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Abstract

An important pre-processing step in machine learning systems is dimensionality re-
duction, which aims to produce compact representations of high-dimensional pat-
terns. In computer vision applications, these patterns are typically images, that are
represented by two-dimensional matrices. However, traditional dimensionality re-
duction techniques were designed to work only with vectors, what makes them a
suboptimal choice for processing two-dimensional data. Another problem with tra-
ditional approaches for dimensionality reduction is that they operate either on a fully
unsupervised or fully supervised way, what limits their efficiency in scenarios where
supervised information is available only for a subset of the data. These situations are
increasingly common because in many modern applications it is easy to produce raw
data, but it is usually difficult to label it. In this study, we propose three dimensionality
reduction methods that can overcome these limitations: Two-dimensional Semi-super-
vised Dimensionality Reduction (2D-SSDR), Two-dimensional Discriminant Principal
Component Analysis (2D-DPCA), and Two-dimensional Semi-supervised Local Fisher
Discriminant Analysis (2D-SELF). They work directly with two-dimensional data and
can also take advantage of supervised information even if it is available only for a
small part of the dataset. In addition, a fully supervised method, the Two-dimensional
Local Fisher Discriminant Analysis (2D-LFDA), is proposed too. The methods are de-
fined in terms of a two-dimensional framework, which was created in this study as
well. The framework is capable of generally describing scatter-based methods for di-
mensionality reduction and can be used for deriving other two-dimensional methods
in the future. Experimental results showed that, as expected, the novel methods are
faster and more stable than the existing ones. Furthermore, 2D-SSDR, 2D-SELF, and
2D-LFDA achieved competitive classification accuracies most of the time when com-
pared to the traditional methods. Therefore, these three techniques can be seen as
viable alternatives to existing dimensionality reduction methods.

Keywords: computer vision, dimensionality reduction, feature extraction, semi-su-
pervised learning, tensor discriminant analysis



Resumo

Um estdgio importante de pré-processamento em sistemas de aprendizagem de ma-
quina é a redugdo de dimensionalidade, que tem como objetivo produzir representa-
¢des compactas de padroes de alta dimensionalidade. Em aplica¢des de visdo compu-
tacional, estes padroes sdo tipicamente imagens, que sdo representadas por matrizes
bi-dimensionais. Entretanto, técnicas tradicionais para reducdo de dimensionalidade
foram projetadas para lidar apenas com vetores, o que as torna opg¢des inadequadas
para processar dados bi-dimensionais. Outro problema com as abordagens tradicio-
nais para reducdo de dimensionalidade é que elas operam apenas de forma totalmente
ndo-supervisionada ou totalmente supervisionada, o que limita sua eficiéncia em ce-
nérios onde dados supervisionados estdo disponiveis apenas para um subconjunto
das amostras. Estas situagdes sdo cada vez mais comuns por que em vdrias aplicagdes
modernas é facil produzir dados brutos, mas é geralmente dificil rotuld-los. Neste
estudo, propomos trés métodos para redugdo de dimensionalidade capazes de con-
tornar estas limita¢des: Two-dimensional Semi-supervised Dimensionality Reduction (2D-
SSDR), Two-dimensional Discriminant Principal Component Analysis (2D-DPCA), e Two-
dimensional Semi-supervised Local Fisher Discriminant Analysis (2D-SELF). Eles operam
diretamente com dados bi-dimensionais e também podem explorar informagao super-
visionada, mesmo que ela esteja disponivel apenas para uma pequena parte das amos-
tras. Adicionalmente, um método completamente supervisionado, o Two-dimensional
Local Fisher Discriminant Analysis (2D-LFDA) é proposto também. Os métodos sdo de-
finidos nos termos de um framework bi-dimensional, que foi igualmente criado neste
estudo. O framework é capaz de descrever métodos para reducdo de dimensionalidade
baseados em dispersdo de forma geral e pode ser usado para derivar outras técnicas
bi-dimensionais no futuro. Resultados experimentais mostraram que, como esperado,
os novos métodos sdo mais rapidos e estdveis que as técnicas existentes. Além disto,
2D-SSDR, 2D-SELF, e 2D-LFDA obtiveram taxas de erro competitivas na maior parte
das vezes quando comparadas aos métodos tradicionais. Desta forma, estas trés téc-
nicas podem ser vistas como alternativas vidveis aos métodos existentes para redugdo
de dimensionalidade.

Palavras-chave: visdo computacional, reducdo de dimensionalidade, extragdo de ca-
racteristicas, aprendizagem semi-supervisionada, analise tensorial de discriminantes
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CHAPTER 1

Introduction

With the advances in imaging technologies, nowadays it is possible to capture a large
amount of images and videos with minimal effort. For instance, numerous high-
resolution images are produced everyday by medical imaging systems for disease
diagnosis. Satellites and aerial devices are constantly taking detailed, multi-spectral
pictures from the Earth. Surveillance systems can record a multitude of video hours
in a single day. And millions of photographs and videos captured by mobile devices
are being continuously published on the Internet. Imaging data is plentiful today and
it should keep growing in a fast pace.

In this scenario, a central area is computer vision, a field that provides automated
means for dealing with such enormous quantity of images and videos. Computer
vision combines multiple disciplines such as image processing, pattern recognition
and machine learning in order to create systems that are capable of extracting useful
information from visual data. In these systems, images are usually represented as
matrices of picture elements (pixels). A challenging aspect of this type of data is that
it is high-dimensional because even small images contain a large number of pixels.
Fortunately, most applications do not need to use all these pixels for two reasons.
First, pixels within an image are highly correlated due to their spatial arrangement.
Thus, images contain a lot of redundancies that can be eliminated. Second, for many
problems, some regions of the image are not relevant at all. For example, consider a
recognition system that receives a facial picture and must identify the person who is
depicted in it. For this system, the pixels in the background of the scene are not useful
and should be discarded. Furthermore, even the pixels that correspond to the face are
not all necessary because they contain redundant information. The system can select
the pixels that are more important for identifying faces or combine them in some way
to create new dimensions that make the identification job easier. This process is known
as dimensionality reduction and it is a key pre-processing task in computer vision.

Dimensionality reduction is an active research area and there are many well-known
dimensionality reduction methods. However, the majority of these methods work
only with one-dimensional vectors. For this reason, to reduce the dimensionality of
two-dimensional images, they must be first transformed into vectors. The issue is that
important information can be lost in the transforming process because the structure
of the data is greatly changed: pixels that were neighbors in the original image can
be far apart in the vectorized version. Also, because images typically contain a large
number of pixels, the generated vectors have a large number of elements, making the
dimensionality reduction time-consuming or even impossible when the dimensional-

13



1.1 DIMENSIONALITY REDUCTION 14

ity is too high. To overcome these limitations, two-dimensional dimensionality reduction
methods were developed. Instead of dealing with vectors, these methods use the im-
age directly, what makes them much faster to compute. In addition, they are generally
more stable and work better when there are few sample images available. Due to these
advantages, two-dimensional methods have been extensively developed and used in
the last years.

Methods for dimensionality reduction are traditionally grouped into two general
categories, depending whether they make use of discriminative knowledge or not.
Unsupervised methods rely only on the information contained in the samples to reduce
their dimensionality, without using any external information. In contrast, supervised
methods make use of some discriminative information (in the form of labels associated
to each sample, for example) to guide the reduction process in a way that best sepa-
rates samples that belongs to different groups. The literature shows that classification
systems based on supervised dimensionality reduction methods often perform better
than the ones that use unsupervised methods ( , )-
This is not a surprise, since supervised methods have access to important discrimina-
tive data and therefore can perform a better data separation.

However, in many practical applications, labels are available only for a subset of
the data. This may be because the labeling process is expensive or simply because
the dataset is too large to be manually inspected. In these situations, neither unsuper-
vised nor supervised methods are an optimal choice. On one hand, if an unsupervised
dimensionality reduction method is used, the system can take advantage of the data
contained in all samples, but the useful discriminative information cannot be used.
On the other hand, if a supervised algorithm is chosen, the labels can be incorpo-
rated in the dimensionality reduction process, but the samples that do not have labels
should be discarded. The complication is that both aspects are important. The unla-
beled samples allow to better characterize the underling data distribution whereas the
discriminative information allows to better segregate samples from different groups,
what helps the classification system. Hence, the ideal alternative would make use of
these two aspects at the same time. This is what semi-supervised methods do. They are
capable of combining supervised and unsupervised information in order to improve
the dimensionality reduction process.

In this chapter we introduce some fundamental concepts. Section 1.1 formally de-
fines the dimensionality reduction problem and discuss related concepts. Section 1.2
describes two-dimensional dimensionality reduction and its advantages compared
to the conventional techniques. Section 1.3 discusses the semi-supervised learning
paradigm. Section 1.4 presents the goals of this work. Finally, Section 1.5 summarizes
the content of the upcoming chapters.

1.1 Dimensionality Reduction

Dimensionality reduction is the process of finding low-dimensional representations
for high-dimensional data patterns (also called of samples, examples or observations). The
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fundamental motivation for dimensionality reduction is that patterns with a large
number of dimensions (also known as features, variables or attributes) often contain a
lot of redundant or unnecessary information that can be eliminated. In this way,
the central goal of dimensionality reduction is to produce a compact representation
for high-dimensional samples such that most of their “intrinsic information” is pre-
served ( , ). From another perspective, dimensionality reduction
methods aim to find meaningful low-dimensional structures hidden in a high-dimen-
sional space ( , ).

The generic problem of dimensionality reduction is defined as follows. Given a set
X1,...,Xy of n patterns contained in a vector space V, find a set xg, ., X of correspond-
ing patterns that are contained in another vector space V' such that this new space has
a lower number of dimensions than V and x! represents x; in some way. Throughout
the next chapters, more concrete definitions will be provided for particular dimension-
ality reduction strategies.

Working with the compact representation of the patterns is helpful because data
processing algorithms typically have their time and space complexity affected by the
dimensionality of the input data. Thus, reducing the number of data dimensions
means that less computation and memory will be required to process it. Also, most
data algorithms are susceptible to the well-known problem of the curse of dimensional-
ity, which refers to the severe degradation in effectiveness as the number of features
increases ( , ). Another argument for dimensionality reduction is that it is
easier to understand the data when it can be explained with fewer features. As a con-
sequence, the extraction of useful knowledge from the patterns is simplified and more
accurate models can be derived with less effort. Finally, representing the data with
fewer dimensions makes possible to plot and visually analyze it in order to better
grasp its geometric structure or detect outliers, for example ( , )-

There are two main approaches for reducing dimensionality: feature selection and
feature extraction. Feature selection methods operate by picking the features that are
more important for a given goal and discarding the others. Conversely, feature extrac-
tion (also called feature generation and feature transformation) methods combine the ex-
isting features to create new ones, which are devised to be more representative for the
problem in question ( , ). The precise definition of what “more im-
portant” or “more representative” mean is given by each specific method. In practice,
feature extraction is much more used than feature selection to reduce the dimension-
ality of images because the single pixels that correspond to the raw dimensions of an
image are not representative enough. Instead, the interesting features of image are
normally contained in groups of pixels. For this reason, feature extraction is a much
more suitable approach for images. Hence, in this work we are concerned only with
feature extraction. Additionally, from now on the terms dimensionality reduction and
feature extraction are used interchangeably.

Dimensionality reduction can be performed on a broad range of data types, from
speech signals ( , ) to textual documents ( , )
and gait patterns ( , ). It also has been successfully employed in many
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tasks, such as data representation ( , ), compression (

, ), visualization ( , ) and even regression ( , ).
Nonetheless, here we are interested only in dimensionality reduction of images within
the context of classification systems.

1.2 Two-dimensional Data Analysis

Two-dimensional data analysis (also known as matrix-based data analysis ') is a sub-area
of data analysis concerned with inputs that have a matrix form, such as images. It
can be seen as a special case of multilinear or tensor data analysis because matrices are
equivalent to tensors of second rank in multilinear algebra ( ,

). For this reason, two-dimensional methods are sometimes referred to as tensor-
based methods.

When employed for dimensionality reduction of two-dimensional data, matrix-
based methods bring important advantages over the established vector-based approach-
es. The main problem with vector-based methods is that, because they work only with
data in one-dimensional form, they require the two-dimensional data to be converted
to vectors in advance. However, treating two-dimensional patterns as vectors give
raise to significant drawbacks. First, when the patterns are vectorized, their underly-
ing spatial structure is destroyed ( , ). As a consequence, the data can be
deeply spoiled since structural information that could be useful is thrown away in the
transforming procedure.

Second, the generated vectors have a high number of dimensions, causing the di-
mensionality reduction process to be slow and even unfeasible in some cases. This
happens because when a matrix is transformed into a vector, each element of the ma-
trix becomes a dimension of that vector. The complication is that matrices, due to their
two-dimensional nature, have a very large number of elements. For example, a matrix
of size 112 x 96 have 10.752 elements (and in many real-world applications patterns
may have a much larger size). Processing vectors with such great number of features
is time- and space-consuming. Moreover, when the dimensionality is too high, the
algorithm may require so much processing or memory resources that it is not viable
in practice.

