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Resumo

A Engenharia Dirigida a Modelos ou (MDE—Model-Driven Engineering) € uma metodolo-
gia de desenvolvimento de software que se concentra na criacao e manipula¢io de modelos
especificos de dominio. E comum o uso de linguagens especificas de dominio (DSL) para
descrever os elementos concretos de tais modelos.

Ferramentas de MDE podem facilmente construir linguagens especificas de dominio
(DSL), capturando seus aspectos sintdticos assim como sua semantica estatica. No
entanto, ainda nao possuem uma forma clara de capturar a semantica dinamica de uma
DSL, assim como a verificagdo de propriedades de dominio antes da geragcao de cédigo
executdvel. Métodos formais s@o tidos como uma solucdo para prover software correto,
onde podemos garantir que desejadas propriedades sdo satisfeitas.

Infelizmente, as ferramentas de métodos formais disponiveis concentram-se quase que
exclusivamente na semantica enquanto que a interacdo homem-computador é "deixada
para o usudrio”. Industrias em que a seguranca € critica, usam representagdes matematicas
para lidar com os seus dominios de problemas. Historicamente, essas representacoes
matemdticas tém um apelo grafico. Por exemplo, Cadeias de Markov e Arvores de Falha.

Em geral, devido a dificuldade em obter softwares formalmente verificados, essas
industrias utilizam sistemas comerciais prontos para uso (Commercial Off-the-shelf -
COTYS) ou os constréem especificamente para satisfazerem as suas necessidades com
um esforco consideravel em testes. Tais DSLs sdo dificeis de capturar, usando apenas
ferramentas MDE por exemplo, porque possuem uma semantica particular para prover as
informacodes especificas desejadas para as industrias que as utilizam.

Neste sentido, dada uma DSL (L), composta por sintaxe e semantica estdtica (SSy), e
semantica dindmica (DSp ), este trabalho propde uma metodologia rigorosa para combinar
a facilidade de ferramentas MDE em capturar SS;, com a corretude assegurada por
métodos formais para capturar DSy, e verificar suas propriedades. Esta combinacao é
especificamente tratada da seguinte maneira: captura-se todos os aspectos de L utilizando
métodos formais, verificam-se as propriedades desejadas e as ajustam caso necessdrio.
Em seguida, parte de L é traduzida automaticamente em termos de artefatos para uma
ferramenta MDE, a partir da qual é possivel construir uma interface amigével (front-end)
facilmente (automaticamente). Por fim, o cddigo do front-end € integrado com o cédigo

sintetizado automaticamente a partir da semantica dindmica formal (back-end).

Palavras-chave: Engenharia Dirigida a Modelos (MDE), Métodos Formais, Linguagens

especificas de dominio, Ferramentas formais com interface gréfica



Abstract

It is well-known that model-driven engineering (MDE) is a software development method-
ology that focuses on creating and exploiting (specific) domain models. Domain models
(conceptually) capture all the topics (for instance, entities and their attributes, roles, and
relationships as well as more specific constraints) related to a particular problem. It is
common to use domain-specific languages (DSL) to describe the concrete elements of
such models.

MDE tools can easily build domain-specific languages (DSL), capturing syntactic
as well as static semantic information. However, we still do not have a clear way of
capturing the dynamic semantics of a DSL as well as checking the domain properties prior
to generating the implementation code. Formal methods are a well-known solution for
providing correct software, where we can guarantee the satisfaction of desired properties.

Unfortunately the available formal methods tools focus almost exclusively on seman-
tics whereas human-machine interaction is "left to the user". Several industries, and in
particular the safety-critical industries, use mathematical representations to deal with
their problem domains. Historically, such mathematical representations have a graphical
appeal. For example, Markov chains and fault-trees are used in safety assessment pro-
cesses to guarantee that airplanes, trains, and other safety-critical systems work within
allowed safety margins. In general, due to the difficulty to obtain correct software, such
industries use Commercial Off-The-Shelf (COTS) software or build them specifically
to satisfy their needs with a related testing campaign effort. Such DSLs are difficult
to capture, using just MDE tools for instance, because they have specific semantics to
provide the desired (core) information for the industries that use them.

In this sense, given a DSL (L) composed of a syntax and static semantics (SSy),
and dynamic semantics (DSy) parts, our work proposes a rigorous methodology for
combining the easiness of MDE tools, to capture SS7, with the correctness assured by
formal methods, to capture DSy as well and check its properties. This combination
is specifically handled in the following way, we capture all aspects of L using formal
methods, check the desired properties and adjust if necessary. After that, we automatically
translate part of it in terms of constructs of a MDE tool, from which we can build a
user-friendly (GUI) front-end very easily (automatically). Finally, we link the front-end
code to the automatically synthesized code from the formal dynamic semantics back-end.

Although we require the use of a formal methods tool, the distance from the mathe-
matical representations used in industry and the formal methods notation is very close.

With this proposed methodology we intend that safety-critical industries create their



domain specific software as easy as possible and with the desired static and dynamic

properties formally checked.

Keywords: Model-Driven Engineering, Formal Methods, Domain-Specific Languages,
GUI-based formal tools
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Introduction

1.1 Motivation

Model-Driven Engineering (MDE) is a software development philosophy that focuses
on the development process of building high-level technology-independent models for a
specific problem domain Bézivin (2005). In MDE, modeling is essential and descriptions
of problem domains are given in terms of Domain-Specific Languages (DSLs).

DSLs are defined in (Mernik et al., 2005) as languages tailored to a specific application
domain. This means that DSLs are languages designed to target particular domains, filling
the lack of expressivity of general purpose languages, in their domain of application,
focusing on the relevant concepts and features of that domain.

Ad hoc DSL development is hard and requires domain knowledge and language
development expertise that few people have Mernik et al. (2005). On the other hand,
following MDE principles and approaches, the development of DSLs has the advantage of
not requiring any specific expertise in programming because the focus of the development
is on modelling all the relevant information of the domain of interest using some MDE
notation. As a consequence, there are several ways of creating DSLs based on metamod-
eling and following the MDE principles, where the Eclipse Modeling Framework (EMF)
is the most well-known solution Steinberg et al. (2008).

Within EMEF, the definition of a DSL syntax is usually given using meta-languages
such as ECore (Steinberg et al., 2008) (used to specify metamodels) and static semantics
with Object Constraint Language (OCL) (OMG, 2013). Additionally, OCL provides a
limited support to dynamic semantics (that describes the dynamic behavior of a language)
through the definition of pre/post-conditions on operations (Gargantini et al., 2009b).

However, metamodeling frameworks still do not have some standard manner to

provide static and/or dynamic semantics in a rigorous way (Jackson et al., 2011). Further-
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1.2. PROPOSAL

more, it is rarely used to verify formally, by means of an automatic inference engine and
theorem prover, certain properties about the DSL being specified. So, instead of using
only metamodeling frameworks to define DSLs we need to rely on the support of formal
methods.

Formal methods are a particular kind of mathematically based techniques for the
specification, development and verification of software and hardware systems. The use
of formal methods for the specification of systems brings many benefits. For instance, a
deeper understanding of the problem, avoiding the occurrences of errors during the early
stages of the development process (statistically the hardest errors to find and fix (Boehm,
1981)) as well as checking the domain properties prior to generate the implementation
code. Nowadays, there are several formal tools such as ESC/Java2 (Cok and Kiniry, 2005)
and JML RAC (Chalin and Rioux, 2008) for Java Modeling Language (JML) (Leavens
and Cheon, 2006), Perfect Developer (Escher, 2012) and SCADE (Esterel Technologies,
2012) that can generate formally verified code based on formal specifications.

However, formal methods in general do not provide mechanisms to easily construct
DSL with graphical user interfaces (GUIs). On the other hand, MDE has weaknesses
exactly where formal methods are very good: (i) capture the complete dynamic semantics
of a language, or its business-like functionalities and (i1) verify formally certain properties
about the DSL being specified. As consequence, it is difficult to find an integrated solution
involving correct code derived from formal specifications with a user-friendly GUI-based
DSL front-end. We see this shortcoming as a valuable opportunity to combine formal

methods with MDE approaches.

1.2 Proposal

Our main proposal in this work is showing how we can combine metamodeling and
formal methods to create correct software in a productive way. To accomplish this,
we propose a rigorous methodology to create GUI-based domain-specific languages
(DSLs) formal tools. The key point is a formal specification of a DSL (L) capturing
the: syntax and static semantics of L (SSz), as well as its dynamic semantics (DSy).
From the formal specification of L we can check desirable properties, adjust if necessary,
and translate part of it (SS7) in terms of modeling artifacts. Particularly, from SS; we
show how a metamodel MM and a set of constraints SCysps over MM (Figure 1.1) can be
extracted automatically by using systematic translation rules that we have developed and

implemented.
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\MM+5CMM

L:SS, +DS,
' 4

Figure 1.1 A metamodel MM and a set of constraints SCyys obtained from SS; of a DSL L

The metamodel MM and its constraints SCys are the primary artifacts to generate
a user-friendly constraint preserving front-end for the DSL. Additionally, from the
formal specification L we generate the executable back-end by using an automatic code
generator. Finally, the relationship among the metamodel MM, its constraints SCyp
and the formal specification L serves as the glue to connect the GUI to the executable
back-end. Therefore, following our methodology it is only necessary to focus on the
creation of the intended DSL formal specification.

To illustrate the proposed methodology, we create a Fault Tree (FT) Analysis tool. FT
is a domain-specific formalism commonly used in critical systems (NASA, 2002). We
formally specify an FT using the Perfect language (Escher, 2012) and prove properties
of this formalization using the Perfect Developer Tool (Escher, 2012). We then extract
a metamodel and constraints from this specification to create a constraint preserving
GUI front-end using a traditionally available metamodeling technology. Currently the
metamodel and constraint extraction is performed by a tool we also have developed,
called PL2EMF. This tool and the executable FT analysis tool can be found in (Silva,
2013).

Translating languages always demand attention concerning completeness and sound-
ness. Ideally one has to prove that the translation is sound and complete. With respect
to completeness, it is almost direct when the translation rules cover all productions of
the grammar of the source language. Concerning soundness, instead of a formal proof,
for this work we investigate it indirectly by exercising invariants and operation contracts
through the constraint-preserving generated GUI.

Several industries can take advantage of this methodology, in particular the safety-
critical industries that use mathematical representations to deal with their problem do-
mains. We aim at providing a productive and trustworthy development methodology to
safety critical industries. Based on our proposal we expect such industries to be able
to create specific systems as easily as possible and with the desired static and dynamic
properties formally checked. In particular we are experimenting our proposed strategy on
case studies of our industrial partner and obtaining good productivity.

Although we base our work on formal specifications, that the MDE community can

15



1.3. DISSERTATION STRUCTURE

consider too difficult and of great effort to work with in practice, we argue that for
our scope, these formalisms are considerably simple rewritten of mature mathematical

models.

1.3 Dissertation Structure

The remainder of this dissertation is organized as follows: In Chapter 2 we provide an
overview of the undelying concepts, approaches and technologies that form the basis of
our proposed rigorous methodology (presented in Chapter 3). In Chapter 4 we detail
some steps of our methodology. In Chapter 5 we detail how the PL2ZEMF was developed.
Chapter 6 shows our case study: a Fault Tree Analysis Tool. In Chapter 7 we present

related works and provide some conclusions and future work.
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Background

In this chapter, we provide an overview of the undelying concepts, approaches and
technologies that form the basis of our proposed rigorous methodology. In Section 2.1
we present the contract-based Perfect Language formalism and its code synthesizer tool
(Perfect Developer). In Section 2.2 we give a brief overview about the Model Driven
Engineering (MDE) principles and in Section 2.3 we present Model Driven Architecture
(MDA) approach. In Sections 2.4, 2.5 and 2.6 we present some tools and frameworks of

the Eclipse environment that conforms to MDA approach.

2.1 The Perfect Developer Tool

The Perfect Developer Tool (PD for short) is part of the Escher Verification Studio (Escher,
2012). PD uses a powerful automatic inference engine and theorem prover to reason about
the requirements, contract-based specification and code. PD! is a contract-based tool able
to specify and refine specifications of software systems using the Perfect language (PL
for short). It is also able to generate ready-to-compile code (in Java, C++, C# or ADA)
directly from the specification. This code can be a functional prototype or the final code
for a system.

The PD tool is able to use automated reasoning to understand the descriptions and to
verify whether the requirements are met. The proof obligations are generated and (almost
all of them are) automatically proved by the tool. When the theorem prover is not able to
discharge a proof obligation automatically, it generates a report to the user which can be
used to give hints to the theorem prover about how the proof can be achieved.

A specification in PL is composed of a set of related classes, each one with their

I'PD runs under Linux and Windows (XP, Vista and 7). In this work we use the academic license,
Version 5.0.

17



2.1. THE PERFECT DEVELOPER TOOL

variables, invariants, schemas, functions, pre and post-conditions, constructors, (loop)
invariants, variants, properties, axioms, assertions, and so on. Variables define the model
state-space, invariants constrain this state-space, schemas are operations that change
the state and functions are side-effect free operations. Schema names are prefixed with
the symbol ’!” to denote that they change the system state. A class definition in PL is
divided into sections (abstract, internal, confined and interface), each one with its specific
elements.

Variables declared in the abstract section represent the abstract data model of the
class (its abstract state-space). Inside this section we can have, for example, invariants
that define what must be true independently of the current model state. We can have
several levels of data refinements of the abstract class data model. The internal section
(not shown here), is used to declare the data refined. For each level of refinement, it is
required to define a retrieve relation between the previous level and the current level of
refinement. The confined (not shown here) and interface sections are used to declare the
public interface of a class. The main difference between the elements declared in these
sections is that the elements of confined are only accessible by derived classes and the
elements of interface are also visible by non-derived classes (Escher, 2012).

To illustrate some of the main constructs of the Perfect Language we specify a generic
stack data structure as shown in Figure 2.1.

