| [~=g
e~
e~

)|

Z)ﬂ

VIRTUS IMPAVIDA
v vy

Universidade Federal de Pernambuco
Centro de Informatica

Pds-graduacao em Ciéncia da Computacao

CONTRACT MODULARITY IN DESIGN BY
CONTRACT LANGUAGES

Henrique Emanuel Mostaert Rebélo

TESE DE DOUTORADO

Recife
Marco de 2014

Universidade Federal de Pernambuco
Centro de Informatica

Henrique Emanuel Mostaert Rebélo

CONTRACT MODULARITY IN DESIGN BY CONTRACT
LANGUAGES

Trabalho apresentado ao Programa de Pos-graduacdo em
Ciéncia da Computacao do Centro de Informatica da Uni-
versidade Federal de Pernambuco como requisito parcial
para obtencdo do grau de Doutor em Ciéncia da Com-

putacao.

Orientador: Ricardo Massa Ferreira Lima

Co-orientador: Gary T. Leavens

Recife
Marco de 2014

Catalogacao na fonte
Bibliotecaria Joana D’Arc Ledo Salvador, CRB 4-572

Rebélo, Henrique Emanuel Mostaert.

Contract modularity in design by contract
languages../ Henrique Emanuel Mostaert Rebélo. —
Recife: O Autor, 2014.

135 f.: fig., tab.

Orientador: Ricardo Massa Ferreira Lima.
Tese (Doutorado) - Universidade Federal de
Pernambuco. Cin. Ciéncia da Computagao , 2014.

Inclui referéncias e apéndices.

1. Engenharia de software. 2. Software - refatoracgéo.
3. Software - reutilizagdo. |. Lima, Ricardo Massa
Ferreira. (orientador). Il. Titulo.

005.1 (22. ed.) MEI 2014-79

Tese de Doutorado apresentada por Henrique Emanuel Mostaert Rebéo a Pos
Graduacdo em Ciéncia da Computacdo do Centro de Informética da Universidade
Federa de Pernambuco, sob o titulo “Contract Modularity in Design By Contract
Languages’ orientada pelo Prof. Ricardo Massa Ferreira Lima e aprovada pela

Banca Examinadora formada pel os professores:

Prof. Augusto Cézar Alves Sampaio
Centro de Informética/ UFPE

Prof. André Luis de Medeiros Santos
Centro de Informatica/ UFPE

Prof. Sérgio Castelo Branco Soares
Centro de Informética/ UFPE

Prof. Rohit Gheyi
Departamento de Sistemas e Computacdo / UFCG

Prof. Francisco Heron de Carvalho Junior
Departamento de Computagdo / UFC

Visto e permitida a impressdo.
Recife, 11 de margo de 2014.

Profa. Edna Natividade da Silva Barros
Coordenadora da Pés-Graduagéo em Ciéncia da Computago do
Centro de Informética da Universidade Federal de Pernambuco.

Aos meus pais e avos.

Acknowledgments

I wish to thank my supervisor, Professor Ricardo Massa, for his great guidance, careful
supervision, encouragement, friendship, and supporting me since undergraduate.

I wish to thank Professor Gary T. Leavens for his co-supervision, encouragement,
discussions, and refined perception. Most of this work was inspired by his principles and
ideas. In fact, he worked as a supervisor. Also, I am grateful to him for hosting me in
his home during several visits I made at UCF during my PhD.

I gratefully acknowledge the Professors of the committee, Prof. Augusto Sampaio,
Prof. Rohit Gheyi, Prof. Heron Carvalho, Prof. André Santos, and Prof. Fernando
Castor, for making important suggestions on how to improve this thesis.

Special thanks to Professor Paulo Borba for listening and making comments, sug-
gestions that helped me to conduct the work described in this thesis.

I am grateful to Shuvendu K. Lahiri who provided me the wonderful experience to
conduct a work at Microsoft Research during some months. Among other things, he
contributed a lot to this thesis with fruitful discussions. Thanks for spending some time
playing ping-pong with me. It was so hard to win a game against him.

Rustan Leino, Tom Ball, Mike Barnett, Thomas Zimmerman, and Manuel Fahndrich,
also from Microsoft Research, deserve my gratitude for listening and discussing several
aspects of design by contract languages.

I am deeply grateful to Professor Mira Mezini and Professor Alessandro Garcia for
the discussions and ideas both gave me during AOSD 2011. Those ideas were very
crucial to what is discussed and presented in this thesis.

I wish to thank Professor Hridesh Rajan, Mehdi Bagherzadeh, Thomas Thiim for
helpful discussion about modularity, aspect-oriented programming, and modular rea-
soning.

Special thanks to Professor Ana Lucia Cavalcanti and Professor Marcel Oliveira for
several discussions we had about the design of AspectJML and for using it in their
undergraduate and graduate courses. Most of the crucial bugs and some options of the
AspectJML compiler, ajmlc, were improved due their feedback. The use of AspectJML
in practice is stable thanks for their help.

I wish to thank Professor Rohit Gheyi and Gustavo Soares to run their SafeRefactor
tool in some of the refactored systems, with AspectJML, we use in this work.

Thanks to Professors Paulo Borba, Shuvendu K. Lahiri, Chris Hawblitzel, Hridesh
Rajan, Yuanfang Cai, Roberta Coelho, Uird Kulesza, Claudio Sant’Anna, Alexandre
Mota, Marieke, Huisman, Marcio Cornélio, Fernando Castor, and others that I had the
good fortune to collaborate with during my PhD.

Special thanks to my grandfather Walter Mostaert, my mother Elizabeth Mostaert,
and my grandmother Tereza Mostaert. They supported me in all the ways they could
and [needed.

I am deeply grateful to my girlfriend Natalia Prado for her encouragement, patience,
and love during this work. Thanks for being part of all of this. I promise to dedicate
more time to you hereafter. Also, my mother-in-law Socorro Prado and father-in-law
Josoé Matias both played important role to make me relax at some crucial moments in
this PhD journey.

I wish to thank my friends that I made during the PhD process: Marcio Ribeiro,
Leopoldo Teixeira, Rodrigo Andrade, Lais Neves, Paola Accioly, Rodrigo Bonifacio, and

Alberto Costa Neto. Also, thanks to César Lins my friend since the time of the master
program at UPE.

I am very glad for studying at Centro de Informatica da Universidade Federal de
Pernambuco (CIn/UFPE), an excellence in post-graduation in Brazil. Special Thanks
for all the UFPE technical staff, specially, Indcia, Socorro, Lilia, and Leila.

