with the

aim of defining a higher level architecture that can be used as reference for the

design of social machines. Motivated by this fact, we took into account our

different development experiences with social machines (BRITO et al., 2012;

BURÉGIO et al., 2014a, 2014b, 2013b; MEIRA et al., 2013, 2011;

NASCIMENTO; GARCIA; MEIRA, 2012) as well as the practical use of

architecture integration patterns (LIU et al., 2009), with the aim of defining a

reference architecture for social machine that integrates the common set of

patterns we have been used in a number of successful implementations.

Figure 5.7 illustrates the obtained high-level architecture and shows how

it integrates Model-View-Control (MVC), Pipes & Filters and Data Federation

patterns. This conceptual level architecture is a technology-independent

reference that can be used as a template for instantiating concrete architectures

of both single and composite social machines.

Chapter 5 – Designing Social Machines 111

Figure 5.7 - Reference Architecture for Social Machine

5.5.1. Model-View-Control

The reference architecture for social machines depicted in Figure 5.7 follows the

Model-View-Control (MVC) pattern, which divides the system into three

interconnected layers, namely Model, Controller and View. The first two are

part of the social machine’s structure and the latter is a layer that groups the

applications that use (or are built on top of) the social machine’s provided

services.

5.5.1.1. Model	

The Model uses the element Wrapper Interface to getting access to data

obtained from the wrapped computing units (IPS in Figure 5.7) and making

these data available to the SM’s provided services. It is worth mention that in

the case of composite social machines, the wrapped computing units can also be

represented by a set of individual SMs, such as SM-1, SM-2, SM-3 and SM-4

(see Figure 5.7). In this case, the Data Federation Pattern is used to aggregate

data and make them available to the composite-SM’s controller.

Chapter 5 – Designing Social Machines 112

5.5.1.2. Controller	

The Controller represents the layer in which the SM’s provided services are

placed. It uses the data delivered by the model layer and provides a set of

software components that, among other things, are responsible for

implementing both the SM’s business logic and the intrinsic features of a social

machine like its relationship-awareness capability.

Components in charge of the SM’s business logic depend on the business

domain the social machine belongs to. For the sake of simplicity, Figure 5.7

shows only two examples of these components, namely Query Service and

Information Grouping, which are often implemented when developing

composite SMs that deal with a huge amount of data extracted from multiple

different sources.

Relationship Manager

Among the components in charge of implementing the intrinsic features

of a SM, we can highlight the Relationship Manager. As aforementioned in

Chapter 4, relationship is the key element of the social machine model. In fact, a

SM can establish a lots of different relationships with a multitude of

applications, systems, services, people, physical objects and other socially

connected entities that [re]use the SM’s provided services. The Relationship

Manager is an important component of this reference architecture as it is

responsible for realizing part of the relationship-awareness aspect (and

consequently “sociability”) of a SM. This component should provide

mechanisms to mediate the establishments of relationships between the SM and

others.

As presented in Chapter 4, relationships can be inferred (automatically

established) or registered (manually established through a registration process).

In practice, most of the current social machine platforms use the latter type to

allow third-party applications to interact with their services (BURÉGIO et al.,

2013b). It means that prior to accessing the SM’s services, developers need to

perform a registration process in order to create the desired relationship

between the SM and his/her application. In terms of design, the steps of a

possible registration process to be implemented by the Relationship Manager

are illustrated by the sequence diagram in Figure 5.8.

Chapter 5 – Designing Social Machines 113

Figure 5.8 - Process of establishing a relationship

As can be seen in this figure, during the registration process, developers

should provide information about his/her application and the properties that

will characterize the relationship to be established between the application and

SM. These properties will define how should be the interactions between the

two parts, and they can include, for example, desired permissions, rate limiting,

payment terms (when applicable) and others.

5.5.1.3. View	

Finally, the Viewer layer represents the plurality of socially connected

entities (including other social machines) that make use of the SM’s provided

services or even are built atop of them. As can be seen in Figure 5.8, these

entities comprise different applications, systems, wearables, physical objects

and so on. Each of them with a specific kind of relationship to determine what

and how they interact with a given SM.

5.5.2. Pipes & Filters

In our design guideline (Section 5.4), we mentioned that the process of

wrapping an Information Processing System (IPS) possibly involves a need to

deal with a variety of data and formats manipulated and provided by such IPS.

Given that, it is worth noting that to support the set of SM’s provided services

requires the development of Wrapper Interface (WI) that are in charge of

Chapter 5 – Designing Social Machines 114

collecting and converting data provided by the Information Processing System

(IPS) to be wrapped. Figure 5.9 illustrates how the WI can be designed.

Figure 5.9 – Wrapper Interface designed as a set of Pipes & Filters

As can be seen in this figure, the element WI uses Pipes and Filters as an

integration pattern to create the logic for both data conversion and

combination. A WI should consist of a set of interconnected components that

perform specific tasks such as loading data from the wrapped IPS, filtering

unnecessary data, and formatting them to the desired representation.

The extractor component is responsible for converting the wrapped

datasets into the format required by the component that encapsulates the

persistence logic to be provided to the SM’s controller layer, namely Persistence

Manager (PM). PM is used to support the SM’s provided services by retrieving

and updating specific data types to be handled by the SM’s business

components. It is important to note that such set of internal components serves

as an initial reference and can be customized, according to the specific needs of

the concrete architecture to be instantiated.

5.5.3. Data Federation

The Data Federation style is used in the social machine’s reference architecture

as a way of aggregating and correlating the necessary data from multiple

sources. As can be seen in Figure 5.8, in the case of composite social machines,

the data federation should be realized by combining the set of parallels pipes

and filters defined by each individual SM. In this pattern, a single source of data

(e.g., IPS) remains under control of an individual social machine that can

Chapter 5 – Designing Social Machines 115

asynchronously pull data on demand for federated access. This process of

federating data is also supported by a specific component within the controller

layer. In Figure 5.8 this component is represented by the Information

Grouping component.

5.6. Concluding remarks

In this chapter, we provided a synopsis of the key constraints, principles and

properties pertaining to social machine-oriented architectures. We introduced

SoMAr as a social machine architectural style that combines different aspects

from existing styles as a way of guiding the design of systems under the

perspective of our social machine model.

The design guidelines used to develop systems as social machines were

outlined in this chapter. Furthermore, we presented a high-level conceptual

architecture that combines different patterns and serves as a reference

architecture to derive both single and composite social machines.

To sum up, the central idea of SoMAr revolves around the notion of social

machines as a unified way to design the wrapping of any computing unit that

can be engaged in relationships and interactions with others. In practice, a

Social Machine enables such relationships and interactions with a variety of

applications, systems, people, physical objects, wearables and other socially

connected entities.

The next chapter presents a discussion through the experience and

lessons learned from applying our approach to the implementation of practical

cases social machines in different contexts.

Chapter 6 – Experience & Evaluation 116

Experience	&	Evaluation	

“Practice is the frequent and continued contemplation

of the mode of executing any given work...”

Marcus Vitruvius Pollio (1642 – 1727)
Roman author & architect

6. Experience	&	Evaluation	

We have been used Social Machines as a paradigm to guide the analysis, design

and implementation of several emerging Web-enabled social systems. This

chapter describes some of our implementation experiences and lessons learned

from applying Social Machines paradigm in different contexts. First of all, we

present the main stages of our evaluation approach, outlining their main goals,

context and methodology. After that, for each stage, we present details of the

different experiences through a qualitative discussion about the obtained

results.

6

Chapter 6 – Experience & Evaluation 117

6.1. The Evaluation Process in a Nutshell

We used a four-stage approach to implement and evaluate the Social Machine

paradigm proposed herein. Our approach can be divided into the following main

stages: i) Preliminary Experience, ii) Case Studies and iii) Opinion Survey.

Figure 6.1 summarizes the goal, methodology and context considered in each

stage.

Figure 6.1 – 3-stage approach to evaluate the Social Machine paradigm

Next Sections look deeply at each stage and present details of the

obtained results.

6.2. Preliminary Experience

In this section we describe the implementation of a seminal system, namely

Futweet, developed using the initial ideas of Social Machines. Although there

has been a number of developments on the model of Social Machines used at

that time, Futweet still represents a relevant starting point to identify some

preliminary lessons learned about the use of the Social Machines paradigm in

the implementation of a real systems from scratch.

Chapter 6 – Experience & Evaluation 118

6.2.1. Futweet

Futweet is both a social network and a guessing game about football (soccer)

results. Initially developed for Twitter users, Futweet was subsequently

connected with other online social networks, e.g. Facebook and Orkut, making

it a good initial case study for illustrating the development of an application that

uses the concept of Social Machines.

Futweet is a social game originated from the idea of developing a Social

Machine using the features provided by Twitter, which is a paradigmatic

example of a Social Machine. The game illustrates the development of a real

Social Machine, since it was designed and built to be networked with other

applications and be itself a connection point of other applications and services.

The social game was designed as a network of the related machines Twitter,

Orkut, Facebook, Gmail and MSN. Figure 6.2 shows all Social Machines that

comprise the Futweet system and their relationships.

Figure 6.2 – Futweet as a network of Social Machines

Chapter 6 – Experience & Evaluation 119

Futweet is, of course, part of a network; in it, we can map the main

abstractions of the Social Machine model (see Chapter 4) into the elements

presented in the Futweet system, as shown in Table 6.1:

Table 6.1 – Social Machine abstractions mapped to Futweet

Social Machine

abstractions

Futweet

Information

Processing

System (IPS)

It consists of the Futweet’s business rules, i.e., its core and
internal functionalities which are wrapped.

Wrapper

Interface

It is represented by Futweet’s communication layer
responsible for mapping requests and responses to the
IPS’s inputs and outputs, respectively. It deals with data
from interactions with Twitter, Gmail and MSN, for
example.

Relationship Futweet has relationships with other online social
networks. These relationships define persistent
connections with components or services that can be
considered part of the social game network. If any of these
SMs are unavailable, Futweet as a whole may be affected.

Constraints Futweet has what we call “quality constraints” (see
Section 4.5.3). Some of them are similar to the Twitter
API rate limiting. So, when using an application built on
the Futweet API, it may run into a situation where it is
rate limited, i.e., unauthenticated calls are permitted 100
requests per hour. Futweet also limits request per account
and IP.

Required

Services

Set of services the Futweet needs to work properly, e.g.,
the search service provided by Twitter.

Provided

Services

Futweet’s specialized API, which encapsulates the main
features of the game available on the Web.

Mechanism of Communication

Sending guesses

The basic mechanism of the game is to send guesses on soccer matches in a

given league; such guesses are processed and compared with a set of pre-

Chapter 6 – Experience & Evaluation 120

established scoring rules and the winner is one who gets more points at the end

of a specified period of time, which generally coincides with the end of the

league championship. In the case of Twitter, to send the guess of a match

follows a pre-defined syntax that has the team's acronyms and predicted scores

as follows.

@futweet < TEAM 1 Acronym> <Score for TEAM1> X <Score for TEAM2> <TEAM2 Acronym>

Searching for guesses

Futweet has also an engine that periodically searches for tweets matching the

pattern, extracts the information that represents the guess of a user and then

recalculates the overall rank. Since Futweet also exists as embedded

applications in Facebook, a user can request data (e.g., a ranking list) to the

Futweet’s apps on top of the Facebook’s platform. Futweet is a Social Machine

of class prosumer is an example of how Social Machines can work together to

receive, compute and present information.

Infrastructure

Futweet does not own the servers it runs upon and its infrastructure is provided

by Twitter (hunches in the form of tweets) and Amazon EC2. Hence, the social

game is an application fully provided, designed, implemented and available in

the cloud. This reinforces the assertion that the fundamental component of a

Social Machine (its computational unit) and its (possibly many) other

components can be supported by other, existing, Social Machines, resulting in a

network which is, by itself, the desired application.

The functionalities of this network are encapsulated by a wrapper

interface and a set of APIs (provided services) that make the main features of

the Futweet available to other applications. It is worth observing that the

Futweet serves as the "glue code" between different Social Machines.

Design Issues

During the design phase of Futweet as a Social Machine, it was necessary to

consider a set of questions in which the answers had influences in the

development of the social game itself:

Chapter 6 – Experience & Evaluation 121

 Are there any available Social Machines on the Web that could be

(re)used by the project? Building a Web application as a SM should

consider the existence of other machines to be (re)used. In the case of

Futweet, already existing machines considered were: Twitter, Amazon

AWS, Gmail, MSN and, thereafter, the online social networks Facebook

and Orkut.

 What does the Social Machine provide for its environment (Web)?

Futweet is one of several implementations of a soccer guessing game.

However, it provides mechanisms through APIs to allow users to use its

platform to create their own applications of guessing game, and allows

the entertainment of Twitter users by extending the capabilities of

Twitter through the addition of a new service.

 What are the (read/write) operations provided by the application?

Social machines may have different social levels that vary according to i)

the connection they have with other machines and ii) the type of

operations enabled by these connections. As mentioned before, Futweet

is a prosumer Social Machine. It has connections to read/write on

Twitter (read and put data in the social network) and allows the same

operations through its own API (users as well as third-party applications

can remotely post on and read data from Futweet).

By answering these questions, the implementation of Futweet consisted

of designing a set of interfaces to access various Social Machines, governed by

business rules (from the social game) that implied the functionalities and design

of an API, on the top of which the application (website) was also built. This

simplistic view of Futweet was important for understanding the concept of

Social Machines.