The main aspect of PL that should be noted here is that it allows, using a unique
notation, the definition of behavioral and structural features, constraints and properties.
For a complete description of PL, see (Escher, 2012).

We start by defining the class SItem that models items to be stored in the stack data
structure. We declare this class simply as an alias for the PL string type.

Secondly, we define the class StackNode that models a stack node. Each node is
composed by an item, of the type Sltem, to be stored in the data structure and a reference
prox to the next stack node. The statement import "Sltem.pd" is used to invoke the
definition of the class Sltem in the StackNode context.

In PL, the null value has a specific type called void. The union (contruct "lI") of the
types StackNode and void enable the null value to be assigned to the variable nxt.

We now define the Stack class that defines the intended data structure itself. In the
abstract section, two variables are declared: top is a reference to the stack top and size is
an integer variable that stores the stack size. We declare, in section invariant, that size
must be always greater than or equal to zero. This invariant must be true regardless of the

stack state.
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2.1. THE PERFECT DEVELOPER TOOL

class Sltem "= string;

import "Sltem.pd";
class StackNode "=
abstract

var item: Sltem;

var prox : StackNode || void;

interface

Sfunction item;

Jfunction prox;

build{itm: Sltem,

px: StackNode || void}
post item! = itm,
prox! = px;

end;

import "Sltem.pd"; import "StackNode.pd";

class Stack "=
abstract
var top : StackNode || void;
var size : int;
invariant size >= 0;
interface
Junction empty: bool "= ...

Junction validate (itm: Sltem): bool "= ...

schema !push(newltem: Sltem)
pre validate(newltem)
post top! = StackNode{newltem, top},
size! = size + 1;

schema !pop(x!: out Sltem)
pre ~empty
post x! = (top is StackNode).item,
top! = (top is StackNode).prox,
size! = size - 1;
build{}
post size! = 0, top! = null;

property (x: Sltem)
assert ~(self after it!push(x)).empty;

ghost schema !pushToEmptyThenRemove(

e: Sltem, r!: out Sltem)
pre empty
post !push(e) then !pop(r!)
assert r’ = e;

ghost schema !pushTwoToEmptyThenRemove(

el, e2: Sltem, r!: out Sltem)
pre empty

post !push(el) then !push(e2) then !pop(r!)

assert r’ = e2;

end;

Figure 2.1 A Stack Model specified in Perfect Language

19



2.1. THE PERFECT DEVELOPER TOOL

In the interface section, we declare (not shown here) two functions: empty, that
checks whether the stack is empty, and validate that verifies if the item to be inserted in
the stack is valid with respect to specific restrictions. These restrictions depend on how
SItem is modeled for a particular context. These functions return a boolean value and the
second one has a Sltem as input parameter

Besides the fact that a schema can change the state of the model, it also differs from
a function by not being able to return values explicitly to the caller. The schema push
receives as input a new value newltem of type Sltem. Before adding this new value to the
stack, (i) push checks whether this new item is valid and if this is true, (ii) the newltem is
added at the the top of the stack and the stack size is incremented by one. Otherwise, the
state of the model remains unchanged.

The statement (i) is the precondition (pre) of the push operation, that is, what the state
of the model should be, for this operation to be executed successfully. The statement (ii)
is the postcondition (post) of the push operation. It states how the variables fop and size
will be changed (s#!/ and size!/, respectively) after the push operation if the precondition is
satisfied. The class constructor (build) initializes the variable size as 0 (zero) and top as
null.

The schema pop removes the top element of the stack if is not empty. This schema
has an input parameter x. Note that this input parameter syntax, x/: out Sltem, differs
from the syntax used in the schema push. This special syntax is used to simulate a call by
reference. So, the parameter x works as a return of the pop operation. The expression
(top is StackNode) is a cast of the top variable to the StackNode type.

PL allows to define properties of a class. Properties are used to verify expected
behaviors of all instances of a class. We can define properties by using the property
assert clause or by writing ghost schemas. A ghost schema is one for which no executable
code is generated. It goal is to generate proof obligations over the defined specification.

We define a property that this model should have. We use property declarations to
express theorems. The first line, property (x: Sltem), is an implicit universal quantification
over the parameter. We can also declare, using the keyword pre, facts to be assumed (not
used in this case). The consequence, assert ~(self after it'push(x)).empty, states that we
can insert a value in the stack and after this insertion, the stack becomes not empty.

The pushToEmptyThenRemove ghost schema verify, see its assert clause, that if we
push an element to an empty stack, the next element we pop will be the one we pushed.
The then clause is used to define the order (left to right) in which the push and pop
schemas are called. The pushTwoToEmptyThenRemove ghost schema verify that if we
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Figure 2.2 Verification conditions of Stack model using PD

push two elements to an empty stack, the first element we pop will be the second one we
pushed. For this example, PD has discharged all proof obligations automatically as can
be seen in Figure 2.2.

As said before, PD generates automatically several kinds of proof obligations. By
using assertions and properties the developer (specifier) can define its own proof obliga-
tions. In both cases, PD tries to automatically prove all of them. For the model showed
in Figure 2.1 it was generated, for example: checking whether operations preconditions
are satisfied, whether class invariants still hold after changes in the state of the model, if
user-declared properties are satisfied and so on. All of these were completely proved by

PD, without human intervention.

2.2 Model Driven Engineering

Model Driven Engineering (MDE) is a software development philosophy in which
models, constructed using concepts related to the domain in question, play a key role
in the software development process (Favre, 2004). The idea is on building high-level

technology-independent models focused exclusively on the problem domain. These
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models can be transformed into code for various platforms and technologies.

A domain model is basically a set of related classes used to represent its domain of
interest (Martin and Odell, 1995; Fowler, 1996). It is independent of the application
logic and its predominant features are the attributes, relationships and constraints over
the model.

MDE benefits are directly related to its ability to avoid developers perform repetitive
tasks. In most cases such tasks can be automatic transformations (Schmidt, 2006),
increasing the productivity of the software development and reducing the time and effort
that could then be allocated to other more valuable tasks.

Communication between stakeholders becomes more effective, since models are
easier to understand than code and are represented using common modeling languages.
So, domain experts can participate more actively and directly on the development process.

A single model can be transformed into code for various platforms. This can be
accomplished by creating models of adapters and technology independent connectors
and using them into code, so that the different platforms can communicate, promoting
portability and interoperability.

Conceptual mistakes can be identified at the model level of abstraction, making
it easier to solve these mistakes. Coding tasks can be automated by code generators
reducing the introduction of trivial errors.

Unlike other approaches to software development, with mechanisms for automatic
transformations, MDE is more productive because it works on a higher level of abstraction.
Furthermore, it becomes possible to reuse of knowledge about the domain besides the
reuse of software components.

As can be seen in Figure 2.3, there are different approaches (e.g Model Driven
Architecture (MDA), Model-Integrated Computing (MIC), Software Factories) and tools
(e.g. EMF/GMF, GME, Visual Studio DSL Tools) that follow MDE principles. MDA
and MIC are both metamodel-based.

A metamodel is a description (language to describe) of a model (Favre, 2004). In
MDE metamodeling is very useful since it provides an abstract notation that separates the
abstract syntax and static semantics (static aspects of syntactic fragments, such as types,

references, reachability, etc.) of a DSL from its possible concrete syntaxes.
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Figure 2.3 MDE Approaches and Tools

2.3 Model Driven Architecture

Model Driven Architecture (MDA) is defined by the OMG (Object Management Group)
as an approach that describes a basic process, standardized and extensible, to system
development based on creation of models as the key step in building applications (Kleppe
et al., 2003). Models are not just a way of documenting systems. They are also used as
the primary source for analyzing, designing, constructing, deploying and maintaining a
system (Truyen, 2006).

Models are used to separate the specification from design details. This raises the
level of abstraction of the software development process and consequently increases
productivity, portability and interoperability.

It is worth noting that OMG MDA standard (Miller and Mukerji, 2003) is a particular
vision of MDE and therefore depends on the use of other OMG standards (Favre, 2004).
This is the main difference between MDA and other model-driven approaches. That
is, MDA requires technologies that implement the OMG standards. However, it can be
considered a subset of MDE.

The MDA approach provides ways for (Miller and Mukerji, 2003): (i) specifying
the system regardless of the platform the system will run, (ii) specifying and choosing
a particular platform for the system and (iii) specifying model transformations for a
particular platform. In the context of MDA, models are classified into three types:

Computation Independent Model (CIM) specifies the system requirements using
a computational independent point of view. The CIM, often called domain model
or requirements model, describes situations in which the system is used. It hides all
information about the use of the system and is fully independent of how the system is

implemented.
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Platform Independent Model (PIM) is the computation independent model that de-
scribes the system hiding details of platform and development technologies. These models
present the functional and structural core of the system. Unlike the CIM, PIM design the
system in a computational point of view. Metamodels is used for specifying software
systems without technical details. Then, it becomes a natural choice for building PIMs.

Platform Specific Model (PSM) is the refinement of the PIM produced by a model-to-
model transformation process. It also specifies how that system makes use of a particular
platform. Depending on its purpose a PSM may provide enough details to construct a
system and to put it into operation.

At first, the process of software development using MDA (Figure 2.4) begins with
the definition of the Computation Independent Model (CIM). The CIM can be defined
by systems analysts in collaboration with domain experts. Afterwards, the CIM is
transformed into a platform-independent model (PIM). The PIM adds information to the
CIM, without showing details of the platform being used. Finally, the PIM is transformed
into a platform-specific model (PSM) adding details of the target platform. From the
PSM the code is generated.

2.4 Eclipse Modeling

The Eclipse Modeling Project is structured into projects that provide several capabilities,
such as: abstract syntax development, concrete syntax development, model-to-model
transformation, and model-to-text transformation. The term abstract syntax refers to a
metamodel and the term concrete sintax to its corresponding form of diagram notation
(graphical concrete syntax) or textual notation (textual concrete syntax) (Gronback, 2009).

The Modeling Project provides implementations of industry-standard metamodels
and tools for developing models based on those metamodels, many of which conform
to published OMG MDA standards. Where standards compliance is not mandatory or
when it is necessary a functionality which there is still no implementation, the Modeling

project provides alternatives (Gronback, 2009).
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When using Eclipse Modeling Project, the first element of a DSL to be developed
is its metamodel, commonly referred to as its abstract syntax. The Eclipse Modeling
Framework (EMF) (Steinberg et al., 2008) is used for this task by means of EMF’s Ecore
models. EMF is a framework used to model a domain and provides an infrastructure able
of generating a complete implementation for manipulating basic functionalities of such a
modeled domain.

Models provide a language-definition format more robust when compared to tradi-
tional approaches such as BNF because a model expressed in terms of Ecore is more
expressive since it can have multiple concrete syntaxes to generate textual and graphical
editors (Gronback, 2009).

The EMF framework includes a metamodel (EMF’s Ecore metamodel), for describing
the structure of EMF models that is the basis for constructing user-level models. In Figure
2.5 we see how these concepts are related in their respective levels of abstraction: Zero or
more user-level models conforms to an EMF Model (its metamodel). An EMF Model
(in our case, a synonym for DSL metamodel) has as its metamodel the EMF’s Ecore
Metamodel (built-in the EMF Framework). That is, ECore is a metametamodel.

EMEF supports several notations to create EMF Models, all of them based on the Ecore
metamodel (Steinberg et al., 2008). We use the EMFatic language to define our EMF
Models (DSL metamodel).

The Graphical Modeling Framework (GMF) (GMF, 2013) is a model-driven frame-
work that provides the graphical concrete syntax for a DSL and maps to its abstract
syntax (metamodel). GMF is widely used to develop graphical Eclipse-based editors for
EMF-based DSL languages.

In Figure 2.6 we show the basic usage flow for developing a graphical editor using

GME. The starting point is the definition of a Ecore metamodel that, in our work, is the
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Figure 2.6 An overview of GMF Development Flow (Kolovos et al., 2009a)

corresponding DSL. metamodel extracted from a DSL formal specification as will be
explained in Section 3. From this metamodel, GMF provides wizards to create additional
models related to the graphical concrete syntax: a graphical definition model, a tooling
definition model and a mapping model.

The graphical model specifies the shapes that will be used in the editor. The tooling
model specifies which tools will be in the editor palette. The mapping model binds the
information from the domain model, graphical model and tooling model. The generator
model, combines informations of the three models mentioned earlier, is used as input for
the code generator.

In terms of MDA, we can consider the Metamodel (Ecore) as Platform Independent
Model (PIM) and the Generator Model as Platform Specific Model (PSM), see Figure
2.7. While the Computation Independent Model (CIM) has no correspondents.

Despite its success, as mentioned in (Kolovos et al., 2009a), there are a number of
problems related to GMF flow that make implementing an editor atop GMF particularly
challenging for potential adopters of Model-Driven Engineering. The built-in wizard
provided by GMF generates automatically only basic versions of the tooling, graph and
mapping models from the Ecore metamodel itself. For anything beyond simple metamod-
els it is required that developers manipulate and maintain these complex interconnected
models. As a result, implementing a graphical editor with GMF is a hard-working and
error prone task even for experienced users.

In order to overcome these shortcomings the EuGENia Tool (Kolovos et al., 2010)
was created. EuGENia adopts an approach in which all the additional information that
is necessary for implementing a graphical editor is captured by embedding a number of
high-level annotations in the Ecore metamodel (Kolovos et al., 2010). From a single
metamodel augmented with embedded annotations, EuGENia can automatically produce
the required GMF intermediate models (see Figure 2.7) which are necessary in order for

GMF to generate a fully-functional graphical editor.

26



2.5. CONSTRAINTS

_EuGENia

' Graphical ‘
Definition

Tooling

| Generator | code m
Definition

Metamodel :
Model Generation Plugins
-~

.
L

| —

| Mapping | | ¢ T
Definition

_________________________________________________________________________________________________________________________________

Figure 2.7 GMF Development Flow and its relationship with MDA approach

So, to give a more feature-rich graphical concrete syntax for our DSLs it is needed to
provide manually these annotations. This is reasonable given how little can be deduced

about the graphical syntax based only in the abstract syntax.