And finally, in many cases the number of dimensions is much higher than the
quantity of patterns. In these cases, it is difficult to perform dimensionality reduc-
tion accurately because the number of parameters to estimate exceeds the number of
available samples. This hurts the effectiveness of the methods up to a point where
the reduced patterns may not make sense at all. This is known as the small sample size
(SSS) or undersample problem (USP) in the literature and it is a significant limitation of

n fact, “two-dimensional” is the predominant denomination in the literature. However, in the
context of this work, the term is ambiguous because dimension may be confused with number of features
(that is, a two-dimensional sample may be thought to be a sample with two features, which it is not the
case). For this reason, we prefer the term matrix-based. Despite of that, the names of existing methods—
such as Two-dimensional Principal Component Analysis—are used as originally defined.
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the traditional vector-based methods ( , ; , ).

Matrix-based methods were developed to overcome all these problems. They can
take advantage of the structural information contained in the samples because they
work directly with the data in its original matrix form. They are faster to compute and
require less memory resources. And they are much less affected by the SSS problem
because they need less samples to run in an accurate way.

Methods for analyzing non-vectorial data are known for a long time. They were
extensively developed in the second half of the last century mainly by remote sens-
ing applications, which generate hyperspectral imaging data with lots of dimensions.
However, it was only recently that these methods were formalized and studied as the
tield of tensor data analysis, using the established discipline of multilinear algebra as
theoretical base. The sub-area of tensor data analysis concerned with dimensionality
reduction is multilinear subspace learning. It is a new field of study (developed in
the last few years) and has been growing fast, specially motivated by the increasing
number of high-dimensional data available nowadays ( p )-

In a similar way, the idea of directly using two-dimensional images in the dimen-

sionality reduction process is not new, but it attracted the attention of a wider audi-
ence only in the last decade. One of the earliest works that operate in this way was
proposed by ( ). They perform an optimal discriminant analysis in order
to extract projection vectors from a set of image matrices. ( )
also treat images as matrices. They consider the collection of all matrices as a third-
order tensor and search for the best low-rank approximation of its tensor-rank. In the
middle of the 2000s, many two-dimensional extensions of existing vector-based meth-
ods were proposed. ( ) came up with the Two-dimensional Principal
Component Analysis (2D-PCA), a matrix-based version of the Principal Component
Analysis (PCA). ( ); ( ); ( );
( ); ( ) proposed two-dimensional variations of the Linear Discrim-
inant Analysis (LDA). And ( ) derived the Two-dimensional Locality
Preserving Projections (2D-LPP), a two-dimensional version of the Locality Preserv-
ing Projections (LPP). More recently, ( ) proposed the Weighted
Modular Image Principal Component Analysis (MIMPCA), a modular version of two-
dimensional PCA developed specifically for face recognition. The method aims to
minimize the distortions caused by variations in illumination and head pose.

1.3 Semi-supervised Learning

Semi-supervised learning is a machine learning paradigm that is capable of exploiting
both unsupervised and supervised data. As ( ) put, “semi-
supervised learning is somewhere between unsupervised and supervised learning.”
In fact, most semi-supervised strategies are based on extending either unsupervised
or supervised techniques to include additional information typical to other learning
paradigm. Semi-supervised learning can be applied in many different settings, but it
is commonly used for classification tasks.
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A central concern in semi-supervised learning is how unsupervised data can be
useful to improve the learning process. From the classification perspective, the ques-
tion is whether unsupervised data can really make classification systems more accu-
rate. The literature is abundant of works with positive answers to this question and the
justification is that unsupervised data makes it possible to estimate decision bound-
aries more reliably ( , ). The example in Figure 1.1 illustrates this
fact 2. Looking only to the two labeled samples in the chart (a), we would intuitively
categorize the ? point as pertaining to the class +. Moreover, we would think that the
dashed line is a good choice for the decision boundary. However, when we analyze the
complete picture in the chart (b), we realize that the two labeled samples are certainly
not the most representative prototypes for the classes. In the face of that, we would be
tempted to reconsider our decision and also change the classification boundary. This
simple example shows how the geometry of unlabeled data may radically change our
intuition about decision boundaries. In addition, the example points to a fundamental
prerequisite in semi-supervised learning: that the distribution of the unlabeled sam-
ples should be representative of the underlying population and also relevant to the
problem in question °.

Semi-supervised learning is most useful in situations where there are far more un-
supervised than supervised data. This happens because in many real applications col-
lecting raw data is much easier than labeling it. The labels may be difficult to obtain
because they require human annotators, special devices, or expensive and slow experi-
ments. For example, in speech recognition it is possible to record hours of speech with-
out effort, but accurate transcription by human expert annotators can be extremely
time consuming. ( ) reports that it took as long as 400 hours to tran-
scribe 1 hour of speech at the phonetic level for the Switchboard telephone conver-
sational speech data. In bioinformatics protein sequences can be acquired in a short
amount of time, but it can take months of expensive laboratory work to determine
the three-dimensional structure of a single sample ( , ). Spam
filtering is another example. An e-mail inbox can contain hundreds of thousands of
messages but the user have to read them to reliably determine whether they are legit
or not. And the list goes on. There are many areas where unsupervised data is fairly
easy to collect but the labeling process is costly. Sometimes, it can be made less cum-
bersome with the help of annotation tools ( , ) or even by embedding
the labeling routine into computer games for motivating the users to produce more
labels ( , ). Still, in the majority of the cases it is simply not
possible to label the whole dataset.

The typical form of expressing supervised information (also known as discriminative
information) is by associating labels to the samples. The labels specify to what group or

2Example adapted from ( )-

3 Actually, semi-supervised learning make other assumptions too. For example, the smoothness as-
sumption states that “if two points in a high-density region are close, then so should be the correspond-
ing outputs” and the cluster assumption states that “if points are in the same cluster, they are likely to be
of the same class”. Nonetheless, the assumptions made by semi-supervised learning and their details
are beyond the scope of this work. To know more about them, consult ( ).
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Figure 1.1 Example of how the unsupervised data can help to characterize the distribution of
the classes. The chart (a) contains three patterns: one from the class +, other from the class x,
and another with an unknown class, showed as ?. Based only on the two samples with known
labels, it is reasonable to classify the pattern ? as belonging to the class +. Furthermore, the
dashed line shown in the chart seems to be a sensible choice for a decision boundary between
the classes. However, when unlabeled data is added in the chart (b), the situation changes.
Now it seems more likely that the ? pattern belongs to the x class. Also, the unlabeled data
reveals that the previous decision boundary was a bad choice for the problem; the new dashed
line seems to be a more accurate option.

class the samples belong to. Another form of discriminative information are equiva-
lence constraints (or pairwise constraints). They link two samples and indicate that they
pertain to the same class (must-link constraints) or to different classes (cannot-link con-
straints), even though the identity of the class is unknown. ( )
argues that there are scenarios where obtaining pairwise constraints is much cheaper
than obtaining labels and that in some cases constraints can be even generated auto-
matically. Note that constraints can be easily derived from labels and for this reason
labeled data can be used in all places where constraints are expected. It is also im-
portant to observe that, since labels are the most common format of discriminative
information, the term labeled data is often used as a synonym for supervised data.

A topic that is closely related to semi-supervised learning is transduction (some-
times called transductive learning or transductive inference). The idea behind transduc-
tion is to learn only the necessary to classify a given set of unlabeled samples. In
contrast, the traditional inductive inference aims to generalize the particular knowledge
contained in the supervised data into a predictive model, capable of classifying un-
known examples that will appear in the future. Clearly, induction is much harder
than transduction because it involves the prediction of unknown data. This is espe-
cially true when the supervised data is scarce (see more about the small sample size
problem in the previous section). If the application just needs to predict the labels



1.4 OBJECTIVES 20

of the data points it has now, the transductive approach is likely to give more accu-
rate results because it incorporates the unsupervised data in the learning process. For
this reason, transductive inference is usually associated with semi-supervised learn-
ing. However, the concepts are distinct; some semi-supervised learning algorithms

are transductive, but there are a lot of inductive semi-supervised methods too.
Although semi-supervised learning has attracted a lot of interest recently, the idea

of combining unsupervised and supervised data in machine learning is not new.
( ) reports that as early as in the 1960s this concept was already exploited by

self-learning methods ( , ; , ; , ). In the following
years, semi-supervised learning was occasionally employed in many settings, such
as mixture models ( , ), discriminant analysis ( , ;

, ), co-training ( , ) and constrained
clustering ( , ). Finally, the interest in semi-supervised learning in-

creased in the 2000s, mostly due to applications in bioinformatics, computer vision,
natural language processing and text classification. It is interesting to note that the
term “semi-supervised” as it is known today appeared in the literature only in 1992,
when used it for the first time to describe the use of unsupervised and
supervised data in machine learning. The expression was employed previously, but in
a different context ( , )-

1.4 Objectives

The main goal of this study is to propose dimensionality reduction methods that can
overcome the limitations of the established techniques in computer vision applica-
tions. In these applications, it is common to have an enormous quantity of large two-
dimensional samples, but supervised information is often available only for a subset
of them. Motivated by this observation, we aim to create techniques that can efficiently
process two-dimensional data and, at the same time, also take advantage of the impor-
tant but limited supervised information that may be available. To do this, we intend
to investigate existing matrix-based and semi-supervised methods for dimensionality
reduction in order to understand how they work and how their useful aspects can be
combined. Finally, another objective of this study is to evaluate these new methods
with two public image databases and compare their performance with the results of
state-of-art techniques.

1.5 Outline

Chapter 2 considers vector-based methods. It formally defines the dimensionality re-
duction problem and notation and describes seven existing vector-based methods:
Principal Component Analysis (PCA), Fisher Discriminant Analysis (FDA), Locality
Preserving Projections (LPP), Local Fisher Discriminant Analysis (LFDA), Semi-super-
vised Dimensionality Reduction (SSDR), Discriminant Principal Component Analysis



1.5 OUTLINE 21

(DPCA), and Semi-supervised Local Discriminant Analysis (SELF). Then, it presents
the vector scatter-based framework for dimensionality reduction and shows how the
described methods are expressed in terms of the framework. Finally, the chapter dis-
cusses some practical aspects involved in the computational implementation of the
framework.

Chapter 3 shows the definition and notation for the matrix-based dimensionality
reduction problem and introduces three existing matrix-based methods in their origi-
nal form: Two-dimensional Principal Component Analysis (2D-PCA), Two-dimensional
Fisher Discriminant Analysis (2D-FDA), and Two-dimensional Locality Preserving
Projections (2D-LPP).

Chapter 4 presents the proposed matrix scatter-based framework for dimension-
ality reduction, similar to the vector-based framework discussed previously. It also
shows how the existing two-dimensional methods can be described within the new
framework. Following that, four novel methods for dimensionality reduction are pro-
posed: Two-dimensional Local Fisher Discriminant Analysis (2D-LFDA), Two-dimen-
sional Semi-supervised Dimensionality Reduction (2D-SSDR), Two-dimensional Dis-
criminant Principal Component Analysis (2D-DPCA) and Two-dimensional Semi-su-
pervised Local Discriminant Analysis (2D-SELF). To conclude, the chapter examines
implementation issues of the matrix-based framework.

Chapter 5 describes the experiments and analyzes the results. The chapter details
the methodology and the characteristics of the tasks and databases used in the ex-
periments. After that, it shows the result tables and discusses the obtained results,
comparing the methods performance in each case.

Chapter 6 finishes this dissertation and reviews what was discussed in the previous
chapters. The chapter summarizes the contributions made by this study and considers
the directions that can be followed in future works. Appendix A demonstrates how
the existing vector- and matrix-based methods were converted to the corresponding
frameworks.



CHAPTER 2

Vector-based Dimensionality Reduction
Methods

Most of the existing dimensionality reduction methods expect data samples to be vec-
tors. These methods are known as vector-based methods. Vectors represent samples as
ordered lists of values and, within a sample, each value corresponds to the measure-
ment of a feature. Because the samples are represented by vectors, they are contained
in a vector space. The dimensions of this space correspond to the sample features.

A typical way to perform dimensionality reduction is by mapping the samples into
a new vector space that has fewer dimensions than the original one. Methods that op-
erate like this are called mapping or projective methods. The central task of projective
methods is to find the best low-dimensional space to project the samples. The ratio-
nale employed to define what “best” means is what differentiates the various existing
projective methods for dimensionality reduction.

The operation of mapping vectors from one space into another is called transforma-
tion. When a transformation is performed only with linear operations, it is said to be
linear. Linear transformations are widely used because their properties are well defined
and they can be completely characterized by a transformation matrix. Therefore, in this
context, finding a projection space is equivalent to finding a transformation matrix.
Projective methods based on linear transformations are called linear projective methods.

In this chapter, we discuss some vector-based linear projective methods. Section 2.1
formally defines the general problem and notation. Section 2.2 presents the Principal
Component Analysis (PCA), a popular unsupervised method. Section 2.3 describes
the Fisher Discriminant Analysis (FDA), a supervised method that is also extensively
employed for dimensionality reduction. Section 2.4 analyzes a more recent unsuper-
vised method, the Locality Preserving Projections (LPP), which exploits the local ar-
rangement of the samples. Section 2.5 considers the Local Fisher Discriminant Anal-
ysis (LFDA), a combination of FDA and LPP. Sections 2.6, 2.7 and 2.8 discuss three
semi-supervised methods: the Semi-supervised Dimensionality Reduction (SSDR), the
Discriminant Principal Component Analysis (DPCA) and the Semi-supervised Local
Fisher Discriminant Analysis (SELF), respectively. Finally, Section 2.9 shows a gener-
alized pairwise form for all these methods.