6.2.2. Discussion

With this initial development of the Futweet system we identified several factors

that should be taken into account when developing a Social Machine; One has to

bear in mind that the complexity of a given system’s development is directly

related to the properties, power, limitations and restrictions of other Social

Machines considered in the project. Non-functional requirements such as

Chapter 6 – Experience & Evaluation 122

response time can be affected by quality attributes of SMs being used as a basis

for the design and implementation, such as availability, limitations or

restrictions of third-party APIs, changes in the mechanisms for accessing Social

Machines, and so on.

We were aware that Futweet was a “toy” project compared against actual

corporate projects. However, by comparing the effort needed to design it from

scratch against one using our approach, it is clear that Futweet is not small

project anymore. Futweet puts together a lot of stuffs already provided by

existing Social Machines available in the Web.

Improvements on the initial SM abstraction model

The Futweet experiment is a milestone of the transition from the initially

adopted Social Machine model (MEIRA et al., 2010) – without the semantics of

relationship-aware entities – to the unified model of Social Machine we

describes in Section 4.5, which is capable of representing a Social Machine as a

whole as well as the composition of its related socially connected units. The

following are some improvements we obtained in this transition, marked by the

implementation of Futweet:

 The initial model was simplified with the creation of a general

abstraction that incorporates the well-known elements of computing

systems (e.g., input, output, states, processing unit), into a single

computational unit (i.e., IPS);

 The semantics of the relationship was made explicit and, besides

representing static connections and dependencies, established

constraints that are influent in the way Social Machines dynamically

interact with each other;

 The sets of required and provided services characterized the classical

composition mechanisms from the notion of software component

(LAU; WANG, 2007) and facilitated the implementation of the

concept of composability as a design principle of software

architecture. In more than one sense, after the preliminary Futweet

experience, the Social Machine’s building blocks indeed blended the

principles from other abstraction models, such as component and

Chapter 6 – Experience & Evaluation 123

service, but adding relationships and interactions as key social

elements;

 Requests and responses: instead of considering requests and

responses as fixed element of the model as initially presented in

(MEIRA et al., 2011)), they started to be considered as a kind of

interaction mechanism used by the SM’s services. This fact makes

more sense because the sets of [required/provided] services are

elements of the SM building block, and, in this case, request-response

represents a kind of message exchange pattern already brought from

the concept of services.

Besides Futweet, other projects and case studies have been implemented,

such as the WhereHere Social Machine (BRITO et al., 2012). However, in all

cases, relationships had not yet the exact semantics of “social connections”, as

explained in Chapter 4; they basically were seen just as dependencies between

the involved parts. In addition, such different parts - used to compose the whole

system - were not individually encapsulated as real Social Machines. As a result

of these observations, some improvements were made in the Social Machine

abstraction model (BURÉGIO et al., 2013b) and other implementations were

developed to better explore the concept of relationship as the centerpiece of the

proposed paradigm.

6.3. Applying SM to Different Contexts

In order to evaluate how the Social Machines paradigm can be broadly applied,

we implemented case studies in different contexts. These case studies use the

concepts we have discussed so far with the aim of deriving Social Machines that

have, or may have in near future, a significant impact on the lives of individuals,

business, governments, and possibly the society as a whole. Given that, we

conducted this practical experiences as follows:

 Case 1: People as Social Machines (for individuals)

 Case 2: Social Enterprise (for businesses)

 Case 3: Government as a Social Machine (for governments)

Chapter 6 – Experience & Evaluation 124

Next Sections look deeply at this practical experiences, structuring each

case study in terms of i) motivation, ii) scenario, iii) proposed Social Machine,

iv) realization of the proposed SM and v) discussion.

6.4. People as Social Machines

Based on the concept of Personal APIs (BURÉGIO et al., 2014a) (see Section

3.5.4), this initiative aims to develop a Social Machine that "encapsulates"

people in order to provide a set of specialized open APIs on the Web. These APIs

should allow third-parties to programmatically access information about a

person (e.g., health-related statistics, busy data) and/or trigger his/her human

capabilities (i.e., order to perform a certain task) in a standardized way. The

initial result of this initiative is the Social Machine called [YOU], which was

implemented as a personal information retrieval platform in which “you” (the

information related to you) is wrapped as a composite Social Machine.

6.4.1. Motivation

 [YOU] is a Social Machine that wraps “you” (i.e., your information). One of the

main goals of implementing [YOU] was to apply the discussed design guidelines

to create an example which embraced the notion of relationship and sociability,

discussed so far. The central motivation of [YOU] is based on the fact that

nowadays we have to deal with a large number of information about (and

related to) us. In general, this information spreads across multiple sources and

there is a huge effort to connect related things that matter to us. Figure 6.3

illustrates this information deluge, with each little square representing a

different piece of information, and each color meaning a different type of them.

Indeed, often there are few things that really matter to us, but sometimes, it

becomes hard to connect them (Figure 6.3b).

Chapter 6 – Experience & Evaluation 125

Figure 6.3 – Information deluge: (a) large number and types of information about you; (b)

huge effort to connect related things.

6.4.2. Scenario

The following scenario illustrates the aforementioned information deluge issue,

by presenting a example that involves different pieces of related information

spread out through different systems in the Web, such as Gmail, GCalendar,

Dropbox and Facebook:

Suppose you are a PhD student and your advisor used his Gmail

account to send an email to you and other students with some guidelines about

what should be considered during the next meeting with him. In the email, he

informs that there will be a discussion about an article he’s shared with all of

you, through his Dropbox account. He also says that an appointment was

booked in the GCalendar, with information about local and time. Furthemore,

he’s created an event in Facebook to invite other people to attend the

discussion.

In this scenario, there are at least four pieces of information related to the

same event: (1) the email with guidelines; (2) the shared article to be

discussed; (3) the appointment in the GCalendar with local and time; and (4)

the event in Facebook with a list of additional participants. Thus, if we want to

have a complete overview of the set of information related to the meeting, we

are supposed to manually gather these pieces of information, by using the

different sources in which they are stored in (i.e., Gmail, Dropbox, GCalendar

and Facebook).

Chapter 6 – Experience & Evaluation 126

6.4.3. [YOU]: The Social Machine that wraps “you”

Inspired by this illustrative scenario, we defined the Social Machine

called [YOU]. One of the goals behind the [YOU] Social Machine is to provide a

single access point to your information with the possibility of connecting and

share them in a useful way, as illustrated in Figure 6.4.

Figure 6.4 - [YOU]: A Single Access point to your information

This idea sets up the context to think about possible scenarios involving

the use of our Social Machine model (Section 4.5) in conjunction with Personal

APIs. For example, to consider “you" (the reader, a person) as a kind of

computational unit (i.e., an IPS, according to our model). Then, “you" (i.e., your

information and/or human capabilities) could be wrapped and represented as

an individual Social Machine in the Web. Figure 6.5 illustrates this conceptual

scenario by using our SM model to represent people as interacting Social

Machines. As can be seen in Figure 6.5, the SM's Provided Services (PS) are

exposed as Personal APIs. Such APIs allow both access to personal data

(illustrated in the figure as little multicolor squares) and the execution of

human-based activities.

Chapter 6 – Experience & Evaluation 127

Figure 6.5 - Conceptual view of People as “relationship-aware” Social Machines: (a) [YOU]
Social Machine; (b) application built on top of [YOU]; (c) other [YOU]-like Social Machine

The [YOU] Social Machine (Figure 6.5a) was designed as a personal

information retrieval platform in which “you” (the information related to you)

is wrapped as a Social Machine. On top of the [YOU] Social Machine we built

the [YOU] application (Figure 6.5b) - a Web-based interface that uses the

[YOU]-SM’s APIs. In practice, it is important to note that [YOU]-SM should

represent “you” as a Social Machine and, like you, it also provides ways to

establish different relationships and interaction views with “others”, i.e., other

people wrapped as [YOU]-like Social Machines (Figure 6.5c). In this case, the

set of provided Personal APIs is dynamic, i.e., it changes according to who is

invoking them. This is a direct effect of the relationship-awareness of SMs.

Such SMs are autonomous and can be independently deployed. So, it is

possible to consume the services of the [YOU] Social Machine with third-party

apps and in this way to enable the creation of an ecosystem of applications built

on top of its services.

As aforementioned, the [YOU] application was built on top of the

[YOU]’s Personal APIs to provide three core functionalities, namely: connect,

search and focus. Table 6.2 presents a brief description of each of them. For

Chapter 6 – Experience & Evaluation 128

more details, the screenshots of the [YOU] application is presented in Appendix

B.

Table 6.2 - Core functionalities of the [YOU] Application

Basic

Functionalities

Description

Connect It provides a way to connect the [YOU] application to
the main user’s sources of information. Initially the
sources mentioned in the motivational scenario were
considered: Dropbox, Facebook, GCalendar and
Gmail.

Search It represents a single access point to search and
combine related things from the set of connected
sources of information.

Focus It helps the users to focus on important things by
connecting them in a useful way. It answers the
question: “What to do today?”, by grouping related
information (events, people, files, etc…) from different
sources to show to the users what he/she has to do in
a specific date.

6.4.4. Realizing the [YOU]-SM

After setting up the general context of [YOU], one question is how to derive

[YOU] as a Social Machine. As a software development guideline, we consider

the steps we described in Chapter 5, namely: i) Define building blocks, ii)

Specify services, iii) Design data integration and iii) Design interaction

models. This section provides a general overview of how we implemented the

[YOU]-SM by walking through these steps.

Define [YOU]’s building blocks

In the case of [YOU], we designed the whole system as a composite Social

Machine internally formed by the combination of other SMs that wrap the user’s

different sources of information. Figure 6.6 shows a logical view of this

composite SM.

Chapter 6 – Experience & Evaluation 129

Figure 6.6 – Logical view of [YOU] as a composite Social Machine

As can be seen in this figure, the sources of information were wrapped as

independent and autonomous Social Machines. Each of them with its own URL,

used to access the provided services. In this way, it was possible to

independently deploy each SM on a different provider. Table 6.3 shows each

Social Machine considered by the [YOU], their identifiers (URL), the wrapped

sources of information and abstract data types. In the base URL, {host}

represents the service provider in which the SM is deployed and {user} is the

identifier of the user, whose information is wrapped by the whole system.

Table 6.3 - List of Social Machines that compose the [YOU]-SM

Define [YOU]’s Services

The services provided by [YOU] and its internal SMs were designed as

endpoints of a REST API. A set of common services was defined for each Social

Machine, including search, list, detail, link and unlink. For example, Table 6.4

shows how the set of services of the Social Machine calendarYOU was designed.

Chapter 6 – Experience & Evaluation 130

Table 6.4 - CalendarYOU's provided services

These services are invoked by the [YOU] composite SM as a way to

minimize the complexity to interact with each specific source of data. The link

service, for example, abstracts out the whole authorization process necessary to

access the user’s data stored in an individual source, e.g., GCalendar.

Design [YOU]’s integrations

As [YOU]-SM deals with data from multiple sources, there is an evident need to

provide ways of integrating them. In the [YOU] context, we categorized the

user’s information into four abstract data types, namely People, File, Message

and Event. Their internal structures are shown in Figure 6.7.

Figure 6.7- [YOU]: main abstract data types

Each Social Machine manipulates one of the abstract data types defined

in Figure 6.7. As each source deals with its own specific formats and types, the

element Wrapper Interface (WI) is fundamental for collecting and converting

data from each specific wrapped Information Processing System (i.e.,

Facebook, Gmail, Dropbox and GCalendar). Following our reference

Chapter 6 – Experience & Evaluation 131

architecture (Section 5.5), WI indeed uses the pipes and filters pattern as

illustrated in Figure 6.8. In the case of [YOU]’s Social Machines, the main

format conversions take place in mapping from JSON (JavaScript Object

Notation) into entity objects (i.e., the defined abstract data types) and vice-

versa. The format converter is the component in charge of converting these data

to the format required by the Persistence Manager (PM) which encapsulates the

persistence logic provided by each internal Social Machine.

Figure 6.8 – The Wrapper Interface as a set of pipes and filters

Model-View-Control (MVC)

The [YOU]-SM follows exactly the reference architecture we defined for

Social Machine (Section 5.5), having only as a variation point the set of

wrapped IPSs (Information Processing Systems) which, in this case, is formed

by the different sources of personal data available on the Web. The adopted

Model-View-Control (MVC) pattern is very useful for the [YOU] application,

once it manipulates data to present views according to user inputs. As can be

seen in Figure 6.9, the model layer of the composite [YOU]-SM has access to

data from the set of individual SMs, and groups them in a structure to be used

by the [YOU]-SM’s personal APIs.

Data Federation

The Data Federation pattern is also used to aggregate necessary data

from the set of parallels pipes and filters defined by each individual Social

Machine. Each source of data remains under control of an individual SM which

asynchronously pulls data on demand for federated access. In this case, the

Information Grouping component acts as an asynchronous data handler,

Chapter 6 – Experience & Evaluation 132

enabling the [YOU]-SM to start an “external process” while the handler

continues processing. Then, the handler continues without waiting for the

external process to finish. This design decision was very important to solve

some performance issues faced during the process of data federation. The use of

asynchronous data handler was very useful to compose, for example, the result

of a search on multiple sources, which is one of the services provided by the

[YOU]-SM.

