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Resumo

A área de Extração de Informação (IE) visa descobrir e estruturar informações dispostas em
documentos semi-estruturados ou desestruturados. O Reconhecimento de Entidades Nomeadas
(REN) e a Extração de Relações (ER) são duas subtarefas importantes em EI. A primeira visa
encontrar entidades nomeadas, incluindo nome de pessoas e lugares, entre outros; enquanto
que a segunda, consiste na detecção e caracterização de relações que envolvem as entidades
nomeadas presentes no texto. Como a tarefa de criar manualmente as regras de extração para
realizar REN e ER é muito trabalhosa e onerosa, pesquisadores têm voltado suas atenções na
investigação de como as técnicas de aprendizado de máquina podem ser aplicadas à EI a fim de
tornar os sistemas de ER mais adaptáveis às mudanças de domínios. Como resultado, muitos
métodos do estado-da-arte em REN e ER, baseados em técnicas estatísticas de aprendizado de
máquina, têm sido propostos na literatura. Tais sistemas normalmente empregam um espaço
de hipóteses com expressividade propositional para representar os exemplos, ou seja, eles são
baseado na tradicional representação atributo-valor. Em aprendizado de máquina, a representação
proposicional apresenta algums fatores limitantes, principalmente na extração de relações binárias
que exigem não somente informações contextuais e estruturais (relacionais) sobre as instâncias,
mas também outras formas de como adicionar conhecimento prévio do problema durante o
processo de aprendizado. Esta tese visa atenuar as limitações acima mencionadas, tendo como
hipótese de trabalho que, para ser eficiente e mais facilmente adaptável às mudanças de domínio,
os sistemas de EI devem explorar ontologias e recursos semânticos no contexto de um arcabouço
para EI que permita a indução automática de regras de extração de informação através do
emprego de técnicas de aprendizado de máquina. Neste contexto, a presente tese propõe um
método supervisionado capaz de extrair instâncias de entidades (ou classes de ontologias) e de
relações a partir de textos apoiando-se na Programação em Lógica Indutiva (PLI), uma técnica de
aprendizado de máquina supervisionada capaz de induzir regras simbólicas de classificação. O
método proposto, chamado OntoILPER, não só se beneficia de ontologias e recursos semânticos,
mas também se baseia em um expressivo espaço de hipóteses, sob a forma de predicados
lógicos, capaz de representar exemplos cuja estrutura é relevante para a tarefa de EI consideradas
nesta tese. OntoILPER automaticamente induz regras simbólicas para classificar exemplos de
instâncias de entidades e relações a partir de um modelo de representação de frases baseado
em grafos. Tal modelo de representação é uma das constribuições desta tese. Além disso, o
modelo baseado em grafos para representação de frases e exemplos (instâncias de classes e
relações) favorece a integração de conhecimento prévio do problema na forma de um conjunto
reduzido de atributos léxicos, sintáticos, semânticos e estruturais. Diferentemente da maioria dos
métodos de EI (uma pesquisa abrangente é apresentada nesta tese, incluindo aqueles que também
se aplicam a PLI), OntoILPER faz uso de várias subtarefas do Processamento de Linguagem



Natural(PLN), tais como a análise de dependência, resolução de correferência, desambiguação
de sentido de palavras e anotação de papéis semânticos. A etapa de PLN em OntoILPER também
considera diversos mapeamentos semânticos entre substantivos e verbos para recursos semânticos,
tais como o WordNet, WordNet Domains, e o VerbNet. Outro mapeamento considerado em
OntoILPER relaciona substantivos do texto de entrada a classes da ontologia de topo SUMO.
OntoILPER foi implemento como um arcabouço para EI que foi avaliado experimentalmente
nas tarefas de NER e ER. Esta tese relata os resultados experimentais das várias avaliações
conduzidas em seis corpora padrão de avaliação pertencentes aos domínios de notícias (news)
e de biomedicina. Os resultados alcançados demonstram a eficácia do método proposto nas
tarefas de REN e ER. De fato, OntoILPER superou alguns dos sistemas de EI do estado-da-arte
comparados nesta tese.

Palavras-chave: Reconhecimento de Entidades Nomeadas. Extração de Relação. Povoamento
de Ontologias. Extração de Informação baseada em Ontologias. Programação em Lógica
Indutiva.



Abstract

Information Extraction (IE) consists in the task of discovering and structuring information found
in a semi-structured or unstructured textual corpus. Named Entity Recognition (NER) and Rela-

tion Extraction (RE) are two important subtasks in IE. The former aims at finding named entities,
including the name of people, locations, among others, whereas the latter consists in detecting
and characterizing relations involving such named entities in text. Since the approach of manually
creating extraction rules for performing NER and RE is an intensive and time-consuming task,
researchers have turned their attention to how machine learning techniques can be applied to
IE in order to make IE systems more adaptive to domain changes. As a result, a myriad of
state-of-the-art methods for NER and RE relying on statistical machine learning techniques
have been proposed in the literature. Such systems typically use a propositional hypothesis
space for representing examples, i.e., an attribute-value representation. In machine learning, the
propositional representation of examples presents some limitations, particularly in the extraction
of binary relations, which mainly demands not only contextual and relational information about
the involving instances, but also more expressive semantic resources as background knowledge.
This thesis attempts to mitigate the aforementioned limitations based on the hypothesis that, to
be efficient and more adaptable to domain changes, an IE system should exploit ontologies and
semantic resources in a framework for IE that enables the automatic induction of extraction rules
by employing machine learning techniques. In this context, this thesis proposes a supervised
method to extract both entity and relation instances from textual corpora based on Inductive

Logic Programming, a symbolic machine learning technique. The proposed method, called
OntoILPER, benefits not only from ontologies and semantic resources, but also relies on a highly
expressive relational hypothesis space, in the form of logical predicates, for representing exam-
ples whose structure is relevant to the information extraction task. OntoILPER automatically
induces symbolic extraction rules that subsume examples of entity and relation instances from
a tailored graph-based model of sentence representation, another contribution of this thesis.
Moreover, this graph-based model for representing sentences also enables the exploitation of
domain ontologies and additional background knowledge in the form of a condensed set of
features including lexical, syntactic, semantic, and relational ones. Differently from most of
the IE methods (a comprehensive survey is presented in this thesis, including the ones that also
apply ILP), OntoILPER takes advantage of a rich text preprocessing stage which encompasses
various shallow and deep natural language processing subtasks, including dependency parsing,
coreference resolution, word sense disambiguation, and semantic role labeling. Further mappings
of nouns and verbs to (formal) semantic resources are also considered. OntoILPER Framework,
the OntoILPER implementation, was experimentally evaluated on both NER and RE tasks.
This thesis reports the results of several assessments conducted using six standard evaluation



corpora from two distinct domains: news and biomedical. The obtained results demonstrated
the effectiveness of OntoILPER on both NER and RE tasks. Actually, the proposed framework
outperforms some of the state-of-the-art IE systems compared in this thesis.

Keywords: Named Entity Recognition. Relation Extraction. Ontology Population. Ontology-
based Information Extraction. Inductive Logic Programming.
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Chapter  1 

Introduction 

A large amount of information on many different topics in various digital formats is posted 
in the Web continuously. As a result, the Web has become a major source of information, 
bearing the potential of being the largest encyclopedic source of all the news, data, etc. 
This information load is mainly due to the advances in computer technology, which 
simplifies the creation, storage, and distribution of information on the Web. Most of such 
information is fragmented and stored in an unstructured form. Thus, this lack of structure 
greatly limits its use. Besides that, current technologies for searching web pages based on 
keywords are not mature enough to provide the user with the specific information the user 
needs [Freitas, 2002]. 

In this context, the interesting idea of converting this sheer volume of unstructured 
textual data into useful information by means of automatic information extraction is 
certainly appealing. Such automation could, for instance, greatly increase the efficiency of 
searching for information, facilitate the creation of large-scale models of the relationships 
among relevant entities from a given domain, and allow for automated inference of new 
information, e.g., extracting implicit information from extracted facts mentioned in texts. 

The research field of Information Extraction (IE) holds the key promise of addressing 
the information overload problem by automating the process of "understanding" the 
relevant parts of textual data sources [Pyysalo,2008]. IE is mainly grounded on 
computational linguistics and machine learning, both applied to unlock access to the 
knowledge generated by humans in the form of natural language documents. However, 
accurate information extraction from web pages by means of automatic tools capable of 
processing human language is an intensive and time-consuming task [Sarawagi, 2008]. 
Thus, the development of efficient and robust information extraction systems constitutes a 
big challenge.  

1.1. Problem Description and Motivation 

Information Extraction is an important task in Text Mining and has been extensively 
studied in various research communities including Natural Language Processing (NLP), 
Web Mining, Information Retrieval (IR), among others. The goal of IE consists in 
discovering and structuring information found in semi-structured or unstructured 
documents, leaving out irrelevant information [Jiang, 2012]. IE can also be regarded as the 
task of automatically identifying and recovering certain entities, relations or events from 
textual sources. 

In IE, two of the most important subtasks are Named Entity Recognition (NER) and 
Relation Extraction (RE).  

 
Named Entity Recognition. The sixth Message Understanding Conference formally 
introduced NER as a subtask in IE in 1995. The aim of NER is to identify named entities 
from text and to classify them into a set of predefined types such as person, organization, 
location, among others. These types are the most useful for many application domains 
[Turmo et al., 2006].  
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The output of a NER system is illustrated with the following input sentence: 

“Paul bought 300 shares of Acme Corp. in 2012.” 

Then, an NER system can output the annotated version of the above sentence in which the 
identified named entities are marked by brackets together with their corresponding entity 
types: 

[Paul] PERSON bought 300 shares of [Acme Corp.] ORGANIZATION in [2012] TIME. 

NER consists of the most fundamental task in IE, since the extraction of more complex 
structures, such as relations and events, depends upon accurate NER as a previous step. 
NER cannot be simply accomplished by string matching against pre-compiled lists of 
entities because instances of a given entity type usually do not form a closed set and, 
therefore, any list of this kind would be incomplete. In addition, the type of a named entity 
usually is context or domain-dependent. 

Other application domains have also been attracted to NER, such as the biomedical 
domain [Pyysalo, 2008]. In such a domain, named entities refer to biological or medical 
terms. Such entities include gene and protein names, medical problems and treatment, drug 
names, just to name a few. 

Particularly in the biomedical domain, NER has been notably challenging for two 
reasons [Yeh et al., 2005]: the dynamic nature of scientific discovery that constantly 
increases in this domain; and the abundant use of synonyms, acronyms/abbreviations that 
makes it difficult to identify the concepts related with terms. 

Relation Extraction. RE consists of detecting and characterizing semantic relations 
among entities in text. The former task consists in only determining if a relation between 
two entities holds, whereas the latter, refers to the classification problem of assigning a 
relation type label to a particular relation instance. Much work on RE focuses on binary 
relations, i.e. relations between two entities, or arguments. Examples of such relations 
include physical (e.g. an entity is physically near another entity), and 
employment/affiliation (e.g. a person is employed by an organization). An example of a 
sentence comprising two mentions or two pairs of relation instances is given below, where 
the entities are highlighted in italics. 

“American saxophonist David Murray recruited Amidu Berry”. 

The above sentence contains two relation mentions: “Citizenship” relation between the 
words ‘David Murray’ and ‘American’; and "Business" between ‘David Murray’ and 
‘Amidu Berry’.  

Supervised machine learning is widely employed to approach both NER and RE. 
However, research work has shown that extracting relations among entities is still a 
substantially harder task than NER [Jiang, 2012]. In fact, the performance results of the 
state-of-the-art NER systems employing machine learning techniques is around 90%, 
whereas RE systems exhibit considerably lower performance of around 70% on the ACE1 
datasets [Jiang, 2012]. 

IE has been of great importance to the biomedical domain [Pyysalo, 2008]. Indeed, due 
to both the exponential growth of bioinformatics literature and the infeasibility of 
processing all this information manually, IE systems have been heavily exploited as tools 
for populating bioinformatics databases.  

                                                
1  Automatic Content Extraction (ACE). http://www.itl.nist.gov/iad/mig//tests/ace 

http://www.itl.nist.gov/iad/mig//tests/ace
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Despite the fact that many IE systems have already been proposed, as presented in 
Chap. 3, there are still in both NER and RE tasks many challenges that require new 
methods and tools. 

Specifically, IE systems present the following shortcomings [Bui, 2012], as presented 
and discussed in more details in Chapter 3: 

- Portability is a main issue in current IE systems. It concerns the capability of how 
easily an IE system can be applied to a new domain. Thus, the portability to a new 
domain is still considered hard to be achieved by IE systems [Jiang, 2012]. 

- long and complex sentences with plenty of vocabulary ambiguity can cause the 
performance of NLP tools to drop considerably [Ananiadou and John, 2006]; 

- the high degree of variation in natural language equally hampers the overall 
performance of IE systems [Miyao et al., 2009].  

The bottom line is that the performance of extraction systems, usually measured in 
terms of precision and recall [Baeza-Yates and Ribeiro-Neto, 1999], needs to be improved 
to satisfy the demands of NER and RE tasks, especially in the biomedical domain [Zhou 
and He, 2008]. 

1.2. Ontology-based Information Extraction 

In the last two decades, there was considerable advance in NLP, and IE has been taking 
advantage of such advances, allowing for more sophisticated text analysis. Despite of that, 
efficient, scalable and reliable IE systems have not yet reached a point where these 
requirements could be fully realized [Hahn and Wermter, 2006]. 

As put before, the main problem that current IE systems have to face concerns system 
portability, i.e., adaptability problem, a serious bottleneck in the field. 

Another important issue concerns the fact that automated IE systems are trained to 
explicitly extract stated information. Consequently, they have limitations in their ability to 
extract implicit facts, for many reasons [Raghavan et al., 2012]. First, being limited to the 
scope of a sentence at a time, state-of-the-art extraction systems are not suitable to discover 
implicit relations. Second, implicit relations exist in different sentences, paragraphs, or 
even across documents, and they require further relational knowledge to be inferred. Third, 
those systems have no access to commonsense knowledge and, thereby they are incapable 
of performing deeper inference.  

Modern IE systems yield limited performance results on most difficult tasks, especially 
those related to semantic understanding of natural language texts which prompted the 
emergence of the IE subfield called Ontology-Based Information Extraction (OBIE). 

An OBIE system can be defined as a system that processes unstructured or semi-
structured texts through a mechanism guided by ontologies to extract certain types of 
information and link such information to its semantic description in an ontology 
[Wimalasuriya and Dou, 2010]. In its turn, ontologies are explicit specifications of 
conceptualizations [Gruber, 1993]. They serve as explicit models of conceptual knowledge 
of a given domain. In practical terms, ontologies encompass definitions of concepts, 
properties, relations, constraints, axioms, and instances about a certain domain or universe 
of discourse. The backbone of ontologies consists of a generalization/specialization 
hierarchy of concepts, i.e., a taxonomy of classes. They also enable the reuse of domain 
knowledge, which makes domain assumptions explicit, separating domain knowledge from 
the operational one. Particularly to IE, ontologies can offer formal and computer-
understandable representations of relevant information [Karkaletsis et al., 2011]. 
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OBIE normally takes place by exploiting domain ontologies as well as IE techniques to 
discover individuals for classes and values for their properties.  

Several authors [Wu and Weld, 2008], [Cimiano, 2006], [Kietz et al., 2000] agree that, 
even being a relatively new field of study, OBIE presents lot of potential. Besides the 
automatic processing of the information contained in natural language texts mentioned 
above, the potential for fully exploiting OBIE is two-fold [Wimalasuriya and Dou, 2010]: 

- Creating semantic contents for the Semantic Web. The Semantic Web aims at 
providing semantic content to the current World Wide Web, in a way that it can be 
processed by software agents [Berners-Lee et al., 2001]. On the other hand, it is quite 
hard to imagine that such content has to be manually annotated, given the prohibitive 
size of the Web. As a result, a massive metadata generation is required in order to 
make the Semantic Web a reality [Popov et al., 2004]. In this context, OBIE has the 
great potential as a means for automatic generation of semantic contents by 
converting the information contained in existing web pages into ontologies.  

- Improving overall ontology quality. Interestingly, OBIE can be used in the 
assessment of the quality of an ontology [Kietz et al., 2000] [Maynard et al., 2006. If 
one assumes that a given domain ontology can be successfully used by an OBIE 
system to extract the semantic contents from a set of documents related to that 
domain, then it can be deduced that the ontology itself serves as a good 
representation of that domain. Consequently, errors in the ontology can be identified 
by analyzing the types of semantic elements that the OBIE system has failed to 
extract. 

According to [Petasis et al., 2011], the first potential application of OBIE systems 
mentioned above is strictly related to the Ontology Population task. Ontology Population 
(OP) consists of the process of inserting new instances of classes, properties and/or 
relations in an existing ontology [Petasis et al., 2011]. Therefore, an OP system does not 
alter the structure of the ontology, i.e., no change in the hierarchy of both classes and 
relationships is carried out. The updating task is restricted to the set of instances of 
concepts, relationships, and properties of an input ontology. Instantiating ontologies with 
new factual knowledge is a relevant step towards the provision of valuable ontology-based 
knowledge services [Cimiano, 2006].  

OBIE systems are closely related to OP systems, as pointed out by Petasis et al. (2011) 
because they provide mechanisms to associate pieces of the information with concepts and 
relationships of an ontology. Indeed, every OBIE system can be considered as an OP 
system, as it can be extended to assimilate extracted instances into the ontology 
[Wimalasuriya and Dou, 2010]. In addition, a populated ontology can be employed in 
several applications such as information retrieval, text mining, automatic reasoning, among 
others. 

The investigation of the state-of-the-art methodologies for OBIE has identified some 
shortcomings (see Chapter 3): 

- Very few IE systems actually perform automatic construction or induction of 
extraction rules in symbolic form. In reality, all OBIE systems surveyed in Chapter 3 
prefer to manually create extraction rules. This can be explained by the fact that it is 
easier and more straightforward to handle such kind of extraction rules than 
integrating statistical extraction models into the IE process.  

- Most work on ontology population relies on shallow natural language processing 
techniques (including NER and chunking), and WordNet as a semantic lexicon 
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resource. Other deeper natural language processing subtasks, such as semantic role 
labeling has been much less exploited. 

- Most of the current OBIE systems use a single ontology for guiding their IE process 
[Wimalasuriya and Dou, 2010]. 

- Very few OBIE systems are able to extract implicit information. 
The motivational hypothesis in this thesis is that the aforementioned shortcomings 

should be addressed in their specific aspects in order to improve IE. Thus, it is necessary to 
develop methods and tools for effective IE and, to some extent, to enable domain 
portability. For achieving that, this thesis investigates to what extent ontologies are suitable 
to guide IE processes, and how extracted instances can be integrated into ontologies for 
later use in more sophisticated inference tasks. 

The present thesis focuses on the investigation of approaches to IE based on ontologies. 
More precisely, it introduces an OBIE method called OntoILPER, and its implementation 
as a framework suitable for extracting instances of classes (entities) and relations 
(properties) from natural language texts. 

In the proposed methodology, a class denotes a set of objects sharing the same 
characteristics, whereas a binary relation denotes the relationship of two instances of 
distinct classes. The interest on binary relations, in special non-taxonomic binary relations, 
is explained by the fact that the Semantic Web has proposed many ways of formalizing 
knowledge representation based on classes of individuals and binary relations among them, 
such as OWL/DL ontologies [Hiztler et al., 2009]. Actually, OWL/DL ontologies can 
model complex domains by means of basic axioms defining several binary relations. 

In this respect, this thesis proposes and evaluates a unified relational model for 
representing both entities and relations found in documents. This model, one of the 
contributions of this thesis, consists of an expressive graph-based model for sentence 
representation that comprises four types of features (or dimensions) that describe the 
examples in the solution, including lexical, syntactic, semantic, and relational features. 
Such group of features defines a very rich hypothesis space to be explored by a machine 
learning technique suitable for inducing symbolic extraction rules.  

In OntoILPER implementation, the Inductive Logic Programming (ILP) technique 
provides mechanisms for both the supervised learning of symbolic models from examples 
and declarative background knowledge. The final set of induced rules is expressed as Horn 
clauses. ILP combines machine learning with logic programming in its learning paradigm 
[Lavrac and Dzeroski, 1994]. 

The decision of adopting a symbolic rule induction technique, such as ILP, is motivated 
by following key points: 

 a significant amount of time and effort can be reduced by employing a machine 
learning technique instead of the manual development of the extraction rules; 

 the user has the interesting options of providing additional a priori knowledge 
(background knowledge) about the problem at hand, and defining some restrictions, 
or biases, which drives the learning process. Moreover, both aforementioned options 
are usually defined by employing the same logic-based formalism, which 
considerably facilitates the learning task [Muggleton and Raedt, 1994]. 

 Given that the rules are expressed as Horn clauses, a knowledge engineer can easily 
intervene in the IE process by, for example, validating the extraction rules, 
optimizing the rules, or using them as components to form other rules or axioms in 
the domain ontology. 



25 
 

Another important part of study conducted in this thesis concerns the investigation of 
several types of background knowledge integrated into the IE process. Indeed, OntoILPER 
incorporates two ontologies: the first one representing the domain elements (classes and 
relations), whereas the second, the annotation ontology, integrates and formalizes 
background knowledge in terms of a rich model which defines lexical, syntactic, semantic, 
and relational features used by the ILP-based learning component in OntoILPER. The 
annotation ontology is domain-independent, i.e., it can be used for supporting a broad 
range of domains. Therefore, this rational use of ontologies in OntoILPER consists of an 
attempt to make the proposed method flexible, extensible, and portable to new domains. 
Furthermore, OntoILPER encompasses what it is considered the right elements to enable 
inference and, consequently, the derivation of implicit information as well, due to its 
potential for using background knowledge in a declarative form. 

One can conclude that, although many approaches and techniques have been developed 
and evaluated for ontology-based information extraction, this field still needs further 
research, once there is plenty of room for improving the quality of the extracted instances 
resulting from the (semi)-automatic methods for ontology population already proposed. 
The present thesis takes a step in that direction by offering a specific novel solution based 
on induction learning techniques able to generate expressive extraction rules, which are 
more intelligible to the human expert, allowing him to know the particular reason for the 
choices made by the OBIE method proposed here.  

1.3. Thesis Objectives and Research Questions 

The goal of this thesis is to propose, implement, and evaluate an 
ontology- and ILP-based method that, besides inducting symbolic 
extraction rules suitable for classifying instances of classes and 
relations in text sources, also takes into account the structural aspects 
of the examples through a rich and expressive relational representation 
model which integrates linguistics and ontological annotations as 
background knowledge, and finally feeds back the extracted instances 
into the domain ontology. 

 
In other words, this thesis proposes an OBIE system that takes into account substantial 

sources of domain-independent background knowledge, such as semantic taxonomies, and 
multiple ontologies. This substantial background knowledge consists of a first class 
element in the proposed methodology for achieving an effective, extensible, and portable 
OBIE system. 

The extraction process in the proposed OBIE method is ontology-based in the sense that 
ontologies provide the background knowledge in the form of two ontologies: domain and 
annotation. The latter comprises a formal relational hypothesis space implemented as an 
OWL/DL ontology encompassing four dimensions of features: lexical, syntactic, semantic 
and structural.  

Although initially motivated by ontology population, the proposed solution for IE was 
design as an OBIE framework since it is more general that OP systems. Nevertheless, it is 
also suitable for OP indeed, as it is shown in Section 5.7. 

The proposed method also relies on ILP, which consists of a relational learning 
formalism allowing both the representation of expressive relational knowledge, and the 
exploitation of this knowledge as background knowledge. 

In ILP, it is possible to integrate background knowledge, including relational 
knowledge, given that this knowledge can be expressed in a declarative way. This is 
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possible because the representation language used for describing the example and BK has 
the expressiveness close to the one of the first-order logic, allowing the representation of n-
ary predicates and variables, which enables capture contextual relationships between the 
examples.  

Furthermore, the proposed OBIE method encompasses the following key elements: 

 a comprehensive NLP component that not only considers the lexical and syntactic 
features typically used in related work, but also enables the integration of several 
semantic resources and ontologies. More precisely, several types of annotations 
derived from text preprocessing using shallow and deep NLP tools, semantic 
resources (WordNet [Fellbaum, 1998], WordNet Domains [Bentivogli et al., 2004], 
VerbNet [Kipper-Schuler, 2005]), and semantic mapping to the top-level SUMO 
ontology [Nile and Pease, 2001] composes a rich set of features that are used in the 
final induction of extraction rules. 

 a graph-based model for sentence representation which is suitable for representing 
all the feature types mentioned above.  

The working hypothesis assumed in this thesis is that given an automatic acquisition of 
a substantial body of linguistic knowledge from textual data, and its formalization using 
ontologies, in combination with an expressive inductive learning technique, it is possible to 
automatically generate effective information extraction models (in terms of precision and 
recall). In this hypothesis, the inductive learning component should allow prior knowledge 
about the domain to be integrated in the construction of the classification model, in such a 
way that, the classification of examples is performed by reasoning involving their 
syntactic, semantic, and structural features formalized by a rich relational representation 
model. 

This hypothesis resulted from a detailed study focused on the open challenges and 
issues in both IE and OBIE fields. This working hypothesis is supported by the following 
evidences: 

 the performance increase when ILP-based models are utilized. Specia et al., (2006) 
reported experimental results in Word Sense Disambiguation showing that ILP-
constructed models obtained better performance than those obtained using a SVM-
based classification model equipped with shallow syntactic features [Isozaki and 
Kazawa, 2002]. These results suggested that the use of ILP with diverse sources of 
background knowledge could provide a way for making substantial progress in the 
WSD. 

 the effectiveness of integrating ontologies in IE. Liu et al. (2011) showed that 
ontologies are of great importance for effective IE, since the reliable relation 
extraction cannot be accomplished without knowledge of instances and their 
relationships to the corresponding ontology classes.  

 the utilization of ontologies as a means for enhancing portability of IE systems. As 
put before, traditional IE systems suffer from being specialized on a single IE 
template of a domain of concern. The utilization of ontologies as a means of formal 
information exchange increases flexibility in adapting IE systems to new domains 
[Adrian et al., 2009]. 

 different perspectives on a domain using multiples ontologies. In [Wimalasuriya and 
Dou, 2010], the authors showed that the utilization of multiple related but distinct 
ontologies could bring several benefits to IE, as ontologies can offer different 
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perspectives on a domain, with the potential of giving more accurate answers to 
queries related to distinct users’ perspectives. 

Research Questions. The following research questions will be addressed in this thesis: 

1. How can ontologies and semantic resources be explored to address one of the main 
challenges for OBIE systems: achieving state-of-the art performance? 

2. What is the influence of syntactic, semantic, and structural features on RE? 
3. What is the role of the ILP-based learning component to both NER and RE tasks? 

4. What are the benefits of the graph-based model of sentence representation in the final 
induced classification models? 

5. Concerning the graph-based model of sentence representation mentioned above, 
would it be useful to adopt a simplification strategy before the learning phase? 

6. To what extent is OntoILPER portable to other domains? 
The answers to each of these research questions are given in Chapter 7 (Conclusions), 

whereas some experimental questions derived from the above-mentioned research 
questions are answered in Chapter 6.  

1.4. Thesis Contributions 

The research activities performed in this work resulted in the following contributions to the 
OBIE area: 

(1) OntoILPER. An OBIE method that automatically extracts instances of classes and 
relations from text sources. This OBIE method, called OntoILPER, takes advantage 
of several linguistic-related knowledge sources and additional ontologies (in 
OWL/DL) that formalize the background knowledge for achieving state-of-the-art 
performance. Its distinguishing features, compared to related work, consist in its 
higher expressiveness of the extraction rules, and the rich set of features that are 
utilized by an ILP-based component for inducing symbolic extraction rules. 
Another OntoILPER advantage is that it can extract implicit information. In 
OntoILPER, the requirements regarding the use of ontologies for IE are analyzed 
and discussed. In particular, the role of ontologies as means for formalizing BK in 
the logic-based induction of extraction rules is addressed. 

(2) OntoILPER Framework. The implementation of OntoILPER as a framework for 
ontology population, called OntoILPER Framework. This framework was 
implemented as a modular, pipelined architecture that integrates all of the models 
proposed in this thesis. 

(3) A Complete Ontological Environment for ILP-based IE. As this environment 
converts the input text into ontological elements, uses the domain ontology during 
the extraction process, translates the extraction rules into SWRL, and populates the 
domain ontology with the extracted instances, this means that the whole process is 
completely ontology-based. Moreover, because of that, the proposed OBIE 
framework could be easily integrated to ontology engineering tools such as 
Protégé2 or Neon3.  

                                                
2 Protégé Ontology Editor. http://protege.stanford.edu 
3 NeOn Toolkit. http://neon-toolkit.org/wiki/Main_Page 

http://protege.stanford.edu
http://neon-toolkit.org/wiki/Main_Page
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(4) The integration and implementation of various NLP subtasks/tools as a unique 
component able to perform a comprehensive natural language preprocessing of 
textual corpora. The current implementation of this component is modular, and 
extensible to new languages and additional language analysis. 

(5) A hybrid XML-based model for linguistic annotation representation which 
combines the advantageous aspects of two standard linguistic annotation formats: 
inline and stand-off annotation. 

(6) Annotation Ontology. The design and implementation of a domain-independent 
and expressive annotation ontology in OWL/DL. The annotation ontology 
formalizes the resultant analysis carried out in the preprocessing stage, in which 
various kinds of describing features were mapped to formal structures. Such 
structures are defined by an expressive knowledge representation formalism that 
defines all types of background knowledge used by the rule learning component in 
OntoILPER. The annotation ontology also provides the formalization of IE results 
in OWL/DL. 

(7) A graph-based model for sentence representation which encompasses several types 
of features, including morphological, syntactic, semantic, and relational ones. This 
model also integrates mapping to linguistic semantic resources and ontologies in a 
rich and unified model. 

(8) The design and implementation of a method for transforming and simplifying 
graph-based representations of sentences. This simplification method allows 
improving the overall extraction performance results in terms of precision and 
recall. 

Fig. 1.1, at the end of this chapter, provides a schematic view of the main contributions 
of the present thesis with indication of the published papers related to this thesis. 

In summary, it can be argued that the main contributions of this thesis represent a novel 
specific solution for information extraction and ontology population from textual data. 
Indeed, the particular combination of several elements that comprise the proposed solution 
(as seen in the list of contributions above) distinguishes the present research study from 
previous related work. 

1.5. List of Publications 

Parts of this thesis have been published in several international conferences:  

(1) R. Lima, B. Espinasse, H. Oliveira, F. Freitas (2014). Ontology Population from 
the Web: an Inductive Logic Programming-Based Approach. In Proceedings of 
the 11th International Conference on Information Technology: New 
Generations, ITNG 2014, Las Vegas, Nevada, USA. 

(2) R. Lima, B. Espinasse, H. Oliveira, L. Pentagrossa, F. Freitas (2013). 
Information Extraction from the Web: An Ontology–Based Method using 
Inductive Logic Programming. In Proceedings of the IEEE International 
Conference on Tools with Artificial Intelligence, ICTAI 2013, Washington DC, 
USA. 

(3) R. Lima, B. Espinasse, H. Oliveira, R. Ferreira, L. Cabral, F. Freitas, R. 
Gadelha (2013). An Inductive Logic Programming-Based Approach for 
Ontology Population from the Web. In Proceedings of the 24th International 
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Conference on Database and Expert Systems Applications, DEXA 2013, Prague, 
Czech Republic. 

(4) R. Lima, J. Batista, R. Ferreira, F. Freitas, R. Lins, S. Simske and M. Riss 
(2014). Transforming Graph-based Sentence Representations to Alleviate 
Overfitting in Relation Extraction. In Proceedings of the 14th ACM Symposium 
on Document Engineering (DocEng 2014), September, Fort Collins, Colorado, 
USA. (in printing) 

More recently, two other papers were submitted: 
(5) R. Lima, B. Espinasse, F. Freitas, H. Oliveira, R. Ferreira (2014). OntoILPER: 

an Ontology- and Inductive Logic Programming-based Method to Extract 
Instances of Entities and Relations from Text. Information Sciences Journal. 
(submitted in July, 2014) 

(6) R. Lima, B. Espinasse, H. Oliveira, F. Freitas (2014). Ontology-based 
Information Extraction with OntoILPER. IEEE International Conference on 
Tools with Artificial Intelligence, ICTAI 2014, Limassol, Cyprus. (submitted in 
July, 2014) 

1.6. Thesis Outline 

The rest of this thesis is structured into the following chapters: 

- Chapter 2 introduces the necessary fundamental concepts for a better 
understanding of this thesis. First, it is presented the concept of ontologies as a 
means for formalizing knowledge bases, followed by a brief description of 
commonly used ontology representation languages as well as ontology queries 
languages. Next, a myriad of subtasks in NLP which aims at analyzing natural 
language by automatic means are presented. The focus here is on morphologic, 
syntactic, and semantic preprocessing tasks commonly used by IE systems. In 
addition, semantic resources, and semantic role labeling are also explored. Finally, 
Inductive Logic Programming, the machine learning technique adopted in this 
thesis, is described in detail. This machine learning paradigm is explored by 
presenting an illustrative example of a relational learning task in ILP. 

- Chapter 3 gives a brief introduction to Information Extraction. Starting by some 
definitions and a historical overview, this chapter also discusses the general 
architecture of IE systems. A comprehensive review of the literature on 
Information Extraction (classical IE and OBIE) is presented. For the latter, it is 
emphasized how ontologies can be exploited to guide the IE process. A taxonomic 
classification of specific implementations of the main approaches in both research 
fields is also proposed, focusing on their advantages and drawbacks. Another goal 
of Chapter 3 is to highlight the trends and open problems in IE. 

- Chapter 4 presents the proposed method for OBIE, OntoILPER, the main 
contribution of this thesis. It explains the main benefits that the use of ontologies 
and a richer text preprocessing can bring to OntoILPER, comparing it to other 
close related IE/OBIE systems. Furthermore, Chapter 4 presents the main design 
decisions made in OntoILPER which is grounded on the Inductive Logic 
Programming, a machine learning technique that is suitable to induce symbolic 
classification rules. It is shown how expressive relational representations of 
sentences provided by formal ontologies may open up new opportunities for an 
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effective and adaptive IE process. Then, a second contribution of this thesis, the 
transformation rules for reducing the graph-based representation of sentences are 
described. The aim of these rules is to reduce considerably the size of the graph 
that represents a given sentence in the proposed sentence representation model. 
This constitutes one of the working hypotheses that is tested in this thesis. Finally, 
the roles of domain and annotation ontologies as background knowledge sources 
are introduced. The main goal of Chapter 4 is to discuss the main hypothesis in 
this work that the integration of the two aforementioned ontologies combined with 
an expressive rule learning formalism, may improve the EI process. 

- Chapter 5 gives an in-depth view of the implemented components of the proposed 
OBIE method introduced in Chapter 4. First, the main modules of the OntoILPER 
architecture, their functionalities, and the integration of supporting tools are 
described. Then, each component that constitutes the OntoILPER Framework is 
explained, in most cases, with illustrative examples. This chapter focuses on the 
aspects related to the most important design decisions made during the 
implementation of the proposed OBIE method. Different scenarios for applying 
OntoILPER are outlined. 

- Chapter 6 is dedicated to answer the research questions raised in the introductory 
part of this thesis through the discussion of experimental results on NER and RE 
using 6 distinct datasets from two domains: news (3 datasets) and biomedical 
domain (3 datasets). The achieved results are also compared with other state-of-
the-art NER and RE systems. 

- Chapter 7 summarizes this thesis presenting an overall conclusion and the lessons 
learned. In addition, the major contributions introduced by this thesis, and future 
research lines of investigation are presented. 
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Figure 1.1. Schematic view of the main contributions of this thesis. 
The papers that introduced the contributions are also indicated. 
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Chapter  2 

Foundations 

In this chapter, the necessary fundamental concepts for a better understanding of this thesis 

are covered. This includes an overview of Ontologies, the concepts and subtasks in Natural 

Language Processing, and Inductive Logic Programming, the machine learning technique 

adopted in this work. 

2.1.  Ontologies  

Ontologies have become a prominent theme in Computer Science, where they serve as 

explicit models of conceptual knowledge of a given domain. They also play a key role in 

the vision of the Semantic Web (SW) [Berners-Lee et al., 2001] because they provide the 

semantic vocabulary used to annotate web sites in a non-ambiguous way for the 

interpretation of computers. 

Ontologies, under a computational point of view, can be regarded as logical theories 

that describe some aspect of reality. Typically, such logical theories describe a specific 

domain, i.e., some part of the reality that is relevant to some applications. For instance, an 

ontology can be defined for the domains of Biomedicine [Grenon et al., 2004], and 

Biochemistry (The Gene Ontology Consortium, 2000), among others. 

In one of the most cited definitions of ontologies, Gruber states that “an ontology is an 

explicit specification of a conceptualization” [Gruber, 1993]. In this definition, the term 

conceptualization means an abstract, simplified view of the world that one wishes to 

represent for some purpose. Later on, Borst (1997) defined an ontology as a “formal 

specification of a shared conceptualization”. This second definition additionally required 

that the conceptualization should express a shared view between several parties, a 

consensus, rather than an individual view. In 1998, Studer et al. (1998) merged these two 

definitions stating that: “An ontology is a formal, explicit specification of a shared 

conceptualization.” where "formal" means that such conceptualization should be expressed 

in a formal machine readable format.  

In practical terms, ontologies encompass definitions of concepts, properties, relations, 

constraints, axioms, and instances about a certain domain or universe of discourse. The 

backbone of an ontology consists of a generalization/specialization hierarchy of concepts, 

i.e., a taxonomy. They also enable reuse of domain knowledge, which makes domain 

assumptions explicit, separating the domain knowledge from the operational one.  

The rest of this section presents the main ontology-related elements used in this thesis, 

which includes ontology types, ontology representation languages, and ontology querying 

languages. 

2.1.1. Ontology Types 

Many researchers have tried to classify the ontologies into specific categories. Fig. 2.1, for 

example, displays the classification proposed by Guarino (1998). The arrows in the figure 

indicate a specialization relationship between the following types of ontologies: 

- Top-level ontologies: they describe many general concepts related to time, space, 

matter, etc. 

- Domain ontologies: they describe the vocabulary used in a specific domain. 
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- Task ontologies: they specify the vocabulary used by a generic task or activity. 

- Application ontologies: they model the concepts that normally are specializations of 

other domain ontologies or tasks. 

As a more concrete example, consider a domain ontology about books and an ontology 

about sales. A bookstore could then specialize both ontologies to describe a service of 

online book sales. 

In what follows, an example of a top-level ontology is presented. 

 

 

Figure 2.1. Types of ontologies, according to Guarino (1998). 

SUMO Ontology
1
. The Suggested Upper Model Ontology (SUMO) [Niles and Pease, 

2001] consists of the largest formal ontology currently available. SUMO was created by 

merging publicly available ontological content into a single, comprehensive, and cohesive 

structure. 

This ontology is also a huge database which, together with its domain-specific extensions, 

contains more than 20,000 concepts and 60,000 axioms. The concepts include the most 

common geographic names, languages, financial terms, and even chemical elements. 

A mapping between SUMO classes and WordNet synsets
2
 was proposed by Niles and 

Pease (2003). Such a mapping enriches WordNet database files by tagging each synset 

with the corresponding SUMO concept. As a result, SUMO enhances WordNet by 

organizing them into a logical structure. 

Another SUMO key feature concerns the well-defined and well-documented concepts 

that are interconnected into a semantic network and accompanied by several axioms. Such 

axioms intend to both constraint interpretation of concepts, and provide guidelines for 

automated reasoning systems. 

The most general concepts in SUMO are illustrated in Fig. 2.2. This picture shows that 

in SUMO, even abstract entities like sets and propositions are elements of the domain.  

 

                                                
1 SUMO Ontology portal. http://www.ontologyportal.org 

2 WordNet synsets are sets of cognitive synonyms, each expressing a distinct concept. 
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Figure 2.2. Top level classes in SUMO. 

 

Below, a SUMO axiom is represented in simplified Knowledge Interchange Format 

(KIF) [Genesereth  and Fikes, 1992]: 
 

=> 

(instance ?DRIVE Driving) 

(exists (?VEHICLE) 

(and 

(instance ?VEHICLE Vehicle) 

(patient ?DRIVE ?VEHICLE)))) 

 

This axioms means that “if there is an instance of Driving, there is a Vehicle that 

participates in that action". 

2.1.2. Ontology Representation Languages 

The main standard representation languages for ontologies are presented here. Such 

languages include Resource Description Framework (RDF), Resource Description 

Framework Schema(RDFS), and Web Ontology Language (OWL). 
 

Resource Description Framework (Schema) [Brickley and Guha, 2000]. RDF defines 

the data model for the SW, as recommended by W3C. It has been developed to represent 

information about web resources. The main goal of RDF is to annotate web resources that 

are uniquely identified by a URI (Unique Resource Identifier).  

In RDF, the basic statement is a triple of the form (subject, property, property value) or, 

equivalently, (subject, predicate, object). Thus, each triple expresses a binary relation. The 

subject of a triple is a resource, which is identified by a URI. The predicate is also denoted 

by a URI, and the object is either another resource or datatype value, also called literal. In 

case the property value is a resource, the property is called an object property, otherwise it 

is called datatype property.  

While RDF is applied for specifying statements about instances, RDF-Schema (RDFS) 

defines schema and subclass hierarchies. The statements in RDF and RDFS can be 

represented as one combined directed graph, also called a RDF graph. A set of RDF 

statements constitutes a RDF graph because each triple (s, p, o) defines an edge which goes 

from s to o and has label p .  

Most of the SW data currently available is defined using the lightweight formalism of 

RDF(S). Each resource may be associated with one or several concepts (e.g. classes) via 

the type-property. In addition, RDFS allows for the definition of restrictions on properties 
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and concepts. The most important of these restrictions are subclass relationships, the 

definition of domains and ranges of properties.  

 

OWL/DL. Since 2004, OWL (Ontology Web Language) [Hitzler et al., 2009] has turned 

out to be the most expressive ontology language and accepted worldwide as an expressive 

formalism for modelling and building ontologies. OWL not only provides a powerful 

formalism for knowledge representation and reasoning, but also extends RDFS to 

formulate more expressive schemas and subclass hierarchies with additional logical 

constraints. 

OWL is based on the Description Logic (DL) [Baader et al., 2008] that defines a family 

of knowledge representation formalisms and reasoning techniques. DL combines a 

rigorous semantic based on First-Order Logic (FOL) with a very expressive way to 

structure and code the conceptual knowledge of a domain [Baader et al., 2008]. DL models 

an application domain by defining its relevant concepts (or classes) and specifying the 

properties of the objects and the individuals contained in such a domain. In OWL, the 

formal definition of the interpretation of individuals, concepts, and relationships is given 

by a model-theoretic semantic allowing for many inference services that are concretely 

provided by reasoners.  

OWL, in its variant OWL/DL, is a specific DL [Baader et al. 2008]. An OWL/DL 

ontology contains explicit and implicit information about the domain or world that one 

wishes to represent using a terminological box (TBox) and an assertional box (ABox). 

TBox is a set of (equivalence or inclusion) axioms that define concepts (sets of individuals) 

and roles (binary relationships) using primitive (atomic) concepts and role names and 

combining them through specific language constructors. ABox contains factual assertions 

concerning the individuals.  

In what follows, further explanation about TBox and ABox elements are provided: 

- Instances denote elements or individuals in an ontology.  

- Classes (or concepts) denote sets of individuals. Classes are usually organized in 

taxonomies through which inheritance mechanisms can be applied. For example, 

in the vertebrate domain, mammal and vertebrate classes are related through a 

taxonomic relationship “is-a”, stating that a mammal is a vertebrate. 

- Properties represent either an association (relationship) between individuals or an 

association between individuals and values (data type values). OWL ontologies 

typically contain binary relations that are denoted by R(x, y), where x and y 

represent individuals, and R, the relationship or property. The behaviour of object 

properties can be classified as symmetric, transitive, functional or inverse 

functional.  

Such properties can be of three types: 

i. Object properties relates individuals. Unlike hierarchical relationships, object 

properties represent a non-taxonomical relationship that is typically expressed 

by a verb relating a pair of concepts; 

ii. Datatype properties link individuals to data types which can be represented 

by a string or number, for instance. 

iii. Axioms represent sentences in FOL that are assumed to be true, that is, 

without proof. They specify constraints on the ontology and can be applied in 

the verification of its consistency as well as to infer new knowledge from an 

inference mechanism. For instance, OWL/DL enables stating the equivalence 

or disjointness of classes and the (non-)identity of properties respectively 

instances.  
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OWL/DL allows the user to construct classes by enumerating their content, through 

forming intersections, unions, and the complements of classes. Cardinality constraints can 

also be formulated and classes can be defined via property restrictions.  
 

Reasoning Support. OWL/DL also provides reasoning support. This is important because it 

allows the user to check the consistency of the ontology and the knowledge, check for 

unintended relationships between classes, and automatically classifying instances in 

classes. Reasoning is based on the interpretations that satisfy the axioms/assertions in the 

knowledge base (i.e. their logic models). Hence, the standard notions of satisfiability, 

validity, and entailment defined for FOL naturally extend to DLs.  

The following OWL/DL reasoning services are available: 

- class membership: if c is an instance of a class C, and C is a subclass of D, then it  

can be inferred that c is an instance of D. 

- equivalence of classes: if class A is equivalent to class B, and class B equivalent to 

class C, then A is equivalent to C. 

- consistency checking: This ensures that an ontology does not contain any 

contradictory facts. For instance, consider the situation where a is an instance of 

the class A, being A  a subclass of the class B, with the constraint that A and B are 

disjoint. Then, this reveals an inconsistency which points to a probable error in the 

ontology. 

- class subsumption: It aims to prove or disprove for any given pair of classes C and 

D that C entails D. 

2.1.3. Ontology Query Languages: SPARQL and SWRL 

For the purpose of this thesis, it follows a give a brief overview of the basic concepts of the 

two standard Semantic Web query languages, namely SPARQL and SWRL. 

 

SPARQL. The SPARQL Query Language
3
 is a W3C recommendation for querying and 

manipulating data stored in RDF format. It became a standard by the RDF Data Access 

Working Group of the WWW Consortium, and it is recognized as one of the key 

technologies of the SW. SPARQL allows users for querying RDF ontologies consisting of 

triple patterns, conjunctions, disjunctions, and optional patterns. With SPARQL, users 

write queries against data that follows the RDF specification of the W3C, that is, the entire 

database is thus a set of "subject-predicate-object" triples.  

The SPARQL query language is based on matching graph patterns. The simplest graph 

pattern is the triple pattern, which is like an RDF triple, but with the possibility of a 

variable instead of an RDF term in the subject, predicate, or object positions. Combining 

triple patterns gives a basic graph pattern, in which an exact match to a graph is needed to 

fulfill a pattern. 
 

SWRL: Rules in OWL/DL. The Semantic Web Rule Language (SWRL) [Horrocks et al., 

2010] is a standard language based on OWL/DL and on the Rule Markup Language 

(RuleML) which provides both OWL/DL expressivity and rules from RuleML [Horrocks 

et al., 2010]. This rule language is the unrestricted union of OWL/DL (SHOIN(D)) and 

(binary) function-free Horn logic. The basic idea of SWRL is to extend OWL/DL with a 

form of rules while maintaining maximum backwards compatibility with OWL syntax and 

semantics.  

                                                
3 SPARQL Query Language for RDF. W3C Recommendation 15 January 2008. 

http://www.w3.org/TR/rdf-sparql-query 
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SWRL rules are expressed as an implication between an antecedent (body) and 

consequent (head). Hence, the syntax of SWRL is of the following form: 

                                 antecedent consequent                                               (1) 

The informal meaning of a SWRL rule is: whenever the conditions specified in the 

antecedent hold, then the conditions specified in the consequent must hold. OWL 

expressions can occur in both antecedent (body) and consequent (head) which themselves 

are sets of SWRL atoms. 

A SWRL atom may be of the following forms [Hitzler et al., 2009]: 

Unary atoms: 

- C(arg1) , where C is an arbitrary OWL/DL class expression; 

- D(dataArg1), where D is a datatype URI or an enumerated value range. 

Binary atoms: 

- P(arg1,arg2) where P is an object property; 

- Q(arg1, dataArg1) where Q is a datatype property; 

- arg1 = arg1 equality, or “sameAs”; 

- arg2 ≠ arg2 inequality, or “differentFrom” 

Where arguments are of the form: 

- arg1 | arg2 these are either individuals denoting URIs or individual ranging 

variables; 

- dataArg1 these are data literals or data value ranging variables. 

For instance, a rule in SWRL asserting the composition of parent and brother 

properties, which imply the uncle property, would be written: 

 

        (? ,? ) (? ,? ) uncle(? ,? ).parent a b brother a c c b   

 

SWRL has several strengths, to name a few: 

- arbitrary OWL classes can be used as predicates in rules; 

- it consists of an extension to OWL, i.e., rules and axioms in OWL/DL can be 

freely mixed; 

- it provides a human readable syntax, like the simple form of Horn-style rules. 

Additionally, SWRL also allows for "built-in" atoms with a fixed, predefined 

interpretation [Hitzler et al., 2009]. SWRL built-ins can be considered as a supplement to 

OWL’s datatype facility. For instance, with the help of the Protégé ontology editor, one 

can utilise predefined built-ins such as swrlb:greaterThan, which enables a more 

expressive condition to be inferred.  SWRL includes built-ins for mathematics, string, and 

date support, among others. 

The combination of OWL/DL and RuleML makes the SWRL undecidable [Hitzler et 

al., 2009]. However, decidability can be regained with the imposition of a safety condition 

on SWRL rules. The decidability of SWRL rules with the DL-Safety condition was 

established in [Motik et al., 2004]: the possible values of (explicit) variables in SWRL 

rules are restricted to named individuals only, which restricts the effects of such rules to 

the ABox. This safety condition is known as “DL-Safety” and SWRL rules are called “DL-

Safe rules”. As a result, DL-Safe Rules are much more computationally reasonable, and the 

support for SWRL inference is already available by means of ontology reasoners, like 

Pellet
4
. 

                                                
4 Pellet: OWL 2 Reasoner for Java. http://clarkparsia.com/pellet/. 
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2.2. Natural Language Processing 

Natural Language Processing (NLP) is a subfield of computational linguistics which 

analyses natural language by automatic means. It provides the theoretical and practical 

foundations for many applications involving text mining. Applications of this technology 

include automatic translation, text retrieval, automatic summarization, ontology 

population, and notably information extraction. 

NLP is particularly challenging for two reasons: natural language has plenty of 

ambiguity, and words can be combined into sentences in many possible ways, which 

makes it impossible, for computers, to simply list the possible contexts and meaning of a 

given word in a sentence. 

This section provides a broad view of NLP techniques (in English) that will be explored 

in this thesis. After introducing the basic concepts of natural language: syntax, semantics, 

and pragmatics in Section 2.2.1; the common NLP subtasks used by most of text mining 

applications are presented in Section 2.2.2. Sections 2.2.3 and 2.2.4 discuss various aspects 

concerning lexical semantics, including semantic resources such as WordNet, and 

WordNet Domains. Other semantic-related subtasks such as Word Sense Disambiguation 

and Semantic Role Labelling are presented in Sections 2.2.5 and 2.2.6. 

2.2.1. Linguistic Concepts  

A language is a finite set of symbols with syntax and semantics, where syntax is a set of 

rules defining the structure of well-formed expressions; and semantics, which defines the 

meaning of words and expressions in a language. 

The meaning of words or phrases is closely related with the difference between meaning 

and reference. This distinction can be represented by a triangle - the so-called semiotic 

triangle [Ogden and Richards, 1923]. In this triangle (Fig. 2.3), a symbol (a natural 

language word or phrase) is connected to its referent (an object in the real world), via some 

thought of reference (or concept). The branch of linguistics that investigates the meaning 

of words and their relationships is called lexical semantics (see Section 1.2.3). 

 

 

Figure 2.3. Semiotic triangle. Extracted from [Sowa, 2000]. 

Traditionally, the research work on NLP tends to see the language analysis process as 

decomposable into a series of stages, reflecting the different existing linguistic theories of 

morphology, syntax, semantics, and pragmatics. In this simplified view, the sentences are 

first analyzed in terms of its syntax, which provides order and structure that are more 

amenable to the later analysis in terms of literal meaning (semantics). The semantic 
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analysis, in turn, is followed by the pragmatic analysis which tries to determine the 

meaning of the text in its context. This last analysis also deals with the discourse, while the 

former two usually only consider the limits of a sentence at a time. In the following, each 

language analysis stage mentioned above is briefly presented in turn.  

 

Morphology. Morphology concerns the internal structure of words, i.e., how words can be 

broken into meaningful pieces. Conversely, morphology comes up with rules for inflection 

and word formation that enable humans build a rich vocabulary from a basic inventory of 

morphemes. A morpheme is the smallest unit in natural language that carries meaning. 

Words that are built from more than one morpheme can be split into a stem and one or 

more affix, i.e., a morpheme attached to a stem like in "book" + "s", in which the plural "s" 

is an inflectional morpheme, as it alters the base form without changing its syntactic 

category. 

Words are usually referred to as lexical items. Most language theories assign features to 

words, e.g., whether they are singular or plural, transitive or intransitive, or first or third 

person.  
 

Syntax. Syntax refers to the way words are arranged together, forming legal structures of a 

language. First, words presenting similar behaviour are categorized into syntactic 

categories, or parts of speech (POS). Such categories include noun, verb, and adverb, for 

example. Syntactical knowledge is expressed by rules for combining such categories into 

phrases and the structural roles that these phrases can play in a sentence. For example, the 

sentence (2.1) is a syntactically correct sentence in English, whereas sentence (2.2) is not. 

 

                           Diamond is the hardest material on earth.                           (2.1) 

                           Diamond the is earth material hardest on.                           (2.2) 

 

A grammar is a way of expressing the valid syntactic structures in a language. Another 

important syntactic notion is the notion of grammatical dependency. For example, in the 

sentence “Mary reads an interesting book.”, “Mary” and “book” are dependents of a 

reading event. They are both the arguments of the verb read. The adjective “interesting” is 

a dependent of “book”, and modifies “book”. 
 

Semantics. Semantics studies the meaning of a language unit: a word, a sentence, or the 

entire discourse. In other words, semantics focuses on the way how word meanings 

combine into the meaning of sentences. 

For instance, sentence (2.3) below is an example of a meaningful sentence, while (2.4) 

is not. 

                       I have read the book on Semantic Web.                                  (2.3) 

                      The book spoke to me about its large head                               (2.4) 

 

One can notice that, even though the latter sentence is syntactically well formed, it does 

not make sense. Here, this kind of distinction is captured by selectional restrictions, which 

describe the semantic regularities associated with the possible complements of a verb. In 

this example, the verb mention “speak” suits for people as subject, instead of non-animate 

objects (book) as the subject.  
 

Pragmatics. Pragmatics studies the language use in terms of how sentences relate to one 

another. The so-called, pragmatic knowledge includes information about sentences that 

might have meaning in a specific context, i.e., the way in which context clearly contributes 

to meaning. 
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Unlike semantics, which examines meaning that is conventional in a given language, 

pragmatics investigates how the transmission of meaning depends not only on structural 

and linguistic knowledge, but also on the context of the utterance, which includes any pre-

existing knowledge about those involved, the inferred intent of the speaker, and other 

factors [Carston, 2002]. 

2.2.2. Preprocessing: Morphological and Syntactical Analysis 

Natural language processing in most current text mining applications typically consists of 

the sequential application of several components performing the NLP subtasks as shown in 

Fig. 2.4. Usually, such subtasks are performed in pipeline mode, i.e., starting with simpler 

analysis like sentence splitting and tokenization, whose output results serve as input for the 

next complex subtasks like POS tagging and syntactic parsing. It follows a brief 

description of the NLP subtasks shown Fig. 2.4. 

 

 
 

Figure 2.4. A common-used pipeline of NLP subtasks 

Sentence Splitting. It consists of determining the sentence boundaries in a document. 
 

Tokenization. It is the process of breaking a stream of text up into words, symbols, or 

other meaningful elements, usually referred to as tokens. For example, punctuation signs, 

such as periods, can be problematic because either they can denote the end of a sentence, 

the end of an abbreviation, or they can be used for specifying dates, telephone numbers, 

etc. An additional problem concerns the blanks that do not always indicate word 

boundaries as it is the case for many named entities like "New York", which actually 

denotes multi-word expressions formed by more than one token. Because of that, 

sometimes it seems more useful to apply named entity recognition before actually 

performing tokenization [Jurafsky and Martin, 2009]. 

 

Lemmatization. It consists in the process of reducing each word to its base form, or its 

lemma. For example, in English, words may appear in many inflected forms. Consider the 

verb 'to call' that can appear as “call”, “called”, “calls”, “calling”. Thus, the base form 

“call”' is the lemma for its inflected forms.  

Lemmatisation is closely related to stemming. The difference is that a stemmer operates 

on a single word without knowledge of the context, and therefore cannot discriminate 

between words which have different meanings depending on part of speech. 

Part-of-Speech (POS) tagging. Part-of-speech (POS) tagging is the task of assigning to 

each token its corresponding part-of-speech tag, i.e. its syntactic word category such as 

noun, adjective, verb, etc. Fig. 2.5 shows the result of POS tagging applied to the sentence 

"Mary is going to the Soccer World Cup in Brazil in 2014". In this figure, the tag (label) 

above each word denotes its syntactic word category. 

 

 

 

Sentence 
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Tokenization Lemmatization 
POS 

Tagging 
Chunking 
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Figure 2.5. POS tagging results for the sentence: “Mary is going to the Soccer World Cup in Brazil 

in 2014” 
5
. 

 

Table 2.1 shows the meaning of these POS tags. The complete set of POS tags, as 

proposed by the Penn Treebank Project
6
, listed in alphabetical order, can be found in 

Appendix A. 

Some of the state-of-the-art POS tagging systems are based on statistical/probabilistic 

approaches, such as Markov Models [Church, 1988] [Charniak et al., 1993]. 

 
Table 2.1. POS tags descriptions 

Tag Meaning 

DT 

NNP 
VBZ 

VBG 

IN 
CD 

Determiner 

Proper noun, singular 
Verb, 3rd person singular present 

Verb, gerund 

Preposition 
Cardinal number 

 

Chunking. It consists of dividing a sentence into groups of syntactically correlated words, 

like nouns, verbs, and prepositional phrases specifying neither its internal structure nor its 

role in the main sentence. In other words, chunks are non-overlapping groups of words 

forming small syntactic units (or phrases).  

Chunking is sometimes called chunk parsing, or shallow partial parsing. Typically, 

chunks are required to be non-recursive, i.e., no other chunk can be embedded within a 

chunk. 

The main unit (head) in a noun phrase in English is commonly the rightmost noun. For 

instance, in the “the exciting modern art museum” noun phrase, “museum” denotes the 

main constituent unit, while other words are essentially modifying or restricting the 

meaning of the head noun. 

Chunking analysis typically adopts a bottom-up approach, i.e., it starts detecting simpler 

units, and then it integrates such units in more complex units. This type of analysis does 

not discover syntactic relations such as subject or object. Moreover, it adopts a 

conservative strategy and tends to avoid producing errors, since it does not attempt to solve 

semantic or syntactic ambiguities. The big advantages of chunking are its robustness and 

efficiency. 

Below the result of a chunking analysis performed on the sentence mentioned above, 

where NP, VP, PP stands for noun phrase, verb phrase, and prepositional phrase, 

respectively. The boundaries of each chunk are indicated by square brackets “[ ]”.  

 

[NP Mary]  [VP is going] [PP to]  [NP the Soccer World Cup]  [PP in]   

[NP Brazil] [PP in]  [NP 2014] . 

 

Syntactic Parsing. Parsing, in contrast to chunking, aims at uncovering the full syntactic 

structure of a given sentence. In other words, parsing typically designates the analysis and 

                                                
5 This figure was generated with the online CoreNLP tools at http://nlp.stanford.edu:8080/corenlp. 
6 The Penn Treebank Project, 1999. http://www.cis.upenn.edu/~treebank/home.html. 
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building of syntactic structures according to a grammar, a formalism that describes the 

correct syntactic structures in a language. 

A parsing algorithm (parser) is a procedure for searching through the possible ways of 

combining grammatical rules to find one (or more) structure(s) that matches a given 

sentence’s structure.  

Currently, two types of grammars have emerged as the most widespread means to 

analyze and generate syntactically well-formed parsing trees in natural language [Jurafsky 

and Martin, 2009]:  

 Phrase structure grammar. [Jurafsky and Martin, 2009] defines syntactic structures 

in terms of phrasal categories, e.g., NP, VP, etc. For instance, Fig. 2.6 displays the 

resultant parse tree as produced by a phrase structure parser for the sentence 

"Economic News had little effect on financial markets". One can notice that the 

prepositional phrase "on financial markets" is correctly attached to the verb phrase 

(VP). The reader should also observe that the non-terminal nodes denote phrases, 

while the POS tags (above the terminal nodes) clearly identify their syntactic 

categories. 

 
Figure 2.6. Phrase structure or constituent parsing of a sentence in English.  

Extracted from [Kübler, 2009]. 

 Dependency Grammar. The dependency grammar theory [Gerdes et al., 2014] 

formalizes the construction of a dependency structure, or dependency graph 

between two linguistic units that immediately dominate each other in a syntax tree. 

Such relations between two tokens are expressed as a binary relation, where the 

first argument is a governor and the second one is a dependent. Dependency 

parsing performs a full syntactical analysis of sentences, according to the 

dependency grammar theory [Gerdes et al., 2014]. 

The basic underlying assumption of a dependency grammar is the idea that the 

syntactic structure consists essentially of words or phrases connected by asymmetric 

binary relations, also called dependency relationships, hereafter referred to as 

dependencies. According to the dependency grammar, there exists a dependency 

relationship between a syntactically subordinate word called dependent, and another 

word, called governor or head. This is illustrated in Figure 2.7, which shows a 

dependency graph for a sentence in English, where the dependency relationships are 

represented by directed edges starting from the head and pointing to the dependent. 

Moreover, each edge has a label indicating the type of dependency. For example, the 

noun “news” is a dependent of the verb “had” to the type of dependence subject 
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(nsubj). Furthermore, the noun "effect" is dependent of the governor, the verb "had", 

characterizing the typed dependency dobj (direct object). One can also note that the 

noun “news”, in its turn, is itself a syntactic head with respect to the word 

“Economic", and so forth. 