22
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2.1 Definition and Notation

Let x € R™ be a m-dimensional column vector that represents a sample and let X
R™*" be the matrix of all n samples

X = (xq[xa] " [xn). (2.1)

Let p € R"(1 <r <m) be alow-dimensional representation of the high-dimensional
sample x € R™, where r is the dimensionality of the reduced space. In linear projective
methods, p is a projection of x in another vector space. This space is defined by a
transformation matrix T € R"*". Therefore, the representation p of the sample x is
obtained as

p=T'x, (2.2)

where " denotes the transpose of a matrix.
The Euclidean distance between two vectors x; = (X11,...,X1,,) and x2 = (X21,...,X2s)
is defined as

d(x1,%2) = \/(xn —x21)% 4 - 4 (X1m — Xo2m)? (2.3)

When the original sample is not a vector, it must be transformed into one. For
example, a two-dimensional image that is represented by a matrix is vectorized by
placing its columns one after another. Thus, an image composed by | x m pixels gen-
erates a vector with /m dimensions.

2.2 Principal Component Analysis (PCA)

Principal Component Analysis (PCA), also known as Karhunen—Loeve expansion, is one
of the most used unsupervised methods for data representation and dimensionality
reduction. Its origin traces back to the work developed by ( ), but it was
only in 1991 that the technique was really popularized in the pattern recognition field,
when presented the well-known Eigenfaces method for face recog-
nition. Since then, PCA has been extensively investigated and applied in computer
vision problems ( , )-
Let X be the mean of all samples and S; be the total scatter matrix, defined as

_ 1
X = = izzlxi, (2.4)
Si=Y (x—R)(x—%) . @5)
i=1

PCA seeks a new space that maximizes the scatter of the projected samples. The opti-
mal transformation matrix Tpca that leads to this space is obtained by the equation
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Tpca = argmax [det (T ' S;T)]. (2.6)
TeRM*"
A solution for this optimization problem is given by the eigenvectors {¢; }}_; of
the following eigendecomposition problem ( , )
Stp =A@, (2.7)

assuming that the eigenvectors are sorted in descending order according to their asso-
ciated eigenvalues {A;};_;.

2.3 Fisher Discriminant Analysis (FDA)

Fisher Discriminant Analysis (FDA), sometimes called Linear Discriminant Analysis
(LDA) !, is another popular dimensionality reduction technique ( , ;

, ). Because it is supervised, FDA is generally more suitable for classification
tasks than unsupervised methods. FDA is one of the simplest forms of introducing
discriminatory knowledge into the feature extraction.

Let n’ be the number of labeled samples and 7} be the number of labeled samples
of the class I, such that n’ = }j_; n}. In addition, let S}, be the between-class scatter matrix
and S, be the within-class scatter matrix, defined as

Sy =Y m(x—x)(x—%)", (2.8)
=1

C
Sw:Z Z (xi—il)(xi—il)T, (29)
=1 i:yz‘:l
where } ., indicates the summation over the samples with class I and X; is the mean
of samples of the class [ such that

_ 1
X = Y. xi. (2.10)
) i:y,'ZZ
FDA aims to maximize the between-scatter and to minimize the within-scatter in the
projection space. Thus, the FDA transformation matrix Trpa is defined as

det(T'S,T)

det(TTS,T) |’ @11)

Tgpa = argmax
TGIRWI Xr

A solution for this maximization problem is given by the generalized eigenvectors
{¢};_; of the following generalized eigendecomposition problem

1 Actually, FDA is just a particular kind of LDA that uses the Fisher criterion as base. Another exam-
ple of linear discriminant analysis is the Bhattacharyya LDA ( , )-
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Sy = ASup, (2.12)

assuming that the eigenvectors are sorted in descending order according to their asso-
ciated eigenvalues {A;};_;.

2.4 Locality Preserving Projections (LPP)

Locality Preserving Projections (LPP) is a more recent technique for unsupervised di-
mensionality reduction, proposed by ( ). It incorporates neighbor-
hood information into the dimensionality reduction process in order to preserve the
the local structure of the samples in the projected space.

Let A be an affinity matrix with size n x n. Each element A; ; represents the affinity
between the samples x; and x; and it is usually assumed that 0 < A; ; < 1. The affinity
value A;; should be large if x; and x; are close and small otherwise. Note that close
does not necessarily means near in a spatial sense; it can be defined as any meaning-
ful relation between the samples (like the perceptual similarity for natural signals or
the hyperlink structures for web documents, for instance). The affinity matrix can be
defined in several different ways. In this work, we use the local scaling heuristic (

, ) 2, defined as
l,] 0_10_] 4 .
where || - || denotes the Euclidean norm and the parameter o; represents the local scal-
ing around x;, given by
k
0 = ||x1-—x§ N, (2.14)
with xgk) being the k-th nearest neighbor of x;. ( ) determined that k =7

is a useful choice.

Let D be the diagonal matrix whose entries are column sums of A such that D;; =
2]- Az-/j and L = D — A be the Laplacian matrix. The LPP transformation matrix Trpp is
defined as

det (TTXLX'T)

Tipp = argmi
LR e | det (TTXDXT)

TERT’HXT’

. (2.15)

A solution for this problem is given by the generalized eigenvectors {¢, }}_; of the
following generalized eigendecomposition problem

XLX' ¢ = AXDX ' ¢, (2.16)

2 (2007) discusses other typical ways of defining the affinity matrix.
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assuming that the eigenvectors are sorted in ascending order according to their associ-
ated eigenvalues {A;};_;. Note that, contrary to the methods shown so far, the LPP
transformation matrix is defined as a minimization problem. That is the reason that
the ordering direction of the eigenvalues is different this time.

2.5 Local Fisher Discriminant Analysis (LFDA)

Local Fisher Discriminant Analysis (LFDA) is a fully supervised combination of LPP and
FDA proposed by ( ). It uses LPP for adding local information to the
dimensionality reduction process in order to overcome the weakness of the original
FDA against within-class multimodality or outliers.

Let Sy, be the local between-class scatter matrix and S;,, be the local within-class scatter
matrix, defined as

n . I _ / e
Sip :% )3 Wi(,;'b)(xi —x))(xi—x))T, W = {Aw(l/” V) B2 (2.17)

= i,j 1/n’ if y; # y;

1 & () T (Iw) A/,  ify; =y;
Slw — E 2 Wi,j (Xi — X]) (XZ‘ — X]) ’ Wlth Wi,j = 0 / Y lf yi 7& yj s (218)

iji=1

where A; ; is the affinity value between the samples x; and x;, as defined by the equa-
tion (2.13), y; is the class of the sample x; and 1, is the number of samples of the
class y;. LFDA was designed to keep nearby samples that belongs to the same class
close together and to keep samples of different classes far apart. Therefore, it seeks
to maximize the localized version of between-scatter matrix and to minimize the local
within-scatter. The transformation matrix Ty ppa is defined as

det(TTSle)

. 2.19
det (TTSle) ( )

TLFD A = argmax
TeRm xXr

Like FDA, a solution for this maximization problem is given by the generalized
eigenvectors {¢, };_, of the following generalized eigendecomposition problem

Siw¢ = ASiw @, (2.20)

assuming that the eigenvectors are sorted in descending order according to their asso-
ciated eigenvalues {A;}7_;.

2.6 Semi-supervised Dimensionality Reduction (SSDR)

Semi-supervised Dimensionality Reduction (SSDR) is a semi-supervised method proposed
by ( ). It can handle unsupervised data and also take advantage of
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must-link and cannot-link constraints to guide the dimensionality reduction opera-
tion.
Let S; ; be the weight between the samples x; and x; such that

1/n?+a/n. if (x;,xj) € c®
Sij=1<1/n*>—B/ny if (xi,Xj) € MO, (2.21)
1/n? otherwise

where CY) and M) are respectively the cannot-link and must-link constraints sets,
ne and n,, are the number of cannot-link and must-link constraints, and « and j are
scaling parameters that balance the contributions of each constraint type.

SSDR seeks a projection space that maximizes the distance between samples that
belong to different classes (or, equivalently, samples involved in cannot-link constraints)
and that minimizes the distance between samples that belong to the same class (or,
equivalently, samples involved in must-link constraints). For unlabeled samples, SSDR
just uses the same criteria from PCA.

Let D be the diagonal matrix whose entries are column sums of S such that D;; =
2.;Sijand L = D — A be the Laplacian matrix in spectral graph theory. The optimal
SSDR transformation matrix Tsgpg is defined as

TespR = argmax {det(TTXLxTT)] . (2.22)
TE]RWLXV
A solution for this problem is given by the eigenvectors {¢, };_; of the following
eigendecomposition problem

XLX ¢ = A, (2.23)

assuming that the eigenvectors are sorted in descending order according to their asso-
ciated eigenvalues {A;};_;.

2.7 Discriminant Principal Component Analysis (DPCA)

Discriminant Principal Component Analysis (DPCA) is a semi-supervised method for di-
mensionality reduction created by ( ). It adds labels and pairwise
constraints to PCA in order to boost its discriminative power. DPCA is closely related
to SSDR. Both operate in a similar way but the definition of their weights differs. More-
over, DPCA is defined in function of PCA whereas SSDR is defined over the Laplacian
matrix.

Let S; and S;, be respectively the generalized between-scatter matrix and generalized
within-scatter matrix, defined as

1

S}, =
l
],

Y, (i—x)(i—x)" (2.24)

Xi,X]')EC
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1

Sl = —
w !
MO

Z (Xi — X]')(Xi - X]')T (225)

Xi,Xj)GM

where C()) and M) are respectively the cannot-link and must-link constraints sets and
| - | denotes the cardinality of a set. Note that these scatter matrices are generalized
versions of the ones shown in Section 2.3. This version is adapted to handle pairwise
constraints.

DPCA intends to maximize the distance in the projection space between samples
from different classes and to minimize the distance between samples of the same class.
In addition, it uses the PCA rationale for unlabeled samples. In this way; it creates the
scatter matrix S, such that

S; =S} — 7S, + AS; (2.26)

where S; is the total scatter matrix (defined by the equation 2.5) and # and A are reg-
ularizing coefficients that balance the contributions of each term. The optimal DPCA
transformation matrix Tppcp is defined as

Tppca = argmax det(TTSdT)} : (2.27)
TERWIXT
A solution for this problem is given by the eigenvectors {¢,}]_; of the following
eigendecomposition problem

Sip =g, (2.28)

assuming that the eigenvectors are sorted in descending order according to their asso-
ciated eigenvalues {A;}]_;.

2.8 Semi-supervised Local Fisher Discriminant Analysis (SELF)

Semi-supervised Local Fisher Discriminant Analysis (SELF) is a method for dimensional-
ity reduction proposed by ( ). It combines PCA and LFDA in a
single procedure, making both methods work in a complementary manner: PCA can
exploit the global structure of unsupervised data whereas LFDA can take advantage
of the discriminative information brought by the labeled samples. SELF was designed
to work only with explicit labels, but it can be easily extended to include pairwise
constraints too.

Let S, be the reqularized local between-class scatter matrix and S,;,, be the reqularized
local within-class scatter matrix, defined as

Sip=(1—B)Si + BSt, (2.29)

Siiw = (1 - :B)Slw + ﬁlmz (2.30)
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where 0 < f < 1is a trade-off parameter that controls the influence of the matrices, S;;
and Sy, are respectively the local versions of the between- and within-scatter matrices
described by the equations (2.17) and (2.18), and I, is the identity matrix in R"*"™.
Observe that PCA and LFDA are special cases of SELF (when f =1 and = 0, respec-
tively). The transformation matrix Tsg; r is defined as

det (TTSrle)
det (TTSrle)

TsgLp = argmax . (2.31)

TeI[{er

A solution for this maximization problem is given by the generalized eigenvectors
{@};_; of the following generalized eigendecomposition problem

Srlb‘l’ = /\Srlw‘l’/ (2~32)

assuming that the eigenvectors are sorted in descending order according to their asso-
ciated eigenvalues {A;};_;.

2.9 The Vector Scatter-Based Framework

The methods discussed in this chapter can be generalized to a vector scatter-based di-
mensionality reduction framework. All of them are based on scatter matrices, which can
be expressed in a pairwise form ( , ; , ) such as

n
S= % Z Wi,j(xi - X]')(Xl' — X]')T, (233)
i,j=1
where W is an n X n symmetric matrix of weights that is defined according to each
method. The element W; ; represents the weight between the samples x; and x;.
Then, to find the optimal projection matrix Topr, methods proceed to an optimiza-
tion problem in the form °

det (T"BT)

det(TTCT) |’ 239

Topr = argmax
TeR™*r

where det(-) denotes the determinant of a matrix. Roughly, B corresponds to the
characteristic we want to increase in the projection space (between-class scatter, for

3There are other ways to obtain the same solution Topr ( , ), such as:

Topr = argmax [tr(TTBT(TTCT) 1)),
TER’HXY

Topr = argmax [tr (T " BT)] subject to T' CT =1,
TEIRWIXT

where tr (-) denotes the trace of a matrix and I, is the identity matrix in R"*".
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instance) and C corresponds to the characteristic we want to decrease (within-class
scatter, for instance).