The work described in this dissertation was financially supported by FACEPE (Brazil-
ian Agency for Postgraduate Education).

Resumo

Design by Contract (DbC) é uma técnica popular para desenvolvimento de programas
usando especificacoes comportamentais. Neste contexto, pesquisadores descobriram que
a implementao de DbC é crosscutting e, portanto, sua implementacao é melhor modu-
larizada por meio da Programagcao Orientada a Aspectos (POA) porém, os mecanismos
de POA para dar suporte a modularide de contratos, de fato comprometem sua mod-
ularidade e entendidmento. Por exemplo, na linguagem POA AspectJ, o raciocinio da
corretude de uma chamada de método requer uma analise global do programa para
determinar quais advice aplicam e sobretudo o que esses advice fazem em relagao a im-
plementacao e checagem DbC. Além disso, quando os contratos so separados das classes
o programador corre o risco de quebrar-los inadvertidamente.

Diferentemente de uma linguagem POA como AspectJ, uma linguagem DbC preserva
as principais caractersticas DbC como raciocnio modular e documentacao. No entanto,
pré- e pos-condicoes recorrentes continuam espalhadas por todo o sistema. Infelizmente
esse nao o unico problema relacionado com modularidade que temos em linguagens
DbC existentes, o seu com respectivos verificadores dinamicos so inconsistentes com as
regras de information hiding devido a naturaze overly-dynamic na qual os contratos
sao checados no lado servidor. Este problema implica que durante a reportagem de
erros, detalhes de implementacao so expostos para clientes no privilegiados. Portanto,
se os programadores cuidadosamente escolherem as partes que devem ser escondidas
dos clientes, durante a checagem dinamica de contratos, as mudanas nessas partes nao
deveriam afetar nem os clientes dos médulos nem a reportagem de erros de contratos.

Neste trabalho nds resolvemos esses problemas com AspectJML, uma nova liguagem
de especificagdo que suporta contratos crosscutting para cédigo Java. Além disso, nds
demonstramos como AspectJML usa as principais caractersticas de uma linguagem DbC
como raciocinio modular e documentagao dos contratos. Mais ainda, ndés mostramos
como AspectJML combinado com nossa técnica chamada de client-aware checking per-
mite uma checagem dinamica de contratos que respeitem os principios de information
hiding em especificagoes. Neste trabalho usamos JML para fins concretos, mas nossa
solucao pode ser utilizadas para outras linguagems Java-likee suas respectivas linguagens
DbC.

Para concluir, nés conduzimos uma avaliacao da nossa modularizacao dos contratos
crosscutting usando AspectJML, onde observamos que seu uso reduz o esforo de escr-
ever pré- e pos-condies, porém com um pequeno overhead em tempo de compilacao e
instrumentacao de codigo para checagem de contratos.

Palavras-Chave: Design by contract, aspect-oriented programming, crosscutting con-
tracts, JML, AspectJ, AspectJML

Abstract

Design by Contract (DbC) is a popular technique for developing programs using behav-
ioral specifications. In this context, researchers have found that the realization of DbC
is crosscutting and fares better when modularized by Aspect-Oriented Programming.
However, previous efforts aimed at supporting crosscutting contracts modularly actu-
ally compromised the main DbC principles. For example, in Aspect]-style, reasoning
about the correctness of a method call may require a whole-program analysis to deter-
mine which advice applies and what that advice does relative to DbC implementation
and checking. Also, when contracts are separated from classes a programmer may not
know about them and may break them inadvertently.

Unlike an AspectJ-like language, a DbC language keeps the main DbC principles such
as modular reasoning and documentation. However, a recurrent pre- or postcondition
specification remains scattered across several methods in many types. Unfortunately,
this is not the only modularity problem we have with existing DbC languages. Such
languages along with their respective runtime assertion checkers are inconsistent with
information hiding rules because they check specifications in an overly-dynamic manner
on the supplier side. This implies that during error reporting, hidden implementation
details are exposed to non-privileged clients. Such details should not be used in a
client’s correctness proof, since otherwise the proof would be invalidated when they
change. Therefore, if programmers have carefully chosen to hide those parts “most
likely” to change, most changes, in the hidden implementation details, do not affect
either module clients nor DbC error reporting.

In this work we solve these problems with AspectJML, a new specification language
that supports crosscutting contracts for Java code. We also show how AspectJML sup-
ports the main DbC principles of modular reasoning and contracts as documentation.
Additionally, we explain how AspectJML combined with our client-aware checking tech-
nique allows runtime checking to use the privacy information in specifications, which
promotes information hiding. We use JML for concreteness, but the solution we propose
can also be used for other Java-like languages and their respective DbC languages.

To conclude, we conduct an evaluation to assess the crosscutting contract modular-
ization using AspectJML, where we observe that its use reduces the overall design by
contract code, including pre- and postconditions, but introduces a small overhead dur-
ing compile time and can increase the resulting bytecode due to code instrumentation
to check ordinary and crosscutting contracts.

Keywords: Design by contract, aspect-oriented programming, crosscutting contracts,
JML, AspectJ, AspectJML

List of Figures

2.1

2.2
2.3

24
2.5

2.6
2.7

3.1
3.2

4.1

4.2

4.3

4.4

4.5

4.6

5.1

The Java implementation of the package classes with courier package

delivery [MMMO2]. 18
An overview of the JML environment. 20
An example of the application of the template Desugaring 1 for method

SEtSIZEe. e e e e 31
The JML pre- and postconditions for Package class of Figure 2.1. 49
Ordering the execution of advice and join points. The darker areas rep-

resent the higher-precedence [Lad03]. 58
The mapping between the traditional and @AspectJ syntax [Lad09]. . . . 61
The AspectJ implementation for the JML crosscutting contracts pre-

sented in Figure 2.4.o o 62
The tracing crosscutting concern implementation in AspectJ. 65

Crosscutting contracts in Package’s specifications (see Figure 2.4). Sce-
nario (1) illustrates the crosscutting preconditions, (2) illustrates the
crosscutting normal postconditions, and (3) the crosscutting exceptional
postconditions. L. 66

The crosscutting contract specifications with AspectJML used so far for
the type Package related to the crosscutting scenarios illustrated in Fig-

Ure 3.2. e e 86
setSize’s client code. 87
Generated before advice to check the crosscutting preconditions of Package

in Figure 4.1. 92
Generated before advice to check the protected preconditions of the method
setWeight in type Package. 92
The crosscutting contract structure in the Package class using AspectJM-
L/AJDT [KMO5]. . . . o o oo 94
An example of a malformed pointcut declaration in AspectJML. 96