Such dependency structures are formally defined as labelled directed graphs, 

where the nodes correspond to words or lexical items, and labelled edges correspond 

to dependency relationships with their respective types. 

 A more detailed description of the Stanford typed dependencies can be found in 

Appendix D, and in [De Marneffe and Manning, 2008]. 

 

Figure 2.7. Dependency graph of the sentence “Economic News had little effect on financial 
markets”. 

A final remark about the difference between the information encoded in a dependency 

graph and the information captured in a phrase structure representation. The latter consists 

of the most commonly used type of syntactic representation in Computational Linguistics. 

This can be better appreciated when one compares the two forms of representation to the 

same sentence as shown in Figures 2.6 and 2.7. Thus, while the dependency structure 

represents head-dependent relationships between lexical items, classified by functional 

categories, such as subject (nsubj) and direct object (dobj); the constituent structure of the 

same sentence represents the word grouping, ranked by structural categories as Noun 

Phrase (NP) and Verb Phrase (VP). 
 

NER. Named Entity Recognition (NER) identifies named entities in texts and associates a 

semantic category to them. Usually, named entities include the names of people and 

organizations, date expressions, percentage, just to mention a few. In addition, NER relies 

on named entity dictionaries often tuned for a specific domain of interest. 

In Fig. 2.8, the NER was able to find four named entities. The “Misc” label denotes a 

miscellaneous multi-word entity, while “Loc” denotes a Location. 

 

Figure 2.8. Named Entities found by the Stanford CoreNLP tools in the same sentence introduced 

earlier. 

Coreference Resolution. In computational linguistics, a coreference occurs when two or 

more expressions in a text refer to the same person or thing. For example, the coreference 

resolution task can recognize that "John Adams", J. Adams' and ‘Adams’, in fact, refer to a 

single real-world entity, given a particular communication context. 

In other words, coreference resolution can estimate the relative importance of various 

mentioned subjects, pronouns, and other referring expressions, and connected them to the 

right individuals. 

Fig. 2.9 shows an example of coreference resolution where the word "Mary", with its 

first mention in the first sentence, is referenced in the second sentence by the word "her".  

This denotes a pronominal reference for the word "Mary". 
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Figure 2.9. Example of two sentences containing a pronominal reference between them. 

 

Coreference algorithms commonly try to find the nearest preceding individual that is 

compatible with the referring expression (see Fig. 1). Other types of coreference relations, 

discovered by anaphora resolution algorithms or complex discursive inferences [Cimiano 

et al., 2005] are not usually considered as a necessary preprocessing step in most current 

IE systems [Zouaq et al.,  2010]. 

2.2.3. Computational Lexical Semantics 

The goal of this subsection is to introduce a richer model of word semantics, which focuses 

on the study of word meaning, a subfield in NLP called Computational Lexical Semantics 

(CLS) [Saint-Dizier and Viegas, 1994]. For the purposes of CLS, particularly for 

dictionaries and thesauri, a word is represented by its lemma.  

A lemma is often the base form. For instance, book is the lemma for books. For a 

conjugated verb, the lemma is the infinitive form, e.g., the lemma form of took and taken is 

take. 

In the remainder of this section, after introducing the fundamental concepts related to 

lexical semantics, the computational semantics resources that provide means for dealing 

with sense-related issues in CLS is presented. 
 

Word Sense. The meaning of a lemma can vary greatly according to the context. For 

instance, consider these three uses of the lemma bank: meaning a financial institution, the 

land along the side of a river or lake, and a verb denoting the act of putting or keeping 

money in a bank, respectively: 

 

I have to go to the bank at lunch time. 

The banks of the river Seine. 

Did you bank that check? 

A sense (or word sense) is a discrete representation of one aspect of the meaning of a 

word, and when two or more senses are related semantically to this same word, this 

relationship is called polysemy. 
 

Word Sense Disambiguation. In CLS, Word Sense Disambiguation (WSD) [Jurafsky and 

Martin, 2009] denotes the task of examining word tokens in context and determining which 

sense of each word has in a given sentence. This task has a long history in computational 

linguistics, and constitutes an open research field given that disambiguating word senses 

has the potential to improve many natural language processing tasks, including machine 

translation, question answering, information extraction, and text classification. 

Given that sufficient hand-labelled data with correct word senses is available, one can 

apply a supervised learning approach to WSD. Such approach extracts features from the 

text that are helpful in predicting particular senses, and then a classifier is trained to assign 

the correct sense given such features. The training output is a classification model capable 

of assigning sense labels to words in context. 

Graph-based approaches can also be employed to WSD. Sinha and Mihalcea (2007) 

proposed an algorithm for unsupervised WSD that annotates all the words in a text by 
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exploiting similarities identified among word senses, and using centrality algorithms 

applied on the graphs encoding these sense dependencies. 
 

Relations between Words and Senses. Some relations that hold among word senses have 

received significant investigation in the past. Such relations are also of special interest for 

the objectives of the present thesis: 
 

- Synonymy. When the meaning of two different words (or lemmas) is identical or 

nearly identical, it is said that the two are synonyms. For instance, the following 

pairs of words are synonyms: cough/sofa, car/automobile, liberty/freedom. It is 

worth noting that, at least, true synonymy is rarely found in natural language. In 

fact, the evolution of language has a tendency towards emphasizing meaning 

differences, possibly as a mechanism to avoid redundancy [Völker et al., 2008]. 

Hence, two words are considered synonyms if they can be exchanged for one 

another in a sentence without altering its truth conditions. 
 

- Hyponymy/Hypernymy. One sense is a hyponym of another sense if the first is more 

specific, denoting a subclass of the other. For example, car is a hyponym of 

vehicle; dog is a hyponym of animal. Conversely, vehicle is a hypernym of car, and 

animal is a hypernym of dog.  

Hyponymy is a transitive relation: if A is a hyponym of B, and B is a hyponym 

of C, then A is a hyponym of C. More formally, hyponymy/hypernymy can also be 

defined in terms of logical entailment. Under this definition, a sense A is a 

hyponym of a sense B if everything that is A is also B. Thereby, being an A entails 

being a B. In other words, for all x,  ( )   ( ). 
 

- Word Similarity. As already seen, synonymy is a binary relation between words. 

For many computational purposes, it is preferable to use a looser metric of word 

similarity or semantic distance. Thus, two words are more similar if they share 

more features of meaning; and they are less similar, or have greater semantic 

distance, if they have fewer common meaning elements. 

When computing word similarity, a very important assumption is the fact that 

context may be exploited as a basis on which to assess the similarity of words. This 

assumption rests on the distributional hypothesis that claims that words are similar 

to the extent that they share similar context [Harris, 1968]. Actually, empirical 

investigations corroborate the validity of the above hypothesis (see [Miller and 

Charles, 1991] and [Grefenstette, 1994]). 

On this basis, an important question in this respect is how to represent the 

context of a certain word. In fact, the answer to this question has become the main 

contribution of many works, which often represent context as a vector in a high 

dimensional space. Such dimensions correspond to words found in the context of 

the word. The so-called vector space model used in Information Retrieval [Baeza-

Yates and Ribeiro-Neto, 1999] constitutes the core of the vector-based context 

representations in previous work on word similarity. 

2.2.4. Semantic Resources: WordNet and WordNet Domains 

WordNet. WordNet
7
 [Fellbaum, 1998] is a large semantic network interlinking words and 

groups of words by means of lexical and conceptual relations represented by labelled arcs. 

It constitutes the most used resource for English sense relations, including synonyms, 

antonyms, hypernyms/hyponyms, and meronyms. 

                                                
7
 WordNet, a lexical database for English. http://wordnet.princeton.edu 
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The WordNet structure is organized in synsets, clusters of words that are synonymous in 

a particular linguistic context.  

The WordNet 3.0 release contains more than 150,000 open-class words (nouns, verbs, 

adjective, and adverbs), comprising 117,097 noun synsets, 11,488 verb synsets, 22,141 

adjective synsets, and 4,601 adverb synsets. The average noun has 1.23 senses, and the 

average verb has 2.16 senses. 

Synset examples are {car, automobile}, {hit, strike}, and {big, large}. The meaning of 

the synsets is further clarified with short, general definitions (or glosses). Each sense, 

represented by a synset, is associated with a set of pointers to other synsets, which 

correspond to the various kinds of lexical relationships. 

Synonymy is the major lexical relation among individual word forms; another is 

antonymy, as between the pairs {wet} and {dry}; and {rise} and {fall}. Concepts 

expressed by nouns are densely interconnected by the hyponymy relation (or hypernymy, 

or is-a relation), which links specific concepts to more general ones. For instance, the 

synset {mailbox, letterbox} is a hyponym of {box}, which in turn is a hyponym of 

{container}. {Mailbox, letter box} is a hypernym of {pillar box}, which denotes a specific 

type of mailbox. 

Hyponymy builds trees with increasingly specific “leaf” concepts growing from an 

abstract “root”. As can be noticed from Fig. 2.10, all noun synsets ultimately descend from 

{entity}. Fig. 2.11 shows the WordNet 3.0 entry of the word “person”, which has three 

senses, the most frequent one being “a human being”, the first one in the entry. Each sense 

is accompanied by its synsets and its sense key. A sense key is the sense index for 

accessing synsets in WordNet database. 

 

 

Figure 2.10. Example of a WordNet noun tree. 

 

Although it is still one of the most valuable semantic resources for linguistic 

applications, WordNet presents some shortcomings: its unbalanced coverage of domains; it 

cannot be considered as an ontology because not only it lacks formal and explicit 

{entity} 

{physical entity} 

{causal agent, cause} 
{object, physical 

object} 

{living thing, animate thing} 

{organism, being} 

{person, individual, 
someone, ...} 
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semantics, but also proper distinctions between different types of hyponymy relations 

[Gangemi et al., 2001]. 

 

 

Figure 2.11. WordNet entry for “person”. 

WordNet Domains. Bringing complementary information to what already exists in 

WordNet, WordNet Domains (WND) [Bentivogli et al., 2004] provides semantic domains, 

a natural way to establish semantic relations among word senses, which can be very useful 

in Computational Linguistics.  

Semantic domains consist of areas of human knowledge, including Politics, Economy, 

and Sport. This notion of semantic domain is related to the similar notions of semantic 

field, broad topic, subject domain, for example. In addition, semantic domains can be used 

to describe texts according to general subjects characterized by domain specific lexica. For 

instance, the English synset {court, tribunal, judicature} was annotated with the domain 

“Law”, in WND.  

WND contains 200 domain labels organized in a hierarchical structure, called WordNet 

Domains Hierarchy (WDH) (see Fig. 2.12). 

 

Figure 2.12. Fragments of the WordNet Domains hierarchy. Reproduced from [Bentivogli et al., 

2004]. 

Each synset of WordNet 2.0 was labelled with one or more domain labels, using a 

methodology which combined manual and automatic assignments.  

(n) person (person%1:03:00::), individual (individual%1:03:00::), someone 
(someone%1:03:00::), somebody (somebody%1:03:00::), mortal (mortal%1:03:00::), soul 

(soul%1:03:00::) (a human being) 

(n) person (person%1:08:00::) (a human body (usually including the clothing)) 

(n) person (person%1:10:00::) (a grammatical category used in the classification of 

pronouns, possessive determiners, and verb forms according to whether they indicate the 

speaker, the addressee, or a third party) 
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In WND, all issues concerning the "semantics", the "completeness", and the 

"granularity" of domain distinctions, have been addressed with reference to the Dewey 

Decimal Classification (DDC)
8
. 

The DDC is the most widely used classification system in the world, with libraries in 

more than 135 countries using it for organizing and providing access to their collections. 

The advantage of using WordNet Domains is that it may include synsets of different 

syntactic categories and from different WordNet subhierarchies. This has the side effect of 

reducing word polysemy in WordNet, which also proved to bring a suitable level of 

abstraction and granularity, mainly in text categorization and information extraction tasks. 

2.2.5. Semantic Roles of Event Participants 

An aspect of lexical semantics is related to the semantics of events which, in their turn, are 

closely related to the notion of predicate-argument structure for representing an event and 

its participants. For instance, in the sentence: "Mary broke the window.”, the verb "break" 

indicates the event, "Mary" is the agent of the action, and "the window" the object that was 

broken. 

The event participants mentioned above usually share thematic roles, or semantic 

constraints [Jurafsky and Martin, 2009]. Such semantic constraints applied on the 

arguments of event predicates can be of two types: semantic roles and selectional 

restrictions. 

In what follows, these two semantic constraints are discussed, starting with the 

particular model of thematic roles. 
 

Thematic Roles. Thematic roles refer to the underlying semantic relationship between a 

predicate and its arguments [Kipper et al., 2006]. They were introduced by Fillmore (1968) 

in order to create a closed set of participant types for a predicate's arguments. Therefore, 

these roles are used to describe lexical and semantic patterns in the behaviour of verbs.  

Examples of thematic roles are given in the following sentences: 

Mary broke the window. 

John opened the door. 

The thematic roles of the subjects of the verbs "break" and "open" are Breaker and 

Opener, respectively. These two roles are very specific to each possible kind of event, i.e., 

Breaking events have Breakers, Opening events have Openers, Eating events have Eaters, 

etc. On the other hand, Breakers and Openers have something in common: they are both 

volitional actors, often animate actors, and they have direct causal effect for their events. 

Thereby, in thematic role terms, Breakers and Openers are both agents. Thus, an 

AGENT is the thematic role representing an abstract idea of volitional causation. Similarly, 

the direct objects of both these verbs are inanimate objects that are affected by the action. 

The thematic role for these event participants is THEME. Tab. 2.2 lists some of the most 

common thematic roles and their definitions. 

The main reason for using thematic roles in text mining systems lies on the fact that 

thematic roles, or semantic roles in general, provide a shallow semantic language that 

allows for simple inferences that would not be possible relying just on the pure surface 

string of words, or even parse trees of sentences. Moreover, thematic roles can help us to 

generalize over different surface realizations of predicate arguments. 

 

 

                                                
8
 http://www.oclc.org/dewey/resources/summaries.en.html 
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Table 2.2. Some thematic roles with their definitions [Jurafsky and Martin, 2009]. 

Thematic Role Definition 

AGENT The volitional causer of an event 

EXPERIMENTER The experimenter of an event 

THEME The participant most directly affected by an event 

INSTRUMENT Na instrument used in an event 

SOURCE The origin of the object of a transfer event 

GOAL The destination of an object of a transfer event 

 

On the other side, thematic roles have been criticized because there is no consensus 

about which set of roles is necessary to exhaustively characterize argument types of verbs. 

This is due because there are no clear criteria for determining which role should be applied 

to a particular argument of a predicate, and because definitions for these roles are often 

vague.  
 

Selectional Restrictions. As seen earlier, the semantic roles express the semantics of an 

argument in relation to its predicate. On the other hand, a selectional restriction is a kind of 

semantic type constraint that a verb imposes on the type of concepts that are allowed for 

filling its argument roles. 

In the sentence “Mary eats Italian food now”, note that “eat” is a transitive verb and the 

phrase "Italian food" is its direct object, being the THEME of the verb "eat". Actually, for 

this particular sentence, a stronger restriction can be formulated because the verb "eat" 

imposes a "THEME of EATING" role, i.e., this verb would accept as its THEME argument 

something that is edible. This type of restriction is called selectional restriction or 

selectional preference of the given verb, which constraints the semantic type of its 

arguments. 

2.2.6. Semantic Role Labeling 

Semantic Role Labeling (SRL) aims at automatically assigning semantic roles for each 

predicate in a sentence [Gildea and Jurafsky, 2002]. SRL is also called thematic role 

labeling, or shallow semantic parsing. More specifically, that means determining which 

constituents in a sentence are semantic arguments for a given predicate, and then 

determining the appropriate role for each of those arguments. SRL has the potential to 

improve performance in any language understanding task.  

The state-of-the-art approaches to SRL are based on supervised machine learning, and 

they often perform SRL after syntactic parsing, either dependency parsing or constituent 

parsing, because they use syntactic parses as input. 

Traditionally, SRL is performed in two steps: argument identification and argument 

classification [Gildea and Jurafsky, 2002] [Johansson and Nugues, 2008]. Argument 

identification is the task of finding arguments for each predicate in the sentence, whereas 

the argument classification task tries to assign a semantic role to each argument according 

to its predicate. 

Based on supervised machine learning techniques, the current approaches to SRL 

require access to adequate amounts of training and testing data. Such training/testing data 

for SRL have been provided, over the last few years, by the PropBank and VerbNet 

resources. These semantic resources besides providing training and test data for SRL, 

equally specify what counts as a predicate and its arguments.  

In the following, these resources are both presented. 
 



50 

 

 

PropBank. The Proposition Bank [Palmer et al., 2005], also referred to as PropBank, 

focuses on the argument structure of verbs, and provides a complete corpus annotated with 

semantic roles, including roles traditionally viewed as arguments and as adjuncts. 

PropBank provides a domain-independent resource, which can lead to more robust and 

broad-coverage natural language processing systems.  

Due to the difficulty of achieving an agreement of a universal set of thematic roles as 

mentioned earlier, the semantic roles in PropBank were defined with respect to each 

individual verb sense. PropBank relies on the syntactic structure of the Penn Treebank
9
 

corpus. 

In PropBank, verb arguments are annotated with a layer of semantic roles played with 

respect to their predicates. In addition, each predicate encompasses one or more senses 

defining their own predicate argument structures. Actually, every sense of each verb is 

specified by a set of roles, with a pre-defined list of labels which can be distinguished into 

two categories: 

 verb roles, i.e., ARG[0-4] are called numbered arguments, and they represent the 

most common semantic elements that frequently co-occur with their predicates. In 

general, ARG0 denotes the AGENT role, while ARG1 denotes either the THEME 

or PATIENT role. The semantics of the other roles are specific to each verb sense. 

This implies that the Arg2 of one verb is likely to have nothing in common with the 

Arg2 of another distinct verb. 

 general event modifiers such as a temporal adjunct are annotated with ARGM-* 

labels (e.g., ARGM-TMP).  
 

The particular verb sense {open.01} with its argument structure, according to the 

PropBank, is displayed in Fig. 2.13. Thus, for this particular verb sense, ARG0 and ARG1 

represent the Opener and Thing opened roles, respectively. 

 

Role Label Description 

ARG0 opener 

ARG1 thing opened 

ARG2 instrument 

ARG3 benefactive 

Figure 2.13. Argument structure for the particular verb predicate sense open.01 in PropBank. 
 

An illustrative example of the output of the SRL task based on a classification model 

learned with PropBank is shown in Fig. 2.14. This output clearly shows the arguments of 

the verb sense “open.01”, where Arg0 (Agent) was assigned to “He”, Arg1 (thing opened) 

assigned to “the door”, and the complement “with his wet hand” assigned the label AM-

MNR (manner). 

Appendix C provides a detailed list of the semantic role labels used in PropBank. 

 

VerbNet. VerbNet [Kipper et al., 2006] is a domain-independent verb lexicon consisting 

of approximately 5800 English verbs classified over 270 such verb classes. The verb 

classes in VerbNet are hierarchically organized, according the Levin’s classification of 

verb classes and their syntactic alternations [Levin, 1993].  

Each VerbNet class contains a set of syntactic descriptions, or syntactic frames, 

depicting the possible surface realizations of the argument structure for constructions such 

as transitive, intransitive, prepositional phrases, and a large set of verb alternations. This 

                                                
9 Penn Tree Bank Project. http://www.cis.upenn.edu/~treebank/home.html 
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verb classification ensures that each class is coherent enough so that all its members have a 

common semantics and share a common set of thematic roles, selectional restrictions of the 

arguments, and basic syntactic frames. The coherence of verb classes in VerbNet relies on 

the Levin's hypothesis which states that the syntactic behaviour of a verb is largely 

determined by its meaning [Levin, 1993]. 

 
Figure 2.14. Semantic Role Labeling output of the sentence “He opened the door with his wet 

hand”, according to the PropBank semantic role set. 

A syntactic frame in a VerbNet class has a corresponding semantic representation that 

details the semantic relations between event participants (arguments) across the course of 

an event. The argument list consists of thematic roles and possible selectional restrictions 

on the arguments expressed by binary predicates. Each verb argument is assigned one 

(usually unique) thematic role within the class. Tab. 2.3 lists some thematic roles found in 

VerbNet. 
Table 2.3. Some specific thematic roles in VerbNet with their definitions. 

Thematic Role Definition 

ACTOR Used by some communication verb classes. 

AGENT A human of an animate subject. 

PATIENT 
It denotes participants that are undergoing a process or 

that have been affected in some way. 

LOCATION Underspecified destination, source, or place. 

DESTINATION 
End point of the motion, or direction towards which 

the motion is directed. 

PRODUCT End result of a transformation. 

 

VerbNet has recently been extended by a set of new classes and currently is the most 

comprehensive and versatile classification of English verbs in Levin style. Fig. 2.15 shows 

a simplified example of the VerbNet entry for the Hit-18.1 class. 
 

Class Hit-18.1 

Roles and Restrictions: Agent[+int_control] Patient[+concrete] Instrument[+concrete] 

Members: bang, bash, hit, kick, ... 

Frames: 

Name Example Syntax Semantics 

Basic 
Transitive 

Paula hit 
the ball 

Agent or 
Patient 

cause(Agent, E), manner(during(E), directedmotion, Agent) 

!contact(during(E), Agent, Patient), manner(end(E), forceful, 

Agent), contact(end(E), Agent, Patient) 

Figure 2.15. Simplified version of the VerbNet entry for Hit-18.1 class 
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In this thesis, it is argued that the advantages of using VerbNet for information 

extraction purposes resides in the fact that it can improve both: precision (via the correct 

choice of the semantic roles linked to a given verb); and recall (via the inclusion of 

synonyms that share the same restrictions semantic role information). 

Appendix D provides a detailed list of the thematic role labels used by VerbNet. 

2.3. Inductive Logic Programming 

Inductive Logic Programming (ILP) [Muggleton and Raedt, 1994], also referred to as 

Relational Learning [Dzeroski, 2010], is a subfield of Machine Learning with solid 

foundations in Logic Programming (LP).  

ILP is theoretically settled at the intersection of Inductive Learning and Logic 

Programming. From inductive machine learning, ILP inherits the development of 

techniques to induce hypotheses from observations. From Logic Programming, it inherits 

its representation formalism and semantics. 

ILP relies on first-order clauses as a uniform representation language for examples, 

background knowledge (BK), and hypotheses [Lavrac and Dzeroski, 1994].  

In ILP, the main goal is to induce, from a set of training examples, a logic program 

describing a relational predicate, using concepts defined in the BK. The returned logic 

program (or theory) can be used to classify new unseen examples into positive or negative. 

One of the reasons for the ILP success is the readability of the induced models. In 

addition, ILP has the capability of learning from structural or relational data, and can take 

profit of domain knowledge given as BK. Another interesting advantage is that it can 

represent, using FOL, more complex concepts than traditional attribute-value (zero-order) 

languages.  

ILP has been successfully applied in several application areas, mainly in Bioinformatics 

[King, 2004], Pharmacology (Drug Design) [King et al., 1992], and Protein Structure 

Prediction [Turcotte et al., 1998], that is, domains where relation information is of 

paramount importance. 

In the rest of this chapter, after a short review of some of the Logic Programming 

concepts in Section 2.3.1, the relational rule induction process is presented in Section 

2.3.2. Then the basic concepts concerning the ILP learning process is given in Section 

2.3.3. This learning process is illustrated by an example of a classification task in Section 

2.3.4. Section 2.3.5 discusses the advantages and limitations of ILP. Some current ILP 

systems are compared in 2.3.6, followed by a discussion rule induction strategies employed 

by ILP systems (2.3.7). 

2.3.1. Logic Programming 

For a better understanding of the fundamental concepts in ILP exploited in this thesis, the 

basic logic programming terminologies is introduced. 
 

Logic Programming. Logic Programming (LP) [Fürnkranz et al., 2012] is a programming 

paradigm based on a subset of first-order logic named Horn clauses. Horn clauses are logic 

clauses with at most one positive literal, and Horn clauses with exactly one positive literal 

are also called definite clauses. 

More formally, a definite clause is a clause of the form H ← B1,..., Bn which contains 

precisely one literal (H) in its consequent and 0 or more literals (B1, ..., Bn) as the 

antecedent. H is called the head and B1,...,Bn is called the body of the clause. 
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A definite clause can be conveniently seen as an implication instead of a disjunction of 

literals. For example, the clause  

 

⌐p(X) ˅ ⌐q(X) ˅ h(X)  is equivalent to the implication 

 

( p(X) ˄ q(X) ) → h(X). 

Moreover, in the form of an implication definite clauses have a straightforward 

procedural interpretation: in order to prove h(X), show that p(X ) is true, and q(X) is true. 

Tab. 2.4 summarises the most important LP terms with their meanings. 

Table 2.4. Some logic programming elements and their definitions 

Element Definition 

constant A symbol for denoting individuals, represented in lower case. 

variable A symbol for an unspecified individual, represented in upper case. 

predicate Symbols for denoting relations. 

term A constant, variable or function in predicates. 

atom 
A formula in the form p(t1, ..., tn), where p is a predicate and t1... tn are 

terms. 

ground 

atom 
An atom which contains no variable. 

clause 
A formula (L1 ˅ ... ˅ Ln), where each Li, is an atom (positive literal) or 

the negation of an atom (negative literal). 

fact A definite clause where n = 0. 

Horn clause A clause with at most on positive literal. 

 

Typically, the theories found by ILP systems are expressed as a set of definite clauses, 

or a definite logical program. 
 

Prolog. Prolog consists of a programming language for general purpose that implements 

the paradigm of Logic Programming.  

Prolog is also a declarative language in the sense that the programmer only needs to 

express what is known about the problem domain, i.e., facts and relationships among them, 

and the inner resolution mechanism takes care of the control part.  

Prolog is restricted to accept Horn clauses because, as shown by [Kowalski, 1974 ], it 

allows for an efficient proof procedure, namely Selective Linear Definite clause resolution 

(SLD-resolution) [Kowalski and Khuehner, 1971] which is sound and refutation complete 

for Horn clauses.  

Programs in LP are expressed as a set of clauses and facts (clauses without body 

literals). SLD-resolution is then used to mechanically prove queries and, bind logic 

variables to values that satisfy the query. 

2.3.2. Relational Rule Induction in ILP 

The relational rule induction task is the most common in ILP [Lavrac and Dzeroski, 1994]. 

This task consists of learning logical definitions of relations, where tuples that belong or 

do not belonging to the target relation are given as examples. 

Fürnkranz et al. (2012) give another definition of the above task: 
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Given:  

 a target relation or concept, 

 a background knowledge BK, consisting of a finite set of extensional (ground) or 

intentional (with variables) Horn clauses.  

 a hypothesis description language imposing a bias on the form of rules, 

 a coverage function Covered(r, e) which defines whether a given rule r covers 

example e, 

 a finite set of examples E, divided into positive P and negative N examples, both 

expressed by non-empty sets of ground facts (definite clauses without variables),  

Find:  

  a correct hypothesis H (or a theory) composed of first-order clauses such that  

 ∀e  ∈  P : BK ∧ H  |= e  (H is complete if it covers all examples that belongs to the 

concept), 

 ∀e  ∈  N : BK ∧ H |≠e (H is consistent if it does not cover any example not 

belonging to the concept). 

Fig. 2.16 illustrates (in-)complete and (in-)consistent hypotheses (rule set R). 

In practice, it is not possible to find a correct hypothesis that strictly attends both criteria 

above, i.e., H is complete and consistent, and then both criteria may be relaxed. 

The ILP setting seen so far aims at learning target concept descriptions in the form of 

classification or prediction rules, the so-called Predictive ILP. This contrast with 

Descriptive ILP which aims at finding properties describing the data, like association rules 

[Dehasp and Toironen, 2000], and subgroup discovery [Wrobel, 1997]. 

In what follows, the ILP learning process outlined in this section is provided.  

 
Figure 2.16. The possible cases of completeness and consistency of a hypothesis (rule set R). 

Extracted from [Fürnkranz, 2012]. 
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2.3.3. Learning Process in ILP 

ILP can be implemented by mapping the given problem into a search through a partially 

ordered hypothesis space [Dzerovski, 2010]. In this search space, each state is a concept 

description or a hypothesis, and the goal is to find one or more states satisfying some 

quality criterion. Thus, the search procedure traverses the hypothesis space, generating and 

testing the candidate hypothesis. 

On ILP, this search procedure is implemented by a covering algorithm. The pseudo-

code of the covering algorithm is shown in Fig. 2.17. 

 

Covering (E) 

Input: set of examples E 

Output: a set of consistent rules 

 

1. Learned_Rules =  

E+ = Positives(E) 

while E+≠  

      R = learn_rule(E+) 

      Learned_Rules = Learned_Rules  R 

      E+ = E+  - {examples covered by R} 

 end while 
 return Learned_Rules 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Figure 2.17. A generic covering algorithm. The learn_rule( ) procedure returns the 

best rule that covers a subset of the positive examples (E
+). 

Iteratively, the covering algorithm in Fig. 2.17 constructs a set of clauses. Starting with 

a empty set of rules (Line 1), the algorithm then generates and evaluates this clause on the 

positive examples (Line 4), adds this clause to the hypothesis (Line 5) if it satisfies some 

criteria, and finally removes the positive examples covered by the clause (Line 6). These 

steps are repeated until all positive examples have been covered (loop while Line 3). 

In particular, the learn_rule(e) procedure in Line 4 constructs individual clauses by 

(heuristically) searching the space of possible clauses, structured by a specialization or 

generalization operator.  

Often, search starts with a very general rule (clause with no conditions in the body), 

then proceeds to add literals (conditions) to this clause until it only covers positive 

examples, i.e., the clause is consistent. 

This section proceeds with a description of the following subtasks performed by an ILP 

implementation regarding ILP as a search problem: 

i. structuring the hypothesis space; 

ii. searching the hypothesis space; 

iii. bounding the search; 

iv. evaluating the hypotheses. 
 

Structuring the Hypothesis Space. In ILP, enumerating the whole space of possible rules 

is often infeasible. Consequently, it is desirable not only to structure the search space in 

order to traverse it systematically, but also to enable pruning of some parts of it.  

Therefore, structuring the search space consists of sorting the hypotheses according to a 

notion of clause ordering, which allows for determining, between two clauses, which one is 

more general/specific than the other.  

Most ordering strategies used by ILP systems are based on θ-subsumption [Plotkin, 

1971a], which introduces a syntactic notion of generality: given two clauses C and D, Cθ 
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subsumes D if there exists a substitution θ 
10

, such that C D  . In other words, C is a 

generalisation of D, and D is a specialization of C under θ-subsumption.  

Another interesting property of θ-subsumption is that it imposes a partial order between 

the clauses, i.e., this notion of generality between clauses is reflexive, anti-symmetric, and 

transitive. As a result, this notion of generality introduces a lattice on the set of clauses 

[Plotkin, 1971b]. 

ILP systems use the so-called refinement operators, a term coined by Shapiro [Shapiro, 

1983], to explore the lattice of hypotheses structured by the θ-subsumption. This operator 

is defined by a function that generates a set of specializations or generalizations of a 

clause.  

The specialization refinement operators allow the navigation through the search space 

from the most general clauses to the most specific ones. This type of refinement operator 

performs two syntactic operations on a clause: apply a θ-substitution to the clause, or add a 

literal or set of literals to a clause. 

Conversely, generalization refinement operators allows for traversing through the lattice 

from the most specific clauses towards the more general ones. It also performs two basic 

syntactic operations on a clause: apply an inverse substitution to the clause, or remove a 

literal from the body of the clause. 

The lattice formed by the hypothesis space of clauses, structured by the θ-subsumption 

generality ordering is designated as a refinement graph. A refinement graph can be viewed 

as a directed, acyclic graph in which nodes are clauses and arcs denote the basic refinement 

operations. 

Fig. 2.18 shows part of a refinement graph for the daughter relation, in which the task is 

to induce a definition of the daughter relation in terms of both female and parent relations. 

At the top of this refinement graph (lattice), one can see the clause C = daughter (X, Y). 

The other clauses connected to C were generated by a specialization refinement operator in 

this case. In all refinements operations, it is assumed that the hypothesis language is 

restricted to definite clauses.  

The search for a clause in the refinement graph starts at the top of the lattice. Next, all 

direct refinements are then considered, then their refinements in turn, and so on. This 

procedure is repeated until a clause that covers only positive examples is finally found.  

In the example depicted in Fig. 2.18, the clause  

daughter (X, Y) ← female(X), parent(Y, X) 

is the final clause that entails all positive examples.  

 

Searching the Hypothesis Space. Once created the refinement graph for a given target 

relation, the next step is to adopt a search strategy in order to efficiently traverse the lattice 

of hypothesis (clauses). There are two main ways of traversing the hypothesis space in 

ILP: top-down or bottom-up manner. 

In top-down search, one starts with the more general hypothesis. The hypothesis is 

repeatedly specialized by the application of downward refinement operators. In this kind of 

search, the negative examples are also employed to remove inconsistencies in data. 

In bottom-up search, the search starts from a most specific rule (or a bottom rule for a 

given example), and then generalizes the hypothesis until it cannot further be generalized 

without covering negative examples by means of a upward refinement operator. 

Current ILP implementations typically search the refinement graph level-wise, using 

heuristics based on the number of positive/negative examples covered by a hypothesis. 

                                                
10

 A substitution θ = {V1/t1, V2/t2, ..., Vn/tn} consists in assigning terms ti to variables Vi. 
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Figure 2.18. Part of the refinement graph for the daughter relation. Extracted from [Dzeroski 

and Lavrac, 2001]. 

 

Due to the large branching factor in the refinement graph, i.e., the number of 

refinements of a clause, ILP implementations typically rely on greedy search methods 

[Mitchel, 1982] that only consider a limited number of alternatives at each level of the 

refinement graph. Some search methods include hill-climbing that considers only one best 

alternative at each level; and beam search [Mitchel, 1982] which considers N best 

alternatives, where N is the beam width. 

Another general search method used by ILP systems is the best-first search. Best-first 

search is similar to the well-known breadth-first search strategy with the difference that the 

node selected for expansion is based on the output of an evaluation function that estimates 

the "distance" to the solution. 
 

Bounding the Search. The branching factor of a refinement graph is usually very large. 

This is especially true for deeper clauses in the lattice that contain many variables. 

Therefore, it is necessary to find ways to reduce the hypothesis space. 

Accordingly, state-of-the-art ILP systems mitigate the combinatorial explosion of the 

hypothesis space by imposing all sorts of restrictions, mostly syntactic, on candidate 

hypotheses, aiming at reducing the search space. Such restrictions are called biases. 

Thus, the compelling reason to use bias elements in ILP is that they restrict the 

hypothesis space, addressing the vital aspect of efficiency in ILP systems. 

Biases in ILP can be of three types [Lavrac and Dzerovski, 1994]: 

 language bias, which specifies constraints on the structure or semantics on the 

clauses in the search space. For instance, one could restrict a given hypothesis to 

N literals. 

 search bias that defines the way an ILP system searches the space of ordered 

clauses; 

 validation bias which defines a stopping criterion during the search.  

 

In what follows, we focus on two types of language bias that further restrict the 

hypothesis space in ILP, namely: mode declarations and bottom clause: 
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 Mode Declarations. A very popular approach to make refinement graphs smaller 

consists in imposing the types of the predicate arguments, as well as input/output 

mode declarations [Muggleton, 1995]. 

Mode declarations characterize the format of a valid hypothesis (rule). They also 

inform both the type, and the input/output modes of the predicate arguments in a 

rule. There are two types of mode declarations employed by many ILP systems: 

head and body.  

Mode head declarations (modeh) define the target predicate, the head of a valid 

rule that the ILP system has to induce, whereas mode body declarations (modeb) 

determine the literals (or ground atoms), which may appear in the body part of the 

rule. Mode body declarations usually refer to predicates defined in the BK, but they 

can also refer to the target predicate in the case of recursive theories. In the 

following, the syntax of mode declarations syntax is detailed. 

A mode declaration has either the form modeh(recall, atom) or modeb(recall, 

atom), where recall is an positive integer or "*" , and atom is a ground predicate. 

Atoms or ground predicates have the form atom(type1, type2, ..., typen), whereas 

“recall” specifies the maximum number of allowed instantiations of the ground 

predicate, where "*" means that the ground predicate can be instantiated any 

number of times. In other words, "recall" indicates the non-determinancy of a 

predicate in Prolog. A Prolog predicate may be determinate or non-determinate. A 

predicate is determinate if it succeeds at most once given a particular instantiation 

of its input arguments, i.e., it looks like a function. A non-determinate predicate 

may have more than one solution when their input arguments are instantiated. 

In mode declarations, each argument of a ground predicate has a type and an 

associated symbol that appears before the type indicator: +type(input), -type(output) 

or #type(constant). 

The meaning of each symbols (+, - , #) is as follows: 

o Input (+). An input variable of type T in body literal Bi appears as an output 

variable of type T in a body literal that appears before Bi, or appears as an 

input variable of type T in the head of the clause. 

o Output (-). An output variable of type T in the head of the clause must 

appear as an output variable of type T in any literal of the body of the 

clause. 

o Constant (#). An argument denoted by #T must be ground with terms in T. 

For instance, consider the predicate lives_in(X, Y) that requires the first argument 

being a PERSON entity, and the second, a CITY entity. Then, the following mode 

declaration lives_in(+person, -city) specifies that the person has to be given as 

input when calling this predicate. 

 Bottom Clause. Type and mode declarations can be combined with the construction 

of a bottom clause that bounds the search of the refinement lattice from below. 

The bottom clause is the most specific clause covering a given example (or 

examples). As a result, only clauses on the path between the top and the bottom 

clause will be considered, significantly improving efficiency. 

The two most used techniques for constructing the bottom clause in ILP are the 

relative least general generalization (rlgg) of two (or more) examples [Muggleton 

and Feng, 1990] and the most specific inverse resolvent of an example [Muggleton, 

1991], both taking into account a given background knowledge. 
 

Discussion about the use of biases in ILP. A final discussion about the use of biases in ILP 

concerns the results presented in [Tausend, 1994]. Tausend reports a study of the impact of 
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several bias constituents in the size of the search space. His conclusion is that not all 

combinations of bias elements are useful. 

In reality, if the bias is not restrictive enough, then the search space becomes 

computationally intractable. On the other hand, if the bias constrains the hypothesis space 

too much, than the correct solution cannot be found. For example, if the search is restricted 

to theories with 4 literals, but all correct theories contain clauses with 5 or more literals, 

then no solution will be found. From the exposed, it is clear that there exists a trade-off 

between efficiency in the search and quality of the theory to be found. 

The conclusion is that it is crucial to choose a balanced bias, i.e., not too weak nor too 

strong, since an inappropriate bias may prevent the ILP system from finding the best 

hypotheses. 
 

Hypothesis Evaluation. In addition to the constraints imposed by the declarative bias seen 

earlier, the user may provide general preferences, for example, towards shorter clauses, 

shorter final theories, or towards clauses with higher predictive accuracy on the training 

data. In fact, ILP systems need to choose among partial solutions, i.e., they use evaluation 

functions that try to estimate how close they are to the best solution. Such evaluation 

functions calculate clause´s coverage over positive and negative examples.  

Typically, the computation of evaluation measures requires knowing the correct and the 

predicted classifications for each class. This is better visualized by constructing a 

confusion matrix that lists the correct against the predicted classifications for each class. 

Tab. 2.5 shows the classical confusion matrix for a two-class (binary) classification 

problem. In this matrix, each column represents the examples in a predicted class, while 

each row represents the examples in an actual class.  

 
Table 2.5. Confusion Matrix for a two-class (binary) classification problem. 

  Class Positive Class Negative 

Prediction Positive True Positives (TP) False Positives (FP) 

Prediction Negative False Negatives (FN) True Negatives (TN) 

 

The number of correct predictions for each class will be located along the main diagonal 

of the matrix (True Positives and True Negatives). Incorrect predictions can be of two 

types: False Negative when a positive example was incorrectly predicted as Negative; and 

False Positive is the opposite. 

Tab. 2.6 lists some of the most common rule evaluation functions used by current ILP 

systems in function of TP, TN, FP, FN, and L (the number of literals in a given rule): 

Table 2.6. Rule evaluation measures commonly used in ILP 

Measure  Formula 

Coverage TP – FP 

Compression TP – FP – L 

Compression Ratio (TP – FP) / L 

Laplace ( TP + 1 ) / ( TP + FP + 2) 

Accuracy ( TP + TN ) / ( TP + TN + FP + FN) 

Precision (P) TP / ( TP + FP ) 

Recall (R) TP / ( TP + FN ) 

F-Measure (F1) 2 * P * R / ( P + R ) 
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where TP, FP are respectively the number of positive and negative training examples 

covered by a candidate hypothesis; and L is the number of literals in the current candidate 

hypothesis. 

The two most often used measures are coverage and compression.  

Besides being the simplest kind of evaluation measure in ILP, the coverage measure has 

a definite advantage: it is very robust to datasets containing an unbalanced distribution 

between positive and negative examples. The reason concerns the fact that this measure 

does not consider true negatives (TN) in its formula, contrarily to what occurs in the 

accuracy measure (see Tab. 2.6).  

The difference between the two measures above is that the former, besides computing 

the difference between the number of positive (TP) and negative examples (FP) covered by 

the rule, also takes into consideration the size of the rule. Thereby, on the case of two rules 

with the same evaluation score, the compression measure will prefer shorter rules.  

The accuracy evaluation measure reflects the overall correctness of the rule, i.e., the 

fraction of examples correctly classified (TP + TN) in relation to the total number of 

examples (TP + TN + FP + FN). From this measure, it can be also derived the error rate as 

(1 – accuracy). This measure can give biased results in the case of learning from a highly 

unbalanced number of negative examples compared to the number of positive examples. 

The Laplace measure assumes a uniform prior probability over the positive and 

negative classes [Fürnkranz et al., 2012]. 

It worth noting that precision, recall and F-measure evaluation functions used in ILP 

have the same meaning as employed in Information Retrieval. Therefore, the precision 

measure will attain its optimal value when no negative examples are covered by the rule. 

2.3.4. A Relational Learning Example 

The following example illustrates the task of learning logical definitions of relations, or 

target predicates in ILP. Given training examples as input, an ILP system induces a 

predicate definition corresponding to a relational view that defines the target relations in 

terms of others relations given in the background knowledge. 

Consider the classical Michalski´s East-West train learning problem [Michie et al., 

1994]. Here, the learning task is to induce a concise Prolog program for classifying trains 

as eastbound or westbound (Fig. 2.19). 

 

 

Figure 2.19. The ten train East-West challenge. 

 

The set of training examples are composed of 10 trains (5 eastbound, 5 westbound). 

Each train consists of 2 to 4 cars; cars have attributes like shape (rectangular, oval, u-

shaped, ...), length (long, short), number of wheels (2 or 3), type of roof(open, closed, 

peaked, jagged), load shape (circle, triangle, rectangle, ...), and number of loads (1-3).  
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Here is a list of some Prolog facts representing this problem: 

- eastbound(T): trains t1 to t5 (left side of the Fig. 2.19) 

- westbound(T): trains t6 to t10 (right side of the Fig. 2.19) 

- car(Cij): the i
th

 car of the j
th

 train  

- c_number(T, n): the trains has n cars 

- has_Car(T, C): the train T has car Cij 

- c_property(C, prop): car length, car roof type, etc. Ex.: c_length(C, short), 

c_roof(C, open) 

- l_property( L, prop): load property, such as l_shape (circle, oval, etc.) 

 

The set of facts describing the properties of the first train are listed in Fig. 2.20. Each 

train can be represented by several facts which provide an extensional definition of the 

properties of a particular train. 

 

eastbound(t1).      car(c11). car(c12). car(c13). car(c14). 

  load(l11). load(l12). load(l13). load(l14). 
cnumber(t1,4). 

  

 

  

has_Car(t1,c11). has_Car(t1,c12). has_Car(t1,c13). has_Car(t1,c14). 

c_shape(c11,rect). c_shape(c12,rect). c_shape(c13,rect). c_shape(c14,rect). 

c_length(c11,long). c_length(c12,short). c_length(c13,long). c_length(c14,short). 

c_roof(c11,open). c_roof(c12,closed). c_roof(c13,open). c_roof(c14,open). 

c_wheels(c11,2). c_wheels(c12,2). c_wheels(c13,3). c_wheels(c14,2). 

hasLoad(c11,l11). hasLoad(c12,l12). hasLoad(c13,l13). hasLoad(c14,l14). 

lshape(l11,rect). lshape(l12,tria). lshape(l13,hex). lshape(l11,circ). 

lnumber(l11,3). lnumber(l12,1). lnumber(l13,1). lnumber(l14,1). 

Figure 2.20. BK predicate definition of the first eastbound train in Mikalski´s problem. 

Finally, an ILP system could induce the following target predicate that classifies 

between eastbound and westbound trains: 

eastbound(T) :- has_Car(T, C), c_length(C, short), c_roof(C, closed). 
 

This predicate states, "a train is eastbound if it contains a short closed car".  

2.3.5. Advantages and Limitations of ILP 

ILP presents several advantages as a machine learning method: 

 High expressivity in representation: a distinguishing feature of ILP resides in its use 

of first-order language to represent more complex concepts than most other machine 

learning approaches based on attribute-value (propositional or zero-order) 

representation. In other words, ILP systems can be applied on multi-relational data to 

find patterns that involve multiple relations (tables), while most other statistical 

machine learning approaches can only deal with a single table at a time. In addition, 

ILP can learn recursive concept definitions [Raedt, 2008]. 

 Effective use of background knowledge: The prior knowledge about a problem may 

be coded and integrated into an ILP system which incorporates this kind of 

knowledge into the solution. For instance, any constraint to the problem can be 

expressed in the form of auxiliary predicate definitions provided by the user as 

additional BK. 

 Rules readability: Usually, ILP systems generate rules in declarative form, which 

means that hypotheses are understandable and interpretable by humans. Furthermore, 
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if the background knowledge of a given problem is structured, a first-order language 

is certainly easier to read. 

 

On the other hand, ILP also presents two major limitations: 

 High computational cost: The downside of the greater expressiveness in ILP is that 

such flexibility comes at a high computational cost, and ILP systems are known for 

their difficulty in scaling-up [Page and Srinivasan, 2003].  

Indeed, the evaluation of a single hypothesis in ILP involves testing if the 

hypothesis, along with the background knowledge, entails the examples used in 

training. As a result, the time required to evaluate this hypothesis time mainly 

depends on the size of training data, i.e., the computational effort required to evaluate 

the hypothesis given a BK. The evaluation of a single hypothesis for a relatively 

large set of training examples may take a long time. The main reason is that most of 

ILP systems executes in main memory, limiting its application on large databases. 

 Difficulty in dealing with pure numerical data. Another limitation is that the classical 

ILP framework has difficulties to deal with numerical data and uncertainty [Bratko, 

2000]. Aiming to mitigate the limitations mentioned above, research work has 

proposed better heuristics to traverse the search space [Fürnkranz et al., 2012 ], the 

use of parallelism [Fonseca, 2006], hybrid approaches based on ILP and probabilistic 

methods [Raedt, 2008]. 

2.3.6. ILP Systems 

In the following, some current ILP systems that implement the ideas of the inductive 

learning framework seen so far are briefly described. A more detailed list of ILP systems, 

in addition to the presented here, can be found in [Kavurucu et al., 2011]. 
 

Progol [Muggleton, 1995]. It consists of an iterative top-down ILP system that performs 

batch learning, that is, all of the examples and the BK must be defined before starting the 

algorithm. In order to reduce the hypothesis space, it makes use of the BK and the 

examples E (positive and negative) and requires a set of mode declarations as input. 

The mode declarations indicate the BK predicates appearing in the head of clauses, and 

in the body of clauses. They also restrict the valid argument types for the BK predicates. 

In Progol, a bottom clause is constructed from a positive example and is derived using 

inverse entailment. Progol begins the search with an empty body hypothesis and traverses 

the refinement graph whose elements are literals contained in the bottom clause.  
 

Golem. Golem [Muggleton and Feng, 1990] is a bottom-up ILP system, which constraints 

the search space by employing Plotkin’s notion of relative least general generalization 

(rlgg) [Plotkin, 1971] as the hypothesis formation technique. The rlgg constitutes the less 

general hypothesis concerning the BK with respect to the positive examples.  

For generating a single clause in the final theory, Golem first randomly picks several 

pairs of positive examples. Then, in the next loop, Golem computes the rlgg of the current 

best hypothesis and randomly selects examples, and so on. The system then continues until 

a loop does not increase the coverage of the current best hypothesis, choosing the one with 

greatest coverage. The covered positives are removed from the input and the algorithm will 

be applied to the remaining positive examples. More details about Golem can be found in 

[Muggleton and Feng, 1990]. 
 

FOIL [Quinlan, 1990]. FOIL uses the BK in an extensional way, i.e., relational tuples or 

facts are used and the target language is function-free Horn clauses. The induction of a 

single clause in FOIL begins with an empty body clause. The body of the clause is 
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iteratively specialized by a greedy algorithm that adds literals to the main clause. These 

literals are chosen by placing variables in appropriate positions of the arguments that must 

be specified earlier. To choose a literal among many possible candidates, FOIL uses the 

information gain heuristic which is based on how much the literal contributes to the 

distinction between positive and negative examples. 
 

Dl Learner. DL-Learner [Lehmann, 2009] consists of an ILP system for learning class 

expressions in OWL/DL from instances. Therefore, this system extends the ILP to the 

Description Logic and the Semantic Web. In the most common scenario, the BK is 

expressed in OWL, as well as, the positive and negative examples. Each example In DL-

Learner is an individual (class instance) of the working ontology. DL-Learner aims to find 

the OWL class expression such that all or many positive examples are entailed by this 

expression, and little or no negative example is covered at the same time. Thus, after 

learning class expressions of an ontology, it can classify new instances as well. For 

practical reasons, DL-Leaner is biased towards shorter class descriptions. 
 

Aleph (A Learning Engine for Proposing Hypothesis). The top-down ILP system Aleph
11

 

uses a specialization approach (top-down refinement operators) which starts with the most 

general hypothesis, i.e., considering all examples as positives. Then, it refines this 

hypotheses by repeatedly adding a literal from the bottom-clause that best improves the 

hypothesis score. As a result, this new rule becomes more specific than the previous one, 

and will cover only a subset of the examples previously covered.  

 Aleph implements the Progol algorithm [Muggleton, 1995]. Progol main advantage is the 

use of a bottom clause to guide the search. The bottom clause, the most specific clause that 

entails a selected example, is built using inverse entailment [Muggleton, 1995]. Progol 

algorithm performs the following steps: 

1. A positive example, or a seed example, is selected to be generalised, using the 

order of the examples in the training set of examples. 

2. The bottom clause (  ) concentrates all constraints related to the BK, language bias, 

and the seed example. This step is also called saturation step. The idea motivating 

the use of bottom clause is that, by construction, all clauses in a refinement graph 

search are guaranteed to cover at least the example associated with the bottom 

clause. 

3. The search for clause begins with a general-to-specific top-down hypothesis space 

search, bounded by the most general possible hypothesis and the bottom clause. 

For that, Aleph refines a clause by repeatedly adding literals from the bottom-

clause. This new rule will be more specific, covering only a subset of the examples 

previously covered. This step is the “reduction step”. 

4. The best clause found so far is added to the final theory, and the examples covered 

by it are removed from the training set. This process continues until there are no 

more examples in the training set, otherwise it returns to step 1. 
 

ProGolem. ProGolem [Muggleton and Santos, 2009] is one of the ILP systems 

implemented in GILPS (General Inductive Logic Programming System) [Santos, 2010] 

which combines approaches from Progol [Muggleton, 1995] and Golem [Muggleton and 

Feng, 1995]. It uses a bottom clause relative to an example to guide the search like in 

Progol. It also performs a variant of Golem’s bottom-up search, based on Asymmetric 

Relative Minimal Generalization (ARMG) [Muggleton and Santos, 2009]. The ProGolem 

algorithm uses ARMG to traverse the hypothesis space following a specific-to-general 

bottom-up subsumption order relative to the bottom clause. 

                                                
11  The Aleph Manual. http://comlab.ox.ac.uk/activities/machinelearning/Aleph/aleph.html 
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It first randomly selects a positive example ei, like in Progol, and constructs its bottom 

clause: the most specific hypothesis that explains the example ei. This step is also called 

saturation step. Next, in the reduction step, it successively drops a minimal set of literals 

from the body to allow coverage of one additional positive example. This hypothesis 

refinement step continues until the hypothesis score stops improving. Then, the hypothesis 

is added to the theory, and all the positive examples covered by it are removed from the 

training set. The cycle of saturation and reduction continues on the remaining examples 

until all positive examples are covered or no new rules can be found. At this point, 

ProGolem outputs the final theory, the set of the best rules found so far. 

2.3.7. Discussion on Top-down vs. Bottom-up ILP Systems  

Earlier in this section, two representative ILP systems, namely Aleph and ProGolem are 

described. Then, the section continues with a discussion the advantages and limitations of 

these ILP systems, aiming at motivating the choice of an ILP system as the core learning 

component in OntoILPER framework architecture. 

The widely used ILP system is Aleph. Its popularity seems to be due to the fact that it 

was conceived as a workbench for implementing and testing, in a single Prolog file, several 

concepts and procedures from various ILP systems proposed in many papers. The main 

Aleph advantage is the plethora of other ILP systems that it can emulate. However, despite 

all interesting options Aleph gives to the user, Santos (2010) and Nassif (2012) identified 

the following limitations: 

- Aleph performs a top-down search, with literal concatenation being the main 

refinement (specialization) operator. That means that a clause is refined in small 

incremental steps, which can cause many of the evaluated clauses to be very similar 

to each other. 

- This “one-step lookahead” search strategy assumes that the literals are independents 

and, even several lookahead and backtracking steps cannot capture complex 

predicate dependencies.  

- It adopts a local theory construction method. This method depends upon the ordering 

of the positive example. Thus, the best rules are not guaranteed to be found. By 

removing examples from the training set, it may appear the situation in which the 

best rules are not generated because the best rules would be generated by examples 

that were removed in previous sub-optimal learned rules. 

In contrast, ProGolem implements a bottom-up search with the ARMG being the main 

generalization operator. The ARMG consists of a powerful generalization operator in large 

leaps [Santos, 2010]. In addition, ProGolem implements a global theory construction 

method, which ensures that the theory is only constructed after all rules have been 

generated. As a result, ProGolem is not dependent of the order of examples like Aleph. 

Furthermore, ProGolem implements specialized coverage engines that can efficiently 

compute coverage of long, non-determinate clauses. A non-determinate clause has more 

than one possible solution.  

The above ProGolem features suits well for RE because ProGolem drastically reduces 

the runtime per evaluated clause. For the reasons exposed above, ProGolem was adopted 

as the inductive logic programming system in OntoILPER framework. 
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Chapter  3 

Information Extraction 

A large amount of information on many different subjects and formats is published on the 

Web continuously. This information volume was made possible due to the advances in 

computer technology that simplifies the creation, storage, and distribution of information 

on the Web. Much of this information, stored in an unstructured form, is spread over 

thousands of individual computers (hosts) on the Web what results in a huge and complex 

online database. However, this lack of structure greatly limits the use of this information. 

Besides that, current technologies for searching web pages based on keywords are not 

mature enough to provide the user with the specific information she needs [Freitas, 2002]. 

In this context, Information Extraction (IE) as a means for finding structured 

information from unstructured or semi-structured text can be of great help. The main goal 

of IE consists in discovering and structuring information found in semi-structured or 

unstructured documents [Jiang, 2012]. IE is an important task in Text Mining and has been 

extensively studied in various research communities including Natural Language 

Processing (NLP), Web Mining, Information Retrieval (IR), among others. More 

concretely, IE can be regarded the task of automatically identifying and recovering certain 

entities, relations or events in text sources. 

This chapter is organized as follows: Section 3.1 gives an overview of the IE tasks, 

general architecture, and applications of IE systems. Section 3.2 and 3.3 introduce the main 

approaches to Information Extraction, proposing a broad classification of the IE systems 

based on several published surveys. Supervised machine learning techniques applied to IE 

are the subject of the Section 3.4. Section 3.5 is dedicated to Ontology-based Information 

Extraction, a specialized branch in IE. The motivation, the potential, and the classification 

of state-of-the-art OBIE systems are also described in that section. Finally, Section 3.6 

concludes the chapter and presents the focus of this thesis. 

3.1.  Introduction 

3.1.1.  Types of Extracted Elements  

In IE, documents can be categorized as structured, semi-structured, and unstructured ones. 

Structured documents follow a predefined and strict, but usually unknown, format where 

itemized information presents uniform syntactic clues. Semi-structured documents, like 

web pages, consist of free text merged with HTML tags which can define tables, and other 

structures within the page. Unstructured pages usually consist of free text.  

Comparing IE systems with those in IR, the first ones give a step forward because they 

are capable of finding out specific information that was previously defined by the user, 

instead of returning a link to a document, leaving the user with the task of finding the 

desired information. 

For instance, consider the follow sentence in English: 

"Microsoft was founded by Bill Gates and Paul Allen in 1975." 

Then, an IE system is able to extract the following information: 
 

isFounderOf( Bill Gates , Microsoft ), 

isFounderOf( Paul Allen , Microsoft ), 



66 

 

FoundedIn( Microsoft, 1975 ), 
 

Such structured information is now ready to be presented to an end user, or it can be 

used by another computer application, including search engines, in order to provide better 

services to end users. 

From the textual fragment shown in Fig. 3.1, an IE can extract four basic elements: 

- Entities are the basic building blocks that can be found in text documents. 

Examples include people, companies, locations, genes, drugs, etc. 

- Attributes are features of the extracted entities, including person's title, the type of 

an organization, etc. 

- Facts are the relations that exist between entities. An employment relationship 

between a person and a company is a typical example of a factual relationship. 

- Event is an activity or occurrence of interest in which several entities participate. 

Examples of an event include a terrorist act and a merging between two companies. 

Fig. 3.1 illustrates several entities and relationships found by an IE system from a 

document in free natural language text. 

 

 

Figure 3.1. Example of a document annotated by an IE system. Note that entities and relations are 

first identified for composing more complex facts and events. Extracted from [Ben-Dov and 
Feldman, 2010] 

3.1.2. Historical Perspective of IE and Types of IE Tasks 

Much NLP research was funded by U.S. government agencies in the 1970s and 1980s, but 

these agencies became frustrated at the difficulty of evaluating competing approaches 

because researchers chose their own issues, processing methods, evaluation methods, and 

data. This frustration motivated an effective solution concerning the establishment of a 

methodology of competitive evaluation, where sponsored researchers and others would 

agree to develop systems to process the same data, and formalize their analysis results in a 

standard notation.  
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Accordingly, a series of seven Message Understanding Conferences (MUC) was held, 

with the last in 1998 [Hirschman, 1998] which were responsible for the major contribution 

to the development of IE by proposing standards to the IE community. 

The MUC conferences [Grishman and Sundheim, 1996], sponsored by DARPA
1
, 

provided corpora and standardized assessment criteria and invited developers of IE 

systems for competing with their proposed solutions. This led to the establishment of the 

evaluation metrics for assessing IE systems and conceiving techniques that allowed 

researchers to extract effectively information from textual sources, mainly from 

unstructured ones. One of these techniques, the manual development of extraction rules 

that rely on patterns in the form of regular expressions attracted the attention of many 

researchers after the FAUSTUS system [Appelt et al., 1993] that used this technique and 

was second on the 4
th

 edition of MUC. The names of the various tasks identified in MUC 

evaluations, and the methods used for evaluation in MUC, have become widely adopted 

and adapted outside MUC ever since. 

Early MUCs defined information extraction as filling a predefined template that 

contains a set of predefined slots (see Fig. 3.2). Template filling can be regarded as a 

complex task and systems developed to fill one template cannot directly work for a 

different template. In MUC-6, a number of template-independent subtasks of information 

extraction were also defined [Grishman and Sundheim, 1996]. These include named entity 

recognition, coreference resolution, and relation extraction.  

The IE area proved also to be very useful for business organizations. For this reason, the 

domain related to companies was used in the subsequent MUC conferences as well as in 

the Automated Content Extraction (ACE)
2
 campaigns, the MUC´s successor.  

At present, due to both the exponential growth of Bioinformatics literature and the 

infeasibility of processing all this information manually, IE systems have been heavily 

exploited as tools for populating bioinformatics databases, and biomedical ontologies, 

among others. Furthermore, various competitions such as the BioNLP [BioNLP, 2009] and 

BioCreative [BioCreative, 2006] have been organized for EI systems dealing with 

bioinformatics corpora. 

Returning to the extracting elements mentioned earlier, the MUC conference established 

the following tasks summarized in Tab. 3.1. 

 

Figure 3.2. Multi-slot template extraction example. 

                                                
1 Defense Advanced Research Projects Agency (DARPA). http://www.darpa.mil 
2 Automatic Content Extraction. http://www.itl.nist.gov/iad/mig/tests/ace/ 

http://www.darpa.mil/
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Table 3.1. MUC Information Extraction Tasks [Grishman and Sundheim, 1996] 

Task Name Description 

Named Entity 

Recognition (NER) 

extracts people´s names, organizations, locations, numeric and 

temporal expressions 

Coreference 
Resolution (CR) 

links references to the same entity 

Template 

Element(TE) 
extracts identifying and descriptive named entity attributes 

Template 
Relation(TR) 

extracts specific relationships between NE´s (simple facts).  

Scenario Template 

(ST) 

extracts events by filling one or more slots with instances of TE´s or 

TR´s. 

3.1.3. Named Entity Recognition and Relation Extraction 

Since the NER and TR extraction tasks are the focus of this thesis, they are explained in 

more details in this section. 

Named Entity Recognition 

Named Entity Recognition (NER) was formally introduced in 1995 by the sixth MUC as a 

subtask in IE. The aim of Named Entity Recognition (NER) is to identify named entities 

from text and to classify them into a set of predefined types such as person, organization 

and location, among others.  

NER consists of the most fundamental task in IE, since the extraction of more complex 

structures such as relations and events depends upon accurate NER as a previous step. 

These types are the most useful for many application domains. Other expressions such 

dates, time, monetary values and percentages, which were introduced in MUC-6, are 

viewed as named entities, although strictly speaking these expressions are not named 

entities. 