2.5 Constraints

In this work, in addition to GMF usage for the generation of graphical editors from
a metamodel, we use the Epsilon platform for management tasks of instances of the
metamodel. More specifically, we use the Epsilon Validation Language (EVL) (Kolovos
et al., 2009b) to validate the models with respect to its metamodel constraints.

Epsilon is an integrated platform for implementing task-specific languages for interop-
erable management models (Kolovos, 2008). These languages are used to manage models
of different modeling technologies (e.g. EMF, MDR) performing tasks such as model-
to-model transformation, code generation, model comparison, refactoring, merging and
validation (Kolovos et al., 2013).

The Epsilon Object Language (EOL) (Kolovos et al., 2006) is the core of the platform.
Its model navigation and modification facilities are based on OCL. The others task-
specific languages of the Epsilon platform extend EOL syntactically and semantically.
Through grammar inheritance and reuse of components, the execution mechanisms of
task-specific languages only need to define the concepts and logics relevant to the specific
domains. As we use EVL, consequently EOL is used too.

EVL has been designed atop the Epsilon platform, and therefore instead of pure
OCL, it uses the OCL-based Epsilon Object Language (EOL) as a query and navigation
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language (Kolovos ef al., 2009b).

Although, OCL(-based) languages are commonly used to specify static semantics
through invariants defined over the metamodels, it can also be used to specify behavioral
aspects through the definition of pre/post-conditions on operations (Gargantini et al.,
2009b). EVL goes even further, bringing several improvements in modeling behavioral
aspects, such as: support for detailed user feedback, support for warnings/critiques,
support for dependent constraints, support for semi-automatically repairing inconsistent
model elements and so on (Kolovos et al., 2009b).

However, this does not meet the lack of a static and/or dynamic formal semantics and
the capability to formally verify, by means of automatic inference engine and a theorem
prover, certain properties about the DSL being specified. That is why instead of using
only EVL/EOL we rely on the support of a formal specification language, explained in

details in Section 2.1, to be able ensure these essential aspects to our methodology.

2.6 Generating GMF Editors using EuGENia

Now, we show how EuGENia can be used to generate a functional GMF editor from a
single metamodel. First of all, we create a GMF Project and then define a metamodel, as
shown in Figure 2.8. In this case, we define a metamodel for a stack data structure.

This simple metamodel is composed of two classes: Stack and StackNode. The first
represents a stack data structure itself containing a reference to the top element and an
integer that represents the size of the stack. The second class represents a stack node,
which is responsible for store some data (in this case, a string) and reference the next
element of the stack.

As can be observed, this metamodel is somehow related with the stack formal specifi-
cation presented in Section 2.1. However, we will procrastinate the explanation of this
relationship for the Section 3.3.

As mentioned in Section 2.4, EuGENia simplifies the GMF flow. It accomplishes
this by automatically generating GMF intermediate models and also considering the use
of annotations over the metamodel. These annotations (@ gmyf. *, see Figure 2.8) aims
at giving a more feature-rich graphical concrete syntax. The complete set of EuGENia
annotations can be found in (EuGENia, 2013).

In Figure 2.8, the annotation @ gmf.diagram in the class Stack denotes that it is the root
object of the metamodel. The annotation @ gmf.node in the class StackNode indicates that

it should appear on the diagram as a node. The parameter label= “item” indicates that the
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Figure 2.8 Stack Metamodel

value of the ifem should appear as the label of the node and the parameter border.width=“0"
sets the border size of the node to zero. The annotation @ gmf.compartment defines that
the containment reference will create a compartment where model elements that conform
to the type of the reference (in this case, StackNode) can be placed.

Right-clicking over metamodel file (stack.emf) and selecting the option EuGENia
— Generate GMF editor, EuGENia tool automatically generates (see Figure 2.9) the
graphical (.gmfgraph), tooling (.gmftool) and mapping (.gmfmap) models, needed to
implement a GMF editor. Additionally, it triggers by means of EMF/GMF all other tasks
related to generation of the editor. We show in Figure 2.10, using a built-in user-friendly
viewer, the graphical, tooling and mapping models. In fact, they are XML-based files.

In Figure 2.11 we see the stack GMF editor working. As can be seen, it runs as an
Eclipse Application. That is, the GMF editor runs by launching a separate instance of the
Eclipse application (Run As — Eclipse Application option). Additionally, we can generate
a RCP (Rich-Client Platform) product that allows to generate a stand-alone Eclipse-based
application for this GMF editior. This should be explicit in the rcp parameter of the
gmf.diagram annotation: @gmf.diagram(...,rcp = “true’,...).

As can be evidenced by the annotations that we added to the metamodel, we provided
very basic information in order to enhance the graphical concrete syntax of the stack

metamodel. Therefore, the resulting editor has a simple graphical interface. In the
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Figure 2.9 Genetating the GMF editor for the stack metamodel

right-hand side of Figure 2.11, we see a basic usage of the editor. First, we added the
“First Item” node, followed by the “Second Item” node. Note that the stack is constructed

in an inverted visual order.
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Proposed Methodology

In this chapter, we show our proposed methodolody. In Section 3.1, we present the steps
of the methodolody that we are proposing. Section 3.2 shows an instantiation of our

methodolody and in Section 3.3 we introduce the application of our methodolody.

3.1 Methodology Overview

To better understand our methodology we revisit some key concepts used in this work: A
model, or domain model, 1s an abstraction that defines and relates a set of concepts within
a certain domain. A metamodel is also another abstraction, but emphasizing the properties
of the model itself. A model is a metametamodel if it is used to define metamodels.

In other words, a metamodel is a model that provides the basis for constructing
another model (For instance, the UML metamodel defines the structure that all UML
models must have). When a model is expressed in terms of its metamodel, we say that
it conforms to or is an instance of its metamodel. Then, models can be categorized into
different levels of abstraction.

In Figure 3.1 we see the general idea of the methodology. The starting point (Step
A) is to create a DSL formal specification (L) that is composed of a syntax and static
semantics (SS7), and dynamic semantics (DSy) parts. Therefore, L captures all aspects of
the DSL using formal methods. This allows us to formally check desired properties.

The DSL syntax and static semantics (SSz) are used as the input of an automatic
strategy that generates a corresponding metamodel MM and a set of constraints SCyyps
over MM (Step B). The artifacts MM and SCyyy, are the primary artifacts to generate a
user-friendly constraint preserving front-end for the DSL.

A GUI builder is applied on this metamodel (Figure 3.1) to create the respective
DSL GUI editor (Step C). This GUI editor is responsible to manipulate instances of the
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DSL in its graphical representation. From the complete DSL formal specification, we
propose using a verifiable formal code generator to create a back-end for this DSL (Step
D). Finally, we systematically integrate front and back-end (Step E). Therefore, following
our proposed methodology one has only to focus on the formal specification.

Before applying the previous steps, we need to choose the right techniques and
tools to provide the appropriate technological support. Such choices must follow the

requirements:

Req— 1 The formalism chosen must have tool support able to prove properties and
synthesize code (back-end) from a formal specification. Optionally, it can support

refinement.

Req—2 Automatically extract a metamodel and a set of constrains over this metamodel

from a formal specification.

Req—3 The target metamodel notation should be supported by modeling tools able to

generate graphical editors (front-end) that manipulate instances of this metamodel.

Req—4 The constraint language should be able to specify and evaluate constraints on

models of the chosen metamodel notation.

Req—5 The link between back-end and front-end should be designed in a way that it is

transparent for the user of the final application.
U
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L : Perfect Language ; MM : EMFatic Language; SC,,,, : Epsilon Validation Language
Source Artifacts guag 8UAge; Sy - EP guag

@ | PLIEMF(

L:SS, +D$L ©——> MM + SCyp;

Perfect ? ?

Developer ¥ EuGENia &
Executable ¥ . 2
Application | Integration Plugin

Back-end < (® > Front-end

. ) ~

Figure 3.2 Proposed Methodology Instantiated

3.2 Meeting the requirements

In the way that our methodology (Figure 3.1) was designed, it is sufficiently robust to allow
the use of different techniques and technologies to meet the established requirements. In
this work, we show one of many possible technological instantiations of it as can be seen
in Figure 3.2. Now we show the requirements and what has been chosen to meet each
one, in this work:

Reqg — 1 : to specify a DSL formal specification, prove properties including refinement
between versions of the specifications and back-end code generation, we use the Perfect
Language and the Perfect Developer Tool (Escher, 2012).

Req — 2 : to extract the metamodel itself and its associated constraints, we developed
an extractor as an Eclipse Plugin Tool, called PL2EMF, using the Spoofax Language
Workbench (Spoofax, 2013). The design of the extractor is described in Section 4.1 and
its implementation in Section 5.

Req — 3 : to describe the DSL metamodel we use the Eclipse Modeling Framework
by means of EMFatic language to define our EMF Models (DSL metamodel).

Req —4 : we use EVL language to specify and evaluate constraints on models of our
DSL metamodels (EMF Models).

Req — 5 : as we chose to use Eclipse Modeling Environment, we establish the link
between back-end and front-end by creating an integration plugin, presented in Section
4.2.
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3.3. METHODOLOGY APPLICATION OVERVIEW

class Stack "=
abstract
var top : StackNode || void;
var size : int;
! invariant size >= 0; !
interface
Junction empty: bool "= ...

Sfunction validate (itm: Sltem): bool "= ...

schema !push(newltem: Sltem) ...
schema !pop(x!: out Sltem)...

build {}]...

property (x: Sltem)...

Figure 3.3 Fragment of the Stack Formal Specification

3.3 Methodology Application Overview

To show an overview of how our methodology works, we revisit the example of the Stack
Formal Specification (Figure 2.1), presented in Section 2.1. This specification, which we
will call L from now on, is the starting point of our methodology. As in L there is no need
to refine the semantics into more concrete descriptions, from this level of abstraction we
can apply a formal code generator to obtain the executable back-end.

It is worth noting that in this example we present an overview of the steps related to
the creation of the Source Artifacts (Step A and Step B). In our case study, Chapter 6, we
perform all the steps of the methodology.

Taking a closer look in a fragment of L, for instance the class Stack as shown in
Figure 3.3, we highlight the aspects of this class that captures its static syntax and static
semantics (SSz), using dotted lines, and dynamic semantics (DSy), using continuous line.

The SS1., aspects that we consider in the extraction process (see Section 4.1 for more
details) are: (i) structural features (e.g. classes and their relationships); and (ii) state
features (e.g. the abstract variables and invariants). The other Perfect elements are not
considered because they are related to the business rules.

A metamodel MM and a set of constraints SCyss over M, as detailed in Section 4.1, is
extracted from L by using a systematic extraction process that we have established. This
process considers as input the syntactical and static semantics SS7 aspects of L (Stack

Formal Specification). For our example, the output of this process is shown in Figure 3.4:
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3.3. METHODOLOGY APPLICATION OVERVIEW

@namespace(uri="stack",
prefix="stack")
package stack;
context Stack {

@gmf.diagram constraint invl {
class Stack { check: self.size>0
val StackNode top;
attr int size; }
/ /

@gmf.node(label = "item",
border.width = "0")
class StackNode {
attr String item;
@ gmf.compartment (b) Metamodel constraints
val StackNode prox;

/

(a) Stack Metamodel

Figure 3.4 The complete Stack Metamodel (augmented with embedded EuGENia annotations)
and its constraints

a metamodel expressed using EMFatic (3.4(a)) and the constraints using EVL (3.4(b)).
Recall from Section 2.4 (Figure 2.5) where we presented the relationship between
EMF ECore Metamodel, EMF Model and User-Level model. Now we revisit this
relationship but at the same time we see, on the right-hand side of Figure 3.5, how these
concepts apply to our example: several stacks (user-level model) as possible instantiations
of the Stack EMF model that conforms to EMF Ecore Metamodel. Additionally, we see

the stack constraints acting to restrict the user-level models.

EMF Ecore
Metamodel
T T  specifies T TS conformstoor
Conforms to § Y Is instance of
or %
Is instance of ‘ EMF Model Stack
. (DSL Metamodel) Metamodel
§ Stack
Construct Construct o= e Constraints
, v 7 o
B ’ . .
User-Level Model ‘ ‘ Model1 |-+ | Model N i

Figure 3.5 Abstraction levels between models
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Methodology Steps

In this chapter, we detail some steps of our methodology by instantiating them. In
Section 4.1, we detail how the extraction of metamodel and constraints from a formal
specification is performed. In Section 4.2 the link strategy between front and back-end is

showed.

4.1 Metamodel Extractor

Recall from Section 3.2 as we met the requirements presented in Section 3.1. Therefore,
the aim of the Metamodel Extractor is to obtain a metamodel, expressed in EMFatic, and
constraints, in EVL, from a formal specification written in the Perfect Language. The
extraction is performed by a set of translation rules based on a subset of PL. grammar.

In this section we show how we designed the PL2EMF tool (in Chapter 5, we detail
the PL2ZEMF implementation). We present a fragment of the subset of the PL grammar
used in this work (Section 4.1.1) and some translation rules (Section 4.1.2) using a
platform independent notation. In Section 6.2, of our case study (Chapter 6), we exercise
these translation rules over a fragment of a PL specification.

This grammar and the translation rules are the primary artifacts needed by the Spoofax
Language Workbench (Spoofax, 2013)) to generate automatically the PL2ZEMF as an
Eclipse Plugin tool.