Figure 6.9 – Overview of the [YOU]-SM’s architecture

Design [YOU]’s interaction models

In the [YOU]-SM, there are two interaction models that worth highlighting: i)

Interactions with the sources of data; and ii) Interactions between [YOU] and

third-party apps.

i) Interactions with the sources of data

These interactions take place in the internal Social Machines

(CalendarYOU, emaYOU and so on). There is an authentication process that

follows the "love triangle" model (Chapter 5). In this case, the source of data

assumes the role of the API Provider.

Chapter 6 – Experience & Evaluation 133

The service “link” is responsible for abstracting the whole authentication

process required to interact with the specific sources. Figure 6.10 shows a

sequence diagram containing the steps of the authentication process

implemented by the “link” service of the CalendarYOU Social Machine, which

interacts with the Google’s servers.

Figure 6.10 - Authentication process with a source of data

In this example, the authorization sequence begins when the internal SM

(CalendarYOU) requests a token to the Google Server. Then, the CalendarYOU

returns to the user and redirects a browser to a Google URL; the URL includes

query parameters that indicate the kind of access being requested. Google

Server handles the user authentication, session selection, and user consent. The

result is an authorization code, which the internal Social Machine exchanges for

an access token and a refresh token. The Social Machine then stores the refresh

token for future use and gets the access token to access the Google API

(GCalendar services, in this case). This process carried out during the first

access. Once the access token expires, the Social Machine uses the refresh token

to obtain a new one. This authentication process was implemented with OAuth

2.0 (RECORDON; HARDT; HAMMER-LAHAV, 2011) and the Social Machine

can access the source API while the user is present at the [YOU] application or

after the user has left the application.

ii) Interactions between [YOU] and third-party apps

Chapter 6 – Experience & Evaluation 134

As mentioned before, the [YOU] Social Machine allows the development of

third-party applications that extend its provided services, as a way to leverage

the [YOU] Social Machine’s features. However, before interacting with the

[YOU]’s services, applications need to establish a registered relationship with

the [YOU] Social Machine. We divide these applications into two categories:

 [YOU]-like apps - applications that also represent or wrap a person in

the real world (like done by [YOU]), and

 General purpose apps: applications intended to use the [YOU]’s

services.

The kind of relationships were defined based on these categories. For general

purpose apps, a relationship of type public was assumed. For [YOU]-like apps

an inferring process (implemented by the RelationshipManager component)

was used to infer the relationship to be adopted.

Figure 6.11 - Inferred Relationship

Such inferring process infers the type of relationship between the two

involved people (i.e., the person wrapped by the [YOU] and the person

represented by the third-party app) in order to determine which type of

relationship should be considered by the involved software, as illustrated in

Figure 6.11. Initially, Facebook was adopted as the main source to infer the

relationships between people. To do that, Facebook Query Language38 (FQL)

was used to make queries to the Facebook’s graph and the following relationship

types were considered: friend, family, work and education. These types of

38 https://developers.facebook.com/docs/reference/fql/

Chapter 6 – Experience & Evaluation 135

relationships are used to determine different interaction views between two

related Social Machines. Table 6.5 shows how they establish what services of the

CalendarYOU should or not be accessed. In this table, “X” means allowed by

default and “Under Approval” means that the user has to approve the access in

advance, which is similar to the authentication process used to interact with the

sources of data.

Table 6.5 - Example of permissions based on relationships

6.4.5. Discussion

 [YOU]–SM is an example of Social Machine that really embraces the idea of

relationship. With the implementation of [YOU] we learned other aspects that

should be taken into account when designing a Social Machine as a platform of

services:

 When implementing Social Machines that deal with different sources of

data, it is very important to decide in advance how relevant data or

function will be aggregated, correlated and corrected. This involves not

only the definition of the main abstract data types but also the design

patterns to be used to collect and format such data;

 Combining design patterns is in fact a way to minimize integration

issues. In this case, we followed the reference architecture and combined

MVC, data federation and pipes&filters, and confirmed that the data

federation pattern can be accomplished by several parallel pipes and

filters.

 The responsibilities of the wrapper interface became clearer with the

introduction of converting and formatting operations; and

Chapter 6 – Experience & Evaluation 136

 By abstracting the basic flow of authorization and authentication between

the Social Machines and different parts into a single service (i.e., link)

greatly minimized the complexity of implementation of such process.

It is also important to highlight that by using Personal Social Machines,

we are defining a software-to-software interface, not necessarily a user

interface. In fact, the main goal of building autonomous and independently

deployed personal SMs in the Web is to allow the creation of an ecosystem of

applications built on top of the services provided by such SMs. These

applications allow large-scale social initiatives using of a multitude of loosely-

coupled and distributed personal SMs. We believe that programming personal

SMs facilitates to launch such kinds of large-scale initiatives on the Web.

Undoubtedly, APIs enable the establishment of standard interfaces to

communicate with EVERYone (in this case) and possibly anyTHING, creating

the basis for a world in which EVERYTHING is going to be socially connected.

In more than one sense, we can say that this approach can improve the way we

build Social Machines that indeed combine computational and social aspects

into a transparent blending of software, people and perhaps things.

6.5. The Social Enterprise

Following our goal of deriving Social Machines that have a significant

impact on individuals, enterprises and government, this second case study is

focused on applying Social Machines into the enterprise context.

It was developed as a proof-of-concept of a joint-initiative that we refer to

“The Social Enterprise” (MAAMAR; BUREGIO; MEIRA, 2014)(BURÉGIO;

MAAMAR; MEIRA, 2015). The Social Enterprise is a kind of “Enterprise 2.0”39

with a business model composed by two distinct worlds, known as the business

world - associated with business process management platforms - and the

social world - associated with Web 2.0 platforms. As both worlds need to be

connected, the purpose of this case study is to bridge the gap between them

through the use of Social Machines in a meet-in-the-middle environment.

39 "Enterprise 2.0” is a term originally proposed by McAfee to designate “the use of

emergent social software platforms within companies, or between companies and their partners
or customers” (MCAFEE, 2006)

Chapter 6 – Experience & Evaluation 137

6.5.1. Motivation

Figure 6.12 illustrates our proposed business model for the social enterprise. As

can be seen, on the one hand the business world hosts the enterprise’s business

processes (BPs), which consist of a set of tasks capable of manipulating business

artifacts (BAs). On the other hand, the social world hosts social processes that

take place by the execution of different social actions on the social artifacts

(SAs) deployed on top of Web 2.0 platforms.

Figure 6.12 - Proposed business model for the social enterprise

In the business side, Business Artifacts (BAs) (NIGAM; CASWELL,

2003) represent identifiable pieces of information and/or collections of related

data that are used by a person to actually “run a business”. Examples of BAs

include data abstractions such as an order, customer, product, and so on. On

the other side, Social Artifacts (SAs) (MAAMAR; BUREGIO; MEIRA, 2014)

abstract objects/events associated with Web 2.0 applications. Examples of SAs

include a post, invite, tag and so on.

The level of control in this model indicates how much control an

enterprise has over the operations it initiates. Thus, it ranges from loose in the

social side to strict in the business side. In fact, dedicated business process

Chapter 6 – Experience & Evaluation 138

management platforms allow process engineers to design, develop, deploy, and

track processes in a more controlled way. However, in the social world,

processes are often performed in an unstructured and uncontrolled way, in

response to online social actions40 that Web 2.0 applications allow users to

execute, e.g., to hare a file, post comments, launch a social event, co-author a

text and invite friends.

This model for the social enterprise indeed requires an online presence

tightly-coupled with a set of Web 2.0 applications which should be used to

support the enterprise in the process of reaching out to its stakeholders, such as

customers, suppliers, competitors and, more recently, third-party developers. It

is worth noting that unknown people can also be treated as stakeholders and

hence, can interact with the enterprise.

6.5.2. Scenario

This case study refers to Jones-Onslow Electric Membership

Corporation41, which is an electric distribution cooperative in the US providing

utility service to more than 54,000 homes and businesses. To illustrate our

work we assume that Jones-Onslow is about to launch an awareness campaign

about renewable energy using social media like Facebook and Twitter.

Considering our two-side model for the social enterprise, we should

mediate the interactions between the two worlds in a way that the business

world can have an impact on the social side (e.g., marketing business process

that launches a new campaign on Facebook) and vice-versa (e.g., online

comments on the campaign are used to adjust the marketing business process).

6.5.3. The Meet-in-the-middle Social Machines

Figure 6.13 represents our architecture for the two-side enterprise supported by

a meet-in-the-middle platform that acts as an integration tier connecting both

sides through Social Machines.

40 Social actions in Web 2.0 applications are counterpart of tasks in the business world
41 http://www.perceptivesoftware.com/casestudies/jones-onslow-electric-membership-corporation.

Chapter 6 – Experience & Evaluation 139

Figure 6.13 - Architecture of the two-side enterprise

The meet-in-the-middle platform comprises a set of SMs that support

interactions between BAs and SAs. These SMs define a unified model to wrap

Web 2.0 platforms like Twitter, Facebook, Google, and Dropbox, and provide

specialized APIs that make easier the manipulation of SAs hosted on several

platforms.

Indeed, the diversity of Web 2.0 platforms (in terms of APIs, protocols

and data format) makes it difficult to consume their provided functionalities in

a unified way. SMs hide this complexity of interacting with multiple platforms

and dealing with the existing variety of data formats and types. To this end a set

of common functionalities are defined per SM. These functionalities abstract out

the messages that implement the interactions between the business and social

sides.

Table 6.6 includes some common functionalities that the meet-in-the-

middle SMs provide. The majority of these messages originate from the business

side since it hosts the processes that drive the enterprise operation and hence,

trigger social activities that should be performed. Additional social activities can

be driven by the outcome of other activities in the Web 2.0 platform.

Chapter 6 – Experience & Evaluation 140

Table 6.6 - SM's common functionalities to abstract messages between Business (B) and
Social (S) sides

Abstracting a set of messages into a single SM’s functionality

Let us use Jones-Onslow to illustrate how the SMs' functionalities, e.g.,

link, abstract messages between the business and social sides. First of all, we

assume that Jones-Onslow has accounts (usernames/passwords) registered in

different Web 2.0 platforms. These accounts enable the creation of specific SAs

hosted by this platforms. For example, the members of the marketing

department signs in Facebook to create a marketing campaign post on the

Jones-Onslow's Facebook page. This is an example of a “manual" creation of

posts.

However, if we want to allow a business process to create posts on Jones-

Onslow's Facebook page, we need to understand how Facebook allows third

party applications to manipulate information on behalf of the Jones-Onslow's

account. In practice, this involves an authentication process of acquiring access

tokens, requesting approvals, exchanging authorization codes, and so on. In

order to facilitate this process, SMs provide a single functionality named link

(Table 6.6), which establishes a “pre-authorized" communication channel

between the business and social sides. The functionality link is implemented by

every SM and- is responsible for abstracting the whole authentication process

required to interact with specific platforms. Figure 6.14 shows a UML sequence

diagram of the authentication process implemented by link of a generic meet-in-

the-middle SM.

Chapter 6 – Experience & Evaluation 141

Figure 6.14 - Simplified authentication process using a single link functionality

In Figure 6.14 we have a sequence diagram similar to the one presented

in Section 6.4, which reinforce that this is indeed a common functionality to be

considered by Social Machines in different contexts.

6.5.4. Realizing the Meet-in-the-middle SMs

A proof-of-concept of how to bridge the gap between the business and

social worlds has been developed using JavaTM JDK 1.7 platform and the Web

application framework Play Framework 2.2.1542. This framework is based on

“convention over configuration" concept that facilitates the implementation of

the meet-in-the-middle Social Machines through a development model for

building easy-to-maintain scalable services. The proof-of-concept provides a

friendly Web interface to access functionalities that simulate messages between

elements from the business and social sides (as per Table 1). Initial

implementation of Jones-Onslow considers Campaign-BA as the main BA in

the business side. In the social side, we adopt Facebook as the Web 2.0 platform

to host some SAs for instance, Invite-SA. Invite-SA abstracts a social event (e.g.,

a social event on the user’s Facebook Calendar) that aims at making some

people sign up in an ongoing social initiative. The SA's properties and lifecycle

are shown in Figure 6.15.

42 http://www.playframework.com.

Chapter 6 – Experience & Evaluation 142

Figure 6.15- Invite-SA's lifecycle

A meet-in-the-middle SM, namely Invite-SM, wraps Facebook and

provides specialized APIs for the business side. These APIs simplify the

manipulation of Invite-SA by abstracting its properties, lifecycle, and activities

executed on it through Facebook's operations.

REST principles are used to guide the development of the different APIs

(FIELDING, 2000). Furthermore, the widely known technologies such as

JavaScript Object Notation (JSON)43 (data-interchange format) and Open

Authorization Protocol (OAuth)44 (authentication) are also used to implement

message and data exchanges between the business and social sides.

Realizing the Common Functionalities

Table 6.7 groups Invite-SM's specialized APIs into the common

functionalities presented in Table 6.6 and summarizes how they are designed by

showing which HTTP method is used to support each functionality. As per Table

6.7, Invite-SM connects the business side (hosting Campaign-BA) to the social

side (hosting Invite-SA) through APIs. It considers the properties (e.g.,

campaign-id, inviteSender, and inviteReceiver) and states (e.g., submitted,

accepted, and unanswered) of the involved artifacts in order to implement the

specified functionalities. For example, based on Invite-SA's properties and

lifecycle presented in Figure 6.15, the implementation of the API that lists users

attending a specific campaign (i.e., GET https://{host}/invite‐sm/{campaign –id}/invited)

43 http://json.org.
44 http://oauth.net.