Other application domains have also been attracted to the NER, like the biomedical 

domain. In this domain, named entities to be extracted refer to biological or medical terms 

in unstructured text. Such entities include gene and protein names, medical problems and 

treatment, drug names, to name a few. 

In the biomedical domain, NER has been notably challenging for two reasons [Yeh et 

al., 2005]: the dynamic nature of scientific discovery that constantly increases in this 

domain; and the abundant use of synonyms, acronyms/abbreviations make it difficult to 

identify the concepts with these terms. 

Relation Extraction 

Relation Extraction (RE) consists of detecting and characterizing semantic relations 

between entities in text. By detecting, one refers to the task of only determining if a 

relation between two entities holds, whereas by characterizing, the classification problem 

of assigning a relation type label to a particular relation instance is addressed. 

The research in RE has been promoted by the MUC which held several editions of this 

event from 1987 to 1997 under the supervision of DARPA. Later, the NIST Automatic 

Content Extraction (ACE) program continued to organizing campaigns (ACE from 2002 to 

2008) on IE in general and RE in particular. The ACE workshop is considered the best 

world forum for the comparison and evaluation of new technologies in the field of IE, 

including NER, RE, event extraction, and temporal IE.  
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Much of the work on RE in those ACE programs focuses on binary relations, i.e. 

relations between two entities, or arguments. A set of major relation types and their 

subtypes are defined by ACE. Examples of such major relation types include physical (e.g. 

an entity is physically near another entity), and employment/affiliation (e.g. a person is 

employed by an organization).  

Fig. 3.3 shows the overview of the RE task with its input and output accompanied with 

two examples. 

The left side of Fig. 3.3 shows a more abstract representation of the RE task in terms of 

its input and output. This input consists of documents in natural language containing 

instances of relations to be extracted, whereas the output consists of the triples representing 

the instances of relations holding between two entity instances. The right side of the same 

figure depicts an example comprising two input sentences and the final extracted instances, 

where: 

i. "American saxophonist David Murray recruited Amidu Berry"; 

ii. "Cdc3+ encodes profilin, an actin-monomer-binding protein". 

Sentence (i) contains two relation mentions: "Citizen" between "David Murray" and 

"American"; and "Business" between "David Murray" and "Amidu Berry". Sentence (ii) is 

from a biomedical corpus, and one can also identify two protein-protein relation instances.  

3.1.4. Evaluation Metrics for Information Extraction 

The assessment of IE systems is performed by the evaluation metrics proposed at MUC 

[Hirschman, 1998]. The study conducted by the first four MUC editions formed the basis 

for the definition of existing evaluation metrics in IE. 

Initially these metrics were developed based on Precision and Recall metrics originally 

proposed in Information Retrieval (IR) [Baeza-Yates and Ribeiro-Neto, 1999]. 

 

 

 
Figure 3.3. Overview of the RE task with extracted instances.  

Extracted from [Hachey et al., 2011]. 

Precision and Recall metrics are generally defined in terms of the elements indicated by 

contingency table, or confusion matrix (Fig. 3.4) for binary classifiers, like the following 
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  Golden Standard 

Predicted True False 

True tp fp 

False fn tn 

Fig. 3.4 Confusion matrix of a binary classifier 

 

where tp consists of true positive (instances correctly classified as belonging to the target 

class,), fp denotes false positives (instances incorrectly classified as belonging to the target 

class), fn consists of false negatives (instances incorrectly classified as not belonging to the 

target class), and finally, tn denoting true negatives, i.e., instances correctly classified as 

not belonging to the target class. 

Thus, both Precision P and Recall R can be defined in function of the values from the 

confusion matrix above as follows:   

 

   
  

     
   

  

     
 

where P is the proportion of correct instances among all of the instances that the classifier 

was able to assign to the target class, while R is the proportion of correct instances among 

all of the instances of the target class present in the input corpus. 

Another metric that combines P and R is the harmonic mean F of P and R defined as 

follows: 

.
2.

P R
F

P R


  

It is important to emphasize that it is hard to optimise both precision and recall at the 

same time because they present a classical trade-off between them, i.e., if on the one hand, 

one tries to obtain a high precision classifier, then it is possible that relevant information in 

the input data will be missed or even ignored. On the other hand, if one works towards a 

high recall score, then it is likely that spurious instances of the input data will be extracted 

as well. 

The bottom line is that one has to decide on which aspect (completeness or correctness) 

is more important for a particular IE task. 

3.1.5.  General Architecture of an IE System 

The general architecture of an IE system is illustrated in Fig. 3.5. Typically, an IE system 

includes three processing steps [Hobbs et al., 1997]: 

Text Preprocessing. From the very beginning, the main issue in IE appeared to be the 

design of efficient extraction rules able to separate relevant from the non-relevant 

information. However, the intrinsic richness, ambiguity and complexity of natural 

language, in which a given word may have different meanings (polysemy) can make 

the task very difficult. 

To alleviate this problem, state-of-the-art IE systems rely on a pre-analysis of the input 

texts. For instance, based on the presence of a given specific lexical item, the word 

distance or order, a whole set of very specific rules can be designed for each new IE 

application. The working hypothesis here is that if the text is pre-analysed, information 

extraction rules can be expressed in a more abstract and powerful way, since the rules 

are applied on a normalised representation of the text produced by a previous natural 
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language analysis. In this case, very specific rules can be designed for each new IE 

application. 

More concretely, Text Preprocessing starts with the text segmentation into sentences 

and words, followed by more advanced NLP linguistic analysis. This natural language 

processing is done by pipelining previous analysis with the current ones (Fig. 3.6). For 

instance, the linguistic analysis should segment the text into lexical units first, and 

then identify the named entities as well as the verbs appearing in the sentence, and 

finally establishing candidate relations among them. 

Rule Selection. Information extraction rules are associated with triggers, or keywords. 

Such extraction rules specify the conditions that pre-processed text must match and 

how the relevant textual fragments can be interpreted to fill the extraction templates. 

It is worth noting that the extracted information is determined by a set of patterns or 

specific extraction rules of a given domain. The definition of such rules can be 

performed manually by a specialist in the relevant field, or with different degrees of 

automation using machine learning algorithms, e.g., supervised, semi-supervised or 

unsupervised. Details about these machine learning techniques among others are 

presented in the next section. 

Rule Application: Once a rule has been triggered, all contextual conditions of the 

rules are checked and the form is filled according to the conclusions of the matching 

rules.  

 
Figure 3.5. General architecture of an IE system. 

 

 

Figure 3.6. Common pipeline of natural language analysis performed by IE systems. 

 

3.1.6.  Information Extraction Applications 

IE has applications in a wide range of domains. Depending on the need of a particular 

application, a specific kind of (structural) information must be defined. It follows three of 

the various successful current applications of IE: 
 

- Biomedicine. Biomedical researchers often need to look for particular genes, 

proteins or other biomedical entities in a large amount of scientific publications. 

Due to the ambiguous names and synonyms for biomedical entities, the simple 

search based on keyword matching might not succeed. In this context, IE then can 

help by mining biomedical literature to automatically identify mentions of 

biomedical entities from text and to link them to their corresponding entries in 

existing biomedical knowledge bases. 
 

- Search Engines. Undoubtedly, web search engines have become an integral part of 

people´s daily need for retrieving information on the Web. However, search based 

on bag-of-word representation of documents [Baeza-Yates and Ribeiro-Neto, 

Sentence 
Splitting 

Tokenization 
POS 

Tagging 
Lemmatization Chunking NER 

Sentence 

Parsing 
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1999], performed by such search engines cannot, in most cases, provide satisfactory 

results. A more interesting possibility concerns the more advanced search problems 

such as entity search, structure search, and even question answering that can 

provide users with much better results. In this scenario, IE can again help as a 

preprocessing step aiming at enriching document representation or even populating 

an underlying database. 
 

- Business Intelligence. Financial professionals often need to seek specific pieces of 

information from news articles to help their day-to-day decision making. 

3.2. Main Approaches to Information Extraction 

Two main approaches for building information extraction systems have been proposed: the 

knowledge engineering or classical IE, and the automatic training approach, also referred 

to as adaptive IE. In the following, these two IE approaches are presented. 

Most of the information extraction systems that have participated in the MUCs are rule-

based systems [Turmo et al., 2006] [Tang et al., 2007]. In such systems, extraction patterns 

or rules developed manually by humans were used to match text for pieces of relevant 

information. This way of creating extraction rules is also referred to as knowledge 

engineering approach because a knowledge engineer creates the rules by hand.  

In this approach, the knowledge engineer has to be very familiar with both the rule-

making process and the domain in order to be able to effectively create good extraction 

rules. It is evident that this approach takes plenty of time in the process of rule 

development because it consists of an iterative process. Usually, this process is carried out 

as follows: In the first interaction, the knowledge engineer generates a set of rules, then it 

applies these rules on a set of documents (the tuning set) and, if necessary, she changes the 

rules again to obtain a better coverage of the domain. In the subsequent iterations, the 

knowledge engineer tries to obtain a satisfying set of rules with the correct level of 

generalisation. It is crucial to this approach that the generated set of extraction rules does 

not overfit or underfit the specific task after each iteration step. Finally, the knowledge 

engineer stops this iterative process when a set of extraction rules with a satisfying level of 

accuracy is achieved. Clearly, in such an approach, the user skills play a crucial role in the 

successful identification and extraction of relevant information.  

Although this approach can achieve acceptable performance on the specific target 

domain, the manual development of rules is labour intensive, and the resultant rules are 

usually highly domain dependent [Jiang, 2012]. 

Realizing the limitations of these manually developed systems, researchers turned to 

other means of developing extraction rules more adaptive in the sense that it should require 

less effort in the development process. 

The adaptive IE approach instead exploits machine learning techniques to induce 

extraction rules starting from a set of information patterns that are marked for extraction by 

a user. In this approach, the focus is on automating the rule generation process partially or 

fully in order to reduce the development time and the dependency upon a knowledge 

engineer. Moreover, with the advent of tools for NLP subtasks, such as named entity 

recognizers, information extraction systems were decomposed into several components 

that performed specific information extraction subtasks by employing standard supervised 

machine learning algorithms. 

In adaptive IE, one learns a language model or a set of rules from a collection of 

annotated documents used to train the learning algorithm and then apply the model or rules 

to new texts. In this manner, the models or the induced set of rules are usually effective 

when applied to documents similar to the ones used in the previous training phase. 
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However, the performance extraction results may be poor when applied to documents with 

a different genre or style. 

Besides that, the price for automation typically comes with the requirement of 

annotating a large set of documents from a particular domain of interest, in which the 

desired information has to be annotated by a domain expert. With such annotations, the 

system can then derive extraction rules on its own. Generally, someone who is familiar 

with the domain and the task will be sufficient to make these annotations. 

The defenders of this approach claims that it is required less effort and expertise to 

annotate documents than to create rules from scratch. 

The following table (Tab. 3.2) summarizes the main benefits and drawbacks of both 

approaches seen so far. It also shows the classification of these two main approaches 

according to several aspects: the degree of supervision, the kind of learned rules, the 

learning paradigm, or the learning strategy, among others.  

Next section is devoted to present the state-of-the-art IE systems according to the 

criteria listed above. 

Table 3.2. Comparison of hand-coded rules and adaptive IE. Extracted from [Sanchez, 2007]. 

 

3.3.  Classification of Approaches to Information Extraction 

This section is devoted to present the state-of-art methods and systems implementations 

related to this thesis.  

Fig. 3.7 is an attempt to broadly classify IE systems (NER and RE) found in literature. 

This classification is based on several published information extraction surveys [Turmo et 

al., 2006] [Bach and Badaskar, 2007], [Tang et al., 2007], [Melli, 2007], [Sarawagi, 2008], 

[Jiang, 2012]. This figure shows the classification of approaches to IE into two main lines, 

namely Knowledge Engineering (KE) and Machine Learning (ML) approaches, as 

mentioned earlier.  

 
Figure 3.7. Proposed classification of IE approaches. 
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3.3.1. Knowledge Engineering Approach 

The KE main approach is subdivided into two ones: Pattern-based and Rule-based. 

Pattern-based Approach. According to [Sarawagi, 2008] and [Bui, 2012] IE systems 

based on manually defined patterns require domain expert. This is clearly a time-

consuming process. 

IE systems based on this approach differ from each other depending on the level of 

linguistic analysis employed to define patterns. For instance, earlier systems are based on 

word forms or regular expressions or regex. 

In [Zhou et al., 2008] patterns are expressed by regular expressions such as Pro1 * 

relation * Pro2, where Pro1 and Pro2 refer to protein names, whereas relation refers to the 

verb identifying the relationship between the two proteins. This system aims to extract a 

limited set of relations given a list of predefined relation words such as “inhibit”, “bind”, 

“activate”, etc. Tikk et al. (2010) evidenced that such kind of systems is too simple to 

achieve satisfactory results. 

Later, other systems attempted to improve the previous work using syntactic analysis of 

a sentence, such as POS tags, and phrasal structure (e.g. noun phrases, verb phrases, 

preposition phrases). Again, such surface patterns do not generalize well on complex 

sentences [Hao et al., 2005]. In addition, a closer examination of these results revealed that 

more patterns were needed to take into account the large amount of grammatical variations 

in text.  

To sum up, manually defined patterns achieve high precision but have relatively poor 

recall. One can conclude that this approach is not feasible in practical applications due to 

their limited generalization power. Moreover, they are not well adapted to be applied to a 

new domain. 

 

Rule-based Approach. Manual rule-based systems rely on a set of rules to extract 

relations [Jang et al., 2006], [Ono et al., 2001]. They extend the pattern-based approach 

seen earlier by adding more constraints to the rules, such as checking negation of relations 

and determining the direction of relations [Koike et al., 2005] [Kim et al., 2007]. Thus, 

instead of using regular expressions to represent constraints, rule-based systems rely on a 

set of more flexible rules based on rather abstract levels of syntactic structures, 

grammatical relations, and semantic relations. 

Rule-based approaches may generalize well when applied to new domains. 

Additionally, the number of rules is relatively smaller than those of pattern-based systems. 

On the other hand, these approaches also suffer from low recall since the defined rules can 

only cover obvious cases.  

Aiming at improving the recall of these systems, the trade-off between precision and 

recall has to be taken into account once that by relaxing the constraints or by learning rules 

automatically from training data, the system might improve recall. 

3.3.2.  Machine Learning Approaches to IE 

The second main approach (ML) is traditionally categorized into 3 main classes, according 

to the annotation effort made, by humans, to annotate the training input texts [Grishman 

and Yangarber, 2000]:  

Unsupervised Methods. There has been recently an increasing interest in unsupervised IE 

from large corpora, because they do not require any annotated data during learning. In this 

approach, the goal is to discover salient relations of a given domain. 

The two representative approaches in unsupervised IE are Relation Discovery, and 

Open Information Extraction. 
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 Relation Discovery. In RE, the types of relations to be extracted are usually known in 

advance. However, there are also cases where the system does not have any specific 

relation types to be extracted. In this case, it is imperative to discover salient 

relations types from a given corpus. This approach is based on clustering techniques. 

Its key idea consists of clustering entities or entity pairs based on their lexico-

syntactic contextual features. 

Shinyama and Sekine were the first researchers to study this problem, which they 

called Unrestricted Relation Discovery [Shinyama and Sekine, 2006]. In their work, 

the IE system first collects a large number of news articles from different news 

sources on the Web. Then, it uses clustering techniques based on lexical similarity in 

order to find articles about the same event. This preliminary task aims at enriching 

the feature representation of an entity using its multiple occurrences in different 

articles. Next, the system performs syntactic parsing and extract named entities from 

these articles. Each named entity could then be represented by a set of syntactic 

patterns as its features, e.g., such a pattern may denote that the entity is the subject of 

a given verb. Finally, another iteration using a clustering algorithm is performed to 

cluster pairs of entities co-occurring in the same article.  

 Open IE. Open Information Extraction aims at extracting any type of relation from a 

large corpus. Typically, the Web is used because of this huge diversity of subjects. In 

Relation Discovery, the extraction task is based on a single or multiple domain 

corpus because the goal is to discover the most salient relations from such a domain 

specific-corpus. However, in some cases, the goal is to find all potentially useful 

facts from a large and diverse corpus, like the Web. This corresponds to the focus of 

a new subfield in IE called Open Information Extraction, first introduced by [Banko 

et al., 2006]. 

Open IE does not assume any specific target relation type in advance. The main 

idea here is to make a single pass over the corpus and try to extract as many relations 

as possible. Since no relation type is assumed in advance, the extraction results are 

usually phrases describing the extracted relation, i.e., usually such phrases are 

expressed in terms of (arg1, relation, arg2) tuples. 

Banko and Etzioni introduced an unlexicalized CRF-based method for open IE 

[Banko and Etzioni, 2008] based on the observation that, even though different 

relation types have very different semantic meanings, there exists a small set of 

syntactic patterns that cover the majority of the semantic relation mentions. The key 

idea here is to obtain more generalized patterns covering many cases as possible. 

Later work on open IE introduced more heuristics to improve the quality of the 

extracted relations [Fader et al., 2011]. 

More recently, the ExtrHech open IE system [Zhilla and Gelbukh, 2014] relies on 

lexical-syntactic patterns handcrafted from POS tagged texts. Using a similar 

method, [Xavier et al., 2013] propose a system that performs unsupervised extraction 

of triples by applying a few lexical-syntactic patterns to POS-tagged texts.  In order 

to validate their strategy, the authors developed a prototype and compared its 

performance with two other open IE systems. The proposed approach achieved 

promising results, overcoming those from the state-of-the-art systems. 

 

Semi-Supervised Methods. This approach advocates that learning can be carried out from 

only a small set of annotated data. Then the IE system has to learn patterns on its own. It is 

also called weakly supervised approach. This approach can be divided into boostraping and 

distant supervision. 
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- Boostrapping. The idea underlying the bootstrapping approach for relation 

extraction is to start with a set of seed entity pairs that are related to a given target 

relation.  

The most representative RE system based on this approach is the Snowball system 

[Agichtein and Gravano, 2000], which improved over the DIPRE [Brin, 1998]. 

Snowball starts with a set of seed entity pairs appearing in target relation. For 

instance, if the target relation is HeadquarteredIn, then the following seed pairs 

<Microsoft, Redmond>, <Google, Mountain View>, and <Facebook, Palo Alto> can 

be chosen as seed pair examples. Then, a large corpus is utilized to find co-

occurrence of these entity pairs within close proximity. The underlying assumption is 

that if two entities related to the target relation co-occur closely, the context in which 

they co-occur is likely to be a pattern for the target relation [Agichtein and Gravano, 

2000]. For example, the selected sentence fragment such as “Google’s headquarters 

in Mountain View” and “Redmond-based Microsoft” can derive an extracted pattern 

like “ORG’s headquarters in LOC” and “LOC-based ORG”. With these patterns, the 

Snowball system searches the corpus and tries to find more <ORG, LOC> entity 

pairs that have the HeadquarteredIn relation.  

The system adds these entity pairs to the set of seed relation instances and repeats 

the process. More patterns and entity pairs are added to the results until a certain 

condition is satisfied.  

An important step in bootstrapping methods is how to evaluate the quality of 

extraction patterns in such a way to minimize many noisy patterns during the 

extraction process.  

Usually two factors are considered, coverage and precision. Coverage is related to 

the percentage of true relation instances that can be discovered by the pattern. 

Precision is related to the percentage of correct relation instances among all the 

relation instances discovered by the pattern. 

The major drawback with this approach is that it is prone to drift, i.e., a large 

number of noisy patterns are generated. As a result, the overall precision of the IE 

systems relying on this approach is reduced due to noisy patterns [Schuhma et al., 

2010]. 

- Distant Supervision. In the bootstrapping approach, only a small set of seed entity 

pairs or examples is used. With the growth of the social Web, several knowledge 

bases, with a vast human knowledge contributed by a large crowd of users, are freely 

available. 

Two well-known examples of such knowledge bases are Wikipedia
3
 and 

Freebase
4
 that stores structured human knowledge under the form of relations 

holding two entities [Bollacker et al., 2008].  

With such available knowledge bases, researchers have been studying a way to 

take profit from by generating training data a large set of entity pairs known to have 

a target relation.  

Mintz et al. (2009) proposed a distant supervision method for relation extraction 

based on this idea. The authors assume that if there are two entities participating in a 

given relationship, then any sentence that contains these two entities is likely to 

express that relation. It is evident that this assumption does not hold in many cases. 

Accordingly, Mintz et al. employed features extracted from different sentences 

containing the same entity pair aiming at creating a richer feature vector that 

                                                
3
 http://www.wikipedia.org 

4
 https://www.freebase.com 
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encompasses lexical, syntactic, and named entity tag features that is supposed to be 

more reliable. 

 

Supervised Methods. In this approach, the learning process relies on fully annotated data: 

a human annotator has to mark all of the relevant information in a corpus used for training 

the machine learning algorithm.  

Ought to the fact that the IE method proposed in this thesis is based on the supervised 

approach, Section 4.4 is devoted to present it in more detail.  

In what follows, a comparative discussion between KE and ML-based approaches is 

provided. 

3.3.3. Knowledge Engineering vs. ML-based approaches 

In several works on IE, the comparison between KE-based approaches, hereafter symbolic 

approaches, and machine learning-based ones (statistical models) is commonly made. 

As already mentioned, early work on IE is has exclusively focused on symbolic 

methods. Then, the fundamental machine methods appeared in the field and they are 

continuing evolving. Nevertheless, there is no consensus in the IE community which one is 

better than the other. Thus, each approach is equally suitable to be adopted, depending 

upon the circumstances. 

However, some important aspects have to be considered before opting for one of the 

two approaches.  

Starting the discussion with the symbolic approach, several authors [Turmo et al., 

2006], [Sarawagi, 2008] [Yildiz, 2007] have claimed that the manually created set of rules 

have the following advantages: 

- The rule set is likely to cover the domain very well. Actually, this constitutes the 

main advantage of this approach that makes it the most important choice in 

applications where the highest precision is crucial. 

- Symbolic rules present an explicit nature that allows human interpretation and 

verification. Further, explicit patterns can be mined and matched with methods 

that use the explicit nature for optimization [Blohm, 2010]. 

- Using extraction rules, for example, the distinguished tokens as argument slots 

in a given extraction template are straightforward identifiable, while statistical-

based methods, in most cases, require a previous identification of the arguments 

by means of named-entity taggers or other markup or lookup operations 

[Bunescu and Mooney, 2006]. 

On the other hand, the most cited disadvantages of the symbolic approach are: 

- A knowledge engineer might not always be at hand.  

- It is a time-consuming task when knowledge engineer has to build a whole new 

set of rules in the case of a new domain or task has to be supported. Thus, this 

method does not scale well. 

Turning the attention to ML approaches, the main advantages they present are: 

- Plenty of time can be saved because the rule generation process can be 

automatized. Therefore, there is no dependency to a knowledge engineer. 

However, the system will require enough training data and often a domain 

expert to make the annotations. 
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- As statistical models numerically compare a large number of descriptive features 

of candidate examples to a learned model. This implies that they are more robust 

to noisy or variability in the data due to the larger set of features they use 

compared to the symbolic approaches. In this case, a deviation in one feature can 

be compensated by others. Thereby, each feature contributes to this score to a 

certain extent.  

Finally, the main drawbacks from the statistical ML approaches for IE are: 

- Typically in ML in general, the generated statistical models are tailored exactly 

for the given annotated corpus used as input in training. Consequently, the 

model will work fine for the documents it was trained on, but will have less 

overall accuracy when processing new documents in its model application 

phase. This is a typical example of the overfitting problem in ML.  

- Still considering the input annotated corpus, it quite possible that the annotated 

corpus does not contain all the relevant information of the domain of interest. 

Therefore, when adopting this approach, the user has to select very carefully the 

training corpus in order to increase the likelihood that the induced model covers 

a large portion of the domain. Again, in that case, either human intervention is 

necessary or a good document retrieval system. 

The bottom line is that both approaches have their strength and their weaknesses. Thus, 

one has to mainly analyse the setting in which the IE system is going to be used. Appelt 

and Israel (1999) suggest to prefer the automatic training approach when resources and 

rule writes are not available, training data is cheap and plentiful, extraction specification 

are stable, and the highest possible precision is critical. 

3.4. Supervised Machine Learning Approaches to IE 

This section focuses on the supervised machine learning approaches to the two most 

fundamental tasks in IE, namely NER and RE. According to Fig. 3.7, this approach is 

divided into two major methods: (i) classification models, and (ii) rule induction. 

3.4.1. Classification Models 

Statistical Classification Models consist of the most widely used ML methods for IE. This 

approach is also called supervised machine learning. The central idea in applying 

supervised ML to IE is to cast the information extraction problem as that of classification.  

Consider a two class classification problem, or binary classification problem. Let { (x1, 

y1), … , (xn, yn) } be a training data set, in which xi denotes an instance (a feature vector) 

and yi   { -1, +1} denotes a classification label. Then, a classification model consists of 

two distinct stages: learning and prediction. During learning, the algorithm attempts to find 

a model from the labelled data that can separate the training data into two classes, say A 

and B. During prediction, the learned model identifies whether an unlabeled instance 

should be classified as A and B. In some cases, the prediction results may be numeric 

values, e.g. ranging from 0 to 1. In others, the output can be a set of class labels, e.g., { A, 

B, C, ...}. 

Usually, the criteria for predicting the two classes are based on a given numeric value, 

the prediction value that has to be larger than a given threshold. 

The ML approach based on the generation of statistical classification models is the most 

important and widely used by the IE community.  
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In the following, the focus is on the statistical model based on supervised classification 

employed in NER and RE. In this approach, one can distinguish three major methods: (i) 

sequence-based, (ii) feature-based, and (iii) kernel-based.  

Sequence-based 

Particularly for NER, the problem of identifying named-entities can be cast as a task of 

sequential labelling, in which complete sequences of words or tokens are considered 

instead of only individual words as it is done in classification-based approaches. In this 

supervised method, a document is viewed as a sequence of tokens. In addition, a sequence 

of labels is assigned to each token in order to indicate the property of the token [Tang et 

al., 2007]. 

More formally, given an observation sequence x = (x1, x2, ..., xn), the sequence labelling 

IE task consists in finding a label sequence y that maximizes the conditional probability 

p(y/x), i.e.,  y* = argmaxy  p(y/x). 

One of the most used sequential labeling algorithms is the Hidden Markov Model 

(HMM) [Rabiner, 1989]. A HMM consists of a finite state automaton with stochastic state 

transitions and symbol emissions.  

In [Seymore et al., 1999], an IE system based on HMM for extracting relevant fields 

from headers of computer science research papers is described. Peng (2004) used the 

sequence-based models for extracting metadata in research papers, such as title, author, 

email, and abstract, 

HMM has been successfully used as the main learning component in statistical 

frameworks for biomedical NER [Collier et al., 2000] [Kinoshita and Cohen, 2005] [Shen 

et al., 2003]. However, Conditional Random Field (CRF) are often demonstrated to be a 

superior statistical sequence-based method for biomedical NER [Okanohara et al., 2006] 

[Settes, 2004]. 

 Sequence labelling methods present two main disadvantages: the first one is related to 

the need for a large amount of training data, as the more training data, the better are the 

results. The second concerns the underlying model in such methods that is a flat mode, i.e., 

no structural information is taken into account. As a result, these methods are best 

applicable for the tasks in which the tagged sequences are not nested and when there is no 

explicit relation between the sequences. NER, chunking, and POS tagging belong to this 

category of task.  

Feature-based 

Feature-based approaches for RE rely on classification models constructed by first 

transforming relation examples into the corresponding numerical vectors that represent 

several types of features and then applying a machine learning technique, such as SVM 

[Joachims, 1999], to detect and classify the relations examples into a predefined types of 

relationships. They have achieved state-of-the-art performance results by employing a 

large number of diverse linguistic features derived from lexical knowledge, entity-related 

information, syntactic and dependency parsing trees, and semantic information 

[Kambhatla, 2004] [Zhou et al., 2005]. The utilization of hundreds or thousands of features 

is computationally burdensome and does not scale well with increasing amount of data. 

Furthermore, it is difficult for them to effectively capture structured parse tree information 

[Zhou et al., 2005], which is critical for further performance improvement in RE.  

Roth and Yih (2007) proposed an entity and relation extraction system based on global 

inference. In their approach, predictors that identify entities and relations among them are 

first learned from local information in the sentence. The constraints induced from the 
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dependencies among entity types and relations constitute a relational structure over the 

outcomes of the predictors and are used to make global inference.  

Giuliano et al. (2007) describe a system based on shallow linguistic processing (such as 

tokenization, POS tagging and lemmatization) that utilizes kernel methods to perform NER 

and RE tasks. This system also uses a combination of kernel functions that models two 

distinct information sources: (i) the global context where entities appear and (ii) the local 

contexts around the interacting entities. The whole sentence containing the entities (i.e., 

global context) discovers the presence of a relation between two entities. Text windows of 

limited size centered on the entities (i.e., local contexts) provide clues to identify the roles 

played by the entities within a relation.  

Kernel-based. 

Kernel-based approaches for RE are based on kernel functions, or simple kernels, that 

define the inner product of two observed instances represented in some underlying vector 

space. Kernel functions are often regarded as a measure of similarity between two input 

vectors that represent examples in a transformed space using the original attribute set. The 

major advantage of using kernels is that observed instances do not need to be explicitly 

mapped to the underlying vector space in order to their inner products defined by the 

kernel to be computed [Jiang, 2012].  

Two types of kernels were previously explored in RE [Jiang, 2012]:  

- Tree-based kernels rely on common substructures containing two entities in order to 

implicitly explore structured features by directly computing the similarity between 

two trees [Zelenko et al., 2003] [Culotta and Sorensen, 2004]. Another state-of-the-

art tree-based kernel system is the one proposed by Zhang et al. (2006). The authors 

explored various structured feature spaces and the tree kernel over parse trees to 

model the syntactical structured information for RE. Tree kernels can achieve 

comparable or even better performance than feature-based ones, largely due to their 

distinctive merit in effectively capturing the structural information of relation 

instances. However, there exist two main problems in applying tree kernels in RE. 

The first one is that the subtrees enumerated in a tree kernel computation are context-

free; therefore they do not consider the context information outside the target subtree 

containing two argument entities [Zhou et al., 2007]. The second problem concerns 

the choice of a proper tree span in RE, i.e., the tree span relating the subtree enclosed 

by the shortest path linking two involved entities in a parse tree [Zhang et al., 2006]. 

- Composite kernels result from the combination of different kernels. Such kernels are 

mainly used when it is difficult to include all kinds of features into a single kernel, 

i.e., they can integrate the advantages of feature-based and tree kernel-based 

methods. Zhao and Grishman (2005) defined several feature-based composite kernels 

in order to integrate diverse features. In [Zhang et al. 2006], the authors proposed a 

composite kernel that combine the convolution parse tree kernel with the entity 

feature kernel. More recently, Choi et al. (2009) introduced a composite kernel in 

which several lexical and contextual features were integrated by expanding an 

existing composite kernel. In their work, they extended the syntactic features with a 

range of lexical features for achieving a higher performance. Previous investigation 

revealed that composite kernels achieve better performance than a single syntactical 

tree kernel. This means that entity type information, i.e., flat information can be 

combined with structural (syntactic) features into a one single kernel function. The 

disadvantage of composite kernels methods is that the comparison is performed only 

on the basis of sentence component information of each node.  
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3.4.2. Rule Induction 

Rule-based systems rely on a set of rules automatically generated from training data. They 

are traditionally categorized into wrapper induction, propositional learning, and relational 

learning. In what follows, these kinds of rule-based system are described in details. 

 

Wrapper Induction. This method primarily aims at structured and semi-structured 

documents such as web pages, also called Web Information Extraction. 

According to Jiang (2012), there is a major difference between Web IE and IE studied 

in natural language processing in the sense that Web pages often contain structured or 

semi-structured text such as table and lists, whose extraction relies more on HTML tags 

than linguistic features. Such Web information extraction systems are also called wrappers. 

Wrapper induction is the technique for automatically learning wrappers from training data.  

In the following, some of the most influential works on wrapper induction are described  

WIEN 

WIEN is the first wrapper induction system and it was proposed by Kushmerick (1997). 

In short, multi-slot itemized page fragments are well covered by a set of individual 

wrappers (4 tabular and 2 nested) in WIEN. 

Fig. 3.8 shows an example a wrapper generated by WIEN, which extracts "Country" 

and "Area Code" from two HTML pages, D1 and D2. 

 

 

Figure 3.8. Example of a rule in WIEN [Kushmerick, 1997] 

 

The rule in Figure 3.8 has the following meaning: ignore all characters until finding the 

first occurrence of ‘<B>’ and extract the country name as the string that ends at the first 

‘</B>’. Then ignore all characters until ‘<I>’ is found and extract the string that ends at 

‘</I>’. In this example, one can see that this WIEN rule can successfully extracted the 

desired information from both documents. This same rule is repeatedly applied to other 

documents. 

SRV 

SRV [Freitag, 1998] is based on FOIL [Quinlan and Cameron-Jones 1993] and 

transforms the problem of learning extraction rules into a classification problem. The input 

to SRV consists of a training set of documents and a set of attributive features and 

relational features related to tokens that controls the generation process. 

SRV uses a top-down covering algorithm to learn IE rules from positive and negative 

examples. The desired text fragments to be extracted within training documents are 

manually annotated as positive examples. Negative examples are automatically generated 

as the complement of the positive ones. 

Fig. 3.9 shows a rule in SRV from semi structured documents related to seminar 

announcements. This rule extracts exact values for the entity speaker. 
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Figure 3.9. Example of a rule for the speaker entity in SRV. Extracted from [Turmo, 2006] 

 

Boosted Wrapper Induction 

Another successful implementation of the wrapper induction approach is the BWI 

system [Freitag, 2000]. This wrapper generation system aims at making wrapping 

induction techniques suitable for free texts as well.  

BWI represents a document as a sequence of tokens, and the IE task consists in 

identifying the boundaries of the piece of information to be extracted. Let indices i and j 

denote the boundaries, then the pair <i, j> can be used to represent a given instance in a 

document. 

In BWI, a learned wrapper W = <F, A, H(k)> consists of two sets of patterns that are 

used to detect the start and the end boundaries of an instance, respectively. The set F = 

{F1, F2, …, FN} identifies the start boundaries, and the set A = {A1, A2, …, AN} identifies 

the end boundaries. H is a length function that estimates the maximum-likelihood 

probability that the field has length k. 

BWI estimates these probabilities by constructing a frequency histogram recording the 

number of fields of length k occurring in the training set.  

Moreover, it uses the AdaBoost algorithm to generate and combine the predictions from 

many extraction patterns. In BWI, AdaBoost algorithm runs in iterations. In each iteration, 

it outputs a weak learner from the training data and a weight for the learner representing 

the percentage of the correctly classified instances by applying the weak learner to the 

training data.  

Finally, to perform extraction using a wrapper W, every boundary i in a document is 

first given a “start” score and an “end” score. Then the wrapper W classifies a text 

fragment <i, j> as follows: 

 

1   if ( ) ( ) (j i)
( , )

0,   otherwise

F i A j H
W i j

 
 


 

where   is a numeric threshold. 

 

Propositional Learning. The methods belonging to this rule induction category can be 

grouped into two types: 

Dictionary-based 

IE systems under this category first construct a pattern (template) dictionary from 

training examples, and then use it to extract information from unseen texts. Examples of 

such systems includes AutoSlog [Rillof, 1993], and CRYSTAL [Soderland et al., 1995].  
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AutoSlog [Rillof, 1993] was the first system to construct extraction dictionaries from 

training examples. AutoSlog builds a dictionary of extraction patterns called concept 

nodes. Each concept node has a conceptual trigger that activates it, a linguistic pattern, and 

enabling conditions. Then, when the conceptual trigger word is found in a text, the 

enabling conditions are checked on the text. If all conditions are met, then the text 

fragment defined by the concept node is extrated. Usually, the trigger word is a verb, but it 

can be a noun too. AutoSlog uses a predefined set of 13 linguistic patterns, where the 

information to be extracted can be one of the following syntactic categories: subject, direct 

object, or noun phrase.  

The CRYSTAL system improves AutoSlog by enriching the features used to describe a 

concept node as done in AutoSlog. Rules in CRYSTAL consist of a set of features related 

to the slot-fillers and the trigger. Such features can be terms, heads, semantic classes, 

syntactic relations, and verbal modes, etc. CRYSTAL uses a bottom-up covering algorithm 

in order to relax such features in the initial specific rules. This relaxation is carried out by 

both dropping out irrelevant features and generalizing semantic constraints. The rules 

learned by CRYSTAL are more expressive than those learned by AutoSlog. 
 

Rule-based.   

(LP)
2
 [Ciravegna, 2001] is an rule-based IE system which uses the bottom-up induction 

as its learning strategy. Its learning phase is performed from examples in a user-defined 

corpus. 

Training in (LP)
2
 is performed in two steps: initially a set of tagging rules is learned; 

then additional rules are induced to correct mistakes (correction rules) and imprecision in 

extraction. In the first step above, the tagging rules identify the start and end boundaries of 

the text fragment to be extracted.  

These rules are composed of conditional-action rules, where the condition part consists 

of constraints on a window of k tokens (before and after) the current token; the action part 

inserts a single tag indicating the beginning or ending of a string to be extracted. 

The correction rules aim at reducing the imprecision of the tagging rules. They basically 

shift misplaced tags rather than adding new tags. 

The bottom-up learning process adopted by (LP)
2
 is based on a sequential covering 

algorithm and a beam-search for selecting the best generalizations that can be applied at 

each step. This learning algorithm generalizes the constraints on feature such as POS 

tagging, shallow NLP, and user defined-classes 

The first column of Tab. 3.3 represents a sequence of words. The second to the fifth 

columns denotes Part-Of-Speech, Word type, Lookup in a dictionary, and Name Entity 

Recognition results of the word sequence, respectively. All previous columns correspond 

to the conditional part of the rules. Finally, the action part of the rule is represented by the 

last column. 

Therefore, from the example illustrated in Tab. 3.3, one can note that the action 

"<Speaker>" indicates that if the text match the pattern, the word “Patrick” will be 

identified as the start boundary of a speaker.  

Rapier 

Rapier [Califf, 1998; Califf, 2003] is another IE system that adopts the bottom-up 

learning strategy. In this systems, the rules are iteratively merged, instead of generalized 

from training examples. In addition, Rapier takes into account the linear sequence of 

tokens to perform generalizations on tokens, POS tags, and the senses derived from 

WordNet hierarchy.  
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Table 3.3. Example of a tagging rule in (LP)
2. Extracted from Tang et al. (2007). 

 
 

 

Relational Learning. NLP has been exploring successful implementations of inductive 

logic formalisms in its tasks. One of such formalism is Relational Learning. In Relational 

Learning, concept examples are represented using first-order logic [Dzeroski, 2001]. 

In this supervised learning paradigm, one of the most widely-used learning techniques is 

Inductive Logic Programming (see Section 2.3.).  

As a matter of fact, ILP has been used in several natural language subtasks, including: 

POS tagging [Cussens and Pulman, 2000], chunking [Stasinos, 2003], word segmentation 

(Kazarov and Manandhar, 2001), semantic and logic representation of sentences [Zelle, 

1995] [Mooney, 1999], verb qualia [Bouillon, 2002], verb subcategorization frames [Faure 

and Nedellec, 1999], text classification [Junker et al., 2000], and extraction of entity 

attributes [Aitken, 2002]. 

More recently, ILP was used as a learning component for word sense disambiguation 

[Specia et al., 2009], wrapper induction of entity extraction rules [Badica et al., 2005], and 

subgroup discovery [Vavpetic and Lavrac, 2013]. 

ILP has been quite useful in all the aforementioned problems because: 

 the induced rules are expressed in a symbolic formalism that are interpretable by a 

linguistic expert; 

 the higher expressivity (in first-order logic) of the final induced rules; 

 the integration of external prior knowledge is naturally achieved. 

Due to the importance of inductive learning approaches to NLP, it was proposed the 

research field at the intersection of logic, NLP and machine learning called Learning 

Language in Logic (LLL) [Dzeroski, 2001]. 

The first LLL workshop [Cussens and Dzeroski, 2000] took place in 1999, in Bled, 

Slovenia. The 4th edition of the LLL workshop (LLL 05 challenge
5
) was organized by 

Claire Nédéllec. This challenge proposed several datasets and a dictionary for the Genic 

Interaction Extraction Challenge task
6
. The goal of this task is to learn rules to extract 

protein/gene interactions from biology abstract from the Medline database. This dataset is 

still used nowadays for evaluating protein-protein interactions by relation extraction 

systems. 

                                                
5
 http://www.cs.york.ac.uk/aig/lll 

6  http://genome.jouy.inra.fr/texte/LLLchallenge 
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Given this historical review of the inductive logic-based approaches to NLP 

applications, the attention is on the more recent ILP-based systems for entity or relation 

extraction from text.  

In what follows, the most representative work more closely related to the one proposed 

in this thesis is surveyed, presenting a discussion of its advantages and drawbacks. Except 

where explicitly cited, all systems surveyed in this section deal with natural language texts 

in English. These systems were divided into two categories, according to the IE task they 

perform: NER or RE. 

 

ILP-based IE Systems applied to Named Entity Recognition 

Berardi et al. (2006) relies on ILP in an approach to induce recursive theories able to 

extract biomedical entities in sentences containing both explicit and implicit relationships 

among them. In their approach, recursive rules are discovered by the induction of mutually 

dependent predicate definitions using the ATRE [Malerba, 2003] ILP system. Their built 

IE models consist of classification rules, including mutually recursive definitions of the 

classes, in which each class plays the role of a template extraction. Thus, the IE models or 

classification rules encode the conditions to fill a pre-defined template extraction. In their 

evaluation system, article abstracts on mitochondrial mutations are preprocessed and 

annotated by GATE
7
 that provides tokenization, POS tagging, NER and gazetteers. 

Actually, two dictionaries are used: an independent domain dictionary already available in 

GATE; and a second one, more specific, and domain-dependent that contains a list of 

biological entities, including diseases, enzymes, and genes. 

Their experimental results were obtained by means of k-fold cross validation (k = 6) 

over a set of 71 biomedical articles. The results show good accuracy (82.7%), against a less 

attractive recall of around 37% (F1-measure 0.51). An explanation to this low recall score 

is probably due to the preprocessing of noisy data that makes the learned theories to be 

very specific, therefore, causing overfitting. 

Both works [Ramakrishnan et al., 2007] and [Dedek, 2012] used the Aleph ILP system 

for inducing extraction rules as Horn clauses for entity template extraction. They used the 

same dataset in their evaluation, the Corporate Acquisition Events corpus taken from the 

Reuters dataset [Lewis, 1992]. They both take profit of dependency parsing in text 

preprocessing, but using different NLP tool: the MINIPAR [Lin, 1998] and WordNet were 

the choice in Ramakrishnam and colleagues’s work, whereas Dedek et al. used the 

TectoMT, a Czech and English parser [Popel and Zabokrtsky, 2010]. In addition, in 

Dedek´s work, the extracted information is serialized as a RDF ontology. The averaged 

performance results reported in [Dedek, 2012] on the Corporate Acquisition Events dataset 

were quite low (30.5/20.0/23.5) in terms of Precision/Recall/F1-measure, respectively; 

against the same averaged results (47.6/37.7/41.9) on the same dataset reported in 

[Ramakrishnam et al., 2007]. 

Patel et al. (2010) reported experiments using ILP to generate extraction rules for 

various named entities in Marathi language. They also used the GATE framework in 

preprocessing. They opted for ILP because it provides an appropriate mechanism for the 

incorporation of linguistic knowledge. In a first experiment, Patel and colleagues measured 

the time spent on the creation of rules for a corpus consisting of 3,884 sentences and 

54,340 words, which took the period of 1 month to be manually developed. In the second 

experiment, extraction rules for the same corpus were induced using two ILP systems, 

WARMR and TILDE, available as a part of ACE
8
 data mining system. For the rule 

                                                
7
 General Architecture for Text Engineering (GATE). https://gate.ac.uk 

8
  Machine Learning Group - ACE Data Mining System. http://dtai.cs.kuleuven.be/ACE. 
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induction task using 80% of the labeled corpus, TILDE took 1 hour, while WARMR took 

140 hours. This means that the use of ILP reduced the rule development time by a factor of 

240 for TILDE and 1.7 for WARMR. The authors justified these results claiming that ILP 

provided not only the ability to incorporate domain knowledge by experts, but also more 

reliable rules comparable to the rules developed by human experts. 

 

ILP-based IE Systems applied to Relation Extraction 
 

Kim et al. (2007) is one of the first relation extraction systems based on the Aleph ILP 

system. Kim opted for a text preprocessing involving NER, POS, chunking analysis, and 

grammatical function assignment (subject, object, time, location, etc.) provided by the 

Memory-based Shallow Parser (MBSP)
9
 which has been adapted to the biological domain. 

In the evaluation of their RE system, Kim and colleagues used a set of sentences taken 

from the PRINTS database, a protein family database. The evaluation task involved 

extracting relation between proteins and any other biological entities, provided that they 

were relevant to three topics: disease, function, and structure. Their reported results were 

fairly precise, with about 75% in precision, but with a very low recall of less than 30% for 

two of the three datasets evaluated. In addition, once relations were extracted from the test 

set, they were manually evaluated by the PRINTS annotators.  

Inspired by the work of Cullota and Sorensen (2004), Horvath and colleagues (2009) 

consider both dependency trees as relational structures composed of a single binary 

predicate that represent the edges of such trees. In their work, text preprocessing is 

performed by GATE and the Stanford parser. They also used WordNet as a semantic 

resource for obtaining hypernym relations. In addition, the authors assume a partial order 

on the set of unary predicates which are defined by a hierarchy between words, e.g., the 

unary predicate Person (X) is more general than the Physicist (X) predicate, the last one 

derived from the WordNet. 

Applying the notion of generalization operator, i.e., Least General Generalization 

(LGG) of Plotkin [Plotkin, 1970], they generate a set of rules expressed as non-recursive 

Horn clauses satisfying some criteria of consistency, e.g., all rules must cover a minimum 

number of positive examples, while considering number of negative examples at the same 

time. Then, they used these rules to generate a binary vector of attributes for each example, 

and used the resultant vectors for training a SVM classifier to separate positive examples 

from the negatives. The performance of their RE method was empirically compared to 

other methods for RE using a corpus provided by ACE 2003
10

, which contains documents 

related to 519 newspaper articles. The results achieved by the authors showed that their 

method for RE are comparable to other state-of-the-art RE methods [Cullota and Sorensen, 

2004], [Bunescu and Mooney, 2005] reaching a value of 52.2% of F1-measure. 

Seneviratne and Ranasinghe (2012) work's is very similar with Hovarth et al. (2010) 

with respect to the text preprocessing tools used, as they both used GATE and the Stanford 

parser for POS tagging and dependency parsing. The only difference is that the former also 

exploits gazetteers. Another marked difference between these two works concerns the 

dataset used in the evaluation: while Horvarth et al. evaluated their proposal using a 

standard dataset containing 5 distinct relations, Seneviratne and colleagues used thirteen 

web pages for evaluating only one relation (Located_in) between a bird and a location. 

Their final reported results are just the induced extraction rules, that is, no performance 

score such as precision/recall/F1-measure are provided. 

                                                
9 Memory-based Shallow Parser for Python. http://www.clips.ua.ac.be/ctrs/memory-based-shallow-

parser-for-python 
10 Linguistic Data Consortium. https://catalog.ldc.upenn.edu 
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Smole et al. (2012) proposed an ILP-based RE systems suitable to learn rules for 

identifying and extracting information from definitions of geographic entities in texts in 

Slovene language. This ILP-based RE system constitutes as a component in a spatial data 

recommendation service. They focus on the extraction of five most frequent 

relations/properties, namely "isA", "isLocated", "hasPurpose", "isResultOf", and 

"hasParts", present in the 1308 definitions of spatial entities. The following sentence is an 

example of a definition found in this corpus. "Sewerage is a system of ditches and canals 

for supplying and draining off water". For that, they choose the classical Progol ILP 

system [Muggleton, 1995] which induces Horn clauses. Their NLP component is based on 

the Amebis Slovene POS tagger. The authors implemented a tool for chunking detection in 

Slovene that takes as input the text already tagged by Amebis. As a final step of text 

preprocessing, they use the annotated text version to manually assign relations/properties 

to all chunks of the selected 1308 definitions. A major drawback of their method is that the 

manual development of the chunk rules and manually mapping to semantic classes is time-

consuming, burdensome, and not scalable. 

Kordjamshidi et al. (2012) proposed a spatial RE system for the so called spatial role 

labeling (SpRL) problem recently introduced [Kordjamshidi et. al, 2011]. The core 

problem in SpRL is: i) the identification of the words that play a role in describing special 

concepts; and ii) the classification of the role that these words play in the spatial 

configuration. They utilize kLog [Frasconi et al., 2012], a framework for kernel-based 

relational learning that uses graph kernels. kLog is not only a relational learning system, 

i.e., but it is also able to exploit background knowledge in the form of logic programs. The 

authors rely on the Charniak Parser, for POS tagging and dependency parsing, and LHT 

tool, an automatic semantic role labeling tool. No further semantic resource is used nor 

ontologies in text preprocessing. In order to extract spatial relations, the kLog is first used 

for extracting relational features that kLog utilize to perform automatically a 

propositionalization step [Kramer et al., 2001]. Then, both a SVM and a HMM classifiers 

are constructed from the propositionalized features.  

The Alvis project comprises [Nédéllec et al., 2008] a relation extraction system that 

aims at extracting relations between biological entities. Alvis provides a semantic analysis 

based on the NLP Ogmios platform [Nazarenko et al., 2006] which performs several NLP 

subtasks, including: NER of biological entities, POS tagging, terminological analysis 

assisted by terminology dictionaries, syntactic parsing, and semantic mapping to biological 

domain ontologies. 

In Alvis, once the semantic units of text are identified, they are typed with fine-grained 

concepts that are associated by domain-specific relations from the ontology. The Alvis 

machine learning component consists of the LP-Propal method based on supervised ILP 

algorithm Propal [Alphonse and Rouveirol, 2000]. LP-Propal takes as input the corpus 

after the full processing by the linguistic pipeline and induces extraction rules suitable to 

tag semantic relations found in the ontology. Alvis heavily relies on terminology dictionary 

at first place for identifying biomedical instances in text, which is not adequate for very 

active domains producing documents containing new named entities instances. As a result, 

such terminology dictionaries are quite hard to keep fully updated. 

 

Summary of the ILP-based IE systems 

Tab. 3.4 summarizes the ILP-based IE systems presented earlier according to the following 

comparison criteria: 

 IE task performed, either NER or RE; 

 type of the induced models or the final induced set of rules; 
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 NLP subtasks performed in text preprocessing; 

 NLP tool(s) used; 

 linguistic or semantic resources used; 

 ILP learning component; 

 evaluation dataset(s); and use of ontologies. 
 

Table 3.4. Summary of the ILP-based IE Systems 

Main 

Reference 

IE 

task 

Learned 

theory 

Preproces

sing 

task(s) 

NLP tool 

used  

Semantic 

resources 

used 

ILP 

System 

Evaluat

ion 

dataset 

Use of 

ontology 

in IE 

Berardi et al. 

(2006) 
RE 

Horn 
clauses  

POS, NER 
, Gazeteers 

GATE  None ATRE  
70 

abstracts  
No 

Ramakrishn

an et al. 

(2007) 

Entity 
Templa

te 

Horn 
clausesb  

NER, Dep. 
parsing 

MINIPAR WordNet Aleph 
600 news 
articlesc 

No 

Patel et al. 

(2010) 
NER 

Decision 
List 

POS GATE None 
Warmir, 
TILDE 

25.000 
sentences 

 No 

Dedek (2012) 

Entity 
Templa

te 

Horn 
clauses  

POS, Dep. 
parsing 

GATE, 
TectoMT 

None Aleph 
600 news 
articlesc 

 Noh 

Kim et al.      

(2007) 
RE 

Horn 
clauses 

POS, NER, 
Chunking, 
Grammatic
al functions 

MBSP None Aleph 
Function 
(1268)g 

No 

Nédéllec et 

al. (2008) 

NER , 
RE 

Horn 
clauses 

POS, 
NER,Gazet
eers, Dep. 
parsing, 

Semantic 
,apping  

Ogmios 
framework 

None 
LP-

Propal 
LLL Yes 

Hovarth  et 

al. (2010) 
REa  

Horn 
clauses  

POS,Dep. 
Parsing 

GATE and 
Standford 

Parser 
WordNet LGG 

ACE 
2003 

No 

Seneviratne 

and 

Ranasinghe  

(2011) 

RE 
Horn 

clauses 

POS, 
Gazeteers,  

Dep. 
parsing 

GATE and  
Standford 

Parser 

None Newgen 
13 

Wikipedi

a pages  

 No 

Smole et al. 

(2012) 
RE 

Horn 
clauses 

POS, 
chunkingd , 

Manual 
SRL 

Amebis None Progol 

1308 

definition 
sentences 

No 

Kordjamshid

i et al. (2012) 
REe 

Horn 

clauses 

POS, Dep. 
Parsing,  

SRL 

Charniak 
Parser and 
LHT tool 

None 
kLog in 

Prolog 

1213 
sentences

f 
No 

\ 

a 
 Actually it generates binary features as input to a SVM classifier. 

b  Aleph was used for feature construction to a SVM classifier. 
c  Corporate Acquisition Events corpus taken from the Reuters dataset [Lewis, 1992]. 
d  Both POS tagger and a chunker for the Slovene language.  
e  Only one spatial relation involving three arguments: sr(indicator, trajector, landmark).  
f  These sentences consists of textual description of  613 images in the TC-12 image dataset. 
g  Two other datasets were used: Disease with 777 sentences, and Structure with 1159 sentences. 
h  At the end of the IE process, the annotated documents are serialized in a RDF ontology. 

 

Discussion 

A closer look at the Tab. 3.4 that summarizes all surveyed ILP-based system for IE 

presented in this section reveals that the most of the systems performs RE. In these 

systems, it is assumed that NER is already solved, and they take as input a corpus 
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containing pre-annotated named entities. On the other hand, 4 of the 10 surveyed systems 

either perform NER or the similar task of Entity Template Extraction (ETE). This second 

information extraction task is considered easier than the first one because of the nature of 

the semi-structured documents used in ETE which present some degree of regularity of the 

extraction slots. 

Surprisingly, Alvis is the only system that performs both NER and RE [Nedellec et al., 

2008]. In fact, the focus of the Alvis system consists in interactions (relations) between two 

biological entities. However, due to the difficulty in NER in the particular biological 

domain, they decided to integrate in Alvis several named entity classifiers based on the 

C4.5 decision tree implementation of the WEKA
11

 data mining tool. The extracted 

instances of biological entities are integrated in a dictionary of terms. 

Tab. 3.4 also reveals that all systems induced expressive extraction rules in Horn 

clauses for both NER and RE tasks, except in [Patel et al., 2010], in which the final 

induced rules constitutes a decision list [Fürnkranz et al., 2012]. 

Half of the systems shown in Tab. 3.4 rely on GATE for text preprocessing. This is a 

reasonable choice as a NLP preprocessing tool, given that GATE offers a comprehensive 

set of NLP tools in just one package. MINIPAR and the Charniak parsers were the 

alternative option for other systems. 

The Ogmios framework is another comprehensive NLP platform that offers several 

NLP tools but it is tailored to the biomedical domain, while GATE is domain-independent. 

In addition, it is noticeable the trend of the ILP-based IE systems to rely in deeper NLP 

tasks such as full dependency parsing, and semantic role labeling. Again, this is not 

surprising because previous work on RE and SRL has proved to be very beneficial to IE 

[Jiang and Zhai, 2007] [Harabagiu et al., 2005]. 

Concerning external resources used in the IE process, the great majority of the systems 

make no use of such prior knowledge. Among the surveyed systems, only Hovarth et al. 

(2010) and Ramakrishnan et al. (2007) take profit from the WordNet. 

For the learning component, the systems do not have any preference for a particular ILP 

system. However, the Aleph ILP system was the preference for 3 of the 10 surveyed 

systems. 

From the experimental methodological point of view, none of the studies carried out 

substantial experiments using several corpora either of the same domain, or from different 

domains. For instance, in Seneviratne et al. (2012), only one relation type was evaluated on 

a set of 13 web pages. The only works that used a standard competition datasets in their 

experimental evaluations were [Hovarth et al., 2010] and [Nédéllec et al., 2008]. 

Thus, one can draw to the conclusion that the use of ILP for IE has not been yet fully 

exploited by substantial assessment using several datasets. In this sense, Nédéllec et al. 

(2008) was the only system to take profit of ontologies in the IE process. As already seen, 

this system relies on both a term dictionary and a biological ontology for mapping domain-

specific terms to the domain ontology. Another distinguishing feature of this system is that 

these mapping are used primarily for semantic annotation. 

In [Dedek, 2012], the exploitation of ontologies only consists in serializing the input 

documents as RDF tuples after text preprocessing. Thus, no active use of ontologies is 

performed, such as exploiting the ontology for guiding the IE process. 

3.4.3. Open Problems in Classical Information Extraction 

In the last two decades, there were considerable advances in NLP. Information Extraction, 

regarded as a type of limited natural language understanding that produces a structured 

                                                
11 WEKA: Data Mining Software in Java. http://www.cs.waikato.ac.nz/ml/weka 
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view of facts, has been taking advantages of such advances, allowing much more 

sophisticated text analysis to be performed. Despite of that Information Extraction is still 

difficult, also due to the inherent aspects of natural language such as ambiguity and 

variability. 

Ambiguity arises when a single expression can have multiple interpretations, while 

variability occurs when a single interpretation of a fact is denoted by multiple expressions. 

These two aspects are, in one sense, opposites, but they constitute both of equally very 

complicating factors for information extraction in general [Pyysalo, 2008]. 

From the structural point of view, language analysis, and consequently IE, struggles 

with the ambiguity at all levels of language analysis ranging from the meaning of 

individual words to interpretation of complex syntactic structures.  

Language variability is another essential property of natural languages, since authors 

seek for variability when writing their texts because readers can get bored with repetitive 

text. As a result, the creative potential of languages considerably complicates the automatic 

extraction of facts stated in texts. Psysalo (2008) gives a surprising variability example 

from the biomedical domain where a single relationship between two proteins can be 

expressed in more than twenty ways taken from just a small sample of sentences in the 

BioInfer corpus [Pyysalo et al., 2007]. As a result, due to the great potential for producing 

variability in natural language, it is simply not possible to enumerate a complete set of full 

word sequences that can be express facts. Therefore, such flexibility of human language 

guarantees that novel variants occurs, which escape from any attempt to be defined by a 

collection of known forms for them. 

Another problem to be addressed is related to the scalability problem, i.e., an IE system 

should be scalable in the sense that it could be able to process increasing amount of data. 

A shortcoming of the overwhelming majority of the IE systems reviewed in this chapter 

resides in the fact that they are not able to extract implicit information from texts, since 

they take only into account in their analysis one sentence at a time and, thereby, relevant 

implicit information cannot be extracted.  

Portability is another main issue to the current IE systems reviewed. It concerns the 

capability of how ease an IE system can be applied to a new domain. Thus, the portability 

to a new domain is still considered hard to be achieved for IE systems belonging to the two 

approaches seen in Section 3.2. On the one hand, for KE approaches, it is quite difficult to 

convert a previous set of efficient and reliable extraction rules to a new domain, or even to 

a new task, while preserving the overall accuracy level of the original rules. On the other 

hand, for the statistical model-based approaches, an expert has to annotate the new 

document set in case of the definition of a new relevant information to be extracted. To 

sum up, this portability problem, also known as adaptability problem is a serious 

bottleneck for state-of-the-art IE systems [Turmo et al., 2006]. 

Besides such problems, Cunnighan (2006) and Yildz (2010) point out the following 

major challenges that classical IE systems should address in the near feature: 

- facilitating maintainability for reacting on evolving domain knowledge; 

- focusing on increasing portability to other domains; 

- enhancing usability of extraction templates by allowing ad-hoc template 

generation; 

- separating background knowledge specifications from templates and applying 

background ontologies for knowledge representation purpose. 
 

In this respect, the emergence of Ontology-based Information Extraction as a subfield of 

IE seems to be an important alternative to be considered in order to address the 

aforementioned challenges. The next section is devoted to review the literature about 
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Ontology-based Information Extraction, and situating the main contributions of the present 

thesis. 

3.5.  Ontology-based Information Extraction 

Storing information in plain text format does not allow document accessibility, since the 

semantic aspects of its content are not explicitly expressed. The lack of some kind of 

structure hinders the exploration and interpretation of semantic information by 

computational agents [Fensel et al., 2002]. According to Feldman and Sanger (2007), the 

Web is currently at a syntactic level, i.e., its contents can be read by machines, just 

considering keywords and combinations of these, and not on a semantic level, in which 

computer systems can interpret unambiguously the information available. This 

characteristic constitutes an important limitation of the current Web. Thus, the task of 

automatically finding relevant information to specific needs, especially those that require 

some level of semantic interpretation, becomes costly, and time consuming. 

To address those limitations, the Semantic Web [Berners-Lee et al., 2001] was proposed 

as a global initiative. The main goal of the Semantic Web is to make explicit the meaning 

of data content on the Web. Thus, it is possible that both people and computational agents 

can process web data, i.e., the data semantic aspects.  

One of the fundamental layers in the development of the Semantic Web is composed by 

ontologies [Koivunen and Miller, 2001], which are responsible for providing the necessary 

expressiveness to the representation of relevant knowledge about a domain [Freitas, 2003]. 

Thus, the first step to make the Semantic Web goals achievable is to define the appropriate 

semantic structures for representing most domains of knowledge, which implies the 

development of domain or task-specific ontologies. Once the ontology for a specific 

domain is available, the next step is to semantically annotate related web resources. This 

task is also known as Semantic Annotation [Petasis et al., 2011]. Thus, computers must 

have access to ontologies that enable knowledge to be represented and shared.  

On the other hand, although domain or task-based ontologies are recognized as essential 

resources for the Semantic Web, the development of such ontologies relies on domain 

experts or knowledge engineers that typically adopt a manual construction process. Such 

manual construction process is time-consuming and error-prone [Cimiano, 2006]. An 

automated or semi-automated mechanism to convert the information contained in existing 

web pages into ontologies is highly desirable in such a scenario. Ontology-based 

Information Extraction (OBIE) [Wimalasuriya and Dou, 2010], a subfield of Information 

Extraction, is a promising candidate for such a mechanism. An OBIE system can process 

unstructured or semi-structured natural language text through a mechanism guided by 

ontologies to extract certain types of information, and present the output using ontologies. 