4.1.1 Grammar

The features of the Perfect specification, related to syntax and static semantics (SSz),
that we consider in our translation are: (i) structural features, that is, classes and their

relationships and (i) state features, that is, the abstract variables and invariants of each
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4.1. METAMODEL EXTRACTOR

I__Vletarnodel class (.emf file)

Class decl. in Perfect Language (.pd file) N (class Classhame |

rclass ClassName *= \ Features decls.
abstract _)\__} 5
I_vari ables, Constraints (.evl file)
invariants| | context ClassName {
pe o constraint cname 1i{
internal. .. check:
confined. .. message ...
interface. .. — }e
. end; L}
— 4

Figure 4.1 Detailed metamodel extraction

class (located in the abstract section).

The other Perfect constructs are not considered in the extraction because they are
related to the dynamic semantics (DSy) of the specification, like functions and schemas,
instead of the metamodel and its constraints. Furthermore, verification conditions (or
proof obligations) modeled by the user or those automatically generated by the Perfect
compiler, such as assertions, properties and operations contracts (pre and post-conditions)
are not considered in the extraction process because current MDE environments are not
able to prove these kind of conditions. These ignored elements are previously removed
by a preprocessing phase.

The translation strategy is depicted in Figure 4.1. Classes in PL become classes
of the metamodel and their variables, in the abstract section, become class features.
Additionally, the set of class invariants are translated to a set of constraints. The remaining
parts of the Perfect specification are ignored. Therefore, we consider an abstract grammar
for PL (see Figure 4.2) tailored to metamodeling needs. The PL complete grammar can
be found in (Escher, 2012).

According to the grammar in Figure 4.2, a PL class is defined with a modifier
(ClassModifier), a class declaration name (ClassDeclName) and an element that marks
the beginning ("A=") of the class body (ClassBody). A class body can optionally contain
an inheritance declaration (inherits IDENTIFIER) followed by the keyword abstract and
a list of variables and invariant declarations.

Each variable declaration follows the format var IDENTIFIER ’:’ TypeExp. A list
of invariants can be defined after the keyword invariant. Types can be predefined

types (PredefType), user defined types (ClassNameAsType) or the combination of both
(TypeExpr).
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4.1. METAMODEL EXTRACTOR

ClassDeclaration — ClassModifier ClassDeclName "=’ ClassBody end ;
ClassModifier — deferred | final | €
ClassDecIName — class IDENTIFIER
ClassBody — AbstractDeclarations | inherits IDENTIFIER AbstractDeclarations
AbstractDeclarations — abstract AbstractMemberDeclarations ’;’ | abstract
AbstractMemberDeclarations — AbstractMemberDeclaration

| AbstractMemberDeclarations ’;’ AbstractMemberDeclaration
AbstractMemberDeclaration — AbstractVariableDeclaration | ClassInvariant
AbstractVariableDeclaration — var IDENTIFIER ’:’ TypeExpr
ClassInvariant — invariant ListOfPredicates
PredefType — bool | byte | char | int | real
ClassNameAsType — IDENTIFIER | from IDENTIFIER
Type — PredefType | ClassNameAsType
TypeExpr — Type | set of Type | seq of Type| bagof Typel ...
ListOfPredicates — ExpressionList
ExpressionList — Expression | ExpressionList °,” Expression
Expression — ... | forall IDENTIFIER ’::’ CollExpr ’:-” Expression |

exists IDENTIFIER ’::’ CollExpr ’:-’ Expression

Figure 4.2 A fragment of the subset of the PL. grammar used in this work.

4.1.2 Translation Rules

The rules were divided in four groups: Class declaration, Abstract Declarations, Corre-
sponding Types and Invariants. For the sake of conciseness, we show one or two rule(s)
of each group. The hole set of rules is found in (Silva, 2013).

The translation rules take as parameter (left-hand side of the symbol ») one class of a
PL specification and produces its correspondent metamodel class (right-hand side). The
rules are inductively defined on the structure of the syntax given in Figure 4.2 and follow

a top-down strategy. All the rules follows the generic structure:

]RuleName >

Rule Number . [ pattern replacement

proviso condition

Number is a numerical identification of the rule. The expression on the left-hand side of
the arrow is referred to as the partern (PL code input), and the expression on the right-
hand side is referred to as the replacement (EMFatic/EVL code output). A translation
rule is said to be a conditional translation rule whether condition is defined, otherwise is
said to be an unconditional translation rule. When the rule holds, that is, the pattern is
found in the input and the condition is valid, it is replaced by the expression replacement.

Rule 1 is the starting point of the translation and it triggers all the other rules.
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4.1. METAMODEL EXTRACTOR

Class Declaration The first rule (Rule 1) takes as argument a complete class declaration,
whose main elements are its modifier (CModif), its name (CDeclName), and its body
(CBody).

Rule 1. [ CModif CDeclName =" CBody end ; |'%sPect
[ CMOdif ]classModif [ CDecIName ]classDeclName [ CBOdy ]classBody }

Rule 1 is defined in terms of three other rules, where the rule associated to CModif
(named classModif) is not presented here. Rule 3 deals with CDeclName producing
class IDENTIFIER as output. Rules 4 and 5 deals with CBody.

Rule 3. [class IDENTIFIER |classDeciName class IDENTIFIER

Rule 4 deals with a non-inherited class and Rule 5 deals with an inherited class
producing extends IDENTIFIER({ as output. Both rules delegate the processing of

the abstract declarations (abstract variables and invariants) to Rule 6 or 7.

Rule 4. [ AbsDecls |/45sBody — p ([ AbsDecls @bstractDecls

Rule 5. [inherits IDENTIFIER AbsDecls |°%sBody  p
extends IDENTIFIER { [AbsDecls ]bsiractDecls

Abstract declarations Rule 6 manages the case when the abstract section contains a
non empty list of variables and invariants declarations, delegating the declarations of

abstract members to Rule 8. Otherwise, Rule 7 (not shown) produces an empty output.

Rule 6. [abstract AbsMemberDecls [*Ps'ractDecls
[ AbsMemberDecls ]listAbsMemberDecls

Rule 8 (not shown) simply iterates over the abstract declarations of PL code, delegat-
ing to Rules 9 and 10 the remainder translation.

Rule 9 maps a variable declaration in PL to a class feature in EMFatic that follows
the pattern: modifiers featureKind emfType id. For us, we can ignore modifiers. The
featureKind is the kind of the class feature, that can be attr (an EAttribute), val (an
EReference with containment = true) and ref (an EReference with containment = false).

The emfType is the type of the feature and id is the identifier.

Rule 9 . [ var IDENTIFIER ’:’ type ]absMemberDecl > [ type ]emfFeatureKind
[ type 19"/ EquivType  IDENTIFIER;
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4.1. METAMODEL EXTRACTOR

Rule 10 delegates to Rule 14 the processing of the invariants declaration. Rule 14 is
the responsible to start the generation of the EVL code, which define the constraints over
instances of the resulting metamodel. The c/Name is the name of the class (in PL) taken

as source of the translation rules.

Rule 10 . [ absMbDecl |#0sMemberDecl [ cIName ListInys |c/assConstraints

proviso absMbDecl = invariant ListInvs A\ Listlnvs# () A\ cI[Name # ()

Corresponding Types A subset of types in PL has equivalents in EMFatic. When the
variable in PL is of a predefined basic type, Rule 11.1 produces as output the keyword

attr, as the kind of the correspondent class feature.

Rule 11.1. [ rype |9/ FeatwreKind gt p
proviso type € { bool, byte, char, int, real, string }

To non predefined basic types, such as set/seq/bag of type, user defined class as type
and so on, the related rules (not shown) produce as output ref or val depending on the
type.

Rule 12 and Rules 12.x (1<x< 6) are responsible for the translation of basic pre-
defined types in PL to their correspondent types in EMFatic. As Rules 12.x are very

straightforward we just show Rule 12.1 as an example.

Rule 12. [t’ype]eme‘]”iVType > [t—ype]predenype
proviso type € {bool, byte, char, int, real, string}

Rule 12.1. [bool]PredefTyre  p  pHoolean

When we are dealing with user defined classes as types, Rules 13.x produce the
correspondent type in EMFatic code. For example, Rule 13.1 applies when a class
identifier, preceded or not by the keyword from, is used as type, returning only the class
name. In PL, the additional keyword from is necessary to state that a variable of a super

class type can receive an instance of an inherited class. In EMFatic this is not necessary.

Rule 13.1. [ classID [¢"fEquivIype classID
proviso classID is an IDENTIFIER or from IDENTIFIER
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Invariants Rule 14 generates the EVL code that defines the context in which the list of
invariants ListInvs applies to. This rule creates a context named c1Name (the name of the

class to which list of invariants belongs). Its body (invariants) is translated by Rule 15.

Rule 14 . [ cIName ListInvs ]classConstraints >

context clName { [ ListInvs |¢4ListEVLConstraints 4

Rule 15 is responsible for iterating over the list of invariants, generating a constraint
section named cname__ 1 to the invariant inv and delegating to Rules 16.x the translation
of the expression that define the invariant inv into equivalent expressions in EVL. The
cname_ 1 is automatically generated, however, this constraint name can be edited by the

user to become more meaningful.

Rule 15. [ listinv frown (iny) JealistEVLConstraints

constraint cname_i { [inv ]9EVLConstr

[ listiny ]eqListE VLConstraints

Rule 16.1 takes a universal quantified invariant over a collection of items (in PL) and
translates it into a correspondent in the EVL notation. In this rule, x is an IDENTIFIER,
expr is an Expression (a boolean expression involving x ) and collExpr is an expression

that defines a data collection.

Rule 16.1.  [forall x::collExpr :- expr]¢4EVEConsir

check: [CollExpr]eqCOHInEVL .forAll (x | [expr]quxprlnEVL)

The rule for the existential quantifier is very similar to the rule for universal quantifier.

Instead of using the forAll() function, we use the exists() function.

4.2 Link Strategy

Recall from Section 2.1 that Perfect Developer (PD) is suitable to create a stand-alone
system (back-end) but it does not provide mechanisms to easily construct GUI-based
systems.

We integrate PD (Section 2.1) with GMF (Section 2.4) to easily create a GUI-based
PD system. This integration is accomplished via a plugin that makes the communication
between front (GMF) and back-end (PD) transparent to the end user.

This plugin has the following responsibilities: (1) interchange data formats between

front and back-end, (ii) receive requests from the GUI to the back-end, (iii) catch back-end
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Front-end
___________ |
. R I F - : . ~ #
DSL Metamodel + EuGENia 1 GMF Validation : !
Annotations .emf | EE—— Editor Plugin s )
" | bl & Bn i Integration
g L-—mmmm———- - Plugin

"""""""""" N Perfect Back-end

{

I‘ Wrapper (Model Interface) .pd I Developer Tool T )<
I : 1 ’ .

i emppd | [ cmipd || cM,.pd | & Lib .jar

. pe——— od

Figure 4.3 Detailed Link Strategy

responses and deliver to the GUI, depending on the results the GUI elements can be
changed.

The front-end is the part of a system that interacts directly with the user. That is, an
interface between the user and the back-end which has the function of processing the user
input and adapt it for the back-end. We concentrate all the business-like functionalities in
the back-end.

This plugin uses the Epsilon Wizard Language (Kolovos et al., 2013), an extension
of EOL. From within GMF editors we can execute Epsilon Wizard Language (EWL)
wizards to access underlying elements of models (instances of a metamodel), shown
graphically in the GUI, and identify the user’s graphical requests.

We see each wizard as an operation that the user can request for the GUI. This
request triggers EOL operations that read the part of the model related to the request,
manipulating it to deliver the correct data type for the back-end correspondent operation.
When the back-end returns the results, these manipulations occur in the reverse order.

Figure 4.3 shows our integration strategy with more detail. From a Perfect Specifica-
tion, we generate, using PD, the back-end as a stand-alone library. Our experience has
shown that that the back-end as a library is more appropriate for our purposes. Then,
the integration plugin can view this library as one of its own. This makes the interaction
easy, since from PD we can generate the back-end using the same target programming
language with which the integration plugin has been built.

Some operations of the back-end need to have their preconditions satisfied to be
performed correctly. When we call operations with preconditions, outside the PD environ-
ment, it is not able to handle violations. Because of this, we need to define a wrapper for
these operations. They are called from external applications. They handle any problem
that can occur resulting from an incorrect external call. The main goals of the wrapper, is

to provide a common access point for all operations provided by a DSL specification and
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acting as a firewall between the Perfect back-end and the environment .
In Section 6.4, we show how the link strategy works in our case study. It is also worth

noting that front-end and integration plugin runs on Eclipse platform.
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PL2EMF Development

In this chapter, we show how we developed the PL2EMF tool. In Section 5.1 we present
the development environment (Spoofax Language Workbench) that we used to develop
the PL2EMF tool. In Section 5.2 and Section 5.3 we present the source artifacts that we
created to generate our tool by means of the Spoofax Language Workbench. Section 5.4
shows the tool being used.

There are several other Language Workbench, such as XText (Eysholdt and Behrens,
2010), JetBrains MPS (Voelter and Solomatov, 2010). However, we chose use Spoofax
due to its support for Stratego Language. Stratego is a language for program transforma-
tion. It demonstrated to be very productive to define our translation rules and its facility

for manipulating Abstract Syntax Tree (AST).

5.1 Spoofax Language Workbench

Spoofax is a language workbench for developing textual DSLs with full-featured Eclipse
editor plugins (Spoofax, 2013). It integrates language processing techniques for parser
generation, meta-programming, and IDE development into a single environment (Kats
and Visser, 2010).

Using the Spoofax language workbench, a DSL grammar can be written, in a declara-
tive and modular way, using the Syntax Definition Formalism (SDF). Using this single
fomalism the complete syntax (lexical and context-free) of a language can be defined and
integrated (Heering et al., 1989).

Based on a grammar expressed in SDF grammar, the Spoofax language workbench
automatically provides basic editor facilities such as syntax highlighting and code folding,
which can be customized using high-level descriptor languages. Using its parser generator

tool, a parser can be created from this grammar. This generated parser can be used in
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an interactive environment, supporting error recovery in case of incorrect syntax or
incomplete programs (Kats and Visser, 2010).