Chapter 6 – Experience & Evaluation 143

considers all inviteReceivers from Invite-SAs in the Accepted state and whose

inviteSender is campaign-id.

Table 6.7 - Invite-SM's specialized APIs grouped into common functionalities

Asynchronous communication

Another key aspect in bridging the gap between the business and social worlds

is to support asynchronous communication. In the following, we present a

specific scenario from the social marketing campaign of Jones-Onslow that

Chapter 6 – Experience & Evaluation 144

shows how this kind of communication takes place in a logical sequence of

message exchange.

First of all, it is worth observing that sometimes a social marketing

campaign requires a long-term system of events. In the case of Jones-Onslow's

campaign, we assume that several social events occur to raise awareness of and

funds about renewable energy projects. Furthermore, social media like

Facebook is used in different ways to directly engage customers and other

stakeholders in the campaign.

Initially, Jones-Onslow plans an opening reception event that aims at

disseminating to its stakeholders the specific short- and long-term goals of its

new initiatives on renewable energy. To generate interest, Jones-Onslow

launches this event into the public consciousness and invites members of the

Jones Onslow's Facebook account. A screenshot of the demo tool launching this

social campaign event is shown in Figure 6.16.

Figure 6.16 - Screenshot of the demo tool

Given the social nature of this event, the reception organizers should

monitor who really accept the invitations in Facebook (following the InviteSA's

lifecycle presented in Figure 6.15). From a practical point of view, they need to

Chapter 6 – Experience & Evaluation 145

know how many people will attend the event to proper arrange the catering.

This process involves an asynchronous communication between the business

and social worlds. In this sense, our meet-in-the-middle Social Machine (Invite-

SM) provides “subscribe" and “notify" functionalities that enable the

implementation of these two-way communications and, in this scenario, help

Jones-Onslow keeps a control over the number of invitees to expect. Figure 6.17

presents a UML sequence diagram containing some patterns of interaction

among the elements that compose our approach.

Figure 6.17 - Sequence diagram of some message exchanges

As can be seen in one part of Figure 6.17, someone is interested in being

notified when the percentage of accepted invitations exceeds 70%, and provides

a callbackURL which is called when this topic of interest occurs. This is one of

various possibilities of asynchronous communication that can be enabled by this

pair of “subscribe"/”notify" functionalities.

Chapter 6 – Experience & Evaluation 146

6.5.5. Discussion

This experience on applying Social Machines to the context of social enterprise

points not only to the degree of complexity (to interact with existing Web 2.0

tool) that can be abstracted out by implementing a high-level dynamic set of

APIs, but it also points to the number of new opportunities that emerge when

supporting the business world to connect to Web 2.0 platforms. One of these

opportunities refers to the option of dynamically adapting business processes

based on asynchronous notifications from the social side. In the

aforementioned Jones-Onslow’s scenario, for example, a notification about the

total number of invitees could trigger a task in the business side to change the

booking of the reception’s place.

One can say indeed that the meet-in-the-middle SMs bridge the gap

between the business and social sides, but what about the new possibilities of

relationships to be enabled by such SMs? Regarding this question, it worth

noting that beyond mediating the two sides, the meet-in-the-middle SMs also

provide ways to publish the enterprise’s internal capabilities as managed open

APIs on the Web (see Figure 6.12). It means that it should be possible to manage

and consequently be aware of the different kinds of relationships with those

(i.e., third-party apps, developers, physical objects) that use the SMs’ provided

services.

In fact, when a Social Machine publishes enterprise’s internal capabilities

to the outside world, it allows developers to add other innovative capabilities in

their enhanced applications. As a consequence, this increases the chances of

boosting the usage of such enhanced applications as well as creating an

ecosystem of other socially connected entities around the enterprise. When this

ecosystem expands, the whole market expands. Twitter and Facebook are

concrete examples of this fact.

To sum up, the proposed meet-in-the-middle Social Machines are

integral parts of a framework that helps to establish what we refer to as the

Connection, Open, Reachable, and Engagement (CORE) characteristics of the

social enterprise.

Connection means converting ad-hoc relations into long-lasting ones and

promoting different forms and levels of interaction among the enterprise’s

Chapter 6 – Experience & Evaluation 147

stakeholders and services. The social enterprise should be a truly connected

business, relating their employees, customers, partners, and services with each

other and with the market as well.

Open means creating new conversation channels with the business world.

As aforementioned, providing SM’s services as Open online APIs constitutes an

example of things that help achieve this goal by exposing the enterprise’s

internal capabilities to the external world and being aware of their possibly huge

number of relationships.

Reachable means facilitating the ubiquitous accessibility to the social

enterprise. It involves, among other things, the necessity of being more

responsive to the different forms of social interactions like posting notes,

chatting, and updating content. As the number of stakeholders’ devices (e.g.,

mobile, desktop, smartphones, tablets, and consoles) is increasing significantly,

there is a need to think about manners to efficiently create adaptable and user-

friendly online social-applications.

Last but not least, engagement means creating a culture of community

that relies on collaboration, sharing and participation. Social Machines can

indeed sustain this engagement by enabling the creation of online communities,

crowdsourcing, and so on.

6.6. Government as a Social Machine

This case study corresponds to the third context into which we intend to apply

the Social Machine paradigm. Then, it is a practical experience on designing

Government as a Social Machine, as per initially planned.

Government initiatives to open data to the public are becoming

increasingly popular every day. The vast amount of data made available by

government organizations yields interesting opportunities and challenges - both

socially and technically. In this case study we propose a social machine-oriented

architecture as a way to extend the power of open data and create the basis to

design government as a social machine (Gov-SM). The proposed Gov-SM

provides a platform of specialized APIs to enable the creation of several other

social-technical systems on top of it. Based on this experience, we can realize

that deriving government as a Social Machine, in more than one sense,

Chapter 6 – Experience & Evaluation 148

collaborate to fully integrate users, developers and crowd in order to participate

in and solve a multitude of governmental issues and policies. The design of this

case study allows us to have clearer and more comprehensive idea about how

the Social Machine paradigm can impact the lives of individuals (Section 6.4),

enterprises (Section 6.5) and finally government.

6.6.1. Motivation

The notion of “open government” has been around for a long time. Since the

50s, governments have been concerned about transparency and the idea that

citizens must have the “right to know” (PARKS, 1957)(MITCHELL, 1977) the

government's workings, policies and administration (LITTLE; TOMPKINS,

1974). Since those years, governments agree that freeing government

information has the potential to increase accountability, citizen participation

and collaboration, while offering better public services to increase efficiency and

effectiveness (WONG; WELCH, 2004)(SAYOGO; HARRISON,

2012)(HARRISON; SAYOGO, 2013).

Nowadays, the Web has played a fundamental role in the interaction

between government agencies and their citizens. This is because it offers

powerful means for enhancing government transparency by providing access to

information and services online. In fact, the open approach of the Web has

played a key role for fostering the idea that government should also be open to

public, and then contribute to the widespread engagement of citizens.

As a practical result, many governments around the world have been

making different efforts to benefit from Web technologies as a manner to

provide Open Data and encourage citizens to get more directly involved in

governmental issues and policy. The Open Government Partnership (OGP)45 is

the concrete proof of this fact. However, despite the existing efforts on open

government, several technical issues continue to be a major impediment toward

the widespread adoption of open data. These issues include, for example, the

existence of a multitude of unstructured and outdated datasets, and the lack of

standardized services to facilitate not only the consumption, but also the

generation and updating of governmental datasets by citizens.

45 Open Government Partnership, available at http://www.opengovpartnership.org

Chapter 6 – Experience & Evaluation 149

Motivated by these issues and based on some implementation

experiences (BRITO et al., 2014)(BURÉGIO et al., 2014b), this case study

proposes a social machine-oriented architecture as a way to extend the power of

open data and create the basis to design “government as a Social Machine” (Gov‐

SM). The solution proposed herein use the reference architecture for Social

Machine (Section 5.5) as a template in order to provide a platform of specialized

APIs to enable the creation of several other social-technical systems (aka Social

Machines) on top of it.

6.6.2. Scenario

Different initiatives on open government can be seen in practice as a way to take

advantage of current Web technologies to launch portals of publicly available

datasets. For example, we can highlight the open data portal46 launched by the

U.S. government which makes available about 85,000 datasets. Similarly,

United Kingdom government also opened up its own portal47 with more than

13,500 datasets and other additional features as, for instance, a map based

search tool. This tool provides a way of searching for records of data sets and

services referenced by geographical coordinates.

In comparison to these efforts, other initiatives are only at the beginning

like the Brazilian government’s open data, whose portal48 contains just about

240 datasets. Regardless of some initiatives have shown that it is possible to

take advantage of e-government and open data (ANDERSEN, 2009; BERTOT;

JAEGER; GRIMES, 2010; KIM; KIM; LEE, 2009; PICAZO-VELA;

FERNANDEZ-HADDAD; LUNA-REYES, 2013; SAYOGO; HARRISON, 2012;

WONG; WELCH, 2004), existing approaches have presented problems that

range from cultural to technological aspects (DADA, 2006; HUNG; CHANG;

YU, 2006; JHO, 2005; PIOTROWSKI; VAN RYZIN, 2007).

Hence, based on these reports and some implementation experiences

over Brazilian open data, the following issues should be considered:

1. Overlapped and decentralized data sources: although governments

try to create central repositories, we could observe that some initiatives at

46 U.S. Government’s open data, available at http://www.data.gov
47 U.K. Government’s open data, available at http://data.gov.uk
48 Brazilian Government’s open data, available at http://dados.gov.br

Chapter 6 – Experience & Evaluation 150

local/regional level have been overlapping the ones at national level and

vice-versa. New York City and Rio de Janeiro are examples of cities that

conduct their own open data initiatives and portals at local level, while

other disassociated efforts (dealing with similar datasets) are launched at

national level. As a consequence, developers have difficulties in creating

new consistent applications, because they need an extra effort to analyze,

understand and deal with overlapped data extracted from a multitude of

distributed sources;

2. Lack of standards: in addition to the overlapped and decentralized data

sources, there is a lack of standards for data publishing. Each publisher

chooses what and how to publish their dataset. Often, there is no common

agreement between countries, states, cities or even within one city or a

single government agency. As a consequence the services provided to

consume open data as well as the data formats and types vary significantly;

and

3. One-way communication channel: in general, governments tend to

publish data in a one-way communication channel, i.e., from government

to citizens. Due to that, the majority of existing applications are limited to

help citizens only to visualize such data, not being possible to get feedback

from them.

6.6.3. Realizing Government as a Social Machine

This section provides a general overview of our proposed reference architecture,

by walking through the process of deriving government as a social machine

(Gov‐SM). This process is based on the design guidelines (Section 5.4), taking

into account our proposed SM building block (Section 4.5). Next, we present

more details about the specific steps we performed in order to achieve the

preliminary reference architecture for the Gov‐SM.

Step 1. Wrap datasets as individual Social Machines

Chapter 6 – Experience & Evaluation 151

The first step to design government as a Social Machine is to define which

representative sources of data should be wrapped as individual SMs, and also

how these SMs should be designed. In practice, by using our SM abstraction

model (Section 4.5), any provider of open data can be considered a kind of IPS

(i.e., Information Processing System) to be involved by a Wrapper Interface

(WI).

Hence, in this case, we designed the whole Gov‐SM as a composite social

machine internally formed by the combination of multiple sources of data

wrapped as independent and autonomous social machines as well. Each SM has

its own identification URL, used to access its provided services. In this way, it is

possible to independently deploy each SM and offer its services on different

providers.

Table 6.8 shows some internal SMs considered by Gov-SM, including

their base identifiers (URL), the wrapped sources of data and their provided

data formats, and a brief description of what each SM actually wraps. In the

base URL, {host} represents the service provider on which the SM is deployed.

Table 6.8 - List of some internal SMs considered to compose our governmental social
machine

Step 2. Design Data Extraction Mechanisms

Chapter 6 – Experience & Evaluation 152

As the proposed Gov‐SM deals with data from multiple sources, there is an

evident need to provide ways of integrating such heterogeneous data. In the Gov‐

SM context, we categorize the wrapped datasets into different abstract data

types to be handled by the designed SMs. These abstract data types include, for

example, Deputy, Senator, Company, HealthUnit, School, TouristicPlace and others.

As shown in Table 6.8, each SM manipulates one or more of these

abstract data types. However, the wrapped government portals and other

websites do not directly provide such abstract data types. Instead of that, a

variety of different data formats, e.g., csv, xml, httml, pdf, json and xls, are

available. Thus, it is necessary to have mechanisms to retrieve data out of such

publicly available datasets for further data processing and use.

In this case, the element Wrapper Interface of our SM model was used to

extract and convert data from each specific IPS (i.e., datasets from Brazil Open

Data, Federal Revenue Services, National register of health facilities, and other

websites). Figure 6.18 shows an example of an individual SM wrapping a dataset

from one of the public sources of data listed in Table 6.8.

Figure 6.18 - Representation of an individual Gov-SM wrapping a data source

WI follows the pattern described in our reference architecture (see

Section 5.5). It has an extractor component that uses pipes and filters as an

integration pattern to create the logic for collecting and filtering the flows of

data from wrapped government datasets and converting data into common and

consistent abstract data types for SM manipulation.