Let {¢; };_, be the generalized eigenvectors associated with the eigenvalues {Ax}}_;
of the following generalized eigendecomposition problem

By =\Cé. (2.35)

Assuming that the generalized eigenvalues are sorted in descending order as A; <
Ay < -+- < A, and that the generalized eigenvectors are normalized as ¢} C¢p, = 1 for

k=1,2,...,r, then a solution Topr is analytically given as ( , )
(119l 19,)- (2.36)
( ) argues that, although the equation (2.34) is invariant under linear

transformations, the distance metric in the projection space is arbitrary. He observed
empirically that the following adjustment is useful to improve the distance metric:

Torr = (V M1,V A2y Arp,). (2.37)

Thus, the minor eigenvectors are deemphasized according to the square root of the
eigenvalues. In this work, we performed experiments with and without these weights
for all methods to compare their performance.

29.1 Defining Methods within the Framework

This section shows how the matrices B and C are defined for each method. Analyzing
methods within this framework is useful to compare their similarities and differences.
Moreover, it helps us to understand how the methods are related. The framework also
simplifies the computational implementation, because the source code can be writ-
ten once for the general form and then accommodate the variations required by each
method. Appendix A demonstrates how the following weights were obtained.

Principal Component Analysis (PCA)

The optimal projection matrix Tpca is given by the equations (2.35) and (2.37) with
B=S; and C=1,, (2.38)

1 & 0 T o i) _ 1

where I, is the identity matrix in R”*™ and # is the total number of samples.
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Fisher Discriminant Analysis (FDA)

The optimal projection matrix Tgpa is given by the equations (2.35) and (2.37) with

B=S, and C=S,, (2.40)

n r_ ! 3 R
Sb = 1 Z W(b) (Xi — X]) (Xi - X]')T, Wlth Wz(’;j) - {1;71/ 1/nyi li yl y] ’ (241)
n if yi # yj

Uny, ifyi=y;

. , (2.42)
0 if y; # y;

Sw =7 '-21 W (xi — %) (xi — x) T, with Wi = {
l,]:

where 7’ is the number of labeled samples, y; is the class of the sample x; and n]’/i is the
number of labeled samples with label y;.

Locality Preserving Projections (LPP)

LPP was originally formulated as a minimization problem. To fit it in the vector
scatter-based framework, we should consider an inverted version of LPP (iLPP). Note
that, whereas the rationale of LPP and iLPP are equivalent, the results are not guaran-
teed to be equal. The optimal projection matrix T pp is given by the equations (2.35)
and (2.37) with

B=S, and C=S,, (2.43)
n n
S, =Y D"xx[, with DI = Y~ A, (2.44)
i=1 = |
1 & : I
Sl = E 2 Wz(,]) (Xi - X]')(Xl' - X]')T, with WZ(,]) = Ai,j/ (245)

ij=1

where A, ; is the affinity between the samples x; and x; (as defined in Section 2.4).

Local Fisher Discriminant Analysis (LFDA)

The optimal projection matrix Ty ppa is given by the equations (2.35) and (2.37) with

B=S;, and C=S;,, (2.46)

n .. I _ / i —
Sip :% )y Wz'(,;b)(xi —x)(x = x;) T, Wi = {Aw(l/” Vi) AV (2.47)

ij=1 g 1/71/ if Vi # y]



2.9 THE VECTOR SCATTER-BASED FRAMEWORK 32

n ! if 1y — 1.
Slw = 1 Z W(lw) (Xi — X]) (Xi — X]')T, with Wz(jw) = {?1’]/;1% li = ’ (2.48)
— if yi # yj

here A; | is the affinity between the samples x; and x; (as defined in Section 2.4), n' is
the number of labeled samples, y; is the class of the sample x; and ”lyi is the number of
labeled samples with label y;.

Semi-supervised Dimensionality Reduction (SSDR)

The optimal projection matrix Tsspr is given by the equations (2.35) and (2.37) with

B=S.; and C=1I,, (2.49)

| 1/n®+a/n. if (xi, ;) ecl)
Sssdr = E Z Wi(jsdr)(xi . xj)(xi . X]')T, Wi(;Sdi’) _ 1/712 . ,B/nm if (Xizxj) € M(l) ,
Lj=1 1/n? otherwise

(2.50)
where I, is the identity matrix in R"*", C()) and M) are, respectively, the cannot-link
and must-link constraints sets, n. and n,, are, respectively, the numbers of cannot-link
and must-link constraints, n is the total number of samples, and a and B are user-
defined parameters.

Discriminant Principal Component Analysis (DPCA)

The optimal projection matrix Tppca is given by the equations (2.35) and (2.37) with

B =S4, and C=1,, (2.51)

L A/t +2/ne if (x;,x;) € CU)
Sdpca = 5 Z Wi(jlpca) (xi — Xj) (xi — Xj)T/ Wi(,;ipca) = A/n?— 2n/ny i (Xi/x]’) eM® ,
bj=1 A/ n? otherwise
(2.52)
where I, is the identity matrix in R"*™, C and MW are, respectively, the cannot-link
and must-link constraints sets, n, and n,, are, respectively, the numbers of cannot-link
and must-link constraints, n is the total number of samples, and A and 7 are user-
defined parameters.
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Semi-supervised Local Fished Discriminant Analysis (SELF)

The optimal projection matrix TsgrF is given by the equations (2.35) and (2.37) with

B= Srlb and C= Srlwr (253)
Sup=(1—B)Si + BSt, (2.54)
Si1w = (1—PB)Sip + BLm, (2.55)

where Sj, and S;,, are the local between- and within-scatter matrices as defined by
LFDA, S; is the total covariance matrix as defined by PCA, I, is the identity matrix in
R™ ™, and f is an user-defined parameter.

2.9.2 Implementation Notes

The calculation of the scatter matrix S in the pairwise form is computationally expen-
sive, because it involves many multiplications of high-dimensional vectors. However,
this matrix can be expressed in another form, more efficient to compute ( ,
)-
Let D be the n x n diagonal matrix D;; = Z};l W;;and let L =D — W. Then the
matrix S can be expressed in terms of L as

S =XLX', (2.56)

which has a much lower computational cost than the pairwise version.
If we interpret W as a weight matrix for a graph with n nodes, L can be regarded
as the graph Laplacian matrix in spectral graph theory ( , )-



CHAPTER 3

Matrix-based Dimensionality Reduction
Methods

Matrix-based dimensionality reduction methods are methods that operate directly with
matrices. They are also called two-dimensional or tensor-based methods. These meth-
ods were specifically developed for dimensionality reduction of patterns that have a
matrix structure, such as images.

When a conventional vector-based method is used to reduce the dimensionality
of two-dimensional samples, they first must be transformed into vectors (see more in
Section 2.1). When the samples are images, the resulting vectors usually have a high
number of dimensions, what leads to a corresponding high-sized scatter matrix. This
scatter matrix is difficult to evaluate accurately due to its large size and the relatively
small numbers of training samples. This is known as the small sample size problem:
as the number of dimensions increase, much more samples are needed to correctly
calculate the scatter matrix ( , )-

The vectorizing step is not necessary for matrix-based methods because they al-
ready expect inputs to be in their native matrix form. This difference implies in some
important advantages over the vector-based approach. First, the spatial structure of
each sample is preserved, what means that there is more information available for
feature extraction. Second, scatter matrices that are computed directly from two-di-
mensional samples have considerably lower dimensionality and therefore are more
reliable and faster to manipulate. Third, because scatter matrices are smaller, the small
sample size problem is alleviated, meaning that fewer samples are needed.

For these reasons, matrix-based methods often perform better than equivalent vec-
tor-based methods, especially in classification tasks, where dimensionality reduction
is employed as a preprocessing stage. The literature shows that in many cases the ma-
trix-based approach results in better classification rates ( , ; ,

; , ). Also, since the feature extraction process is much faster in
these methods, they are suitable for on-line learning scenarios, where new informa-
tion is constantly being incorporated to the model.

In this chapter, we present three existing matrix-based methods. Section 3.1 de-
fines the general problem of matrix-based dimensionality reduction in a formal way:.
Sections 3.2, 3.3, and 3.4 discuss Two-dimensional Principal Component Analysis (2D-
PCA), Two-dimensional Fisher Discriminant Analysis (2D-FDA), and Two-dimension-
al Locality Preserving Projections (2D-LPP), respectively, the matrix-based versions of
PCA, FDA, and LPP.
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3.1 Definition and Notation

Let M € R be an [ x m matrix that represents a sample and let P € R"*" be a low-
dimensional, compact representation of the sample M in a reduced space with dimen-
sionality 7.

In linear projective methods, P is a projection of the matrix M in another vector
space, which is defined by a transformation matrix T € R"*". The compact represen-
tation P of the sample M is obtained as

P = MT. (3.1)

Let X € R ™ be the In x m matrix of all n samples. This matrix is constructed by
stacking the samples such as

M;

- M,
x=| 7. (3.2)

M,
The Euclidean distance between two matrices M; = (myq|myy|- - |my,,) and M, =
(mp1|mypy| - - - [myy, ) is defined as the sum of the distances between its columns, that is

m
D(M;,My) = ) d(my), myy), (3.3)
k=1

where mj; (for k =1,2,...,m) is the k-th column of the matrix M; and d (mq,my) de-
notes the Euclidean distance between column vectors m; and mjy, as defined in Sec-
tion 2.1.

3.2 Two-dimensional Principal Component Analysis (2D-PCA)

Two-dimensional Principal Component Analysis (2D-PCA) is a matrix-based variant of
PCA proposed by ( ) L. As the name suggests, it is very similar to the
original PCA. In fact, it only changes the way the total scatter matrix is computed,
adapting it to deal directly with matrices.

Let S; be the new total scatter matrix, defined as

S =Y (M, — M) (M; — M), (3.4)
i=1

where M is the mean of all samples, such that M = %2?:1 M;. The optimal transfor-
mation matrix Top-pca is defined in the same manner that the original PCA discussed
in Section 2.2, just replacing S; by S;.

1 Actually, the method was first described in ( ), but it was called IMPCA.
Later, ( ) provided a better analysis of the technique and renamed it to 2D-PCA.
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3.3 Two-dimensional Fisher Discriminant Analysis (2D-FDA)

Two-dimensional Fisher Discriminant Analysis (2D-FDA) is a matrix-based version of
FDA described by ( ) 2. It works like the original FDA, only adjust-
ing the scatter matrices to use two-dimensional patterns.

Let S; and Sy, be, respectively, the new between-class scatter matrix and the new
within-class scatter matrix, computed as

Sp=Y m(M, —M)" (M, - M), (3.5)
i=1
Se=Y Y M;—-M)"(M;— M), (3.6)
=1 isy=1

where 1’ is the number of labeled samples, 7] is the number of labeled samples of the
class I, } ;.- indicates the summation over the samples with class | and M, is the
mean of samples of the class I. The optimal transformation matrix Top.ppa has the
same definition of the original FDA discussed in Section 2.3, but replacing S, and Sy,
by S, and Sy, respectively.

3.4 Two-dimensional Locality Preserving Projections (2D-LPP)

Two-dimensional Locality Preserving Projections (2D-LPP) is a matrix-based extension of
LPP proposed by ( ). Like the previous techniques, LPP is analogous to
the original method. It just slightly modifies the affinity matrix and the definition of
the optimal transformation matrix to work with two-dimensional patterns.

Let A be the new affinity matrix such that

A —exo | — M (3.7)
1,] p 0_10_] s .
where || - || denotes the sum of the Euclidean norm of the matrix rows and the param-

eter o; represents the local scaling around M;, as defined in Section 2.4.

Let D be the diagonal matrix whose entries are column sums of A such that D;; =
Y fli/j and L =D — A be the new Laplacian matrix. The optimal transformation matrix
TZD-LPP is defined as

det(TTX (L ® I;n)XT)

det(TTXT (D ® Ip)XT) |’ (3.8)

Top-Lpp = argmin
TGRM Xr

where ® denotes the Kronecker product and I, is the identity matrix in R"*"™.

2In reality, the original name of the method is Two-dimensional Fisher Linear Discriminant (2D-FLD),
but here we use the equivalent name 2D-FDA.
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A solution for this problem is given by the generalized eigenvectors {¢, }}_; of the
following generalized eigendecomposition problem
X' (L@ In)Xgp =AX" (D @ Im)X¢, (3.9)

assuming that the eigenvectors are sorted in ascending order according to their asso-
ciated eigenvalues {Ax}]_;.



CHAPTER 4

The Matrix Scatter-based Dimensionality
Reduction Framework

In this chapter we show that, like the vector-based counterparts, the matrix-based
methods discussed in the previous chapter can also be generalized to a matrix scatter-
based dimensionality framework.

We already discussed that analyzing methods within a framework is useful to com-
pare them and to understand how they are related (see more in Section 2.9.1). How-
evet, in this case there is one additional, even more important benefit. The framework
enables us to easily create novel matrix-based extensions for existing vector-based
methods.