We express the semantic definitions, using Stratego language, by means of rewrite
rules that provide an integrated solution for analysis, program transformation, code
generation rules and more sophisticated editor services such as error marking, reference
resolving, and content completion (Kats and Visser, 2010).

Defining transfomations rules by using the Stratego Language, the Spoofax Work-
bench provides the automatic generation of a functional program transformation infras-
tructure that is able to perform the transformations we defined.

All of these generated services and infrastructure are integrated with Eclipse. This

also allows the application to be delivered to “end developers” via stand-alone plugin.

5.2 Syntax

In Figure 5.1 we show the PL grammar we consider in this work (recall from Section 4.1.1)
in terms of the SDF language. Aditionally, Figure 5.2 shows the lexical syntax.

We declare the main module of our grammar using SDF in Figure 5.1. In line 01, we
name it as Per fLang. A module can import other modules. In this case, we import the
Common module, (see line 02).

A module can contain a number of sections. The exports section in line 03, is
used to define the syntactic aspects (visible to other modules that import it). In this case,
we have: start symbols (line 04) and context-free syntax (line 06).

All syntax, both lexical and context-free, is defined by productions, respectively in
lexical syntax section (declared constructs like literals, identifiers and so on) and
context-free syntax section (constructs like operators, statements and so on). In
the module PerfLang (Figure 5.1) we declare the context-free syntax (starting in line
06) and in the module Common (Figure 5.2) we declare the lexical syntax (starting in
line 03).

Productions, in SDF, have the form ay...a,— > ag, where a;...a, is a sequence of
strings such that when they match, they produce the symbol ag. That is, productions
take a list of symbols and produce another symbol. The terminology of terminal and
non-terminal is not very suitable for SDF, since only single characters are terminals and
almost everything else is a non-terminal. For this reason, every element of a production
is called a symbol (SDF, 2013).

SDF includes a declarative disambiguation construct to uniquely identify a symbol in
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the abstract syntax: the cons (n) annotation, where n uniquely identifies a symbol Kats
et al. (2010). It also provides several regular expression operators to simplify common pat-
terns that appear in defining productions in order to reduce the effort and enchance expres-
sivity in defining grammars. In line 1 6 of Figure 5.1 the declaration C1Declarationx
means zero or more symbols C1Declaration. Thatis, it is allowed to declare zero
or more PL classes in one file. The declaration {Predicate ", "}+, line 30, means
one or more symbols Predicate separated by ", ".

In Figure 5.2 we show the Common module. This module focuses on the lexical
aspects of the syntax definition. In this module we define the sections: lexical syntax
(line 03), lexical restrictions (line 15) and context-free restrictions (line 18).

In line 14 we show how identifiers are formed in PL: the first character must be a
letter or an underscore, followed by zero or more letters, numbers or underscores.

PL has a set of keywords that are not allowed to be used as identifiers. However, in
SDF, the keywords (e.g. class, inherits) are not automatically preferred over identifiers.
Thus, ambiguity can happen. So, we use SDF reject productions (lines 05 and 06) to
define explicitly that these keywords are not allowed as identifiers. Reject productions
define that all derivations of a symbol for which there is a reject production are forbidden
SDF (2013).

SDF supports constructs to define in a declarative way that certain kinds of derivations
are not allowed; this is also known as disambiguation filters. In line 16, there is an
example of this: a lexical restriction that specifies that an identifier cannot be followed by
a character that is allowed in an identifier. Similarly, in line 19, we define that a keyword

cannot be followed by a character that is allowed in an identifier.

5.3 Translation Rules

In Figure 5.3 we show how the translation rules, previously presented in Section 4.1.2,
are defined using the Stratego transformation language. The translation rules take a
PL specification based on grammar, Figures 5.1 and 5.2, and produce as output its
corresponding metamodel and constraints.

Basic transformations are defined using conditional term rewrite rules that are com-
bined with strategies to control the application of rules. With Stratego, basic transforma-
tion rules can be defined separately from the strategy that applies them. This allows that
they can be understood independently Stratego (2013). The rules defined using Stratego
language act over the AST of a PL specification.
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01: module Perflang

02: dimports Common

03: exports

04: context-free start-symbols

05: Classes

06: context—-free syntax

07: ClDeclarationx —> Classes {cons("Classes") }

08: ClassModifier ClassDeclName ""=" ClassBody "end" ";"

09: —-> ClassDeclaration {cons("ClassDecl")}

10: "final" —> ClassModifier {cons ("ClModifFinal")}

11: "deferred" -> ClassModifier {cons("ClModifDeferred")}

12: nn —> ClassModifier {cons ("NoClModif")}

13: "class" ID —-> ClassDeclName {cons ("ClassDeclName") }

14: AbstractDeclarations —> ClassBody {cons ("ClBodyA")}
15: "inherits" ID AbstractDeclarations —-> ClassBody {cons ("ClBodyB") }
16: "abstract" AbsMbrDecl* -> AbstractDeclarations {cons ("AbsMbrsDecls")}
17: "var" ID ":" TypeExpr ";" —-> AbsMbrDecl {cons ("AbsVarDecl") }
18: "invariant" ListOfPredicates ";" -> AbsMbrDecl {cons("ClInv")}
19: BasType —-> PredefType {cons ("PredefType")}

20: ID —> ClassNameAsType {cons ("ClAsTyp")}

21: "from" ID -> ClassNameAsType {cons ("ClAsTyp")}

22: PredefType -> Type

23: ClassNameAsType -> Type

24: ...

25: "set" "of" Type —-> SetOfType {cons ("SetOfType")}

26: e

27: Type -> TypeExpr

28: SetOfType —> TypeExpr

29: ...

30: {Predicate ","}+ —> ListOfPredicates {cons ("ListOfPredicates")}
31: Expression —> Predicate {cons("Predicate")}

32: ForAllExpr -> Expression {cons ("Expression") }

33:

34: "forall" BndVarDecl ":-" Expression

35: -> ForAllExpr {cons ("ForAllExpr") }

36: ...

37: ID "::" CollExpr —> BndVarDecl {cons ("BoundVarDecl") }

38:

Figure 5.1 PL grammar expressed in SDF: main module
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0l: module Common
02: exports

03: lexical syntax

04: l[a—zA-Z\_] [a-zA-Z0-9\_]1x —> ID
05: Keyword -> ID {reject}

06: BasType —-> ID {reject}

07: class —-> Keyword

08: inherits —-> Keyword

09: ...

10: bool -> BasType

11: Ce

12: "~" —> NOT

13: "==>" —-> TIMPLIES

14: ce

15: lexical restrictions

16: ID -/- [a-zA-Z0-9\_]

17: ce

18: context-free restrictions

19: class inherits —-/- [A-Za-z0-9\_]
20:

Figure 5.2 PL grammar expressed in SDF: common module

The AST is expressed in terms of an Annotated Term Format (ATerms, for short).
ATerm is a structured representation generated after a parser reads the input text (a
PL specification) and turns it into abstract syntax tree. Given the grammar using SDF

(Figures 5.1 and 5.2), this parser is generated automatically by the Spoofax Workbench.
A basic unconditional rewrite rule, using Stratego language, has the following
form: r: tl —-> t2, where r is the rule name, t1 is the left-hand side and t2
the right-hand side term pattern. The rule r applies to a term t when the pattern t1
matches t, resulting in the instantiation of t2. Conditional basic rules have the form:
r: tl —-> t2 where s, where s is the condition. We also use rules of the form:

tl —> t2
with

Using the with clause, instead of where, variables can be assigned and other rules can
be invoked.

Our rules produce its output by string interpolation, using the $[ ... ] brackets,
to construct the metamodel as text fragments. Variables can be inserted using brackets
withouta dollar: [ ... ] (e.g. line 08 of Figure 5.3). String interpolation allows the

combination of text with variables. Any indentation used is preserved in the end result,
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except the indentation leading up to the quotation.

Rules written in the Stratego language (Figure 5.3) do not necessarily have a one to
one (1-1) relation with the rules expressed in Section 4.1.2 using a platform independent
notation. For example, in Figure 5.3, the rule defined in line 16, represents Rules 6, 7
and 8 defined in Section 4.1.2. Whereas the rule defined in line 01 represents only the
Rule 1.

The rules are divided in four groups: Class declaration, Abstract Declarations,
Corresponding Types (not shown) and Invariants. For conciseness, we show only one (or

two) rule(s) of each group. See Silva (2013) for all the rules.

Class Declaration Rule 1 (line 01) starts the translation and it triggers all the other
rules. It represents a complete class declaration, whose main elements are its modifier
(modi f), its name (name), and its body (body).

Rule 1 triggers other three rules, where the rule associated to modi f is not presented
here. Rule 3 (line 08) deals with name producing class class_1id as output. Rules
4 (line 10) and 5 (line 1 3) deals with body.

Rule 4 deals with a non-inherited (not shown) and Rule 5 with an inherited class
producing extends ID { as output. Both rules delegate the processing of the abstract

declarations (abstract variables and invariants) to Rule 6 (line 16).

0l: to—emfatic:

02: ClassDecl (modif, name,body) -> $[ [modif’] [name’] [body’] } 1
03: with

04: body’ = <to-emfatic> body;

05: name’ := <to-emfatic> name;

06: modif’ := <to-emfatic> modif

07:

08: to-emfatic: ClDeclName (x) -> $[class [x]]

09:

10: to-emfatic: ClBodyA(decls) -> $[{ [decls’] ]

11: with decls’ := <to-emfatic> decls

12:

13: to-emfatic: ClBodyB(c, decls) —-> $[ extends [c] { [decls’] ]
14: with decls’ := <to-emfatic> decls

15:

Abstract declarations Rule 6 (line 16) iterates over the abstract declarations of PL

code, delegating to other rules (e.g. Rule 9) the remainder translation.
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01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:

to-emfatic:

ClassDecl (modif, name,body) -> $[ [modif’] [name’] [body’] } 1
with

body’ := <to-emfatic> body;

name’ := <to-emfatic> name;

modif’ := <to-emfatic> modif

to-emfatic: ClDeclName (x) -> $[class [x]]

to-emfatic: ClBodyA (decls) -> $[{ [decls’] ]

with decls’ := <to-emfatic> decls
to-emfatic: ClBodyB(c, decls) -> $[ extends [c] { [decls’] 1]
with decls’ := <to-emfatic> decls

to-emfatic: AbsMbrsDecls (dx) —-> $[ [d'*] ]

with

d’x := <to-emfatic> dx

to—-emfatic: AbsVarDecl (x, t) ->

Sl

[(£] [t"1 [x];

1
with

f := <feature-kind> t;t’ := <to-type> t

feature-kind: f -> x

where
switch !f
case !f => PredefType(t) : x := "attr"
end
to-type: PredefType(t) -> x
where
switch !t
case "bool" : x := "boolean"
end
to-type: ClAsType(t) -> t
to-evl: ClInv(LstPredicates (px*)) ->
S [context CLASS_NAME {
[p’~*]
}]
with p’* := <to-evl> p=*
to-evl: Predicate (Expression(e)) ->

Sl

constraint CONSTRAINT_NAME ({
check: [e’]
message: "Put an error message here."

}
]

with e’ := <to-expr> e
to-expr: ForAllExpr (BoundVarDecl (it, coll),
Expression (expr)) -> $[ [coll’].forAll([it] | [expr’]) 1
with
coll’ := <to-expr> coll; expr’ := <to-expr> expr

Figure 5.3 Translation Rules expressed using Stratego Language
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Rule 9 (line 1 9) maps a variable declaration in PL to a class feature in EMFatic that
follows the pattern: modifiers featureKind emfType id. For us, we can ignore modifiers.
The featureKind is the kind of the class feature, that can be attr (an EAttribute), val (an
EReference with containment = true) and ref (an EReference, containment = false). The
emfType is the type of the feature and id is the identifier.

Rule 14 (line 42) is the responsible to start the generation of the EVL code, which
define the constraints over instances of the resulting metamodel. The class_id is the

name of the class (in PL) taken as source of the translation rules.

16: to—emfatic: AbsMbrsDecls (dx) —> $[ [d'*] ]

17: with d’* := <to-emfatic> dx
18:

19: to-emfatic: AbsVarDecl (x, t) —>
20: St

21: [(f]1 [t"1 [x1;

22 ]

23: with

24: f := <feature-kind> t;t’ := <to-type> t
25:

26: feature-kind: f -> x

27: where

28: switch !'f

29: case !f => PredefType(t) : x := "attzr"
30:

31: end

32:

33: to-type: PredefType(t) -> x

34: where

35: switch !t

36: case "bool" : x 1= "boolean"
37:

38: end

39:

40: to-type: ClAsType(t) -> t

41:

Invariants Rule 14 generates the EVL code that defines the context in which the list of
invariants LstPredicates (p«) applies to.

For each invariant, Rule 15 (line 48) is responsible for generating a constraint
section named CONSTRAINT NAME to the invariant inv and delegating to Rules 16.x
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the translation of the expression that define the invariant inv into equivalent expressions
in EVL.

Rule 16.1 (line 57) represents an universal quantified invariant over a collection of
items (in PL) and translates it into a correspondent in the EVL notation. In this rule, x is

an item of the collection col1l, expr is an boolean Expression involving x.

42: to-evl: ClInv(LstPredicates (px)) —->

43: S[context class_id {

44 . [p’ *]

45: }]

46: with p’* := <to-evl> px

47 :

48: to-evl: Predicate (Expression(inv)) ->

49: ST

50: constraint CONSTRAINT_NAME ({

51: check: [inv’]

52: message: "Put an error message here."