Step 3. Specify a common set of specialized APIs

Chapter 6 – Experience & Evaluation 153

After wrapping representative datasets (Step 1) and designing the data

extraction mechanisms (Step 2), this step concerns the design of the services

provided by each SM. These services are often designed as endpoints of a REST

API. Hence, a set of common specialized APIs is specified for each social

machine, which includes services like search, list, get details, report abuse and

subscribe. Table 6.9 shows how some services of the Deputy‐SM are specified.

The majority of these services are published by the composite social machine

(i.e., Gov‐SM) as a way to minimize the complexity of third-party applications to

consume and handle the existing public datasets.

In brief, the steps presented so far help us to overcome the lack of

standards and one-way communication channel. The former is reduced

through the definition of abstract data types and the common set of specialized

APIs as well; and the latter is minimized by some services listed in Table 6.9,

like “report abuse”.

Table 6.9 - Some Deputy-SM’s specialized APIs grouped into common functionalities

Two-way communication channel

As aforementioned, governments often publish data in a static

communication channel, i.e., from government to citizens. As a consequence,

most of the time, it is not possible for citizens to give a feedback on something

according to their concerns. In order to face this problem, some proposed SMs

enable the implementation of two-way communication between government

and citizens. The Deputy‐SM’s service called “report abuse” allows citizens to

give a feedback on inappropriate or abusive things related to a specified deputy.

Abuse complaints should be stored on the Gov‐SM and possibly be redirected to

social media as, for example, be posted on the Facebook deputy’s message wall.

Chapter 6 – Experience & Evaluation 154

Asynchronous communication

In addition to the two-way communication, the proposed SMs services

also allow the establishment of asynchronous communication. The service

“subscribe” shows this fact. It allows requesting a subscription on a specific

topic of interest, and then the SM notifies the subscriber when the event of

interest occurs. Figure 6.19 shows an example of a HTTP request to the Deputy‐

SM’s “subscribe” service (see Table 6.9).

This example is a request for subscribing on a specific topic of interest,

i.e., a deputy’s monthly expenditure on fuel. The set of parameters (Lines 6-10

of Figure 6.19) is passed via HTTP post and specifies a notification constraint

on the Deputy‐SM. Such constraint indicates that when the specified deputy’s

monthly expenditure on fuel exceeds 6,000 BRL the callback URL (Line 10)

should be called by the Deputy‐SM, as part of an asynchronous notification

process. Other kinds of notification can also be considered such as SMS and

email.

Figure 6.19 - Example of a HTTP request for subscribing on a specific topic of interest

Compose the “relationship-aware” Gov-SM

By adopting the proposed reference architecture (Section 5.5), we also

designed the Gov‐SM as a combination of different architectural styles (i.e., pipes

and filters, data federation and MVC) to aggregate and relate data and services

from various publicly available sources. The overall obtained architecture is

depicted in Figure 6.20.

Chapter 6 – Experience & Evaluation 155

Figure 6.20 - GovSM: architecture overview

It is worth noting that for a better understanding of our approach, some

details of our SM model were hidden away in Figure 6.20, and only the provided

services and wrapper interface elements were explored in the high level

architecture diagram. Essentially, the Gov‐SM defines a unified model to wrap

and deal with both structured and unstructured data from multiple disparate

sources of government open datasets.

Additionally, the Gov‐SM platform comprises a set of internal SMs (Table

6.8) that together provide dynamic sets of specialized APIs in order to support

the development of third-party applications build atop of Gov‐SM’s services. The

whole system is therefore a “relationship-aware” social machine (BURÉGIO et

al., 2013b). That is why it represents an enabler for creating an ecosystem of

possibly related and interacting applications and services.

In such ecosystem the relationships between third-party apps and Gov‐SM

should be established according to the model described in Chapter 4.

Component Relationship Manager is responsible for mediating the

establishments of such relationships. Hence, prior to access Gov‐SM’s services,

Chapter 6 – Experience & Evaluation 156

developers need to perform a registration process to create the desired

relationship between Gov‐SM and his/her application. The steps of this

registration process follows the same default sequence of actions adopted by the

UML sequence diagram of the component Relationship Manager introduced in

Section 5.5.

During the registration process, developers should fill out a form

provided by the Gov‐SM’s Relationship Manager which asks for basic

information about the application, such as its name, domain, category and so

on. The next step is to inform the desired relationship properties. In this step,

the developer should choose, among other things, the permission his/her

application will need. Finally, the confirmation is sent and the established

constraints (e.g., rate limiting) of the relationship between the registered app

and Gov‐SM is approved.

In this environment, the possibilities of interactions among related

parties (i.e., end-users, developers and applications) might potentiate the

creation of large-scale social initiatives by combining the existing loosely-

coupled SMs in a crowd-powered effort on the Web.

.

6.6.4. Discussion

There are no doubts that open governments practices need to be revisited

in preparation for building a unified platform that indeed promote

transparency, citizen participation, and collaboration. In this case study, we

discussed some issues on existing open government initiatives and then used

the Social Machine paradigm to support the process of deriving Government as

a Social Machine. By combining computational and social processes into a

composite, crowd-powered platform, the SM paradigm can significantly extends

the power of open government initiatives, while requiring only a proper

combination of patterns to manipulate available open datasets. The Social

Machine proposed in this case study supports the fully integration of users,

developers and crowd in order to participate in and solve current and future

governmental problems.

Chapter 6 – Experience & Evaluation 157

6.7. Opinion Survey Based on Practical Experiences

As aforementioned, our evaluation process consists of 3 stages (see Section 6.1).

So far, we discussed Stage 1 (Section 6.2) and Stage 2 (three case studies). In

this Section, we present Stage 3 which consists of an Opinion Survey. While

previous stages were carried out to understand and discuss how to derive Social

Machines in different contexts, this section aims to collect the opinions of other

people that have also been used our proposed paradigm in other practical Social

Machine projects. The idea is to attest some findings of the literature and make

clearer what people consider as the main benefits and limitations of our

proposal.

6.7.1. Research Methodology

In the context of software engineering, interviews and questionnaires are

commonly used techniques to collect data and evaluate a variety of aspects of

software development (LETHBRIDGE; SIM; SINGER, 2005; SINGER; SIM;

LETHBRIDGE, 2008). Hence, we use these techniques to collect data

concerning individual’s opinions, also referred to as Opinion Survey

(KITCHENHAM; CHARTERS, 2007).

According to them, surveys are likely the most well-known and used

method for researchers to gather relevant information about products,

processes, services and so on. In fact, even in our daily life we are often asked to

participate in a number of different surveys

In practice, there are different types of surveys: interview, surveys based

on observing participant behavior and polling. It is worth noting that a survey is

not only the questionnaire itself (i.e., the instrument), it includes the whole

research process for planning questions, collecting, grouping, comparing and

explaining information.

In our case, we performed an opinion survey to elicit the benefits and

limitations that identified by other people when they used our proposed

approach to develop practical Social Machines.

Chapter 6 – Experience & Evaluation 158

6.7.2. The survey

We focused on the type of survey in which data is collected by means of an

online questionnaire filled in by the participants. The survey was performed

after some preliminary experiences as well as the establishment of basic

concepts (Chapter 3) and guidelines for the development of Social Machines

(Chapters 4 and 5).

6.7.2.1. Precondition	

As aforementioned, the main goal of this survey is to evaluate how the

proposed Social Machine paradigm is viewed by other people. Hence, the

precondition for answering this opinion survey was to have already used our

approach in the development of some practical Social Machine which fits into

our classification scheme (Section 3.3).

6.7.2.2. Target	audience	

The target audience was formed by people from both academy and

software industry. On one hand, to support the academic context, two practical

graduate courses on advanced topics in Software Engineering in 2012 and 2013.

These courses were focused on the theory and practice of Social Machines which

included the development of real practical systems using the proposed concepts.

On the other hand, as a way to gather information from people in the industrial

context, two enterprises based on the Porto Digital ICT cluster49 were

considered, namely SODET50 and USTO.RE51.

6.7.2.3. Types	of	questions	

Given the open nature of this survey, most of its questions were designed

as open-ended questions. This is because open-ended question increases the

chances to gather not only the information foreseen, but also unexpected types

of information. Figure 6.21 shows two examples of questions in which the open

nature was totally (Figure 6.21 (a)) and partially (Figure 6.21 (b)) taken into

account. In Figure 6.21 (b), although we have foreseen a predefined set of

desired properties of the SoMAr style (see Subsection 5.3.3), it is possible to add

other obtained properties, as the subject sees fit.

49 http://www.portodigital.org/
50 SODET: Shifting Business into Social Machines - http://sodet.biz
51 USTO.RE: Private Cloud Storage – http://usto.re

Chapter 6 – Experience & Evaluation 159

Figure 6.21 - Examples of Questions with an open nature

It is worth noting that beyond collecting mostly subjective data, i.e.,

concerning personal opinions, we also designed some specific objective

questions, concerning for example the number of people involved in a project.

6.8. The Survey Results

We had a total of 19 subjects who answered the survey and satisfied our

requirement of having participated in a practical development project using our

Social Machine approach. This section presents the analysis of the data collected

in the survey, discusses each issue and highlights some correlation points that

must be considered.

6.8.1. Audience Experience and Expertise

Initially, we asked the subjects about how many years of experience they have

with software development. Figure 6.22 shows the results and gives us an idea

about the maturity of the audience.

Figure 6.22 – Subjects Experience on Software Development

Chapter 6 – Experience & Evaluation 160

Also regarding the audience, we also asked them about the roles that they

played in the Social Machine development project they participated in. The idea

was try to understand the other responses under the perspective of the audience

expertise. Figure 6.23 shows this distribution. In general we have more

technical roles, but Software engineer, System Analyst and Software Architect

were the most frequent roles. It worth noting that some people performed

multiple roles in the same project.

Figure 6.23 - Roles of the subjects

6.8.2. Projects

We asked the subjects to provide information about the projects they

participated in. After grouping the responses we realized a total of 6 different

projects as shown in Table 6.10. As can be seen, 4 (four) projects were

developed in the academic contexts (i.e., Lookatme, ReviewIt, SMADL and

WhatHere) and 2 (two) in the industrial context, namely DWARF and uCloud.

6.8.2.1. Project	Classification	

Considering the converging diagram of the different research visions of

social machines presented in Chapter 3, we also asked the in which part of the

diagram their projects better take place. Figure 6.24 shows the result of this

mapping process. It is worth noting that different participants of the same

project mapped their project in the same way. This can suggest a good

coherence of our classification scheme. Another important thing is that,

although we do not have any system in the intersection between “People as

Computational Units” and “Software as Sociable Entities”, the analyzed

projects form a good set of representative Social Machines in the different

visions.

Chapter 6 – Experience & Evaluation 161

Table 6.10 - Projects Overview

Chapter 6 – Experience & Evaluation 162

Figure 6.24 – Informed Classification of projects

6.8.2.2. Social	Machine’s	building	blocks	

Considering our guideline about defining building blocks to be wrapped

as a Social Machine (Section 5.4), we asked about the subjects wrapped as a

Social Machine in their systems. Table 6.11 shows the result of this question.

Table 6.11 - Parts of the Systems were wrapped as Social Machines

It is clear that most projects are solutions in which the system as a whole

was designed as a Social Machine. Meanwhile, it might indicate some open

opportunities, given few projects deal with inner Social Machines or even do no

consider people as a computing units.

Chapter 6 – Experience & Evaluation 163

6.8.3. Limitations

We can group the drawbacks and limitations provided by the participants as

follows:

 Lack of implementations. Social Machine paradigm lacks real

world implementations and the use cases that can be proven benefits

are not yet widely spread.

 Cost of Composite Social Machines. It is still difficult and

hardware expensive to deploy each inner Social Machine as an

independent computing unit. In practice, the solution often deploys

several SM's on the same environment, which sometimes can

represent performance issues.

 Technologies. The adoption of existing technologies (languages,

architectures, design patterns, infrastructure) to be SM compatible

was also pointed as one limitation of the paradigm. It is necessary to

provide tools that could facilitate the addition of the “sociability” layer

around different types of computing units.

 Learning curve Vs Productivity. With the current literature the

initial learning curve was pointed as one thing that impacts the

productivity during the development of Social Machines.

 Availability. There is a lack of guidelines in the literature about the

challenges related to availability issues of SM’s external dependencies.

One mentioned that his Social Machine would be totally inoperative if

Google Maps is unavailable.

 Dependability. Also related to the previous issue, the high level of

dependability is a big challenge to be investigated in the context of

Social Machines. They mentioned some malfunction of the Twitter’s

API they used, as an example of dependability issue they faced during

the development and operation of their Social Machines. In this

context, application neutrality and loose coupled were cited as part of

the strategies to overcome the dependability issues.

 Reliability. One of the main risks of SMs that combine different

sources of data and services is related to ensuring reliability.

Commercial restrictions change over time and consequently some

Chapter 6 – Experience & Evaluation 164

Web services consumed by SMs can change as well, possibly

impacting the system's reliability at all. Certain families of composite

SMs can increase the existing reliability issues of service-oriented

solutions. As an example of that, we can highlight a possible change in

the rate limits of APIs provided by Facebook, Twitter and other open

platforms. The reliability of lots of SMs can be impacted by these

kinds of changes.

 Security and privacy. Since security and privacy aspects both

include business aspects such as roles, resources, processes and

services as well as technology aspects such as applications, data,

platform and infrastructure, ensuring security around the entire

concept of Social Machines is very work intensive as well as costly.

6.8.4. Benefits

Prior to summarize the quantitative analysis, we can group and highlight some

answers gave for the following open question: “Have you realized any

benefit associated to the use of the SM paradigm? If so, which ones

you could cite?”