In this section, the motivation for OBIE and its potential for Ontology Population are 

presented. Next, state-of-the-art OBIE systems are studied and discussed, highlighting their 

advantages and drawbacks. 

3.5.1. Motivating the Use of Ontologies in IE 

As already mentioned, Information Extraction can be defined as the automatic process of 

identifying and retrieving relevant information from texts in natural language, presenting 

such information in a structured format. 

Many of the tasks performed by a traditional IE system (especially the ones that relate 

to templates) have a strong dependency on knowledge about the domain of interest, i.e., 

they are highly coupled with the target domain of interest. This is considered as a 
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portability issue which constitutes one of the major challenges for the IE field 

Wimalasuriya and Dou, 2010] [Petasis et al., 2011]. 

Recently, OBIE, as a subfield in IE, tries to alleviate the portability problem through the 

use of ontologies, by providing means to make the IE system less dependent of the 

knowledge domain in consideration. In fact, making domain knowledge explicit through an 

ontology, not only enhances portability, but also provides new opportunities for IE 

systems, ranging from using ontologies for storing the extracted information by using 

reasoning for implementing various IE tasks. 

Besides the above advantages that it brings to IE, ontologies themselves bring other 

advantages as well [Freitas, 2003]: 

- Common vocabulary. They provide a common vocabulary for domain knowledge 

representation which can be interpreted by different agents, whether humans or 

computers. 

- Correct interpretation. They define a formal representation of a domain, thus 

avoiding ambiguous interpretations.  

- Reuse. Researchers can reuse other ontologies, or even make adaptations and 

extensions of existing ones. Since the construction of knowledge bases constitutes a 

complex task, this aspect of ontologies promotes a significant time reduction in 

development compared to create ontologies from scratch. 
 

The emergence of OBIE as a subfield in IE has been witnessed by the increasing 

number of publications. Other key indicator for the trend towards OBIE is the increasing 

number of conferences tracks and workshops at ML conferences devoted to IE, such as the 

very recent conference on Empirical Methods in Natural Language Processing 

(EMNLP/2014) and, the first two editions of the Semantic Web and Information Extraction 

Workshop (SWAIE) in 2012 and 2013. The goal of these workshops is to bring researchers 

from the fields of Information Extraction and the Semantic Web together to foster inter-

domain collaboration.  

3.5.2. Potential of OBIE 

Several authors [Wu and Weld, 2008] [Cimiano, 2006] agree with the fact that OBIE 

presents a lot of potential. Besides the automatic processing of the information contained in 

natural language texts discussed earlier, the potential for fully exploit OBIE is two-fold: 

 

- Creating semantic contents for the SW. The Semantic Web aims at providing 

semantic content to the current World Wide Web, in a way that it can be processed 

by software agents [Berners-Lee, 2001]. On the other side, it is quite hard to imagine 

that such content has to be manually annotated, given the prohibitive size of the 

Web. As a result, a massive metadata generation is required in order to make the 

Semantic Web come true [Popov et al., 2004]. In this context, OBIE has the great 

potential as a means for automatic generation of semantic contents by converting the 

information contained in existing web pages into ontologies. This has been pointed 

out by several works including Wu and Weld (2008), and Cimiano (2004). This 

process is also known as the Semantic Annotation of web pages. 

 

- Improving overall ontology quality: Interestingly, OBIE can be used in the 

assessment of the quality of an ontology [Kietz et al., 2000] [Maynard et al., 2008]. 

If one assumes that a given domain ontology can be successfully used by an OBIE 

system to extract the semantic contents from a set of documents related to that 

domain, then it can be deduced that the ontology itself is actually a good 
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representation of that domain. Consequently, the errors in the ontology can be 

identified by analysing the types of semantic content the OBIE system, which 

integrates the domain ontology, has failed to extract. 

3.5.3. OBIE for Ontology Population 

The focus of this section is on the application of OBIE systems for performing Ontology 

Population. Ontology Population (OP) consists of the process of inserting new instances of 

classes, properties and/or relations in an existing ontology [Petasis et al., 2011]. Therefore, 

an OP system does not alter the structure of the ontology, i.e., no change in the hierarchy 

of classes and/or a relationship is carried out. The updating task is restricted to the set of 

instances of concepts, relationships and properties of an input ontology. Instantiating 

ontologies with new factual knowledge is a relevant step towards the provision of valuable 

ontology-based knowledge services. Indeed, it is well known that the manual construction 

process of ontologies is very time-consuming and error-prone [Cimiano, 2006]. Thus, the 

automated or semi-automated mechanism that OBIE systems provide to convert the 

information contained in unstructured or semi-structured sources into ontologies is highly 

desired. 

Indeed, OP systems are closely related to OBIE systems and, as pointed out by Petasis 

et al. (2011), because the latter provides mechanisms to associate pieces of the information 

with concepts and relationships of an ontology. One can draw to the conclusion that every 

OBIE system can be considered as an OP system, as it can be extended to assimilate 

extracted instances into the ontology. 

Besides the crucial role for building and maintaining knowledge bases (Maynard et al., 

2008), OP allows relating the knowledge described in natural language with ontologies, 

assisting the process of semantic content generation [Wimalasuriya and Dou, 2010]. 

Moreover, a populated ontology can be used in several applications such as content 

management, information retrieval, text mining, and automated reasoning, among others. 

Cimiano (2006) highlights the following three major tasks in populating ontologies: 

- learning instances of concepts in the domain. This task is similar to NER. Here, 

the formal hierarchical concept definition given by an ontology constitutes the 

major difference with the flat structure of named entities extraction templates. 

- learning instances of formalized relations between two instances of concepts, 

which are somewhat similar to Relation Extraction. 

- annotating entity references with instantiations of concepts and relations in a 

domain ontology. This task is also called Semantic Annotation [Popov et al., 

2003]. 

 The above tasks are applicable to the intended goals of this thesis, which investigates 

ontology population techniques in the three scenarios.  

Fig. 3.10 illustrates a general ontology population process. This figure shows that, 

besides a corpus in natural language, an OP system requires a domain ontology that will be 

populated by an instance extraction engine. Thus, the class instances, i.e., the domain 

concept realizations, are identified and retrieved from the input corpus usually after the 

prepocessing step. In this process, the ontology structure, including its class hierarchy and 

non-taxonomic relations, are not modified. Thus, the set of concepts and relation instances 

changes. The information extraction engine is responsible for locating instances of 

concepts and relations in a textual corpus. This component can be implemented by various 

techniques such as linguistic rules, machine learning (classification, clustering, etc.) or 

simple regular expressions based on linguistic patterns, to name a few. Finally, the list of 

extracted classes/relation instances is subsequently used to populate the ontology.  
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To summarize, OP plays an important role in building and maintaining knowledge bases 

[Maynard et al., 2008]. Furthermore, it allows for relating knowledge described in natural 

language with ontologies, assisting the annotation process of semantic content 

[Wimalasuriya and Dou, 2010]. Last but not least, the final populated ontology can be used 

by various knowledge intensive applications, such as content management, information 

retrieval, automated reasoning, among others. 

 

 
Figure 3.10. The ontology population process. Extracted from [Petasis et al., 2011]. 

3.5.4. Ontology-based Information Extraction Systems 

Ontology-based Information Extraction (OBIE) consists of a subfield of IE in which 

ontologies are used to guide the information extraction process and the output is usually 

used to enrich an ontology [Petasis et al., 2011]. 

Wimalasuriya and Dou (2010) define an OBIE System as “a system that processes 

unstructured or semi-structured natural language text through a mechanism guided by 

ontologies to extract certain types of information and presents the output using ontologies”.  

Ontologies contain concepts arranged in class/sub-class hierarchies (e.g. a Country is a 

type of Geographical Location), relations among concepts (e.g., a Country has a President), 

or properties. OBIE normally takes place by specifying an ontology for the domain 

targeted by an IE system and using an IE technique to discover individuals for classes and 

instances for properties. 

OBIE is considered a multidisciplinary research once it involves concepts from 

Semantic Web, Information Extraction, Natural Language Processing, and Machine 

Learning. 

OBIE can equally be exploited for Ontology Learning [Cimiano, 2006] [Maedche et al., 

2002], in which an OBIE system is used for changing the ontology TBox schema, i.e., 

adding new classes and properties.  
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General Architecture of OBIE Systems 

Fig. 3.11 represents the union of different architectural components found in current OBIE 

systems, according to [Wimalasuriya and Dou, 2010]. However, there are many OBIE 

systems that do not comprise all of the components depicted in Fig. 3.11. For instance, the 

Ontology Generator component is missing in many OBIE systems. 

Compared to the general architecture of classical IE systems, the new introduced 

components in the OBIE architecture correspond essentially to the ontology and the 

Ontology Generator. In some OBIE systems, a semantic lexicon is also employed. 

The OBIE process starts with the textual input that first goes though a text 

preprocessing component that converts the text to a format suitable to be the Information 

Extraction Module (information extractor). It is in the IE module that the actual 

information extraction is performed. So far, this process is the same of what occurs with a 

traditional IE system. As already seen, this component can be implemented using several 

techniques.  

What really distinguishes an OBIE system from an IE one, is that the former will be 

guided by an ontology and, in some cases, by a semantic lexicon, like WordNet that can 

also support the IE component. Additionally, the creation of both the ontological domain 

knowledge and the semantic lexicon may be supported by external sources.  

The separation between an ontology and a semantic lexicon splits the knowledge 

representing a domain of concern from the more general linguistic knowledge about a 

language in lexicons.  

Another interesting aspect is that the ontology in this architecture may be generated 

internally by an Ontology Generator component that may also take profit of the semantic 

lexicon. 

As expected, the output of the OBIE system consists of extracted information that can 

be represented using an ontology definition language such as OWL, or stored in a 

knowledge base. 

 

 
Figure 3.11. General architecture of an OBIE system. Adapted from [Wimalasuriya and Dou, 

2010]. 

3.5.5. Classification of State-of-the-art OBIE Systems 

As pointed out by Wimalasuriya and Dou (2010), OBIE systems can be employed  in two 

main tasks: Ontology Learning and Ontology Population. In the first case, as already seen, 

the OBIE system aims at extending an ontology through the addition of new concepts, 
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relations, and rules. In the second, a given domain ontology is already present before the IE 

takes place, and the goal of the OBIE system is to populate ontological elements (classes 

and properties) with instances found in the input set of documents. There are also OBIE 

systems that perform both tasks at the same time, but they are not the rule. Examples of 

such systems include [Maedche et al., 2002] [Castano et al., 2008]. 

According to the thesis purposes, the classification presented here is focused is on the 

most representative and influential OBIE systems that only perform OP.  The dimensions 

along with the OBIE systems are classified are introduced. This classification takes into 

account several surveys [Karkaletis et al., 2011] [Petasis et al., 2011] [Wimalasuriya and 

Dou, 2010] and other papers on OBIE. Finally, this section discusses the surveyed OBIE 

systems, finishing with the description of some of the contributions that the present thesis 

brings to the OBIE community. 

For the sake of simplicity, instead of presenting the surveyed OBIE systems in typical 

chronological order, it was preferred to group them according to the dimensions of the 

main IE method employed by the OBIE systems. 
 

Extraction Ontologies. The first category of OBIE systems summarized in Tab. 3.5 

comprises the systems with the distinguishing feature of using the domain as a repository 

for pattern matching expressions, usually in the form of regular expressions (regex) in its 

IE extraction process. 

Embley's OBIE system [Embley, 2004] was the first to use this technique. This system 

combines linguistic rules that based on regular expressions with the elements of the 

domain ontology, including classes and properties. This modified version of the ontology 

is also called extraction ontology. 

An extraction ontology consists in an augmented conceptual-model instance that serves 

as a wrapper for a narrow domain of interest. Usually, the conceptual-model instance 

includes objects, relationships, constraints, and data-frame descriptions of strings for 

lexical objects [Embley, 2004]. 

In the same track, Yildiz and Miksch (2004) proposed the ontoX system with the main 

difference that in ontoX regex involving some elements of the domain ontology are 

induced. Actually, this pattern expressions induction process is performed by two main 

modules in ontoX. 

First, the Ontology Management Module (OMM) takes the input ontology and tries to 

exploit the knowledge in it to determine what exactly has to be extracted from the input 

data. In ontoX implementation, this module supports ontologies formulated in OWL. 

Second, the Rule Generation Module uses the output of the OMM and performs several 

steps to formulate rules, i.e., regular expressions, able to locate candidate values that are 

relevant according to the input ontology. The Extraction Module takes these rules and 

determines candidate values in the input texts, applying several heuristics to choose the 

most accurate values among them. This module finally returns the extracted values and 

suggestions to the user regarding possible changes in the ontology.  

The next two systems of this category, iDocument [Adrian et al., 2009] and FLOPPIES 

[Nederstigt et al., 2014], besides the common use of pattern matching expressions in regex, 

attempt to improve the matching process between terms in the input set of documents with 

classes and relations in the domain ontology by means of tailored similarity functions. The 

key idea in these two systems is to avoid the problem of having and exact matching if the 

system only uses regex.  

Concerning pre-processing tasks, only Adrian's iDocument takes profit of gazetteers, 

POS tagging, and chunking parsing. The other systems based on extraction ontologies use 

no preprocessing at all (Embley’s and FLOPPIES), or remove stop words and recognizes 

named entities instances by employing similarity functions, such as in ontoX. 
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Criteria for Classifying OBIE systems 

Tab. 3.5 presents the most representative and influential OBIE systems proposed so far 

according to some features that distinguish them: 

 
Table 3.5. Summary of state-of-the-art OBIE systems. 

System and/or 

Main 

reference 

IE method Extracted elements 

Preprocessing 

Tasks / NLP 

tool(s) 

Additional 

resources used 

Types of 

Sources 

Embley (2004) 
Pattern matching 

(regex) 

Class instances, data 

property values 
None 

Extraction 

Ontology 

(wrappers) 

Car´s ads web 

pages 

OntoX 

[Yildiz and 

Miksch, 2007] 

Induction of 

Regular 

expressions 

Class instances,  

datatype property 

values 

Stop words, 

named entity 

similarity 
function 

Digital camera 

extraction 

ontology 

Web pages on 

digital 

cameras 

iDocument 
[Adrian  et al., 

2009] 

Regex, 
similarity 

measure 

Class instances, 
datatype property 

values 

POS,  
Gazetteers, 

Chunking 

Extraction 
ontology 

(Wrappers) 

Corpus from a 
domain 

FLOPPIES 

[Nederstigt  et 

al., 2014] 

Regex, 

Similarity 

measure 

Class instances, 

datatype property 

values 

none 
OntoProduct 

ontology 

Web pages 

with tabular 

product data 

PANKOV  and 

C-PANKOW 

[Cimiano  et 

al., 2004] 

[Cimiano  et 

al., 2005] 

Web-based 

search 

(Hearst patterns) 

Class instances POS 
Domain 

ontology 
Web pages 

OntoSyphon 

[McDowell and 

Cafarella, 

2006] 

Web-based 

search (Hearst 

patterns) 

Class instances none 
Domain 

ontology 
Web pages 

SOBA 

[Buitelaar and 

Siegel, 2006] 

Wrapper 

(regex), 

grammar based-

rules 

Class instances,  

data property 

values, object 

property values 

POS, NER , 

Morphological 

analysis, 

Parsing / 

SProUT 

SWInto 

ontology 

Web pages on 

soccer events 

Saggion  et al., 

(2007) 
Linguistic rules 

Class instances,  

datatype property 

values 

NER, 

Gazetteers / 

GATE 

MUSING 

ontology 

Corpus from  

e-business 

domain 

KIM 

[Popov  et al, 

2004] 

Linguistic rules 

Class instances, data 

property values, 

object property 

values 

POS, 

Gazetteers, 

NER, 

coreference 

resolution / 
GATE 

KIM ontology 
Corpus from a 

domain 

Artequakt 

[Kim  et al., 

2002] 

Linguistic rules 
Class instances, 

object properties 

NER, Parsing, 
Gazetteers, 

Coreference 

resolution ( 

simple pronoun 

replacement) 

WordNet, 

Artequart 

ontology 

Web pages 

about artists 

Hermes 

[IJntema  et al.,  

2012] 

Linguistic, rule 

compiler 

Class instances, 

object properties 

Gazetteers, 

POS, NER / 

GATE 

Financial 

ontology 

Financial and 

political news 
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BioOntoVerb  

[Ruiz-

Martínez, 

2012] 

Linguistic rules 

Class instances, 

object property 

values 

Gazetteers, 

POS, NER, 

Syntactic 

parsing 

(GATE, 

GENIA NER) 

Gazeteers, 

WordNet, 

VerbNet,  

FrameNet, 

BioTop 

ontology 

Biomedical 

corpus 

 domain 

SMES 

[Maedche  et 

al., 2012] 

Parsing tree 

based-rules, 

machine 

learning 

(inference) 

Classes, class 

instances,   data and 

object properties 

values 

POS, 

Morphological, 

NER, chunk 

and dependency 

parsing 

Lexical 

database 

Corpus from 

tourism 

domain 

BOEMIE 

[Castano  et al., 
2008] 

Pattern-based , 

machine 
learning 

(inference) 

Classes, class 

instances,   data and 
object properties 

values 

POS, NER, 

gazetteers,  

chunking, 
coreference 

resolution 

 (GATE) 

Several 

ontologies 
related to the 

athletes domain 

Web pages 

and 

multimedia 
sources on 

sports events 

 

The above-mentioned OBIE systems use manually defined extraction patterns based on 

regex which is not so expressive and demands one or more domain experts to read all 

documents of the corpus and figure out suitable extraction rules. In addition, this tedious 

and time-consuming process does not scale well and put serious limitations concerning the 

portability of the IE system based on extraction ontologies. 

 

Web-based Search. PANKOV [Cimiano et al, 2004] and OntoSyphon [McDowell and 

Cafarella, 2006] are OBIE systems that use queries on web-based search engine for 

extracting class instances. The key idea is to not be limited to a local corpus, but instead, 

take profit of the web as a big corpus. 

The OBIE system called “Pattern-based Annotation through Knowledge on the Web 

(PANKOW)” semantically annotates a given web page only using web-based searches 

[Cimiano et al, 2004]. Using Hearst patterns [Hearst, 1992], PANKOW applies web 

searches for every combination of identified proper nouns in the document with all the 

concepts of the ontology for a set of linguistic patterns. Examples of Hearst patterns 

include “<CONCEPT>s such as <INSTANCE>”, and “<CONCEPT>s including 

<INSTANCE>”. The concept labels for the proper nouns are determined based on the 

aggregate number of hits recorded for each concept and returned by the web search engine.  

The core of PANKOW is a pattern generation mechanism that creates pattern strings out 

of a certain pattern schema conveying a specific semantic relation, an instance to be 

annotated, and all the concepts from a given ontology. The ontological instance in question 

is semantically annotated according to the maximal evidence score measured by the 

concept having the largest number of hits.  

C-PANKOW [Cimiano et al, 2005], PANKOW's successor, tackles the ambiguity 

problem by taking into account the context the entity to be annotated appears in. It 

overcomes this problem by actually downloading the pages, analysing them linguistically, 

and matching the patterns instead of merely generating them and counting their Google 

hits. 

The OntoSyphon system uses a similar approach but aims to learn all possible 

information about some ontological concepts instead of extracting information from a local 

corpus [Cimiano et al, 2005].  

Even though the Hearst patterns can be quite useful, the IE systems based on them have 

the limitation that the set of patterns is fixed and, therefore, cannot retrieve others 

constructions present in natural language texts. In addition, as Cimiano et al. (2015) has 
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pointed out, such patterns are quite rare, with a very low recall if one applies them on a 

local corpus, for instance. 

The SOBA system [Buitelaar and Siegel, 2006] can be regarded as a hybrid OBIE 

system because it combines both techniques of extraction ontology with a manually 

tailored set of grammar-based rules able to identify and extract class instances from semi-

structured documents, like web pages about soccer events. 

Besides extracting class instances, SOBA also extracts object and data property values, 

i.e, classes attributes and instances of relations from text by first parsing the input text with 

the SProut parser [Drozdzynski et al., 2005] which provides POS tagging, morphological 

analyses, and full sentence parsing. 

The ontology-based information extraction and integration system SOBA consists of a 

web crawler, linguistic annotation components, and a component responsible for 

transforming linguistic annotations into a knowledge base according to the SWIntO 

ontology [Buitelaar and Siegel, 2006]. This extraction ontology is the core knowledge 

resource used by SOBA because it integrates various domain and task ontologies for 

representing knowledge about football, navigation, discourse, and multimedia.  

The OBIE process in SOBA is performed in two stages: First, linguistically annotated 

documents (by SProut) are further processed by the semantic transformation component, 

which generates a knowledge base of football-related entities (players, teams, etc.) and 

events (matches, goals, etc.) by mapping annotated entities and events to instances of 

ontology classes and their properties. Next, domain-specific and manually created rules 

extract football-specific entities, such as actors in soccer (trainer, player, refer, etc.), teams 

and tournaments. On top of these entity types, there exist other rules for extracting 

football- specific events, such as player activities (shots, headers, etc.), match events (goal, 

card, etc.), and match results. 

 

Linguistic Rule-based. Linguistic rule-based OBIE systems are based on the idea of 

manually creating rules; however, here the extraction rules are not embedded within the 

domain ontology. Moreover, the linguistic rules are more expressive than the pattern 

expressions as the former normally relies on syntactic features derived from state-of-art 

NLP tools. Ought to the preprocessing step with such NLP tools, the enriched annotated 

text can be searched using more expressive extraction rules that consider linguistic 

features. 

Example of such a OBIE systems is the one introduced in [Saggion et al., 2007].This 

system uses linguistic rules for extracting relevant semantic information to be used in 

business intelligence process in the areas of financial risk management, among others. It is 

based on the MUSING ontology that provides a knowledge base about companies, and 

ranked list of countries/regions for companies interested in investing into new 

country/regions. This system, like other systems of this group, uses GATE as NLP tools 

for providing gazetteers and NER preprocessing.  

Other OBIE systems including Artequakt [Kim et al., 2002], KIM [Popov et al, 2004], 

and the one proposed by JInterma et al. (2012) has further components in their 

architecture, compared to Saggion’s. 

Artequakt [Kim et al., 2002] aims at extracting knowledge from the web about artists, 

populating a knowledge base, finally using it to generate personalized biographies. Once 

instances have been  identified, the system uses a domain specific ontology and a generic 

one in order to extract binary relations between two instances. This system also 

incorporates GATE as the provider of gazetteers lists and the Pie parser for sentence 

parsing. In addition, Artequakt uses a simple resolution function that takes into account 

three attributes (gender, number, and structural information) when determining the best-
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guessed referent. Artequakt reduces the problem of linguistic variation between relations 

defined in the ontology and the extracted facts, by using three lexical chains (synonyms, 

hypernyms, and hyponyms) as defined in WordNet. It uses heuristics to remove redundant 

instances from the ontology  

KIM [Popov et al, 2004] is another system that heavily relies on the GATE framework 

for performing semantic annotation, indexing, and retrieval of natural language texts. The 

annotation process in KIM is guided by the KIMO ontology, a pre-populated knowledge 

base with entities of general importance that allow enough clue for the IE process 

consisting of above 80,000 entities. The essence of the KIM IE approach is the recognition 

of named entities with respect to its formal upper-level KIMO ontology. The grammar-

based rules in KIM are based on the KIMO classes, rather than on a flat set of NE types. 

The OBIE system proposed by IJntema et al. (2012) differs from the above systems 

based on linguistic rules because it provides its own Hermes Information Extraction 

Language (HIEL) that employs semantic concepts from an ontology. The HIEL system 

integrates both a rule compiler and rule matcher engines implemented in Java. It extracts 

instances of classes and non-taxonomical relations from the financial/political domain. 

BioOntoVerb [Ruiz-Martínez, 2012] consists of a framework for ontology population 

based on the integration of ontological and linguistic resources on the biological domain. 

The framework comprises the BioOntoVerb ontological model [Ruiz-Martínez, 2010]. 

This ontology is derived after a previous mapping process between the BioTop ontology 

[Beisswanger et al., 2008] and the semantic roles resources VerbNet, FrameNet, and 

WordNet. BioTop ontology consists of an upper-level ontology for the life science domain 

intended to link and integrate various specific domain ontologies. This top level ontology 

defines the basic semantic relationships in the biomedical domain. 

In the proposed OBIE classification here, the BioOntoVerb ontology can be viewed as 

an extraction ontology that contains trigger terms (nouns and verbs) and their variations, 

like synonyms that are retrieved from the WordNet. Then, with both the BioOntoVerb and 

a domain ontology, i.e., the ontology to be populated the OBIE process proceeds as 

follows: 

First, the relations of the domain ontology have to be mapped onto the relations defined 

in BioOntoVerb. This process is manually performed by a domain expert. As a result, all 

the defined properties as well as the associated roles of the BioOntoVerb become part of 

the domain ontology. Second, the input text is pre-processed by GATE which performs 

POS tagging, NER, and syntactic parsing. Due to the particular aspects in biological 

entities, the GENIA tagger [Tsuruoka et al., 2005] is also used. The identified NE 

mentions by the GENIA tagger are considered as candidate instances in the ontology.  

The ontology population step uses a combination of JAPE rules
12

 and lists of gazetteers 

to perform a pattern matching process between the candidate instances and their contextual 

verbs with the ones present in the domain ontology already mapped to the BioOntoVerb. 

The matched candidate instances are inserted into the domain ontology. 

In a final step, the Hermit reasoner
13

 is executed in order to check for the consistency of 

the ontology, and compute inferred types. 

 

Machine Learning for Inference. The last two OBIE systems surveyed in this thesis, 

namely SMES [Maedche et al., 2002] and BOEMIE [Castano et al., 2008] share the same 

underlying idea that it is not enough to detect named entities, associate them with 

properties, and relate them with other named entities, according to the concepts, and 

                                                
12 JAPE rules are a rich and flexible regular expression-based rule mechanism offered by the GATE 

framework. 
13

 http://hermit-reasoner.com/ 
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properties defined in the ontology. Their working hypothesis is that these extracted facts 

must be combined in order to be semantically interpreted (by inference) according to the 

domain ontology. In both systems, human subjects validate the inference results. 

In both systems, the above processes are implemented as two distinct phases: 

(i) the information extraction phase that extracts named entities and relations 

between them. In the SMES system, this is achieved by a preprocessing task 

involving POS, morphological analyses, NER, and both chunk and dependency 

parsing. In this phase, SMES also accesses a lexical database containing about 

700,000 word forms as well as manually constructed extraction rules. 

In BOEMIE, the preprocessing phase is based on the GATE framework that 

annotates text with POS tags, NER, gazetteers, chunking and coreference resolution. 

In BOEMIE, the IE process is based on JAPE rules that are defined manually. 

 

(ii) The inference phase that, in both systems, can generate more complex concepts, 

i.e., concepts of higher level and relations among them are generated based on the 

previous extracted concepts, using a inference engine. Therefore, as new classes and 

properties are generated by both systems, this characterizes them as ontology 

learning systems as well. It is worth noting that, in contrast to lower-level concepts 

of the first level, the higher-level concepts usually cannot be mapped to textual 

fragments. 

In fact, this last inference phase actually consists of a post-processing procedure that 

makes the OBIE system strongly dependent of the specific characteristics of the domain of 

interest. This certainly increases the manual effort for porting the system to new domains. 

3.5.6. Discussion 

The comparative analysis of the state-of-the-art OBIE systems seen so far leads to several 

conclusions: 

1. Almost all work has been performed on text corpora; work on other modalities is 

practically non-existent. Among the surveyed related systems, only BOEMIE is able 

to process other types of input, including images and videos. 

2. Almost all OBIE systems utilize gazetteers. As already discussed, such repositories 

are easy to integrate into the IE process, which certainly explains their widespread 

use as preprocessing components. However, these repositories require a lot of effort 

to keep them up-to-date with new variations of named entities emerging every day. 

3. Since no conferences or standard text corpora for OBIE existed until very recently, 

most studies surveyed in this section have compiled their own corpora for 

experimental evaluation. In this light, it is clear that having standard text corpora and 

well defined tasks for the OBIE community, as it was done in MUC, would have a 

similar positive impact on the development of OBIE systems. This certainly would 

allow OBIE researchers to objectively evaluate different OBIE systems and identify 

their strengths and weaknesses. 

4. Related work on ontology population heavily relies on linguistic preprocessing 

(especially syntactic parsing for RE), and the exploitation of WordNet as semantic 

lexicon resource. Other deeper natural language processing subtasks like semantic 

role labelling have not been exploited by the surveyed systems in an automatic way. 

For instance, only BioOntoVerb uses VerbNet and FrameNet, but with a manual 

mapping of the semantic structures found in VerbNet/FrameNet into ontological 

elements of the domain ontology. It is worth noting that NLP tools are becoming 

more mature and accurate, serving as an infrastructure for new IE techniques that can 

also exploit knowledge bases.  
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5. Surprisingly, none of the OBIE systems in Tab. 3.5 actually performs automatic 

construction or induction of extraction rules in symbolic form. SMES and BOEMIE 

systems are the only systems that provide an automatic way of pattern induction, but 

such patterns are learned in a post-processing stage in the IE process, and they are 

used for inference purposes, instead of IE. Therefore, the IE task itself is not really 

automatic for these two systems. The fact that all OBIE systems in Tab. 3.5 preferred 

to manually create linguistic-based extraction rules can be explained by the fact that 

it is easier and more straightforward to integrate such extraction rules than integrate 

statistical extraction models into the IE process. Moreover, the manually created 

extraction rules have an inherent symbolic aspect that facilitates their use and 

customization by a domain expert. 

6. Most of the OBIE systems apply a single ontology for guiding their IE process. 

However, as pointed out by Wimalasuriya and Dou, 2010, there is no rule that 

forbids a system from using multiple ontologies. The same authors also argue that 

the use of multiple related but distinct ontologies can bring several benefits to IE. 

Therefore, more analyses and experiments are needed to explore this line of work. 

7. Very few OBIE systems are able to extract implicit information extraction. With the 

exception of SMES and BOEMIE that can derive implicit information by performing 

a post-processing step after the normal information extraction step.  

 

In this thesis, some of the aforementioned problems identified in the state-of-the-art in 

IE will be addressed. 

In addition, this thesis subscribes to the idea that by making domain knowledge 

explicitly via an ontology, the direct benefits to IE are two-fold: 

- ontologies can offer new opportunities for IE systems, ranging from using them for 

storing the extracted information to using reasoning for improving various IE tasks. 

- IE system's portability may be enhanced by allowing the adaptation of the system’s 

behaviour via changes in the ontologies. 

On this basis, this thesis attempts to directly address the issues discussed in the 

conclusion points 3-7 seen above: 

- (Problem 3) The experimental evaluation conducted in thesis is based on several 

standard datasets for NER and RE. Thereby, comparative assessments are 

feasible.  

- (Problem 4) One of the key aspects addressed in this thesis concerns the 

construction of a more effective OBIE system by exploiting relevant prior 

knowledge. In the proposed method, such knowledge is expressed by annotations 

derived from more sophisticated (deep) text preprocessing, and mapping to 

semantic resources, and a top-level ontology. These last resources certainly enable 

a richer text annotation producing several useful features that can be exploited by 

the ILP-based component for information extraction in the framework proposed in 

this thesis. 

More concretely, this thesis proposes a NLP component that offers: 

- a very rich set of natural language processing subtasks, such as 

dependency parsing, pronoun normalization, coreference resolution, word 

sense disambiguation, and semantic role labelling; 

- mapping to semantic resources, including WordNet synonyms/hypernyms 

and WordNet domains, and; 

- mapping to the top-level SUMO ontology. 
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- (Problem 5) The OBIE method introduced in this thesis relies on Inductive Logic 

Programming, a supervised ML technique which allows the induction of symbolic 

extraction rules expressed in Horn clauses. The decision for adopting the symbolic 

rule induction technique is motivated by the fact that, being expressed in 

declarative way as Prolog rules (or Horn clauses), a knowledge engineer can 

easily intervene in the IE process by, for example, validating the extraction rules, 

optimizing the rules, or use them as components to form other rules or axioms in a 

domain ontology. 
 

- (Problem 6) In the proposed solution, two ontologies are integrated: the first one 

representing the domain elements (classes and relations), while the second 

provides a means for integrating and formalizing BK in terms of flexible 

definitions of lexical, syntactic, semantic, and relational features used by the rule 

learning component. Moreover, the second ontology is domain-independent, 

presenting the additional advantage of being invariant to domain changes. 
 

- (Problem 7) The symbolic machine learning component proposed in this thesis is 

able to infer implicit information from text. 

3.6. Conclusion  

The goal of this chapter was to present the state-of-the-art approaches to IE. IE, as a text 

mining problem, has been thoroughly investigated in areas including NLP, Web Mining, 

and IR. IE has the primary goal of discovering and structuring information found in semi-

structured or unstructured documents. This chapter reviewed some representative work on 

IE/OBIE, particularly on NER (or class instances extraction) and RE (or non-taxonomical 

relations). 

Two main approaches to automatically detecting and classifying instances of entities 

and relations in textual data are surveyed. A classification of the state-of-the-art IE systems 

according to several relevant published surveys was proposed. The advantages and 

limitations of these approaches were also highlighted.  

It was seen that the IE systems adopting the knowledge engineering approach try to 

exploit the regularities in natural language in order to seek for common patterns or rules 

that can match such regularities. IE systems following this approach achieve good 

performance, particularly when processing semi-structured text, such as web pages. 

However, their drawback resides on their simple learning mechanisms that cannot provide 

enough generalization capabilities, resulting in low recall performance. This limitation is 

particularly noticeable on a more difficult IE scenario, such as extraction from natural 

language texts. 

On the other side, the statistical-based models cast the IE task as a classification 

problem, in which annotated examples are passed as input to a machine learning algorithm 

that generates, by induction, a statistical-based model suited for classifying new unseen 

examples. IE systems adopting this approach usually incorporate diverse types of features, 

including lexical information, syntactic, and semantic features. Such systems are more 

robust to domain changes. However, their inherent limitation is that their induced models 

are commonly complex and difficult for a given user to understand.  

A detailed discussion on ILP-based IE systems closely related to the one proposed in 

this thesis was presented. This discussion was about the benefits and the drawbacks of such 

systems which use FOL as the language for both BK and example representations.  

This chapter has also presented the emerging research OBIE field as a promising line of 

investigation that aims at enhancing classical IE by combining machine learning and 
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ontologies. On the one hand, machine learning techniques have been very attractive to IE 

community since a specific information extraction model is required for each IE process 

and, in many cases, providing annotated examples is easier than manually creating models.  

Classical IE and OBIE share challenges and open problems, including ambiguity, 

variability, and portability. Another challenge for the IE field concerns the fact that 

implicit information is hard to extract. However, according to several researchers, OBIE 

systems have the great potential to mitigate these problems. 

Finally, a detailed comparative analysis of the state-of-the-art OBIE systems was 

provided. The analysis revealed some gaps in the field that will receive special attention by 

this thesis. Thus, some of the aforementioned problems will be addressed in the next 

chapter. 
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Chapter 4 

An Ontology- and Inductive Logic Programming-based 

Method for Entity and Relation Extraction 

This chapter introduces OntoILPER, an Ontology- and Inductive Logic Programming-based 

Method to Extract Instances of Entities and Relations from Texts. This is the most 

fundamental contribution of this thesis; besides that, the following contributions directly 

related to the proposed OBIE method are also discussed:   

- the shallow and deep natural language processing techniques used in it, 

- the graph-based model for sentence representation that encompasses several kinds of 

features; 

- a simplification method for that representation aiming at alleviating overfitting of the 

generated models,  and 

- the annotation ontology that turns the solution into a fully-fledged OBIE framework. 

OntoILPER consists of a specific inductive logic programming-based approach to 

knowledge acquisition, which uses ontologies for extracting instances of classes and relations 

from texts, and feeds back the extracted information, performing the ontology population task. 

It relies on rich text preprocessing, linguistic-based knowledge sources, and ontologies that 

formalize the background knowledge for achieving state-of-the-art performance.  

The working hypothesis that guides OntoILPER is that an automatic acquisition of a 

substantial body of linguistic knowledge from textual data, and its formalization using ILP, 

can enable the generation of effective information extraction models. 

The extraction models in OntoILPER can perform the following classification tasks: 

1. class membership prediction that aims to assign class individuals to ontological classes, 

and; 

2. relation prediction which attempts to characterize the relationship between two class 

individuals. In other words, it aims to identify non-taxonomical relations between two 

class individuals. 

Compared to related work, the OntoILPER distinguishing advantages resides in the 

following: 

- the higher expressiveness of its extraction rules and the rich set of features that are 

explored by an ILP-based component for inducing symbolic extraction rules. More 

concretely, the ILP learning technique was adopted as the core component for building 

classification models. 

- the inductive learning component in OntoILPER allows prior knowledge about the 

domain to be integrated into the construction of the classification model in such a way 

that, the classification of examples are performed by reasoning involving their syntactic, 

semantic, and structural features defined by a rich relational representation model. This 

representation model and a simplification method aimed at alleviating overfitting of the 

examples are also proposed. 

- The information extraction process in OntoILPER is ontology-based in the sense that 

ontologies not only provide the initial knowledge to the extraction process, but they also 

formalize the graph-based representation of sentences and examples. 
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Concerning the integration of ontologies in OntoILPER, it is argued that the more 

expressive representation model provided by formal ontologies may open up new 

opportunities for an effective and adaptive knowledge extraction process.  

 

In what follows, the IE tasks addressed by this thesis are formally introduced, followed by 

the underlying assumptions OntoILPER is based on. Then, an overview of the OntoILPER 

functional architecture is presented. 

4.1. Task Definition and Work Assumptions 

This section considers the task of identifying and extracting instances of predefined entities 

(or entity types) and relations (or relation types) from text. In a conceptual view, entities and 

relations can be visualized as shown by the directed graph in Fig. 4.1. In this graph, nodes 

denote entities, or phrase constituents, whereas the edges represent binary relationships 

between entities. 

 

 
 

Figure 4.1. Conceptual view of relation extraction examples. 

 

In the proposed approach, the identification of both entity and relation types is treated as 

the target learning problem. Therefore, the learning problem is cast as a classification 

problem. 

Putting it more formally: given a sentence S formed by an ordered sequence of words w 

and entities ei {e1, e2, ..., en} in S, and a binary relation between a pair of entities contained in 

S, i.e., Rij = (ei, ej), where ei and ej are the first and second argument of relation Rij 

respectively, the task of relation extraction is to correctly assign a label i Rt T to the set of all 

distinct relation instances {Rij} in S.  

The set of predefined entity and relation types are restricted to TE and TR, respectively. The 

relation instances Rij are usually directed, i.e., Rij ≠ Rji, since the involving entities, ei and ej 

may play different roles in the same sentence S. 

Other starting assumptions concern the input elements to OntoILPER, namely: the domain 

ontology, and the corpus (a set of text documents): 

i. the fundamental assumption is that the domain ontology already exists before the 

entire OBIE process takes place. This ontology conveys concepts and relations 

relevant to the application domain; 

ii. the entity types in a sentence can be already given by the input corpus, or can be 

recognized by the NLP component in the preprocessing phase. In other cases, an early 

classification of the entity types has to be performed. In this work, an entity instance is 

represented as one or more consecutive lexical items with a predefined boundary. As a 

result, one can assume that multi-word nouns, with their corresponding head word, 

denote an entity instance; 
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iii. only relations between entities within the same sentence are considered. This is the 

case of several standard datasets for evaluating RE systems, such as TREC and ACE 

evaluation campaigns. In these corpora, relations evolving entities present in different 

sentences are not annotated. 

iv. reflexive relations are not considered, i.e., Rii. 

v. entity and relation classifier are learned independently of each other, i.e., they are 

trained and tested on different copies of the examples in a given corpus; 

vi. finally, it is assumed that negative examples of entities or relations can be derived as 

the complement of the positive ones. The set of both positive and negative examples 

are called candidate instances.  

4.2. OntoILPER  Overview 

The present thesis focuses on the proposal and evaluation of an IE system based on 

ontologies. More concretely, this thesis introduces the OBIE method, OntoILPER, and its 

implementation as a framework suitable for extracting instances of entities
1
 and relations

2
 

from natural language texts. 

In this work, an entity type denotes a set of objects sharing the same characteristics in a 

given domain, whereas a binary relation denotes the relationship of two instances of entity 

distinct entity types. The interest on binary relations, in special non-taxonomic binary 

relations [Baader et al., 2008], can be motivated by the fact that the Semantic Web has 

studied many ways of formalizing knowledge representation based on classes of individuals 

and binary relations among them by means of ontologies. Indeed, OWL/DL ontologies can 

model complex domains by means of basic axioms defining several binary relations [Baader 

et al., 2008]. 

OntoILPER relies on Inductive Logic Programming, a supervised ML technique that 

allows the hypothesis space to be searched for good hypotheses. In other words, the generated 

hypotheses constitute the set of final extraction rules expressed in Horn clauses. 

The decision for adopting a symbolic rule induction technique is motivated by several 

reasons, improving related work with respect to the following aspects: 

 contrarily to statistical methods, the symbolic rule induction technique employs a 

declarative representation which means that hypotheses are understandable and 

interpretable by humans, and it offers a useful mechanism for defining background 

in declarative form. 

 both BK and examples are expressed in the same symbolic level which allows to 

enrich the IE process by integrating additional semantic resources, such as thesauri 

or ontologies, without modifying the core of the IE process. For instance, any 

constraint to the problem can be expressed in the form of auxiliary predicate 

definitions provided by the user as additional BK. Moreover, the first-order 

formalism is able to take into account the structural information (relation features) 

of the examples. 

 it overcomes the representational limitations of attribute-value (propositional) 

learning systems in related work that employ a table-based example representation. 

In this formalism, the learning examples correspond to rows in a table; and the 

                                                
1 For the purposes of this thesis, entity types and classes (or concepts) in ontologies can be considered as 

equivalents, as one can always represent an entity type as a class in an ontology. 
2
 In ontological terms, relations correspond to non-taxonomical relations. In this context, non-taxonomical 

relations are also called object properties. 
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features, to columns in which a single value is assigned to each one of the attributes 

[DeRaedt, 2010]. 

To summarize, the working hypothesis that guides this thesis is that, by using the richer 

ILP formalism, the proposed OBIE method should be able to directly represent a vast amount 

of BK extracted from ontologies, semantic resources, and both shallow and deep analysis 

originated from natural language annotation tools.  

Compared to related work, the present study also introduces the use of several types of 

background knowledge integrated into the IE process. More concretely, this thesis proposes 

and evaluates a unified relational model for representing both entities and relations found in 

textual data. This model consists of an expressive graph-based model for sentence 

representation that comprises four types of features suitable for describing the examples in 

the proposed solution, including lexical, syntactic, semantic, and relational features. Such 

features are exploited by a machine learning technique able to induce symbolic extraction 

rules.  

In addition, a method to simplify the graph-based representation of sentences is proposed.  

This method comprises several simplification rules that reduce the complexity of the graphs 

representing sentences by eliminating both spurious nodes and relations. The key idea is to 

speed up the learning phase by applying several rules for graph simplification that constrain 

the hypothesis space before generating extraction rules. 

 

Another distinct feature of OntoILPER, improving related work, is that it integrates two 

ontologies:  

- the domain ontology, representing the domain elements to be extracted (instances of 

classes and relations); and  

- the annotation ontology, integrating and formalizing background knowledge in terms of 

a flexible mechanism for defining lexical, syntactic, semantic, and structural features 

used by the learning component.  In other words, this ontology mirrors the relational 

model of the annotated instances of entities and relations.  

Moreover, this ontology is domain-independent which means that there is no need to be 

updated when the domain of the application changes. As a result, such a rational use of 

ontologies in OntoILPER enables it to be easily portable to new domains. 

Concerning the above ontologies, the thesis guiding principle is that ontological 

knowledge bases, such as OWL/DL or RDF data sources, can be mapped to graph 

structures and vice-versa.  

OntoILPER Functional Architecture 

An overview of the pipelined processing flow performed by OntoILPER is shown in Fig. 

4.2.  

In OntoILPER, the ontology-based information extraction process is performed in two 

distinct operational modes: training and application. 

1. In Training Mode, a theory (a set of extraction rules) is induced from a given annotated 

corpus. In this phase, OntoILPER generates extraction rules from an annotated corpus 

containing the examples.  

2. In Application Mode, or Rule Application Mode, the learned theory is then applied to 

extract ontology instances from new-tagged documents. For both modes, a previous 

corpus pre-processing stage takes place in which several Natural Language Processing 

(NLP) tools are exploited, followed by an automatic representation of the examples 

according to an expressive hypothesis space also proposed by this thesis.  
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In what follows, the OntoILPER processing flow depicted in Fig. 4.2 is explained, 

according to the two operation modes mentioned above. 

In training mode (the top part of Fig. 4.2), the Text Preprocessing stage annotates the input 

documents by performing several NLP subtasks (to be detailed in next chapter) that enriches 

the documents with morphosyntactical and semantic annotations. The linguistically annotated 

documents are passed as input to the Sentence Representation and Simplification stages. This 

last stage unifies the various annotated elements produced after the Text Preprocessing stage 

into a graph-based representation model of sentences and examples. This graph-based 

representation model enables, by applying syntactic-based simplification rules, the 

simplification (reduction in size) of the graph instances representing sentences without losing 

relevant information for the IE process. 

Then, the next stage, the BK Generation stage, is in charge of transforming all graphs 

produced and simplified by the previous stage into logical ground predicates (factual Prolog 

clauses). In addition, this stage has access to both domain and annotation ontologies that 

provide valuable information in terms of TBox and ABox elements as background 

knowledge. This ontological BK information allows for the creation of a more flexible and 

adaptive IE system [Wimalasuriya and Dou, 2009]. 

 

Figure 4.2. Main processing stages of the OntoILPER. 
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Next in the Extraction Rule Learning stage, a general Inductive Logic Programming 

system provided with the previous generated BK as well as customizable parameters induces 

symbolic rules expressed as a set of logical predicates (Prolog rules). This last stage in 

OntoILPER training mode produces a classification model composed of  Progol rules.  

Considering now the OntoILPER application mode (the bottom part of Fig. 4.2), the same 

two stages of the training mode (the Text Preprocessing and the Sentence Representation and 

Simplification) are executed on a new input corpus from which instances of classes and 

relations will be extracted. 

The difference here is that, in the Graph Conversion stage, the simplified graphs are 

converted to ABox assertions (instances) and integrated into the Annotation Ontology. The 

Annotation Ontology consists of a lightweight and domain-independent ontology that has two 

major purposes in this methodology:  

- it provides BK information by means of annotation-related ontological elements; and 

- it serves as a repository of the candidate instances of classes and relations formalized by 

the Annotation Ontology. 

Finally, using the set of extraction rules, or the Extraction Model (see Fig. 4.2) produced 

by OntoILPER in training mode, the Domain Ontology Population stage performs the 

ontology population task. 

For performing the final classification and extraction of the entities and relat ion instances, 

the Domain Ontology Population stage has to integrate the following elements: 

 the Annotation Ontology, regarded here as the knowledge base of candidate examples,  

 the Extraction Model, converted to the same rule formalism of the Annotation 

Ontology, and  

 the domain ontology, before its execution. 
 

Actually, a previous rule conversion step has to be performed in order to convert the 

Extraction Model (in Prolog) to the same formalism employed by the Annotation Ontology 

(e.g., SWRL rules).  

Provided with these elements, the Domain Ontology Population stage applies the 

Extraction Model on the Annotation Ontology by utilizing an OWL reasoner that is in charge 

of the final classification of the candidate instances. 

As a result, the extracted instances can be used for populating the domain ontology with 

new instances of classes and relations.  

The rest of this chapter is structured as follows: Section 4.3 shows how shallow and deep 

NLP subtasks were integrated to the OntoILPER preprocessing stage, which led to a graph-

based model for sentence representation (Section 4.4) presenting the distinct advantage of 

being both very expressive and flexible. Another advantage of the proposed graph-based 

model for sentence representation is that it can be simplified by a method (proposed in 

Section 4.5) which has the potential of alleviating the classical overfitting problem of the 

classification models, reducing noise in the representation of the examples as well. Then, 

Section 4.6 present the way how ontologies are incorporated as BK into the OntoILPER rule 

learning process. More precisely, the roles played by both domain and annotation ontologies 

(bottom side of Fig. 4.2) will the described. Finally, this chapter presents the advantages and 

limitations of OntoILPER in Section 4.7 and some conclusions and final remarks in Section 

4.8. 
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4.3. Text Preprocessing: Integrating Shallow and Deep NLP for Effective 

IE  

For IE, there is no doubt that natural language processing technologies have been of great 

importance for analysing textual resources (usually consisting of free texts) and extracting 

their meaning. The result of such textual analysis, or annotation process, is usually performed 

automatically and can provide both syntactical and semantic descriptions in the form of text 

features. On the one hand, if the text is pre-analysed by NLP tools, information extraction 

rules can be expressed in a more abstract and powerful way. In that case, the rules can be 

applied on a normalised representation of the text obtained from the pre-analysis [Jurafsky 

and Martin, 2009] [Nedellec and Nazarenko, 2005]. On the other hand, there comes a 

difficulty in this annotation process due to the richness and complexity of natural language, in 

which a given word or phrase may have different meanings (polysemy), and the same 

information can be expressed by several formulations (paraphrases). This difficulty is even 

more evident if the information extraction rules rely on surface clues (i.e. the presence of a 

given specific lexical item, the word distance to some referential element in the sentence or 

word order). In this case, the whole set of very specific rules must be designed for each new 

IE application domain. 

For instance, a first stage of a normalised version of the document consists in the typical 

operations of converting plural nouns to their singular forms, verb tenses to its infinitive form, 

and word derivations (suffixes and affixes) to their stemming or lemma. Another example: 

based on the subject and object syntactic dependencies in a sentence given by dependency 

parsing, information extraction rules can be more general and easier to interpret because 

syntactic dependencies, expressed by a dependency graph, are independent of word order 

[Jurafsky and Martin, 2009]. The same occurs with sentences in passive voice, in which 

syntactic dependencies can abstract the relative position of subject and object (with respect to 

the main shared verb) in both active e passive voices.  

Due to its inherent complexity, natural language analysis is not carried out in a single large 

stage. Instead, computational linguistics deals with natural language at several layers of 

processing. 

Chap. 2 showed a typical decomposition of such an analysis into the identification of 

words (the lexical level), the organization of word groups in phrases (the syntactic level), and 

the meaning that can be assigned to these words (the semantic level). 

For the purposes of this thesis, the NLP for IE is considered from a perspective of its 

decomposition into those three major components, as depicted in Fig. 4.3. This figure displays 

a broad view of the NLP pipeline proposed in this thesis
3
.  

In Fig. 4.3, each NLP module enhances the text representation with a layer of annotation, 

which represents explicit linguistic and/or semantic information attached to text in machine-

readable form.  

First, after tokenization, lexical variants (inflexion and derivation) are unified by the 

morphological analysis. Thus, these variants are transformed to a canonical base form. This 

already presents an advantage because extraction rules can be expressed in a more abstract 

way. Another advantage is that, via lexicon look-up operations, one is able to relate these 

canonical forms to a corresponding entry in a linguistic (semantic) lexicon. 

Second, the syntactical analysis identifies the structural relationships holding between 

groups of words at the sentence level. In fact, categorical information are attached to each 

lexical item in terms of its part-of-speech (e.g., noun, verb, etc.). This is a requirement to 

                                                
3 A detailed description of this NLP component will be presented in Chap. 5. 
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determining groups of words (chunking analysis) that grammatically belong to the same 

category. In this way, one can constitute larger syntactic units. 

The final analysis links the terms or tokens to semantical lexicons (such as WordNet and 

VerbNet), and the SUMO upper-level ontology. Such lexicons offers different semantic 

relations, including synonyms and hyponyms from WordNet, while VerbNet opens up further 

opportunities for semantic interpretation because semantic relations among verbs and 

arguments are treated as predicates or propositions. 

 

Figure 4.3. Overview of the NLP pipeline in OntoILPER. 

To sum up, this thesis proposes a comprehensive NLP component that not only considers 

the lexical and syntactic features typically used by related work, but also enables the 

integration of several semantic resources and ontologies. More precisely, several layers of text 

annotation derived from text preprocessing, including shallow and deep NLP tools, semantic 

resources (WordNet, WordNet Domains, VerbNet), and semantic mapping to the top-level 

SUMO ontology comprise a rich set of features for describing sentences and examples in 

OntoILPER. 

The ultimate goal of such a sophisticated text preprocessing is to alleviate high 

terminological variability, typical in many domains, and focus on the linguistic annotations 

that can be employed for neutralising the effects of such variation.  

The remainder of this section will focus on the aspects related to a rich annotation of 

textual corpora aiming at effectively integrating several layers of linguistic annotations carried 

out in OntoILPER. 
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4.3.1. Rich Annotation of Textual Corpora  

NLP tools annotate corpora according to their underlying linguistic theories, which determine 

somehow the kind of annotation or information to be encoded. In this case, the resulting 

encoding of annotation is thus designed to fit the specific theory used for describing the data. 

Consequently, the encoding of other theoretical linguistic descriptions cannot be supported. 

Aiming at standardizing corpora annotation that take into account the possible integration 

of different theoretical linguistic descriptions, the standardization proposals should concern, 

according to [Schmidt, 2005]: 

- The logical data structure: it defines the data models that are used for modeling 

linguistic phenomena and their properties. For example, the hierarchical structures 

like trees or graphs for syntax annotations in the TIGGER/SALSA [Erk and Pado, 

2004]. 

- The physical data structure: due to its portability, XML has become the widely-

recognized standard format. 

- The content in XML-based representation: This concerns XML applications for 

specific linguistic annotation. An example of such a specific linguistic annotation 

proposal is the Text Encoding Initiative [Sperberg and Bernard, 1994] that defines 

highly detailed DTDs for encoding all kinds of bibliographic information. 

The first models for corpora annotation only featured POS and synthetic annotations, e.g., 

Penn Treebank [Marcus et al.,1993]. Other more recent model proposals for corpora 

annotation switched to properties beyond the morpho-syntactic level. The basic idea here 

consisting in combining different types of annotation, also called multi-level annotation. 

For representing multi-level annotations, models like the Linguistic Annotation Framework 

(LAF) [Ide et al., 2003] and PAULA [Dipper et al., 2007] have been introduced. These models 

define general, multi-rooted graphs whose nodes can be augmented by features, including 

timing information. Inspired by the LAF format, PAULA serves as an interlingua for the 

representation of several kinds of corpora annotations formats. 

All mentioned models for corpora annotation use either (i) stand-off or (ii) inline 

annotation. In stand-off annotation, the source text and its annotation are stored in separate 

files. This type of annotation presents some important advantages [Dipper et al., 2007]: 

- it leaves the source text untouched; 

- it allows for alternative annotations to be represented, e.g. variants of POS annotations 

resulted by different POS taggers; 

- the annotations at different levels can be created and modified independently of each 

other by distributing annotations over different files. Individual elements are 

referenced to their annotations by the use of unique identifiers, or pointers. 

In short, in stand-off annotation, not only is the source text separated from its annotations, 

but individual annotations are separated from each other as well.  

The disadvantages of stand-off annotation concern the fact that there is no immediate 

connection between the text and its annotation. Thus, extra care has to be taken in order to 

synchronize all annotations when the source text is modified.  As annotation is scattered out 

in several annotation files, human inspection of the annotations becomes quite cumbersome. 

On the other hand, inline annotation allows that all information referring to the same token 

or span of them are annotated as attributes of one element, and they are inserted in the same 

file.  

The inline representation is guided by the following principles [Dipper et al., 2007]: 
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- all the annotations are encoded at the units that they refer to. Therefore, there is no use 

of pointers. For instance, the basic unit of granularity assumed in other types of text 

representations is usually a token. Hence, all tokens in a sentence are represented by a 

token layer, where each token is uniquely identified by an id which in turn is used by 

other compound layers (e.g., a sentence layer) that links its constituents to the token 

layer. 

- no redundant information is permitted. 

- use of the genuine XML data model where the XML-child relation is used for 

encoding relations in trees. 

The advantages of inline annotation compared to stand-off annotation is that the former is 

more human readable and querying inline annotation using standard XML queries libraries 

tend to be more efficient. Indeed, it is easy to note that querying stand-off data usually 

involves following up the links between different layers of annotations, which involves 

considerably complex query expressions, even for a simple query of a single word or token 

[Dipper et al., 2007]  

4.3.2. Representation of Annotated Corpora 

Particularly to the OBIE scenario primarily concerned by this thesis, the integration of 

annotation data produced by different NLP tools is a big concern.  

Similar to related work on standardization of annotation seen earlier, the Natural Language 

Processing stage performed by OntoILPER needs to properly represent different output 

formats and different morpho-syntactic and semantic annotations. 

Due to the diverse nature of linguistic annotation performed by several NLP tools, as seen 

in the previous section, the resultant natural language analysis is represented by distinct 

output formats, which unnecessarily complicate its posterior use. To alleviate this problem, a 

canonical view model of linguistic annotations was designed for OntoILPER, and it satisfies 

the following constraints: 

- it is flexible enough to integrate the encoding of different linguistic annotation formats 

and frameworks; 

- it is efficient in terms of computation time required for querying it because, contrarily to 

the pure stand-off representation, no external source is provided. Therefore, one benefits 

from the pointers without having to cope with the overhead caused by accessing external 

sources. 

- it is feasible in terms of querying linguistic XML data with current off-the-shelf XML 

technologies; 

- it is suitable for human readability, which facilitates the verification/correction of the 

resultant annotation. 

This canonical annotation model consists of a hybrid XML representation of annotated 

corpora that meet the aforementioned requirements. It is based on the combination of two 

standardizations for linguistic annotation, namely PAULA (Erk and Pado, 2004) and 

TIGGER /SALSA (Dipper et al., 2007). From the PAULA format, the inline representation 

was adopted as it enables human readability and efficiency on queries to the model. 

Additionally, a flexible encoding of trees and graphs both representing several syntactic 

annotations was defined, as done in the TIGGER/SALSA model. 

For the purposes of this thesis, a DTD (Document Type Definition)
4
 as a means to define 

document structures is preferable because one can concisely define a coarse structure of valid 

                                                
4 W3C Recommendation, November, 2008. Extensible Markup Language (XML) 1.0, 5th edition. 
http://www.w3.org/TR/REC-xml 
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documents, whereas a XML Schema, for example, is more verbose, and harder to read and 

less intuitive. Furthermore, using DTDs, any validating XML parser can check the annotated 

corpora in the proposed framework for adherence to the annotation schema. 

The DTD structure of the proposed canonical view model of annotations is shown in Fig. 

4.4, where several element type declarations define all admissible elements and their contents. 

The elements that may be repeated are marked with a ‘+’ symbol. Additionally,  the typical 

XML element embedding structure is exploited in order to represent the different annotation 

layers (including syntactic parsing, chunking analysis, etc.) of a given sentence. Nodes 

features are realized as typical element attributes in XML (e.g. IDs, POS tags, word lemma, 

etc).  

 

 

Figure 4.4. DTD structure of the OntoILPER XML model for corpora annotation.  

According to this DTD, an annotated document contains one or more sentences. Each 

sentence itself contains several layers of annotation, namely:  

- Token Layer. The token layer corresponds to terminal nodes referenced by all other 

layers via unique identifiers which play the role of pointers. Actually, each main 

element in the above list of layers has globally unique IDs. This enables an efficient 

mapping between non-terminal elements and terminal ones during the parsing of the 

annotated corpora. 

- Syntactic Layer. In the syntactic layer, constituent parsing of sentences is naturally 

represented as a nested structure with both inner nodes (phrases) and outer nodes 

(terminal tokens). This means that leaves of syntactic trees are token nodes of the 

syntactic structure. 

- Chunk Layer. Such layers are composed of one or more tokens. Here redundant 

information about tokens is encoded for making overall processing more efficient.  

- Dependency Layer. The dependency layer represents sentence structure by means of 

directed acyclic graphs (DAGs). This enables the representation of structure-sharing, 

where two nodes link to the same third node. In that case, two types of edges are 

distinguished by an attribute of the element "pair(arg1, arg2)" indicating the typed 

<! ELEMENT doc (sentences)> 
 

<! ELEMENT sentences (sentence)+ > 

<! ELEMENT sentence (tokens, syntactic_parsing, chunks, dependencies, instances) > 
 

<! ELEMENT tokens (token)+ >     <!-- terminal nodes layer --> 
 

<!-- layers of non-terminal nodes --> 
 

<! ELEMENT syntactic_parsing (tree, (phrase)* ) >   <!—non-terminal phrase nodes --> 

<! ELEMENT tree (phrase)+ > 

<! ELEMENT phrase ( (phrase)*, (token)? ) > 
 

<! ELEMENT chunks (chunk)+ >  <!-- non-terminal chunking nodes --> 

<! ELEMENT chunk (tokens) > 
 

<! ELEMENT dependencies (input,(pair)+ ) >   <!-- non-terminal dependency nodes --> 

<! ELEMENT pair (arg1,arg2) > 

 

<!ELEMENT srl (roleset)*>     <!-- non-terminal semantic role nodes --> 

<!ELEMENT roleset (arg)*>     
 

<! ELEMENT instances (nes, rels) >   <!-- non-terminal example nodes --> 

<! ELEMENT nes (ne)+ > 

<! ELEMENT rels (rel)+ > 
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dependency. The arg1 and arg2 arguments of the relation pair "pair(arg1, arg2)" are 

linked to the terminal token nodes. 

- Semantic Role Layer. In this layer, the verbs in a sentence are directly linked to their 

arguments. Such verb arguments, identified by the VerbNet, are augmented with their 

corresponding semantic roles they play in the sentence. The additional information of 

the semantic role is assigned to it by the VerbNet. The N arguments of a given verb 

predicate are represented in the XML file as children of that verb.  

- Instance Layer. Given that entities and relations are usually already annotated in IE 

corpora, the instance layer in the proposed DTD model was introduced in order to 

replicate the corresponding annotation already available in input corpora. The element 

<nes> encompasses all named entities annotated in corpora by the attributes of its inner 

element <ne>. In particular, the attribute of the element <ne> specifies the class of the 

named entity. Similarly, instances of relations are annotated by the XML element 

<rel>, whose attributes may indicate types, subtypes and whether an instance is a 

positive example or not. 