53: }

54: ]

55: with inv’ := <to-expr> inv

56:

57: to-expr: ForAllExpr (BoundVarDecl (x, coll),

58: Expression (expr)) —-> $[ [coll’].forAll ([x] | [expr’]) ]
59: with

60: coll’ := <to-expr> coll; expr’ := <to-expr> expr

5.4 Tool

In Figure 5.4, we show the artifacts, previously presented in Section 5.2 and Section 5.3,
used as input for the Spoofax Workbench to generate our translation tool. On the left-hand
side and in the middle of Figure 5.4 we show the grammar modules. On the right-hand
side we see the rules. After Spoofax generates the PL2ZEMF tool, we now can use
to it translate a PL formal specification given as input to generate the corresponding
metamodel and constraints. For example, in Figure 5.5 (left-hand side), we show the
PL2EMF tool using as input the Fault Tree formal specification presented in Chapter 6.

As mentioned in Chapter 3, only the syntax and static semantics (SSz) of a DSL L
declarations are considered in the translation. The removal of the PL elements that are
not considered in the extraction is responsibility of a preprocessing phase.

On the right-hand side of Figure 5.5, we can see the abstract syntax tree of our PL
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Figure 5.4 Fault Tree SDF grammar modules and Stratego rules

expressed using the Annotated Term Format (ATerms). The notation ATerms is the format
adopted by Spoofax for representation of abstract syntactic trees. Recall from Section 5.3
that rules defined using the Stratego language also act over ATerms of a PL specification.

Figure 5.6 shows the metamodel and constraints resulting from the application of the
translation rules over the FT formal specification. It is important noting that the developer
(specifier) can add manually EuGENia annotations in the generated metamodel to improve
its graphical concrete syntax. These annotations are responsible to give, for example, the
shapes of a circle and an arrow to BasicEvent and FTEdge class, respectively. See our
case study in Chapter 6. A significant name for the constraints, CONSTRAINT_NAME, is
also a manual task.
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Figure 5.5 Fault Tree Formal Specification and its Abstract Syntax using ATerms
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Figure 5.6 Generated FT metamodel and constraints
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Case Study

In this chapter, we present the development of a Fault Tree Analysis Tool following our
proposed methodology. In Section 6.1 we present a brief overview concerning Fault
Trees (FT for short) and our FT formal specification, from which we generate the tool
back-end automatically using the Perfect Developer Tool. In Section 6.2 we exercise our
translation rules over a fragment of the FT formal specification. In Section 6.3 we present
the extracted metamodel and respective constraints, from which the resulting FT GMF
front-end is generated by the GMF tools. In Section 6.4 we show how we linked front
and back-end. Additionally, in Section 6.5 we give an overview about formal verification
proof aspects of the Fault Tree formal specification. The complete FT specification can

be found in Appendix A and the analysis tool can be found in (Silva, 2013).

6.1 FT Overview and Formal Model

A Fault Tree (FT) (NASA, 2002) is a kind of combinatorial model commonly used
to find how an undesired event of interest (called the top event) might be caused by
some combination of other undesired events (failures). Relationships among events are
described by AND- (Figure 6.1(b)) and OR-Gates (Figure 6.1(c)). An undesired event
usually represents a state of the system that is critical from a safety or reliability point
of view. Basic events (Figure 6.1(a)) fail spontaneously according to some failure rate.
Events represented by gates depend on basic events and/or other gates. Basic events do
not have inputs (they are independent events). Gates have an arbitrary number (at least
one) of inputs (dependent events). See Figure 6.1.

Mathematically, an FT is a directed acyclic graph (a tree), where each vertex is an FT
component. Components can be basic events or gates. Gates can be AND- or OR- logical

ports. We declare the class Component as deferred to allow dynamic binding, see Figure
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output output
output E:
aee *ee

ninputs ninputs

C

Figure 6.1 Components of a FT

6.2. Variables of type Component can receive any instance from any of its descendant
classes. In the definition of Component, the functions idc and desc have the same name
of their class attributes to allow public access.

The class Gate specializes the class Component, without any additional attributes
or operations (Figure 6.2). It contains two constructors (not shown) that calls the Com-
ponent’s constructors. AND-Gates, and similarly OR-Gates, are just a specialization of
Gate and consequently of Component.

We assume that components represented by basic events have an exponentially dis-

tributed life time. Then, its failure probability at time ¢ is computed by using the function
probf(t)=1—e* 1>0

where A is its failure rate and e ~ 2.718281828. As we can see, the class BasicEvent
extends Component by adding the attribute lamba (1) that holds its failure rate. Addi-
tionally, a constant definition (E) is declared to represent the e constant and the function
probf is translated according to PL notation.

An edge, e = (src,tgt), denotes that the output of a source component is an input
to a target component. In the class FTEdge, left-hand side of Figure 6.3, we have one
attribute with type from Component and other with type from Gate. This means these
variables can be assigned to any descendants of Component and Gate, respectively. The
same is valid for nodes: set of from Component, in the FT class. This says that nodes
can contain an arbitrary number of elements (descendants of) Component.

Looking at the FT class (right-hand side of Figure 6.3) we can see the schema
addFTNode. It changes the state of the system by adding a new node n, passed as
parameter, if it was not already in the set of nodes (~checkFTNode(n)). Additionally, if
node 7 is the top event (n.idc = “TOP_EVENT?”), it must be a gate (n within from Gate)
and there must not be another event labeled as top event (function existsTOPEventld,
without input parameters). If this precondition holds, the postcondition of this operation

states that the attribute nodes! (after the operation) is equal to itself before the operation,
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deferred class Component "=
abstract

var idc : string;

var desc : string;
interface

operator = (arg);

Junction idc;

Junction desc;

build {!idc: string}

post desc! = “7;
end ;
class ANDGate "= inherits Gate
interface

build {idEv: string}

inherits Gate{idEv);
end ;

class ORGate "= inherits Gate
interface

build {idEv: string}

inherits Gate{idEv};
end ;

deferred class Gate "=
inherits Component

end ;
class BasicEvent "=
inherits Component
abstract
const E : real "= 2.718281828;
var lambda : real;
invariant lambda > 0.0 ;
interface
Junction lambda;
Junction probf{t:int):real
pre t>=0
A=(1 - EN(-(lambda*t)));
assert result >=0;
build {idEv: string, Ib: real}
pre b > 0.0
inherits Component{idEv},

post lambda! = Ib;
end ;

Figure 6.2 Fault Tree Components: AND-Gate, OR-Gate and Basic Event

class FTEdge "= class FT"=
abstract abstract
var src: from Component; var nodes: set of from Component;
var tgt: from Gate; var edges: set of FTEdge;
interface invariant
Sfunction src; /list of invariants (shown below)...
Junction tgt; interface
build {!src: from Component, schema !addFTNode (n: from Component)
Itgt: from Gate}; pre ~checkFTNode(n),
end ; (n.idc = “TOP_EVENT”
==> ~existsTOPEventld &
(n within from Gate))
post nodes! = nodes.append(n);
end ;

Figure 6.3 The FTEdge definition (left-hand) and a fragment of the main class, F7, of the formal

specification (right-hand)
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nodes, appended with the new node n. Any instance of the FT model must satisfy the

following invariants (the list is not exhaustive):

invl There is a unique top event

#(those n::nodes :- n.idc = "TOP_EVENT") <=1

inv2 Source and target of an edge must be different. That is, it is not allowed self-loops

~(exists e::edges :- e.src.idc = e.tgt.idc)

inv3 The id’s are unique

forall nl::nodes :- ~(exists n2::nodes.remove(nl) :- nl.idc = n2.idc)

invd One source component must have only one target component

forall f::edges :- ~(exists e::edges.remove(f) :- f.src.idc = e.src.idc)

As the main goal of this work is to present our proposed rigorous methodology
(Chapter 3), we assume simplifications concerning the failure probability calculation of
the top event: (i) in AND-Gates, input events are considered to be independents and (ii)
in OR-Gates, their input events are mutually exclusive.

Then, traversing the FT, and making multiplications (AND-gates) and sums (OR-
gates) we can calculate the top event failure probability (indeed an approximation) of a
fault tree. The function definition that makes this calculation can be found in Appendix
A. For a complete description about Fault Tree Quantitative Analysis, please see (SAE,
1996) and (NASA, 2002).

6.2 Exercising the Translation Rules

Now we show an example of how the rules we presented in Section 4.1.2 work together to
produce the correspondent EMFatic/EVL code from the Fault Tree formal specification
expressed in PL. We choose the class named Component to illustrate how the translation
rules work. For this class, constraints in EVL are not produced as output because they do
not have invariants defined in its body.

Recall from Section 4.1.2 that Rule 1 is the starting point of the translation and it
triggers all the other rules. It takes as argument the complete Component class declaration
and breaks it into three main elements: the class modifiers, the class name and its body.

Rule 1 delegates, respectively, these elements to the Rules 2, 3 and 4.
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Rule 1.  [deferred class Component "= abstract

var idc : string; var desc : string; end;]'*sPec! >
[deferred)*'Modif [class Component]clessDeciName

labstract var idc : string; var desc : string; end;]CM”BOdy "y
Rule 2 translates the class modifier deferred in PL to its corresponding in EMFatic.

Rule 2. [deferred]Cl“”M odif —p  gpstract

Rule 3. [class Component]@ssPectName 1555 Component

Rule 4 deals with a non-inherited class. It delegates the processing of the abstract
declarations (abstract variables and invariants) to Rule 6 (non-empty abstract section) or
7 (empty abstract section) . In this context, Rule 4 delegates to Rule 6.

Rule 4. [abstract var idc : string; var desc : string; |°/4ssBody >

{ [ abstract var idc : string; var desc : string; 1¢bstractDecls
As partial result of the previous rules applications we have:

[ deferred class Component =" abstract
var idc : string; var desc : string; end ; |classDecl >
abstract class Component ({

[ abstract var idc : string ; var desc : string; 1¢bsiractDecls

}

Rule 6 applies when the abstract section contains a non-empty list of statements
(variables and invariants declarations), delegating this list to Rule 8. The Rule 8 iterates
over each statement, delegating each statement, in this case, to Rule 9 the remainder
translation. Applying Rule 6 and Rule 8 (twice) we obtain:

Rule 6. [abstract var idc : string; var desc : string;|?0stractDecls —p,

[var idc : string; var desc : string;]”“AbSMemb” Decls

Rule 8. [var idc : string; var desc : string;]liS’AbSM emberDecls

[var idc : String]absMemberDecl [var desc : String;]lislAbsMemberDecls

[var idc : int; var desc : string;]/s/AbsMemberDecls >

[var idc : Stn-ng]absMemberDecl [var desc : Sl‘ring]abSMemberDEd
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class FTEdge { context FT {

ref Component src; constraint invl { check : self.nodes.

ref Gate tgt; select(n | n.idc = "TOP_EVENT").size() <=1}
} constraint inv2 { check : not self.edges.exists(e |
abstract class Component { e.src.idc = e.tgt.idc) }

attr String idc; constraint inv3 {check: self.ftnodes.forAll(nl |

attr String desc; not self.ftnodes.excluding(nl ).
} exists(n2 | nl.idc = n2.idc))}
class FT { constraint inv4 {

val Component[*] nodes; check : self.edges.forAll(f |

val FTEdge[*] edges; not self.edges.excluding(f).exists(e |
} f.sre.ide = e.sre.idc))}

/

Figure 6.4 The FT EMF model (left-hand) with some constraints (right-hand)

Rule 9 maps the var idc : string variable declaration in PL to a class feature in

EMFatic. The same happens with var desc : string variable declaration (not shown).

Rule 9. [var idc : string]®PsMemberDecl >
[String]emfFeatureKind [string] emfEquivType idc;

With the application of Rules 11.1 and 12 we complete the transformation:

[deferred class Component =" abstract
var idc : string; var desc : string; end;]/¢Pect
abstract class Component {
attr string idc;

attr string desc;

6.3 FT GMF Editor

By applying the translation rules (briefly presented in Section 4.1.2) with the aid of
our tool PL2ZEMF, on our FT specification of Section 6.1, we obtain automatically
the metamodel and constraints showed in Figure 6.4. From this metamodel, we apply
EuGENia that automatically generates the graphical editor.

An FTEdge references (ref) the source and target components. A Fault Tree contains
(val) zero or more components and edges. On the right-hand side of Figure 6.4 we have

the invariants invl, inv2, inv3 and inv4 translated to EVL.
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| FTEdge

i 0.* edges
kgt fi= gmflink g HE
STC
0.1
H Component

H Gate = idc : EString . nodes
o desc : EString 0.

0.1
fi= gmf.diagram

H ANDGate E| ORGate || BasicEvent
= lamba: EDouble

fim gmf.node fim gmf.node fi gmf.node

Figure 6.5 Diagram of the FT EMF model (FT Metamodel)

For readability purposes, in Figure 6.5 we show the FT metamodel (previously
presented —see Figure 6.4— using a textual notation) using the standard visual notation
of class diagrams. In this diagram we can see the structural relationships and its cardinality
between the elements of a Fault Tree.

Figure 6.6(a) presents the FT Analysis Tool obtained, following our rigorous proposed
methodology. On the left-hand side we have a palette, where we can select components

(gates and basic events) and connection edges.

6.3.1 Calculating Top Event Failure Probability

Consider a fault-tolerant multiprocessor computer system with multiple shared memory
modules connected by a bus (NASA, 2002). The system is operational if at least one
processor (in a total of three), one memory module (in a total of two) and the bus are
operational. This system is modeled by the FT presented on the right-hand side of
Figure 6.6(a).

We assume that the failure time for each component is exponentially distributed.
Then, let Ap = 0.00125, Ay = 0.00643 and A = 0.00235 be the failure rate of each
processor, memory and bus, respectively. From this, the failure time distribution function

of a processor, for example, is given by

probf(t)p=1—e 00125 1 >

63
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To calculate the Top Event Failure Probability using our FT Analysis Tool, we right-
click in the drawing blank area with the mouse and select the option Wizards — Calculate
Top Event Failure Probability. As result, the input dialog of Figure 6.6(b) is presented
where the user can provide the time (¢). Suppose that we provide 10.0 as input for 7. After
clicking on the OK button, the failure probability of the FT Top Event is calculated and
presented as can be seen in Figure 6.6(c). This calculation happens in operations located
in the back-end part of the tool. These operations are called by means of the integration
plugin that links the back and front-end of the FT Analysis Tool.