Health Watcher’s Design including design by contract concern. 98

List of Tables

2.1
2.2

3.1

5.1
5.2
2.3
5.4

Examples of method signatures that can be used in pointcut designators. 51

Examples of other useful AspectJ pointcut designators. 52
Summary of the analysis of modularity for DbC and AOP. 70
GQM . o o o 100
LOC, DbCLOC, NOPre, NOPo, NOO, and VS metric results for all systems.101
ISC, IBC, and CT metric results for all systems. 103
CT metric results for dbviz, Rhino, and iBATIS systems. 103

Contents

1 Introduction

2

1.1 Problem Overview e
1.2 Solution
1.3 Organization L
Background
2.1 Definitions
2.1.1 Modular Reasoning L
2.1.2 Crosscutting Structure
2.2 A Running Example
2.3 Design by Contract L
2.3.1 Design by Contract with JML and AspectJ
24 An Overview of JML
2.4.1 Behavioral Interface Specification
2.4.2 Annotations
2.4.3 Assertions and Expressions
244 Nullis not thedefault
2.4.5 Method Specifications
2.4.6 Method Specification Cases
2.4.7 Type Specificationso
2.4.8 Specification Inheritance
2.4.9 Privacy Modifiers and Visibility in Specifications
2.4.10 Modularity notes in JML when applying Design By Contract . . .
2.4.11 Tool Support
2.4.12 Exported JML example 0L
2.5 An Overview of AspectJ o
2.5.1 The Anatomy of an aspect
2.5.2 The Join Point Model
2.5.3 Pointcut Designators oL
2.5.4 Advice e
2.5.5 Accessing Join Point Context via Reflection
2.5.6 Static Crosscutting oo
2.5.7 Privileged aspectso
2.5.8 @Aspectd . ..
2.5.9 Exported AspectJ example L.
2.5.10 AspectJ Compilers/Weavers

41

2.6 Chapter Summary 62
Design by Contract and Modularity Problems 64
3.1 The Modular Reasoning Criterion 64
3.2 The Documentation Criterion 65
3.3 The Crosscutting Contract Specification Criterion 66
3.4 The Information Hiding and RAC Criterion 67
3.5 Chapter Summary 70
The AspectJML Language 71
4.1 OVerview o e e e 71
4.2 Design Decisions 00 71
4.2.1 AspectJML is DbC + Quantification 71
422 @Aspectd 72
4.2.3 AspectJML Supported Features 72
4.2.4 AspectJML Compatibility 72
4.3 XCSin Action. e 73
4.3.1 XCS Syntax 73
4.3.2 Specifying Crosscutting Preconditions 74
4.3.3 Specifying Crosscutting Postconditions 74
4.3.4 Multiple Specifications Per Pointcut 75
4.3.5 Pointcut Expressions Without Type Signature Patterns 75
4.3.6 Reusing Pointcuts o000 76
4.3.7 Specification of Unrelated Types. 76
4.3.8 Separate Files for Crosscutting Contracts 80
4.3.9 XCS and Multiple Specification Cases 80
4.3.10 More XCS Examples oL 82
4.3.11 Exported AspectJML/XCS Examples 85
4.4 AspectJML’s Benefits 85
4.5 Enforcing Information Hiding in AspectJML with Client-Aware Checking 88
4.6 Implementation Lo L 91
4.6.1 Compilation strategy oL 91
4.6.2 Contract violation example in AspectJML 94
4.7 Tool Support 94
4.8 Chapter Summary 96
Evaluation 97
5.1 Target Systems 97
5.2 Study Phases 97
5.3 Quantitative analysis L Lo 99
5.3.1 System size resultso 99
5.3.2 Compilation System results, 100
5.3.3 What about Scattering and Tangling metrics? 102
5.4 Representative Crosscutting Scenarios 104
5.4.1 Understanding the Crosscutting Contract Structure 104
5.4.2 Modularizing Crosscutting Contracts in HW 106

5.4.3 Reasoning About Change 107

5.4.4 More Crosscutting Scenarios and their Modularization 107

5.4.5 Study Constraints e 110
5.5 Chapter Summary 111
Related Work 112
6.1 FEmpirical Evidence About Crosscutting Contracts 112
6.2 Crosscutting Contract Modularization 113
6.3 Crosscutting Modularity and Modular Reasoning with Design Rule Lan-

BUAZES « v v e e e e e e e e e e e e e e e e 115
6.4 Design by Contract Languages and Generative Programming 116
6.5 Design by Contract Languages and Information Hiding 117
6.6 Design by Contract Languages and Client-Side Checking 118
Conclusions 119
7.1 Review of the Contributions, 120
7.2 Future Work 120
AspectJML Grammar Summary 133
A.1 JML-based Reserved Words 133
A2 @AspectJ-based Reserved Words 133
A.3 Method Specfication 133
A4 Type Specfication 134
A.5 Predicates and Specification Expressions 134

A.6 Pointcut Expressionso 134

Chapter 1

Introduction

Software engineering provides a set of techniques and tools to reduce software costs
and improve software correctness [Som01]. Unfortunately, producing error free software
artifacts is still a difficult challenge. Problems caused by such defects can vary from
simple daily annoyances to the more significant losses of money or even lives. Hence,
after software delivery, a great deal of effort is required to fix problems (bugs). This task
is know as corrective maintenance [Som01]. According to Meyer [Mey00], maintenance
is estimated as 70% of a software cost as a whole.

Design by Contract (DbC), originally conceived by Meyer [Mey92al, is a useful
technique for developing and improving functional software correctness. It can sig-
nificantly contribute to reduce the corrective maintenance effort. The key mechanism
in DbC is the use of behavioral specifications called “contracts”. Checking these con-
tracts against the actual code at runtime has a long tradition in the research commu-
nity [Mey92b, CR06, Ros95, LBR06, FBL10, TSK*12, RSL*08, BLS03, LTBJO06].

The contracts usually define pre- and postconditions that should be satisfied be-
fore and after executing a given piece of code. For instance, a client class must satisfy
the preconditions defined in the supplier (declaring) class before invoking its exported
routines [Mey92a, Mey92b]. Likewise, the supplier class must satisfy the postcondi-
tions, which constitute the supplier class’s obligations. However, the runtime checking
mechanism reports an error whenever the client class or the supplier class violates the
contract. This idea of checking contracts at runtime was popularized by Eiffel [Mey92b]
in the beginning of 1990s. In addition to Eiffel, other DbC languages include the Java
Modeling Language (JML) [LBRO06], Spec# [BLS05], Code Contracts [FBL10], among
others.