It should be mentioned that the annotation layers could, in principle, be completely 

decoupled because all references between annotation layers is via identifiers that are unique 

throughout the corpus. In addition, this model can easily assimilate new annotation layers, 

such as layers for semantic annotation, by introducing additional semantic elements, and 

leaving the representation of all previous layers unchanged.  

Actually, the last layers in the above DTD model contemplate supplementary annotations 

corresponding to shallow semantic features [Zouaq et al., 2010], such as synonym/hypernymy 

from the WordNet [Miller, 2005], and VerbNet [Kipper et al., 2006]. 

An instance of a XML file illustrating all the layers mentioned above is presented in 

Section 5.2. 

4.4.  Sentence Representation: An Expressive Hypothesis Space for 

Generating Symbolic Extraction Rules 

Previous studies on RE have demonstrated that the choice of features derived from analysis of 

NLP tools can strongly influence the extraction results. The features that have been used for 

RE include word, entity type, mention level, chunks, syntactic parse trees, and dependency 

relations [Zhou et al., 2005] [Jiang, 2007] [Zhang and Zhou, 2008].  

In RE community, there have been essentially two lines of research. The first one is mainly 

based on the direct selection of features (feature engineering) obtained from NLP tools 

[Kambhatla, 2004] [Zhao and Grisman, 2005] [Zhou et al., 2005], [Jiang and Zhai, 2007], 

whereas the second line relies on kernel functions, which proposes a customized feature space 

[Jiang, 2012]. The kernel functions try to capture the similarity between two structured 

representations (sequences or trees) of relations instances [Cullota and Sorensen, 2004] 

[Zhang et al., 2006] [Zhang and Zhou, 2008].  

Despite the good results obtained, the aforementioned methods have some shortcomings 

according to a recent study [Choi, 2013]: 

- feature-based SVM- and Maximum Entropy-based methods requires a lot of effort for 
feature extraction and selection; 

- pure tree kernel-based methods make very limited use of structural information; 

- kernel functions based on dependency trees have slow similarity calculation speed; 

- shortest-path dependency tree kernels provide too simple structures for kernel functions. 
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Based on a careful investigation of previous work on features used for RE, and taking into 

consideration the limitations of kernel-based methods mentioned in Section 3.4, this thesis 

proposes a feature space that not only overcomes these limitations, but also provides a well-

structured hypothesis space for the problem. The proposed hypothesis space combines both 

structural relations and properties of nodes in a graph-based model that integrates morpho-

syntactic and semantic features.  

Comparing OntoILPER with the aforementioned methods based on kernel functions, the 

following substantial improvements are proposed: 

i. the feature selection engineering phase is based on a detailed study of the most useful 

and effective features for RE. Furthermore, the choice was motivated by the fact that 

each individual feature should have a clear meaning, that is, its meaning would be 

easily understood by an expert in the domain of interest. Indeed, some complex 

combinations of features, statistical ratios, for instance, were not considered in the 

feature selection phase, because their poor results demonstrated by previous work in 

RE [Jiang and Zhai, 2007] [Zhou et al., 2005] [Zhou et al., 2008]. 

ii. As stated before, pure Tree kernel-based methods use very little structural 

information. The same occurs with the Shortest-Path dependency tree kernel 

methods. On the contrary, one combines three levels of structural information 

(sequential, syntactic chunks, and dependency parse trees) in the proposed 

hypothesis space which allows a well-structured hypothesis space that can be 

systematically explored by the ILP-based learning component in the proposed 

architecture. 

iii. This thesis also takes into consideration performance issues by choosing a compact 

set of informative and relevant features, as opposed with the hundreds or even 

thousands of sparse features commonly used by kernel-based methods. This 

condensed set of features demonstrated to be very effective due to the significant 

learning time reduction obtained in all experiments reported in Chapter 6. Another 

clear advantage of using a condensed set of features in learning is that one avoids 

dealing with redundant features. 

The next sections 4.4.1 and 4.4.2 introduce another contribution of this thesis concerning 

the proposal of an Enhanced Entity-Relationship (EE-R) model in conjunction with the 

derived graph-based model for sentence representation adopted in OntoILPER.  

4.4.1.  A Relational Model for Representing Sentences and Examples 

OntoILPER relies on an Enhanced Entity-Relationship (E-ER) model [Elmasri and Navathe, 

2010] for representing not only the domain elements, including documents, sentences, 

chunks, and words, but also their taxonomical, non-taxonomical relationships, syntactic 

dependencies, and their underlying structural information. 

The proposed E-ER model for sentence representation, depicted in Fig. 4.5, is grounded on 

dataset theory [Elmasri and Navathe, 2010], and offers an abstract representation of rich 

sentence annotation in OntoILPER. 

In this model, entities are represented by rectangles and relationships by diamonds. For 

both entities and relationships, ovals denote their attributes. Key attributes that uniquely 

identify an instance of an entity in this model are underlined. Taxonomical relationships, such 

as a noun "is-a" word, are indicated by circles with the letter "d", i.e., the distinguishing 

attribute.  

This relational model delimitates the sentence representation in OntoILPER at a conceptual 

level, which also offers a flexible way of visualizing the concerned domain elements. The 
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rationale for using such a relational model is rooted in the fact that when learning about the 

properties of objects in relational domains, such as relation extraction, feature construction 

should be guided by the structure of the examples.  

 

 

Figure 4.5. Enhanced Entity-Relationship model for sentence in representation in OntoILPER . 

Accordingly, a binary relationship can be specified between conceptual entities (instances 

of classes) and each major phrasal constituent (either nominal or verbal) in a sentence, 

regarded as a candidate instance for extraction. Actually, OntoILPER focuses on the relational 

modelling, in addition to declarative feature construction and feature generation from graph-

based sentence representations, as it will be shown in the next section. 

The proposed E-ER model presents the following advantages: it enables the transformation 

of relational into graph-based representations of examples, allowing the integration of 

structural features into the learning process. Thus, the ILP-based learning component is 

capable of dealing with an extended high-dimensional feature space, which is much richer 

than all propositional representation employed by other machine learning approaches 

[FürnKranz, 2012]. 

Furthermore, the benefits of such a graph-based representation are to fully exploit the 

relational representation of linguistic-related annotations is two-fold: it provides a natural way 

to express language structures, and it allows for exploring the contextual features.  

From the perspective of this EE-R data model, entity attributes denote predicates defining 

properties, whereas relationships between entities correspond to structural predicates. 

In the following, it is illustrated way in which structural and properties predicates can be 

derived from the EE-R model shown in Fig. 4.5: 

- hasSent(D, S) a document D contains the sentence S; Analogously, the predicate 
hasChunk(S, C) states that a sentence is composed of several chunks; 
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- hasDependency(T, U, Dep) denotes that the token T has a grammatical typed 

dependency Dep with the token U. 

The previous predicates are example of structural predicates. In what follows, some 

examples of property predicates are given: 

- chunk_type(CK, chunk_type): a chunk (group of tokens) may be nominal, verbal or 
prepositional, i.e., type = {noun, verb, prep} 

- token_pos(T, t_pos): a given token T has the POS tag t_pos. 

It is easy to notice that several other predicates like the ones presented above can be 

derived in an analogous way using the proposed EE-R model. 

4.4.2.  A Graph-based Model for Sentence Representation  

OntoILPER employs a rich relational (graph-based) model of sentences based on both 

structural and properties features that describe mentions of entities and relations. Such 

features are considered here as logical predicates, which can be exploited by a full automatic 

learning system, which guarantees the discovery of symbolic extraction rules from examples. 

This method is based on the principle that the establishment of a relationship between two 

entities in the same sentence can be obtained, for instance, by a path between them in this 

graph, which encodes both morpho-syntactical attributes of individual words, and semantic 

relations between phrases constituents [De Marneffe and Manning, 2008]. 

The proposed representation that supports OntoILPER consists of a graph-based model of 

sentences. In this model, a relationship can be specified between conceptual entities: each 

major phrasal constituent (nominal and verbal chunk) in a sentence is considered as a 

candidate instance for extraction. In other words, all phrases that contain tokens or chunking 

constituents are either potentially referencing real-world concepts or semantic relations 

defined by a domain ontology of interest. Thus, this relational representation of the syntactic 

structure of a sentence S provided by the proposed graph-based model can be defined as the 

mapping G: S → tuples of relations, where G consists of a directed graph.  

The proposed solution relies on graphs because they play an important role in many 

disciplines including biomedical domain, where graphs is found to be an invaluable tool to 

model the complex biological processes [Björne, 2009]. 

More formally, a graph G is a finite set of vertices V(G) connected by set of edges E(G), 

defined as G = {V(G), E(G)}. If the edge connecting two vertices is directed, the graph is a 

directed graph; or an undirected graph, otherwise. The graph-based representation proposed 

here are all treated as directed graphs. 

This model integrates a dependency grammar analysis that consists of generating the typed 

dependencies parses of sentences, which finally produces a dependency graph [De Marneffe 

and Manning, 2008]. This directed graph is the result of an all-path parsing algorithm based 

on a dependency grammar [Kruijff, 2002] in which the syntactic structure is expressed in 

terms of dependency relations between pairs of words, a head and a modifier. All derived 

dependencies of a sentence, define a dependency graph whose root is a word that does not 

depend on any word. 

It was adopted the typed dependencies proposed in [De Marneffe and Manning, 2008], the 

Stanford dependencies. It should be noted that typed dependencies and phrases structures are 

different ways of representing the inner structure of sentences, in which a phrase structure 

(constituent) parsing represents the nesting of multi-word constituents, whereas a dependency 

parsing represents dependencies between individual words. In addition, a typed dependency 

graph labels dependencies with grammatical relations, such as subject or direct object. An 

example of a dependency graph is displayed in Fig. 4.6. 
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Figure 4.6. Dependency graph of the sentence “Mary Kandel at the Newsdesk CNNfn in New 
York” 

Different variants of the Stanford typed dependency representation are available in the 

dependency parsing system provided with the Stanford parser
5
. The collapsed tree 

representation was chosen, in which dependencies involving prepositions, conjuncts, as well 

as information about the referent of relative clauses, are collapsed to get direct dependencies 

between content words. This representation was preferred because it has the advantage of 

reducing the number of typed dependencies in a given dependency graph by cutting down 

some highly frequent dependencies [De Marneffe and Manning, 20008]. Therefore, this 

collapsed tree representation simplifies the relation extraction process. The difference 

between these representations of dependency parsing analyses is illustrated in Fig. 4.7. The 

reader should notice that the second collapsed tree dependency graph (b) of the sentence 

required less nodes and edges elements than the uncollapsed dependency version (a) of the 

same sentence. Indeed, both “in” prepositions nodes in the first basic dependency graph do 

not participate in the second collapsed dependency graph. In fact, this information is captured 

by the novel “prep_in” dependency directly relating the two involving nodes (‘Kandel’ and 

“York’), removing the “in” token of the dependency graph (Fig. 4.7). 

 
(a) 

 

(b) 

Figure 4.7. Comparison between two dependency graph types of representation 

Additionally, the proposed graph-based model exploits chunking analysis, which is useful 

to define entity boundaries, and the head constituents of nominal, verbal and prepositional 

phrases. For example, consider the sentence “Myron kandel at CNNfn Newsdesk in New 

York”. Fig. 4.8 shows the head tokens of this sentence obtained after a chunking analysis. 

Usually, verb phrases are possible candidates for relations, and nominal ones, can represent an 

entity or a class instance. 

                                                
5 Stanford NLP Group. The Stanford Parser: A statistical Parser. http://nlp.stanford.edu/software/lex-parser.shtml 
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Fig. 4.8. Chunking analysis and head tokens of the sentence. 

In this graph-based model, edges are considered as relational features that can be exploited 

in the automatic induction of symbolic extraction rules from sentences. Indeed, an ILP-based 

formulation for this IE problem was designed and shows how to cast this problem in it. In 

addition, the proposed approach is based on the premise that, when learning about properties 

of objects in relational domains, feature construction can be guided by the structure of 

individual objects [Raedt, 2010], which can be used for asserting relationships between two 

(or more) class instances in the same sentence.  

Fig. 4.9 shows the final graph-based representation of a sentence obtained by integrating: 

- a dependency analysis with collapsed dependencies (e.g. prep_on) according to the 

Stanford dependency parser; 

- a chunking analysis (head tokens in bold); 

- the sequencing of tokens in a sentence (NextToken edges); 

- morpho-syntactic, named entity, and semantic features as nodes attributes (arrows in 

gray color). 

 

Figure. 4.9 The graph-based representation of the sentence: “Myron Kandel at the Newsdesk 

CNNfn in New York”. 
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This graph-based representation can be expressed by a set of binary relations or 

predicates. For the same sentence (Fig. 4.9), here is a list of both unary and binary predicates 

extracted from the sentence: 

- root ( Myron-Kandel ) 

- det ( Newsdesk, the ) 

- nn ( Newsdesk , CNNfn ) 

- prep_at ( Myron-Kandel , Newsdesk ) 

- prep_in ( Myron-Kandel , New-York ) 

- NextToken ( the, Newsdesk) 

- is_a( Myron-Kandel, Person) 

- is_a( New-York, Location) 

Moreover, examples of entities, or instances of classes are simply represented by an is-a 

relationship, i.e., is-a( token, class), where “token” denotes a head token of a nominal chunk, 

while “class” is the semantic class assigned to the “token”. Other possibility consists in a 

multi-word noun that denotes an entity. In this case, the multi-word noun is derived by 

concatenating its individual elements by an “-“, e.g., “New-York”, being regarded as a 

semantic unit. 

 Finally, directed relationships where the order between the arguments matters, are 

represented in its normal order of arguments, e.g.,  located(Myron, New-York), indicating that 

“Myron” is located in “New York”, considering this order between the arguments. Undirected 

relationships, like brother_of (Paul, John) are represented with an additional commutative 

property. 

The graph-based model represents a collection of binary relations, and their arguments can 

be enriched with additional constraints on the types of the arguments. These additional binary 

relations are used by the ILP-based induction learning component responsible to link terms in 

a sentence with classes and relations from a domain ontology. For example, if the predicate to 

be learned is read (X, Y), or in ontological terms, the object property read(X, Y), then the first 

argument X should be an instance of the Person class, whereas the second one Y should be an 

instance of the Publication class in the domain ontology. Therefore, instances of classes and 

relations can be viewed, respectively, as nodes and edges in the model. Each node can have 

many attributes, e.g., the ontology class label which it belongs to. 

In the present work, the task of identifying the labels of candidate classes and relations 

instances is defined as the target predicate in the learning problem formulation. More 

concretely, such target predicates are learned as a combination of several sentence elements 

given by the graph-based model described above. 

Most previous work on entity and relation extraction has only considered attribute-value 

features, or propositional features derived from input text data [Finn, 2006] [Giuliano, 2007] 

[Roth and Yih, 2007] [Kambhatla, 2004] [Zhou et al., 2005]. Instead, the proposed solution 

relies on a first-order logic representation of examples which provides a richer representation 

formalism, allowing the classification of objects whose structure is relevant to the 

classification task [Fürnkranz et al., 2012].  

4.4.3. Discussion and Related Work 

The proposed graph-based model can be viewed as a labelled graph representation of 

sentences and candidate examples, such as named entities and relations between two entities. 

Since this graph is defined by syntactic structures defined by NLP annotations, it is 

domain-independent, i.e., there is no need to redesign it when domain changes. Moreover, this 
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model has the potential to fit most tasks in NLP, as it can be easily extended by specifying 

additional relational features. 

The overwhelming majority of proposed approaches for RE, including the one proposed in 

this thesis, have been focusing on the extraction of simple binary interactions between named 

entity pairs. However, some recently published corpora provide complex, and typed event 

annotations that aim to accurately capture n-ary relations. Such n-ary relations, called events, 

involve more than two participants. An example of such type of relation appears in the 

sentence “proteins A, B, and C form a complex”, where A, B, and C are the possible 

arguments of an ternary relation.  

Nevertheless, differently from most related work that uses a tabular representation of 

examples, the graph-based model proposed in this thesis can be easily extendible to deal with 

n-ary relationships.  

In this light, the proposed graph-based model corresponds to a semantic representation of 

an event structure, with nodes representing named entities and events, and edges 

corresponding to event arguments [Björne et al., 2010]. 

4.5.  Sentence Simplification: A Graph-based Method  

As stated earlier in this chapter, RE aims at finding predefined relationships between target 

entities in a text. It has lately drawn the attention of the community of information extraction 

as offering potential solutions to a number of problems in that area. The typical target entities 

in RE consists of real world named objects, or named entities, such as people, organizations, 

geographical locations, among others. In the domain of molecular biology, for instance, the 

focus has largely been on the investigation of protein-protein interactions (PPI) [Airola et al., 

2008] [Buyko et al., 2011] [Fundel et al., 2007]. For that purpose, biomedical NLP 

communities have made available several annotated corpora on PPI. 

Most of the state-of-the-art RE approaches proposed so far on news [Jiang, 2007][Zhou 

and Zhang, 2007] [Choi et al., 2013] and biomedical domain [Airola et al., 2008] [Buyko et 

al., 2011] has relied on the exploitation of the full constituent and dependency parsing trees 

[De Marnerffe and Manning, 2008] without any form of simplification or filtering. Thus, the 

syntactic structures, as they directly result from natural language parsing tools, may not 

always be adequate for relation extraction [Buyko et al., 2011]. 

The path connecting a pair of entities in a parsed sentence has been extensively used for 

constructing feature vectors or kernel functions to identify relations [Airola et al., 2008] 

[Jiang, 2007] [Zhou and Zhang, 2007]. However, some problems were reported: the tree-like 

structures derived from parsed sentences usually contain unnecessary sub-paths that, although 

quite useful, may also have misleading information [Jonnalagadda and Gonzalez, 2009].  

This thesis hypothesizes that filtering and simplification operations pruning non-essential 

nodes and edges of a graph-based model for sentence representation can improve overall 

extraction results in RE.  

Earlier in this chapter, the proposed OBIE method OntoILPER that induces symbolic 

extraction rules suitable to identify semantic relations between entities was introduced. 

OntoILPER is grounded on a graph-based model of sentences as a hypothesis space for 

generating candidate extraction rules.  

In this context, a method to simplify graph-based representations of sentences is proposed. 

This method replaces dependency graphs of sentences by simpler ones, keeping the target 

entities in it. The key idea is to speed up the learning phase of the proposed RE framework, by 

applying several rules for graph simplification that constrain the hypothesis space for 

generating extraction rules.  
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Moreover, this thesis investigates the effects of the simplified graph-based representations 

on relation extraction performance. In particular, the effect of such simplification operations 

as a means to alleviate overfitting in the extraction rules is investigated. As a “proof-of-

concept”, the relation extraction task on protein–protein interactions was chosen to validate 

the proposed method to simplify the graph-based representations of sentences.  

Other contributions related to this trimming process consist of: 

- the proposal of several rules for syntactic and non-syntactic transformations of a 

dependency-based graph model for sentence representation; 

- an intrinsic evaluation of the proposed rules showing promising results on trimming 

graph-based representations of sentences (Section 6.5.1); 

- a further assessment of the effectiveness of the simplification rules on the performance 

of relation extraction tasks (Section 6.5.2) 

- the development of a tool for visualization of graph-based representations of sentences. 

In the remainder of this section, the problem of sentence representation for IE is first 

described and motivated. Then, the proposed method for graph-based sentence simplification 

is presented. This section finally discusses related work on sentence simplification. 

4.5.1. Transforming Graph-based Representations of Sentences 

Syntactic parsing, as performed by state-of-the-art NLP tools, commonly constitute one of the 

first stages (preprocessing) in information extraction systems. However, such tools often 

neglect the characteristic complexity of long sentences found in biomedical literature. As a 

result, the syntactic structures as they come directly from such parsers may not always be 

suitable for relation extraction, mainly for two reasons: they contain many irrelevant lexical 

node; and, the distracting structural noisy information, as it might occur in the original 

dependency graphs, may cause overfitting during the classifier learning phase. It is well 

known that overfitting prevents classifiers of finding more general extraction patterns [Buyko 

et al., 2011]. 

To alleviate this problem, a set of simplification rules to be applied on the sentences 

represented by the graph-based model introduced in Section 3 is proposed. Such 

simplification rules attempt to reduce the complexity of the dependency graph-based 

component employed in OntoILPER, by eliminating both spurious nodes and relations. 

Therefore, the ultimate goal here is reducing and rearranging the final representation of 

sentences in OntoILPER in order to avoid overfitting of the relational feature space caused by 

overly specific syntactic and lexical information. One may argue that all proposed trimming/ 

transformation operations are well motivated by linguistic aspects, and they should guarantee 

minimal information loss. On the other hand, one assumes that the meaning of the target 

sentences itself is less important than keeping the truth-value of the relations, i.e., whether or 

not there exists a semantic relation between two entities. 

In what follows, the proposed transformation and simplification rules are described in 

more detail. 

4.5.2. Transformation and Simplification Rules 

The graph-based model used in OntoILPER is used here as the hypothesis space for 

generating symbolic extraction rules. The proposed simplification rules introduced in this 

section, only concern the dependency graph and the chunk sequencing, both constituting the 

structural predicates in the hypothesis space here. 
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The term “simplification” must be understood as something that is closer to the canonical 

form of sentences. Therefore, given an input sentence, the aim is to produce a shorter sentence 

which contains as much information as possible from the original one.  

Since the primary objective here is to perform relation extraction on the canonical 

sentences, the adopted approach to sentence simplification is rather entity-oriented, in the 

sense that it seeks to preserve the minimal relevant contextual information around entities in a 

dependency graph. This favors the discovery of more general patterns (extraction rules), as 

they proved to be very useful in improving the overall performance in all biomedical datasets 

tested here. Furthermore, not only the resulting simplified graphs further constrain the original 

hypothesis space, but also impacts in less learning time required. 

In the proposed simplification approach, a rule transforms a dependency graph (or 

dependency tree) of a sentence in the sense that some nodes and its outgoing edges, if there 

are any, can be completely removed from the graph. Another trimming operation on graphs 

targets the incoming and/or outgoing edges of a given token, which can be reassigned to 

another different node, or nodes in the same graph. 

All rules were defined after a careful study of typical grammatical types of sentences or 

phrases, and how they are represented in a dependency graph output by the Stanford parser. 

The rules have the form: Ri : {Ci} → {Ai}, where Ci denotes the conditional part which is 

mainly defined by constraints on nodes POS tags, type of outgoing/incoming edges, parents 

of nodes, etc; and Ai is just a series of simple actions that are applied on the matched nodes. 

For instance, most of the rules play the role of filters that, given a dependency relation 

between two nodes e.g., rel(A, B), it removes the B node and the corresponding relation rel, 

leaving the A node unaltered. 

One should emphasize that any node not matched by the condition part of the rules remains 

as they were in the original dependency graph, i.e., no transformation is performed on them. 

For convenience, Tab. 4.1 provides the meaning of the typed dependencies, according to [14], 

mentioned in the rule descriptions to follow. 

 
Table 4.1. Typed dependency acronyms with related words in italics. 

Dependency Meaning/Example. 

det a noun determiner: “the boys...” 

aux modal or auxiliary verb: “it should appear now.” 

auxpass 
a non-main verb of the clause which contains the passive information: 
“He has done the job: Kennedy has been killed”. 

{a|adv|part|t}mod 
a noun modifier, such as adverbs, adjective, quantified modifier: “I do 

not eat red meat”. 

predet it modifies the meaning of a noun determiner: “All the boys are here”. 

mark 
a subordinate conjunction such as “that”, “which”: “This is the man 

that I mentioned”. 

ccomp clausal complement: I am certain that he did it. 

rcmod relative clause modifier: “I saw the man you love”. 

Two kinds of rules are addressed: (i) clause-level rules, and (ii) entity-level rules. In the 

following, each rule with some illustrated examples
6
 is described. 

 

                                                
6
 The corpora are assumed in the English language. 
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Clause-Level Rules 

This kind of rule deals with compound or more complex sentences, where it is assumed that 

one of the clauses (main clause) have both entities participating in a relation. Usually the main 

clause contains the main verb of the sentence, or the root of the dependency graph. The 

subordinate clauses may contain non-crucial information, and thereby, may be discarded. In 

fact, before removing a clause, including initial and final adverbial phrases, one checks for the 

existence of important entities in it. In the case of finding such entities, the option made here 

was not to exclude them from the graph. 

The intuition behind the proposed rules is to try to identify independent clauses from 

complex sentences. Thus, in order to properly apply the clause-level rules, one needs to first 

identify whether the sentence is simple, i.e., with just one main verb, or compound. A 

compound sentence may have or not a relative clause. Thus, to be classified as simple, there 

should be only one verb sentence and no clausal complement dependency from the set 

{*comp, csubj, csubjpass, rcmod}. Otherwise, the sentence is complex, or compound. The 

test whether a compound sentence has the rcmod dependency characterizes a relative or 

subordinate clause. 

R1. Removal of Non-Informative Clauses 

There are three possible positions where subordinate clauses can be embedded in a compound 

sentence: start, middle, and end. This rule checks for the existence of non-informative clauses 

in any of these positions. This rule for sentence simplification selects the more important of 

the two compound clauses in a compound sentence. 

A first look at Fig. 4.10 reveals that the most informative clause is the second one: “the 

costs will rise”. Thus, in order to remove the first sentence, the following rule (pseudo code) 

removes the first non-informative clause. In the following pseudo-code examples, tkA and tkB 

denotes two distinct tokens in the same sentence. 

 

Figure 4.10. Example of an adverbial clause in a sentence. 

The pseudo code is given below: 

               

 

R2. Removal of Attribution Clauses 

This rule is in charge of swapping the role of the main verb, i.e., the root element of the 

dependency graph in a compound sentence between clauses, as illustrated in Fig. 4.11. In this 

example, the verb of the attribution clause is the root of the dependency graph, but the more 

for each (token tkA of the sentence) do  

    if (tkA contains a dep in {prepc_*| dep} with a token tkB ) then 

        if ((tkA has POS in{VB*}) and (tkB has POS in     

               {DT|JJ|IN|TO}))     

       then            

                remove {prep_*(tkA, tkB) | dep(tkA, tkB)}  from the graph      

       end if 

    end if 

end for  
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relevant clause is the other one. Thus, one should swap the roles between the two verbs, 

accordingly.  

 

Figure 4.11. Dependency graph of a compound sentence with the attribution clause “international 

press reported”. 

The rule that performs the removes attribution clauses is given below. 

               
 

R3. Subject-Verb-Object Rearrangement 

Particularly in biomedical texts, complex coordinated syntactic structures that link together 

two or more conjuncts of the same type abound. Such structures pose several problems to 

dependency parsers. Fig. 4.12 displays an example where two coordinated verbs (with the CC 

coordinating conjuncts) share the same object. However, just the first verb has a direct link to 

its object CC via its dobj dependency relation. This may also difficult the generation of 

extraction rules in the proposed framework for relation extraction in the sense that only the 

first verb has the (subject-verb-object) path as a typical pattern used in extraction. 

Accordingly, this rule looks for such configuration, by checking if chunk sequences (verbal 

and nominal) appear before and after the conjunction that link similar types of words. The 

task here consists in propagating the obj dependency relation of the first verb by creating a 

new obj dependency for the second one, pointing to the same target object (see Fig. 4.13). 

Indeed, this rule is generalized by taking into account up to 3 verbs with 3 respective objects 

in the same sentence. One must be aware that, although this rule does not actually simplify the 

graph in terms of removing nodes as it was done in other rules presented so far, it was often 

used in the biomedical corpus tested here. 

Tab. 4.2 provides additional sentences matching the clause-level rules described above. 

 

 

 

 

 

 

if (tkA is root) and  

   ( tkA POS is in {JJ | VB*} and (tkA dep is not in {dobj|pobj})   and   

      ( tkA has the dep {ccomp(tkA, tkB)})  and  (tkB POS is in{VB*} ) 

    )  then 

            tkB is the new root of the sentence S 

            remove {ccomp(tkA, tkB)} from the graph 

 end if 
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Figure 4.12. Sentence with a coordinating conjunct between verbs. 

 

 

Figure 4.13. verb-dobj missing dependency before transformation and its inclusion after 

transformation (in bold). 

Table 4.2. Examples of simplified sentences by clause-level rules. Removed tokens are underlined. 

Rule Original/Simplified Sentences 

R1 As a matter of fact, John came into the room while you were talking about him. 

R2 On the assumption that mothers stay home with children. 

R2 Rebels agreed to talk with government officials, international observers said Tuesday. 

R2 It was suggested that Yak1 phosphorylates Crf1 to promote its nuclear entry. 
 

 

Entity-Level Rules 

This kind of rule makes a small change in the graph by acting on one or more nodes of the 

graphs. 

R4. Replacement of Protein/Genes Names  

Single terms or nouns in a sentence are stemmed, i.e., its lemma or root is determined. Thus, 

plurals and verb tenses are reduced to singular and infinitive form, respectively. Although this 

rule does not reduce the sentence in number of tokens, it helps generalization over specific 

protein/genes names. 

R5. Treatment of Multi-word Entities 

This rule deals with the nn dependencies or noun compound modifiers of another noun node. 

For instance, the dependency graph in Fig. 4.14 shows two multi-words terms, or noun 

chunks: “Nevada Corporation” and “United States” . There are two nn dependencies (labeled 

edges) with the same governor term “Corporation”, which is also identified as the head noun 
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of the noun chunk. Thus, this rule checks for head tokens with nn edges outgoing from them, 

and concatenate these words in a multi-word term by a hyphen, but keeping a reference to its 
head noun. 

 

Figure 4.14. Parsed sentence with two nn dependencies. 

 

R6. Removal of Distracting Dependencies 

Aiming at pruning syntactic determiners, auxiliaries, modals, and all the tokens other than the 

head noun, this rule removes from a given sentence, any of the dependency relations 

belonging to the set: {det, aux, auxpass, amod, predet, advmod, partmod, tmod, mark}. 

However, before removing such dependencies, one needs to verify if the node candidate to 

deletion is a leaf in the graph. Examples of sentences containing such types of dependencies 

are shown in Tab. 4.3. 

Table 4.3. Examples of sentences simplified by entity-level rules. Removed or modified tokens are 

underlined. 

Rule Original/Simplified Sentences 

R2+R6 I think he´s been in Washington too long.  

R6 However, cytokines, in particular IL-2 and IL4, ... 

R5 Nevada-Corporation is held in the United-States. 

R5+R6 Mutations in CBP have recently been identified in RTS-patients. 

R6 You are the girl that I am looking for. 

A Minimal Example 

Fig. 4.15 presents the reduced dependency graph of the sentence introduced in Section 5.3. It 

should be highlighted that this graph minimally retains the core information for the relation 

located_in(“he”, “Washington”). 

 

Figure 4.15. Reduced dependency graph of the sentence: “I think he´s been in Washington too long” in 

the visual graph reduction and representation tool developed. 
 

Rule Application Order. The application order of rules in the approach proposed must be 

considered with special attention due to the “loss of information” that is achieved after each 

individual rule has taken place. Thus, in order to avoid misleading results, the rules are 

applied in the following order: R4, R5, R1, R2, R3, and R6.  

Application Scenarios. It worth noting that, although the developed prototype has been 

developed with the primary purpose of simplifying graph-based representations of sentences 
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in this thesis, it is argued that it can be employed to other text mining problems, like 

automatic text summarization, for instance. 

Another usage scenario concerns the exploratory corpus analysis and interactive text 

mining. For example, by design graph-based patterns in the representation model, a user can 

answer questions like "what are the entities in this particular sentence?", “what are the verbs, 

subject and objects of this sentence?”, etc.  

A final suggestion concerns the task of automatically extract keyword lists for the creation 

of further patterns. 

4.5.3. Related Work and Discussion 

Automatic simplification of sentences was first proposed for improving the performance of 

parsing tools [Chandrasekar and Srinivas, 1997]. Later on, researchers have found other 

applications for sentence simplification. One of them consists in creating sentences that are 

shorter, grammatically correct, and information preserving to help people with reading 

problems [Carroll et al., 1998]. Another application of the technique is related to the 

automatic text summarization systems [Zajic et al., 2007]. The focus in that work was to 

preserve only the important content in the final summaries. 

Reference [Jonnalagadda and Gonzalez, 2009] presents an application for sentence 

simplification closer related to the one proposed in this thesis, since the authors in [9] also 

describes a sentence simplification method, called “BioSimplify”, which was evaluated on 

relation extraction. The main goal of their method is to improve the performance of 

biomedical extraction systems by reducing the complexity of sentences that could be hiding 

protein-protein interactions (relations). Their method can also remove noun phrases that are 

important for a given relation of interest. 

The method presented in this thesis differs from that attempt to remove all information 

outside the target verb and arguments as presented in reference [Vickrey and Koller, 2008]. It 

also differs from the method proposed in [Jonnalagadda and Gonzalez, 2009] in which the 

authors attempted to keep all information in a sentence aiming at improving a parser. The 

approach presented here generates canonical graphs representing sentences. 

4.6.  Incorporating Linguistic and Ontological BK into OntoILPER 

In this section, the problem of integrating formally represented knowledge into the learning 

process is addressed.  It aims at improving the OntoILPER results in terms of portability and 

accuracy. For that, it is investigated how semantic structures, like ontologies, can enable more 

accurate IE.  

Under such outlook, Yildiz and Miksch (2007) argue that the combined use of ontologies 

and IE presents several advantages, which includes: 

 ontologies enable the development of domain-independent IE systems, increasing 
system portability. 

 ontologies allow IE systems to have a suitable model for the domain of concern and 
the extracted facts are represented in the form of ontologies. 

 it is possible to obtain a clear separation of domain knowledge and the operational 

knowledge of the system.  

Another reason to integrate ontologies into OntoILPER is that ontologies not only can 

capture knowledge about a domain of interest, but they can also be used in applications that 

need to process information content. Moreover, ontologies provide mechanisms to reason 

about it, instead of just presenting information. 
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Many OBIE systems proposed so far [Castano et al., 2008] [Buitelaar et al., 2008], 

[Maedche, 2002] make use of a single ontology for a particular domain. However, according 

to [Wimalasuriya and Dou, 2010], there are any rules that prevent the use of multiple 

ontologies for IE. The authors show that, using multiple ontologies, one can improve the IE 

process because multiple ontologies provide different perspectives on a domain. Thus, by 

integrating multiples ontologies, an OBIE system has the potential of providing accurate 

answers to queries related to different users’ perspectives. 

Contrary to the current trend of using a single ontology, OntoILPER represents additional 

background knowledge by means of a second domain-independent and linguistic-oriented 

annotation ontology, hereafter annotation ontology, that formally describes the rich 

annotation set of features derived from several NLP tools. The annotation ontology manifests 

itself as a first-class component that provides a higher level of expressivity by means of a 

richer linguistic knowledge model. This feature distinguishes the OntoILPER from many 

other state-of-the-art OBIE methods. 

The working hypothesis is that the ontological elements defined by both ontologies 

(domain and annotation ontology), working in synergy, may contribute to OntoILPER, 

enabling an enhanced flexibility and adaptiveness to other domains.  

More concretely, during learning, OntoILPER takes advantage of TBox definitions and 

ABox assertions of the above mentioned ontologies as background knowledge for its ILP-

based machine learning component that builds the classification models (see Fig. 4.2). 

In the following, the roles that these two ontologies play in OntoILPER are detailed, 

showing illustrative examples that highlight the advantage that these ontologies can bring to 

IE. 

4.6.1. The Role of the Domain Ontology in OntoILPER 

This section presents the role played by the domain ontology in the two operational modes in 

OntoILPER: training and application. 

 

Training Mode. After the Text Preprocessing and the Sentence Representation and 

Simplification stages (see Fig. 4.2), the graph-based sentence representation are passed as 

input, along with the elements of both ontologies (domain and annotation ontology), to the 

BK Generation stage. They formally describe the domain and background knowledge 

exploited by OntoILPER.  

With respect to the domain ontology, in particular, this ontology guides the BK generation 

process by defining the level of abstraction (classes and super classes) of the BK predicates 

from which the rules will be induced. Therefore, TBox elements of the domain ontology 

(class and property labels, data/object properties, taxonomical relationships, and 

domain/range of non-taxonomical relations) are taken into account during the BK Generation 

stage mentioned above. 

The above integration of domain ontologies into OntoILPER is in accordance with the first 

three levels of ontological knowledge used by few the state-of-the-art OBIE systems, as 

discussed in [Karkeletis, 2011]: 

- At the first level, the ontological resources explored by OntoILPER encompass the 

domain entities (e.g., person, location) and their synonyms or co-referents. These 

resources are mainly used in OntoILPER for entity classification; 

- At the second level, the main semantic resources used in OntoILPER consist in the 

domain entities organized in conceptual hierarchies, which can be exploited by the IE 

process for generalizing/specializing extraction rules; 
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- At the third level, OntoILPER exploit concepts’ properties and/or relations between 

concepts of the ontology. Moreover, extraction rules are acquired from corpora that have 

been previously annotated according to the domain ontology. 

In addition, the domain ontology can be viewed as a rich and structured extraction template 

for the IE process. 

 

Application Mode. The overall IE process of OntoILPER aims at mapping pieces of textual 

information to the domain ontology. OntoILPER selects and interprets relevant pieces of the 

input text in terms of their corresponding classes in the domain ontology. Fig. 4.16 illustrates 

this process. 

 
Figure 4.16. Example of semantic mapping or semantic annotation. 

 

This mapping can be formalised into the text annotation by the ontology (Fig. 4.16). Here, 

text fragments are labelled with ontological concepts and relations, according to the IE task of 

interest, either NER or RE. Thus, the ontological concepts (Person and Location) and the 

relation (isLocated) are linked to their corresponding semantic units, i.e., "Myron" and "New 

York" for the concepts), and "has been" as a relation. In other words, the ontological TBox 

elements denoting the Person and Location classes are instantiated by the object property 

isLocated ("Myron", "New York") in the domain ontology. 

Thus, in application mode, the domain ontology can be seen as a repository for the 

extracted instances, at first place
7
. Furthermore, the user has the potential benefit of having 

the extracted instances populated into the domain ontology that, in conjunction with a 

reasoner, provides explanations about the classified instances. 

4.6.2. The Role of the Annotation Ontology In OntoILPER 

At the semantic level, it is claimed that any text representation should be supported by 

ontologies as a formal means for representing domain knowledge. Actually, as stated in 

[Spasic et al., 2005], the correct interpretation of the semantic content in natural language 

should require linguistic knowledge and some degree of general knowledge.  

In OntoILPER, ontologies are regarded as conceptual models that provide the necessary 

framework for semantic representation of textual information. Moreover, OntoILPER 

subscribes to the central idea that the main link between text and ontology is terminology, 

which maps terms to domain specific concepts or classes [Spasic et al., 2005].  

Accordingly, OntoILPER semantically annotates texts and link them to explicit semantic 

layers supported by ontologies, which offers a higher expressive power, because they are able 

                                                
7 Besides checking redundancy, OntoILPER performs no further inference task at this point.  
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to support automatic semantic interpretation [Spasic et al., 2005]. Figure 4.17 illustrates this 

key point. 

On the one hand, OntoILPER relies on ontologies as a mechanism to provide a platform 

for semantic interpretation of textual information, i.e., the task of linking domain-specific 

terms or words to their correct classes in a given ontology. Putting it differently, OntoILPER 

is based on an explicit semantic layer, composed by a domain and a task ontologies, which 

allows IE to be interpretable from the domain concepts perspective. Furthermore, the 

extracted information from textual sources can be used for updating the content of the domain 

ontology, i.e., populating it.  

 

Figure 4.17. Complementary tasks in semantic annotation of texts. 

 

As a result, the overall IE is able to extract more relevant and precise information, since the 

ontologies provide a mechanism to achieve a better contextualization for the interpretation of 

the results. This contrasts, for instance, with the methods based on linguistic patterns that take 

into account a local and limited context of words [Nedellec and Nazarenko, 2006]. 

Accordingly, this thesis proposes a domain-independent and expressive ontology (in 

OWL/DL), the annotation ontology. It formalizes the annotations produced by various NLP 

analyses through the definition of several ontological elements (classes, object and data 

properties) that are able to represent, with the enhanced expressiveness, the BK employed by 

the symbolic rule learning component in OntoILPER. 

 

Annotation Ontology Elements. Fig. 4.18 shows the class and object property hierarchies 

respectively, while Fig. 4.19 displays the datatype properties of the Annotation Ontology. 

In the following, further explanations about the role played by the Annotation Ontology are 

provided. Such roles are defined according to the two operational modes in OntoILPER: 

training and application. 

Training Mode. The Annotation Ontology mirrors the graph-based model of sentence 

representation (Section 4.4), consisting of an "antologized" version of the graph-based model. 

After the execution of the Text Preprocessing and the Sentence Representation and 

Simplification stages (see Fig. 4.2), the annotation ontology provides the following elements 

to the BK Generation stage which are exploited as further BK by the next stage, the 

Extraction Rule Learning. 

- the labels of classes, object and data properties that constitute the ontologized version of 

the graph-based sentence representation; 

- all the linguistic entity types present in the annotated corpus, such as typed 

dependencies and lexicon hierarchies, chunk types, POS tags, NER types, etc. 
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Part (a) 

 
 

Part (b) 

 

Figure 4.18. Class and Data property hierarchy of the Annotation Ontology. 
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Figure 4.19. Data property schema of the annotation ontology. 

- flexibility in defining new linguistic elements as additional relational features in the 

graph-based sentence model. For instance, the Annotation Ontology could be extended 

with a new object property relating two token instances for representing the 

coreference
8
 between them in a document.  

- the possibility for the ontology engineer or expert to choose the level of abstraction of 

classes and relations as well as the level of linguistic analysis employed (morphological, 

syntactic parsing, semantic role labelling, selectional preferences, etc). In other words, 

the user has the option of selecting a subset of the features to be used in the Extraction 

Rule Learning stage. 

                                                
8 Entity coreference are found by the Coreference Resolution NLP substask that tries to find all expressions that refer to 

the same entity in a text. 



136 

 

With all these elements at hand, the BK Generation stage is able to map them to Prolog 

predicates that form the factual knowledge base used for learning by the Extraction Rule 

Learning stage. 

Application Mode. 

The annotation ontology, as a task and lightweight ontology, reflects the annotated sentences 

represented as graphs after the Text Preprocessing phase.  

Then, the Graph Conversion stage converts the graphs to assertions that are inserted into 

the annotation ontology in the OntoILPER application mode. 

There exists an one-to-one mapping of every element represented by the simplified graphs 

to their corresponding ontological elements in the annotation ontology. In short, nodes 

denoting documents, sentences, chunks, and tokens in the graph, are represented as instances 

of the Document, Sentence, Chunk, and Token classes in the annotation ontology, 

respectively. The same correspondence exists for the graphs' edges denoting syntactic 

relationships or dependencies, structural relationships, etc. The nodes attributes are 

represented as data properties in the annotation ontology. 

To sum up, one can say that the annotation ontology is an "ontologized" version of the 

simplified graph-based representation of sentences. 

By transforming graphs representing sentences to ontological instances, one can enjoy the 

following advantages: 

 semantic type disambiguation: terms are instantiated taking into account its 

disambiguated sense in the annotation ontology. In fact, the WSD task is performed in 

the Text Preprocessing stage, but the annotation only is in charge of appropriately 

representing it as an instance of the correct class.  

 treatment of synonyms: mapping of words on concepts also solves the synonymy 

problem. 

 term normalization: including hypernyms (super) concepts allows for relating very 

similar terms into a unique normalized representation. 

 term generalization: The abstraction degree of the induced rules in OntoILPER strictly 

depends on the representation of the training examples. Several semantic features and 

mapping to semantic recourses like WordNet, WordNet Domains and the SUMO top 

ontology enable that more abstract features are incorporated into the annotation 

ontology as instances of classes in the sense/domain hierarchies present in the 

Annotation Ontology. Hence, the integration of super-concepts provides also a very 

good basis for feature generalization and, consequently, rule generalization as well. 

This generalization aspect in OntoILPER is illustrated by the following figure (Fig. 

4.20): 

 

Sentence (1): 

 

Sentence (2): 

Figure 4.20. Examples of syntactic dependencies (annotations) and their generalizations. 

 

The two sentences displayed in Fig. 4.20 contain specialized/generalized terms according 

to the WordNet hypernym hierarchy, i.e., the subject in Sentence 1 is “the little boy”, “the 
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child” is the subject of the second sentence. In addition, notice that the second sentence is in 

passive voice, while the first one, in active voice. 

Both sentences practically convey the same meaning, but they are annotated with different 

elements. Only considering the main dependency relations between the verb and its subject 

and object, the two sentences above can be annotated as follows: 

 Sentence (1) : nsubj (opened, boy), dobj (opened, boxes) 

 Sentence (2): nsubjpass (opened, container) agent (opened, child) 

Thus, in Sentence (1), the subject-verb dependency relation was annotated as nsubj (noun 

subject), whereas the same dependency type was annotated as agent in the second sentence. In 

turn, the verb-object dependency was annotated as dobj (direct object) in Sentence (1) and 

nsubjpass (noun subject of the passive) in Sentence (2). 

Now, consider the task of inducing the extraction rule open(X,Y) denoting that X opens Y 

from these two sentences.  

Two possible rules, in first-order logic formalism, that cover the first and second sentences 

with respect to the target relation open(Person, Container), i.e., a Person opens a Container 

would be: 

 

Rule for the Sentence (1):  

open(X, Y):- Boy(X), Box(Y), Verb(V), nsubj(V,X), dobj(V,Y). 

Rule for the Sentence (2): 

 open(X,Y):-Child(X),Container(Y),Verb(V),agent(V,X),nsubjpass(V,Y). 

 

However, once the following further BK predicates (Fig. 4.21) are provided to 

OntoILPER: 
  

 
 

Figure 4.21. Additional BK predicates for rule generalization used in OntoILPER. 

Then, OntoILPER will induce just one extraction rule that covers both relation instances 

seen earlier:  

open(X,Y):- Person(X),Container(Y),Verb(V),subj(V,X), obj(V,Y). 

The further BK predicates that enable the rule generalization discussed above are actually 

provided by the annotation ontology that comprises several domain-independent term 

taxonomies extracted from WordNet, WordNet domains, and the mapping to the top level 

SUMO, which also contributes with a more broad taxonomic classification of nouns in the 

annotation ontology. 

Moreover, a taxonomical classification of the syntactic relationships, i.e., the dependency 

relations as seen in the above example, is also provided by the annotation ontology. The 

taxonomic classification of these syntactic dependencies can be found in Appendix B. The 

Container(Z) :- Box(Z). 

Person(Z):- Boy(X). 

Person(Z):- Child(X). 

 

subj(X, Y):- nsubj(X,Y). 

subj(X, Y):- agent(X,Y). 

 

obj(X, Y):- dobj(X, Y). 

obj(X, Y):- nsubjpass(X,Y). 
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WordNet Domains taxonomy, i.e., that associates a term with a given domain field of 

research, can be found at http://www.wndomains.fbk.eu. 

Another key aspect to emphasize here is related with the idea of the lexical knowledge 

represented in the annotation ontology as a mediator between text and the domain ontology. 

That is, several types of lexical resources can be exploited in IE, from the named entity 

dictionaries and gazetteers, to the domain terminologies or ontological thesauri. 

Finally, it is worth highlighting that this generalization aspect of the rules on the examples 

discussed above would not be possible only using the original graph-based model for sentence 

presentation, without an additional algorithm for applying the rules on them and, accordingly, 

take into account the specialization/generalization relationships of the targeted instances in the 

examples. 

To summarize, the goal of using ontologies in OntoILPER consists in allowing users to: 

- use domain ontologies for the definition of extraction templates; 

- represent the result of annotated corpora by a second (task) ontology; and  

- obtain the extraction results by reasoning on SWRL rules applied over the 

Annotation Ontology. The result of this rule application process consists in instances 

of classes and relations, which are used for populating the domain ontology. 

4.6.3. Discussion  

This section discusses the aspects involving the two main issues in IE: portability and 

extensibility, relating them to OntoILPER. 
 

Portability. Another important aspect taken into account in the annotation ontology design 

concerns the traditional advantages of the declarative solutions. It is well known that the IE 

task requires frequent changes of their solutions. In this scenario, the declarative solution 

proposed by OntoILPER for OBIE can provide a closer integration of the ontologies with a 

more natural and direct translation of the BK knowledge of an application domain of interest. 

Thus, with declarative knowledge, the necessary changes can be more easily taken into 

account. 
 

Extensibility. The great expressivity of the declarative knowledge representation also 

becomes a major advantage that benefits OBIE, concerning the aspects of the extensibility of 

the IE systems. In most of the possibilities of inferences, concepts implied by the extracted 

facts can be expressed in a declaratory way and, consequently, these concepts can be 

organized into ontologies. In addition, the use of ontologies in the development of IE systems 

also increases their flexibility. For instance, the entities of a certain domain can be structured 

with the suitable granularity representing the subtle differences in hierarchy between the 

entities.  

Another interesting aspect studied in this thesis concerns the hypothesis that an IE system 

can be portable to other domains if the recognition of named entities is extended with fined-

grained ontological categories.  

Indeed, in OntoILPER, once the semantic units (named entities and terms of a certain 

domain) have been identified, they are related to the concepts of the domain and annotation 

ontologies by semantic tagging, and the concepts play the role of semantic types, restricting 

the types of the entities participating in a binary relation, for example. 

Compared to the traditional named entity broader types, finer grained ontological 

categories receives a special attention in OntoILPER, since several semantic mappings to 

external knowledge resources are provided. Such semantic mappings aim at annotating the 

terms in the input corpus associating them with finer grained taxonomical classification. 
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Actually, this aspect in OntoILPER methodology is demonstrated by the integration of the 

WordNet, WordNET domain, and SUMO hierarchies in the learning process. 

As the knowledge acquisition methodology applied in OntoILPER favours the wiliness of 

integrating new BK sources, OntoILPER has a great potential to explore this semantic 

annotation aspect further. In the case where concepts are organised into generality hierarchies, 

semantic tagging selects the generality level relevant to a given domain of application. This 

semantic tagging task should both highlight the contrasts among critical objects of the 

domain, and attenuate or remove unessential difference among them. 

4.7. Discussion on the OntoILPER Advantages and Limitations 

This section is devoted to the discussion about the OntoILPER advantages and limitations. 

First, the following OntoILPER advantages are presented: 

 Rule composition during learning. An interesting feature of the ILP learning 

component in the OntoILPER framework is its capability to employ rules learned in a 

previous learning session (iteration i) as additional BK predicates at a posterior learning 

session (iteration i + 1). Some authors call this capability as the pipeline method [Roth 

and Yih, 2007] [Giuliano et al., 2007].  

This method mimics the typical strategy for solving more complex NLP problems in 

which a task is divided into several stages and solving them sequentially [Roth and Yih, 

2007]. For instance, a NER is usually trained using a different corpus in advance, and 

given to a relation classifier as a tool to classify individual entities, hence providing 

entity features. Therefore, the pipeline method first trains an entity classifier, and then 

uses the prediction of entities as well as other local features to learn the relation model. 

Observe that, although the true labels of entities are known when training the relation 

classifier, as it occurs in ACE Relation Detection and Characterization task, this may 

not be the case in real world information extraction scenarios. Thus, the pipeline method 

introduced above, as it is implemented in OntoILPER, may be of great help in a more 

realistic information extraction task.  

Fig. 4.22 shows the flow of information exchanged between the BK Generation 

component and the Rule Learning component in OntoILPER.  

 

 

 
 

Figure 4.22. Composition of learned rules in OntoILPER framework. 

 

For a better understanding of the following discussion, the reader should recall that  

the graph-based model of sentences can represent a set of binary relations and their 

arguments, along with constraints on these arguments, and the relation types. 

Additionally, one has to assume that the learning mechanism is able to identify, based 

on local contextual features, the involving entities that correspond to noun phrases in a 

sentence.  

BK 
Generation 

Rule 
Learning 

1 

2 
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Consider the first learning scenario (edge 1 in Fig.4.22), indicated by the information 

flow according to the Rule Composition arrow in Fig. 4.22. This means that, given a 

proper BK as input (BK Generation), the problem resides in recognizing either entity or 

relation instances by means of the learned extraction rules (Rule Learning). This 

corresponds to the most learning scenarios of RE campaigns, such as Automatic 

Content Extraction (ACE) evaluation promoted by NIST
9
, entity instances are already 

labelled in their evaluation corpora.  

However, one should point out that this "facilitated" learning scenario may not 

reflect a real world scenario for IE, as one can always expect that the involving entity 

arguments in a relation are already annotated or explicitly indicated in the corpus. 

Conversely, the information flow from the Rule Learning stage to the BK Generation 

stage, as indicated by the edge 2 in Fig. 4.22, represents a more realistic IE scenario in 

which the relation classifier does not know the labels of its entity arguments. Therefore, 

the Rule Learning task should identify the class labels of the argument entities first, 

which means to generate extraction rules for classifying, separately, the two involving 

arguments of a relation. Next, the new class labels of the relation argument are then 

used as complementary BK (BK Generation) and passed to the Rule Learning stage, 

which attempts to discover a relation between them. Thereby, based on the previous 

identified argument entities, relation can be now recognized.  

The following example well illustrates this point. Consider the relation R12(e1, e2) 

that depends on the class label of e1 and e2, where e1 and e2 are two argument entities. 

Note that the class labels of entities and relations in a sentence must satisfy some 

constraints. For example, if e1 is the first argument of R12 denotes a Location class 

instance, then R12 cannot be born_in because the first argument of relation born_in has 

to be a Person.  

In short, if e1 and e2 entity classifiers are trained independently, then the resultant 

extraction rule models of these two entities may be very useful as addition relational 

features by the R12 relation classifier. 

An example of a composite rule for the target relation live_in induced by OntoILPER 

is shown in Fig. 4.23. 

 

Figure 4.23. Example of a composite rule in OntoILPER framework. 

The above rule is evaluated in terms of (number of literals), (positive examples 

covered), (negative examples covered), and the (rule precision score). It means that “A” 

lives in “B”, if “A” is an entity instance classified as “Person”, and the head token of the 

nominal chunk “B” is classified as an instance of Location class. The other literals in 

the rule give additional contextual restrictions on the relation arguments. 

Under the light of the above discussion, one can note that OntoILPER can be 

regarded as a pipeline method as well. In fact, this thesis provides several experimental 

assessments in the two learning scenarios discussed above (Chapter 6), comparing the 

obtained results with related work on three distinct datasets. 

 

                                                
9 National Institute of Standards and Technology 

Hypothesis or target relation:  live_in 

 
#Literals = 7, PosScore = 8, NegScore =0 Prec = 100%  

       live_in(A,B):- t_pos(A,nn), isa_Person(A), t_hasDep(amod,B,C), t_next(C,B),  

                               isa_Location(B), t_isHeadNP(B). 
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 High expressiveness of the learned rules. One important question one might ask is to 

know if the learned rules are expressive enough for concept learning problems. To begin 

with, consider the following rules describing a positive example ei, as it is induced by a 

OntoILPER system: 

     

1 2

4 4

i

i

e f f

e f f

 

 
      (1) 

The first rule above means that ei is a positive example if it is matched by features f1 

and f2, whereas the second one means that the same positive example is determined if it 

is matched by features f3 and f4. The expressiveness of the two rules can be increased if 

disjunctions among rules are allowed. 

In principle, the conditional part of a rule can be any logical combination of one or 

more features. This means that one can obtain a rule body with a single feature, or it 

may be composed by a complex disjunctive and conjunctive mixture of several features. 

However, in practice, given that most of the ILP systems are implemented in Prolog, the 

rule body is restricted to the conjunctive combination of features only. In this case, 

disjunction can only be expressed with multiple rules for the same head. Thus, the 

aforementioned theory could also be written as a single disjunctive rule (Formula 2). 

 

   1 2 3 4( ) ( )ie f f f f            (2)  

Note that use of disjunctions is a not a restriction of expressiveness of the theory. 

Indeed, also note that all boolean concepts over a finite domain can be represented with 

disjunctions because one could specify a concept using a disjunction of all examples 

that belong to the concept. In fact, it is well known that any logical formula can be 

transformed into a disjunction of conjunctions, i.e., the so-called disjunctive normal 

form. 

In the context of concept learning, this implies that any possible concept over a 

feature set can be represented as a set of conjunctive rules [Furnkranz, 2012]. Moreover, 

due to the fact the conjunctive operator is commutative, the problem of constructing a 

rule body reduces to the problem of selecting the most relevant subset of features, i.e., it 

does matter their order in the rule. Particularly in ILP, the side effects of the 

commutative property of the conjunctive operator are twofold: 

o it imposes a syntactic restriction of the hypotheses space, significantly reducing 

the complexity of the searching algorithms through the hypotheses space just for 

an appropriate combination of features.  

o the decomposition into a set of conjunctive rules is much more understandable for 

a human than a longer boolean formula with an arbitrary complex structure. 

 Implicit information extraction. Human readers can infer implicit information from 

explicitly stated facts using commonsense knowledge. On the contrary, automated IE 

systems, trained to extract explicitly-stated information, are limited in their ability to 

extract implicitly stated facts, for many reasons. First, being limited to the scope of a 

sentence at a time, state-of-the-art extraction systems based on features or kernel 

functions presented in Section 3.4.1 are not suitable to discover implicit relations 

[Raghavan et al., 2012]. Second, implicit relations exist in different sentences, 

paragraphs, or even across documents, and they require further relational knowledge to 

be inferred [Raghavan et al., 2012]. Third, these systems do not have access to 

commonsense knowledge, and hence are incapable of performing deeper inference.  

For the following discussion, consider the two sentences shown in Fig. 4.24 (part a). 
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Figure 4.24. Example showing various stages of implicit IE in OntoILPER. 

Considering one sentence at a time, features-based and kernel-based RE methods 

cannot detect the CitizenOf relation between “Barack Obama” and “USA” from the 

explicit extracted facts of the two sentences above. Actually, only using the information 

given by the contextual clues scattered on those two sentences, and considering one 

sentence at a time, it is not possible for such extraction methods to infer that Barack 

Obama is a citizen of USA. 

The reason is that the models in statistical machine learning for IE, including feature-

based or kernel-based approaches, cannot make use of background knowledge 

information about the problem during learning [Fürnkranz, 2012]. In order words, all 

description features are expressed in a fixed-size vector, and it is well know that such an 

attribute-value representation formalism has propositional expressivity, i.e., zero-order 

logic expressivity. Therefore, extracting implicit relations is challenging for the current 

statistical-based relation extraction models. 

Contrarily, OntoILPER enables the discovery of implicit relations because it relies 

on first-order logic for representing examples and its hypothesis language. Thus, during 

the learning phase, the required additional relational knowledge can be easily integrated 

to the initial (default) background knowledge.  

Returning to the example shown in Fig. 4.24, thanks to both the first-order formalism 

that allows OntoILPER to represent and use relational knowledge, and its capability to 

handle coreference mentions in text (see Fig. 4.24 part a), the predicate isLedBy(USA, 

Barack Obama) can be easily extracted (Fig. 4.24 part b). Then, the first-order rule (Fig. 

4.24 part c) is such that its body typically contains relations that are explicitly stated, 

while the head employs a less-frequent mentioned relation that is easily inferred. 

Finally, during training, such a rule can be integrated with the default (normal) BK, and 

they are used to derive additional facts from extracted information using the normal 

(prolog) inference mechanism adopted by OntoILPER. 

To summarize, it is clear that implicit knowledge implied by the text can be 

expressed by additional background knowledge predicates that effectively provide 

access to the logical implications scattered in textual data. Consequently, by employing 

the first-order logic formalism, OntoILPER is able to discover potential implicit 

information from text, thanks to its representation formalism that can cope with 

relational knowledge.  
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Since OntoILPER heavily relies on NLP tools and ILP systems, it presents the following 

shortcomings: 

 Error Propagation in Text Preprocessing. The introduction of parsing errors in 

OntoILPER preprocessing pipeline might hamper its extraction performance, mainly 

due to the propagation of errors that inevitably occurs in this typical pipelined 

architecture. In fact, related work on RE only based on deeper NLP subtasks inevitably 

also suffered from errors introduced by NLP tools. 

 High computational cost: The downside of the greater expressiveness in ILP is that 

such flexibility comes at a high computational cost, which difficult ILP systems in 

scaling-up [Page and Srinivasan, 2003]. In other words, not only the great expressivity 

of the hypothesis language, but also the flexibility of integrating BK in ILP contributes 

to a combinatorial complexity of the learning task. The main reason is that the 

evaluation of a single hypothesis in ILP involves testing if the hypothesis, along with 

the background knowledge, entails the examples used in training. Consequently, the 

time required to evaluate this hypothesis time mainly depends on the size of training 

data. Thu, in learning problems where attribute-value representations are adequate, 

propositional learning is recommended for efficient reasons. 

 Difficulty in dealing with pure numerical data. As the majority of the current state-

of-the-art ILP systems are implemented in Prolog, the classical ILP framework has 

difficulties to deal with numerical data and uncertainty [Bratko, 2000].  

4.8. Conclusion and Final Remarks 

In order to contribute to the IE field, this thesis has investigated the main open challenges in 

this research field and has identified some problems that were directly addressed by 

OntoILPER in this chapter.  

Accordingly, this thesis proposed OntoILPER, an OBIE method that automatically extracts 

instances of classes and relations from textual sources. OntoILPER relies on several 

linguistic-related knowledge sources, including shallow and deep NLP subtasks; and two 

ontologies (domain and annotation) that integrates and formalizes the background knowledge 

automatically exploited by the inductive learning component in OntoILPER.  

The OntoILPER distinguishing features, compared to related work, consist in the high 

expressiveness of its final induced extraction rules, and a rich set of features that are utilized 

by the ILP-based component in OntoILPER functional architecture.  

Besides OntoILPER, which constitutes the major contribution of the thesis, other relevant 

contributions were also presented in this chapter, including: 

 a rich unified model for sentence representation that encompasses several types of 

features, including morphological, syntactic, semantic, and relational ones. The 

proposed graph-based model is flexible enough to integrate mappings between terms 

and semantic resources, such as semantic repositories and ontologies, as well. 

 a method to transform and simplify graph-based representations of sentences. This 

simplification method aims at improving the overall extraction performance results in 

terms of precision and recall by reducing the size of the graphs. 

 the design of a domain-independent and expressive annotation ontology in OWL/DL. 