In this work, we create matrix-based (or, equivalently, two dimensional) versions
of the supervised method LFDA and of the semi-supervised methods SSDR, DPCA
and SELF. These versions combine the advantages of the matrix-based approach with
the particular characteristics of each method. Section 4.1 describes the matrix-based
framework. Section 4.2 shows how 2D-PCA, 2D-FDA and 2D-LPP are defined within
the matrix-based framework. Section 4.3 describe the proposed matrix-based methods
Two-dimensional Local Fisher Discriminant Analysis (2D-LFDA), Two-dimensional
Semi-supervised Dimensionality Reduction (2D-SSDR), Two-dimensional Discrimi-
nant Principal Component Analysis (2D-DPCA) and Two-dimensional Semi-supervised
Local Fisher Discriminant Analysis (2D-SELF) in the terms of the framework.

4.1 The Matrix Scatter-based Framework

All scatter matrices of the matrix-based methods discussed in the previous chapter can
be expressed in the following pairwise form

. 1 &
S=3 ”21 Wi (M; = M) T (M; — M), (4.1)
1,]=

where M; are | x m matrices that represent samples, as defined in Section 3.1, and W
is an n X n symmetric matrix that is defined according to each method. The element
W, j represents the weight between the samples M; and M;.

Note that this equation is similar to the pairwise form used by the vector scatter-
based dimensionality reduction framework, described in Section 2.9. In fact, the frame-
works are analogous, in the same way the matrix-based methods are analogous to the
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corresponding vector-based methods. Both use a maximization problem to find Topr,
the optimal projection matrix, defined as

det (T"BT)

det(TTCT) |’ (4.2)

Topr = argmax
TeRm Xr

where det (-) denotes the determinant of a matrix. Again, B corresponds to the charac-
teristic we want to increase in the projection space (between-class scatter, for instance)
whereas C corresponds to the characteristic we want to decrease (within-class scatter,
for instance).

Let {¢, };._, be the generalized eigenvectors associated with the eigenvalues {Ax}}_;
of the following generalized eigenvalue problem

Bg = ACg. (4.3)

As discussed before, assuming that the generalized eigenvalues are sorted in de-
scending order as A} < Ay < --- < A, and that the generalized eigenvectors are nor-
malized as ¢;Cq)k =1 for k=1,2,...,r, then a solution Topr is analytically given

as ( , )

(1, Por--- ). (4.4)

We observed empirically that the heuristic proposed by ( ) is also
useful for matrix-based methods. He found out that the distance metric in the projec-
tion space can be improved by deemphasizing the minor eigenvectors according to the
square root of their corresponding eigenvalues. For this reason, we adjust the solution
such as

Topr = (\/A_lfplr \/A_Z(Pz/ SRy \/)\_Y‘Pr) (45)

In this work, we performed experiments to evaluate the efficiency of this weighting
scheme.

4.2 Defining Methods within the Framework

In this section, we show how the matrix-based methods discussed in the previous
chapter are expressed in the matrix scatter-based framework. The matrices B and C are
defined for each method. Appendix A demonstrates how we derived these equations
from the original definitions.

421 Two-dimensional Principal Component Analysis (2D-PCA)

The optimal projection matrix Top.pca is given by the equations (4.3) and (4.5) with

B=S; and C=1,, (4.6)
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M) (M; — M;), with W) = - (4.7)

L

where I, is the identity matrix in R”*™ and 7 is the total number of samples. Note

I\JI»—\

that the weights W) are the same obtained for the pairwise form of PCA
4.2.2 Two-dimensional Fisher Discriminant Analysis (2D-FDA)
The optimal projection matrix Top.ppa is given by the equations (4.3) and (4.5) with
4.8)

Bng and C=S,,

/ny, ify;=y;

1/n" -1 v
1/n’ if yi #
(4.9)

n
Z D(M; — M) T (M; — M), with w}J)

I\)IH

ity =8 g g)

Y ©(M; — M) (M; — M;), with W = ,
2 2 j) with W, {0 if y; # y;

I\)IH

where 7’ is the number of labeled samples, y; is the class of the sample M; and n
the number of samples of the class y;. Note that the weights Wi(?) and Wi( j ) are the

same obtained for the pairwise form of FDA
4.2.3 Two-dimensional Locality Preserving Projections (2D-LPP)

Like the original LPP, the 2D-LPP was formulated as a minimization problem. How-
ever, since the matrix-based framework is based on a maximization problem, we should

consider an inverted version of 2D-LPP (2D-iLPP)
The optimal projection matrix Top.ippp is given by the equations (4.3) and (4.5) with
(4.11)

B=S, and C=S§,,
n B n

=Y DM M;, with D7) =Y 4; (4.12)
i=1 j=1

M) T(M; - M), w1thW() A, (4.13)

P
where A,-,j is the aff1n1ty matrix between the samples M; and M; (as defined in Sec-
tion 3.4). Note that the weights Wi(’;.) are equivalent to the ones obtained for the pair-

I\JI»—\

wise form of iLPP.
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4.3 Two-dimensional Extensions of LFDA, SSDR, DPCA and SELF

As noted in the previous section, the weights obtained for the pairwise form of 2D-
PCA, 2D-FDA, and 2D-LPP are exactly the same obtained for the pairwise form of
PCA, FDA, and LPP, respectively.

Although expected, this fact has interesting implications. First, it reinforces the
notion that the discussed matrix-based methods are equivalent to the corresponding
vector-based methods. But, more importantly, it suggests that novel two-dimensional
methods can be created just by porting the weights in the pairwise equation from the
vector-based framework to the matrix-based framework. Based on this observation,
we define two-dimensional extensions for LFDA, SSDR, DPCA, and SELF in this sec-
tion.

4.3.1 Two-dimensional Local Fisher Discriminant Analysis (2D-LFDA)

The Two-dimensional Local Fisher Discriminant Analysis (2D-LFDA) is the matrix-based
extension of LFDA. It aims to keep nearby samples that belongs to the same class
close together and to keep samples in different classes far apart. That is, it seeks to
maximize a localized version of the between-scatter matrix and to minimize the local
within-scatter.

By definition, 2D-LFDA is expressed in the matrix-based framework and uses the
same weights from the pairwise equation of LFDA. The optimal projection matrix
Top.1rDA is given by the equations (4.3) and (4.5) with

B=S;, and C=S5,,, (4.14)

A j(1/n" =1/ny)  ifyi=y;
1/n' ify; #y;’
(4.15)

1 & . -
Siw=3 3 WM, — M) (M, - M), W = {

Slw =

N =

n N: . ! 1 . — .
Z Wz(;w) (Ml - M])T(Mz - M]), Wlth Wl-(;w) = {Al’]/nyi lf yz y] , (416)
=1 ’ 0 if y; 7 y;

where /L-,j is the affinity matrix between the samples M; and M; (as defined in Sec-
tion 3.4), n’ is the number of labeled samples, y; is the class of the sample M; and ny,
is the number of samples of the class y;.

4.3.2 Two-dimensional Semi-supervised Dimensionality Reduction (2D-SSDR)

The Two-dimensional Semi-supervised Dimensionality Reduction (2D-SSDR) is the matrix-
based version of SSDR. It seeks a projection space that maximizes the distance between
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samples that belong to different classes (or, equivalently, samples involved in cannot-
link constraints) and that minimizes the distance between samples that belong to the
same class (or, equivalently, samples involved in must-link constraints). For unlabeled
samples, 2D-SSDR just uses the same criteria from 2D-PCA.

By definition, 2D-SSDR is expressed in the matrix-based framework and uses the
same weights from the pairwise equation of SSDR. The optimal projection matrix
Top-sspr is given by the equations (4.3) and (4.5) with

B=S,;, and C=1,, (4.17)

1/n*+a/n.  if (M;M;) € CV)
ssdr Z W (ssdr) (M; — M; ) (M; — M; ) W(ssdr) {1/ - B/my if (Mi/Mj) ceM®)
’] ! 1/n? otherwise

(4.18)
where I,,, is the identity matrix in R"*", C(") and M() are, respectively, the cannot-link
and must-link constraints sets, n. and n,, are, respectively, the numbers of cannot-link
and must-link constraints, n is the total number of samples, and « and B are user-
defined parameters.

4.3.3 Two-dimensional Discriminant Principal Component Analysis (2D-DPCA)

The Two-dimensional Discriminant Principal Component Analysis (2D-DPCA) is the matrix-
based variant of DPCA. It is similar to 2D-SSDR because it also intends to maximize
the distance in the projection space between samples from different classes and to
minimize the distance between samples of the same class. Additionally, it uses the
2D-PCA rationale for unlabeled samples too. However, 2D-DPCA defines the weights
in a different way.

By definition, 2D-DPCA is expressed in the matrix-based framework and uses the
same weights from the pairwise equation of DPCA. The optimal projection matrix
Top-ppca is given by the equations (4.3) and (4.5) with

B=S,,, and C=1,, (4.19)

L A/n?+2/n.  if (M;M;) € CO)
Supea = ;. Z d”c” (M, —M,)T(M; — M), Wiffpc“) ={ A/ =2 /ny i (M, M) € MO,
j=1 A/ n? otherwise

(4.20)

where I, is the identity matrix in R"*", C()) and M) are, respectively, the cannot-link

and must-link constraints sets, n. and n,, are, respectively, the numbers of cannot-link

and must-link constraints, n is the total number of samples, and A and 7 are user-
defined parameters.
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4.3.4 Two-dimensional Semi-supervised Local Fisher Discriminant Analysis
(2D-SELF)

The Two-dimensional Semi-supervised Local Fisher Discriminant Analysis (2D-SELF) is the
matrix-based version of SELF. It combines 2D-LFDA and 2D-PCA. Its matrices are
expressed by the 2D-LFDA between- and within-scatter matrices regularized, respec-
tively, by the covariance matrix from 2D-PCA and by the identity matrix.

By definition, 2D-SELF is expressed in the matrix-based framework and uses the
same weights from the pairwise equation of SELF. The optimal projection matrix Top_sgrr
is defined by the equations (4.3) and (4.5) with

B = Sﬂb and C= Srlwr (4.21)
Sip=(1—-B)Sw + BSt, (4.22)
Srlw (1 - ﬁ)glw + ﬁIm/ (4.23)

where §;, and S;., are the local between- and within-scatter matrices as defined by
2D-LFDA, S; is the total covariance matrix as defined by 2D-PCA, I, is the identity
matrix in R”*™, and B is an user-defined parameter.

4.4 Implementation Notes

The scatter matrices in the pairwise form can be represented in a compact way, as

1 n
=5 Y Wi, M;)"(M; — M;) (4.24a)
i,j=1
n
1
= ) W3 (MTM M M; - M/ M; +MTM> (4.24b)
z] 1
= (Wi,jMzTMi - WI,JMZTM]> (424C)
i,j=1
= Z M (W, I)M; — Y M (4.24d)
i,j=1 i,j=1
=X"[(D-W)aL]|X (4.24€)
=X"(LeoI)X, (4.24f)

where ® denotes the Kronecker product, X is the In x m matrix with all samples (as
defined in Section 3.1), D is diagonal matrix where Di,z‘ = Z};l Wi ;and I; is the identity

matrix in R %/,
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In Section 2.9.2, we observed that the vector-based framework also has a compact
representation for its pairwise equation. Then, we argued that this representation is
more efficient to compute. However, this is not the case here. In the matrix-based
framework, the computation of the compact form is much more expensive than the
computation of the pairwise form.

This difference is caused by the Kronecker product. This product creates very large
matrices, what makes the computation of the compact form memory-intensive. The
problem could be alleviated by making some matrices sparse, but the memory con-
sumption would still be higher than in the pairwise version.

Additionally, the operations performed inside the summation have different com-
plexities. In the the vector-based pairwise form, each iteration of the sum involves the
product of two Im-dimensional vectors, producing Im x Im matrices. In the matrix-
based pairwise form, the iterations perform the product of two I x m matrices, what
produces smaller matrices, with size m x m. For these reasons, the pairwise form is
the recommended way to implement matrix-based methods.



CHAPTER 5

Experiments and Analysis

We evaluated the proposed methods 2D-LFDA, 2D-SSDR, 2D-DPCA, 2D-SELF and the
other ones discussed in the previous chapters in the context of image classification.
For this purpose, two face databases were used: ORL and FEI. The ORL database
was used to examine the methods performance when images have varying pose and
scaling in addition to occlusive accessories, such as glasses. The FEI database was
used to evaluate the methods performance with images of different genders and facial
expressions.

The experiments were carried out in the transductive setting ( ,

), which uses all the available patterns—labeled and unlabeled—both for train-
ing and testing. The goal of the transductive approach is to create a model to classify
only the unlabeled samples we have now. This contrasts with the traditional general-
ization approach, which aims to build a model capable of classifying any new pattern
that might appear. The transductive setting is a standard choice in works related to
semi-supervised learning ( , )-

In this chapter, we describe how the experiments were conducted and compare the
results for distinct methods. We also analyze how the methods performance varies
with different numbers of labeled samples, principal components and image sizes.
Section 5.1 describes the general methodology used in the experiments. Section 5.2
discusses the experiments with the ORL database in the context of two tasks (face
recognition and glasses detection). Section 5.3 presents the experiments with the FEI
database in the context of two another tasks (gender and smile detection). Finally,
Section 5.4 discusses the results in general and summarizes the conclusions.