 Modularization and Reuse. Modularization and reuse were

mentioned as a relevant benefit from applying our model. In this sense,

we can highlight the comment of one of the participants who affirms the

following:

“I think that the major benefit is the system modularization, allowing

me reuse several parts in another system. In addition, it is easy to focus

on specific problems and to share work. For instance, I can hire some

specialist in external API's and he/she doesn’t need to understand the

entire systems, only the wrapper.”

 Relationships as facilitators of constraints specification. The

facility to specify constraints between machines was also identified as an

important benefit. In this sense, one participant commented the

following:

“As we describe the interactions between SM entities in terms of

relationships, it is easier to setup constraints upon them. That means the

Chapter 6 – Experience & Evaluation 165

relationships themselves may have their own properties, avoiding to

change the particular code of each involved social machine.”

 Application neutrality and loose coupling. A participant said that

“The upfront gain of using the SM concept is ‘decoupling’, which is a

generally pursued software engineering principle. This is achieved by

using techniques of, for example, REST."

Interoperability, encapsulation and maintainability were also

confirmed by some participants as beneficial attributes obtained from

applying the proposed reference architecture into their solutions.

 Relationships and interactions. Relationships and interactions were

indeed cited as important aspects to be considered in the engineering of

Social Machines. In this context, it is worth highlighting what one of the

senior software engineer said:

“By considering the communication between services and the

interaction of people with these services, made it possible to realize the

benefits of using social machines. Third-part services are becoming the new

web infrastructure, similar to software components that are reused as well.

This way of building new systems by combining several services of third-

parties are not presented in the literature with a mature use of techniques

and processes that address the new challenges intrinsic of this emerging

area. All these factors were seen as a beneficial learning, in relation to the

market itself and possibilities for it.”

 Being “prosumers” as a beneficial property. The fact that Social

Machines can represent entities that act at the same time as “providers”

and “consumers”, led some participants to state that:

“Creating entities that provide and at the same time consume existing

services allows phenomena such as higher productivity and expansion of the

base of users. In the lookatme project, for example, the [re]use of Google Maps’

services were fundamental to delivery ours products in time. If we were

supposed to implement such service it would not be possible to release any

version of our product within the specified period of time. Regarding the

expansion of the base of users, consuming services from well-known social

Chapter 6 – Experience & Evaluation 166

networks such as ‘Facebook’ and proving enhanced services on top of them,

allows us to attract a huge number of users who already use such social

network."

 Blending of patterns to deal with integration issues. Some

benefits related to the proposed reference architecture were also cited by

some participants, like the following:

“The reference architecture for social machines helped us to mitigate

some risks, mainly the ones related to the huge variety of data types, formats

and structures provided by existing systems to be wrapped. The combination

of different design patterns has indeed proven to be a good option for dealing

with this and other integration issues.”

6.8.4.1. Obtained	Properties		

During the specification of SoMAr (Section 5.3), we defined a set of possible

desired properties that could be obtained by using the principles and

constraints specified by the SoMAr style. In order to evaluate such set of

properties, we asked the following question to the participants: “When using

the SoMAr style, have you get any of its desired property? If do,

which ones have you realized?”

As aforementioned in Section 0, this question was designed in a way that

beyond the default the set of properties, the participant could inform any other

property, as they see fit. Figure 6.25 shows this distribution.

Chapter 6 – Experience & Evaluation 167

Figure 6.25- Obtained Properties according to the Opinion Survey

As can be seen, the top three properties indicated by the participants

were Abstraction, Reusability and Sociability. New properties like

Programmability52 and also Maintainability were also added to the set of

properties. In this case, we can make an analysis of the specific features

considered in each project. For example, Programmability was a property

added by people involved with the development of the SMADL project, which is

an Architectural Description Language and in this case Programmability is

more evident than in the other projects. Another interesting point is related to

the participants’ expertise. As we did not have any “Software Tester” among the

participants (Section 6.8.1), we could realize that properties directly related to

such discipline were not mentioned, such as, e.g., “Testability”.

6.9. Concluding Remarks

In this chapter we outlined our experience on using the Social Machine

paradigm to design and implement practical emerging social systems. We

outlined our evaluation process, presented Futweet as our preliminary

52 According to the The Free Dictionary (http://www.thefreedictionary.com/),

“Programmability” refers to the “capability within hardware and software to change; to accept
a new set of instructions that alter its behavior.”

Chapter 6 – Experience & Evaluation 168

experience, discussed three case studies of applying Social Machines into

different contexts (i.e., individuals, businesses and governments) and finally

presented the outcomes obtained from an Opinion Survey on seven practical

experiences on adopting the proposed concepts.

Even based on a small subset of practical implementations and

considering the number of mentioned limitations, we can conclude that our

proposal can produce significant benefits as well as enable the creation of Web-

enabled systems that have, or may yet soon have, a profound impact on the lives

of individuals, businesses, governments, and the society as a whole in

substantial ways.

Chapter 7 – Conclusions and Future Developments 169

Conclusions	and	Future	
Developments	

“If I have seen a little farther than others, it is because

I have stood on the shoulders of giants”

Isaac Newton (1642 – 1727)
English mathematician & physicist

7. Conclusions	and	Future	Developments	

This chapter presents the final remarks about this thesis, by highlighting the

main contributions and presenting possible future work.

7.1. Concluding Considerations

This thesis presented an approach to incorporate social aspects into software,

leading to the notion of Social Machines. In this context, Social Machines were

proposed as a unified paradigm to describe, design and implement emerging

social systems.

To enable the development of Social Machines, a common base of

understanding was established and a unified abstraction model was defined as

well. On top of such model, some engineering guidelines were specified in

conjunction with a combination of principles, constraints and properties that

drive the design and implementation of what we refer to as SoMAr (Social

Machine-oriented Architecture). SoMAr is an architectural style which, among

other things, establishes a reference architecture formed by the blending of

different integration patterns to support the development of composite Social

Machines.

We applied the Social Machine paradigm into different contexts and

discussed how these systems can influence individuals, business, governments,

and the society as a whole. Furthermore, an opinion survey was performed with

the aim of collecting opinions of people that have been using our proposed

paradigm in practical Social Machine projects, as a way to confirm some

7

Chapter 7 – Conclusions and Future Developments 170

findings from the literature and make clearer what people consider as the main

benefits and limitations of our proposal.

In conclusion, we can say that, although some existing limitations and

challenges, our unified paradigm indeed helps converging the different visions

of Social Machines (BURÉGIO et al., 2013a), referred to as “Social Software”,

“People as computational units” and “Software as Sociable Entities”.

Exemplifying, we can assume our case study on Government as a Social

Machine (BURÉGIO et al., 2014b) in order to state that:

1. The “social software” vision is achieved by implementing applications on top

of the governmental Social Machine with the aim of providing two-way

communication channels between governments and their citizens (as users),

leading to different levels of social interactions between them;

2. The “people as computational units” vision is achieved by using the resultant

crowd-powered platform as the basis to launch different kinds of initiatives

that encourage the crowd to solve numerous governmental issues and

policy;

3. Last but not least, the “software as sociable entities” vision is achieved by

providing dynamic sets of specialized APIs that naturally conduct to the

establishment of an ecosystem of possibly related and interacting

applications and services, built by developers with a passionate interest in a

more effective public oversight.

Government as a Social Machine is just one of the examples we

discussed in this work. Thus, in more than one sense, the approach proposed

herein offers different avenues of possibilities that converge to the full

integration of software, things, developers and crowd in order to participate in

and solve a multitude of current (and future) issues in diverse areas of a society

ever more formed by different socially connected computing units, also known

as Social Machines.

Chapter 7 – Conclusions and Future Developments 171

7.2. Future Work

Future work includes:

 Implement more sophisticated mechanisms to fully support inferred

relationships based on real relations between people;

 Define a framework to provide dynamic adaptations for dealing with

availability issues;

 Extend the [YOU]-SM to allow the focus service combines other

source of data;

 Design strategies to support a social search engine in the reference

architecture of social machines;

 Define a security framework to deal with privacy and ownership in the

context of Social Machines;

 Characterize the different social actions and social artifacts that can

take place in the context of the Social Enterprise (it is part of an on-

going joint-initiative);

 Extend the Gov-SM to create an even more comprehensive framework

- the GOvernment Open Data (GOOD) framework - to tackle other

aspects of research inquiries;

 Create an environment for the development of Social Machines with a

new language supported by visual tools;

 Apply the unified Social Machine model into machine-to-machine

communications as a way to enable the “Internet of things”;

 Apply the concept of Social Machine to the context of smart cities;

 Enable the creation of “learning social machines”, in which learning

processes could be integrated with the social and computing ones.

References 172

References	
References	

AGRAWAL, A. et al. Web services human task (WS-HumanTask), version 1.0,
2007a.

AGRAWAL, A. et al. WS-BPEL Extension for People (BPEL4People), Version 1.0,
2007b.

AGRAWAL, S.; DAS, M. L. Internet of Things — A paradigm shift of future
Internet applications2011 Nirma University International Conference on Engineering.
Anais...IEEE, dez. 2011Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6153246>. Acesso
em: 14 nov. 2013

ANDERSEN, T. B. E-Government as an anti-corruption strategy. Information
Economics and Policy, v. 21, n. 3, p. 201–210, 2009.

ANDERSON, P. et al. On managing social data for enabling socially-aware applications
and services. Proceedings of the 3rd Workshop on Social Network Systems - SNS
’10, p. 1–6, 2010.

ATZORI, L.; IERA, A.; MORABITO, G. The Internet of Things: A survey. Computer
Networks, v. 54, n. 15, p. 2787–2805, out. 2010.

BASS, L.; CLEMENTS, P.; KAZMAN, R. Software Architecture in Practice (3rd
Edition) (SEI Series in Software Engineering). [S.l.]: Addison-Wesley Professional,
2012. p. 640

BENIOFF, M. Welcome to Web 3.0: Now Your Other Computer is a Data Center |
TechCrunch. Disponível em: <http://techcrunch.com/2008/08/01/welcome-to-web-30-
now-your-other-computer-is-a-data-center-2/>. Acesso em: 4 out. 2013.

BENTAHAR, J. et al. An Argumentation Framework for Communities of Web
Services. IEEE Intelligent Systems, v. 22, n. 6, p. 75–83, nov. 2007.

BERNERS-LEE, T. WWW: past, present, and future. Computer, v. 29, n. 10, p. 69–77,
1996.

BERNERS-LEE, T. Weaving the Web. New York, NY, USA: Harper Collins, 1999.

BERTOT, J. C.; JAEGER, P. T.; GRIMES, J. M. Using ICTs to create a culture of
transparency: E-government and social media as openness and anti-corruption tools for
societies. Government Information Quarterly, v. 27, n. 3, p. 264–271, 2010.

BIZER, C.; HEATH, T.; BERNERS-LEE, T. Linked Data - The Story So Far.
International Journal on Semantic Web and Information Systems, v. 5, n. 3, p. 1–
22, 2009.

References 173

BOHAN BRODERICK, P. On Communication and Computation. Minds and
Machines, v. 14, n. 1, p. 1–19, fev. 2004.

BRITO, K. et al. Brazilian Government Open Data: Implementation, Challenges,
and Potential OpportunitiesInternational Digital Government Research Conference.
Anais...2014

BRITO, K. S. et al. Implementing Web Applications as Social Machines Composition :
a Case Study. The 24th International Conference on Software Engineering and
Knowledge Engineering, v. (SEKE’2012, p. 311–314, 2012.

BUDGEN, D. et al. Using mapping studies in software engineering. Proceedings of
PPIG, v. 2, p. 195–204, 2007.

BURÉGIO, V. et al. Social Machines: a Unified Paradigm to Describe Social Web-
oriented Systems. 22nd International World Wide Web Conference (WWW 2013
Companion), p. 885–890, 13 maio 2013a.

BURÉGIO, V. et al. Personal APIs as an Enabler for Designing and Implementing
People as Social Machines23rd International World Wide Web Conference (WWW
2014 Companion). Anais...Seoul, Korea: 2014a

BURÉGIO, V. et al. Towards Government as a Social Machine. to be published,
2014b.

BURÉGIO, V. A. et al. Moving Towards “ Relationship-aware ” Applications and
Services: A Social Machine-oriented Approach17th IEEE International EDOC
Conference (EDOCW 2013). Anais...Vancouver, Canada: 2013b

BUREGIO, V. A.; MEIRA, S. R. L.; ALMEIDA, E. S. Characterizing Dynamic
Software Product Lines: A Preliminary Mapping StudySoftware Product Line Conf.
(SPLC 10). Anais...Jeju Island, South Corea: Lancaster University, 2010

BURÉGIO, V.; MAAMAR, Z.; MEIRA, S. An Architecture and Guiding Framework
for the Social Enterprise. IEEE Internet Computing, v. 19, n. 1, p. 64–68, 2015.

BURGIN, M. Super-Recursive Algorithms. New York, NY: Springer Monographs in
Computer Science, 2005.

CHEN, H. et al. Using Open Web APIs in Teaching Web Mining. IEEE Transactions
on Education, v. 52, n. 4, p. 482–490, nov. 2009.

CHEN, P. P.-S. The entity-relationship model---toward a unified view of data. ACM
Transactions on Database Systems, v. 1, n. 1, p. 9–36, 1 mar. 1976.