1.1 Problem Overview

Although contracts can be seen as an important mechanism to specify and document
software artifacts, it is claimed in the literature [KHH*01, LL00, LLH02, SL04, MMvDO5,
BDL05, LKR05, F*06, RLL11, RLK"13] that the contracts of a system are de-facto a
crosscutting concern and fare better when modularized with aspect-oriented program-
ming [KLM"97] (AOP) mechanisms such as pointcuts and advice [KHH01]. The idea
has also been patented [LLHO02]. However, Balzer, Eugster, and Meyer’s study [BEMO5]
contradicts this intuition by concluding that the use of aspects hinders design by contract

13

specification and fails to achieve the main DbC principles such as documentation and
modular reasoning. Indeed, they go further to say that “no module in a system (e.g.,
class or aspect) can be oblivious of the presence of contracts” [BEMO05, Section 6.3].
According to them, contracts should appear in the modules themselves and separating
such contracts as aspects contradicts this view [Mey92al.

However, plain DbC languages like Eiffel [Mey92b] or JML [LBRO6] also have prob-
lems when dealing with crosscutting contracts. Although mechanisms such as invariant
declarations help avoiding scattering of specifications, the basic pre- and postcondition
specification mechanisms do not prevent scattering of crosscutting contracts. For ex-
ample, there is no way in Eiffel or JML to write a single pre- and postcondition and
apply it to several methods of a particular type. Instead, such pre- and postconditions
are widely repeated and scattered specification fragments among those methods.

It is clear that we face a dilemma with respect to crosscutting contracts. If we use
an AOP language, like Aspect] [KHHT01], to modularize them, the result is a poor
contract documentation and compromised modular reasoning. If we go back to a design
by contract language such as JML, we face the scattered nature of recurrent contracts
that appear throughout the system. This dilemma leads us to the following research
question: Is it possible to have the best of both worlds? That is, can we achieve good
documentation and modular reasoning while also specifying crosscutting contracts in a
modular way?

Another modularity problem with existing DbC languages is related to Parnas [Par72]
information hiding. During runtime assertion checking, existing DbC languages expose
hidden implementation details in error reporting. The main problem is that such details
cannot be fully understood by all clients.

1.2 Solution

To cope with these modularity problems this work proposes AspectJML, a simple and
practical aspect-oriented extension to JML. It supports the specification of crosscutting
contracts for Java code in a modular way while keeping the benefits of a DbC language,
like documentation and modular reasoning. Moreover, runtime assertion checking in
AspectJML ensures that no implementation details are exposed to non-privileged clients
during error reporting. This maintains the benefits of information hiding. We build our
proposal in JML for concreteness, but the ideas we propose can also be applied to Eiffel,
Spec#, or Code Contracts.

To better evaluate our AspectJML language, we also conduct an empirical study
where we refactor existing target systems to modularize crosscutting contracts and com-
pare each one with its corresponding non-AspectJML version (i.e. JML version). Our
hypothesis is that, with AspectJML, programmers are able to modularize crosscutting
contracts while preserving the main DbC benefits such as documentation and modular
reasoning. Also, contract modularization with AspectJML leads to a reduced design by
contract lines of code in general (e.g., the number of preconditions). The results suggest
that our hypothesis might be true, but it also indicates that we can have a small over-
head while using AspectJML. This overhead is in terms of compilation time and code
instrumentation (e.g., bytecode size).

14

1.3 Organization
The remainder of this work is organized as follows:

e Chapter 2 gives some definitions and reviews essential concepts used by this work;

e Chapter 3 discusses the modularity problems we address in this thesis, with ex-
isting DbC and AOP languages when dealing with crosscutting contracts. In par-
ticular, we discuss modular reasoning, crosscutting modularity, and information
hiding about these languages;

e Chapter 4 presents our AspectJML specification language, that defines how to
specify crosscutting contracts in a modular way and how error reporting uses
information hiding properties in specifications to avoid exposing hidden imple-
mentation details to non-privileged clients;

e In Chapter 5, we evaluate the expressiveness of AspectJML in a empirical study.
We discuss and show the impact of crosscutting contract modularization using
AspectJML through a set of metrics. Also, we illustrate real scenarios, extracted
from the studied systems, on how the AspectJML features are used in practice.

e Chapter 6 discusses some related work;

e Chapter 7 presents our final considerations and future work.

15

Chapter 2

Background

In this chapter we introduce some essential concepts related to this work. Firstly,
we provide some definitions of important terms related to this work. Afterwards, we
introduce the running example that will be used throughout this work in Section 2.2.
Also, we discuss the main DbC features through the DbC language JML (Section 2.3),
and through the aspect-oriented language AspectJ (see Section 2.3). Both languages
are the focus of this work.

2.1 Definitions

2.1.1 Modular Reasoning

The criteria we use in this work for considering a modular design constraint (i.e., modular
contracts) is based on the ideas of Parnas [Par72|. That work argues that the modules
into which a system is decomposed should be chosen to provide benefits in three areas.
Parnas writes (p. 1054):

“The benefits expected of modular programming are: (1) managerial—development time
should be shortened because separate groups would work on each module with little need for
communication; (2) product flexibility— it should be possible to make drastic changes to
one module without a need to change others; (8) comprehensibility— it should be possible
to study the system one module at a time. The whole system can therefore be better
designed because it is better understood”.

In relation to these benefits, we begin by defining a notion of modular reasoning
corresponding to Parna’s third benefit.

Definition 2.1.1. Modular reasoning means being able to make decisions about a mod-
ule while looking only at the module’s own specifications, its own implementation, and
the interface specifications (or implementations) of modules that its own implementation
references. O

Not all decisions are amendable to modular reasoning. Sometimes, programmers
need extra steps using the modularity mechanisms. We define this extra steps as ex-
panded modular reasoning.

Definition 2.1.2. Expanded modular reasoning means also consulting the specifications
or implementations of referenced modules (i.e., supertypes). O

16

Based on these definitions, a language supports modular reasoning if the actions of
a module say M written in that language can be understood based solely on the code
contained in M along with the specifications (if any) of the modules referred to by M. On
the other hand, if a programmer, to reason about a module M, also needs to examine all
the modules in the system, we say that the programmer needs a non-modular reasoning
approach, which we can call as global reasoning.