5.1 Methodology

The datasets were divided into two groups: the labeled and unlabeled sets, which
respectively correspond to the training and testing sets. The training set was used
to create the classifying system whereas the testing set was employed to evaluate its
performance.

All the experiments started with the dimensionality reduction step. To do this,
the discussed methods were used to extract the features of the samples. The princi-
pal component vectors (PCs) produced by each method were used to project all the
samples into a new, reduced feature space. Then, a classifier was built only with the
labeled reduced samples. This classifier was used to predict the labels of the unla-
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beled reduced samples. Finally, the predictions were compared with the actual labels
to compute misclassification rates for each method.

In order to avoid bias caused by any particular classification technique, we chose
the nearest neighbor classifier (1-NN) for all experiments. This is one of the simplest
classifiers and it has been shown to perform reasonably well across many datasets and
methods, specially in semi-supervised contexts ( , ; ,

)-

As explained in Chapter 2, the vector-based methods (PCA, iLPP, FDA, LFDA,
SSDR, DPCA, and SELF) work only with vectors. For these methods, the images
were transformed into one-dimensional column vectors before feature extraction. The
matrix-based methods (2D-PCA, 2D-iLPP, 2D-FDA, 2D-LFDA, 2D-SSDR, 2D-DPCA,
and 2D-SELF) used the two-dimensional images directly as input.

Because the experiments were performed in the transductive setting, the training
and testing sets were handled differently for each learning paradigm in the dimen-
sionality reduction step. For the unsupervised methods (PCA, iLPP, 2D-PCA, and
2D-iLPP), the sets were merged and all the samples were used for feature extraction,
without labels. For the supervised techniques (FDA, LFDA, 2D-FDA, and 2D-LFDA),
only the training samples were used as input, accompanied by their respective labels.
And for the semi-supervised methods (SSDR, DPCA, SELF, 2D-SSDR, 2D-DPCA, and
2D-SELF), all the samples were used along with the labels available in the training set.

Hence, in the experiments we simulated a scenario where there are many samples
but only some of them are labeled. On one hand, unsupervised methods can use all
samples, but no labels. On the other hand, supervised methods can use labels, but are
limited only to the information provided by the (few) labeled samples. In contrast,
semi-supervised methods can overcome these limitations by using the information
from all samples while also taking advantage of the discriminative power provided

by the available labels.
It is known that the choice of the training set can affect the system performance in
a great extent ( , ). To assure that the results are not tied to a particular

training set, all experiments were repeated 12 times, with different splits of labeled
and unlabeled samples. The samples were put randomly in each set. The labeled sets
contain the same number of samples for each class. To enable a fair comparison, the
same splits were used for all methods. The misclassification rates shown in the results
tables are averages between the repetitions.

Another important aspect to consider is how many labeled samples are necessary
to achieve a reasonable accuracy. To investigate this, we performed experiments with
training sets of different sizes. For the face recognition task, experiments were exe-
cuted with 1, 2, 3, 4, and 5 labeled samples of each class. For the other tasks, exper-
iments were executed with 1, 5, 10, 25, 50, and 100 labeled samples of each class. In
the result tables, the number of samples is indicated by n. Note that this variation is
relevant even for unsupervised techniques because although the labels are ignored in
the dimensionality reduction phase, they are used to create the classifier.

We also evaluated how the system performance is affected by the number of se-
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lected PCs. Intuitively, more PCs should improve the accuracy since there is more
information available for the classifier. In practice, however, this is not always true
because the additional information may not be useful for classification ( ,
). Actually, we observed that in many situations more PCs yielded higher mis-
classification rates. Generally, it is not possible to determine the optimal number of
PCs in advance and, even if that was possible, this number would be different for each
method and we could not compare them in a meaningful way. So, as proposed by
( ), we decided to compare the methods performance by using the

average misclassification rate over the reduced dimensions.

Finally, we wanted to determine whether the weighting scheme described in Chap-
ters 2 and 3 is really useful to improve the system accuracy. For this extent, we
performed experiments with plain and weighted versions of the methods. In general
we observed that, contrary to ( ) findings, the versions without
weights produced better misclassification rates for vector-based methods. In contrast,
the weighted versions performed better for matrix-based methods. Hence, the tables
show results obtained with plain vector methods and weighted matrix methods.

For methods that require parameters, we chose the same values used in the works
where they were proposed. For SSDR and 2D-SSDR, « = 1 and 8 = 20; for DPCA and
2D-DPCA, 7 =10 and A = 0.1; and for SELF and 2D-SELF, 8 = 0.5. Because LFDA
generated some singular scatter matrices, we treated SELF with p = 0.001 as a slightly
regularized version of LFDA. The experiments were run on the Matlab enviroment
(version 2012b) over the Mac OS X platform. We released the source code used in the

experiments as free software '.

5.2 Experiments on the ORL Database

The ORL Database of Faces (from AT&T Laboratories Cambridge) 2(

, ) contains images from 40 individuals, each having 10 different images, sum-
ming up 400 images in total. For some subjects, the images were taken at different
times. There are variations in facial expressions (open or closed eyes, smiling or non-
smiling) and facial details (glasses or no glasses). The images were taken with a tol-
erance for some tilting and rotation of the face up to 20 degrees. There is also some
variation in the scale up to 10 percent. All images are grayscale (256 levels) and of size
112 x 92 pixels.

To improve the overall performance and to simplify the computation in the exper-
iments, we used a cropped version provided by Roweis °. In this version, part of the
background was removed and the images were aligned to have the eyes in the same

IThe source code of the experiments is available for download at http://github.com/
lailsonbm/2d_semi_supervised

2The ORL Database of Faces is available for download at http://www.cl.cam.ac.uk/
research/dtg/attarchive/facedatabase.html.

3The cropped version of the ORL database is available in Matlab format at http: //www.cs.nyu.
edu/~roweis/data.html.
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Figure 5.1 Example of images from the ORL database. The group (a), on the left, shows an
original image and its respective cropped version. The group (b), on the right, shows another
six cropped images from the same subject, with different facial expressions.

positions. Then, the images were resized to 64 x 64 pixels (4.096 dimensions in vector
form). Figure 5.1 shows an uncropped image and its corresponding cropped version,
with other cropped images of the same individual on the right.

5.2.1 Face Recognition Task

In the first experiment, we created a system for the face recognition task: given a
face image, the classifier must determine what person is depicted in it. The database
contains 40 individuals, that are represented by 10 images each. Thus, this is a classi-
tication problem with 40 classes and 10 samples per class.

The experiments were performed with 1, 2, 3, 4 and 5 labeled samples of each class,
or, equivalently, 40, 80, 120, 160 and 200 labeled samples in total. This corresponds to
10%, 20%, 30%, 40% and 50% of the total samples, respectively.

The misclassification rates are listed in Table 5.1. As expected, most of the best rates
were produced by the semi-supervised methods. Surprisingly, the majority of these
best rates came from vector methods instead of matrix methods (a matrix method per-
formed better only when n = 1). This observation could imply that two-dimensional
methods have a bad performance in most situations, but that is not the case. When we
compared the rates of two-dimensional methods with the rates of their one-dimensional
counterparts, we noticed that 2D-PCA, 2D-iLPP, 2D-FDA, and 2D-SSDR achieved bet-
ter results than the corresponding vector methods. It is also interesting to see that
LFDA—a supervised method—produced some of the best rates. We acknowledge this
behavior to its similarities with SELFE.

It was clear that methods performed better with more labeled samples, except for
FDA and 2D-DPCA. Both yielded poor results in general, especially when more la-
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bels were present. It is interesting to note that the decrease in misclassification rates
was not even. The difference was more pronounced from n =1 to n = 2, where some
rates decreased by half. From there, they dropped more slowly. This observation sug-
gests that the relative power of discriminative information diminishes as more labeled
examples are added.

5.2.2 Glasses Detection Task

In the glass detection task, the system should decide whether the person in the image is
wearing glasses or not. The ORL database contains 119 images of subjects with glasses
and 281 of subjects without glasses. Among the 40 individuals present in the database,
some have pictures only with glasses, others have pictures only without glasses and
few have both types, as the one shown in Figure 5.1.

The experiments were performed with 1, 5, 10, 25, 50 and 100 labeled samples
of each class, or, equivalently, 2, 10, 50, 100 and 200 labeled samples in total. This
corresponds to 0.5%, 2.5%, 5%, 12.5%, 25% and 50% of the total samples, respectively.

The misclassification rates for the glasses detection task are listed in Table 5.2. It
has many similarities with the table of the previous experiment. LFDA, DPCA and
SELF—three vector-based methods—reached the best rates most of the time, except
when n = 1. In this case, the best rates are from two-dimensional methods once more.
2D-PCA, 2D-iLPP, 2D-FDA, and 2D-SSDR also showed a better or comparable perfor-
mance than their analogous one-dimensional methods. Finally, the misclassification
rates were generally lower when there were more labeled samples, except for FDA
and 2D-DPCA, which again showed the worst performances.

Nonetheless, it is possible to notice some important differences too. When n =1,
the best rates are from 2D-FDA and 2D-LFDA, which are not semi-supervised, as we
would expect. Actually, the matrix-based semi-supervised methods achieved best
rates only for n = 5, when almost all methods had best performances as well. An-
other interesting fact is that the lowest rates increased from n =1 to n = 5, that is, in
this experiment some systems built with 2 labeled samples performed better than all
systems built with 10 labeled samples.



METHOD n=1 n=2 n=3 n=4 n=>5

PCA 4419 (2.13)  29.99 (2.36) 22.67 (2.14) 17.19 (2.44)  13.22 (1.70)
iLPP 62.84 (2.25) 4774 (242) 3818 (2.31) 31.94 (2.65) 26.09 (2.24)
FDA 49.04 (1.68) 9329 (1.72) 9170 (1.90) 90.74 (2.51) 87.39 (4.14)
LFDA 4543 (242) 1833 (1.73) 10.90 (1.72)  7.94 (142)  6.43 (1.12)
SSDR 4498 (221) 30.66 (2.29) 2324 (2.19) 17.76 (243) 13.65 (1.71)
DPCA 4525 (2.28) 21.07 (2.30) 1126 (1.90)  8.73 (2.01)  6.98 (1.57)
SELF 4518 (2.29) 1816 (1.68) 1045 (1.50)  7.54 (1.43)  5.95 (1.53)

2D-PCA 4056 (1.88) 2597 (2.46) 19.08 (2.11) 13.88 (2.67)  9.70 (1.94)
2D-iLPP 4673 (1.66) 33.96 (1.92) 24.68 (2.38) 21.29 (2.09) 15.93 (1.96)
2D-FDA 9750 (0.00) 4447 (2.58) 17.34 (248) 23.81 (2.94) 822 (1.72)
2D-LFDA  97.50 (0.00) 3254 (2.67) 17.34 (2.48) 11.75 (3.10)  8.22 (1.72)
2D-SSDR  40.79 (1.97) 2641 (257) 1936 (2.11) 14.13 (257)  9.92 (1.96)
2D-DPCA 4088 (2.01) 41.08 (147) 6839 (12.6) 7599 (1.82) 75.30 (1.81)
2D-SELF  38.85 (1.85) 33.85 (3.24) 18.60 (251) 12.67 (3.21)  8.80 (1.62)

Table 5.1 Misclassification rates (%) for the Face Recognition task with the ORL database. The heading n = k indicates the k numbers
of labeled samples used in the experiment. For each k, the table shows the averaged rates over the reduced dimensions (up to 320
PCs for vector methods and 64 PCs for matrix methods, except for FDA, which used only the 39 first PCs) along with their standard
deviations in parenthesis. The best mean and the means with no significant statistical difference are highlighted in bold (t-test with
5% of significance). All the rates are averages over 12 repetitions with different dataset splits. The feature extraction was performed
with the plain version of vector methods and with the weighted version of matrix methods.
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METHOD n=1 n=>5 n=10 n=25 n=>50 n =100

PCA 4424 (7.36) 34.81 (7.10) 2729 (5.95) 17.23 (2.85)  9.99 (2.58)  5.64 (1.59)
iLPP 4227 (9.99) 45.86 (7.26) 40.11 (5.69) 31.16 (5.17) 2633 (4.51) 20.46 (3.03)
FDA 4376 (107) 44.62 (7.63) 48.62 (4.82) 4995 (5.12) 5056 (2.95) 51.25 (12.6)
LFDA 43.88 (7.59) 34.13 (4.83) 20.51 (6.27)  9.05 (2.85) 592 (2.06)  3.17 (1.32)
SSDR 4392 (7.59) 3426 (7.27) 2676 (5.85) 1677 (295)  9.50 (2.53)  5.42 (1.48)
DPCA 4391 (7.60) 34.65 (5.10) 2195 (6.27) 10.33 (3.74)  6.15 (1.74)  3.24 (1.89)
SELF 4397 (7.59) 3427 (4.92) 20.60 (635  9.12 (2.86)  5.80 (1.97)  2.75 (1.66)
OD-PCA 4346 (6.87) 34.02 (7.29) 2625 (621) 15.69 (2.95)  8.87 (2.95)  4.54 (1.44)
2D-iILPP 4243 (9.33) 31.38 (5.71) 24.07 (4.62) 1592 (243)  8.66 (2.34)  3.86 (1.13)
2D-FDA  29.65 (0.00) 32.30 (9.74) 31.53 (112) 24.14 (6.83) 1751 (3.25)  5.43 (1.51)
2D-LFDA  29.65 (0.00) 32.30 (9.74) 3153 (11.2) 24.15 (6.84) 17.52 (3.26)  5.44 (1.51)
2D-SSDR 4347 (6.81) 33.84 (7.07) 2657 (6.34) 1568 (3.04) 887 (261) 457 (1.51)
2D-DPCA 4368 (6.85) 32.72 (10.5) 3585 (13.9) 3741 (12.8) 4053 (11.7)  37.0 (8.29)
OD-SELF 4348 (6.88) 33.80 (9.21) 32.85 (10.4) 28.15 (852) 21.81 (4.19)  7.46 (1.82)