6.3.2 Validating the Fault Tree

The work reported in (Maciel et al., 2011) presents a system in which software application
that can read, write and modify the content of the storage device Diskl. The system
periodically replicates the produced data of one storage device (Diskl) in two storage
replicas (Disk2 and Disk3) to allow recovering in case of data loss or data corruption. The
system is also composed of one Server and Hub that connects the Disk2 and Disk3 to the
server (Figure 6.7(a)). The system is considered to have failed if it is not possible to read,
write or modify data on Disk/ and if no data replica is available. Hence, if Diskl or the
Server or the Hub, or either replica storages are faulty, the system fails. The respective
FT is presented on the right-hand side of the Figure 6.7(b).

We use this model to show how constraints validation works through the front-end.
Note that we added two extra edges: one extra egde from the gate that represents the top
event SysFail to itself (Figure 6.7(b)) and other from the basic event that represents the
Hub to the gate that represents the failure of replicas. Selecting the option Validate in the
Edit menu, we get an error message saying that the invariants inv2 (source and target of
an edge must be different) and inv4 (one source component must have only one target
components) (Figure 6.7(b)). This small example shows that the invariants that hold in
the FT formal specification, also hold in the GUI created from its metamodel.

We checked other invariant violation possibilities and all of them matched the expected

results as characterized in the PL formal specification.

6.4 FT Tool: linking front and back-end

In Figure 6.8, we show how the link of the FT tool was implemented. On the left-hand
side we see the library, backendftree.jar from the FT formal specification, generated

automatically by PD. On the top of the right-hand side we see the EWL wizard responsible
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to interact with the GUI user that requests a FT failure probability. Wizards access
underlying elements of a graphical FT model and make calls to adapters (in this case, for
class AdapterFT. java) that holds an instance of the back-end.

The adapter represents the external environment that interacts with the back-end
interface. This back-end interface we call: wrapper. The wrapper provides a common

access point for all operations provided by the DSL specification.

6.5 Formal Verifications

For the Fault Tree specification, PD generated 71 verification conditions, from which 70
were confirmed automatically.

The unproven condition is the post-assertion assert result >= 0 in the function probf{)
of the BasicEvent, shown in Figure 6.9. This post-assertion specifies an additional
property that the probf{() return are expected to hold. Within the post-assertion, the
predefined identifier result refers to the result of the function. Each expression in the
post-assertion must refer to result.

Recall from Section 6.1 that this function represents the failure probability at time ¢
of a FT basic event (using mathematical notation: probf(t) =1— e M.t >0 where A is
its failure rate and e ~ 2.718281828).

In Figure 6.10, we show the report generated by PD of the unproven verification
condition (or proof obligation) related to prof() function. For each unproven condition
the PD report shows: (i) the kind of the verification condition generated: in this case,
“Post-assertion valid”; (ii) suggestions to the specifier to add in the specification to help the
prover to prove the condition; (iii) the goal tried to prove: 0.0 < (1-(EM-(self.lambda*t)))
(iv) the reason why it was not proved, in this case: exausted rules; and so on.

From Figure 6.10, we can see that the prover stopped at the expression
(2.71828" — (sel f.lambda xt)) < 1.0)

But we can easily see that it is valid because from sel f.lambda > 0 (class invariant) and
t > 0 (precondition of probf() function. So, the multiplication sel f.lambda xt always
produces a number greater than zero. For a better understanding, we show below this

condition, using mathematical notation:

1
—— < 1.0 where A>00,t>0
e t
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We can also see the behavior of this function graphically in Figure 6.11. The expres-
sion exp(x) means e*. To our case, consider the parameter x,x > 0 as x = Az. In the figure
we can see that the function 1/¢* approach 0 (zero) as x approaches infinity and when
x = 0its result is 1 (one).

In Figure 6.12 we see an example of a successful simple proof. This verification
condition checks one of the preconditions of the exponentiation PL built-in operator (*) is
satisfied it: checks whether the base of the exponentiation is greater than or equal to zero.

In Figure 6.13, we show a little bit more elaborated proof of a verification condition.
The condition goal is to check whether the BasicEvent class invariant, lambda > 0.0 is
satisfied by BasicEvent’s constructor (build).

It can be seen in Figure 6.13, the verification condition (or proof obligation) was
generated in line 27:. This means that PD generated this proof obligation due to the piece
of specification located in this line. This states that the new value of lambda (Ib if the

precondition of build is satisfied) must also satisfy the class invariant.
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File Edit Diagram MNavigate Search Project Run Window Help

Comment: This is
the FT Top Event

= = Objects @

il 4 ANDGate
4 BasicEvent 3 2
5 4 ORGate 4 Bus
2= | | & Connections +
B + FTEdge
4 Proct 4 Proc2 4 Proc3 4 Mem1 %+ Mem2
2 = Properties 2 [i] 2 # ¥ = 7
+ BasicEvent
Core Property
Idc
Lamba i110.00125

(a)

Calculate Top Event Failure Probability
Please enter the parameter t (time)

[fod |
Cancel | . OK
(b)
LNe F1 10p event
& | (& Objects @ H
(i 4 ANDGate
4 BasicEvent
& + ORGate
" Information
R
E

6 F(t=10): 0.02710626670338284

OK
7z & Console =2 & BE = 3~ = 08

Epsilon
0.02710626670338284

(©)

Figure 6.6 FT Analysis Tool used to model a fault-tolerant multiprocessor computer system
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Figure 6.7 FT Analysis Tool used to model a data replication system
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Figure 6.8 FT Tool Link plugin

Line | class BasicEvent "=
inherits Component
abstract
const E : real "= 2.718281828;
var lambda : real;
10: invariant lambda > 0.0 ;
interface

Junction probf{t:real):real

pre t>=0.0
18: A=(1 - EN(-(lambda*t)))
19: assert result >=0.0;

build{idEv: string, Ib: real}
prelb > 0.0
inherits Component{idEv};
27: post lambda! = Ib;
end;

Figure 6.9 Basic Event class fragment
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Figure 6.10 PD Report: verification condition over probf function not proved
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Figure 6.11 Graph of 1/¢* function
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Proof of verffication condiion: Precondiion of 'operator ™ satisfied

In the context of class: BasicEvent, declared at: fhome/robson/FTPDVBasicEvent.pd (3,1)
Conditten generated at: /homefrobsen/FTPD/BasicEvent pd (18,14)

Condition defined at: built in declaration

Toprove: 002 E

Grven:

0.0 < self lambda
00=t

Proof

[Take goal term]
J1.O0J00=<E

— [expand definition of constant 'E'in class (none ' at BasicEveni.pd (6,9)]
[i1.1 |.7||.|“|{"' T1E28

Figure 6.12 PD Report: a verification condition over exponentiation PL built-in operator
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Proof of werification condition: Class mvaniant satisfied
Condition generated at: /home/robson/FTPD/BasicEvent. pd (27,8)
Condition defined at: /home/robsonFTED/BasicEvent. pd (10,20)
To prove: 0.0 < self’ lambda
Grven:
00<b
self = (Component{idEv} to BasicEvent)
self’ lambda =1b
forall $x:Sattributelames(BasicEvent) » different(self’ x; self lambda) => self Sz=self’ x
Proof
[Take given term]
[2.0700<1b
[Take given term]
[4.0] self’ lambda =1b
— [simplif]
[4.170.0=(Ib+ self lambda)
[Take goal term]
[1.070.0 < self’ lambda
— [from term 4.1, self.lambda is equal to Ib]
[1.1700<b
— fr om term 2.0, literala < Ib is true whenever literala < 0.0]

* Proof of rule precondiion:
[1.1.0]0.0<00
— [simplif]
|'IA 4 4 d tl.'u.e

[1.2] true

Figure 6.13 PD Report: a verification condition over BasicEvent’s constructor
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Conclusion

This work proposed a methodology for creating GUI-based formally verified tools through
the combination of metamodel-based GUI generators (an approach that follows MDE
principles) with executable back-ends automatically generated from formal specifications.

As to instantiate our methodology it is necessary to make some design decisions we
defined a set of requirements to help Software Engineers to take such decisions.

We presented an instantiation of our methodology using the Perfect Language to
specify formal specifications, the Perfect Developer Tool to prove properties about the
specification and generate automatically the back-end. To generate the front-end we used
metamodel-based Eclipse modeling tools.

To guarantee that the front-end connects correctly with the back-end, we defined a set
of translation rules that derive metamodels and constraints from formal specifications.
We developed a tool, called PL2ZEMF, as an Eclipse Plugin by means of the Spoofax
Language Workbench. This implementation involves (i) the definition of the complete PL
syntax using SDF formalism and the implementation in Stratego Language of translation
rules to extract automatically from PL specifications (ii) metamodels written in EMFatic
and (iii) constraints written in EVL.

Based on this instantiation we developed a case study to illustrate our methodology.
First, we formalized a simplified version of the Fault Tree model. From this, following
our methodology, we created a simplified version of a formally verified GUI-Based Fault
Tree Analysis Tool. This tool brings benefits which include: (i) the easiness to build
huge Fault Tree models; (ii) validate its structure against constraints derived from formal
invariant; and (iii) calculate, from formally verified generated code, the failure probability
of the Fault Tree top event.

We investigated the soundness of our translation rules by exercising the GUI checking

whether the invariants and preconditions that hold in the FT formal specification, also
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hold in the GUI created from its metamodel. With respect to completeness, our rules are
complete with respect to the Perfect language subset we used here. But we need to prove

that as well.

7.1 Related works

The work (Gargantini ef al., 2009a) presents the benefits of integrating Formal Methods
(FM) with MDE software development and discusses how they can be used to (partially
or completely) overcome the disadvantages of each solution taken separately. It proposes
an approach, called in-the-loop, to integrate both worlds, showing its experience on
integrating Abstract State Machine (ASM) formal method, used to provide semantics,
with EMEF. In the in-the-loop the application of the MDE to the FM occurs before the
application of the FM to the MDE. From the first activity, the FM will be endowed
with a set of modeling artifacts which can be used in the second activity to automatize
(meta-)model transformations and apply suitable tools for formal analysis of models.
However, it is not provided automatic synthesized code from the formal semantics as
well as the metamodel is not obtained automatically from a formal specification.

In (Gargantini et al., 2009c), which is already an evolution of the work reported in
(Gargantini et al., 2009a), a formal semantic framework is introduced for the definition of
the semantics (possibly executable) of metamodel-based languages. Using metamodelling
principles, several techniques are proposed to show how the ASM formal method can be
integrated with current metamodel engineering environments to endow metamodel-based
languages with precise and executable semantics. The use of to semantic framework
is exemplified by applying the proposed techniques to the OMG metamodelling frame-
work for the behavior specification of the Finite State Machines provided in terms of a
metamodel.

Instead of as (Gargantini et al., 2009¢) proposes to provide semantics to a metamodel-
based language, e.g. using ASM formal method, in a metamodeling environment, our
work proposes a different way: the dynamic semantics is provided by any formal method
that satisfy our requirements defined in Chapter 3 (PL is used in this work but it could be
any other). This dynamic semantics is bound to a metamodel expressed in a metamodel-
based language (in this work we uses EMFatic but could be another) by means of a set of
transformation rules. In fact, these rules were responsible for generating the metamodel.

The work (Jiang and Wang, 2012) proposes a formal representation of the structural

semantics of Domain-specific metamodeling language (DSMML). It works on structural
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semantics due to (i) its importance and (ii) research on it is not so extensive and deep
as behavioral semantic. The structural semantics of DSMML describes static semantic
constraints between metamodeling elements, focusing on the static structural properties.
It is argued that there are much typical work on formalization of modeling language. That
is, (semi-)informal language formalised and verified using some formal methods. But,
without considering formalization of metamodeling language and automatic translation
from metamodels to the corresponding formal semantic domain. In contrast, our work
does not focus on formalizing metamodeling languages, but we guarantee that our
metamodels, generated automatically from DSLs formal specifications, conforms to its
properties formally verified.

The work (Moller et al., 2008) presents how CSP-OZ can be integrated with UML and
Java in the design of distributed reactive system. The advantages of such an integration
lies in the rigor of the formal method and in checking adherence of implementations
to models. The integration starts by generating a significant part of the CSP-OZ from
the UML model. From this specification, properties can be verified. This CSP-OZ
specification is also the basis for generating JML contracts (complemented by CSP j;g44)
for the final implementation. Tools for runtime checking are used to supervise the
adherence of the final Java implementation to the generated contracts. Large parts of the
integration approach are automated. However, as the development of tools that support
the approach were not the focus, they are only prototypes. In contrast to our work that
aims to use existing tools and develop new tools to support our proposed methodology as
automatic as possible.

The work reported in (Di Ruscio et al., 2006) presents, a practical and generic
solution to define the precise dynamic semantics of DSLs by means of an experiment
where Abstract State Machines (ASMs) are used to give the dynamic semantics of Session
Programming Language (SPL). SPL is a DSL defined for the development of telephony
services over the Session Initiation Protocol (SIP). This experiment is performed in the
context of a MDE framework called AMMA (Atlas Model Management Architecture).
However, unlike our proposed methodology, in this work, there is no focus on formal

proofs of properties over the dynamic semantics of a DSL.
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7.2 Future Work

As future work we intend to prove the soundness and completeness of the translation
rules defined in this work. Another goal is to instantiate our methodology by using
different formal methods and MDE approaches and tools. For each instantiation of the
methodology, we intend to apply it to build several GUI-Based formal tools for different
DSLs. We also wish to test the consistency between front-end and back-end creating and
manipulating test-models (instances of a DSL) in this tool.

A controlled experiment to check whether our proposal is much productive than dedi-
cated software engineers creating a corresponding tool and applying a testing campaign
to attest the tool’s correctness.