This ontology formalizes the resultant analysis carried out in the preprocessing stage in 

the proposed solution, in which various types of features were mapped to formal 

structures to an OWL/DL ontology. 
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This chapter concluded with a discussion of the further advantages of OntoILPER and its 

limitations. 

A final remark before concluding this chapter concerns the exploitation of the extracted 

instances in a post-processing step. With this respect, some OBIE systems like BOEMIE 

[Castano et al., 2008] and SOBA [Buitelaar et al., 2008] combine the extracted instances, 

considering them as facts, to semantically interpret them according to a very specific domain 

[Karkaletsis et al., 2011]. Although this seems an interesting option for constructing new 

concepts, or even extracting implicit information, this also makes those OBIE systems 

strongly dependent upon a specific domain of interest.  

The BOEMIE system, for instance, performs an inference step in which high level 

composite concepts from sport events and relations among them are generated, based on 

previously extracted facts, whereas in the SOBA system, discourse analysis [Hilbert et al., 

2006] is used for identifying relations in the domain of soccer match events. 

Differently from these two cited OBIE systems, the main goal of OntoILPER consists in 

performing a domain-independent extraction of instances, thus not being restricted to a single 

domain of interest. Indeed, the user can simply change the input domain ontology in order to 

obtain instances of the elements defined by the new input ontology.  

Moreover, the development of some inference mechanism for further analysis of the 

resultant extracted instances would make OntoILPER strongly dependent upon a specific 

domain. Therefore, an additional processing stage in OntoILPER for combining the extracted 

facts or making further inference tasks strongly related to a very specific domain is out of the 

scope of this thesis. 

Next chapter proceeds with the detailed descriptions of the methodological design 

decisions presented in this chapter. Such design decisions were implemented as a 

comprehensive OBIE framework which can also perform OP. 
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Chapter 5 

OntoILPER Framework  

This chapter presents a detailed description of the OntoILPER Framework, the developed 

prototype that implements the OntoILPER method introduced in the previous chapter. 

As already mentioned in Section 4.2, due to its many positive aspects, the ILP technique 

was adopted as the core component for machine learning in the proposed solution. The main 

reason is that this machine learning technique offers to user the possibility of automatically 

inducing extraction rules in symbolic form. Therefore, the generated rules present the 

advantage of being fully interpreted by a knowledge engineer who can refine them after the 

rule induction, aiming at improving the whole extraction process. Moreover, symbolic rules 

can be automatically converted into other rule formalisms, such as SWRL, one of the 

proposed rule languages for the Semantic Web. 

This chapter proceeds with a detailed description of the OntoILPER Framework.  

5.1. The Architecture of the OntoILPER Framework  

As already presented in the previous chapter, the OBIE process is based on the supervised 

machine learning approach, and thus it is carried out in two distinct phases or modes in 

OntoILPER: 

- Training Mode or Rule Learning Mode. In this mode, a theory (a set of extraction 

rules) is induced from a text corpus containing the learning examples. Then, OntoILPER 

generates extraction rules from this annotated learning corpus. 

- Application Mode or Rule Application Mode. This mode is in charge of applying the 

learned theory derived by the above Rule Learning phase on a set of equally rich 

annotated documents provided as input. Then, the extracted instances of classes and 

relations are added into the domain ontology. 

It is worth emphasizing that, in both of the phases above, a previous corpus pre-processing 

stage takes place in which several NLP tools are utilized, followed by an automatic 

representation of the examples according to the hypothesis space proposed and presented in 

Section 4.4. 

The proposed OBIE method introduced in this thesis (Chap. 4) was implemented as a 

modular pipelined architecture that integrates several components, as shown in Fig. 5.1. As a 

convention for this chapter, the dashed line boxes denote the modules of the architecture, 

while the rectangular boxes represent the key components performing a given process. Both 

oval-shaped and small figures denote either an input or an output element. This architecture is 

implemented by the OntoILPER Framework. 

In a broader view, the OntoILPER framework performs the following tasks distinguished 

by the two operation modes: training and application. 

Training mode. During training, in the Text Preprocessing module, the annotated documents 

in XML format are given as input to the Sentence Representation and Simplification module. 

This last module is in charge of transforming the annotated sentences as directed graphs 

which can be further simplified or reduced (Section 5.3). Then, the reduced graphs 

representing the sentences containing positive and negative examples of relation pairs, e.g., 
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rel(arg1, arg2) are passed to the Background Knowledge Generation module that exploits a 

given domain ontology.  

 

 

Figure 5.1. Overview of the OntoILPER framework architecture. 
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The domain ontology provides ontological elements (classes and relations) as background 

knowledge that guides the information extraction process. In addition, the BK Generation step 

takes profit of a second domain-independent ontology (Annotation Ontology) that offers a 

formal specification of all types information and annotations of the input corpus (Section 5.6). 

Next, in the Extraction Rule Learning module, a general ILP system, provided with 

appropriate BK in the form of logic programs as well as customizable parameters, 

automatically induces symbolic extraction rules also expressed as a set of logical programs, or 

a theory, in ILP terms. This theory denotes the extraction rules models that are derived after a 

previous conversion between the rule formalisms of Prolog and OWL/DL. 

Application mode. During the application phase, the same first two modules of the training 

phase also perform the annotation and the representation/reduction of sentences of the new 

input set of documents. Then, the resultant document annotations, for each sentence in the 

new input corpus, are converted into ABox assertions (instances), in the Graph Conversion 

module, and are finally integrated into the Annotation Ontology. 

As shown in Chap. 4, the Annotation Ontology has two purposes in the methodology: it 

provides BK information by means of its ontological elements, and it constitutes a repository 

for the candidate instances (classes and relations). 

Finally, the Domain Ontology Population module applies the extraction model (in SWRL) 

on the Annotation Ontology that encompasses all candidate instances to be extracted. Indeed, 

the Domain Ontology Population module delegates this classification task to a standard SW 

reasoner that is in charge of making the inference of the SWRL rules on the populated 

Annotation Ontology. The classified instances of classes and relations resultant from this 

process, are used for populating the domain ontology. 

The remainder of this section describes each module and key component of OntoILPER 

functional architecture in more details. First, the related-training modules depicted in the left 

side of the Fig. 5.1 are introduced. Next, we proceed with description of the OntoILPER 

framework application module. This section concludes with a discussion on the possible 

application scenarios envisaged by this research work. 

5.2. Text Preprocessing 

This section describes the Natural Language Processing step that is in charge of the 

annotation process of input corpora by means of fully automatic state-of-the-art NLP tools. 

Then, the output of this annotation process must be carefully designed for achieving both a 

robust and efficient representation of the several aspects concerning shallow and deep NLP 

tasks.  

Natural Language Processing in OntoILPER 

For carrying out the general-purpose NLP subtasks of interest in the context of this thesis, 

several state-of-the-art NLP tools, API´s, and semantic resources were integrated as a single 

software component in the OntoILPER Framework. 

These subtasks are performed in pipeline mode, i.e., starting with simpler analysis such as 

tokenization and sentence splitting, whose output results become the input of the more 

complex subtasks (POS tagging and parsing, for instance). Fig. 5.2 shows the complete 

pipeline according to the order that was implemented in OntoILPER.  

In total, twenty different NLP subtasks were seamlessly integrated which constitutes the 

Natural Language Processing Component (NLPC) in OntoILPER (Fig. 5.2). The reader 

should refer to the Section 2.2 for a brief review on NLP subtasks treated here. 
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The NLPC relies on the Stanford CoreNLP
1
 tools for carrying out eight NLP subtasks of 

the proposed pipeline, namely: tokenization, sentence splitting, POS tagging, lemmatization, 

NER, constituent syntactic parsing, dependency parsing, and coreference resolution. 

The chunking analysis is performed by Apache OpenNLP
2
, while morphological analysis, 

gazetteers look-up, and pronoun normalization were implemented as ad hoc programs within 

the NLPC.  

The NLPC includes the base line sense
3
 of the head words (for nouns and verbs) retrieved 

from the WordNet using the Java WordNet library (JWNL)
4
.  It also retrieves the list of all 

synonyms and hyponyms of a given head word using the JWNL. 

 

OntoILPER NLP Component 

Seq NLP Subtask Tool or Resource 

1 Tokenization 

Stanford CoreNLP 
2 Sentence Splitter 

3 POS 

4 Lemmatization 

5 Chunking OpenNLP Chunker 

6 NER Stanford CoreNLP 

7 Morphological Analysis 

ad hoc programs 8 Gazetteer Look-up 

9 Pronoun Normalization 

10 Syntactic Parsing - Constituent 

Stanford CoreNLP 11 Syntactic Parsing - Dependency 

12 Coreference Resolution 

13 WordNet baseline senses (head words) 

Java WN Libray 
14 

WordNet synsets synonyms and 

hypernyms 

15 Similar words Lin´s database 

16 WSD Sense Learner 

17 SRL with Propbank/VerbNet ClearNLP 

18 Selectional Preferences SuperSense Tagger 

19 Semantic Mapping to Domains WordNet domains 

20 Semantic Mapping to SUMO Ad hoc program 

Figure 5.2. Complete pipeline of the NLP subtasks performed in OntoILPER.  

Using the Lin´s similar words dataset [Lin et al., 2003], the NLPC fetches the list of N (N 

= 5) most similar words to a given head word [Lin et al., 2003], which is followed by the 

                                                
1
 Stanford CoreNLP Tools. http://nlp.stanford.edu/software/corenlp.shtml. 

2 Apache OpenNLP. The Apache Software Foundation. http://opennlp.apache.org 
3 In WordNet, the base line sense of a given word is the first sense in a particular word entry, regardless it has 

one or more senses. 
4 Java WordNet Library (JWNL). http://sourceforge.net/projects/jwordnet 
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WSD task performed by the Sense Learner [Mihalcea and Faruque, 2004]. This tool 

disambiguates noun and verbs. 

The semantic role labelling for all verbs in the corpus are retrieved by the ClearNLP
5
. Still 

for verbs, the SuperSense Tagger [Ciaramita and Altun, 2006] finds their selectional 

preferences. SuperSense Tagger
6
 annotates text with 41 broad semantic categories (WordNet 

supersenses) for both nouns and verbs, performing both sense disambiguation and named-

entity recognition. This tagger implements a discriminatively-trained Hidden Markov Model. 

In addition, NLPC takes advantage of the existing mapping between all WordNet synsets 

and the SUMO ontology
7
, for retrieving the corresponding classes into the SUMO ontology 

and associating them to a given head word in the input corpus. 

Another NLP subtask integrated into the NLPC concerns the annotation of words with 

labels from the WordNet Domains, by means of ad hoc mapping programs.  

At the end of the entire pipeline, the NLPC produces a rich annotation version of the input 

corpus, and this output is structured according to a set of markup declarations that defines the 

resultant XML file(s) according to the Document Type Definition (DTD) to be presented in 

the next section.  

An excerpt of this XML file for the sentence: “I think he has been in Washington too long” 

is listed in Appendix E. 

5.3. Sentence Representation and Simplification  

In order to facilitate the inspection of the examples in the experiments, a tool for visualizing 

the resultant graph-based representation of sentence (introduced in Section 4.5) was 

developed. This tool is also able to transform the graphs by trimming unnecessary nodes, 

edges, or even sub-paths that may not containing relevant information.  

The approach to simplifying graph-based representations of sentences was implemented as 

a separate module in the OntoILPER functional architecture. The decision to decouple the 

simplification process from the preprocessing step was primarily motivated by the fact that 

the former allows for performing the latter separately, taking advantage of previous 

preprocessed datasets from other domains of interest. 

The prototype implemented for validating the proposed approach offers to the user the 

following options: 

- Trimming operations on graph representing sentences. These transformation and 

simplification rules are applied over graph-based representations of sentences. Such 

graphs are generated by the Stanford Dependency parser which provides other NLP 

subtasks as well.  

- Graph-based model visualization. It offers the convenient visualization of each 

sentence in the input corpora, according to the graph-based model for sentence 

representation in ILPER. In addition, the user interface shows the original sentence as 

well as the simplified version of it. For graph visualization and manipulation, this thesis 

relied on the software library JUNG
8
 (Java Universal Network/Graph Framework). It 

provides a common and extendible language for both data modeling and visualization 

that can be represented as directed and undirected graphs, among others.  

                                                
5 ClearNLP Project. http://clearnlp.wikispaces.com 
6 SuperSense Tagger. http://sourceforge.net/projects/supersensetag 
7 Suggested Upper Merged Ontology (SUMO). http://www.ontologyportal.org 
8 http://jung.sourceforge.net/ 
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- Basic reduction statistical information. After choosing the desired set of rules, this 

module generates, in a .csv file, basic statistics about the simplification process in terms 

of reduction ratios of tokens, chunks, typed dependencies, entities, etc. 

In what follows, the major components that constitute the tool implementing the graph-

based model introduced in the sections 4.4. and 4.5 is briefly described. 

 

Graph-based Representation of Sentences and Basic Reduction Statistics. According to 

the pipeline of the OntoILPER framework architecture in Fig. 5.1, after the Text 

Preprocessing step, the annotated documents in XML format are passed as input to the step of 

"Graph-based Sentence Representation”. This last step is responsible to parse the XML file 

representing the annotated corpus, and convert the XML-based structure to a graph-based 

representation.  

As already mentioned, the proposed solution relies on the JUNG tool which consists of a 

useful library containing several graph-related services and graph visualization facilities. The 

proposed solution takes profit of the tree-like structure of the XML file containing the 

annotated corpus for creating a directed graph (for each sentence) with nodes denoting tokens 

or words, and edges denoting the relational dependencies among tokens and chunks, among 

token themselves, etc. 

Fig. 5.3 shows the main window interface of the developed tool. It shows the sentences in 

the input corpus, along with its ID, or order in the corpus, and some basic statistics of the 

corpus, before the simplification step takes place. The tool provides information at sentence-

level about number of tokens, chunks, named-entities, coreference, subjects, and objects, 

among others. It also generates a .csv file containing all statistics about the corpus, such as 

number of tokens, chunks, sentences, named entities, subject and object per sentence, etc. 

 

 

Figure 5.3. Interface of the visualization and simplification tool. 

 

Fig. 5.4 shows the graph-based representation of the sentence id=27 of a corpus from the 

news domain. In this figure, the original version of the sentence (no simplification operation 

applied) is displayed. Nodes denote tokens and two types of edge are also displayed: typed 

dependency relations and next which indicates the next token in the sentence. The gray node 
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is the root (the main verb of the sentence). Node content “s_id#t_id” means: s_id denotes the 

sentence order in the corpus; and t_id is the token order in the sentence. 

Graph Reduction. The visual tool introduced above also provides several transformation and 

simplification rules aiming at reducing the size of the resultant graphs created by the 

aforementioned option. This reduction proved to be very useful in several experiments 

conducted on several corpora in biomedical domains [Lima et al., 2014]. Fig. 5.5 shows a 

simplified sentence. 

Such rules were implemented in Java as another option offered to the user by the 

visualization tool. All transformation/simplification rules described in Section 4.5 were 

implemented using heuristics and graph traversal algorithms.  

The simplification step is followed by the BK Generation step that utilized the simplified 

versions of the graph-based sentence representations. This last step is described in the next 

section. 
 

 

Figure 5.4 Visual dependency parsing representation of the sentence: “I think he´s been in 

Washington too long”.  
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Figure 5.5. Simplified version of the sentence shown by the tool. 

5.4. Background Knowledge Generation 

In the previous steps of OntoILPER Framework, i.e., after the creation of the directed graphs 

representing the sentences and examples in OntoILPER, the resultant graphs may be reduced, 

aiming at removing potential distracting information from them.  

Then, in the BK Generating step, it is carried out the critical task on identifying, extracting, 

and appropriately representing relevant background knowledge. The main goal of this step is 

to exploit the ILP feature that makes it different from traditional learning algorithms: an easy 

way of defining background knowledge in declarative form. 

To illustrate this, consider the typical scenario in propositional machine learning in which 

the incorporation of expert knowledge is usually done by introducing new features, whose 

values are computed from other attributes values. In most of the related work on NER and 

RE, expert knowledge is defined by adding new columns as functions of the other data 

columns [Zhou et al., 2007] [Qian and Zhou, 2012] [Jiang, 2012]. This is particularly evident 

in kernel-based methods for RE in which the structural representation of sentence are 

converted to hundred of features in a vectorial representation by applying similarity functions 

on tree representations. As a result, part of the relational knowledge is lost in this 

transformation process [Special et al., 2006]. 

Another limitation of the vectorial representation model concerns the further restriction of 

having a unique representation format for all examples. That is, one feature is created for each 

element in the domain, and the same structure is used for characterizing all examples under 

consideration. Usually, this results in a very sparse data table because most of the attributes 

will contain null values, due to the difference among the examples. Indeed, Brown and Kros 

(2003) pointed out that this data sparseness problem is even more critical when deep 

knowledge is explored, which can cause serious problems for propositional machine learning 

algorithms. 

By contrast, in the specific ILP-based approach to information extraction and ontology 

population proposed in this thesis, each example is represented independently of the others. 

Thus, the data sparseness problem for representing the examples is highly reduced. In fact, the 

aforementioned limitations are overcome by means of a first order formalism for representing 

both BK and examples. This enables several sources of information, either propositional or 

relational in nature, to be effectively represented without the drawbacks of the propositional 

approaches mentioned earlier [Fürnkranz et al., 2012].  
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It should be mentioned that the ability to take into account relational BK and the 

expressive power of the language of the discovered patterns are distinctive features of the 

proposed ILP-based OBIE method. Another advantage is that the (symbolic) extraction rules 

induced by the ILP-based component in OntoILPER can potentially inspire new insights in 

the knowledge acquisition task, by providing results easily understandable by human experts.  

To summarize, these thesis testes the working hypothesis that, by using the richer ILP 

formalism, the proposed OBIE method should be able to directly represent a vast amount of 

BK extracted from ontologies, semantic resources, and both shallow and deep analysis 

originated from natural language annotation tools.  

In what follows, the BK generation process conducted in OntoILPER framework is 

explained. This step takes into account the structural and linguistic features describing each 

element of the domain in interest and how to represent them as Horn clauses predicates for the 

core ILP-based learning component of the proposed OBIE architecture. Then, the way how 

additional BK can be integrated into the OBIE task carried out in OntoILPER is exemplified. 

5.4.1. Linguistic and Structural Features 

As previous research has shown, automatic morphosyntactical analysis of texts can provide 

very useful features in several IE related tasks [Zhou 2005] [Finn 2006] [Zhang et al., 2008] 

[Jiang, 2012]. In this same trend, semantic mapping to available semantic resources, like 

WordNet-related lexical resources [Bentivogli et al., 2004], Semantic Role Labeling 

[Harabagiu et al., 2005], and the SUMO ontology [Zouaq et al., 2010] can be also very useful 

for IE. 

In this respect, after a careful investigation of the most successful features used in IE, the 

features listed in Table 5.1 were selected. Such features provide a suitable hypothesis (feature) 

space for the classification problem of ontological instances, describing each word, sentence, 

entity, and relationship found in textual data.  

Furthermore, thanks to the relational model of sentences and examples proposed in this 

thesis, i.e., the extended E-R model (seen in Section 4.4.1), all these features are properly 

structured according to a relational unified view that seamlessly encompasses, under a single 

model, linguistic and ontological elements as background knowledge for information 

extraction and ontology population. 

The major advantages of this unified relational model are two-fold:  

- it is linguistically motivated in the sense that it is able to combine the three aspects of 
linguistic analysis: lexical, syntactic, and semantics; and  

- It provides an increased flexibility towards facilitating the inclusion of other kinds of 

background knowledge, especially in the form of semantic resources and ontological 

elements, as done in OntoILPER. 

Four main features categories are distinguished  

- Lexical features. They concern the word itself, its lemma, length, and the indication if 

the token is a word, a symbol, or a number.  

- Syntactic features. They consists of word´s POS tagging; head word of nominal, 

prepositional or verbal chunk; and its generalized form which does not consider plural 

for nouns neither verb tenses. Both bi-grams and tri-grams of consecutive POS tags of 

words as they appear in the sentence are also provided. Some experiments were 

conducted using 4-grams, but bi-grams and tri-grams achieved better results in the 

preliminary experiments reported by this thesis. 

Under this feature category, the chunking-related features are also included. Here, 

the chunks that segment sentences into noun, prepositional, and verb phrases provide 
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very useful information: its type (nominal, verbal or prepositional), its head word, and 

its relative position to the main verb of the sentence. This last feature describes the 
distance of verb arguments, either in the role of subject or object in the sentence. 

- Semantic features. They include the entity mention feature that can be provided by the 

input corpus. For instance in reACE RDC datasets, each annotated entity has: its type 

(Person, Organization, Location, Facility, etc); its subtype (Business, Family, Part-

Whole, etc); and its mention type denoting that the entity is a proper noun, pronouns, 

or quantified nouns (nouns quantified with a determiner, quantifier, or a possessive). 

Other semantic types of this category may be easily designed in the case of new 

similar features found in new corpora to be considered. In addition, all semantic 

features derived from WordNet (sense/hypersense, synomyns), supersenses, domain 

sense given by WN Domains, et semantic roles are also treated as semantic features in 
the proposed model. 

- Structural features. This last group of features defines the structural framework for all 

others features in the graph-based model introduced in (Section 4.5). The sequencing 

of token preserves the order of the tokens as they appear in the input sentence. 

Similarly, one represents the existing part-whole relationship between tokens and the 

chunks containing them, i.e., the tokens belonging to a chunk. In addition, the 

chunking sequence in a sentence is represented by specific relationships connecting 
their respective head tokens.  

The last type of structural features consists of the grammatical dependency 

between two words in a sentence, according to the typed dependencies between them 

given by the Stanford dependency parser. This includes the name of each typed 

dependency between the heads of two tokens in a sentence. This corresponds to the 

label (name) of each typed dependency between both the heads of (multi-)words. 

OntoILPER relies on Prolog as the representation language of examples, domain entities, 

relations, and all types of features mentioned above. In fact, all these features are converted to 

its corresponding Prolog predicate. As a result, the factual knowledge base (in Prolog) 

constitutes the language bias that restricts the hypothesis space and guides the search in the 

hypothesis space.  

Tab. 5.1 illustrates this conversion subtask by generating all logical predicates that 

characterizes the instance of the Person class, "Myron".  

For most of the predicates, the first order logic representation of both linguistic and 

structural features mentioned earlier is fairly straightforward: a unary predicate in logic 

programming correspond to an entity definition, token(t1), in the hypothesis space (data 

model), whereas binary predicates correspond to features (attribute, value), and relations, e.g., 

rel(arg1, arg2).  

The only case of a ternary predicate in the proposed hypothesis space corresponds to the 

t_hasDep/3 predicate, in which the first argument denotes the label of the typed dependency, 

while the other two arguments correspond to the word´s ids participating in the dependency 

relation.  

Differently from other machine learning techniques that use feature vectors for 

representing context windows (n tokens on the right/left of a given word w in a sentence), the 

next/2 predicate, which relates one token to its immediate successor in a sentence, is provided. 

Fig. 5.6 illustrates some of the predicates (in Prolog syntax) generated by this step. 
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Table 5.1. Prolog predicates for the token "Myron" (t_1) when applicable. 

Group Prolog Predicates Meaning 

Corpus entities 
doc(d_1) d_1 is a document identifier 

 

sent(s_1) s_1 is a sentence identifier 

chunk(ck_1) ck_1 is a chunk identifier 

token(t_1) t_1 is the token identifier 

Lexical 

features 

t_stem(t_1, “Myron”) token t_1 stemming is “Myron” 

t_length(t_1, 5) token t_1 has length of 5 characters 

 

t_orth(t_1, upperInit) token t_1 begins with an initial uppercase letter 

t_morph_type(t_1, word) token t_1 is a word, a symbol, or a number 

t_norm_word(t_1, word_stem) word_stem is the normalized form of the token t_1 

t_gaz(t_1, gaz_category) t_1 was found in gaz_category gazetteers list 

t_ner(t_1, person)* t_1 was annotated by the NER as a Person entity 

Syntactical 

features 

 
POS and POS n-

grams 

t_pos (t_1, nnp) 
t_gpos(t_1,nn) 

t_bigPosBef (t_1, ….) 
t_bigPosAft (t_1, vbz-vbg) 

t_trigPosBef (t_1, ….) 
t_trigPosAft (t_1 vbz-vbg-dt ) 

token t_1 is a singular proper noun 
token t_1 is a canonical noun (no plurals) 

POS tag bigram before token t_1 
POS tag bigram after token t_1 

POS tag trigram before token t_1 
POS tag trigram after token t_1  

Chunking 

analysis 

ck_hasHead(ck_1, t_1) 

ck_hasType(ck_1, np) 

t_isHeadNP(t_1) 
ck_dist_to_root(ck_n, near) 

t_ck_tag_type( t_1, np) 

ck_1 has t_1 as its token head 

ck_1 is a nominal chunk 

t_1 is the head token of a nominal chunk 
ck_n is near the main verb of the sentence 

token t_1 has the chunking type np   

Semantic 

features  

Predefined 

corpus 

annotation types  

t_type(t_1, person) 

t_subtype(t_1, none) 
t_mtype(t_1, name) 

Token t_1 has the PERSON type 

Token t_1 has no subtype 
Token t_1 is a named proper noun 

Semantic 

Resource 

Mapping 

t_bl_synset(t_id, synset_value) Token t_1 has the WN synset ”synset_value” 

t_bl_domain(t_1, domain_value) Token t_1 is a term from the “domain_value” 
domain 

t_bl_sense(t_id, sense_value) Token t_1 has the WordNet baseline sense 
“sense_value” 

Synonyms and 

Hypernyms 
t_bl_synonym(t_id, synonym) 
t_bl_hypernym(t_id, hypernym) 

Token t_1 has the synonym “synonym“ 

Token t_1 has the hypernym “hypernym” 

Similar words t_similiar(t_1, word_stem) Token t_1 has the similar word  “word_stem” 

Semantic Roles 

t_rs_name(t_id, rs_name) Token t_1 has roleset « name » 

t_rs_arg_name(t_1,t_3, rs_arg_name) 
Token t1 is linked to the t_3 by the argument type 
“rs_arg_name” 

t_rs_arg_role(t_1, t_3, arg_role) Token t_1 has the semantic role  “arg_role” 

t_rs_arg_vn(t1, t_3, rs_arg_vn) 
Token t_1 is linked to the t_3 with a VerbNet role 
“vn“ 

Selectional 

Preferences 
t_sel_pref(t_id, sel_prefs) Token t_1 has the selection pref. “sel_pref” 

SuperSenses 
t_bl_supersense(t_id, supersense) Token t_1 has the supersense “supersense” 

Ontology 

Mapping 
t_bl_sumo(t_id, sumo_class) 

Token t_1 is mapped to a SUMO class 

“sumo_class” 
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Structural 

features 

t_next (t_1, t_2) 
t_next_head (t_1, t_3) 

t_prev(t_3, t_2) 
ck_hasToken(ck_1, t_1) 

ck_hasSucc(ck_1, ck_2) 
ck_prev(ck_2, ck_3) 

t_hasDep (nn, t_2, t_1) 
t_root (t_n) 

token t_1 is followed by the token t_2 
head token t_1 is followed by head token t_3 

token t_2 precedes t_3  
t_1 is one the tokens in ck_1 

ck_1 is followed by the chunk ck_2 
ck_2 precedes ck_3 

t_1 has a multi-word dependency with t_2 
t_n is the root ( main verb) of the dependency tree 

 

* NER was classified here as a lexical feature, but in fact, it is generated from machine learning methods that employ 
several morpho-syntactic features in their classification. 

 
% Sentence 1 

 

st(s_1). 
st_hasVoice(s_1, ative). 

s_hasChunk(s_1, ck_1). 

s_hasChunk(s_1, ck_2). 
ck_hasSucc(ck_1, ck_2). 

ck_hasSucc(ck_2, ck_3). 

... 
chunk(ck_1). 

ck_hasType(ck_1, pp). 

ck_hasTokens(ck_1, t_1). 

ck_hasHead(ck_1, t_1). 
ck_posRelPred(ck_1, -4). 

 

chunk(ck_2). 
ck_hasType(ck_2, np). 

ck_hasTokens(ck_2, t_2). 

ck_hasHead(ck_2, t_2). 
ck_posRelPred(ck_2, -3). 

... 

% Token  

 

token(t_2). 
t_stem(t_2, 'abc'). 

t_pos(t_2, nnp). 

t_morph_type(t_2, word). 
t_ck_hasType(t_2, np). 

t_ner(t_2, organization). 

t_orth(t_2, uppercase). 
t_isHeadNP(t_2). 

t_length(t_2, 3). 

t_gpos(t_2, nn). 

t_bigPosAft(t_2, pos-nnp). 
t_trigPosAft(t_2, pos-nnp-nns). 

    t_hasDep(poss, t_5, t_2). 

     t_next(t_1, t_2). 
     ... 

Figure 5.6. Example of some generated BK predicates in Prolog syntax. 

5.4.2. User-defined BK  

In ILP, the user can specify additional declarative knowledge in order to guide the induction 

process. The customized rules displayed in Fig. 5.7 were added to the default BK predicates 

shown in Tab. 5.2. Such rules correspond to two intentional predicates that discretize 

numerical features, namely tok_length and ck_dist_to_root.  

In Fig. 5.7, the first rule categorizes the token length as short, medium or long size; in the 

second, the relative chunk position to the main verb of the sentence can be one of the 

elements of the set {near, far, very_far}. Such kind of user-defined predicates intend to 

enable better rule generalization in OntoILPER learning step. 

Finally, two extra structural predicates complement the search in both token and chunk 

subspaces: t_prev/2 and ck_prev/2, respectively. The former predicate relates one token with 

its antecessor in a sentence, while the latter relates a given chunk with its antecessor in a 

sentence. These predicates are declared as intentional predicates which depend on the 

extensional predicates t_next/2 and ck_hasSucc/2. This illustrates how easy one can declare 

further background knowledge in ILP (see Fig. 5.7). 
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Figure 5.7. Specific intentional predicates added to the default BK in OntoILPER. 

5.5. Extraction Rule Learning 

This section describes the components of the learning module in OntoILPER framework 

architecture. Here, the focus is on the adaptation of the ILP-based learning algorithms 

available in GILPS for inducing effective extraction rules. This learning component relies on 

the ILP predictive setting for inducing extraction rules, or theories. The ILP predictive setting 

consists in using ILP for constructing symbolic classifiers suitable for distinguishing between 

positive and negative examples. Therefore, it is crucial to fully exploit this supervised 

machine learning technique when applying it to the problem of entity and relation extraction. 

Concerning the rule induction process in OntoILPER, the following restrictions to the 

properties of the final induced rules are imposed: 

i. they have to reflect the BK in terms of both structural and properties features 

defined by proposed graph-based model introduced in Section 4.4.2 

ii. they must be well-formed with respect to the linkedness of a variable in a clause, 

i.e., there is a chain of literals connecting the head input variables to the head output 

variables [Santos, 2010]. 

iii. their qualitative aspects, expressed by pertinent linguistic patterns easily 

understandable by a domain expert. 

In the remaining of this section, the mode declarations employed by the learning 

component in OntoILPER are first presented. Such mode declarations are responsible for 

defining the hypothesis space, i.e., how one can bias the rule induction process for finding the 

best rules more efficiently. Next, the ILP settings necessary to maximize OntoILPER 

experimental results that take into account the criteria listed above with respect to the final 

induced rules are introduced. Furthermore, an illustrative example of the induction rule step in 

OntoILPER is presented. Finally, the way the final extraction rule model in Prolog is 

converted to the rule formalism of the Semantic Web is also explained. 

5.5.1.  Generating Rule Models 

The information extraction task addressed in this thesis is cast as a search problem in 

hypothesis space according to the ILP framework. In this learning scenario, the resulting set 

of induced hypotheses is composed of several clauses, each one representing patterns that 

recognizes entity or relation instances. The ILP formalism ensures that a theory (or extraction 

% Token length type definition 

length_type(short). length_type(medium). length_type(long). 

 

tok_length(T, short) :- token(T), t_length(T, X), X  =< 5. 

tok_length(T, medium):- token(T), t_length(T, X), X > 5, X =< 15. 

tok_length(T, long)  :- token(T), t_length(T, X), X > 15. 

 

 

%  Chunking distance to the main verb 

ck_dist_root(CK, near):-  ck_posRelPred(CK, X), X >= -3, X  =< 3. 

ck_dist_root(CK, far) :-  ck_posRelPred(CK, X), ( ( X >= -8, X < -3) ;  

                          (X > 3,  X =< 8) ). 

ck_dist_root(CK, very_far):-  ck_posRelPred(CK, X),(( X < -8); (X > 8)). 

 

% Previous token - intentional predicate 

t_prev(Y, X) :- t_next(X,Y). 

 

% Previous chunk - intentional predicate 

ck_prev(Y,X) :- ck_hasSucc(X,Y). 
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rules) can be induced from a set of positive and negative examples described by meaningful 

background knowledge about the examples. 

With this in mind, the ILP-based learning component in the OntoILPER framework 

architecture is provided with all available knowledge about the training examples represented 

independently by program clauses. Such kind of example representation is determined by the 

graph-based model of sentences. At this point, extraction rules can be generated and applied 

to classify unseen examples. 

The ILP-based rule learner in the OntoILPER framework is grounded on the ProGolem 

engine available in GILPS [Santos, 2010] running on the YAP (version 6) Prolog compiler
9
.  

During the learning step, the search in the hypothesis space for useful rules that ProGolem 

has to perform is an expensive task. In fact, an exhaustive search of all possible hypotheses 

coupled with the coverage test though the entire hypothesis space is unfeasible. Moreover, for 

finding the best hypothesis from a given example, it is necessary to test each found hypothesis 

with respect to the positive and negative examples. Usually, this is the most expensive task in 

the entire inductive process. Therefore, it is necessary to traverse intelligently this space, 

taking advantage of its particular structure, avoiding to pursue the exploration of partitions in 

this space that does not contain interesting solutions. Fortunately, the hypothesis space in ILP 

can be structured by a partial order relation (see Section 2.3.3) between two hypotheses 

which allows an efficient traversal of the hypothesis space. Further biases are also employed 

not only to reduce the hypothesis space, but also to ensure an efficient induction process. 

Among the many types of biases available in ILP, the Mode Directed Inverse Entailment 

(MDIE) [Muggleton, 1995] is one of the most used by ILP systems for defining syntactical 

constraints on the desired hypotheses. MDIE consist of a set of user-defined mode 

declarations (in Prolog) in conjunction with other settings in order to constrain the search for a 

good hypothesis. 

The ProGolem ILP system employs:  

i. mode declarations for delimiting and biases the possibly huge hypothesis search 

space; and,  

ii. specific ILP settings for modifying its default theory construction process.  

The remainder of this section presents the mode declarations and the ILP learning 

parameter setting utilized in the OntoILPER Framework.  

 

Mode Declarations. Mode declarations characterize the format of a valid hypothesis (rule). 

They also inform the type, and the input/output modes of the predicate arguments in a rule. 

There are two types of mode declarations in ProGolem: head and body.  

Mode head declarations (modeh) define the target predicate, the head of a valid rule that 

the ILP system has to induce, whereas mode body declarations (modeb) determine the literals 

(or ground atoms), which may appear in body part of the rule. Mode body declarations usually 

refer to predicates defined in the BK, but they can also refer to the target predicate in the case 

of recursive theories. Section 2.3.3 explains in more detail the mode declarations in 

ProGolem.  

Mode declarations also impose restrictions on the types of the variables used as arguments 

of a predicate. The notion of types is not very strict here: a type is any identifier assigned by 

the user to an element in the domain of interest. As different types are treated distinctly, they 

must be specified for each argument of the predicates appearing in mode declarations. Such 

types are simply declared by unary Prolog predicates of the form type(value), i.e., sent(s_1), 

token(t_1), chunk(ck_1), pos_type(nn), where s_1, ck_1, and t_1 are identifiers of sentences, 

                                                
9 http://www.dcc.fc.up.pt/~vsc/Yap 
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chunks and tokens, respectively. The third unary predicate, pos_type(X) declares the set of 

allowed POS tag labels of a token. 

Tab. 5.2 shows several mode declarations employed by ProGolem in the experimentations 

discussed in Chapter 6. The first mode declaration in this table specifies the head of the 

hypothesis to be learned, whereas the second denotes that the literal t_next (t_id, 

#lenght_type) can appear in the body of the theory clauses at most once, for each input token. 

Table 5.2. ProGolem´s mode declarations used in OntoILPER framework. 

Mode declaration Description  

modeh( 1, located(+token, +token) ) 
the target (head) predicate: the relation located between 

two input tokens 

Structural features  

modeb(1, t_next(+token, -token) ) token chaining  

modeb(1, t_next_head(+token, -token) ) token chaining between two consecutive head tokens 

modeb(1, t_prev(+token, -token)) token chaining (previous token) 

modeb(*, t_hasDep(#dep, +token, -token) ) typed dependency between two tokens 

modeb(1, ck_hasTokens(-chunk, +token) ) 
given a token as input, output the chunk which the 

token belongs to 

modeb(1, ck_hasSucc(+chunk, -chunk) ) chunk chaining 

modeb(1, ck_pred(+chunk, -chunk)) chunk chaining (predecessor) 

Morphological features  

modeb(1, tok_length(+token, #length_type)) token length as one of the values {short, medium, long} 

modeb(1, t_stem(+token, #string) token stemming as an input string 

modeb(1, t_orth(+token, #orth) ) morphological property of a token as a constant 

modeb(1, t_morph_type(+token, #token_type ) ) morphological category of the token as a constant 

modeb(1, t_ner(+token, #ner) ) named entity associated to the token as a constant 

Syntactic features  

modeb(1, t_pos(+token, #pos) ) POS category of a token as a constant 

modeb(1, t_gpos(+token, #pos) ) POS general category of a token as a constant 

modeb(1, t_bigPosBef(+token,#bigposbef) ) 

modeb(1, t_bigPosAft(+token,#bigposaft) ) 

modeb(1, t_trigPosBef(+token,#trigposbef) ) 

modeb(1, t_trigPosAft(+token,#trigposaft) ) 

POS tag bi-grams and trigrams before and after a given 

token as constants 

modeb(1, t_isHeadNP(+token) ) head token of a noun chunk  

modeb(1, t_isHeadVP(+token) ) head token of a verb chunk  

modeb(1, t_isHeadPP(+token) ) head token of a preposition chunk  

modeb(1, ck_hasType(+chunk, #ck_tag)) chunk type as a constant 

modeb(1, ck_hasHead(+chunk, #token)) head token of the chunk 

modeb(1, t_root(+token)). Main verb of a sentence as an input token 

modeb(1, ck_dist_root(+chunk, #dist_type)). 
distance of the chunk to the main verb (root) {near, far, 

very_far 

modeb(1, t_ck_ot(+token,#ck_tag)) chunking tag, one of the values {NP, VP, PP} 

Semantic features  

modeb(*, t_similar(+token, #type_similar)) Similar word of the token 

modeb(1, t_normalized(+token, #type_normal)) normalized version of  the token 

modeb(1, t_gaz(+token, #gaz_type)) gazetteer category of the token 
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modeb(*, t_sel_pref(+token, #type_sel_prefs)) selectional preference of the token 

modeb(*, t_bl_domain(+token,#type_domain)) 

modeb(1, t_bl_sense(+token,#type_sense)) 

modeb(1, t_bl_sumo(+token,#type_sumo)) 

modeb(1, t_bl_supersense(+token,#type_super)) 

modeb(1, t_bl_synset(+token,#type_synset)) 

domain, WN sense, SUMO class, SuperSense, and 

synset attributes of a token ( baseline sense) 

modeb(*, t_wsd_domain(+token,#type_domain)) 
modeb(1, t_wsd_sense(+token,#type_sense)) 

modeb(1, t_wds_sumo(+token,#type_sumo)) 

modeb(1, t_wsd_supersense(+token,#type_super)) 

modeb(1, t_wsd_synset(+token,#type_synset)) 

domain, WN sense, SUMO class, SuperSense, and 

synset attributes of a token ( disambiguated sense) 

modeb(*, t_rs_id(+token, #type_rs_id)) 
modeb(*, t_rs_name(+token, #type_rs_name)) 

modeb(*,t_rs_arg_name(-token, +token,  

    #type_rs_arg_name)) 

modeb(*, t_rs_arg_role(-token, +token,  

    #type_rs_arg_role)) 

modeb(*, t_rs_arg_vn(-token, +token,  

    #type_rs_arg_vn)). 

roleset ID, semantic role name, argument type, and 

VerbNet class associated a given pair of tokens 

modeb(1, t_bl_hyper_level_N(+token, #type_hyp)) 

modeb(1,t_wsd_hyper_level_N(+token,#type_hyp)). 

hypernym  baseline or disambiguated sense of a given 

token  at level N, N ={2, 3, 4, 5, 6, 7, 10} 

 

During the learning stage, the mode declarations listed in Tab. 5.2 severely limits the 

number of potential solutions, reduces overfitting problems, and ensures that only well-

formed hypotheses are generated. In the context of the extracting rules learning, a well-

formed hypothesis is defined as a clause giving information about the entities, and the words 

appearing in their contexts. 

An illustrative example: the hypothesis located (A, C) :- t_ner(A, Org), isa_Location(C), 

t_next(A,B), t_next(B, C) is a well-formed hypothesis because there exists a semantic 

restriction on the variables A and C, and B is restricted by the two next/2 predicates. More 

precisely, during the learning step, it is desirable to obtain a theory containing only head 

output connected clauses (HOC) [Santos et al., 2009]. A definite clause C is said to be HOC 

if its head output variables are instantiated in the body, i.e., if there is a chain of literals 

connecting the head input variables to the head output variables. For example, consider these 

predicate signatures d(+type), c(+type,-type), a(+type,-type), b(+type, -type). Then, c(X ,Y)← 

a(X,Z), b(Z,Y) is HOC since there is a chain of literals from variable X to variable Y. 

Contrarily, d(X)←a(X,Y), b(Z,Y) is not HOC, because Z is an input variable for b/2, but it is 

not connected to the head input variables. 

By declaring typed arguments of the predicates and constraining the input/output variables, 

one guarantees that the clauses generated as hypothesis are at least executable by the Prolog 

engine. It is worth mentioning that these restrictions also considerably reduce the hypothesis 

space. 

Fig. 5.8 shows an example of the hypothesis space for the relation located(A, B), which 

orders well-formed candidate hypothesis. Thanks to the way the hypothesis space has been 

modeled in the proposed solution, in which the great majority of its BK predicates are 

determinate, almost all candidate hypotheses are also determinate. With such candidate 

hypotheses, the quasi-order property of the θ-subsumption refinement operator implies that 

the hypothesis space is structured as a lattice [Muggleton, 1995]. At the top of this lattice, the 

most general clause denotes that all pairs of the domain are arguments of the located relation, 
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whereas the most specific clause, the bottom clause   (a clause without constant arguments) 

contains all literals used for generalizing a given example ei. 

 

 
 

Figure 5.8. Hypothesis lattice structured according to the θ-subsumption for the target relation 

located 
 

With the mode declarations shown in Tab. 5.2, the two first criteria on the induced 

extraction rules in OntoILPER are met. 

The other requirement concerning the qualitative aspects of the rules induced by 

OntoILPER will be assessed and discussed in the experimental evaluation reported in Chapter 

6. 

 

ILP Parameter Settings. In its learning stage, the OntoILPER Framework allows users to 

customize the learning task by choosing the combination of "layers" of BK (structural, 

morphosyntactical, syntactic, and semantic) that is more appropriate to users’ IE needs. In 

addition, users may directly intervene in the learning task, by means of the definition of the 

most important parameters of the ProGolem ILP system integrated into the OntoILPER 

framework. 

 ProGolem parameters are tuned for:  

- determining the way rules are specialized/generalized, i.e., how the hypotheses space 

are traversed, top-down or bottom-up manner; 

- imposing cardinality constraints on individuals rules or even on the entire learned 

theory; 

- evaluating how good a candidate hypothesis is; 
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- optimising the rule generation phase, 

- defining stop criteria during new rule generation; 

- establishing the level of noise tolerance for dealing with noisy input data. 

The most important parameters of the ProGolem were selected and summarized in Tab. 

5.3. A complete list of ProGolem parameters can be found in [Santos, 2010]. 

 
Table 5.3. The most important parameters used in this thesis 

Parameter Description 

Clause evaluation 

heuristic 

It defines the clause evaluation engine to use when computing the coverage of a clause. 

One possible choice is the "left to right" clause evaluation that uses standard Prolog 

depth-first search heuristics for SLD resolution or another more sophisticated selection 

heuristic. 

Clause length 
It delimits or prunes the hypotheses having a maximum number of literals (including the 

head) of a valid clause. 

Evaluation function This parameter defines which evaluation function to use when scoring a clause. 

Variable depth (i) 

It allows the user to define the number of layers of new variables to consider during the 

construction of the bottom clause. In other words, this parameter controls the maxim 

depth i of a variable in a given clause. 

Minimum precision  
It is a real number between 0 and 1 and it specifies the minimum precision a hypothesis 

has to have on the training examples to be considered a valid hypothesis. 

Minimum number of 

positive examples  

It allows the user to define the minimum number of positive examples a clause has to 

cover 

Noise tolerance 

This parameter enables the hypothesis be more tolerant to noisy examples in the training 

data, since to obtain consistent hypothesis, i.e., covering no negative example, is 

practically impossible due to typical noisy examples found in training data. 

Theory construction 

mode 

It controls the way he theory is constructed after all hypothesis have been generated. 

ProGolem provides two theory construction modes: incremental and global. In the 

former, at each iteration for a given example, the best hypothesis found from an 

example is included in the final theory, and all the positive examples this hypothesis 
covers are removed from the training set. In the latter, the final theory is only 

constructed after all the hypotheses have been generated. 

 

Among all the parameters shown in the Table 5.3, the parameter depth (i) is one of the 

most important in ILP because it directly determines the size of the hypothesis for each 

example, i.e., the size of the bottom-clause. This was evidenced in the Mikalski´s trains 

problem example presented in Section 2.3.4. The reader should recall that the target concept 

of the Mikalski’s problem was eastbound(X)← has_carriage(X, Y), closed(X), short(Y). For 

this problem, with i = 1, the target concept is not present in the hypothesis space. This is 

explained by the fact that none of the predicates closed/1 and short/1 are present as well. 

Indeed, both of these predicates are only available at a variable depth of 2 (i = 2) in the 

bottom clause. 

The second most important parameter, the noise parameter, is related to a well-known 

problem in machine learning: real-world databases very often contain noisy data, i.e., 

erroneous or incomplete instances. Other reasons for the presence of noise in datasets include 

erroneous manual data entry, missing attributes, and inconsistency of human experts’ 

judgments. Particularly in ILP, noisy examples or incompressible noise cannot be explained 

by non-trivial patterns or rules. Thereby, the noise parameter enables induced hypothesis in 

ILP to cope with noise in the training data. 

As already mentioned, the ProGolem ILP system allows the customization of its induction 

hypothesis process by tuning some parameters. On the one hand, this ProGolem feature can 

be seen as an advantage, given that it provides a great flexibility to adapt the different 
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domains; on the other hand, the optimization task of such parameters can become a new 

problem itself.  

Actually, a major issue in machine learning concerns the influence of different 

combinations of parameters. This is due to the fact that, in general, optimal classification 

results cannot be obtained without a properly tuning of its parameters [Hoste, 2002]. 

Therefore, the optimization of parameters becomes a crucial requirement, not only for ILP, 

but also for the vast majority of machine learning algorithms. However, manual tuning of 

parameters for finding high-quality settings of a machine learning algorithm can be very time-

consuming, particularly when the learning algorithm involves a large number of parameters 

[Host, 2002]. 

Compared with other machine learning algorithms, the choice of parameters in ILP is more 

intuitive [Santos, 2010]. Consequently, the use of traditional parameter optimization 

techniques used by other propositional algorithms, such as SVM [Gaspar et al., 2012] and 

Decision Tree [Host, 2002] is not really necessary. Despite of that, for the sake of accuracy in 

the experiments, the experimental chapter of this thesis reports the adopted evaluation 

methodology for performing a systematic search (variation) of a small subset of parameters 

listed in Table 5.3. 

             

Induced Rules. It has been shown earlier the two possible customizations of the learning task 

by means of:  

- the choice of an appropriate combination of BK predicates in the form of mode 

declarations which defines a hypothesis space;  

- a specific parameter setting that determines how the final theory is learned in 

ProGolem. After taking such a decision, OntoILPER run the ProGolem ILP system on 

the top of YAP Prolog for inducing a final theory, or a set of extraction rules for 

classifying instances of classes and relations. Such extractions rules are actually 

symbolic classifiers, and they can be applied for classifying new unseen examples.  

For illustration purposes, a complete induced theory in OntoILPER for the part_whole 

relation is presented in Fig. 5.9. This theory is composed of two rules using a subset of the 

complete set of mode declarations listed in Tab. 5.3. The clauses in this theory were evaluated 

using the scoring function compression ratio: (positive examples - negative examples)/clause 

length. The other parameters of interest were: theory construction = global, i = 3, minimum 

precision = 0.0, minimum positive examples = 5, and noise = 20%, leaving the remaining 

parameters with their default values. 

 

 

Figure 5.9. Complete theory for the part_whole relation in reACE 2004 dataset. 

The rules presented in the above theory are justified in terms of number of literals, positive 

examples covered, negative examples covered, and rule precision P:  

The first rule classifies an instance of the Part-Whole relation. Its high precision (P = 98.9) 

is due to the high number of sentences containing two adjacent tokens (or phrases) where the 

first one (A) is a noun, and the second one (B) is tagged with respect to the domain ontology 

Rule 1: 

#Literals = 4, Positive Score = 90; Negative Score = 1; Precision = 98.9% 

part_w(A,B):-  t_gpos(A,nn), t_next(A,B), t_subtype(B,state-or-province). 
 

Rule 2: 

#Literals = 5, Positive Score = 31; Negative Score = 7;   Precision = 77.4% 

part_w(A,B):-   t_next(A,B), t_pos(A,nnp), t_ne_type(B,gpl), t_subtype(A,pop-center). 
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as an instance of the “State-or-Provence” subtype class. This rule highlights that places (A) 

like cities are located, or are part of either a State or Provence.  

The second rule is very similar to the first one, in the sense that the entity instances 

indicated by the tokens variables A and B are also adjacent. The token A is both a proper noun 

and an instance of the named entity Geographical Political Location (GPL), whereas the 

token B is mapped to the Population-Center subclass in the domain ontology. 

5.5.2. Converting Prolog Rules to SWRL Rules 

According to [Lisi and Esposito, 2009], the ML community in the last years is increasingly 

investigating how semantic structures, like ontologies, can improve the performance of 

classical ML tasks. The present thesis is inserted in this same realm because its main goal 

consists in investigating how existing Semantic Web knowledge bases and related 

technologies can be used in conjunction with inductive learning techniques. 

In this context, this proposal concerns the important aspect of the type of objects treated by 

the inductive learning component in OntoILPER framework. More precisely, this thesis 

argues that the knowledge about the dependencies between instances become part of the 

overall machine learning model. Hence, the graph-based model presented in Section 4.4 

implements this central idea in the form of constraints on this hypothesis space of possible 

solutions. Moreover, in Section 4.6.3, the idea to transform the Prolog-based BK to SW-type 

data was motivated, which constitutes the Annotation Ontology in OWL/DL. 

In this respect, aiming at providing a feasible implementation of an OBIE system that 

allows both the linguistic and domain knowledge (represented as ontologies) to be employed 

by automated reasoning inference engines, OntoILPER performs the conversion of final 

induced Prolog rules to their counterparts SWRL rules. This conversion is persisted into the 

merged ontology enabling direct access to the inference services provided by OWL/DL 

reasoners like Pellet
10

 and Hermit
11

 in Protégé Ontology Editor. 

Among many rule languages already proposed by the SW community, SWRL was adopted 

due to its distinguishing features:  

(i) It is particularly well adapted to the extraction rules generated in the OntoILPER 

framework because OWL expressions in SWRL are based on classes and relations 

(properties). This SWRL feature was also explored in [Fiorentini et al., 2010] which 

used SWRL to provide rules to associate instances to new classes, and to create 

properties between instances, as it was done in OntoILPER.  

(ii) Its syntax is very similar to Prolog, which means that the parsing effort for conversion 

is reduced. Actually, SWRL extends OWL/DL with standard first-order semantics 

under the form of Horn-style rules. In addition, SWRL rules present a human readable 

syntax, like the simple form of Horn-style rules. 

(iii) SWRL rules are supported by some of the most prominent and powerful OWL/DL 

reasoning engines, specially the Pellet inference engine which has demonstrated state-

of-the-art performance on instance classification [Bock et al., 2008] compared to other 

similar engines. OntoILPER relies on the Pellet reasoner to classify new instances 

resulting from the application of SWRL rules upon specific concepts.  

In short, the rule conversion to SWRL brings the advantages that rules in SWRL align 

semantically with the ontological elements in the working ontologies in a very natural way.  

                                                
10

 Pellet., OWL 2 Reasoner for Java. http://clarkparsia.com/pellet 
11

 Hermit OWL Reasoner. http://hermit-reasoner.com 
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As a result, the rules induced by OntoILPER contain unary and binary predicates that are 

converted to their semantically equivalents in SWRL. For instance, the Prolog unary literal 

t_token(A) is translated as a class atom in SWRL: Token(?a), whereas a binary literal in 

Prolog t_pos(A,nn) is converted to the equivalent binary atom hasPOS(?a, nn) in SWRL. This 

last example concerns the conversion of the Prolog ternary predicate t_dep/3 shown in Tab. 

5.4 to its semantically equivalent SWRL binary atom hasDepXXX, where the third argument 

of the former predicate is used to compose the name of the latter as an object property, i.e., 

hasDepSubj(?a, ?b).  

Table 5.4. Example of Prolog predicate conversion to SRWL atoms. 

Prolog Term SWRL Term 

t_token(A) Token(?a) 

t_pos(A, nn) hasPOS(?a, nn) 
t_next(A, B) hasNext(?a, ?b) 

t_dep(A, B, subj) hasDepSubj(?a, ?b) 
 

In what follows, the theory presented earlier in Section 5.5.1 expressed as rules in SWRL 

is shown. One can note that the rules in Prolog and SWRL differ little syntactically: in Prolog, 

the head of the rule comes before the consequent, whereas in SRWL, this order is reversed. 

Other minor differences such as the symbol ‘?’ before the variable names are presented in Fig. 

5.10. 

 

 

Figure 5.10. Theory presented in Fig. 5.9 converted to rules in SWRL. 

During the conversion from Prolog rules to its corresponding in SWRL entails an 

important aspect with respect to the differences between these two rule formalisms. This 

aspect is discussed in more detail in Appendix F.  

5.6. Graph Conversion 

The remainder part of this chapter will address the modules of the OntoILPER framework 

architecture that concerns the application mode  

It is worth noting that both the training and application mode operations of OntoILPER 

share the first two modules, i.e., Text Preprocessing and Sentence Representation and 

Simplification (see Fig. 5.1). These two modules were already introduced in Sections 5.2 e 

5.3, respectively. Thus, the description of the Graph Convertion module is presented next. 

The Graph Conversion module receives the graphs simplified by the previous module 

responsible for representing and simplifying the annotated sentences of the input corpus.  

Remember that the Annotation Ontology encompasses not only the elements derived from 

the NLP annotation process, but also all linguistic-related entity types present in the annotated 

corpus, such as typed dependencies hierarchies, chunk types, POS tags, NER types, etc. Its 

primary goal consists in formalizing all BK knowledge derived from the previous step, i.e., 

the Sentence Representation and Simplification step. 

Rule 1 

    hasPOS(?a, nn), hasNext(?a, ?b), hasSubType(?b, state-or-province) -> part_whole(?a, ?b) 

 

Rule 2 

   hasNext(?a, ?b),  hasPOS(?a, nnp), hasType(?b, gpl), hasSubType(?b, population-center)  
       ->  part_whole(?a, ?b) 
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At this point, in the OntoILPER Framework processing, one carried out a straightforward 

conversion between the elements of the graphs and their corresponding ontological elements 

in the Annotation Ontology. This conversion process is illustrated in Fig. 5.11. 

First, each graph’s node denoting the words or tokens in the sentence is converted as an 

instance of the Token class in the Annotation Ontology. All attribute values of the nodes are 

also retrieved for generating the assertional axioms that will describe each instance 

(document, sentence, chunking, tokens, etc.) in the Annotation Ontology. The conversion 

process is analogous for each document, sentence, and chunking represented as nodes in the 

graph.  

Then, each graph edge connecting two nodes is converted to its corresponding object 

properties in the Annotation Ontology. Here, range and domain restrictions of such object 

properties are imposed during this process. This is an important step towards ontology 

consistency. Part (a) of Fig. 5.11 illustrates the retrieved graph elements just before the 

conversion step takes place. 

Part (b) of Fig. 5.11 shows the ontological elements of the Annotation Ontology in 

Functional Notation
12

 for ontologies in OWL/DL. The reader should note that, in reality, this 

last step of the conversion actually adds assertional axioms into the Annotation Ontology.  

At this point in this in the conversion process, the Annotation Ontology contains all 

converted graphs, what constitutes a formal knowledge base. Furthermore, it represents and 

formalizes the set of richly annotated documents in the OntoILPER Framework. 

5.7. Domain Ontology Population  

In the OntoILPER Framework, the learned classification model, i. e., the extraction rules are 

kept in the same ontology that formally captures the content information of the input 

documents. As seen before, after several processing steps, the input documents are finally 

converted to instances in the Annotation Ontology. This means that the domain and the 

annotation ontologies, in conjunction with the learned rules are expressed in the same 

reasoner-readable language. This unified view of these ontologies (or knowledge bases) along 

with the extraction rules in SWRL, allows for inferences with the help of SW reasoners, like 

Pellet or Hermit. 
 

 

 

 

 

 

 

 

 

 

                                                
12 http://www.w3.org/TR/owl2-syntax 
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Nodes of the graph (Tokens and attributes) 

token id= t_3 

token stem = 'he' 

token pos = PRP 
token type = word 

token chunking type = NP 

isHeadNP = true 
token length = 2 

token ne type =  PERSON 

... 

token id= t_5 

token stem = 'been' 

token pos = VBZ 
token type = word 

token chunking type = VP 

isHeadVP = true 
token length = 4 

... 

token id= t_7 

token stem = 'washington' 

token pos = NNP 
token type = word 

token chunking type = NP 

isHeadNP = true 
token length = 10 

token ne type =  LOCATION 

... 

 

 
 

Edges of the graph (typed dependencies) 
 

nsubj ( 'been' , 'he' ) 
prep_in ( 'been' , 'washington' ) 
 

 

 

 
 

Classes instances with their data property values 
ClassAssertion(:Token :t_3) 

DataPropertyAssertion(:hasStem 

:t_3 "he") 

ObjectPropertyAssertion(:hasPOS 

:t_3 :prp) 

ObjectPropertyAssertion(:hasType 

:t_3 :word) 
ObjectPropertyAssertion(:hasCkTy

pe :t_3 :np) 

DataPropertyAssertion(:isHeadNP 

:t_3  true) 

DataPropertyAssertion(:hasLength 

:t_3 2) 

ObjectPropertyAssertion(:hasNE 

:t_3 :person) 

ClassAssertion(:Token :t_5) 

DataPropertyAssertion(:hasStem 

:t_5 "been") 

ObjectPropertyAssertion(:hasPOS 

:t_5 :vbz) 

ObjectPropertyAssertion(:hasType 

:t_5 :word) 
ObjectPropertyAssertion(:hasCkTy

pe :t_5 :vp) 

DataPropertyAssertion(:isHeadVP 

:t_5  true) 

DataPropertyAssertion(:hasLength 

:t_5 4) 

 

ClassAssertion(:Token :t_7) 

DataPropertyAssertion(:hasStem 

:t_7 "washington") 

ObjectPropertyAssertion(:hasPOS 

:t_7 :nnp) 

ObjectPropertyAssertion(:hasType 

:t_7 :word) 
ObjectPropertyAssertion(:hasCkTy

pe :t_7 :np) 

DataPropertyAssertion(:isHeadNP 

:t_7  true) 

DataPropertyAssertion(:hasLength 

:t_7 10) 

ObjectPropertyAssertion(:hasNE 

:t_7 :location) 

       
 

 

Object Property values 

ObjectPropertyAssertion(:hasNsubj :t_5 :t_3) 
ObjectPropertyAssertion(:hasPrepIn :t_5 :t_7) 

Figure 5.11. Example of converting a graph as instances of the Annotation Ontology. 

Ontology Population 

(OWL API) 

+ 

Parsing step 

Input graph: 

+ 

(a) 

(b) 
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Figure 5.12.  Extracted instances of classes and relation in OntoILPER. 

The Instance Extraction step in the OntoILPER Framework is responsible for applying the 

SWRL rules over the knowledge base in order to classify both instances of classes and 

relations. Such instances will be finally integrated into the domain ontology. For instance, 

considering the sentence “Myron Kandel at the Newsdesk CNNfn in New York", the obtained 

extraction rules would be able to classify the following instances (Fig. 5.12): 

In the OntoILPER framework, any OWL/DL reasoner with support to SWRL can be used 

to apply the extraction rules over the knowledge base determined by the annotation ontology, 

resulting in a set of extracted instances. This thesis is aware to the fact that the same extracted 

instances could have been obtained by a direct application of the induced Prolog rules on the 

Prolog factual database. However, it is a design decision to utilize SW reasoners instead of the 

default Prolog reasoning services because the reasoners are endorsed with some capabilities 

particularly interesting to the purposes of this thesis. First, they provide reasoning tasks such 

as class satisfatibility, and class subsumption. Second, they can check whether all the 

statements and definitions in the ontology are mutually consistent. Finally, and more 

importantly, they can provide explanations of their inference processes. In fact, the Protégé 

Ontology editor conveniently offers all the aforementioned inference services by means of a 

human-friendly program interface. 

Moreover, it is argued that it is very advantageous to have the knowledge base and rules in 

a standard reasoner-readable format, due to the flexibility of not depending upon a specific 

extraction tool or process. Another criterion for this decision is that the integration of the 

knowledge base in OWL/DL and rules in SWRL constitutes an attempt to contribute to the 

SW field by promoting shareable ontologies. It is also expected that future advances on how 

to encode knowledge bases and rules would bring new perspectives to the application of the 

OntoILPER framework and, particularly, the annotation ontology. 