Table 5.2 Misclassification rates (%) for the Glasses Detection task with the ORL database. The heading 1 = k indicates the k numbers
of labeled samples used in the experiment. For each k, the table shows the averaged rates over the reduced dimensions (up to 320
PCs for vector methods and 64 PCs for matrix methods, except for FDA, which used only the first PC) along with their standard
deviations in parenthesis. The best mean and the means with no significant statistical difference are highlighted in bold (t-test with
5% of significance). All the rates are averages over 12 repetitions with different dataset splits. The feature extraction was performed
with the plain version of vector methods and with the weighted version of matrix methods.
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5.3 EXPERIMENTS ON THE FEI FACE DATABASE 52

5.3 Experiments on the FEI Face Database

The FEI face database * ( , ) contains images of 200 subjects
with ages between 19 and 40 years. The images are colorful (RGB), have 640 x 480
pixels and were taken against a homogeneous background, with scaling varying up to
10% of the total images size. This database has many images for each subject, with
variations in profile rotation, facial expression and illumination. However, in this
work we used a reduced version of the database, which contains 2 images per sub-
ject, only in frontal pose. In this reduced version, the images were manually aligned
to have eyes and noses positioned roughly in the same location. Then, the images were
cropped to 360 x 260 pixels. The reduced database was created by the same group that
developed the original FEI database and is provided along with it. Figure 5.2 shows
an image from the database along with its cropped version. Figure 5.3 shows another
images from the database. They were converted to grayscale before the experiments.

As discussed in the Section 5.1, bi-dimensional images have to be transformed into
vectors before they are processed by vector-based methods. But, due to the relatively
high resolution of the images in this database, the resulting vectors would be very
large (93.600 dimensions) and it would take too much time to perform the eigendecom-
position of the corresponding computed scatter matrices. For this reason, the images
were resized to 25% of their original size (90 x 65 pixels or 5.850 dimensions in vector
form) by using the bi-cubic interpolation algorithm ( , )-

For the matrix-based methods, we performed experiments with both the resized
and the original image sizes. Interestingly, we observed that the performance of the
systems that used full-sized images was generally worse than the performance of sys-
tems with resized images (and much worse in some cases). It seems that most of the
information lost in the resizing process is redundant or even detrimental for classifica-
tion purposes. So, the resizing operation itself appears to be a form of dimensionality
reduction. The tables in the following subsections show results only for experiments
performed with the resized images.

5.3.1 Gender Detection Task

The gender detection task is a binary classification problem, in which the system must
determine whether the image contains a female or a male subject. The reduced FEI
database contains 200 images of female individuals and 200 of male individuals.

As in the previous case, the experiments were performed with 1, 5, 10, 25, 50 and
100 labeled samples of each class, or, equivalently, 2, 10, 50, 100 and 200 labeled sam-
ples in total. This corresponds to 0.5%, 2.5%, 5%, 12.5%, 25% and 50% of the total
samples, respectively.

The misclassification rates for the gender detection task are listed in Table 5.3. At
this time, almost all methods performed well when there were very few labeled sam-
ples (n = 1). For n =5 and n = 10, the best results were produced by three vector-

4The FEI face database is available at http://fei.edu.br/~cet/facedatabase.html.
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based methods (LFDA, DPCA, and SELF) and two matrix-based methods (2D-PCA
and 2D-SSDR). However, when the number of labeled samples increased, only the
three vector-based methods kept achieving the lowest rates. In general, all methods
performed better with more labeled samples, except for FDA and 2D-DPCA. These
results are consistent with was observed in the previous experiments.

One more time, the vector-based methods produced more best rates than the matrix-
based methods. In spite of this, when we compare the results of two-dimensional and
one-dimensional methods, we notice that 2D-PCA, 2D-iLPP, 2D-FDA, and 2D-SSDR
have a comparable or even better performance than their one-dimensional counter-
parts. And, even in the cases where the result of a two-dimensional method is worse,
the difference from the best rate is usually small and the method can still be useful,
especially considering its advantages over vector-based approaches.

5.3.2 Smile Detection Task

In the smile detection task, the system should specify whether the subject in the image
is smiling or not. The reduced FEI database has images of 200 subjects and each one
of them has 2 images. In one image the subject is smiling whereas in the other image
the subject has a neutral facial expression. Therefore, this is a binary classification task
with 200 samples of each class.

Again, the experiments were performed with 1, 5, 10, 25, 50 and 100 labeled sam-
ples of each class, or, equivalently, 2, 10, 50, 100 and 200 labeled samples in total. This
corresponds to 0.5%, 2.5%, 5%, 12.5%, 25% and 50% of the total samples, respectively.

The misclassification rates for the smile detection task are listed in Table 5.4. It
shows some notable differences from the results we have obtained so far. In the pre-
vious experiments, the rates usually decreased as more labeled samples were given.
However, in this experiment only SELF had monotonically decreasing rates for higher
values of n. Specifically, almost all rates raised from n = 50 to n = 100. In addition,
the results for matrix-based methods were particularly poor. When there were more
labeled samples (n >= 10), the misclassification rates of two-dimensional methods
were much higher than the best rates.

But there are similarities too. For n = 1, the best result is again from a matrix-
based method (2D-iLPP). Interestingly, this method is unsupervised and not semi-
supervised as we expected. Also, LFDA and SELF produced the best rates most of
the time and DPCA had a good performance too. In fact, these three were the only
techniques that delivered consistently useful results in this experiment. 2D-FDA and
2D-LFDA achieved best rates when n = 5, although they are still high in absolute terms
(near 50%). Actually, misclassification rates higher than 50% appear with frequency in
the results table. It was clear that the smile detection task was a difficult problem for
most methods.
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Figure 5.2 Original image from the FEI database (on the left) with its corresponding cropped
version (on the right).

Figure 5.3 Example of images from the FEI database for four individuals. Each individual has
two pictures, one with a neutral expression (left) and one smiling (right). The four images on
the top depict male subjects and the four images in bottom depict female subjects.




METHOD n=1 n=>5 n=10 n=25 n=>50 n =100

PCA 22.07 (125) 17.81 (5.35) 1550 (4.15) 1472 (3.58) 12.22 (2.10)  8.50 (2.06)
iLPP 21.58 (9.48) 22.39 (12.1) 1926 (6.13) 1844 (5.85) 1631 (1.66) 11.60 (2.33)
FDA 37.63 (14.4) 4323 (5.73) 4640 (5.91) 47.90 (4.25) 4925 (4.53) 4829 (4.45)
LFDA 2215 (124) 16.09 (2.98) 1320 (3.21) 11.29 (1.90)  8.86 (1.69)  5.67 (1.54)
SSDR 2217 (12.6) 17.84 (540) 15.60 (4.27) 14.80 (3.62) 12.37 (2.12) 858 (2.00)
DPCA 2215 (124) 1442 (2.64) 1241 (255) 1121 (2.18)  7.57 (1.24)  5.60 (1.57)
SELF 2217 (12.6) 16.04 (2.92) 1318 (3.16) 11.29 (1.90)  8.72 (1.75)  5.33 (1.76)
2D-PCA 2176 (12.0) 18.05 (5.44) 15.24 (447) 1457 (324) 11.65 (1.63)  8.15 (1.93)
2D-iLPP 2677 (10.9) 2250 (8.11) 19.02 (3.79) 17.67 (2.64) 1494 (2.07)  9.24 (2.39)
2D-FDA  50.00 (0.00) 2076 (5.99) 16.65 (425) 1452 (2.62) 1150 (2.42)  7.19 (1.95)
2D-LFDA  50.00 (0.00) 20.76 (5.99) 16.65 (4.25) 1453 (2.62) 11.50 (242)  7.19 (1.95)
2D-SSDR  22.29 (134) 1817 (5.57) 15.31 (454) 1445 (327) 1167 (1.72)  8.07 (1.87)
2D-DPCA  21.94 (114) 3544 (7.90) 3791 (3.33) 39.34 (2.44) 3537 (2.13)  30.69 (1.59)
OD-SELF  22.03 (11.9) 2699 (7.40) 21.12 (6.14) 1645 (3.94) 13.79 (2.05)  7.61 (1.55)

Table 5.3 Misclassification rates (%) for the Gender Detection task with the reduced FEI database. The heading n = k indicates the
k numbers of labeled samples used in the experiment. For each k, the table shows the averaged rates over the reduced dimensions
(up to 320 PCs for vector methods and 65 PCs for matrix methods, except for FDA, which used only the first PC) along with their
standard deviations in parenthesis. The best mean and the means with no significant statistical difference are highlighted in bold
(t-test with 5% of significance). All the rates are averages over 12 repetitions with different dataset splits. The feature extraction was
performed with the plain version of vector methods and with the weighted version of matrix methods.
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METHOD n= n=>5 n=10 n=25 n=>50 n =100

PCA 48.60 (1.31) 4892 (1.63) 50.13 (1.55) 51.87 (1.91) 5646 (1.81) 6836 (1.19)
iLPP 49.46 (0.68) 4957 (1.93) 5044 (1.22) 5354 (1.61) 58.04 (1.16) 6836 (1.61)
FDA 50.29 (1.00) 48.80 (5.30) 47.92 (4.45) 49.81 (3.92) 51.78 (2.71) 48.04 (2.53)
LFDA 4851 (1.43) 42.80 (5.48) 37.57 (5.26) 2010 (4.72) 13.61 (1.64) 16.92 (2.18)
SSDR 4855 (1.42) 48.66 (1.51) 50.03 (1.40) 51.89 (1.98) 5650 (1.78) 6834 (1.26)
DPCA 4853 (1.43) 44.86 (427) 39.39 (5.69) 23.84 (5.00) 16.28 (1.74)  19.50 (1.13)
SELF 4855 (1.42) 4293 (5.29) 37.51 (5.19) 20.10 (474) 1314 (1.69) 12.08 (1.72)
OD-PCA 4867 (1.24) 4938 (1.58) 50.55 (1.33) 5229 (2.54) 57.71 (1.63) 68.40 (1.84)
2D-iLPP  46.67 (1.80) 47.07 (2.21) 4831 (2.08) 48.62 (1.76) 5277 (2.12)  64.82 (2.02)
2D-FDA  50.00 (0.00) 43.96 (5.17) 42.13 (4.16) 38.79 (4.37) 40.38 (4.01) 43.96 (4.30)
2D-LFDA  50.00 (0.00) 43.97 (5.17) 42.13 (4.16) 3879 (4.37) 4039 (4.01) 43.99 (4.30)
2D-SSDR 4854 (1.53) 49.26 (1.34) 5040 (1.53) 52.23 (2.36) 57.58 (1.66) 68.58 (1.75)
2D-DPCA 4877 (1.21) 4692 (2.79) 46.85 (1.79) 48.16 (1.46) 50.86 (2.49) 54.90 (1.59)
OD-SELF  48.88 (1.09) 47.13 (3.17) 4624 (2.87) 47.33 (2.10) 5147 (2.39) 54.76 (2.51)

Table 5.4 Misclassification rates (%) for the Smile Detection task with the reduced FEI database. The heading n = k indicates the k
numbers of labeled samples used in the experiment. For each k, the table shows the averaged rates over the reduced dimensions
(up to 320 PCs for vector methods and 65 PCs for matrix methods, except for FDA, which used only the first PC) along with their
standard deviations in parenthesis. The best mean and the means with no significant statistical difference are highlighted in bold
(t-test with 5% of significance). All the rates are averages over 12 repetitions with different dataset splits. The feature extraction was
performed with the plain version of vector methods and with the weighted version of matrix methods.
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5.4 Discussion

In this section, we discuss the general findings observed in the experiments. Although
there were some minor variations in the results, in general the methods showed a con-
sistent behavior through all the experiments. As expected, the systems performance
was affected in a great extent by the number of available labels. We observed that
the misclassification rates generally decreased when more labeled samples were used.
The two notable exceptions were FDA and 2D-DPCA, which showed increasing rates
in most situations. Interestingly, the influence of the labeled samples was not uniform.
We noticed that adding more labeled samples seems to be more effective when the
total number of labels is small. For example, in the last three experiments, adding 10
labeled samples (from n = 5 to n = 10) had a much greater impact in the classification
accuracy than adding 100 labeled samples (from n = 50 to n = 100).

The vector-based methods LFDA, DPCA and SELF regularly reached the best per-
formances in all experiments when n >=5 (or n >= 2 in the face recognition exper-
iment). But when n = 1, the best results were mostly from matrix-based methods.
This finding suggests that the matrix-based methods are more useful when there are
very few labeled samples. However, contrary to what we expected, the proposed
new matrix-based methods (2D-LFDA, 2D-SSDR, 2D-DPCA, and 2D-SELF) did not
achieved significantly better rates than the existing two-dimensional methods.