We also intend to apply our proposed methodology in real case studies of our industrial
partners. We also intend to investigate how our methodology behaves on developing tools
for textual DSLs.
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Fault Tree Formal Specification

A.1 Specification in Perfect Language

deferred class Component "=
abstract

var id : string;

var desc : string;
interface
operator = (arg);

function id, desc;

build{!id: string}

post desc! = "";

build{!id: string, !desc: string};

end;

deferred class Gate "= inherits Component

interface
build{idEv: string}

inherits Component{idEv};

build{idEv: string, descc: string}
inherits Component{idEv, descc};

end;

class ANDGate "= inherits Gate
interface
build{idEv: string}

inherits Gate{idEv};

build{idEv: string, descc: string}
inherits Gate{idEv, descc};

end;

class ORGate "= inherits Gate
interface
build{idEv: string}
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inherits Gate{idEv};

build{idEv: string, descc: string}
inherits Gate{idEv, descc};

end;

class BasicEvent 7= inherits Component
abstract
//Euler’s Number
const E : real "= 2.718281828;
//failure rate

var lambda : real;

invariant lambda > 0.0;

interface

function lambda;

function probf (t:real):real
pre t >=0.0
~= (1 - E"(-(lambdaxt)))

assert result >= 0.0;

build{idEv: string, 1lb: real}
pre 1b > 0.0

inherits Component{idEv}
post lambda! = 1lb;

build{idEv: string, descc: string, lb: real}
pre 1b > 0.0

inherits Component{idEv, descc}
post lambda! = 1lb;

end;

class FTEdge "=
abstract
var src: from Component;
var tgt: from Gate;
interface
function src, tgt;
build{!src: from Component,
'tgt: from Gate};

end;

class FT "=

abstract

var ftnodes: set of from Component, ftedges: set of FTEdge;

invariant

forall nl::ftnodes :-

~(exists n2::ftnodes.remove(nl) :- nl.id = n2.id),
# (those n::ftnodes :- n.id = "TOP_EVENT") <= 1,
forall g::ftnodes :- g.id = "TOP_EVENT" ==> (g within from Gate),
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A.1. SPECIFICATION IN PERFECT LANGUAGE

forall e::ftedges :- (exists n::ftnodes :- n.id = e.src.id),
forall e::ftedges :- (exists n::ftnodes :- n.id = e.tgt.id),
~(exists e::ftedges :- e.src.id = e.tgt.id),
forall f::ftedges :-

~(exists e::ftedges.remove (f) :- f.src.id = e.src.id );

//more invariants can be added here
interface

ghost operator =(arg);

function checkFTNode (n: from Component): bool

"= exists c::ftnodes :- c.id = n.id;

function srcCompNotUsed (e: FTEdge): bool

~

= ~(exists f::ftedges :- f.src.id = e.src.id);

function existsTOPEventId:bool

~= exists c::ftnodes :- c.id = "TOP_EVENT";

schema !addFTINode (n: from Component)

pre
//the new node is not known
~checkFTNode (n),
//there must exists only one node called
//"TOP_EVENT" and it must be a gate
(n.id = "TOP_EVENT" ==> ~existsTOPEventId &
(n within from Gate))

post
//add the new node in the set of ftnodes
(ftnodes! = ftnodes.append(n));

schema !'addFTEdge (e: FTEdge)

pre
//the elements of the edge must be known
checkFTNode (e.src), checkFTNode (e.tgt),
//no cicle to itself
e.src.id ~= e.tgt.id,
//components cannot be shared
srcCompNotUsed (e)

post
(ftedges! = ftedges.append(e));

function getFTFailProb (t:real) :real
pre t >= 0.0
~= ( let topevs "= those n::ftnodes :- n.id = "TOP_EVENT";
([#topevs = 1] : compute (that topevs, t, #ftnodes),
[1: =1.0)//indicates that there is top event
)i

function compute(n: from Component, t:real, h: int) : real
pre t >= 0.0

decrease h

satisfy result >= 0.0

via
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let childs "= (for those e::ftedges :-

e.tgt.id = n.id yield e.src) .opermndec;

if
[n within ANDGate]:
var tot: real != 1.0;
loop
var j: nat != 0;

change tot

keep tot’ >= 0.0 & j’ >= 0

until j’ = #childs

decrease #childs - J’;
tot! % compute(childs[j], t, h-1);
J141;

end;

value tot;

[n within ORGate]:

var tot: real != 0.0;
loop
var j: nat != 0;

change tot
keep tot’ >= 0.0 & j’' >= 0

until j’ = #childs

decrease #childs - J';
tot! + compute(childs[j], t, h-1);
Jl+1;

end;

value tot;

[n within BasicEvent]:

value (n is BasicEvent) .probf (t);

[l1:value 0.0; //unreachable

fi;

end;

schema !clearAll

post
ftnodes! = set of from Component{},
ftedges! = set of FTEdge{};
build{}
post
ftnodes! = set of from Component{},
ftedges! = set of FTEdge{};

end;

class FTResultCode "=

enum
NODE_ADDED,
NODE_ALREADY_EXISTS,
TOP_EVENT_ALREADY_EXISTS,
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TOP_EVENT_MUST_BE_GATE,
SRC_NODE_DOES_NOT_EXISTS,
TGT_NODE_DOES_NOT_EXISTS,
EDGE_SRC_EQUALS_TO_TGT,
EDGE_ALREADY_EXISTS,
EDGE_TGT_IS_NOT_A_GATE,
EDGE_ADDED

end;
class FIWrapper "=
abstract

var ft: FT;

interface

ghost operator =(arg);

build{}
post ft! = FT{};

schema !clearAll
post ft!clearAll;

schema !addFTComp (c: from Component, rslt!: out FTResultCode)

post (

//node already in FT so don’t try to add it
[ft.checkFTNode (c)]: rslt! = FTResultCode NODE_ALREADY_EXISTS,
//an event identified as top event has already been added
[c.id = "TOP_EVENT" & ft.existsTOPEventId]:

rslt! = FTResultCode TOP_EVENT_ALREADY_EXISTS,
//the top event must be a gate. it can not be a basic event
[c.id = "TOP_EVENT" & ~(c within from Gate)]:

rslt! = FTResultCode TOP_EVENT_MUST_BE_GATE,

//otherwise, the node is added successfuly

[]: ft!'addFTNode (c) & rslt! = FTResultCode NODE_ADDED
)i

schema !addFTEdge (e: FTEdge, rslt!: out FTResultCode)

post (
[~ft.checkFTNode (e.src)]: rslt! = FTResultCode SRC_NODE_DOES_NOT_EXISTS,
[~ft.checkFTNode (e.tgt)]: rslt! = FTResultCode TGT_NODE_DOES_NOT_EXISTS,
[e.src.id = e.tgt.id]: rslt! = FTResultCode EDGE_SRC_EQUALS_TO_TGT,
[~ft.srcCompNotUsed(e)]: rslt! = FTResultCode EDGE_ALREADY_EXISTS,
[1: ft!addFTEdge(e) & rslt! = FTResultCode EDGE_ADDED

) i

function getFTFailProb(t:real) :real
pre t > 0.0
"= ft.getFTFailProb (t);

end;
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A.2. BACK-END GENERATION PARAMETERS

™ Project settings (Lib Conf)

K
Error reporting Verification | Code generation | Build Miscellaneous

Target platform

Target compiler: Target language: Character set:
IsOstand © Java -
Output layout Additional settings:
Chars per indent: Max line length: Namespace or package name:
100 backendftree

@® Newline before brace No newline before brace
Extra reserved words Output directory
‘You can enter a path or use the Browse button

/home/robson/FTPD/src/backendftre¢ = Browse...
Add Remove

@ sSpecified directory Source file directory

Runtime checks

Choose one of the defaults and modify with the custSCEEEGEe LWL EX(RE N1

O None @ some O All Error reporting | Verification Code generation Bligd Miscellaneous

Pre-build command
Do pre-build step @ Don't perform pre-build step

You can enter a command or browse to a file

Post-build command

ok | | ca @ Do post-build step Don't perform post-build step

You can enter a command or browse to a file

./postbuildjava.sh FTAccess PerfectRuntime.jar Browse...

A.2 Back-end generation parameters

In Figure A.2 we show the parameters needed to be setted in Perfect Developer v5.0 to

instruct it to generate the the back-end in Java Language as a .jar library.
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Fault Tree Metamodel and Constraints

B.1 Metamodel

@namespace (uri="ftree", prefix="ftree")

package ftree;

@gmf.diagram(rcp = "true")
class FT {
val Component [x] ftnodes;
val FTEdge[*] ftedges;

@gmf.link (source="src", target="tgt", target.decoration="arrow")
class FTEdge {

ref Component src;

ref Gate tgt;

abstract class Component {
attr String idc;

attr String desc;

@gmf.node (label = "desc",
figure = "ellipse")
class BasicEvent extends Component {
attr double lamba;
}

abstract class Gate extends Component {

}

@gmf.node (label = "desc",
figure="figures.ANDGateFigure",
label.icon="false",
size="15,15")

class ANDGate extends Gate {

}
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@gmf.node (label = "desc",
figure="figures.ORGateFigure",
label.icon="false",
size="15,15")

class ORGate extends Gate {

}

B.2 Constraints

context FT {

constraint invl {

check: self.ftnodes.forAll (nl |

not self.ftnodes.excluding(nl).exists(n2 | nl.idc = n2.idc))

message {

var msg = "#invl violated: The identifiers of the components must be unique\n";
System.user.inform(msg) ;

return msg;

}

}

constraint inv2 {
check: self.ftnodes.select(n | n.idc = "TOP_EVENT").size() <=1
message {
var msg = "#inv2 violated: Must exists at most one Top Event\n";
System.user.inform(msg);
return msg;
}
}

constraint inv3 {

check : self.ftnodes.forAll(g | g.idc = "TOP_EVENT" implies g.isKindOf (Gate))
message {

var msg = "#inv3 violated: The Top Event must be a gate\n";
System.user.inform(msg) ;

return msg;

}

}

constraint inv4d {

check : self.ftedges.forAll(e | self.ftnodes.exists(n | n.idc = e.src.idc))
message {

var msg = "#inv4 violated: The source is must be a known node\n";
System.user.inform(msg) ;

return msg;

}

}

constraint inv5 {
check : self.ftedges.forAll(e | self.ftnodes.exists(n | n.idc = e.tgt.idc))
message {

var msg = "#inv5 violated: The target is must be a known node\n";
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System.user.inform(msg) ;
return msg;

}

}

constraint inv7 {

check : not self.ftedges.exists(e | e.src.idc = e.tgt.idc)

message {

var msg = "#inv2 violated: Source and target of an edge must be different\n";
System.user.inform(msg) ;

return msg;

}

}

constraint inv8 {

check: self.ftedges.forAll (f |

not self.ftedges.excluding(f).exists(e | f.src.idc = e.src.idc))

message {

var msg = "#inv4 violated: Source component must have only one target component\n";
System.user.inform(msg) ;

return msg;

}

}
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Fault Tree Link

C.1 Wizard for calculanting FT Failure Probability

wizard CalculateTEFP ({
guard : self.isKindOf (FT)
title : "Calculate Top Event Failure Probability"
do {
var adapter = new Native ("br.ufpe.cin.ftree.link.AdapterFT");
for (n in self.ftnodes) {
if (n.isKindOf (ORGate))
adapter.addORGate (n.idc, n.desc);
else
if (n.isKindOf (ANDGate))
adapter.addANDGate (n.idc, n.desc);
else
if (n.isKindOf (BasicEvent))
adapter.addBasicEvent (n.idc, n.desc, n.lamba);

for (e in self.ftedges)

adapter.addFTEdge (e.src.idc, e.tgt.idc);

var t = System.user.promptReal ("Calculate Top Event Failure Probability\n"+
"Please enter the parameter t (time)");

var r = adapter.getFTFailProb(t);

System.user.inform("F (t =" + t + " ): " + r);

}

C.2 AdapterFT.java

This adapter is ....

package br.ufpe.cin.ftree.link;
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C.2. ADAPTERFT.JAVA

import java.util.HashMap;

import java.util.Map;

import Ertsys._eSystem;

import backendftree.ANDGate;
import backendftree.BasicEvent;
import backendftree.Component;
import backendftree.FTEdge;
import backendftree.FTResultCode;
import backendftree.FTWrapper;
import backendftree.Gate;

import backendftree.ORGate;

public class AdapterFT {
FTWrapper backend;
Map<String, Component> cMap;

public AdapterFT() {
backend = new FTWrapper();
cMap = new HashMap<String, Component>();

}

public void addFTComp (Component c) {
FTResultCode rslt = new FTResultCode();
backend.addFTComp (c, rslt);

//check status report of the back-end: rslt.
}

public void addFTEdge (String idSrc, String idTgt) {
FTResultCode rslt = new FTResultCode();

FTEdge e = new FTEdge (cMap.get (idSrc), (Gate)cMap.get (idTgt));
backend.addFTEdge (e, rslt);

}

public double getFTFailProb (double t) {
double r = backend.getFTFailProb (t);
backend.clearAll();

cMap.clear();

return r;

}

public void addBasicEvent (String id, String desc, double lambda) {

Component ¢ = new BasicEvent (_eSystem._1String(id), (char) O,
_eSystem._1String(desc), (char) 0, lambda);

addFTComp (c) ;

cMap.put (id, c);

}

public void addANDGate (String id, String desc) {

Component ¢ = new ANDGate (_eSystem._1String(id), (char) O,
_eSystem._1String(desc), (char) 0);

addFTComp (c) ;

cMap.put (id, c);
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public void addORGate (String id, String desc)

Component ¢ = new ORGate (_eSystem._1String(id),
_eSystem._1String(desc), 0);
addFTComp (c) ;
cMap.put (id,
}

}

(char)

c);

{

(char)

0,
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