Definition 2.1.3. Global reasoning means having to provide a whole-program reasoning
(all modules examination) in the system. O

2.1.2 Crosscutting Structure

For more than 30 years, the concept of modularity has been seen as a key enabler
for the development of large software systems. Such modularity can be achieved by
using a fundamental principle in software design, which is to separate concerns [Par72].
According to this principle, we should decompose a program in such a way that each
one of the resulting modules implements one concern.

In the history of programming languages and software engineering, several mecha-
nisms for modularization of concerns have been developed, such as procedures, modules,
and classes. These mechanisms enable one to use the form of a block structure or a hi-
erarchical structure as the primary modularization mechanism. In the middle to the
end of 1990s, however, emerged the problem of crosscutting concerns. Certain concerns
are said to be crosscutting when their separation using traditional mechanisms based
on block or hierarchical structure seems to be very difficult and challenging [KLM™97].

Definition 2.1.4. Crosscutting is a structural relationship between the representations
of two concerns. It is an alternative to hierarchical and block structure [ABKS13]. O

Classic programming languages suffer from a limitation that is referred to as the
tyranny of the dominant decomposition, which is the cause of crosscutting [TOHS99].
Considering hierarchical structure, a program can be decomposed in only one way (along
one dimension) at a time. This is called dominant decomposition. All concerns that do
not align with the dominant decomposition end up in scattered and tangled code.

Definition 2.1.5. Code scattering refers to a concern representation that is scattered
across representations of multiple other concerns [ABKS13]. O

Definition 2.1.6. Code tangling refers to the intermingled representation of several
concerns within a module [ABKS13]. O

2.2 A Running Example

This section introduces the example that will be used throughout the work.

Figure 2.1 illustrates a simple delivery service system, written in Java, which man-
ages package delivery within a city (destination) [MMMO02, pp.100-107]. The example in-
volves a simple set of package classes, including Package, GiftPackage, and DiscountedPackage.
Also the Courier class that is responsible for providing the delivery service implementa-
tion for the three kinds of packages mentioned.

17

public class Package {
double width, height, weight;

void setSize (double width, double height) {
this.width = width;
this. height = height;

void reSize(double width, double height) {

if ((this.width != width) && (this.height != height)){
this.width = width;
this. height = height;

}

}
boolean containsSize (double width, double height) {
if (this.width = width && this.height = height)

return true;
else return false;

}

double getSize (){ return this.width % this.height; }

void setWeight (double weight) { this.weight = weight; }
... // other methods

public class GiftPackage extends Package{
void setSize (double width, double height) {...}
void setWeight (double weight) {...}

}

public class DiscountedPackage extends Package{
void setSize (double width, double height) {...}
void setWeight (double weight) {...}

}

public class Courier {
void deliver (Package p, String destination) {...}

}

Figure 2.1: The Java implementation of the package classes with courier package deliv-
ery [MMMO02].

2.3 Design by Contract

In the in the late 1980’s, Bertrand Meyer applied the concept of pre- and postcon-
ditions to object-oriented programming and conceived the term Design by Contract
(DbC) [Mey92a, Mey00]. To this end, Meyer provided fully built-in support for DbC
in his Eiffel programming language [Mey92b|. The main goal was to define a method-
ology of software construction based on precisely defined contracts that can be checked
during runtime [Mey92a, Mey00]. Indeed, checking contracts against the actual code at
runtime has a long tradition in the research community [CR06, Ros95, LBR06, FBL10,
TSK*12, BLS03, LTBJO0G6].

A contract constrains the relationship between a supplier class and its clients. These
constraints are expressed by method preconditions, method postconditions and objec-
t/class invariants. According to Meyer [Mey92a, Mey00], they are defined as follows:

e a precondition is an assertion attached to a routine that must be guaranteed by
every client prior to calling the routine;

e a postcondition is an assertion attached to a routine that must be guaranteed

18

by the routine’s body on return from a call to the routine iff its precondition was
satisfied on entry.

e an object/class invariant is an assertion that must be both satisfied on creation
of every instance of a class and preserved by every exported routine of the class;
this ensures that the class invariant will hold by all instances of the class whenever
they are externally observable.

The benefits of adding contracts to source code include the following [Ver03]:
e more precise description of what the code should do;

e efficient discovery and correction of bugs;

e carly discovery of incorrect client usage of classes;

e reduced chance of introducing bugs as the application evolves;

e precise documentation that is always in accordance with application code.

In relation to drawbacks, one recurrent criticism is that some approaches are quite
abstract, require a completely new notation to learn or require heavily mathematical
notation to be used. Fortunately, DbC languages such as Eiffel [Mey92b], JML [LPCT08,
LBRO6], or Code Contracts [FBL10] overcome these limitations by using syntax based
on the specified programming language. For instance, JML’s syntax is similar to that
of Java, and its annotations are given in specially formatted comments. Based on that,
Leavens, Baker, and Ruby state that JML is easier to use than VDM or Larch. JML
was designed by Java developers having only modest mathematical training [LBR99].

2.3.1 Design by Contract with JML and AspectJ

There are numerous mechanisms to specify and check contracts during runtime, such as
assertions, executable specifications, pointcuts and advice. Assertions are those simple
statements that are placed in an inline fashion within code. Java supports assertion
statements. However, in Java, there is no other built-in and expressive way to write
contracts in a DbC style. In this context, the JML [LPCT08, LBR06] language was
conceived to deal with contracts as Eiffel does. Besides being used for documentation,
the JML specifications are executable. In other words, there is a compiler that translate
them to runtime checks useful to help ensuring software correctness.

Finally, the later two mechanisms are well-known aspect-oriented programming fea-
tures [KLM™97] that are used to modularize crosscutting concerns and also used to
express DbC contracts. Indeed, according to the literature, these AOP mechanisms fare
better in achieving contract modularization [KHH"01, LL00, LLH02, SL04, MMvDO05,
BDL05, LKR05, F*06, RLL11, RLK*13].

In the following sections, we discuss in more detail two forms to implement/express
design by contract at source code level. The first one is the DbC language JML [LPC™08,
LBRO6], and the second one is the AOP language AspectJ [KHHT01, Lad03]. Both are
the main focus of this work.

19

Programmer

Annotated “—

JML Compiler source file | |
Instrumented Runtime Assertion
— —» Result
bytecode Checker

Figure 2.2: An overview of the JML environment.

2.4 An Overview of JML

This section gives an overview of the Java Modeling Language (JML), introducing its
major features such as method and type specifications. The presentation is informal
and running-example-based.