Scenarios for the Application of the OntoILPER Framework. 

In the following, three of the possible scenarios for applying the OntoILPER Framework are 

described: 

i. SW Applications. In a SW application scenario, many alternative SW technologies for 

storing, manipulating and querying the instances extracted by OntoILPER can be 

effectively employed, including Sesame
13

, Jena
14

, SPARQL
15

, to mention a few. In this 

scenario, users could specify their information demand by querying the working 

ontologies (Domain and Annotation ontologies) using SPARQL. 

ii. Ontology Population. The extracted instances found by OntoILPER are added as new 

instances of the input domain ontology. This process is also known as Ontology 

Population. Thus, every OBIE system can be regarded as an OP system, as it can be 

extended to assimilate extracted instances into the ontology. It is worth mentioning that, 

due to the OWA, instance classification in practice will never return all the individuals 

that theoretically belong to a given class, but only those named individuals whose class 

membership can be inferred. Particularly in the OntoILPER framework, the reasoning 

                                                
13 OpenRDF Sesame. http://www.openrdf.org 
14 Apache Jena. http://jena.apache.org 
15 SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query 

Person("Myron Kandel")                       // “Myron Kandel” is an instance of the Person class 

Location("New York")                      // “New York is an instance of the Location Class 

is_located("Myron Kandel", "New York").  // “Myron Kandel is located in New York. 



169 

 

and the ontology population services are performed by using OWL API
16

 and Pellet API 

[Sirin et al., 2007], respectively.  

iii. Ontology Engineering. The final extraction rules induced by the OntoILPER 

Framework in conjunction with other TBox axioms from the domain ontology can be 

refined and combined by an ontology engineer for discovering other potential useful 

concepts.  

As already seen, the main goal of the ILP-based learning component in OntoILPER 

is to automatically induce first order rules suitable for extracting instances of classes 

and relations. Such rules are properly converted to their equivalent in SWRL, which 

enables the enrichment of the annotation ontology.  

A major benefit from this enrichment is that, for instance, the ontologist or domain 

expert can define complex concepts by manipulating the extraction rules. Besides that, 

she can use the OWL/DL constructs in the definition of new classes/subclasses in the 

domain ontology, as well. 

It is finally illustrated how the ontological elements (extraction rules and instances) 

can be handled in the Protégé ontology editor. 

Fig. 5.13 shows domain and the annotation ontology as they appear in the Protégé 

Ontology Editor. At the left side of this figure, one can see both ontologies (domain and 

annotation) sharing the same environment in Protégé. The central part of the figure list 

Token class instances, while the right side show its attributes, as object properties and 

data properties. This same figure shows the state of the ontologies just before running 

the Pellet reasoner, whereas Fig. 5.14 shows the ontology after activating the reasoner. 

One can notice the new relation instance appearing in the Property Object window 

(right side of the figure), in which one of the applied rule found the Located(t_2, t_3) 

relation, i.e., there is a Located relation between the tokens t_2 an t_3 in the annotation 

ontology. 

Finally, Fig. 5.15 shows the explanation of the result. This inference explanation 

highlights the premises matched by the rule, and its related conclusions. 

5.8. Conclusion 

This chapter presented the main modules and components that constitute the OntoILPER 

Framework. This OBIE framework is one of the contributions of this thesis. 

First, a broad view of the OntoILPER framework by indicating its two operation modes: 

learning and application is provided. After the description of each module and its 

implemented components, this chapter discussed three possible application scenarios for 

OntoILPER as a comprehensive OBIE framework for providing extraction services to 

Semantic Web applications. In one of these application scenarios, the OntoILPER framework 

can be used for ontology engineering purposes, in which an expert benefits from the 

extraction rules, discussed here as SWRL rules, as building blocks for creating complex 

concepts as the combination of basic ones.  

Next chapter reports a comprehensive assessment of the OntoILPER framework in two 

distinct domains: news and biomedical. In fact, several experimental results are reported and 

discussed, aiming at testing the working hypothesis introduced in Chap. 1. 

 

                                                
16 The OWL API. http://owlapi.sourceforge.net 
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Fig. 5.13. Domain and Annotation ontologies merged by the Protégé ontology editor, before 
running the reasoner. 
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Fig. 5.14. Domain and Annotation ontologies merged by the Protégé ontology editor, after running 
the reasoner. The new classified relation instance Located(t_2, t_3) is highlighted. 

 

 

Fig. 5.15. Explanation of the Located rule results in Protégé.  
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Chapter  6 

Experimental Evaluation 

This chapter reports and discusses the experimental results on entity and relation extraction 

achieved by OntoILPER, addressing the specific problem formulations related to NER and 

RE in this thesis. The objective of the experiments is to investigate the effectiveness of 

OntoILPER according to the following experimental questions that drives the proposed 

assessment methodology: 

1. What are the optimal parameters to be employed in OntoILPER experimentations? 

2. What is the contribution of relational features on the final induced rules? 

3. What is the influence of semantic- and ontological-related features on RE? 

4. Which combination of linguistic-based background knowledge is best?  

5. Do the features present a complementary contribution on the performance results? 

6. In the OBIE scenario, in particular, what is the influence of ontological hierarchical 

information on the results? 

7. How well do the rules generalize between different datasets in the same domain? 

8. What are the most important qualitative aspects of the final induced rules? 

9. What is the impact of using named-entities labels predicted in a previous learning 

phase of OntoILPER on a second learning iteration for relation predictions? 

10. How does OntoILPER compare to state-of-the-art in the literature for NER and 

RE? 

11. Can overfitting be alleviated by a previous simplification of the graphs representing 

the sentences and examples? 

12. Can OntoILPER obtain comparable performance with respect to other RE 

approaches without using the named entities labels provided by the corpus? 

In what follows, the adopted evaluation methodology is presented, which includes the 

corpora used, and the evaluation metrics adopted. The answers to above mentioned 

experimental questions are provided in the remainder of this chapter. 

6.1. Evaluation Methodology and Experimental Settings 

This section presents the evaluation methodology as well as the experimental settings 

adopted during the conduction of the assessment of OntoILPER in the NER and RE tasks. 

6.1.1. ReACE, TREC, and PPI Corpora 

This section describes the corpora used in the experimental evaluation of this thesis, 

namely:  

- the reACE 2004/2005 datasets [Hachey et al., 2011] for relation detection and 

characterization; 

- the TREC dataset for NER and RE proposed by [Roth and Yih, 2004]; 
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- Protein-Protein Interaction corpora from the biomedical domain [Pyysalo et al., 

2007]. 

 

Datasets for Relation Extraction (reACE) [Hachey et al., 2011]. The Automatic Content 

Extraction (ACE) programme defines the task of Relation Detection and Categorization 

(RDC) which aims at detecting and classifying relations between entities according to a 

predefined ontology. These datasets consist of text from newswire and broadcast news 

taken in two consecutive years. There are 348 and 298 documents in ACE 2004
1
 and ACE 

2005
2
, respectively. The data in both datasets are distinct, i.e., there is no overlap between 

them. 

Contrarily to previous evaluations, these datasets introduced a type and subtype 

hierarchy to both entities and relations, providing a crucial step towards OBIE [Wang et 

al., 2005] which makes the task more challenging. In both datasets, an entity instance is 

called an entity mention, which can be a name, a proper noun, a quantified nominal, or a 

pronoun. 

The ACE 2004 dataset defines a two level entity hierarchy consisting of 7 types and 44 

subtypes; whereas, for relations, it is proposed a hierarchy with 7 types and 22 subtypes. 

the ACE 2005 dataset, in turn, shares the same entities types and most of the relations 

types and subtypes. 

Aiming at evaluating some of the hypotheses raised up in this thesis, the revised 

versions of the ACE 2004/2005 datasets [Hachey et al., 2011] were chosen. These datasets, 

also known as reACE datasets, are the result of several transformation steps (refactoring, 

preprocessing, and reannotation) [Hachey et al., 2011] which normalized the two original 

ACE datasets so that they adhere to a common notion of relation that is more intuitive and 

simple, as defined by Hachey (dataset for RE): a relation mention, or relation instance in 

the context of this work, is a predicate over two arguments, where the arguments represent 

concepts in the real world. A predicate can describe the type of association or interaction 

between the things represented by the arguments. Other positive aspect of the 

transformations for deriving the reACE version is that: (i) it facilitates the evaluation and 

tuning of machine learning algorithms addressing the RE problem; (ii) it enables both 

comparative and cross learning evaluations between both versions of the ACE dataset 

(2004 and 2005). 

The relations instances in reACE are required to be exactly between two entities in the 

same sentence. Here, all pairs of entity instances occurring in the same sentence are 

considered as candidate relation instances. Such a restriction offers some advantageous 

gains: (i) enforces consistency across datasets; (ii) allows a principled and tractable 

definition of the relation extraction task; (iii) removes relations between reflexive 

arguments, and embedded (overlapping) entities as well [Hachey et al., 2011]. As a result, 

the data in reACE is normalised such that relations instances are between named or 

pronominal entities wherever possible.  

Tab. 6.1 parts (a) and (b) show, respectively, the type/subtype distributions and some 

examples of the relations in the final reACE2004/2005 datasets. The entity types in both 

reACE datasets were also refactored to 4 types, namely: PER (person), ORG 

(Organization), GPL (Geo-Political/Location), and FVW (Facility/Vehicle/Weapon).  

Tab. 6.2 shows some instances of relations subtypes found in the reACE 2004 corpus. 

The reACE datasets, corresponding to the ACE 2004/2005 datasets, fully comply with 

the work assumptions introduced in Section 4.1, and for that reason, they are used in the 

experiments instead of the original versions of the ACE 2004/2005 datasets. Moreover, 

                                                
1  http://www.itl.nist.gov/iad/mig/tests/ace/2004/doc/ace04-evalplan-v7.pdf 
2  http://www.itl.nist.gov/iad/mig/tests/ace/2005/doc/ace05-evalplan.v2a.pdf 
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relations types/subtypes from both datasets with a number of examples less than or equal to 

15 are considered to be outliers and are then filtered out. [Hachey et al., 2011] gives more 

detail about the entire reannotation process. The reACE datasets is available for 

redistribution through the Linguistic Data Consortium (LDC)
3
. 

 
Table 6.1. Relation distribution of the reACE 2004/2005 datasets. 

reACE 2004 (a)   reACE 2005 (b) 

Relation Type/Subtype Freq   Relation Type/Subtype Freq 

Employee-Membership-Subsidiary (EMP_ORG)      Organization-Affiliation (ORG_AFF)   

      Employee-Staff 

      Employee-Executive 

303        Employment 228 

220        Membership 36 
      Member-of-Group 80        Sports-Affiliation 14 

      Employ-Undetermined 13        Founder 8 

      Partner 3        Investor-Shareholder 7 

General-Affiliation (GEN_AFF)          Ownership 3 

      Located 352        Student-Alumnus 3 

      Citizen-Resident-Religion-Ethnic 98   General-Affiliation (GEN_AFF)   

Part-Whole (PRT_WHOLE)           Located 280 

        Part-Whole 174         Citizen-Resident-Religion-Ethnic 39 

        Subsidiary 100   Part-Whole (PRT_WHOLE)   

Personal-Social (PER_SOC)             Geographical 119 

      Business 35           Subsidiary 47 

      Family 15   Personal-Social (PER_SOC)   

Agent-Artifact           Business 16 

     User-Owner-Inventor-Manufact 6         Family 42 

Total 1399         Lasting-Personal 10 

    Agent-Artifact   

  

       User-Owner-Inventor-Manufact 15 

  
  Total 867 

 

Table 6.2.  Some examples of the reACE 2004 relations 
Relations:  type.subtype(arg1, arg2) Sentences or phrase examples 

PER-SOC.business(John, superiors) John´s superiors ... 

EMP-ORG.employ-exec(Investors, Wall Street) Investors on Wall Street... 

EMP-ORG.employ-staff(ABC, John Martin) Here's ABC's John Martin. 

GPE-AFF.citizen/resident(voters, Missouri) Some Missouri voters ... 

 

TREC Dataset [Roth and Yih, 2004]. The experiments reported in this section are based 

on the Text Retrieval Conference (TREC) dataset
4
, which is composed of articles from the 

WSJ (Wall Street Journal). This dataset has been annotated for named entities and 

relations, containing 1,441 sentences with 5,349 entities, namely, 1,691 people, 1,968 

locations, 984 organizations, and 706 miscellaneous names. Each one of the 1,441 

sentences has at least one active relation. Among those sentences, there are 19,080 possible 

binary relations with the frequency distribution of the positive ones as shown in Tab. 6.3. 

This table also shows an example of each relation and the constraints with respect to its 

two arguments. Most of the candidate binary relations have no active relations at all; this 

results in an unbalanced distribution between positive and negative examples. Fig. 6.1 

depicts the domain ontology created for storing the instances extracted in OntoILPER. 
 

 

 

                                                
3
 https://www.ldc.upenn.edu/ 

4
 http://cogcomp.cs.illinois.edu/Data/ER/conll04.corp 
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Table 6.3. Binary relations and their arguments types 

Relation Arg-1 Arg-2 Example # of relations 
located_in LOC LOC (Toledo, Ohio) 405 
work_for PER ORG (Winter, Court) 401 
orgBased_in ORG LOC (HP, Palo Alto) 452 
live_in PER LOC (Tvazir, Israel) 521 
kill PER PER (Oswald, JFK) 268 

 

 

Figure 6.1. TREC underlying domain ontology with entities and relations. 

 

 

 

Biomedical Corpora.  

 

Three standard PPI datasets on biomedical domain were selected. 

These corpora are considered more complex than normal English text used in news 

domain. 

- Learning Language in Logic (LLL) [Nedellec, 2005]. This dataset was proposed to 

the genic interaction task from a set of sentences concerning Bacillus subtilis 

transcription. 

- HPRD50 [Fundel et al., 2007]. It consists of a randomly selected subset of 50 

abstracts referenced by the Human Protein Reference Database (HPRD). 

- Interaction Extraction Performance Assessment (IEPA) [Ding et al., 2002]. It 

consists of a corpus containing 303 abstracts from PubMed, each containing a 

specific pair of co-occurring chemicals. 

Tab. 6.4 summarizes the basic statistics on these datasets. 

Table 6.4. Basic statistics of three corpora for RE 

Corpus #Sentences #E+ #E- 

LLL   77 164 166 
HPRD50 145 163 270 
IEPA 486 335 482 
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6.1.2. One vs. All Learning Technique and Automatic Generation of Negative 

Examples 

In GILPS, the task of inducing target predicates requires that positive and negative 

examples be explicitly indicated before the generation of the classification model. Thus, 

negative examples are artificially created as the complement of the positive ones, 

according to the one vs. all class binarization technique when building the rule models. In 

short, the underlying idea of the one vs. all strategy consists in producing several 2-class 

datasets by discriminating each class against the union of all the other classes. Thus, given 

the set of N possible entity classes Ci, i = 1..N, for each positive instance ci of a given class 

Ci in the training set, a negative example is created for each one of the other N - 1 classes. 

Thereby, a multiclass learning problem is reduced to several binary classification 

problems, one for each class. 

On the other hand, for building rule models for relations, the step of generating negative 

examples is somewhat different. For that, the same technique as proposed in [Airola, et al., 

2008] was adopted, in which the RE extraction task is regarded as a binary classification 

problem, where interacting argument pairs are positive examples, and the other pairs of co-

occurring entities in the same sentence are negative ones. As a result, for each sentence, 

Cn,2 = n! / 2*(n – 2)! examples are generated, where n is the total number entities in a given 

sentence. 

6.1.3. Evaluation Metrics, Cross-Validation, and Statistical Significance Test 

Aiming at assessing the effectiveness of the proposed approach, several experiments on the 

TREC dataset were conducted. The performance evaluation is based on the IR classical 

measures, i.e., Precision P, Recall R, and F1-measure [Baeza-Yates and Ribeiro-Neto, 

1999]. Besides that, Airola et al. (2008) suggest to use the Area Under Curve measure.  
 

Area Under Curve. In the evaluations, the F1-measure, used in most of previous work in 

RE, is fairly sensitive to ratio of the underlying positive/negative distribution of examples 

in a training set. Thus, as an alternative to F1-measure, some authors have proposed to use 

the Area Under the Receiver Operating Characteristics Curve (AUC) [Hanley and Mcneil, 

1982] as a performance measure for classification systems. 

One of the most important properties of the AUC measure is that it is invariant to the 

class distribution in a training set of examples. Because of that and other beneficial 

properties, especially for comparative evaluation, the usage of AUC for performance 

evaluation has been recently advocated in the machine learning community [Airola, 2008] 

[Tikk et al., 2010]. 

 

The AUC is defined  as  

1 1
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.

m m
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where m+ and m- are the numbers of positive and negative examples, respectively, and  

x1,...,xm+  are outputs of the system for the positive, and y1,...,ym-  for the negative 

examples, and 
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Cross-Validation (CV). A well-known method of measuring a classifier´s performance is 

in terms of the error rate. The classifier prediction of a given instance, for each class, may 
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be correct, which is counted as a success; or it is an error. Thus, the error rate is just the 

proportions of errors made over a whole set of instances, and it can be used for measuring 

the overall performance of the classifier. The standard way of prediction the error rate of a 

machine learning technique, having a limited amount of data available, consists in use a 

holdout procedure where part of the data is used for training the classifier, and the 

remainder part, for testing it. 

As all datasets chosen for the experimental evaluation have a limited amount of data for 

training and testing, a simple variant form of the holdout procedure was chosen because of 

its important statistical basis: the cross-validation technique. In cross-validation, one must 

decide a fixed number n of folds, or partitions, of the available data. Then, the data is split 

into n partitions of approximately the same size: 1 partition is used in turn for testing, 

while the other n-1 partitions are used for training. 

Previous work on extensive tests using several machine learning techniques where 

conducted on many datasets of different kinds using the 10-fold cross validation. The 

results suggested that 10 was the right number of folds to obtain the best estimate of the 

error rate [Witten and Frank, 2005]. However, these results are by no means conclusive, 

and debates continue to appear in the machine learning and data mining community about 

what would be the best technique for evaluation. 

Depending upon the corpora evaluated, the experiments reported in this thesis will 

adopt either 5- or 10-fold cross validation. This fairly guarantees the maximal use of the 

available data, and allows comparison with relevant related work. 

 

Statistical Significance Testing. Statistical significance tests in all comparative evaluation 

in this work are used, either intrinsic (between different models using the same algorithm) 

or extrinsic (between different classification algorithms or systems).  

An example of the former test is the paired t-Student test [Witten and Frank, 2005]. 

Here, it is assumed that difference between performance scores follows a normal 

distribution, which is the case for all experiments evolving different induced models, but 

just varying some parameters of the classifiers. The latter, the Wilcoxon signed- rank test 

[Cooligam, 2004] enables to check for significant differences between the average 

performance of two distinct algorithms or classification systems. This is a non-parametric 

test analogue of the paired t-Student test. This test ranks the absolute value of the 

differences observed in performance of the pair of algorithms. Ties are discarded and the 

ranks are then given signs depending on whether the performance of the first algorithm is 

higher or lower than that of the second one. If the null hypothesis holds, the sum of the 

signed ranks should be approximately equal to zero. 

It is worth mentioning that the comparison of between two distinct classification 

algorithms using the Wilcoxon test is equivalent to determining if the AUC of the 

algorithms differ significantly [Hand, 1997]. 

In both significance tests, the null hypothesis is that the two populations from which the 

scores are sampled are identical. Usually, the difference between means is taken, e.g., 

1 2
  . Following convention, the null hypothesis is rejected for values of p less than or 

equal 0.05, which corresponds to a 95% of confidence interval for the difference of the two 

means 
1 2
,  and .   

 

6.1.4. Measure for Assessing the Generalization Degree of Theories 

The theory ratio is defined as the measure of the generalization degree of the learned 

theories in the context of this work. 

This measure is defined by: 
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number of clauses in the final theory
 Theory Ratio ( )

number of positive examples in the training set
TR   

TR measures the quality of the final theories, along with the typical measures of 

precision, recall, and F-measure, which produces a quantifiable measure of its 

performance on a given dataset. 

Note that since each rule must cover at least one positive example, the number of rules 

learned for a given training set of examples will always be less than or equal to the total 

number of positive examples, and, as a result, the TR will always be between 0 and 1, with 

a lower value indicating a more general theory. Moreover, the TR is a well-motivated and 

meaningful measure of the quality of a final learned theory in the context of this work for 

two reasons: First, it is a relative measure with respect to the number of examples in a 

training dataset, so one can use it to compare regularity of small and large number of 

training sets. Second, it is rather general and objective, since it consists of an unbiased 

measure of how many non-overlapping rules it would be required to cover every positive 

example without covering any negative examples.  

6.2.  Optimal Parameters in Rule Learning Phase (EQ 1) 

The main goal of the learning component GILPS in the proposed framework consists of 

building models from a training set of examples. However, for building models of high 

classification accuracy and, at the same time, understandability, it is necessary to find 

optimal parameters at first place.  

The best possible model requires determining optimal values for some parameters of the 

ProGolem ILP system according to [Santos, 2010]. The best values are estimated by 

applying the method proposed in [Kohavi and John, 1995] which recommends the 

following steps: 

i. separating the most relevant parameters; 

ii. obtaining, using the training set only, unbiased estimates of the classification 

accuracy of the models built after a systematic variation across some small number 

of values for the parameters chosen in the previous step; 

iii. taking the values that yielded the best average predictive accuracy across all target 

predicates.  

Accordingly, several preliminary experiments were performed for determining the best 

parameters in the OBIE scenario. Tab. 6.5 shows the best setting for the ILP parameters 

according to two criteria: achieving high-quality results, and preventing model overfitting. 

These parameters were obtained using a separate test dataset, i.e., a dataset with unseen 

examples. Unless contrarily indicated, for all the experiments reported in this section, the 

aforementioned parameter setting will be adopted. 
 

Table 6.5. Optimal ProGolem parameters 

ILP Parameters 
Parameter Value 

theory_construction global 
evalfn coverage 

i 3 
minprec 0.0 
minpos 5 
noise 0.2 
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Overfitting Control. Overfitting is a major problem for all machine learning techniques. 

In ILP in particular, overfitting causes the effect that a very complex theory would be 

induced, and the size of this theory (in number of individual clauses) would increase 

according to the size of the training set. Overfitting is also caused by poor example 

representations that do not capture relevant domain characteristics, and noisy or erroneous 

instances that could be derived from inconsistency in human annotation, for example. 

In the OBIE scenario, the overfitting problem is addressed by biasing the learner 

towards simple concept descriptions to explicitly control the size of the final induced 

theories. The three last parameters from Tab. 6.5 consists of the simplest form of avoiding 

overfitting by imposing some stopping criteria that requires that (i) a rule covers a certain 

minimum number of examples (minpos), or a minimum precision constraint (minprec). 

Finally, the noise parameter allows the selection of rules that cover a few false positives. 

Actually, it is accepted rules that has covered a minimum of five examples (minpos = 5) 

with 20% of noisy (noise = 0.2), i.e., 1 of 5 examples can be erroneous. 

6.3.  Results and Discussion on the reACE Corpora (News Domain) 

This section answers the Experimental Questions 2-5 on the reACE corpora.  

6.3.1. Experiments on Features (EQ 2-5) 

In OntoILPER first experimental results on relation subtypes (9 in total), an analysis of the 

features was carried out by gradually incorporating them in the training phase. Tab. 6.6 

reports the results of the combinations of features including structural and attributive 

predicates that correspond to nine feature subspaces of interest (Lines 1-9 in Tab. 6.6). 

The first feature subspace (Line 1) constitutes the baseline, that is, the smallest feature 

subspace with only morphological features plus the structural predicate next/2. The other 

features combinations are further distinguished into four features categories: structural (in 

italics), attributive (normal font), and semantic and NER (in bold). 

The performance improves as more features are applied, starting with the F-measure of 

53.40% and reaching 81.40% in the reACE 2004. In the reACE 2005, the best overall F1 

performance (71.80%) may indicates that this dataset is a more difficult than the reACE 

2004. Actually, this may due to the fact that, in reACE 2005 dataset, some relations 

(specially bussiness) are very poor represented with only 16 positive examples, which used 

to hamper the overall scores because OntoILPER was not able to induce any rule for the 

business relation in all combinations above. 

Table 6.6. Contribution of different features over relation subtypes in reACE 2004/2005 datasets 

  
reACE 2004 reACE 2005 

ID  Features P R F1 P R F1 

1 Morphological + Next = Baseline 
 +  Chunks  
 +  Dep 
 +  Dep + Chunks 
 +  Dep + Chunks + POS 
 +  Dep + Chunks + POS + Chunk related 
 +  Dep + Chunks + POS + Chunk related + NER types 
 +  Dep + Chunks + POS + Chunk related + ACE types 
 +  Dep + Chunks + POS + Chunk related + ACE types + NER 

81,09 39,81 53,40 60,53 25,12 35,52 
2 80,17 47,13 59,36 75,05 34,03 46,80 
3 81,01 46,93 59,43 72,91 36,51 48,65 
4 89,01 54,40 67,53 74,81 38,14 50,48 
5 91,16 62,04 73,83 81,75 44,24 57,37 
6 93,30 66,68 77,77 83,68 50,43 62,91 
7 93,04 67,12 77,99 80,59 51,39 62,68 
8 92,20 71,13 80,31 83,03 63,38 71,86 
9 92,91 73,07 81,80 82,30 61,85 70,62 

 

Discussion. Lines 2-4 demonstrate the usefulness of structural features in the generated 

models. Thus, the system achieved more than 14% of improvement in F1 when comparing 

the baseline (Line 1) with the other structural predicates in the model (Line 4), i.e., chunks 
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and dependencies features. Taken separately (Lines 2 and 3), chunk and dependencies 

features practically brought the same boost in performance in reACE 2004, which was 

around 6%. On the other hand, in reACE 2005, chunk information was even more 

effective, as it increases F1 score by 11.28% against only almost 5% due to dependencies 

information. 

The above results agree with the ones obtained in previous work [Zhou et al., 2005], 

[Zhou et al., 2007], [Jiang and Zhai, 2009], in which these authors reported that, for these 

datasets, chunk analyses or syntactic parsing tree information reflects the more effective 

structural feature for relation extraction. Inspecting the reACE 2004/2005 datasets, it was 

found that most of the candidate entities are encapsulated by nominal chunks, which 

indicates the quite local characteristic of the semantic relations occurring in them. Indeed, 

the distance distribution (in number of tokens) between the two related entity instances was 

analysed for both datasets (Fig. 6.2). The results revealed that there exists about 67% (in 

reACE 2004) and 60% (in reACE 2005) of relation instances in which their arguments are 

separated by at most two tokens. 

In addition, this suggests that each feature subspace alone already captures most of the 

useful structural information between tokens for relation extraction in these experiments. 

Due to the locality of semantic relations in reACE 2004/2005, more complex features like 

dependency trees can only take effect in the remaining minority of long-distance relations. 

Furthermore, as previously demonstrated, the full parsing of sentences, e.g., dependency 

parsing, is more susceptible to parsing errors than chunking analysis. Consequently, for 

such kinds of short-distance relations, sequence information may be even more reliable 

than syntactic or dependency information. 

It should be pointed out that the number of chosen features has a direct impact on the 

size of training examples, as more features are added as background knowledge. This 

would certainly require more computational resources. As a result, depending on either the 

domain or the application, one should take into account this interesting trade-off in feature 

selection for RE. 

 

Figure 6.2. Distribution of the number of words between the arguments of relations in reACE 

2004/2005. 

 

Incorporating both POS and chunking-related features (Lines 5 and 6 from Tab. 6.6) 

respectively, also contribute to performance improvement. In particular, POS information 

(Line 5) increases the F1 score by more than 6.0 units on both datasets but, contrarily to the 

reACE 2005 in which these units were evenly distributed between precision and recall, the 

performance in reACE 2005 increased due to the much higher recall score compared to the 

precision. 

The last 3 lines of Tab. 6.6 show the contribution of attaching the semantic type 

information to the extraction models. Concerning the impact of the semantic-related 

features, such as NER and ACE types in Line 7-9 of this same table, ones can notice that, 

these features lead to another significant performance increases in both datasets. 
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For the reACE 2004 dataset, a tiny improvement (0.22%) was achieved on using named 

entities as semantic features (compare Line 6 with 7). Surprisingly, these same entities had 

a converse effect, decreasing the final F1 score in 0.23 points for the reACE 2005. A closer 

look at the results reveals that the applied NER component conflicts with the entity types 

provided by the annotations in datasets, generating more false positives.  

However, both entity type and subtype information together with mention level features 

(like the binary predicate m_type) consistently enhanced the final F1 score by significant 

increasing recall in both datasets.  

To conclude, more accurate semantic information of entity instances can contribute a 

great deal in reACE corpora. As already mentioned, these results have also agreed with 

previous findings in RE. This is not surprising, given that semantic information, e.g., 

classes and subclasses from an ontology, typically impose strong constraints on the types 

of the entities participating in a given relation, indicating that such kind of feature has an 

crucial discriminative power in RE. 

6.3.2. Experiments on Hierarchical Classification (EQ 6) 

Since reACE corpora provide both entity and relation hierarchies (type and subtype), 

hierarchical classification was accomplished on these corpora in order to assess 

OntoILPER when it takes into account both entity and relation taxonomical information 

from the input domain ontology. Here, the focus is on the relation hierarchy with three 

levels, from the more specific to general one [Zhou et al., 2007]:  

- subtype classification at leaf level, consisting of 9 relations in reACE 2004, and 8 

relations in reACE 2005, respectively;  

- type classification, which denotes 4 middle level relation for both corpora;  

- relation detection, which denotes the classification task of predicting if a relation 

holds between two entity instances. This last task can also be considered as a simple 

binary classification. 

Tables 6.7, 6.8, and 6.9 summarizes the classification results of the subtype and type 

classification aforementioned. Besides P, R, and F1, Tab. 6.8 and 6.9 display the number 

of positive examples (E
+
) by type, the number of rules occurring in the final theory 

(#Rules), and the theory ratio (TR). 

Discussion. From a broad view, the average results shown in Tables 6.7, 6.8, and 6.9 

reveal that it is more difficult to classify on hierarchy’s deeper levels for both corpora, 

being the reACE 2005 dataset the one that most profit of the hierarchical classification on a 

shallow level. Indeed, comparing the average results reported on Tab. 6.7 (left part) with 

those ones in Tab. 6.8, it is clear that the type classification on reACE 2004 yielded a 

significant improvement compared to its subtype classification. The analogous comparison 

between subtype classification (Tab. 6.7 right part) and type classification (Tab. 6.9) on the 

reACE 2005 portraits that the overall improvement was even more substantial. 

On the other hand, a comparison of type/subtype classification results of these tables put 

in evidence that: 

 The performance scores for the PER_SOC on the type classification level of both 

corpora rank best among the 4 relations types. Moreover, the type classifier yielded 

the highest possible precision on both corpora, also with a boost on recall. 

 The GEN_AFF type classification achieves a small improvement in recall for both 

corpora. 

 EMP_ORG and PARTWHL type results produced comparable results with their 

corresponding subtype classification on reACE 2004 corpus. 
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 ORG_AFF and PART WHL relations in reACE 2005 did not benefit from the more 

abstract level of type classification. 

The above results are in accordance with the previous ones reported in [Zhou et al., 

2005] and [Zhou et al., 2007], as they reveal that is more difficult to classify on deeper 

levels of the hierarchy because there are less examples per class and the classes are getting 

more similar as the classification level gets deeper. The authors in [Zhou et al., 2007] also 

argued that the closer distance among the classes at subtype level generally causes the 

performance decreasing, since this might let the classifiers at deeper levels more unstable.   
Table 6.7. Performance results of relation subtypes on both datasets 

 reACE 2004 reACE 2005 
Rel. Type Rel. Subtype P R F1 Rel. Subtype P R F1 

 Employ-Staff 78,10 86,90 82,27 Employ 89,60 86,22 87,88 
EMP_ORG Employ-Exec 95,49 77,00 85,25 - - - - 

 Member 92,18 76,82 83,80 Member 94,30 71,03 81,03 
GEN_AFF Citizen-Resident 98,81 69,58 81,66 Citizen-

Resident 
100,00 61,10 75,85 

 Located 83,28 80,09 81,65 Located 86,00 84,10 85,04 
PERS_SOC Business 100,00 69,42 81,95 Business 0,00 0,00 0,005 

 Family 100,00 39,11 56,23 Family 92,70 57,70 71,13 
PRT_WHL Part-Whole 93,20 83,38 88,02 Geo 100,00 62,10 76,62 

 Subsidiary 95,10 75,30 84,05 Subsidiary 95,80 72,51 82,54 
Avg 92,91 73,07 81,80 Avg 82,30 61,85 70,62 

 

Table 6.8. Classification results of relation 

types in the reACE 2004 dataset 
Table 6.9. Classification results of relation 

types in the reACE 2005 dataset 
 

Type #E+ #Rule
s 

TR P R F1 
EMP_OR
G 

603 65 0,11 86,00 84,0
0 

84,9
9 GEN_AF

F 
450 51 0,11 86,90 78,9

0 
82,7

1 PER_SO
C 

50 18 0,36 100,0
0 

64,4
0 

78,3
5 PRT_WH

L 
274 33 0,12 91,00 81,6

0 
86,0

4 Total 137
7 

167 0,12       
Avg       90,98 77,2

3 
83,5

4 

 

Type #E
+ 

#Rule
s 

TR P R F1 
ORG_AF
F 

26
4 

38 0,14 88,70 77,8
0 

82,8
9 GEN_AF

F 
31

9 
60 0,19 94,40 70,4

0 
80,6

5 PER_SO
C 

58 19 0,33 100,0
0 

58,3
0 

73,6
6 PRT_WH

L 
16

6 
35 0,21 87,60 72,3

0 
79,2

2 Total 80
7 

152 0,19       
Avg       92,68 69,7

0 
79,5

6  

Theory Ratios. In Tables 6.8 and 6.9, further results concerning the theory ratio are 

reported. 

Comparing the overall result in terms of TR, on both corpora, one draws the conclusion 

that more rules were necessary to cover the examples on reACE 2005, with an average of 

8.24 rules per examples, against 5.3 rules per examples on reACE 2004. Yet, these TR 

scores are also reflected in the overall F-measure, significantly lower on the reACE 2005 

dataset. The reason may be the presence of more complex examples that are only covered 

by more lengthy rules, or rules with lower generalization degree, in reACE 2005. 

For the three relations types that both datasets have in common, i.e., GEN_AFF, 

PER_SOC and PRT_WHL, the number of final rules in their respective models are 

approximately equal, particularly for the last two relation types. However, considering the 

different proportion of examples of the PRT_WHL type relation in both corpora, this 

relation was responsible for the major gap in the TR score, which was approximately 0.9 

units. 

The bottom line with respect to the theory ratio is that the proposed solution generates 

theories of tractable size in the experiments of both datasets. 

                                                
5 The zero result for the business relation in reACE 2005 is due to very few instances available for training. 
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6.3.3. Experiments on Composite Model and Cross Corpus Learning (EQ 7) 

Cross-validation has been applied as the facto standard for information extraction 

evaluation. However, as mentioned by Airola et al., (2008), it is also somewhat biased 

because both training and test datasets share very similar characteristics.  

In order to differently assess the level of generalization of the induced rules in 

OntoILPER, in the scenario when more than one dataset are available for training, two 

experiments were conducted: (i) composite model, when both datasets are integrated in the 

training step in order to investigate how they differ; (ii) cross-corpus learning, in which 

one trains the system with one corpus and tests it using the other one. 

The former experiment may also confirm the existence of overlapping rules or patterns 

in both datasets. Thus, focusing on their inner differences, customized background 

knowledge can be provided by the expert domain which will certainly take profit of this 

valuable information. The latter mainly concerns the relevant research question concerning 

the training in the proposed ILP-based learning component: Would the final induced rules 

generalize beyond the specific characteristics of the data they were trained on? 

In view of the very plausible existence of difference in both the types of named entities 

annotated in the corpus, and the relative positive-negative ratio of pairs, it is not obvious 

how the learning component, trained on a given corpus, would perform on data which was 

not used in its previous training phase. 

In the following discussion, the equivalence of relation subtypes shown in Tab. 6.10 

was taken into consideration, with their respective number of positive examples. 

Table 6.10. Equivalence of relation subtypes between the reACE datasets 

reACE 2004 #E+ reACE 2005 #E+ 
Business 35 Business 16 
Citizen-Resident 98 Citizen-Resident 39 
Employee-Executive +  Employee-
Staff 

523 Employement 228 
Family 15 Family 42 
Part-Whole 174 Geographical 119 
Located 352 Located 280 
Member of Group 80 Membership 36 
Subsidiary 100 Subsidiary 47 

 
Table 6.11. Performance results on composite and cross-corpus learning. 

Model P  R F1 

reACE 2004 + reACE 2005  = Composite Model (CV*) 93,28 71,21 80,76 

Composite Model applied on reACE 2004 96,18 85,55 90,55 

Composite Model applied on reACE 2005 96,81 83,61 89,73 

Cross-corpus Learning: reACE 2004   ► reACE 2005 42,54 55,25 48,07 

Cross-corpus Learning: reACE 2005   ► reACE 2004 48,34 49,14 48,73 
* 5-fold cross-validation 

 
Discussion. The first row of the Tab. 6.11 reports the experimental results on the 

composite model built using all instances of both corpora. The achieved performance, in 

terms of P/R/F1 (93.28/71.21/80.76), did not vary significantly compared to the best 

individual model (reACE 2004) (92.91/73.07/81.80) evaluated with the same 5-fold cross-

validation.  

On the contrast, compared to the reACE 2005 individual cross-validation, the gain was 

in almost 10 percentage points in overall performance (83.03/63.3/71.86). This means that, 

to some extent, a larger amount of training data can compensate for the differences 

between corpora, even with different annotation strategies. 
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In the second group of experiments, the aim is to evaluate the performance of the 

composite models applied on each dataset individually. Unsurprisingly, one can observe 

that the more training data is available, the better the performance is. Actually, the 

combined positive effect of more available data for training was the reason for an increase 

in terms of F1-measure of almost 10% for the reACE 2004, and 20% for the reACE 2005.  

The last group of experiments on cross-corpus learning, as expected, did not perform 

well for both datasets, despite both corpora have been originated from the same news 

broadcast domain. These results are in accordance with the findings on biomedical domain 

reported in [Airola et al., 2008] in which five corpora were evaluated for cross-corpus 

learning.  

In this case, F1-measure score dropped around 30% when the reACE 2004 model is 

applied on the reACE 2005. For the opposite direction, applying the reACE 2005 model on 

the reACE 2004 dataset caused the F1 score decreased in 20%. A closer look at Tab. 6.10 

reveals that the reduction in performance was mainly due to: 

- the fact that the datasets has different positive-negative distribution of examples; 

- some relations that are not really equivalent, i.e., they contain different named 

entities as arguments. 

In the above mentioned study in [Airola et al., 2008], the authors dealt with several 

cases where the performance was quite low, with a decreasing in F1 measure more than 

50%. Moreover, as discussed in [Caporaso et al., 2008], applying text mining tools beyond 

the development data may lead to disappointing results. 

It worth noting that the negative difference found in the cross-corpus learning 

experiment, compared to the results obtained in the cross-validation, seems to break the 

well-accepted assumption made by the majority of machine learning methods that both 

training and test examples are evenly distributed.  A further observation, according to the 

statistics presented in Tab. 6.10, is that the examples are clearly not evenly distributed over 

the corpora. As explained before, in cross-validation all characteristics of the test corpus 

are also present in the training corpus, and such corpus peculiarities are thus somehow 

learned by the current machine learning algorithms 

The conclusion is that the relatively large differences in the obtained performance 

scores indicate that different datasets, even belonging to the same domain, may have 

notably different characteristics that are more perceptible when performing cross-corpus 

experiments, as the ones discussed above. Therefore, the cross-corpus learning results not 

only support the assumption that the learned models generalize beyond the corpora they 

were trained on, but also have the potential to indicate the best resource for training from a 

generalization perspective, that is, they can reveals the distinguish characteristics of a 

particular corpus.  

6.3.4. Qualitative Analysis of the Induced Rules (EQ 8) 

One of the main advantages of the learned classifiers in the proposed approach, is that the 

final models, or the set of extraction rules, are expressed in symbolic form. As a result, this 

enabled us to further inspect several characteristics of them. Note that this would not be 

possible using statistical or numerical-based classifiers that only return us a numerical 

value denoting the likelihood of an example belonging to a given class. It follows a 

discussion about (i) the rule size distribution, and (ii) the contribution of feature types in 

the final induced theories. 

Fig. 6.3 displays the rule size distribution in the induced set of rules. 
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Discussion. For both corpora, one can see that the great majority of learned rules have less 

than 12 ground BK predicates in their body part. Actually, for both datasets, more than 

80% of the found rules have up to 11 predicates. This leads to other desired qualities of 

these rules: they are more suitable and easier to be understood by a human domain expert. 

Another interesting finding revealed by Fig. 6.3 concerning both datasets is that, the 

shorter the final rules, the better the level of rule generalization of the training examples. In 

other words, the rule size distribution can inform how general or, contrarily, how specific 

the final rules are. In addition, it also indicates the overfitting degree of the final set of 

induced rules.  

 

Figure 6.3. Rule size distribution in reACE 2004/2005. 

 

Second, the objective is to investigate the contribution of different features, or ground 

predicates that form the hypothesis space for rule induction on the final learned models of 

the reACE corpora. Fig. 6.4 shows the contribution of five group of features (in percentage 

points). Not surprisingly, due to the same domain and source of both datasets, the higher 

level view of each group of features shows that their learned models are very similar. Yet, 

in both datasets, the structural and semantic group of features were predominant, as these 

two group of features were responsible for almost 60% of participation in the final 

theories. Interestingly, this confirms the usefulness of the proposed graph-based model 

which highlights the importance of the relational and semantic aspects of the underlying 

model. 

 On the other side, the detailed view (Fig. 6.5) of the contribution of each individual 

feature reveals that: 

 the chunking-related features in both corpora were equally exploited, except for 

the ck_dist_root predicate that was much more used by the rules of the reACE 

2005; 

 the very poor participation of the stem predicate in the models of both datasets 

denotes, in fact, a positive effect on the extraction rules, since they do not need 

to match the exact stem of the words in the examples.  

 Among the lexical features, the orthographical features, and mainly word length 

contributed most. 

 POS-related features were evenly used in both corpora. Notice that any POS 

trigram appeared in the extraction rules. 

 the extraction rules relied more on next and dependency structural features for 

the reACE 2004. 

 As already mentioned, the semantic features provided by both corpora 

consistently appeared in the extraction rules, which indicates that the entity type 

information has a high discriminative effect in RE.  
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Figure 6.4. Ratios of the BK predicate types in final theories. 

 

Figure 6.5. Frequencies of the BK ground predicates in final induced theories. 

6.3.5. Discussion on Error Analysis and Remarks on the reACE Corpora 

In all experiments discussed in this section, the typical trade-off between precision and 

recall was again verified by the proposed OBIE framework preferring higher precision than 

recall
6
. In order to obtain a clear understanding of the precision-recall trade-off in the 

experiments, the distributions of errors from misclassification were evaluated across 

relation subtypes (Tab. 6.12) for both corpora using all training data. 

According to the Tab. 6.12, the number of false negatives (FN) overtakes the number of 

false positives (FP) for both corpora. A possible reason for that may be due to the 

unbalanced class distribution in data. In this case, the number of negative examples greatly 

outnumbers positive examples, with a positive-negative ratio around 10% in both datasets. 

Thus, for the reACE datasets, in which very few of the training examples are relation 

instances, the classifier is less likely to identify candidate instances as actual relations.  

In fact, the impact of class imbalance on the performance results was also reported on 

the original ACE datasets by [Cullota and Sorensen, 2004], [Zhou et al., 2007]. In 

[Chawla, 2002)], it was pointed out that datasets with unbalanced class distributions 

present a number of problems for all machine learning algorithms. In addition, the domains 

addressed by RE systems tend to have a large number of objects and relations, in which 

just a few are positive examples.  

This clearly directs the future efforts for a possible solution to the problem of 

unbalanced class distribution. The most straightforward way of dealing with this problem 

                                                
6
 The ILP learning component in OntoILPER can be biased either towards precision or recall by means of the 

appropriate parameter setting.  
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consists in employing sampling techniques, such as under-sampling [Chawla, 2002], which 

selects a subset of negative examples during training. This filtering technique not only 

allows for the creation of a balanced training dataset by considerably reducing the number 

of negative examples, but also enables faster rule learning. 

 
Table 6.12. Distribution of errors in reACE corpora 

 
#FP #FN Total 

reACE 2004 109 145 254 

reACE 2005 34 87 1217 
 

Another source of errors is related to the introduction of parsing errors and their 

propagation in the text processing pipeline. As the experimental evaluation on reACE 

corpora suggests, shallow natural language processing (tokenization and chunk analysis) is 

more accurate and may also complement, with useful information, what was missed by 

deeper text preprocessing techniques, such as dependency parsing. Indeed, related work on 

RE only based on deeper representations inevitably suffered from errors introduced by 

such kinds of representations.  

To alleviate the impact of parsing errors in the proposed method, the graph-based model 

of sentences representations that guides the generation of relational features allows for an 

effective exploration of the highly reliable syntactic features as well as other useful deep 

natural language subtasks. In this light, another hypothesis of this thesis is that the 

proposed graph-based model of sentence representation could be fully exploited in the 

ideal scenario where the text preprocessing errors at each step in the pipeline would be 

independent, i.e., if there were no dependency between the preprocessing modules 

performed in OntoILPER. 

6.3.6. Conclusions on the reACE Corpora 

The overall conclusion concerning the experimental assessment on the reACE corpora 

discussed so far validates the effectiveness of the proposed hypothesis space which, 

contrary to the trend of using propositional features or single table-based representations in 

RE community, relies on a set of relational features as the formalism for representing the 

examples (Research Questions 2-5). 

In the OBIE scenario, one can also note that the hierarchal classification results 

obtained by OntoILPER (Research Question 6) agreed with related work in the sense that 

the classification on deeper hierarchical levels in an ontology.  

The performance results on cross corpus learning also showed that, even belonging to 

the same domain, there may exists notable peculiarities in these datasets that, not only 

reveal the distinguish characteristics of each dataset in particular, but also can significantly 

influence in the accuracy results (Research Question 7). 

Finally, the results of the qualitative analysis demonstrated that the combination of 

structural, lexical, syntactical, and semantic features allows for a synergic cooperation that 

seemed to be critical for relation extraction in this research work (Research Questions 2-5, 

8). 

                                                
7
 Due to the insufficient number of examples, the business relation was not included.  
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6.4.  Results and Discussion on the TREC Dataset (News Domain) 

This section evaluates and discusses the experimental results on both NER and RE using 

the TREC dataset. For all experiments, it was adopted the 5-fold cross-validation that 

provides unbiased performance estimates of the learning algorithms, and also enables the 

comparison with other IE systems evaluated using the same corpus. Moreover, although 

OntoILPER provides a named entity tagger in its preprocessing component, it was decided 

that, for having a fair experimental setup for all experiments conducted on the TREC 

dataset, this named entity tagger should not be used. 

6.4.1. Assessment Scenarios (EQ 9) 

In all experiments reported in this section, the same assumption made in [Roth and Yih, 

2007] [Giuliano et al., 2007] was adopted in which the problem of phrase detection is 

already solved, and the entity boundaries are provided by the dataset as input. Thereby, 

OntoILPER only needs to concentrate on the NER and RE classification tasks. 

Several experiments were conducted for evaluating the effectiveness of OntoILPER 

taking into consideration three different kinds of extraction models for classifying 

instances of classes and relations. For the sake of convenience, these extractions models 

(classifiers) were named using the same name convention proposed in [Roth and Yih, 

2007].  

These models are used in three different assessment scenarios, and they are described as 

follows: 

 Separate Model. The separate models for entities ES and relations RS are constructed 

by training entities and relation classifiers separately or independently, i.e., the entity 

classifier ES does not know the labels of the relations in the sentence; while the 

relation classifier RS is not aware of the labels of its entity arguments neither. In other 

words, the ES and RS classifiers are build using no information from each other. 

These models are generated by OntoILPER as illustrated in Fig. 6.6 part (a).  

 Pipeline Model. The pipeline model for entities, denoted as EP (for entity classifiers) 

is obtained by first training a separate relation classifier Rs, in which its output is then 

used as additional features for training the EP classifier. Analogously, the RP model 

uses the predictions on its two entity arguments, given by a separate entity classifier 

(ES), as additional features in its learning process. This model construction process is 

displayed by Fig. 6.6 part (b). 

 Omniscient Model. In the omniscient model, it is assumed that the entity classifier 

EO knows the correct relation labels given from the annotated corpus. This model 

takes advantages of such labels as additional input features in its learning process. 

Similarly, the relation classifier RO knows the correct entity labels, available from the 

annotated corpus as well. These additional features are then used in training. 

Although this assumption may appear unrealistic, it may reveal how accurate the 

classifiers can be without this information. Fig. 6.6 part (c) illustrates the 

construction process of the omniscient models in OntoILPER. 

 

All classification models for the named entities Location (LOC), Organization (ORG), 

and Person (PER) obtained high overall accuracy in all models (see Tab. 6.13). All these 

models (EO, EP, ES) are highly precise, with precision values ranging from 93.5 (obtained 

by the PER entity) to 98.7 (obtained by the ORG entity). 
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Still considering the entity models, the same analysis of their performance results in 

terms of recall values (ranging from 74.4 to 92.4) shows that more instances were not 

considered during classification, than the number of instances with false entity class 

predictions. The results in Tab. 6.13 also reveal the balanced nature between precision and 

recall in all classification models for the LOC and PER entities. On the contrary, the ORG 

models obtained the highest precision among all entities, but with the lowest performance, 

in terms of recall.  

 
(a) 

 
(b) 

 
(c) 

Figure 6.6. Entity and relation extraction models built using the TREC dataset. The name 

convention for the models was the same in (Roth and Yih, 2007) 

 

Tables 6.13 and 6.14 report the classification results achieved by all three 

aforementioned models for entities and relations, respectively.  

As already discussed, the RE task has been a more difficult task than NER. This was 

once more confirmed by the performance results achieved by the relation models (RO, RP, 

and RS) in all results shown in Tab. 6.14. Similarly to the entity extraction models, the 

relation extraction models preferred to have more precision than recall: precision scores 

range from 85.7 to 93.1, while recall ones range from 72.1 to 86.1. 

Although the results in Tab. 6.13 and 6.14 suggest that OntoILPER had always the 

preference of precision over recall, that is not a right conclusion because, in reality, 

OntoILPER can use other evaluation functions that would prefer recall than precision, such 

as the recall evaluation function (Santos, 2009). 

 

 

 

 



190 

 

Table 6.13. Results for Entity Classification (All Models) 

NER 

Model 

LOC ORG PER 

P R F1 P R F1 P R F1 

EO 95.9 92.4 94.1 98.7 79.2 87.8 93.7 91.2 92.4 

EP 95.2 92.0 93.5 97.5 76.5 85.7 93.5 89.0 91.3 

ES 96.0 88.4 92.0 97.0 74.4 84.3 94.8 87.5 91.0 

 

Table 6.14. Results for Relation Classification (All Models) 

RE 

Model 

located_in work_for orgBased_in live_in kill 

P R F1 P R F1 P R F1 P R F1 P R F1 

RO 90.5 78.6 84.0 85.7 86.1 85.8 88.7 82.5 85.4 87.4 76.9 81.7 92.3 78.0 84.3 

RP 91.1 78.0 83.9 87.2 80.8 83.8 91.5 84.0 87.5 85.7 72.1 78.2 91.5 77.6 83.9 

RS 91.2 75.9 82.6 93.1 72.9 81.7 88.4 77.0 82.2 92.5 67.4 78.0 97.5 73.7 83.8 

 

Discussion. The classification results achieved by the richer models for entities (EO and 

EP), compared to the ES model as the comparison baseline, had a little improvement for all 

entities both in precision and recall scores. These results were expected as the EO and EP 

models are richer, i.e., more informed models than the ES model. Surprisingly, for the 

PERSON entity, the entity labels caused a drop of 1.3% in precision, contrarily to our 

intuition. This can be originated from noisy ORG class examples in the dataset. 

The results in Tab. 6.14 shows that, for almost all relation models (except for the 

ORGBASED_IN relation) the entity labels provided to the RO model, decrease the 

precision of the classifiers, but contribute to improving the recall scores in all relation 

classifiers. This can be explained by the fact that the noisy information about entities in the 

dataset itself can be mitigated by these further clues to the classifiers.  

Thus, the correct entity labels enable the classifiers to cover more examples in this case.  

Indeed, an interesting question to be answered concerns the case of having a new 

dataset with all its entities annotated. In this case, what is the better way of using 

OntoILPER for RE? Or putting differently, what is the best relation extraction model to 

learn in OntoILPER: RP or RS?  

According to the results summarized in Tab. 6.13 and 6.14, the pipeline models 

outperformed the separate ones on both NER and RE tasks. But, specially for the relation 

extraction models, the overall F1-measure results showed a significant statistical difference 

between the RP and RS models. Therefore, the distinct characteristic of the learning 

process in OntoILPER, i.e., its capability to employ rules learned in a previous learning 

stage as additional BK predicates at a posterior learning stage can be very useful, as 

suggested by the above results in the TREC corpus. 

 

Example of an induced rule in OntoILPER. In the following, an induced rule from the 

RP model for the located_in relation is shown. This rule is expressed in terms of (number 

of literals), (positive examples covered), (negative examples covered), and the (rule 

precision P):  

 

 

Rule: #Literals=4, PosScore = 187, NegScore = 19, Prec = 90.8% 

located_in(A,B):- t_class(A,loc), t_next(A,B), t_class(B,loc). 
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The above rule is in Prolog syntax. One can see that this rule classifies an instance of 

the located_in relation in which its high precision score is mainly due to the presence of 

several phrases similar to "Perugia, Italy" in the learning corpus, indicating that the first 

argument (A) "Perugia" is followed by (predicate next) the second argument (B) "Italy", 

not considering the punctuation symbol between them. This rule belongs to the RP relation 

model in OntoILPER. 

6.4.2. Learning Curves 

A further evaluation of the ES and RS classifiers were performed in which aims at 

investigating the effect of limited training examples in the learning process. This is done 

by incrementally adding subsets of examples as training data to OntoILPER. 

For that, nine experiments were conducted in which incremental parts of the training 

data, corresponding to 10% of the total number of examples each one, are added to a 

previous subset of training data at a time. Therefore, starting from a training set with only 

10% of the total training examples, one generated other training sets of 20%, 30%, 40%, 

and so on, from the total number of available examples in the corpus. 

The learning curves in Fig. 6.7 relate the F1-measure score for each portion of the 

training dataset. From the left part of Fig. 6.7, one can observe that for LOCATION and 

PERSON entities, their classifiers yielded a reasonable F1 score (around F1 = 70%) with 

just 20% of the total number of training examples. That corresponds to 30 and 26 

extraction rules in the final induced model for LOCATION and PERSON entities, 

respectively. In contrast, for the ORGANIZATION entity classifier, more learning 

examples were necessary for attaining the same performance. Indeed, 70% of the total 

number of examples were used. A possible explanation of this phenomenon may be related 

to the more representative number of ORGANIZATION entities in the TREC corpus. 

Actually, the number of examples instances in the PERSON and LOCATION classes are 

almost the double of the ORGANIZATION entity class.  

In Fig. 6.7 (right part), almost all relations obtained better performance relations as 

more and more training data are available, which explains the steadily increasing rate in 

terms of F1 for all relation curves. Particularly for the ORG_BASED_IN and LIVE_IN 

relations, this trend was also verified, but with the initial lower F1 scores for the 10%-40% 

of the training corpus, and becoming rapidly higher for the rest of the corpus.  

The fact that the ORG_BASED relation has as one of its arguments, an 

ORGANIZATION entity, may also explain the lower learning performance curve for the 

ORGBASED_IN relation.  

 

 

Figure 6.7. Learning curves for entity (a) and relations (b) classifiers: ES and RS, respectively. 
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6.4.3. Comparative Evaluation (EQ 10) 

This section provides a comparative evaluation of the NER and RE classification models 

generated by OntoILPER with the best ones presented in [Roth and Yih, 2007] and 

[Giuliano et al., 2007] on the TREC dataset. To the best of our knowledge, these are the 

only works that used this dataset for evaluating both NER and RE tasks.  

For the entity classification comparison, the two best classification models found in 

[Giuliano et al., 2007] and [Roth and Yih, 2007] were chosen, which are described as 

follows: 

- the MC model [Giuliano et al., 2007]. Giuliano et al. (2007) also assume that entity 

boundaries have already been determined. This MC corresponds to the ES model 

generated by OntoILPER.  

- the Separate with Inference (Separate w/inf) model [Roth and Yih, 2007]. This NE 

classification model uses an additional global inference procedure to produce the 

final decision. The Separate w/Inf equally relates to the ES model. 

The comparative assessment involving these NER classifiers are summarized in Tab. 

6.15, while 6.16 shows the comparative results on the RE task. 

The second comparison relates the best RE classifiers proposed by the same 

aforementioned works. 

In Tab. 6.16, the RO model consists of the best relation extraction model discussed in 

Section 6.4.1. The two other RE models in this comparison are: 

- The MO|KSL model [Giuliano et al., 2007] similarly corresponds to the RO model, in the 

sense that the former also uses the corpus entity labels during learning as it is done in 

OntoILPER.  

- The Omniscient w/Inf  model consists of the best informed RE classifier reported in 

[Roth and Yih, 2007]. This classifier also employs a global inference procedure to 

produce its final decision on the relation classification.  

 

Discussion. The results on NER shown in Tab. 6.15 suggest that the MC model has 

superior performance in terms of F1 score. However, statistical significance tests (paired 

Student t-test) for the difference between F1 scores of the ES model and the MC model 

revealed that there is no significant difference at α = 0.05 (95% confidence interval) 

between them. The same result occurs when the ES model is compared with the Separate 

w/Inf. A further look at Tab. 6.15 shows that the ES model is more precise than the other 

ones, but has a lower recall performance. For those applications in which precision is more 

desirable than recall, the ES model could be a good alternative, as it avoids overloading 

end-users with too many false positives. 

On the other hand, considering the relation classifiers, the results in Tab. 6.16 show that 

OntoILPER outperforms the others. The main reason for that probably relies on the better 

sentence representation model employed by OntoILPER. 

In fact, in the proposed graph-based model, any kind of relationships between terms in a 

sentence are represented using a richer formalism of representation (first order logic) 

which is more expressive than the feature-based representation used by the related work 

evaluated. In other words, such statistical extraction models cannot effectively capture the 

structural information derived from parsed sentences [Zhou et al 2005]. Contrary to that, 

OntoILPER employs a first-order model for representing examples and, as the experiments 

reported here have demonstrated, this structural information is critical for further 

performance improvement in RE.  
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Table 6.15. Comparative Results for Entity Classification (Separate Models) 

NER Model 
LOC ORG PER 

P R F1 P R F1 P R F1 

ES 96.0 88.4 92.0 97.0 74.4 84.3 94.8 87.5 91.0 
MC 94.2 94.4 94.3 91.9 88.5 90.2 94.8 96.6 95.7 
Separate w/Inf 91.8 88.6 90.1 91.2 71.0 79.4 90.6 90.5 90.4 

 
Table 6.16. Comparative Results for Relation Classification (Best Models) 

RE Model 
located_in work_for orgBased_in live_in kill 

P R F1 P R F1 P R F1 P R F1 P R F1 

RO  90.5 78.6 84.0 85.7 86.1 85.8 88.7 82.5 85.4 87.4 76.9 81.7 92.3 78.0 84.3 

MO|KSL 79.6 76.0 77.8 76.8 80.0 78.4 74.3 77.2 75.7 78.0 65.8 71.4 82.8 81.0 81.9 
Omniscient 

w/Inf 

61.9 62.9 59.1 79.2 50.3 61.4 81.7 50.9 62.5 63.9 57.3 59.9 79.9 81.4 79.9 

 

The OntoILPER experimental results on the TREC corpus point in the direction of 

being more effective on RE than NER. Actually, OntoILPER relies on the Stanford 

CoreNLP NER, which has demonstrated state-of-the-art performance in comparison to 

other NER systems [Dlugolinsky et al., 2013]. However, even without using the Stanford 

NER in its preprocessing step on the TREC corpus, OntoILPER outperformed the feature-

based NER method proposed by Roth and Yih (2007).  

On the other side, the CRF-based NER system proposed by Giuliano et al. (2007) uses a 

gazetteer of location, people’s names and organizations in its preprocessing phase, which 

certainly has a boosting impact on the NER performance results. Despite that, the 

statistical significance tests showed that OntoILPER is comparable to NER system 

proposed by Giuliano et al. (2007). 

Although the IE systems chosen for this comparative assessment may be a little 

outdated, these results provide a baseline performance evaluation aiming at validating the 

OntoILPER effectiveness when compared to other NER systems. In addition, future work 

on feature engineering, specially for NER, can contribute to further improve OntoILPER 

results on this information extraction task. 

A final remark concerns the NLP preprocessing component in OntoILPER which is 

based on supervised trained models on the generic News domain. Therefore, this fact might 

raise the following question: “does OntoILPER have state-of-art performance on other 

different domains?” 

In fact, due to its extensive range of relational features easily integrated by a hypothesis 

space carefully tailored, OntoILPER has equally outperformed other very recent state-of-

the-art feature- and kernel-based methods for RE on biomedical domain, as reported in 

(Lima et al., 2014). 

6.5.  Results and Discussion on PPI Corpora (Biomedical Domain)       

(EQ 11) 

This section details the experiments and results related to the PPI extraction task using 

several combinations of the simplification rules.  

For the experiments reported in this section, the AUC as recommended by Airola et al. 

(2008)] was also used in the evaluations. 

In addition, the best setting for the GILPS parameters was established, according to the 

following two criteria: maximizing accuracy performance and mitigating model 

overfitting. Such parameters were obtained using a separate test dataset, i.e., a dataset with 

no previously used examples. The parameter setting in all experiments reported in this 

section are summarized in Tab. 6.17.  
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Table 6.17. ProGolem parameters for the biomedical experiments. 