CHUNG, J.-Y. An Industry View on Service-Oriented Architecture and Web
ServicesIEEE International Workshop on Service-Oriented System Engineering
(SOSE’05). Anais...IEEE, 2005Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1551130>. Acesso
em: 15 nov. 2013

References 174

DA SILVA, B. N.; CRISTINA, A.; GARCIA, B. KA-CAPTCHA: an opportunity for
knowledge acquisition on the web. p. 1322–1327, 22 jul. 2007.

DADA, D. The Failure of E-Government in Developing Countries: A literature review.
The Electronic Journal of Information Systems in Developing Countries, v. 26, n.
7, p. 1–10, 2006.

DANIEL, S.; PRZEMYSLAW, T.; LARS, H. Integrating Information Systems Using
Web Oriented Integration Architecture and RESTful Web Services. 2010 6th World
Congress on Services, p. 598–605, jul. 2010.

DEMARCO, T. Structured Analysis and System Specification. [S.l.]: Prentice Hall,
1979. p. 348

DODIG-CRNKOVIC, G. Significance of Models of Computation, from Turing Model
to Natural Computation. Minds and Machines, v. 21, n. 2, p. 301–322, 2 fev. 2011.

DONATH, J. The Social Machine: Designs for Living Online. [S.l.]: The MIT Press,
2014. p. 432

DUFFY, B. R. Fundamental Issues in Affective Intelligent Social Machines. The Open
Artificial Intelligence Journal, v. 2, n. 1, p. 21–34, 3 jun. 2008.

DUSTDAR, S.; BHATTACHARYA, K. The Social Compute Unit. IEEE Internet
Computing, v. 15, n. 3, p. 64–69, maio 2011.

DUVANDER, A. Twitter Reveals: 75% of Our Traffic is via API (3 billion calls per
day). Disponível em: <http://blog.programmableweb.com/2010/04/15/twitter-reveals-
75-of-our-traffic-is-via-api-3-billion-calls-per-day/>.

DUVANDER, A. 6,000 APIs: It’s Business, It’s Social and It’s Happening Quickly.
Disponível em: <http://blog.programmableweb.com/2012/05/22/6000-apis-its-business-
its-social-and-its-happening-quickly/>.

ERL, T. Service-oriented architecture: concepts, technology, and design. [S.l.]:
Prentice Hall PTR, 2005. p. 792

ERL, T. SOA: Principles of Service Design. [S.l.]: Prentice Hall, 2007. p. 608

FIELDING, R. Architectural Styles and the Design of Network-based Software
Architectures. [S.l.]: UNIVERSITY OF CALIFORNIA, IRVINE, 2000.

FIELDING, R. T.; TAYLOR, R. N. Architectural Styles and the Design of Network-
based Software Architectures. [S.l.]: Citeseer, 2000.

GARLAN, D.; SHAW, M. An Introduction to Software Architecture. 1 jan. 1994.

GHADERI, M. A.; YAZDANI, N.; MOSHIRI, B. A social network-based meta
search engine2010 5th International Symposium on Telecommunications.
Anais...IEEE, dez. 2010Disponível em:

References 175

<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5734121>. Acesso
em: 12 maio. 2014

GIBBINS, N.; HARRIS, S.; SHADBOLT, N. Agent-based Semantic Web Services.
Web Semantics: Science, Services and Agents on the World Wide Web, v. 1, n. 2, p.
141–154, fev. 2004.

GOYAL, P. Issues in the adoption of object-oriented paradigmCOMPCON Spring
’91 Digest of Papers. Anais...IEEE Comput. Soc. Press, 1991Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=128862>. Acesso em:
11 nov. 2013

GRAY, D. Everything is a service. The Social Business Journal, n. 01, p. 14–21, 2012.

HALB, W.; RAIMOND, Y.; HAUSENBLAS, M. Building Linked Data For Both
Humans and Machines. In proceedings of the Linked Data on the Web Workshop,
2008.

HARRISON, T.; SAYOGO, D. Open budgets and open government: beyond
disclosure in pursuit of transparency, participation and accountabilityInternational
Conference on Digital Government Research. Anais...2013Disponível em:
<http://dl.acm.org/citation.cfm?id=2479757>. Acesso em: 24 fev. 2014

HAYES, B. Cloud computing. Communications of the ACM, v. 51, n. 7, p. 9, jul.
2008.

HAZRA, K. Cloud computing - the next chasm, 2009.

HEINEMAN, G. T.; COUNCILL, W. T. Component-Based Software Engineering:
Putting the Pieces Together. [S.l.]: Addison-Wesley Professional, 2001. p. 880

HENDLER, J.; BERNERS-LEE, T. From the Semantic Web to social machines: A
research challenge for AI on the World Wide Web. Artificial Intelligence, v. 174, n. 2,
p. 156–161, fev. 2010.

HITZLER, P.; KRÖTZSCH, M.; RUDOLPH, S. Foundations of Semantic Web
Technologies (Chapman & Hall/CRC Textbooks in Computing). [S.l.]: Chapman
and Hall/CRC, 2009. p. 456

HOARE, C. A. R.; JIFENG, H. Unifying Theories of Programming. [S.l.]: Prentice
Hall College Div, 1998. p. 320

HOST, M.; RUNESON, P. Checklists for Software Engineering Case Study Research.
First International Symposium on Empirical Software Engineering and
Measurement (ESEM 2007), p. 479–481, set. 2007.

HUNG, S.-Y.; CHANG, C.-M.; YU, T.-J. Determinants of user acceptance of the e-
Government services: The case of online tax filing and payment system. Government
Information Quarterly, v. 23, n. 1, p. 97–122, 2006.

References 176

HWANG, J.; ALTMANN, J.; KIM, K. The structural evolution of the Web 2.0 service
network. Online Information Review, v. 33, n. 6, p. 1040 – 1057, 2009.

IAMNITCHI, A.; BLACKBURN, J.; KOURTELLIS, N. The Social Hourglass: An
Infrastructure for Socially Aware Applications and Services. IEEE Internet
Computing, v. 16, n. 3, p. 13–23, 29 maio 2012.

ISSARNY, V. et al. Service-oriented middleware for the Future Internet: state of the art
and research directions. Journal of Internet Services and Applications, v. 2, n. 1, p.
23–45, 25 maio 2011.

JACOBS, I.; JAFFE, J.; HEGARET, P. LE. How the Open Web Platform Is
Transforming Industry. IEEE Internet Computing, v. 16, n. 6, p. 82–86, nov. 2012.

JHO, W. Challenges for e-governance: protests from civil society on the protection of
privacy in e-government in Korea. International Review of Administrative Sciences,
v. 71, n. 1, p. 151–166, 2005.

JIANDONG CAO; YANG TANG; BINBIN LOU. Social search engine research2010
3rd International Conference on Computer Science and Information Technology.
Anais...IEEE, jul. 2010Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5563672>. Acesso
em: 12 maio. 2014

KAJAN, E. et al. The Network-Based Business Process. IEEE Internet Computing, v.
18, n. 2, p. 63–69, 2014.

KIM, S.; KIM, H. J.; LEE, H. An institutional analysis of an e-government system for
anti-corruption: The case of OPEN. Government Information Quarterly, v. 26, n. 1,
p. 42–50, 2009.

KITCHENHAM, B.; CHARTERS, S. Guidelines for performing Systematic
Literature Reviews in Software Engineering. [S.l: s.n.].

KIWON LEE. Technical architecture for land monitoring portal using google maps
API and open source GIS2009 17th International Conference on Geoinformatics.
Anais...IEEE, ago. 2009Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5293060>. Acesso
em: 4 out. 2013

KO, M. N. et al. Social-Networks Connect Services. Computer, v. 43, n. 8, p. 37–43,
ago. 2010.

KORIS, N. J.; HODDINOTT, A. P. Using Web 2.0 applications to deliver innovative
services on the internet. 2008 International Conference on Service Systems and
Service Management, p. 1–4, jun. 2008.

KUHN, T. S. The Structure of Scientific Revolutions. [S.l.]: University of Chicago
Press, 1970. p. 210

References 177

LANTHALER, M.; GRANITZER, M.; GUETL, C. Semantic web services: state of the
art. 2010.

LANTHALER, M.; GÜTL, C. Towards a RESTful Service Ecosystem Perspectives and
Challenges. Ecosystems, p. 209–214, 2010.

LAU, K.-K.; WANG, Z. Software Component Models. IEEE Transactions on
Software Engineering, v. 33, n. 10, p. 709–724, out. 2007.

LEE, D. Facebook surpasses one billion users as it tempts new markets. Disponível
em: <http://www.bbc.co.uk/news/technology-19816709>.

LEE, J.; KOTONYA, G.; ROBINSON, D. Engineering Service-Based Dynamic
Software Product Lines. Computer, v. 45, n. 10, p. 49–55, out. 2012.

LEIBA, B. OAuth Web Authorization Protocol. IEEE Internet Computing, v. 16, n. 1,
p. 74–77, jan. 2012.

LETHBRIDGE, T. C.; SIM, S. E.; SINGER, J. Studying Software Engineers: Data
Collection Techniques for Software Field Studies. Empirical Software Engineering, v.
10, n. 3, p. 311–341, 1 jul. 2005.

LITTLE, J.; TOMPKINS, T. Open Government Laws: An Insider’s View. North
Carolina Law Review, v. 53, p. 451, 1974.

LIU, Y. et al. Using architecture integration patterns to compose enterprise
mashups2009 Joint Working IEEE/IFIP Conference on Software Architecture &
European Conference on Software Architecture. Anais...IEEE, set. 2009Disponível em:
<http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5290797>. Acesso em: 27 dez.
2013

LUIS VON AHN, M. B. et al. CAPTCHA: Using Hard AI Problems for Security.
Advances in Cryptology—EUROCRYPT 2003, Lecture Notes in Computer Science.
v. 2656, p. 646–646, 13 maio 2003.

MAAMAR, Z. Commerce, e-commerce, and m-commerce. Communications of the
ACM, v. 46, n. 12, p. 251, 1 dez. 2003.

MAAMAR, Z. et al. WEB SERVICES COMMUNITIES - Concepts &
OperationsWEBIST’2007. Anais...Barcelona, Spain: 2007

MAAMAR, Z. et al. Even Web Services Can Socialize: A New Service-Oriented
Social Networking Model2009 International Conference on Intelligent Networking and
Collaborative Systems. Anais...IEEE, nov. 2009Disponível em:
<http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5369118>. Acesso em: 24
nov. 2011

MAAMAR, Z. et al. LinkedWS: A novel Web services discovery model based on the
Metaphor of “social networks. Simulation Modelling Practice and Theory, v. 19, n. 1,
p. 121–132, 2010.

References 178

MAAMAR, Z. et al. Using Social Networks for Web Services Discovery. IEEE
Internet Computing, v. 15, n. 4, p. 48–54, jul. 2011.

MAAMAR, Z.; BUREGIO, V.; MEIRA, S. From Business-Data Artifacts to Social-
Data Artifacts. to be published, 2014.

MAAMAR, Z.; HACID, H.; HUHNS, M. N. Why Web Services Need Social
Networks. IEEE Internet Computing, v. 15, n. 2, p. 90–94, mar. 2011.

MAARADJI, A.; HACID, H.; DAIGREMONT, J. Towards a Social Network Based
Approach for Services Composition. IEEE International Conference on
Communications, p. 1–5, 2010.

MAXIMILIEN, E. M.; RANABAHU, A.; GOMADAM, K. An Online Platform for
Web APIs and Service Mashups. IEEE Internet Computing, v. 12, n. 5, p. 32–43, set.
2008.

MCAFEE, A. P. Enterprise 2.0: The Dawn of Emergent Collaboration. MITSloan
Management Review, v. 47, n. 3, p. 21–28, 2006.

MCGOWAN, C. Structured Programming: a Review of Some Practical Concepts.
Computer, v. 8, n. 6, p. 25–30, jun. 1975.

MCNAUGHT, C.; LAM, P. Using Wordle as a Supplementary Research Tool.
Qualitative Report, v. 15, n. 3, p. 630–643, 30 abr. 2010.

MEIRA, R. S. D. L. et al. On the Internet , Privacy and the Need for a New Architecture
of Networked Information Services. Academia.edu, 2013.

MEIRA, S. R. L. et al. The Emerging Web of Social Machines. CoRR, v. abs/1010.3,
out. 2010.

MEIRA, S. R. L. et al. The Emerging Web of Social Machines2011 IEEE 35th
Annual Computer Software and Applications Conference. Anais...IEEE, jul.
2011Disponível em:
<http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6032321&contentType
=Conference+Publications&searchField=Search_All&queryText=.QT.The+emerging+
web+of+social+machines.QT.>. Acesso em: 11 nov. 2011

MEYER, J. D. et al. Microsoft® Application Architecture Guide (Patterns &
Practices). [S.l.]: Microsoft Press, 2009. p. 560

MILES, R.; HAMILTON, K. Learning UML 2.0. [S.l.]: O’Reilly Media, 2006. p. 290

MITCHELL, D. The constitutional right to know. Hastings Constitutional Law
Quarterly, v. 4, p. 109, 1977.

MURUGESAN, S. Understanding Web 2.0. IT Professional, v. 9, n. 4, p. 34–41, jul.
2007.

References 179

NASCIMENTO, L.; GARCIA, V.; MEIRA, S. SMADL: The Social Machines
Architecture Description LanguagePaper presented at the meeting of the SLE
(Doctoral Symposium). Anais...2012

NATH, K.; DHAR, S.; BASISHTHA, S. Web 1.0 to Web 3.0 - Evolution of the Web
and its various challenges, 2014.