2.4.1 Behavioral Interface Specification

JML [LPCT08, LBRO6], which stands for “Java Modeling Language”, is a behavioral
interface specification language (BISL) tailored to Java. JML combines the design by
contract (DbC) technique [Mey92a, Mey00] of Eiffel [Mey92b] with the model-based
specification approach typified by VDM [Jon90], Z [Spi89], and Larch/C++ [CL94]. Tt
also adds some elements from the refinement calculus [BvWO98]. As in Eiffel, JML uses
Java’s expression syntax in assertions. As mentioned earlier, this makes JML’s notation
easier for programmers to learn than notations based on an independent specification
language, such as Z [Spi89] or OCL [WK99].

As a BISL, JML is used to specify Java modules (classes and interfaces). Concerning
Java modules, JML takes into account two issues during the specification process:

e syntactic interface — consists of the names and static information (e.g., method
names, modifiers, arguments, return type) found in Java declarations;

e functional behavior — describes how the module works when used.

Therefore, BISLs are languages that describe interface details for clients. For exam-
ple, Larch/C++ [CL94] describes how to use a module in a C++ program, just as JML
specifies how to use a module in a Java program.

2.4.2 Annotations

JML specifications are written in special annotation comments, which start with an @
sign, that is, comments in the form: //@ <JML specification> or /*@ <JML specification>
@*/. These annotations work as simple comments for a Java compiler, whereas they are
interpreted as specifications by the JML compiler [Che03, Reb08].

It is important to note that the at-sign (@) must be right next to the start of comment
characters. A comment starting with // @ will be ignored by JML. In other words,

20

such a comment is not processed as a specification by the JML compiler. This happens
because JML tools do not currently warn the programmer about comments that use
such mistaken annotation markers.

Figure 2.2 depicts an overview of the JML environment. A programmer includes
annotations in the Java source file in the form of comments. Then, the JML compiler
translates the annotated Java source file into instrumented bytecode that check whether
the Java program respects the specification.

2.4.3 Assertions and Expressions

Assertions and expressions of specifications in JML are written using Java’s expression
syntax. However, they must be pure. This means that side-effects cannot appear in
JML assertions or expressions [LCCT05]. But Java assertions and expressions do allow
side-effects. Regarding the prevention of side-effects, the following Java operators are
not allowed within JML specifications:

e assignment — assignment operators (such as =, +=, -=) are not allowed;

e increment and decrement operators — all forms of increment and decrement op-
erators (++ and --) are not allowed.

In addition, only pure methods can be used in JML expressions and assertions — a
method is pure if it does not have any side-effects on the program state. In other words,
the method does not modify the state (e.g., by assigning any fields of objects). The
pureness of methods is expressed by using the JML modifier pure when declaring a
method.

/*Q pure @Qx/ boolean containsSize (double width, double height){...}

This method declaration denotes a method with no side-effects; it is not allowed to
modify the program state.

Besides the pure annotation, JML provides a rich set of constructs, some of which
make extensions to the Java’s expression syntax to provide more expressive power in
JML specification; they can be used in JML assertions and expressions. For exam-
ple, \old(F) represents the pre-state value of expression E. A pre-state value refers
to the value before method execution. The \result construct specifies the return
value of a method. Note that in JML assertions, such constructs start with a back-
slash (\) in order to avoid interfering with identifiers present in a user program. JML
also provides the use of logical connectives such as conjuction (&&), disjunction (1),
negation (1), forward (==>) and reverse implications (<==), equivalence (<==>), and
inequivalence (<=1=>). Regarding quantifiers, JML supports several kinds such as uni-
versal quantifier (\forall), existential quantifier (\exists), and generalized quan-
tifiers (\sum, \product, \min, and \max). The quantifiers \sum, \product, \min,
and \max are generalized quantifiers that return respectively the sum, product, min-
imum, maximum of the values present in JML expressions. For example, an expression
(\sum int x; 1 <= x && x <= 5; x) denotes the sum of values from 1 to 5.

Another feature provided by JML is that one can use informal descriptions when
specifying a Java module. Informal descriptions are useful for producing an informal
documentation of the Java code. JML also allows informal descriptions when specifying
a Java module.

21

(* some text describing a boolean—valued predicate x)

Since informal descriptions are not-executable, they are ignored by the JML compiler.

Expression Evaluation

Since JML is based on standard Java expressions, it should be aware of exceptions that
can arise during evaluation. In JML, an assertion is considered to be valid if and only
if its evaluation: (1) does not cause an exception to be thrown, and (2) yields the value
true. Similarly, an assertion is taken to be invalid iff its evaluation: (1) does not cause
an exception to be thrown, and (2) yields the value false. An assertion to be considered
either valid or invalid is the standard two-valued logic expected in general. However,
as mentioned, Java provides a third one; when expressions become invalid due to an
exception thrown. Hence, JML handles a three-valued logic during assertion evaluation.
This three-valued logic semantics adopted by JML is discussed in detail by Chalin [Cha07].
Among other things, he discusses that when an assertion becomes invalid by and excep-
tion, the runtime assertion checking stops immediately to signal an invalid expression
evaluation. For instance, in JML, we have the JMLEvaluationError thrown to signal such
invalid assertions during runtime checking.

In-line assertions

JML provides the use of a specific kind of assertion known as in-line assertions (also
called intraconditions). These assertions can be specified in the method body. In other
words, they are interwoven with Java code. For example, consider while setting the size
of packages (using the method setSize from Package of Figure 2.1), we want to ensure
that the dimension of a package is greater than zero and does not exceed 400 square
centimeters:

void setSize (double width, double height) {
//@Q assert width > 0 && height > 0;
//@ assert width = height <= 400; // maxr dimension
this.width = width;
this.height = height;
}

Here, when the execution of method setSize reaches the assertions, the above expressions
must be satisfied; otherwise a JMLAssertError is raised to signal the assertion violation.

JML provides several kinds of in-line assertions, such as assert and assume state-
ments, loop invariant among others. Additional information about the kinds of in-line
assertions and their implementations can be found in [LPCT08].

2.4.4 Null is not the default

Null pointer exceptions are one of the common faults raised by components written in
object-oriented languages such as Java. For example, if x is null then x.f and x.m()
result both in a NullPointerException. As described above, such null pointer exceptions
make expression evaluations to be invalid in assertions.

One can prevent this problem by explicitly declaring every reference type field, return
type, and parameter type as non_null.