Still, when we compared the performance of the matrix-based methods with their
vector-based counterparts, we observed that 2D-PCA, 2D-iLPP, 2D-FDA, and 2D-SSDR
had better or at least equivalent performances than the corresponding vector methods.
This observation is consistent with the findings of ( ); ( );

( ), that respectively reported better results for the two-dimensional
versions of PCA, LPP and FDA. 2D-LFDA and 2D-SELF also obtained good rates,
that in many cases were just slightly higher than the rates produced by the respective
vector-based methods. Thus, 2D-SSDR, 2D-LFDA, and 2D-SELF can be seen as faster
and more stable alternatives to SSDR, LFDA, and SELF, with all the other advantages
that two-dimensional methods include.

On the other hand, 2D-DPCA obtained very poor results when compared to the
other methods, at least with the parameters used in the experiments. We intend to
investigate its behavior with other parameters in the future.



CHAPTER 6

Conclusions

In this work, we described seven existing vector-based methods for dimensionality re-
duction. Two of them operate in a fully unsupervised way (PCA and iLPP), two oper-
ate in a fully supervised way (FDA and LFDA), and three operate in a semi-supervised
way (SSDR, DPCA, and SELF). We presented their original formulations and then an-
alyzed these methods within a scatter vector-based framework. The framework de-
scribes all methods in a general form, highlighting their similarities and differences.

We also discussed three existing matrix-based methods: two unsupervised (2D-
PCA and 2D-LPP) and one supervised (2D-FDA). We explained that matrix-based
methods have many advantages over vector-based techniques for extracting features
of two-dimensional data, such as images. For example, matrix-based methods can
tully exploit the structural information present in the samples because they operate
directly with their native matrix form. In contrast, vector-based methods require the
samples to be transformed into vectors before processing them, changing their struc-
ture and discarding potentially useful information.

Another benefit of two-dimensional techniques is that they produce smaller scat-
ter matrices. This fact has two important consequences. First, the computation of
two-dimensional methods is much faster, what makes them a viable choice for on-line
learning systems. Second, a reduced scatter-matrix alleviates the small sample size
problem, what makes matrix-based methods more stable when the number of patterns
available for training is small.

From the vector-based framework, we derived a scatter matrix-based framework
and then showed how the previously discussed two-dimensional methods can be de-
scribed in its terms. This new framework also enabled us to propose two-dimensional
extensions for LFDA, SSDR, DPCA, and SELF. The new methods 2D-LFDA, 2D-SSDR,
2D-DPCA, and 2D-SELF apply the same ideas that were used to create the original
techniques, but in a two-dimensional context.

To evaluate the methods performance in various scenarios, we carried out some
experiments. All techniques were tested with two face databases, in four image clas-
sification tasks: face recognition and glasses detection tasks with the ORL database,
and gender and smile detection tasks with the FEI database. In order to minimize a
possible interference in the results caused by the choice of the learning method, we
used the nearest neighbor classifier (1-NN), one of the simplest classifiers available.

We started by investigating whether the weighting scheme proposed by

( ) is useful or not to improve the classifying accuracy. We found that, for the
vector-based methods, the misclassification rates generated by the weighted versions
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were actually worse than the rates generated by the non-weighted versions. In con-
trast, for the matrix-based methods, the weighted versions generally outperformed
the non-weighted versions. For this reason, we applied the weighting scheme only to
matrix-based methods.

Because the FEI database have relatively high-resolution images, we had to shrink
its samples in order to compute the vector-based methods in a reasonable amount of
time. On the other hand, matrix-based methods do not have this problem. They can
easily deal with samples of large sizes, so it was possible to compare the performance
of two-dimensional methods with both the resized and with the full-sized images.
We expected that the systems that used the full-sized images would generate lower
misclassification rates, because these images have more pixels and supposedly have
more information. But the contrary happened. The lowest rates were achieved when
the resized images were used. This led us to believe that most information in the full-
sized images is redundant and that the resizing process itself acts as a form of feature
extraction.

We also analyzed how the number of labeled samples affects the results of each
method. For this purpose, we performed experiments with a varying number of la-
beled samples. As expected, the methods performed better when more labeled sam-
ples were used, except for FDA and 2D-DPCA. Furthermore, we observed that the
influence of the discriminative information was not uniform. Adding more labeled
samples had a greater effect in lowering the misclassification rates when there were
few labels, but this impact diminished as the number of labeled samples increased.

Finally, we compared the performance of vector-based and matrix-based methods.
Because they use the images directly and therefore can take advantage of more in-
formation, we expected that the matrix-based methods produced the absolute best
rates. However, this happened only when there were one labeled sample of each class.
When more labels were given, the majority of best rates were produced by vector-
based methods, especially LFDA, DPCA and SELF, that consistently achieved most of
the better rates through the experiments. This observation suggests that matrix-based
methods are more useful when there are very few labeled samples available.

However, when we compared the results of two-dimensional methods with the
results of their one-dimensional counterparts, we noticed that 2D-PCA, 2D-iLPP, 2D-
FDA and 2D-SSDR achieved better or at least equivalent misclassification rates than
the corresponding vector-based methods. Also, 2D-LFDA and 2D-SELF produced
good rates, that sometimes were close to the best results. Therefore, 2D-SSDR, 2D-
LFDA, and 2D-SELF can be seen as viable alternatives to SSDR, LFDA, and SELF, es-
pecially considering the advantages of two-dimensional methods, such as faster com-
putation and more stability.

6.1 Contributions

The contributions of this work can be summarized as follows:
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¢ Discussion of two-dimensional data analysis and semi-supervised learning, sum-
marizing their motivations, applications and advantages;

* Description of the semi-supervised methods SSDR and DPCA within the existing
vector-based framework;

* Development of a new matrix-based framework, capable of generally describ-
ing scatter-based two-dimensional methods for dimensionality reduction. The
framework simplifies the comparison of distinct techniques, making it easy to
analyze their similarities and differences. Furthermore, the framework allows
the creation of new matrix-based techniques from existing vector-based tech-
niques with minor effort;

* Analysis of practical aspects for efficient implementation of the vector- and matrix-
based frameworks;

¢ Presentation of four novel matrix-based dimensionality reduction methods, one
supervised (2D-LFDA) and three semi-supervised (2D-SSDR, 2D-DPCA, and 2D-
SELF). The new methods are based on the two-dimensional framework;

¢ Evaluation of the performance of all vector- and matrix-based methods discussed
in this work. Experiments were performed within different tasks and image
databases and in varying conditions regarding the weighting scheme and num-
bers of labeled samples and principal components;

* Distribution of the complete source code used in the experiments in the form of
open source software;

¢ Combination of two relevant and distinct areas (tensor-based analysis and semi-
supervised learning), creating new dimensionality reduction methods capable of
dealing two current problems: high-dimensional and partially labeled data.

6.2 Future Works

Future works include the possibility of incorporating other existing one-dimensional
methods—semi-supervised or not—to the vector-based framework. This would make
possible to create two-dimensional versions of these methods with minimal effort.
Also, we plan to test the methods that require parameters more extensively. We be-
lieve that the performance of 2D-SSDR, 2D-DPCA, and 2D-SELF can be improved by
carefully choosing their input parameters.

In addition, it is known that the performance of any given method can vary consid-
erably with different databases. For instance, ( ) conducted system-
atic experiments for comparing various semi-supervised methods. The results showed
that whereas a method can perform very well for a particular database, it can also per-
form very poorly for other kinds of data. For this reason, in future works we intend
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to test the methods with more image databases and compare how the performance of
each one is affected. We also consider to use another types of two-dimensional data,
such as hyper-spectral images.

Finally, an important criticism for the original matrix-based methods is that they
need much more coefficients than vector-based methods to represent the data. More-
over, they operate only in a single, arbitrary row direction. To address these problems,
(2D)?-PCA ( , ) and (2D)2-FLD ( , ) were
proposed. They simultaneously consider the row and column directions, what makes
them to require less coefficients for data representation. In following works, we aim
to investigate the possibility of describing (2D)? methods within a general framework
and porting other existing matrix-based methods to it.



APPENDIX A

Derivation of Pairwise Equations

A.1 Vector-based methods

A.1.1 Principal Component Analysis (PCA)

The pairwise form of the total scatter matrix S; is obtained as follows. Let x; € R be
the m-dimensional column vectors that represents the n samples and let X be the mean
of all samples (as defined in Section 2.2). Then

n
Si=Y (xi—X)(xi—%)" (A.1a)
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A.1.2 Fisher Discriminant Analysis (FDA)

The pairwise form of the within-scatter matrix Sy, is derived as follows. Let x; € R™
be the m-dimensional column vectors that represents the n’ labeled samples , X; be the
mean of the n; samples with class  and ¢ be number of classes. Then

Su=Y Y (xi—%)(xi—%)" (A.22)
lZli:yi:l
-
< 1 1
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where y; is the class of the sample x; and n,, is the number of samples with class y;.
It can be proved that the total scatter matrix S; is the sum of the between- and
within-scatter matrices S, and S, (both defined in Section 2.3):

=Y (x-X)(x %) (A3a)
i=1
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c
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We take advantage of this fact to derive the pairwise form of the between-scatter
matrix S as follows

Sp =St = Su (A.4a)
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A.1.3 Locality Preserving Projections (LPP)

The pairwise form of the local scatter matrix S; is obtained as follows. Let x; € R be
the m-dimensional column vectors that represents the n samples and X be the matrix
of all samples (as defined in Section 2.1). Then

S, = XLX' (A.5a)
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where A is the affinity matrix (as defined in Section 2.4) and D is the diagonal matrix
whose entries are column sums of A such that D;; =}; A; ;.
The iterative version of the normalization matrix S is straightforward:

S, =XDX' (A.6a)
= (D11x1%] + DaoXoXg 4 -+ =+ Dy pXuX,) ) (A.6b)
n
= ZDi,ixisz- (A6C)
i=1

A.1.4 Local Fisher Discriminant Analysis (LFDA)

The scatter matrices of LFDA were already defined in the pairwise form.

A.1.5 Semi-supervised Dimensionality Reduction (SSDR)
The pairwise form of the SSDR scatter matrix Sy, is derived in the same way that the
local scatter matrix Sg4, of LPP, just replacing A; ; by S; ;.

A.1.6 Discriminant Principal Component Analysis (DPCA)

The scatter matrix of DPCA S; is defined by the equation (2.26) in function of the
generalized between-scatter matrix S/ the generalized within-scatter matrix S!,, and
the total scatter matrix S;. Then, the pairwise form of S; can be easily obtained as

S: =S, —1S;, + AS; (A.7a)
]. n b/ /
T2 (Wi =W+ AW 0 = x) (i = xg) T (A.7b)
i,j=
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Z W.(j)(xi —x;)(x; — xj)T, WD = a2 2n/nm  if (x;,%;) € M),
=1 A/ n? otherwise
(A.7¢)

where C) and M) are, respectively, the cannot-link and must-link constraints sets,
n. and ny, are, respectively, the numbers of cannot-link and must-link constraints and
n is the total number of samples.
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A.1.7 Semi-supervised Local Fisher Discriminant Analysis (SELF)

The scatter matrices of SELF were defined in function of LFDA and PCA. The original
definition of LFDA was already in the pairwise form and the pairwise form of the total
scatter matrix of PCA was shown previously in this appendix.

A.2 Matrix-based methods

A.2.1 Two-dimensional Principal Component Analysis (2D-PCA)

The pairwise form of the total scatter matrix S; is obtained as follows. Let M; € R/ <"

be | x m matrices that represent the n samples and let M be the mean of all samples
(as defined in Section 3.2). Then
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i M)) " (M; — M), WIthW =1/n. (A.8K)

I\JIP—‘

A.2.2 Two-dimensional Fisher Discriminant Analysis (2D-FDA)

The pairwise form of the within-scatter matrix S, is derived Las follows. Let M; € RF<m
be I x m matrices that represent the n’ labeled samples, M; be the mean of the
samples with class I and ¢ be number of classes. Then
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where y; is the class of the sample M; and n,, is the number of samples with class y;.
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Like the vector total scatter matrix S;, the total scatter matrix S; is the sum of the
within-scatter and between-scatter matrices Sy, and S;. We use this fact to obtain the
pairwise form of the matrix S as follows

Sp =5t —Su (A.10a)
n
Z%ZW(?(M M;) " (M; — M;) ——wa (M; —M;) " (M; = M) (A.10b)
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A.2.3 Two-dimensional Locality Preserving Projections (2D-LPP)

The pairwise form of the local scatter matrix 5; is obtained as follows. Let M; € R"*™
be | x m matrices that represent the n samples, X be the matrix of all samples (as
defined in Section 3.1) and I, be the identity matrix in R**/. Then

S =X'(Lal)X (A.11a)
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where ® denotes the Kronecker product and A is the affinity matrix (as defined in
Section 3.4) and D is the diagonal matrix whose entries are column sums of A such
that D;;= Z] A,',]'.
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The iterative version of the image normalization matrix S, comes directly from the
definition of the Kronecker product, such as

I)X (A.12a)

®
n
— 2 D; MM, (A.12b)
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