NICOL, J. R.; WILKES, C. T.; MANOLA, F. A. Object orientation in heterogeneous
distributed computing systems. Computer, v. 26, n. 6, p. 57–67, jun. 1993.

NIGAM, A.; CASWELL, N. S. Business artifacts: An approach to operational
specification. IBM Systems Journal, v. 42, n. 3, p. 428–445, 2003.

O’REILLY, T. What Is Web 2.0 - O’Reilly Media. Disponível em:
<http://oreilly.com/web2/archive/what-is-web-20.html>.

PARKS, W. Open Government Principle: Applying the Right to Know Under the
Constitution. The George Wawhington Law Review, v. 26, n. 1, 1957.

PATTAL, M. M. I.; LI, Y.; ZENG, J. Web 3.0: A Real Personal Web! More
Opportunities and More Threats2009 Third International Conference on Next
Generation Mobile Applications, Services and Technologies. Anais...IEEE, set.
2009Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5337255>. Acesso
em: 18 abr. 2014

PATTERSON, D.; FOX, A. Engineering Long-Lasting Software: An Agile
Approach Using SaaS and Cloud Computing. [S.l.]: Strawberry Canyon LLC, 2012.

PERRY, D. E.; WOLF, A. L. Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes, v. 17, n. 4, p. 40–52, 1 out. 1992.

PETERSEN, K. et al. Systematic Mapping Studies in Software Engineering. p. 1–10,
2007.

PICAZO-VELA, S.; FERNANDEZ-HADDAD, M.; LUNA-REYES, L. F. IT’s alive!!:
social media to promote public healthProceedings of the 14th Annual International
Conference on Digital Government ResearchQuebec, CanadaACM, , 2013.

PIOTROWSKI, S. J.; VAN RYZIN, G. G. Citizen Attitudes Toward Transparency in
Local Government. The American Review of Public Administration, v. 37, n. 3, p.
306–323, 1 set. 2007.

PREECHAVEERAKUL, L.; KAEWNOPPARAT, W. A Novel Approach: Secure
Information Notifying System Using RSS Technology2009 International Conference
on Future Networks. Anais...IEEE, mar. 2009Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5189906>. Acesso
em: 15 nov. 2013

References 180

RECORDON, D.; HARDT, D.; HAMMER-LAHAV, E. The OAuth 2.0 Authorization
Protocol. IEEE Internet Computing, v. 8, n. 1, p. 1–47, 2011.

ROMERO, S. et al. On the Internet , Privacy and the Need for a New Architecture of
Networked Information Services. on submission, 2013.

ROUSH, W. Social Machines - computing means connecting. MIT Technology
Review, August, p. 1–18, 2005.

ROUSH, W. (MIT). Social Machines. Technology, p. 1–18, 2006.

SAVOLAINEN, J.; MYLLARNIEMI, V. Layered architecture revisited —
Comparison of research and practice2009 Joint Working IEEE/IFIP Conference on
Software Architecture & European Conference on Software Architecture. Anais...IEEE,
set. 2009Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5290685>. Acesso
em: 25 maio. 2014

SAYOGO, D. S.; HARRISON, T. Effects of the internet and sociocultural factors on
budget transparency and accountabilityProceedings of the 13th Annual
International Conference on Digital Government ResearchCollege Park,
MarylandACM, , 2012.

SAYRE, R. Atom: The Standard in Syndication. IEEE Internet Computing, v. 9, n. 4,
p. 71–78, jul. 2005.

SCHALL, D.; DUSTDAR, S.; BLAKE, M. B. Programming Human and Software-
Based Web Services. Computer, v. 43, n. 7, p. 82–85, jul. 2010.

SCHALL, D.; TRUONG, H.-L.; DUSTDAR, S. Unifying Human and Software
Services in Web-Scale Collaborations. IEEE Internet Computing, v. 12, n. 3, p. 62–
68, maio 2008.

SCHIEL, U.; MISTRIK, I. Using object-oriented analysis and design for integrated
systemsSystems Integration ’90. Proceedings of the First International Conference on
Systems Integration. Anais...IEEE Comput. Soc. Press, 1990Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=138672>. Acesso em:
14 nov. 2013

SEMMELHACK, P. Social Machines: How to Develop Connected Products That
Change Customers’ Lives. [S.l.]: Wiley, 2013. p. 245

SHADBOLT, N. Knowledge acquisition and the rise of social machines. International
Journal of Human-Computer Studies, v. 71, n. 2, p. 200–205, fev. 2013.

SHADBOLT, N. R. et al. Towards a classification framework for social machines. p.
905–912, 13 maio 2013.

SHAW, M.; CLEMENTS, P. A field guide to boxology: preliminary classification of
architectural styles for software systemsProceedings Twenty-First Annual

References 181

International Computer Software and Applications Conference (COMPSAC’97).
Anais...IEEE Comput. Soc, 1997Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=624691>. Acesso em:
25 maio. 2014

SIMOES, J.; WAHLE, S. The future of services in next generation networks. IEEE
Potentials, v. 30, n. 1, p. 24–29, jan. 2011.

SINGER, J.; SIM, S. E.; LETHBRIDGE, T. Guide to Advanced Empirical Software
Engineering. London: Springer London, 2008.

SKOPIK, F. et al. Towards Social Crowd Environments Using Service-Oriented
Architectures. it - Information Technology, v. 53, n. 3, p. 108–116, maio 2011.

SURYANARAYANA, G. et al. PACE: an architectural style for trust management in
decentralized applications. Proceedings. Fourth Working IEEE/IFIP Conference on
Software Architecture (WICSA 2004), p. 221–230, 2004.

SZYPERSKI, C. Component Software: Beyond Object-Oriented Programming
(2nd Edition). [S.l.]: Addison-Wesley Pub (Sd), 2002. p. 411

TAN, W. et al. Social-Network-Sourced Big Data Analytics. IEEE Internet
Computing, v. 17, n. 5, p. 62–69, set. 2013.

TAYLOR, R. N.; MEDVIDOVIC, N.; DASHOFY, E. M. Software Architecture:
Foundations, Theory, and Practice. [S.l.]: Wiley, 2009. p. 750

THALER, S.; SIMPERL, E.; WÖLGER, S. An Experiment in Comparing Human-
Computation Techniques. Ieee Internet Computing, 2012.

TOFFLER, A. The Third Wave. [S.l.]: William Morrow & Company, 1980. p. 544

TSAI, W. T.; ZUALKERNAN, I. Object-oriented paradigm and software
engineeringProceedings COMPSAC 88: The Twelfth Annual International Computer
Software & Applications Conference. Anais...IEEE Comput. Soc. Press,
1988Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=17209>. Acesso em:
15 nov. 2013

TURING, A. On computable numbers, with an application to the Entscheidungs
problem. Proceedings of the London Mathematical, v. 38, p. 173–198, 1936.

TURNER, M.; BUDGEN, D.; BRERETON, P. Turning Software into a Service.
Computer, v. 36, n. 10, p. 38–44, out. 2003.

UPADHYAYA, B. et al. Migration of SOAP-based services to RESTful
services2011 13th IEEE International Symposium on Web Systems Evolution (WSE).
Anais...IEEE, set. 2011Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6081828>. Acesso
em: 15 nov. 2013

References 182

VON AHN, L. et al. reCAPTCHA: human-based character recognition via Web security
measures. Science (New York, N.Y.), v. 321, n. 5895, p. 1465–8, 12 set. 2008.

VON AHN, L.; DABBISH, L. Designing games with a purpose. Communications of
the ACM, v. 51, n. 8, p. 57, 1 ago. 2008.

WEBBER, J.; PARASTATIDIS, S.; ROBINSON, I. REST in Practice: Hypermedia
and Systems Architecture. [S.l.]: O’Reilly Media, 2010. p. 448

WONG, W.; WELCH, E. Does E-Government Promote Accountability? A Comparative
Analysis of Website Openness and Government Accountability. Governance, v. 17, n.
2, p. 275–297, abr. 2004.

WS-REST. WS-REST 2010 | First International Workshop on RESTful Design.
Disponível em: <http://ws-rest.org/2010/>.

YAHYAOUI, H. Toward an Agent-Based and Context-Oriented Approach for Web
Services Composition. Knowledge Creation Diffusion Utilization, v. 17, n. 5, p. 686–
697, 2005.

YE ZHOU; YANG JI. Design of rest APIS for the exposure of IMS capabilities
towards Web servicesIET International Conference on Communication Technology
and Application (ICCTA 2011). Anais...IET, 2011Disponível em: <http://digital-
library.theiet.org/content/conferences/10.1049/cp.2011.0724>. Acesso em: 4 out. 2013

YOURDON, E. Modern Structured Analysis. [S.l.]: Prentice Hall, 1988. p. 688

YU, J. et al. Understanding Mashup Development. IEEE Internet Computing, v. 12,
n. 5, p. 44–52, set. 2008.

YU, S.; WOODARD, C. J. Innovation in the programmable web: Characterizing
the mashup ecosystem (G. Feuerlicht, W. Lamersdorf, Eds.)Service-Oriented
Computing ICSOC. Anais...: Lecture Notes in Computer Science.Berlin, Heidelberg:
Springer Berlin Heidelberg, 21 abr. 2009Disponível em:
<http://dl.acm.org/citation.cfm?id=1534121.1534136>. Acesso em: 20 jan. 2013

YUEN, M.-C.; CHEN, L.-J.; KING, I. A Survey of Human Computation Systems. 2009
International Conference on Computational Science and Engineering, p. 723–728,
2009.

ZHANG, G.; LI, C.; XING, C. A Semantic++ Social Search Engine Framework in
the Cloud2012 Eighth International Conference on Semantics, Knowledge and Grids.
Anais...IEEE, out. 2012Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6391851>. Acesso
em: 12 maio. 2014

Appendix A: K-RADAR – The Knowledge Radar to guide research efforts 183

Appendix	A	:		K‐RADAR	–	
The	Knowledge	Radar	to	
guide	research	efforts	

This Appendix gives an overview of the Knowledge Radar (K-RADAR) - a

monitoring approach we created for measuring the research progress of this

thesis and mapping its involved knowledge.

A.1 Introduction

Doing research, especially conducting a master or Ph.D. thesis, can be a really

big challenge for most students. Often, during the research development,

students face some difficulties in the process of knowledge acquiring and

keeping focus. Generally, it is because research studies involve several kinds of

knowledge that must be acquired and consolidated in different levels of

understanding. Thus, some focusing issues are raised, especially because i) not

all identified knowledge is required for the research; ii) not all required

knowledge should be investigated immediately and, at the same time, iii) a

researcher should not lose sight of what has already been detected, because it

can be useful in the future.

In order to guide our research, it is therefore essential to monitor and

map field studies, i.e., to study real practitioners as they solve real problems. To

aid this goal, we describe a series of data collection techniques for such studies,

organized around a taxonomy based on the degree to which interaction with

software engineers is necessary. Motivated by such issues, during this thesis we

developed the K-RADAR – a Knowledge Radar - as an approach for monitoring

the research progress and mapping its involved knowledge with the aim of

guiding the research efforts.

A

Appendix A: K-RADAR – The Knowledge Radar to guide research efforts 184

A.2 Origins

K-RADAR came out after a request from Professor Dr. Silvio Meira (my advisor)

to report the progress of my Ph.D. research.

Silvio’s request: elaborate a report to make explicit…

1. What you have learnt so far;
2. What you know that you do not know, but it is needed to learn;
3. What are the distant frontiers, now, the things you do not even know if

you will need to learn, but are on the radar just in case.

Thus, motivated by such questions, K-RADAR emerged as a monitoring

method for measuring my research progress and mapping its involved

knowledge.

A.3 Levels of Knowledge

We consider three main levels in the knowledge acquiring process: (1) Detected

Knowledge; (2) Needed Knowledge; and (3) Consolidated Knowledge. Figure

A.1 illustrates the dynamics of the K-RADAR approach. It gives us a photograph

of somebody’s knowledge about his/her research field based on the three levels

aforementioned. Each point represents a specific topic. The closer to the center

is the point, the more consolidated is the knowledge of its topic.

Figure A.1 – The Knowledge Radar

Appendix A: K-RADAR – The Knowledge Radar to guide research efforts 185

1. Consolidated: knowledge accumulated in a consistent way during the

analyzed period of study, i.e., topics considered as fundamental and certainly

learned during the period of study;

2. Needed: sub-set of knowledge identified as important for the progress of

research, but has not been fully learned. Generally, it includes topics that

need to be studied more deeply in order to support the researcher’s decision

making process in the short term ("just in time");

3. Detected: knowledge identified, but whose use in research is still

controversial. Then, it is knowledge that we are not yet sure whether it will

be applied or not; and it is waiting for a possible demand (level ii) and ["just

in case"] turn out to be studied deeply.

Figure A. 2 - KRADAR's levels of knowledge

Appendix B: The [YOU] Application 186

Appendix	B	:		The	[YOU]	
Application	

B.1 Sign In

Figure B.1 - Welcome page

B.2 Connect

Figure B. 2 - Connect page

B

Appendix B: The [YOU] Application 187

B.3 Search

Figure B. 3 - Search page

B.4 Focus

Figure B. 4 - Focus Page

	01-CAPA TESE 1
	02-CAPA TESE 2
	03-ficha_catalog
	04-folha_aprovacao
	05-conteudo