22

void deliver (/*@ non_null @«/Package p, /*@Q non_null @«/String destination){...}

The deliver method has two parameter types that are reference types. Hence, we
can add the non_null annotation and any call to deliver with null arguments will raise
a contract error in JML. If the method does allow null references, the programmer can
declare the type do be nullable:

void deliver (/«@ nullable @x/Package p, /+@ non_null @x/String destination){...}

If the implementation of the deliver method handles internally null references of
packages, we can add the nullable annotation to the parameter type Package of deliver.

Previously, the JML semantics considered reference types to be implicitly null (like
using the nullable annotation for every reference type). However, Chalin et al. [CR05a,
CRO5b, CJO7, CJRO8] stated that programmers want more than 50% of declarations
of reference types to be non-null. That said, in the old versions of JML, program-
mers needed to explicitly add the non_null annotations to most of the declarations.
As a result, programmers may forget to add some non null annotations to some ref-
erence type, thus leading clients to call methods with null arguments resulting in
NullPointerException. Therefore, based on this evidence, Chalin et al. proposed to
change the JML semantics by allowing reference type declarations to be non_null by
default. Since then, JML adopted the non_null semantics by default.

2.4.5 Method Specifications

In JML, method specifications contain pre- and postconditions based on Hoare-style [Hoa69,
Hoa72], but with many extensions like implications (see Subsection 2.4.3). It also of-
fers some features that are not standard. For example, JML makes a clear distinction
between normal and exceptional postconditions.

Requires Clauses

A requires clause specifies a precondition of method or constructor. Preconditions are
predicates that must hold before method (or constructor) execution. The general form
of a precondition definition is as follows:

Requires — Clause ::= Requires — Keyword [!] Pred ;
| Requires — Keyword \same;

Requires — Keyword ::= requires | pre

Pred ::= Predicate | \not_specified

The predicate in a requires clause can refer to any visible fields and to method
parameters. See Section 2.4.9 for more details on visibility in JML.

Any number of requires clauses can be included in specification. Multiple requires
clauses in a specification denotes the same as a single requires clause whose precondition
predicate is the conjunction of these preconditions. For example:

requires P;
requires Q;

means the same thing as:

requires P && Q;

23

When a requires clause is omitted in a specification, JML assumes a default pre-
condition with the meaning \not_specified. In terms of runtime assertion checking, in
JML this works exactly as checking requires true. In relation to \same, we explain
its benefit in Section 2.4.10 after describing JML specification cases, inheritance, and
privacy of specifications.

For a concrete example of JML requires clause, please recall the method setSize from
Package (see Figure 2.1). Previously we showed how to use the JML assert statement
to ensure that the dimension of package is greater than zero and does not exceed 400
square centimeters. Now, let us use the JML requires clauses for this design constraint:

//@Q requires width > 0 && height > 0;
//@Q requires width x height <= 400; // maz dimension
void setSize (double width, double height) {...}

Instead of being within the method’s body (like JML inline assertions), note that the
preconditions are added in the method’s header. If we consider other package’s methods
such as reSize and containsSize, we note that they have the same design constraint on
their input parameters. Thus, we also have the same requires clauses for them:

//@ requires width > 0 && height > 0;
//@Q requires width x height <= 400; // maz dimension
void reSize(double width, double height) {...}

//@ requires width > 0 && height > 0;
//@Q requires width x height <= 400; // maz dimension
boolean containsSize (double width, double height) {...}

In relation to the keyword pre, its meaning is the same as the requires keyword. In
other words, pre is a syntactic sugar for requires.

Ensures Clauses

As aforementioned, in JML we have a way to specify two kinds of postconditions. One
responsible for normal termination and one responsible to specify exceptional behavior.
The JML ensures clauses are used to specify a normal postcondition. Normal postcon-
ditions are predicates that must hold after method (or constructor) execution without
throwing any exception. The general syntax is as follows:

| Ensures — Clause ::= FEnsures — Keyword [!] Pred ;
Ensures — Keyword ::= ensures | post
Pred ::= Predicate | \not_specified

The predicate in an ensures clause can refer to any visible fields (See Section 2.4.9 for
more details on visibility in JML), the method parameters, and the return of a method
when it is non-void.

The following ensures clause

ensures Q;

means if the method execution terminates normally(i.e., without throwing an exception),
then the predicate Q must hold.

Any number of ensures clauses can be included in specification. Multiple ensures
clauses in a specification denotes the same as a single ensures clause whose postcondition
predicate is the conjunction of these postconditions. For example:

24

ensures P;
ensures Q;

means the same thing as:
ensures P && Q;

When an ensures clause is omitted in a specification, JML assumes a default normal
postcondition with the meaning \not_specified. In terms of runtime assertion checking,
in JML this works exactly as checking ensures true.

For concreteness, recall again the method setSize from Package (see Figure 2.1). After
the method setSize’s execution, we need to ensure that the Package’s fields be properly
updated. Hence, we have the following ensures clauses:

//@Q ensures this.width = width;
//@Q ensures this.height = height;
void setSize (double width, double height) {...}

These ensures clauses guarantee that the fields width and height be properly assigned
to the input parameters.
Consider now the following normal postcondition for the Package method getSize:

//@Q ensures \result — this.width * this.height;
double getSize (){...}

Note the use of the \result expression. It stands for the result that is returned by
the non-void method getSize. Hence, the getSize’s ensures clause states that the method
must return the Package’s dimension after execution.

In relation to the keyword post, its meaning is the same as the ensures keyword. In
other words, post is a syntactic sugar for ensures.

Signals Clauses

The signals clauses are the second kind of JML postconditions. It is used to specify the
exceptional behavior of methods. Exceptional postconditions are predicates that must
hold when a method (or constructor) throws an exception. The syntax is as follows:

Signals — Clause ::= Signals — Keyword (reference — type [ident]) [!] Pred ;
Signals — Keyword ::= signals | exsures

Consider the general form:
signals (EF e) P;

E has to be a subclass of java.lang.Exception and the variable e is bound in P. If F
is a checked exception, it needs to be one of the exceptions listed in the method or
constructor’s throws clause, or a subclass or a superclass of E. That said, when the
constrained method (or constructor) terminates by throwing an exception of type F,
then the predicate P must hold. The predicate in P can refer to any visible fields (See
Section 2.4.9 for more details on visibility in JML) and to method parameters.

As with requires and ensures clauses, multiple signals clauses are allowed in specifi-
cation. For example:

signals (E1 e) R1;
signals (E2 e) R2;

25

means the same as:

signals (Exception e) ((e instanceof EFl1) =—> RIl)
&& ((e instanceof E2) =—> R2);

If an exception is thrown that is both of type E'1 and E2, then both predicates R1
and R2 must hold.