ILP Parameters 
Parameter Value 

theory_construction global 
evalfn coverage 

i 3 
minprec 0.0 
minpos 3 
noise 0.35 

6.5.1. Results and Discussion on Graph Transformations 

Four different combinations of simplification rules (see Section 4.5.2), or Filters were used 

in all experiments reported in this section. The set of rules that compose each filter is 

shown in Tab. 6.18. As it can be noticed, they gradually become more restrictive, i.e., the 

filter in the last row of the table is composed of the preceding filters. Besides the baseline 

filter (No Filter in Tab. 6.18), denoting the case where no transformation rule is applied, 

four different combinations of simplification rules (see Section 4.5.2), hereafter filters, 

were provided.  
Table 6.18. Filters used in the experiments. 

Filter Rules composing the filter 
No Filter No rule application 
Filter 1 R4 + R5 + R6 on dependencies in {det, aux, auxpass} 

Filter 2 
R4 + R5 + R6 on dependencies in {det, aux, auxpass, 

amod, predet, advmod, partmod, tmod, mark } 
Filter 3 Filter 2 + R1 + R2 
Filter 4 Filter 3 + R3 

 

The analysis here starts with the overall results of the transformation/simplification 

process itself with its basic statistics taken into consideration that are reported in Tab. 6.19. 

The average number of tokens and dependencies per sentence, compared to the original 

version of the dataset (with no reduction) and the final version applying all simplification 

rules are shown in Tab. 6.19. As expected, for all datasets, the number of nodes or tokens 

in the graph-based representation of sentences, and dependencies, the edges in this same 

graph are considerably reduced by the proposed simplification rules. One should note that 

the average number of nodes is always slightly less than the number of the edges in the 

representation graphs. This can be explained by the fact that several tokens or nodes of the 

sentences are removed, e.g., determiners and prepositions, contrarily to the dependencies 

(edges) that still remains in the simplified version of the graph. For instance, if one 

considers the following prepositional phrase “tears in heaven”, where the token denoting 

the preposition is removed from the graph and it is created the edge prep_in(tears, heaven) 

in the graph. 

Table 6.19. Average number of nodes and dependencies per sentence before/after transformation 

 LLL HPDR50 IEPA 
No 

filter 
All 

filters 
No 

filter 
All 

filters 
No 

filter 
All 

filters 

Average #nodes/sent 20.3 13.3 18.4 13.1 22.0 15.4 

Average #dep/sent 20.4 13.2 18.8 13.4 22.9 16.0 
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Tab. 6.20 shows the simplification ratio, in terms of the number of edges, for all 

datasets and all filters. Again, the more restrictive filters further reduce the number of 

edges in the graphs. According to the results reported in this table, the minimum (12%) and 

the maximum reduction ratio (35%) for the IEPA and the LLL datasets were obtained, 

respectively.  

Besides the direct effect on the extraction results, the reduced version of the graphs also 

has a significant impact on reducing the training time. In reality, a reduction up to 15% in 

training time was obtained using the simplified versions for the datasets in all experiments 

in this section. The experiments were performed on an Intel Core 2 Duo, 2.30 GHz with 6 

GB of RAM on Linux. GILPS
8
 was executed on YAP Prolog 6.2.2

9
. 

Table 6.20. Reduction of the number of dependencies per filter in percentage points (%) 

 
LLL HPD

R50 
IEPA 

Filter 1 17.31 

 

12.50 12.08 
Filter 2 19.29 14.74 14.20 
Filter 3 28.26 24.01 25.03 
Filter 4 35.07 28.75 29.91 

 

Going deeper into the types of the dependencies reduced from the IEPA dataset using 

Filter 4, i.e., the more restrict, it is obtained the results shown in Tab. 6.21. This filter 

removes all of the determiners, verb auxiliaries and markers (like “that”) from the IEPA 

corpus. The modifiers including adjective, temporal, and quantifiers are severely reduced 

from the original version of the dataset. The same occurs to some dependencies 

representing the subject and clausal complement of the sentences, due to the clausal-level 

simplification rules defined in Section 4.5.2, which only removes the non-informational 

clauses in sentences, leaving untouched the other more informational ones.  

Table 6.21. Number of the typed dependencies removed from the IEPA corpus using the Filter 4 

Dep. det aux mark *mod advcl nsubj ccomp 
No filter 956 593 169 1632 79 919 179 
Filter 4 0 0 0 113 72 829 60 

 

6.5.2. Results and Discussion on PPI Extraction 

The OntoILPEr framework was used in the experiments to evaluate the proposed method 

for simplifying the graph-based representations of sentences. In the experiments on PPI 

extraction, the filters showed in Tab. 6.18 were applied on the original version of each 

dataset described in Section 5.1. The resulting simplified versions of the PPI were 

employed by OntoILPER for training. Table 6.22 reports on the results obtained for each 

modified versions of the datasets. The baseline for comparisons in this experiment was 

established as indicated by “No Filter”. 

A first look at Tab. 6.22 reveals that the overall average result in terms of P, R, and 

consequently F1, was consistently higher than the baseline score for all datasets. On the 

other hand, taking the filters individually, one can see that the only case where a filter 

hampered a little bit the recall score was for the Filter 2 of the HPRD50 dataset, but for all 

the filters in the other datasets, the simplified versions of the dataset achieved better 

results. Such results suggest that all evaluated corpora may profit from the application of 

the transformation/simplification rules proposed in the present work.  

                                                
8 General Inductive Logic Programming System (GILPS). http://www.doc.ic.ac.uk/~jcs06/GILPS 
9 Yet Another Prolog. http://www.dcc.fc.up.pt/~vsc/Yap 
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The best filter seems to be Filter 2 on the LLL dataset and Filter 1 for the other 

datasets. Interestingly, Filters 3 and Filter 4 practically had the same performance in terms 

of P/R/F1 on the LLL dataset. An explanation for such results is probably due to the size of 

such dataset. Indeed, the LLL dataset has less than 100 sentences, and the system could not 

found any sentence for applying the R3 rule using this dataset. On the contrary, with the 

other larger datasets, especially for the IEPA dataset which contains 480 sentences, the 

difference between the results of Filter 3 and Filter 4 is more noticeable. 

The last row of Tab. 6.22 shows the difference in performance in percentage points 

between the average F1 score of the filters, and its related baseline score. According to the 

results reported in Tab. 6.22, one can expect an improvement in terms of both precision 

and recall, since the difference between the average of all filters and the baseline 

performance (No Filter) is always positive. In fact, the extraction rules that were induced 

using the simplified versions of the graphs were slightly more precise (in average 2.9 

points) than the same rules induced without any simplification. Particularly to the IEPA 

dataset, the same line of this table shows a significant improvement in precision of 4.8 

percentage points. 

Table 6.22. Performance results on PPI extraction using the filters 1-4. 

 LLL HPRD50 IEPA 
Filter 
type 

P R F P R F P R F 
No Filter 80.9 67.9 73.8 68.4 68.4 68.4 64.1 75.5 69.3 
Filter 1 80.8 74.0 77.3 72.6 78.2 75.3 71.7 81.0 76.1 
Filter 2 84.2 76.1 79.9 69.3 66.9 68.1 68.7 76.2 72.3 
Filter 3 82.8 75.3 78.9 70.2 73.7 71.9 68.6 71.7 70.1 
Filter 4 82.8 75.3 78.9 69.9 73.2 71.5 66.6 77.5 71.6 
F1 average of all 
filters 

82.7 75.2 78.8 70.5 73.2 71.7 68.9 76.6 72.53 
Diff. to baseline 1.8 7.3 5.0 2.1 4.60 3.3 4.8 1.1 3.3 

 

Considering the difference between averaged recall scores and their corresponding 

baseline performance scores shown in the last line of Tab. 6.22, the results were even more 

promising (up to 7% to on the LLL dataset). Indeed, the improvement in recall on all 

datasets in this experiment supports the working hypothesis raised here that a previous 

transformation step, carried out before the relation extraction task, can improve overall 

extraction results, mainly alleviating overfitting of the extraction rules automatically 

induced by OntoILPER. In other words, the rules induced using the simplified versions of 

the graphs were able to generalize more examples, as demonstrated by the consistent 

higher recall values for all dataset, and notably for the LLL and HPRD50 datasets. 

However, contrarily to what was expected, it was on precision, instead of recall, that the 

filters contributed more for the IEPA dataset. 

Tab. 6.23 summarizes the detailed results of the Tab. 6.22 showing the percentage gain 

relative to the baseline performance of each filter. 

Table 6.23. Relative gain (in F1) of the filters to the baseline. 

Relative Gain LLL HPRD50 IEPA 
Filter 1 3.50 6.90 6.80 
Filter 2 6.10 -0.30 3.00 
Filter 3 5.10 3.50 0.80 
Filter 4 5.10 3.10 2.30 

Average relative gain 4.95 3.30 3.23 

The highest relative gain in terms of F1 was obtained on the LLL dataset. Interestingly, 

the only case in which the Filter 2 was not good for the PPI extraction occurred on the 
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dataset HPRD50. By contrast, Filter 1 achieved the best F1 score on the HPRD50 and 

IEPA datasets.  

One can draw to the conclusion that, the proposed filters fit well to relation extraction as 

they significantly improve the relation extraction results in both precision (2.9 in average) 

and recall (4.36 in average) when evaluated on three PPI corpora used in this study. In 

addition, Filter 1 is the best filter to choose in future applications, as they do not remove 

too many nodes from the graphs, while improving the overall extraction results. However, 

if one wants to reduce the size of the training data to a minimum possible, while keeping 

the overall accuracy of the extraction rules, Filter 4 seems to be the right choice. 

Comparative Assessment. A comparative assessment was conducted with the aim of 

positioning the contribution of this thesis against related work. For these experiments, the 

same PPI datasets evaluated in the previous section were used. All compared classification 

models, excluding the ones proposed by us, are based on Support Vector Machines, a state-

of-the-art in ML research community. The evaluation is carried out using 10-fold cross-

validation.  

Besides the traditional evaluation measures of precision P, recall R, and F1-measure, 

and the results in terms of AUC are also reported. AUC is as alternative to F1 score, which 

is invariant to the class distribution of the test dataset. In other words, AUC is not biased in 

the case of unbalanced dataset a major difference in positive/negative ratio in the test set 

[Airola et al., 2008]. In addition, all comparative test to determine whether an 

improvement of performance is statistically significant or not is based on the t-Student 

paired test in which null hypothesis is rejected for values of p <= 0.005. These comparative 

results are reported in Tab. 6.24, where the highest scores for F1 are in bold, whereas the 

best AUC score are in italics. 

The original models without any filter and the best filtered models discussed in the 

previous section are indicated by the column entitled New Model (no simplification) and 

New Simple Model in Tab. 6.24, respectively. As already discussed in the previous section, 

the former statistically outperforms the latter. Table 6.24 also indicates that the model 

proposed here (“Simplified Model”) is the best on the HPRD50 dataset. On the other hand, 

the PPI extraction method recently introduced by Quian and Zhou (2012) achieved the best 

performance on the LLL corpus. 

On the IEPA dataset, the simplified model takes the second position in the rank of the 

best models (F1) assessed on the IEPA dataset, being the first position occupied by the 

model proposed in [Miwa et al., 2010]. It worth stressing that the boost in performance 

was due to the transformation rules that significantly contributed to the overall second 

position. Actually, that is the only system analyzed that performs a simplification step 

somewhat similar to the one proposed in this paper. 

Reference [Miwa et al., 2010] proposes a set of sentence simplification rules focuses on 

entities. Their method for sentence simplification consists of two groups of rules: clause-

selection which constructs a simpler sentence by removing noisy information before the 

relevant clause; and the entity-phrase rules that simplifies an entity-containing region. 

More concretely, the clause-selection rules remove some marker of relative clauses, copula 

phrases, and some non-information clauses, while the entity-phrase rules removes 

coordination, parenthesis involving entities, and appositions.  

The work presented here differs from the proposed by Miwa and colleagues [Miwa et 

al., 2010] mainly with respect to the type of rules, and the target syntactical constructions 

of the sentences to be simplified. Furthermore, the method presented here is based on the 

typed-dependencies given by a dependency parser, while in [Miwa et al., 2010] a 

constituent parser was used. As a result, the rules presented here tend to be simpler in the 
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sense that the graphs derived by a dependency par. Besides that, they tend also to be more 

robust to the order of the target entities and clauses in the sentence. It is a well-known fact 

that contrarily to dependency parsers, rules based on the output of constituent parsers have 

to consider the exact position of the target elements in a sentence [Buyko et al., 2011].  

 

Table 6.24. Comparative evaluation of the RE systems tested on three PPI corpora. 

Corpus 
New Model  

(no simplif.) 

New Simple 

Model 

Miwa et al. 

(2010)  

Quian/Zhou 

(2012)  

Tikk et al. 

(2010)  

Airola et al. 

(2008)  

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC 
LLL 73.8 82.0 79.9 85.2 82.9 90.5 84.6 89.9 79.1 86.8 76.8 83.4 
HPRD50 68.4 86.8 75.3 87.6 75.0 86.6 68.8 83.7 69.7 84.0 63.4 79.7 
IEPA 69.3 84.9 76.1 87.2 77.8 88.7 69.8 82.8 70.7 81.0 75.1 85.1 

 

The bottom line is that the overall results on the simplified sentence representations 

achieved an average increase of almost 4%, in terms of recall, compared to their original 

versions. The proposed simplification rules also proved very effective in the sense that they 

allowed for a statistically significant boost in performance when tested using three 

biomedical corpora. The obtained results also outperformed some of the state-of-the-art 

systems evaluated using the same datasets. 

6.6.   Results and Discussion on Domain Adaptability (EQ 12) 

In this experiment, the goal is to investigate to what extent the accuracy performance of 

OntoILPER can vary among different domains. More precisely, the learned models in OntoILPER 

were analysed considering the full set of features produced by the text preprocessing step. 
Table 6.25 summarizes the result of applying several combinations of features on 2 news 

domains (reACE 2004 and 2005) and biomedical domain (IEPA dataset). 

Starting with the Line 1 in Tab. 6.25, features are incrementally added to the baseline set of 
features. The legend of the Tab. 6.25 describes what means each component in terms of features 

types. 

Table 6.25. Contribution of different combination of features over relation subtypes in reACE 

2004/2005 datasets and over IEPA corpus 

    
reACE 2004 reACE 2005 IEPA 

ID Combination of features P R F1 P R F1 P R F1 

1  Baseline 90.68 66.68 77.77 83.68 50.43 62.91 60.22 72.33 65.72 

2  Baseline + NER  92.32 67.12 77.99 80.59 51.39 62.68 - - - 

3  Baseline + Corpus types 90.30 71.13 80.31 83.03 63.38 71.86 64.40 75.21 69.39 

4  Baseline + Corpus types + NER 92.23 73.07 81.80 82.30 61.85 70.62 - - - 

5  Baseline + Semantic   93.30 70.68 79.44 82.86 59.71 69.41 62.83 74.70 68.25 

6  Baseline + NER + Semantic 93.04 75.49 83.06 83.30 60.95 70.40 - - - 

7  Baseline + Corpus types + Semantic 92.20 77.53 83.43 82.29 63.90 71.94 68.91 79.35 73.76 

8  Baseline + Corpus types + NER + Sem. 92.91 79.50 85.39 94.24 62.99 75.10 - - - 
 Baseline = Dep + Chunk + POS + Chunk related   
 NER = Named entity recognition 
 Corpus types =  golden standard labels of the corpus (reACE and IEPA) 
 Semantic = SRL, WN synonyms/hypernyms (baseline sense), mapping to WN Domains and SUMO ontology, normalization, 

similar words, selectional preferences. 
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Table 6.26. Performance difference between using corpus-based NE and OntoILPER Semantic 

features 

 
reACE 2004 reACE 2005 IEPA 

Difference  ∆ P ∆ R ∆ F ∆ P ∆ R ∆ F ∆ P ∆ R ∆ F 

Line 5 - Line 1 2.62 4.00 1.67 -0.82 9.28 6.50 2.60 2.40 2.54 

Line 6 - Line 2 0.72 8.37 5.07 2.71 9.56 7.72 - - - 

Line 7 - Line 3 1.90 6.40 3.12 -0.74 0.52 0.08 4.50 4.10 4.35 

Line 8 - Line 4 0.68 6.43 3.59 11.94 1.14 4.48 - - - 

Average 1.48 6.30 3.36 3.27 5.13 4.69 3.55 3.25 3.45 
 

First, the baseline group of features (Baseline) is composed of syntactical dependencies 

(Dep), chunk information (Chunk), POS tagging, and chunk related features. NER denotes 

the typical named entity feature given by the Stanford CoreNLP tools. The other features 

correspond to corpus type and the semantic features. Corpus types denote the golden 

standard annotations already available in the corpus. For instance, as shown in Section 

6.1.1, the reACE corpora provides four types of named entity annotations: ORG, PER, 

FVW, and GPL, while the IEPA corpus only assigns the label "protein" to each term 

associated with a protein in the corpus. Finally, the semantic features denote the group of 

semantic related-features available in OntoILPER. 

The main goal of this experiment is to compare the several combinations of the above 

features as shown by the first column of the Tab. 6.25. This table details all results in terms 

of P/R/F1 for all of the pertinent combinations.  

Note that some entries in the IEPA are not available because NER in OntoILPER was 

trained on news corpora and, the use of NER case for identifying named entities in the 

IEPA biomedical corpus, is useless. 

For the sake of the analysis, Tab. 6.26 summarizes the result in terms of the difference 

between each pair of lines displayed in its first column. Basically, one want to answer the 

following question: “can OntoILPER achieve state-of-the-art performance in more than 

one domain”? 

To answer it, the news and biomedical domains were chosen for an initial comparison. 

The results shown in Tab. 6.26 reveal then some interesting findings. 

First, note that adding the semantic features into the learning process improves overall 

performance in terms of F1 measure for all datasets evaluated. The boost in F1 measure 

attain almost 5% for the reACE 2005 corpus, and more than 3% for reACE 2004 and IEPA 

corpus. However, the contribution in terms of precision and recall were unbalanced for the 

reACE corpora, since the semantic features contributed relatively more in recall than in 

precision. This contrast with the yielded results on the IEPA corpus, in which precision 

score was almost equal. 

Second, the highest difference in performance was achieved in the reACE 2005 corpus, 

as the semantic features obtain a gain of almost 12% in precision. However, for the two 

other combinations in this dataset, adding the semantic features in fact hampers precision. 

Third, for both reACE datasets, one can expect a significant increase in recall. This fact 

confirmed our expectations because the semantic features can be regarded as a mechanism 

for providing OntoILPER with an extended categorization of named entities in the corpus. 

In other words, the mapping to semantic recourses like WordNet and SUMO ontology 

enriches the terms in the corpus with a layer of annotation relating them to senses in 

WordNet and classes in the SUMO ontology. Thus, it is expected that the term can be 

categorized into several classes. As a result, the learning component in OntoILPER is more 

likely to generalize a term given that it has several semantic features attached to it. 
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In contrast, for the IEPA corpus, the use of semantic features increased precision more 

than recall. This result led us to inspect the final induced rules to figure this was mainly 

due to the semantic role features. Indeed, several verbs used to indication an interaction 

between two proteins in IEPA corpus were correctly annotated along with the roles of its 

arguments. 
 

Discussion. The problem of using a supervised NER system on data from a different 

source than the training data was investigated before [Ciaramita et al., 2005] [Pyysalo, 

2008]. 

Ciaramita et al. (2005) studied the effects of applying a NER system in a novel domain 

with external lexical knowledge. The authors argued that even working with the same 

domain, the classification results can be discouraging. For instance, the goal could be to 

find, people, organizations, and locations in the Wall Street Journal with a tagger trained 

on the manually annotated portion of the Reuters newswire corpus. Unfortunately, it turns 

out that even for such similar types of texts the performance of a supervised classifier 

degrades significantly. 

The authors trained several NER classifiers on the CONLL 2003 dataset and evaluated 

them on a manually annotated section from the Wall Street Journal portion of the Penn 

Treebank. They demonstrated that the performance of the novel data can be improved by 

coupling the NER system with a domain-independent dictionary, and simple string 

similarity features [Ciaramita, 2005].They concluded that the model supported by the 

domain-independent dictionary was more accurate than the unsupported model in terms of 

F-score by almost 5%. 

Similar results were reported in [Pysalo, 2008] in the biomedical domain. The author 

evaluated three aspects of the effect of the adaption of a general POS tagger to the 

biomedical domain with respect to vocabulary coverage, ambiguity, and parsing 

performance. For that, they provided a morphological extension to the POS tagger by 

means of rules relating morphological features found in biomedical domain, such as "-ase" 

(for a the noun kinase). They achieved a relative gain in recall of 10,1% comparing the 

enhanced version of the POS tagger with the original version. 

In an experiment employing and “oracle” knowledge of named entities in support of 

parsing, the author obtained a relative gain even more interesting of 16.8%.  

Comparing the results of OntoILPER with those above mentioned, one can conclude 

that the average relative gain up to 4% of the former, achieved in two distinct domains, is 

very encouraging. Actually, statistical significant tests showed that the learned models 

trained with the semantic features are significantly better than the versions without using 

them. 

6.7.  Conclusion 

According to the obtained results and the answers to the experimental questions raised at 

the beginning of this chapter and investigated through several experiments reported here, 

one can draw to the conclusion that OntoILPER contributes to the state-of-the-art in IE.  

This claim is justified by the fact that its unique way of combining a graph-based model for 

sentence representation, which implies in a highly expressive hypothesis space for 

extraction rule learning; with multiple ontologies guiding the its IE process. 

The solution to IE offered by OntoILPER address some of the open problems in IE area 

discussed in Section 3.5.6 (final discussion on related work). 

In that section, the following major issues for IE were addressed: 
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 the integration and effective exploitation of rich linguistic knowledge into the IE 

process (Sections 6.3.1 and 6.6); 

 the integration of ontologies for formalizing the expressive relational model of the 

examples (Section 6.6); 

 the legibility of the induced rule model  by means of a symbolic extraction rule 

learning component(Section 6.3.4); 

 experimental evaluation with encouraging results on more than one domain of 

interest  (Section 6.4 and 6.5); 

 the exploitation of relevant and diverse background knowledge. 

Another crucial aspect investigated in the experiments reported in this chapter concerns 

the portability of OntoILPER to other domains.  

Indeed, Section 6.6 was devoted to this particular adaptability problem, in which one 

can conclude that the rich set of linguistic-based features (syntactic, semantic and 

structural attributes), properly represented and unified by the Annotation ontology, can 

effectively contribute to the two most important issues in IE at present time: improving 

state-of-the-art performance, and promoting a portable solution to IE.  
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Chapter 7 

Conclusions 

This thesis focused on the design and implementation of OntoILPER, an ontology- and 

ILP-based method for extracting instances of entities and relations from textual sources. 

The proposed solution, in the form of both a symbolic supervised method and framework, 

contributes to the IE field by offering a unified method for two major IE subtasks: NER 

and RE. 

OntoILPER is the outcome of an investigation aiming to prove the hypothesis that, with 

an automatic acquisition of a substantial body of linguistic knowledge from textual data 

and its formalization using ontologies; in combination with an expressive inductive 

learning technique, it is possible to automatically generate effective models for information 

extraction, which present the desirable features of being domain-independent as well. 

The core learning approach in OntoILPER is guided by semantic structures defined by 

two ontologies: the domain ontology, and a domain-independent task ontology (Annotation 

Ontology) that fully characterized OntoILPER as an OBIE method. The rational for using 

multiple ontologies is that they not only enable an inexpensive adaptation to a new domain, 

but they also improve the IE process. 

Additionally, the inductive learning component in OntoILPER allows prior knowledge 

about the domain to be easily integrated in the construction process of classification 

models.  

In OntoILPER, the choice for adopting the ILP technique is justified by the following 

reasons: 

 both BK and examples are expressed at the same symbolic level, allowing to enrich 

the IE process by integrating additional semantic resources, such as a thesaurus or 

ontologies, without modifying the core of the IE process. For instance, any constraint 

to the problem can be expressed in the form of auxiliary predicate definitions 

provided by the user as additional BK. Moreover, the first-order formalism is able to 

take into account the structural information (relation features) of the examples. 

 The final induced extraction rules are expressed in human-readable format, 

facilitating rule inspection and understanding.  

In OntoILPER, examples are classified by reasoning over the lexical, syntactic, 

semantic, and structural feature dimensions of the training examples. Such rich set of 

features are formalized by the formal and expressive representation formalism provided by 

the ontologies. 

The IE tasks performed in OntoILPER can be viewed as a form of restricted text 

understanding, since OntoILPER takes into account the meaning of the instances to be 

extracted by connecting the candidate instances to ontological structures. 

The features that distinguish OntoILPER from related work which are based on the 

propositional representation formalism of examples are: 

 It overcomes the representational limitations of propositional (attribute-value) 

learning systems that employ a table-based example representation. In such 

formalism, the representation model of the training examples corresponds to rows in 

a table, and the features to columns, in which a single value is assigned to each one 

of the attributes. 
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 The final induced set of symbolic extraction rules in OntoILPER maps several 

features (lexical, syntactic, semantic, and structural) of the examples to a predefined 

set of entity or relation labels. 

The goal of this chapter is to answer the research questions raised in the introductory 

part of this thesis (Section 7.1), to emphasize the scientific contributions made to the IE 

research are (Section 7.2), to discuss the OntoILPER limitations (Section 7.3), and to 

outline directions for future work (Section 7.4). 

7.1. Answers to the Research Questions 

As an attempt to contribute to the IE field, this thesis have investigated the NER and RE 

tasks under various settings, such as different datasets from two distinct domains, different 

learning scenarios, and various entity and relation types. 

By varying the use of several NLP annotations, and the availability of training data in 

more than one domain, one could understand how NLP tools and training data influenced 

the performance of both NER and RE in OntoILPER. 

In the following section, the research questions raised in Chapter 1 are revisited, 

summarizing the findings that answer them. 

 

1. How can ontologies and semantic resources be exploited to address the challenge of IE 

systems concerning better overall performance? 

The answer the above question is structured into two parts, one for each question 

component: 

 

Overall performance with respect to the ontologies. According to what is reported in 

the Section 6.6, OntoILPER takes advantage of two ontologies:  

 the annotation ontology has the explicit role of converting lexical, syntactic, 

semantic, and structural dependency predicates to BK. This leads to a gain in 

performance reflected in the experimental results. In fact, the results reported in 

Section (4.6.2) compares the two versions of OntoILPER with and without such 

ontology. The enhanced version of the system outperforms the simpler one by a 

margin up to 5% in the two distinct domains evaluated. 

 the domain ontology provides the extraction template and a class hierarchy that 

enables the system with a coarser granularity of what is being extracted. Its 

presence also yields an increase in performance due to the latter feature. By 

analyzing the results of the experiment discussed in Section 6.3.2 which compares 

the classification results in one level against a two-level hierarchy, the latter 

outperformed the former, suggesting that it is easier for the system to “typify” 

more specific rules. 

Accuracy performance with respect to the semantic resources. WordNet, WordNet 

Domains, and VerbNet are used as means to enhance the traditional broad classification 

of named entities in NER. These resources improve recall, since they can generalize 

terms, thereby mitigating the problem of term variability (e.g., the word "happiness" is 

recognized as an “abstraction”, and can be labeled as such instead of having no label). 

Consequently, the resulting rule generalization can cover more examples and therefore 

can achieve better recall. One must also be aware that recall is a recurrent problem for 

many machine learning algorithms, as they tend to construct classification models with 
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high precision and comparatively lower recall. However, this problem is minored in 

OntoILPER thanks to the use of the semantic resources.  

 

2. What is the influence of syntactic, semantic, and relational features on RE? 

To answer this question, each kind of features will be considered individually: 
 

Influence of syntactic features. Syntactic information is widely used in IE, and RE in 

special. As already mentioned in Chap. 3, the state-of-the-art RE systems employ different 

levels of linguistic information varying from POS tags to structures, such as dependency 

parse trees. 

Current RE methods follow the trend of combining syntactic information provided by 

NLP tools. This is based on the hypothesis that such kind of information can eventually 

improve performance.  

In general, syntactic information is useful for RE as it has been shown earlier [Jiang, 

2012] [Zouaq, 2010]. However, it is still unclear which types of syntactic information are 

best suited for the relation extraction tasks.  

In OntoILPER, syntactic features are mainly derived from dependency parsing which 

provides relations between two entities in an abstract form, including subject-verb-object 

and noun phrase.  

In Sections 6.3.1 and 6.3.4, the contribution of such kind of features was discussed in 

the context of a RE task concerning nine relations types from the reACE corpora. The 

conclusion was that the dependency features and noun phrases (or nominal chunks) 

contributed to raise 6% in overall F1-measure over a model without such features. 

Combining these two, this figure increases to more than 14%. Therefore, one can conclude 

that removing syntactic features from the extraction modes would deteriorate performance 

substantially. 

The experimental evaluation on the biomedical corpora displayed very similar results. 

However, one cannot always expect such similar results when the domain changes. 

Moreover, even though the Stanford parser in charge of the dependency parsing in 

OntoILPER preprocessing stage was not trained on the biomedical data, it is quite robust 

for parsing biomedical corpora.  
 

Influence of semantic features. This question was addressed in Section 6.6 by exploring 

various semantic resources incorporated into the OntoILPER learning process. It was 

demonstrated that the combination of syntactic information with semantic knowledge can 

significantly outperform the experiment baselines. An interesting finding is that, for both 

domains studied in this thesis, OntoILPER achieved a boost in overall extraction 

performance (F1) around 5%. This clearly indicates that prior knowledge in the form of 

semantic features constitutes a crucial factor in RE. 

 

Influence of structural features. The distribution of the features (or predicates) in the 

final induced extraction rules on the reACE datasets revealed that structural information is 

very useful (see Section 6.3.4). 

Detailed examination of the rules revealed that relations can be easily recognized by 

placing constraints on their arguments, i.e., on their semantic features, while others cannot. 

Thus, semantic constraints alone do not guarantee accurate relation extraction, and it is 

widely accepted that the context of the entities in a sentence has to be considered [Roxana 

et al., 2006]. OntoILPER takes a more realistic and pragmatic approach of integrating 

syntactic and semantic features into the same model. Thereby, these two kind of features, 

semantic and structural, are complementary to each other. 
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3. What is the role of the ILP-based learning component to both NER and RE tasks? 

The NER and RE tasks can be seen as complementary to each other when aided by ILP, 

which induces declarative rules referring to predicates:  

 NER helps RE (see the reasons presented in the last paragraph concerning the  

Question 1), and; 

 RE supplies NER with previously unrecognized instances of a given class. The 

reason is that the rule that extracted the named entity instances specifies their role 

either in the domain or in the range of the relation. Therefore, the argument types are 

determined by the relation. Put it differently, adding specialized relations with 

restrictions on the domain and ranges of the class instances, implies in the restriction 

on types of such instances. This interesting result was also discussed in Section 6.4.1. 

4. What are the benefits of the graph-based model of sentence representation in the final 

induced classification models? 

This model for sentence representation encompasses relational, i.e., structural features that 

capture dependencies and structural information that other models face difficulties or 

simply cannot capture. Comparative assessments reported in Section 6.4.3 and 6.5.2 with 

other state-of-the-art systems corroborates such statement. 
 

5. Concerning the graph-based model of sentence representation mentioned above, would 

it be useful to adopt a simplification strategy before the learning phase? 

The simplification strategy reduces the size of graphs. The ILP learning component then 

handles a shorter search space without losing its coverage of the most important entities 

present in a sentence represented by the graph. In other words, due to the proposed 

transformation/simplification rules presented in Section 4.5, much of the misleading 

information, in terms of nodes and edges, is eliminated from the graphs. As a result, the 

reduced graphs, being smaller, can be generalized by rules with less literals in their body 

part. Indeed, as shown in the experimental assessment reported in Sections 6.5.1 and 6.5.2 

the use of the simplified graphs in OntoILPER enhance recall in 4% in most of the cases.  
 

6. To what extent is OntoILPER portable to other domains? 

In order to port the OntoILPER Framework across domains, the only resource to be 

replaced is the domain ontology. Then, the ILP-based learning process has to be re-

executed with the same BK expressed in the annotation ontology. The new rules 

concerning the new domain are generated accordingly. 

OntoILPER adaptability is easier to achieve than all state-of-the-art OBIE systems 

based on the manual development of the extraction rules because, in the latter, a human 

knowledge engineer has to adapt the extraction rules using a given rule representation 

language, while the extraction rules are automatically learned in OntoILPER. This is 

justified by the fact that ontologies can be used to represent the context in which the 

relevant kind of information is naturally embedded. Thus, they can serve both as a 

specification of relevant information the system has to look for and a conceptualisation of 

the domain of interest. Moreover, by putting the specification and domain knowledge in an 

ontology, which can be seen as an external and independent component from the system, 

future changes in the specification will only require changes in the domain ontology. 

Still more relevant is the fact that this new OntoILPER formula of joining 

morphological, syntactic, and semantic features can improve up to 5% in overall F-1 

performance in both of the domains of concern in this thesis. More surprisingly, this 



206 

 

increment in performance is achieved without using the named entities already annotated 

in the input corpus. The experimental results reported in Section 6.6 demonstrated that. 

7.2. Contributions 

The research activities conducted in this work resulted in the following contributions to the 

OBIE area: 
 

On a theoretical point of view, this thesis contributes to the IE area with: 

 An OBIE method, called OntoILPER that automatically extracts instances of 

classes and relations from text sources. OntoILPER benefits from several 

linguistic-related knowledge sources and additional ontologies (in OWL/DL) that 

formalize the background knowledge to achieve state-of-the-art performance. 

OntoILPER distinguishing features, compared to related work, consist in its 

higher expressivity of extraction rules and the rich set of features that are utilized 

by an ILP-based learning component for inducing symbolic extraction rules.  

The induced extraction rules map linguistic expressions, or actual linguistic 

structures delivered by NLP tools to the target entity and relations. The learning 

component is driven by the target semantic structure of the examples and enables 

inexpensive adaptation to new domains of interest. Another OntoILPER 

advantage is that OntoILPER has the potential to extract implicit information.  

 A graph-based model for sentence representation that encompasses several types 

of features, including lexical, syntactic, semantic, and structural ones. This model 

also takes into account mapping of terms onto linguistic semantic resources and 

ontologies in a rich and unified model. 

 A method for transforming and simplifying graph-based representations of 

sentences. This simplification method allows improving the performance of 

overall extraction in terms of precision and recall. 

 

At a more technical level, this thesis made the following contributions: 

 OntoILPER Framework, the implementation of the OntoILPER as a framework 

for ontology population. This framework was implemented as a modular, 

pipelined architecture that integrates all of the models proposed in this thesis. 

 A comprehensive NLP component that integrates various NLP subtasks/tools as a 

unique component able to perform a comprehensive natural language 

preprocessing of textual corpora. The current implementation of this component is 

modular, and extensible to new languages and additional language analysis. 

 A hybrid XML-based model for linguistic annotation representation that combines 

the advantageous aspects of two standard linguistic annotation formats: inline and 

stand-off annotation. 

 The design and implementation of a domain-independent and expressive 

annotation ontology in OWL/DL, the Annotation Ontology, that formalizing BK 

during the induction of extraction rules. This ontology formalizes the resultant 

analysis carried out in the preprocessing stage, in which various kinds of features 

were mapped to formal structures. Such structures are defined by an expressive 

knowledge representation formalism that defines all types of background 

knowledge used by the rule learning component in the proposed solution.  
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Taken together, the experimental results reported in Chap. 6 confirmed the working 

hypotheses that: 

 given an automatic acquisition of a substantial body of linguistic knowledge from 

textual data and its formalization using ontologies, in combination with an 

expressive inductive learning technique, it is possible to automatically generate 

effective information extraction models  

Actually, the experimental results reported and discussed in Sections 6.3 and 

6.4 on three news domain corpora showed that OntoILPER significantly 

outperforms related work due to its more expressive graph-based sentence 

representation that not only takes into account the lexical, syntactic, and semantic 

features (as used by most of the related work), but also considers the structural 

information of the examples. These results were published in reference [Lima et 

al., 2013]. 

 a previous transformation/simplification step of the graph-based representations of 

sentences, carried out before the relation extraction task, can improve overall 

extraction results, specially alleviating overfitting of the extraction rules. 

Indeed, the overall results on the simplified sentence representations achieved 

an average increase of almost 4%, in terms of recall, compared to their original 

versions. The proposed simplification rules also proved very effective in the sense 

that they allowed for a statistically significant improvement in performance when 

evaluated on three biomedical corpora. The obtained results also outperformed 

other state-of-the-art systems that used the same datasets. These results were 

published in [Lima et al., 2014]. 

 

Finally, the experimental assessment also revealed the following findings: 

 incorporating ontologies into the IE enables the extraction models to take advantage 

of additional background knowledge, especially by extending the entity types 

recognized by traditional NER. 

 the information extraction process can be improved by using multiple ontologies.  

 the performance of the proposed IE models is consistent not only across both NER 

and RE tasks, but also across two distinct domains: news and biomedical. 

 the graph-based representation model proposed in this thesis leads to significant 

improvements in extraction performance, outperforming state-of-the-art related 

work.  

 The deep natural language analysis helped to identify the semantic constraints that 

can be imposed on the relation arguments during RE. Such constraints proved their 

usefulness by enabling that the overall extraction results can achieve state-of-the-art 

performance even when the golden standard labels of the named entities present in the 

corpus are not used. 

7.3. OntoILPER Limitations 

This section presents the OntoILOPER limitations and briefly discusses strategies to 

overcome or alleviate them. 

 

Error Propagation in Text Preprocessing Stage. OntoILPER adopts the pipelined 

architecture commonly used by NLP-based applications. The main problem concerning the 
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natural language processing stage in OntoILPER is that it is prone to parsing errors. Such 

errors might hamper the representation of examples and, consequently, the extraction 

performance by means of noisy patterns introduced in the graph-based representation of 

the sentences 

Indeed, for some domains, specially the biomedical one, the complexity of sentences 

poses a challenge to natural language parsers, which are commonly trained on large scale 

corpora of non-technical text (news broadcast texts). Such complexity may be caused by: 

high average sentence length [Jonnalagadda et al., 2009], inconsistent use of nouns and 

partial words [Tateisi and Tsujii, 2004], greater lexical density, and increased number of 

relative clauses and prepositional phrases [Gemoets, 2004]. Pyysalo et al. (2007) 

demonstrated that, even the simplest simplification steps to counter such problems, may be 

quite useful. In fact, they showed that by truncating a few dependencies related to noun 

phrases and also removing non-traditional characters could potentially improve parsing. 

More recently, [Jonnalagadda et al., 2009] proved the utility of sentence simplification to 

improve the accuracy of well-known parsers in more than 4%.  

Therefore, an obvious idea to be pursed in OntoILPER consists in simplifying the 

sentences by removing the aforementioned complexities aiming at increasing the 

performance of different NLP tools. 

 

High Computation Cost of Learning Stage. When applying OntoILPER to large 

relational datasets, one major problem with using a covering algorithm approach is the 

amount of time needed to generate a theory. As already stated, searching process for good 

rules is time intensive, mainly due to the repeated sequential examination of hundreds, or 

even thousands of clauses to find the best one to be added to the final theory. This is 

especially pronounced in larger datasets of training examples. 

A first approach to alleviate this problem consists in sampling the training example in 

order to reduce the space to a reasonable size.  For that, several sampling techniques have 

already been proposed [Chawla, 2005], [Liu et al., 2009]. In particular, undersampling 

techniques [Chawla, 2005] which consists of reducing the number of examples (most 

commonly negative ones) should be explored. In addition, sample size selection methods 

[Byrd et al., 2012] for optimizing the ILP-based learning component can also be 

considered. 

 

Overfitting of the Learned Rules. Machine-learning algorithms often have a tendency to 

overfit or memorize their training data. 

In particular, the standard ILP approach is biased toward producing many high-

precision, low-recall clauses, which when combined typically create a high-recall, low-

precision theory.  

In fact, for several experiments reported in Section 6, the rule inspection revealed that 

15 to 20% of the rules were very specialized, i.e., covering at most 2 positive examples. 

For tackling this problem, ensemble methods [Dietterich, 2000], which are combinations 

of simpler classifiers, can be focused within ILP on learning diverse (with respect to 

precision and recall) internal classifiers with for increased quality. Ensemble methods 

construct multiple classifiers and merge them to provide a consensus prediction for each 

example, often with higher accuracy. The key idea is that each classifier can compensate 

for the deficiencies in training of the other classifiers, as they can be combined. 

In OntoILPER scenario, the ensemble classifiers can be constructed in many ways: 

- by manipulating the training set. In this approach, multiple training sets are 

created by resampling the original data according to some sample distribution. 

This sampling introduces a bias in each learned hypothesis toward its particular 
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training set. Thus, these classifiers then vote on the classification of test examples, 

usually with the majority class being selected as the output classification. A 

candidate ensemble technique is bagging [Breiman, 1996], a popular ensemble 

method that manipulates the training sets. 

- by manipulating the input features. Here, a subset of input features is chosen to 

form each training set. The subset can be either chosen randomly or based on the 

recommendation of a domain expert. This approach is particularly successful with 

datasets that contain highly redundant features. 

- by manipulating the ILP-based learning algorithm. The ILP-based learning 

component in OntoILPER can be manipulated in such a way that it can result in 

different models by changing some of its parameters. For all approaches seen 

above, the base classifiers should be generated in parallel, for the sake of the 

reducing the amount of time in training phase. 

7.4. Future Work 

The IE methods presented in this thesis can be further explored in several aspects.  

First, from the application point of view, OntoILPER can be employed to perform the 

following text mining tasks: 

 Event Extraction. The overwhelming majority of IE papers published in the 

biomedical domain focus on binary interactions between biological named entities. 

However, with the emergence of corpora providing complex and typed event 

annotations, more complex IE tasks have also been proposed [Bjöurne et al., 2009]. 

An example of such complex corpora is the GENIA Event corpus [Kim et al., 

2008], which annotates events and static relationships using a more expressive 

formalism. In this corpus, the type, direction, and the trigger statement in the text 

stating the relationship (often a verb) are annotated. In addition, events can have 

more than two participants whose roles are specified, allowing the accurate 

representation of statements such as "proteins A, B and C form a complex".  

In this context, OntoILPER can be applied to other domains and even more 

complex relation extraction tasks, such as Event Extraction. Event Extraction can be 

defined as follows: given a set of candidate trigger words, it is necessary to associate 

them with appropriate entities participating in a given event. Thus, event extraction 

involves extracting relations having more than two arguments. This intent can be 

justified thanks to the graph-based model for sentence representation in OntoILPER 

can be employed to event extraction with very little effort because, as shown in 

Section 4.4, these graphs capture various distinct forms of annotations from natural 

language corpora in a unified, yet expressive format. Actually, the proposed unified 

graph-based model abstracts from the various information extraction tasks and 

defines a shared representation for the domain-independent layers of linguistic 

annotation. 

For performing event extraction, one should follow the same steps proposed by 

[Bjorne et al., 2008] and [Heimonen et al., 2008] in representing the semantic 

annotations as graphs whose nodes correspond to entities and events, and labelled 

directed edges to their relationships.  

The relationship edges describe themes and causes of events, structural relations 

between physical entities, such as substructures, and coreferences. To sum up, in 

order to cast OntoILPER to event extraction, one only needs to generate the edges of 

the relationship graphs given its nodes, i.e. events and entities.  
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 Automatic Summarization. Automatic summarization of documents aims at 

producing a shorter version of a source document text, while retaining its main 

semantic content [Ferreira et al., 2013] [Ferreira et al., 2014]. 

Automatic summarization is motivated by the increasing size and availability of 

digital documents, and the necessity for more efficient methods of information 

retrieval [Gagnon and Sylva, 2006]. 

Methods of automatic summarization include extractive, in which text are 

summarized by only selecting a limited number of sentenced extracted from the 

original text; and abstractive, which produces a new shorter text but changing the 

original text. 

Thanks to the great flexibility of the graph-based sentence representation 

introduced in Section 4.4, which is able to represent annotated documents at several 

levels of granularity (e.g., at sentence and token levels), one could easily adapt 

OntoILPER to perform the automatic extractive summarization task. In this case, it 

will only be necessary to integrate new features describing sentences, including 

sentence length, sentence position in the text, number of named entities in a sentence, 

etc.  
 

The following aspects are related to the way positive and negative training examples are 

handled in OntoILPER. 

 Active Learning. The well-known bottleneck of the supervised machine learning 

approach is the lack of reliable annotated training data, or the need to annotate them. 

The reason is that manual corpus annotation is a time-consuming process. Since 

OntoILPER is based on the supervised approach, it shares the same concerns stated 

above. Therefore, alternative annotation scenarios should be considered as potential 

solutions to this problem. 

Active Learning [Settles, 2012] is a valuable option because it offers mechanisms 

to accelerate corpus creation: it only selects examples that are useful for learning. 

Therefore, OntoILPER could benefit from an additional component for suggesting 

useful examples based on the active learning strategy. 

 Unbalanced Datasets. Due to the unbalanced distribution between positive and 

negatives examples found in the majority of available RE corpora, one possible line 

of investigation concerns the impact of sampling techniques, mainly undersampling 

techniques [Chawla, 2005] which would allow speeding up the learning task in 

OntoILPER framework by reducing the number of negative examples automatically 

generated.  

 Evaluation Metrics for Unbalanced Datasets. Another problem, strictly related to 

the previous one, is related to the evaluation metrics used for ILP systems, especially 

for unbalanced datasets.  

The most common way to measure performance in large highly-skewed domains 

is to use precision and recall [Manning & Schutze, 1999], two evaluation metrics 

which focus on the correct classification of the positive examples. As suggested by 

Goadrich et al. (2006) a more useful evaluation would be to create a recall-precision 

curve, to illustrate the trade-off between these two measurements  
 

Other new ideas for follow-up research in OntoILPER include: 

 Inclusion of Additional Simplification Rules. Despite the encouraging results 

achieved by the simplification of graph-based sentence representation reported in 

[Lima et al., 2014], there is room for further work and improvements in different 
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aspects. First, the evaluation of the simplification rules on other biomedical corpora 

is an important issue. Second, the inclusion of additional rules to deal with other 

sentence constructions, including the removal of irrelevant noun appositive, 

gerundive, and nonrestrictive clauses is also planned.  
  

 Semantic Data Mining. It has been widely stated that one of the most important and 

challenging problems in data mining is incorporation of domain knowledge. Fayyad 

et al. (1996) argue that the use of domain knowledge is important in all stages of the 

knowledge discovery process. When both data and domain knowledge are available, 

it is worthwhile to explore their fusion. From this perspective, OntoILPER can be 

applied to perform Semantic Annotation [Novak et al., 2009] a crucial step towards 

realizing semantic data mining by bringing meaning to data. Accordingly, future 

work in this line of research should study the quality of the final extraction rules with 

respect to the semantic features they contain, and the related classes and relations 

described by the rules. 
 

At last but not least, future work should address the scalability of OntoILPER 

Framework. As a proof-of-concept, OntoILPER relies on OWL/DL ontologies for 

formalizing the background knowledge used in both training and application modes.  

Pure OWL/DL reasoners may present scalability problems with large ontologies or, in 

OntoILPER, with large datasets composed of hundred of documents. However, a valuable 

alternative consists in taking advantage of ontologies in RDF, even though some 

expressiveness can be lost in the process. 

Contrarily, RDF ontologies are lightweight graph databases that can offer high query 

performance and the further support SWRL. Therefore, OntoILPER framework should 

profit of high performance RDF triplestores like Stardog
1
 and OpenRDF

2
 Sesame to be 

able to scale up to large input corpora. 

                                                
1 Stardog. The enterprise graph database. http://www.stardog.com 
2 OpenRDF Sesame. http://www.openrdf.org 
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Appendix A - List of POS tags used in the Penn Treebank Project 

Tag Description 

CC Coordinating conjunction 

CD Cardinal number 

DT Determiner 

EX Existential there 

FW Foreign word 

IN Preposition or subordinating conjunction 

JJ Adjective 

JJR Adjective, comparative 

JJS Adjective, superlative 

LS List item marker 

MD Modal 

NN Noun, singular or mass 

NNS Noun, plural 

NNP Proper noun, singular 

NNPS Proper noun, plural 

PDT Predeterminer 

POS Possessive ending 

PRP Personal pronoun 

PRP$ Possessive pronoun 

RB Adverb 

RBR Adverb, comparative 

RBS Adverb, superlative 

RP Particle 

SYM Symbol 

TO to 

UH Interjection 

VB Verb, base form 

VBD Verb, past tense 

VBG Verb, gerund or present participle 

VBN Verb, past participle 

VBP Verb, non-3rd person singular present 

VBZ Verb, 3rd person singular present 

WDT Wh-determiner 

WP Wh-pronoun 

WP$ Possessive wh-pronoun 

WRB Wh-adverb 
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Appendix B - Hierarchy of the Stanford Dependency Labels [De 

Marneffe & Manning, 2008] 
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Appendix C - PropBank semantic role labels [Bonial et al. (2010)] 

Label Description  

ARG0 Agent  

ARG1 Patient, theme  

ARG2 Instrument, benefactive, attribute  

ARG3 Staring point  

ARG4 Ending point  

ARGA External causer  

ARGM-ADJ Adjectival  

ARGM-ADV Adverbial  

ARGM-CAU Cause  

ARGM-COM Commutative  

ARGM-DIR Direction  

ARGM-DIS Discourse  

ARGM-GOL Goal  

ARGM-EXT Extent  

ARGM-LOC Location  

ARGM-MNR Manner  

ARGM-MOD Modal  

ARGM-NEG Negation  

ARGM-PRD Secondary predication  

ARGM-PRP Purpose (previously, ARGM-PNC)  

ARGM-REC Reciprocal  

ARGM-TMP Temporal  
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Appendix D - VerbNet Semantic Role Labels [Bonial et al. (2011)] 

Label Description  

actor1,2 Pseudo-agents, used for some communication classes  

agent animate subject, volitional or internally controlled  

asset Currency, used for Build/Get/Obtain Classes  

attribute Changed quality of patient/theme  

beneficiary Entity benefiting from action  

cause Entity causing an action, used for psychological/body verbs  

destination End point/target of motion  

experiencer Participant that is aware of experiencing something  

extent Range or degree of change  

instrument Objects/forces that come into contact and cause change in another object  

location Underspecified destination/source/place  

material Starting point of transformation  

patient1,2 Affected participants, used for some combining/attaching verbs  

predicate Predicative complement  

product End result of transformation  

recipient Target of transfer  

source Spatial location, starting point  

stimulus Events/objects that elicit a response from an experiencer  

theme Participants in/undergoing a change of location  

theme1,2 Indistinct themes, used for differ/exchange classes  

patient Affected participants undergoing a process  

time Class-specific, express temporal relations  

topic Topic of conversation, message, used for communication verbs  

proposition Complement clause indicating desired/requested action, used for order class  
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Appendix E – Excerpt of an XML File Generated by the Text 

Preprocessing Stage in OntoILPER 

Excerpt of the XML file for the input sentence: “I think he has been in Washington too 

long”. 

<sentence has_ne="true" has_ref="false" is_mention="false" s_id="s_27" text="I think he 's been in Washington too 
long ." voice="passive" 
     <tokens> 
         <token ck_ot="NP" ck_tag_ot="B-NP" head="true" length="1" normalized="person" orth="UpperCase"                     
              pos="PRP" s_id="s_27" similar="persons,man,individuals,guy,people"  stem="I" string="I" t_id="t_339"      
              type="Word"  /> 
         <token bl_domain=”null” bl_hypernyms="[evaluate#v#2,think#v#3]" bl_sense_id="think#v#1"  bl_sumo=""  
              bl_supersense_id="verb.cognition" bl_synset_id="think%2:31:01::" head="true" length="5" normalized="think"  
              orth="lowercase" pos="VBP" s_id="s_27" similar="believe,know,expect,imagine,say" stem="think" tring="think"     
              t_id="t_340" type="Word" wsd_domain=”” sd_hypernyms="[evaluate#v#2,think#v#3]"    
             wsd_sense_id="think#v#1" wsd_sumo=”” wsd_supersense_id="verb.cognition" sd_synset_id="think%2:31:01::"  
          /> 
          <token ck_ot="NP" ck_tag_ot="B-NP"  head="true" length="2" normalized="person" orth="LowerCase" pos="PRP" 
              s_id="s_27" similar="persons,man,individuals,guy,people" stem="he" string="he" t_id="t_341" type="Word" />          
      </tokens> 

 
      <chunkings> 
         <chunking ck_id="ck_185" s_id="s_27" text="I" type="np"> 
            <tokens> 
                <token ck_id="ck_185" head="true" s_id="s_27" string="I" t_id="t_339"/> 
            </tokens> 
         </chunking> 
         <chunking ck_id="ck_186" s_id="s_27" text="think" type="vp"> 
             <tokens> 
                 <token ck_id="ck_186" head="true" s_id="s_27" string="think" t_id="t_340"/> 
             </tokens> 
         </chunking> 
         <chunking ck_id="ck_187" s_id="s_27" text="he" type="np"> 
               <tokens> 
                  <token ck_id="ck_187" head="true" s_id="s_27" string="he" t_id="t_341"/> 
               </tokens>  
         </chunking> 
         <chunking  ck_id="ck_188" s_id="s_27" text="'s been" type="vp"> 
             <tokens> 
                 <token ck_id="ck_188" s_id="s_27" string="'s" t_id="t_342"/> 
                 <token ck_id="ck_188" head="true" s_id="s_27" string="been" t_id="t_343"/> 
            </tokens> 
     </chunkings> 

 
   <dependences> 
       <pair rel="root"> 
             <arg1 id="t_338" seq="0" string="ROOT"/> 
             <arg2 id="t_340" seq="2" string="think"/> 
        </pair> 
        <pair rel="advmod">    
              <arg1 id="t_347" seq="9" string="long"/> 
              <arg2 id="t_346" seq="8" string="too"/> 
         </pair> 
         <pair rel="advmod"> 
              <arg1 id="t_343" seq="5" string="been"/> 
              <arg2 id="t_347" seq="9" string="long"/> 
         </pair> 
     </dependences> 
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  <srl> 
     <roleset id="think.01" name="think" t_id="t_340" vncls="29.4"> 
          <arg name="Thinker" role_id="A0" t_id="t_339" text="I" vncls="29.4" vntheta="Agent"/> 
          <arg name="Thought" role_id="A1" t_id="t_343" text="been" vncls="29.4" vntheta="Theme"/> 
     </roleset> 
     <roleset id="be.01" name="copula" t_id="t_343" vncls=""> 
            <arg name="topic" role_id="A1" t_id="t_341" text="he" vncls="" vntheta=""/> 
                 <arg name="comment" role_id="A2" t_id="t_344" text="in" vncls="" vntheta=""/> 
                 <arg role_id="AM-TMP" t_id="t_347" text="long"/> 
      </roleset> 
  </srl> 

 
 <instances> 
    <nes> 
          <ne ne_id="ne_81" ne_is_rel_arg="true" ne_nam="none" ne_string="he" ne_subtype="none" ne_type="PER"  
                s_id="s_27" t_id="t_341"/> 
          <ne ne_id="ne_82" ne_is_rel_arg="true" ne_nam="yes" ne_string="Washington"  
                ne_subtype="Population- Center" ne_type="GPL" s_id="s_27" t_id="t_345"/> 
    </nes> 
    <rels> 
          <rel is_ex_pos="false" rel_id="r_179" rel_subtype="located" rel_type="gen-aff" arg1="t_345" arg2="t_341"/> 
          <rel is_ex_pos="true" rel_id="r_180" rel_subtype="located" rel_type="gen-aff" arg1="t_341" arg2="t_345"/> 
    </rels> 
 </instances> 
 
 </sentence> 
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Appendix F - Closed vs. Open World Assumptions 

In OntoILPER, the conversion from Prolog rules into rules in SWRL entails a key aspect 

related to the differences between these two rule formalisms, namely Closed vs. Open 

World Assumptions. 

One can view Logic Programming as a logical theory expressing knowledge about the 

world. In certain situations, one might assume that the program contains complete 

information about the objects (facts) and relations between these facts. It is also possible, 

in a logical program, to make further inferences about the world based on the assumptions 

that the knowledge is complete. This characterizes the Closed World Assumption (CWA) 

which makes the assumption that the logical program contains complete knowledge in 

which ground atomic formulas are true; and under the CWA, if a fact is not in the database 

then it is not true [Fortineau et al., 2012].  

On the other side of the coin, OWL/DL and SWRL work under the Open World 

Assumption (OWA), mainly because they originally focus on the Semantic Web that deals 

with an unlimited knowledge resource (Internet). In OWA, when an assertion is not found 

as a known fact, the assertion truth-value is unknown [Fortineau et al., 2012]. 

In this respect, it should be examined the impact that the difference between OWA and 

CWA can have on results of the extraction rules in OntoILPER framework. First, related 

directly to the CWA, the Unique Name Assumption (UNA) states that individuals with 

different names are different. This implies that the relational model underlying the Prolog 

database of facts in OntoILPER, i.e., the graph-based model for representing sentences, 

makes two simplifying assumptions: 

- it is assumed that the only objects and relationships that exist in the domain are those 

that are explicitly represented in the database. Therefore, this characterizes the CWA.  

- identifiers uniquely identify objects in the domain (UNA). As a result, one obtains a 

single canonical model, where objects and relationships are in a one to one 

correspondence with the data in the Prolog factual database. 

Second, the interest of using ontologies is the extendibility of the model based on 

OWA. Indeed, the two simplifying assumptions seen earlier do not favour the richness of 

expressivity needed for the Web, and thus they should be rejected in that context. This 

represents an important paradox that constraints model design, as also remarked in 

[Fortineau et. al, 2012], i.e., the same query, on the same model, can give different results 

regarding if the reasoning is made under a closed or an open world.  

Given that the OntoILPER Framework performs the translation of the learned rules 

under the CWA, but the final repository of these rules is under the OWA, one could expect 

a "semantic mismatch problem" because the facts that can be inferred in the CWA, may 

not be true in OWA. In fact, this same problem is discussed in [Wang and Wu, 2011] 

where control rules were converted to SWRL. The authors propose a new reasoner called 

BCAR for reasoning on SWRL-based models under the CWA, achieving very encouraging 

results. 

 

Simulating UNA with HasKey Axiom. As seen earlier, the semantic mismatch problem 

must be carefully addressed in view of the difference between the CWA vs. OWA 

paradigms. Such a difference may directly interfere on the results of inference rules when 

changing from one formalism to another. In the Prolog database of facts, unique identifiers 

are employed to uniquely identify individuals of a given class. Similarly, the OWL/DL 

version of the same Prolog database in OntoILPER has to be handled appropriately in 

order to maintaining the same semantics regarding the UNA assumed in Prolog. 
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To accomplish this, OntoILPER takes advantage of the HasKey axiom in OWL 2 

version. The HasKey axiom was included by the World Wide Web Consortium (W3C) 

working group
1
 as a restricted variant of keys commonly known as easy keys [Grau et al., 

2008]. Such an axiom, a kind of a DL-Safe rule has the form HasKey(CP1..Pn), which 

states that each named instance of a class is uniquely identified by a (data or object) 

property, i.e., if two named instances of the class coincide on values for each of key 

properties, then these two individuals are the same. Hermit, Pellet and KAON2 are some of 

the reasoners that have implemented the HasKey axiom. 

For instance, the OWL axioms in the box below states that a person in the domain is 

uniquely identified by his/her social security number. Such OWL/DL axioms are expressed 

in functional notation
2
. 

 

 

Use of the HasKey axiom for simulating UNA in OWA. 

 

Given that the individuals “PSmith” and “PaulSmith” are named instances, the above 

axioms entail that “PSmith’ and “PeterSmith” are the same individuals, that is, 

SameIndivividual(PSmith PaulSmith) is true. Conversely, the following assertion is false: 

DifferentIndividuals(:PSmith a:PaulSmith). 

It should be highlighted that, one could declare the named individuals in the above 

example as being all different to each other by means of the DifferentIndividuals axiom: 

 

DifferentIndividuals(:id_1 :id_2, ..., :id_n ) 

 

However, this way should cause performance problems for reasoners when the number 

of individuals is large.  

When converting Prolog rules to SWRL rules, after that all facts in the Prolog database 

are converted to OWL/DL, it is also associated a HasKey axiom to each one of the classes 

in the working ontologies. With this, one guarantees the semantic equivalence of unique 

identifiers, provided that each new instance in the working ontologies is assigned a unique 

name. 

As recommended by W3C, the semantics of the hasKey axioms is specific in the sense 

that this axiom applies only to individuals explicitly introduced in the ontology by name, 

and not to unnamed individuals
3
. Indeed, being equivalent to a variant of DL-safe rules, the 

HasKey axiom will usually not influence class-based inferences, such as the computation 

of the subsumption hierarchy. On the other hand, the HasKey axiom can play a crucial role 

in answering queries about individuals [Grau, 2008]. Other benefits of using the HasKey 

axiom is that this axiom performs more efficiently by the SW reasoners than the 

                                                             
1 http://www.w3.org 
2 OWL 2. Structural Specification and Functional-Style Syntax (Second Edition).   

http://www.w3.org/TR/owl2-syntax/ 
3
 Unnamed individuals consist of the individuals whose existence is implied by existential quantification. 

   Declaration( DataProperty(:hasSSN) )      // hasSSN data property assertion 
   FunctionalDataProperty(:hasSSN)           // hasSSN is  a functional property 

   HasKey( :Person :hasSSN  )                        // assign the hasSSN to the class Person 

 
   DataPropertyAssertion(:hasSSN :PSmith "123-45-6789")        

                 // PSmith´s social security number is "123-45-6789" 

 

   DataPropertyAssertion(:hasSSN :PaulSmith "123-45-6789")   
               // PaulSmith´s social security number is "123-45-6789" 
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AllDifferent axiom, normally used in OWL/DL for distinguishing each one of the 

ontological instances.  

In the context of the present thesis, the target corpora to be processed can be very large 

containing hundreds or even thousands of documents. This could result in a huge number 

of graphs. Consequently, in order to cope with a great number of possible candidate 

instances to be inferred in the domain ontology, the non-functional requirement of a rapid 

response time when classifying instances in the ontology is crucial. Furthermore, it is 

intended to use the most prominent OWL/DL reasoners to assess the runtime performance 

of the inference task on the classification of instances of classes and relations in the 

ontologies. 

 