It is important to note that signals clauses specify conditions that must hold when
certain exceptions are thrown. Signals clauses cannot be used to force a specific excep-
tion to be thrown.

When a signals clause is omitted in a specification, JML assumes a default excep-
tional postcondition that allows only the exceptions in throws clause and the instances
(including subtypes) of java.lang.RuntimeExcetpion to be thrown in a method or con-
structor execution (when terminates abnormally).

As a concrete example, consider again the setSize from Package (see Figure 2.1).
Consider further that this method can throw an exception say SizeDimensionException
if the package dimension exceeds its permitted dimension. In this context, consider the
following signals clause:

//@Q signals (SizeDimensionException) width * height > 400;

void setSize (double width, double height) throws SizeDimensionException {
if (width % height > 400) throw new SizeDimensionException ();

}

This means that when the exception SizeDimensionException is thrown, the condition
width * height > 400 should be satisfied; otherwise an exceptional postcondition error in
JML is raised to signal this contract violation.

Imagine now that we want to forbid any instance (including subtypes) of java.lang.-
RuntimeException to be thrown by the method setSize. Hence, we have the following
augmented signals specification:

//@Q signals (SizeDimensionException) width * height > 400;
//@ signals (RuntimeException) false;

void setSize (double width, double height) throws SizeDimensionException {
if (width % height > 400) throw new SizeDimensionException ();

Now if we want to forbid any exception except SizeDimensionException to be thrown,
we can write the following signals clause in JML for the method setSize:
//@ signals (SizeDimensionException) width * height > 400;
//@ signals (Exception e) e instanceof SizeDimensionException;

void setSize (double width, double height) throws SizeDimensionException {
if (width % height > 400) throw new SizeDimensionException ();

In JML, any Java error cannot be mentioned in the signals clause. JML does not
constrain instances (or any subtype) of java.lang.Error. When errors occur, they should
stop program execution and no JML contracts can interfere in this behavior.

In relation to the keyword exsures, its meaning is the same as the signals keyword.
In other words, exsures is a syntactic sugar for signals.

26

Signals Only Clauses

The JML signals only clause is just a syntactic sugar/abbreviation for a standard
signals clause. It is used to specify what exceptions may be thrown by a method (or
constructor), and thus, implicitly, which exceptions may not be thrown. The general
form of a signals_only clause is as follows:

Signals — Only — Clause ::= Signals — Only — Keyword Reference — Type [, Reference— Type] ... ;
| Signals — Only — Keyword \nothing ;
Signals — Only — Keyword ::= signals_only

All of the reference-types named in a signals_only clause must be subtypes of
java.lang.Exception. Each reference-type that is a checked exception type must either be
one of the exceptions listed in the method (or constructor’s) throw clause, or a subclass
or a superclass of such specified reference-type.

The following general form:

signals_only E1, E2, ..., En ;
is a syntactic sugar for the following

signals (Exception e)
e instanceof F1
|| e instanceof E2
..
|| e instanceof En
That is, if a method or constructor throws an exception, it must be an instance of
one of the types specified in the signals_only clause.
JML also allows multiple signals only clause in specification. So, the following
clauses

signals_only F1;
signals _only FE2;

is equivalent to the following:
signals only El1, E2 ;

Therefore, in the end, the JML signals only clauses can be thought of a set of
exceptions that can be thrown during a method (or constructor) execution.

Consider again the following signals clauses for method setSize from Package (see
Figure 2.1), previously discussed:
//@ signals (SizeDimensionException) width % height > 400;
//@ signals (Exception e) e instanceof SizeDimensionException;

void setSize (double width, double height) throws SizeDimensionException {
if (width % height > 400) throw new SizeDimensionException ();

We can rewrite it by using a JML signals_only clause:

//@ signals (SizeDimensionException) width * height > 400;

//@ signals_only SizeDimensionException;

void setSize (double width, double height) throws SizeDimensionException {
if (width % height > 400) throw new SizeDimensionException ();

27

This is equivalent of the previous signals clause one and does only allow instances of

SizeDimensionException exception to be thrown when setSize ends in an abnormal form.
If we consider now the discussed preconditions to protect the maximum Package’s

size dimension to be set, we can change our specification to forbid exceptions to be

thrown. In this case we have the following updated specification for setSize:

//@ requires width > 0 && height > 0;

//@ requires width * height <= 400; // maz dimension

//@ signals_only \nothing;
void setSize (double width, double height) {...}

With this specification, all exceptions (including runtime exceptions) are forbidden
to be thrown. If we decide to go back and allow at least runtime exceptions to be
thrown, we can refine the above specification to the following:

//@ requires width > 0 && height > 0;
//@ requires width % height <= 400; // maz dimension

//@ signals_only RuntimeException;
void setSize (double width, double height) {...}

2.4.6 Method Specification Cases

Until now, we discussed several JML specification clauses (e.g., requires) that can be
used to describe behavior of Java methods or constructors. The overall syntax is de-
scribed below:

Method — Specification ::= Specification

Specification ::= Requires — Clause [Requires — Clause]
| Ensures — Clause [Ensures— Clause]
| Signals — Clause [Signals — Clause]
| Signals — Only — Clause [Signals — Only — Clause]

As an example, consider the following specification clauses for the method setSize in
Package (Figure 2.1):
//@ requires width > 0 && height > 0;
//@ requires width * height <= 400; // maz dimension
//@Q ensures this.width = width;
//@ ensures this.height = height;

//@ signals_only \nothing;
void setSize (double width, double height) {...}

As discussed, these specifications constrain the package’s dimension (precondition), en-
sures that the Package’s fields width and height be properly assigned to the corresponding
input parameters (normal postconditions), and guarantees that no exception (that is an
instance of java.lang.Exception) is thrown after the method execution. In JML, we
can consider this method specification as a single specification case. JML language
gives more expressiveness by allowing several specification cases for a single method
declaration. Hence, we have the following revised syntax for method (or constructor)
specification:

Method — Specification ::= Specification
Specification ::= Spec— Case [also Spec— Case]
Spec — Case ::= Requires — Clause [Requires — Clause]

| Ensures — Clause [Ensures — Clause]
| Signals — Clause [Signals — Clause]
| Signals — Only — Clause [Signals — Only — Clause]

28

JML uses the keyword also to combine one specification case to another. Each
specication case has a precondition that tells when that specication case applies to a
method (or constructor). JML’s also joins together specication cases in a way that makes
sure that, whenever a specication case’s precondition holds for a method or constructor
execution, its corresponding postcondition must also hold. That is, in general a JML
method specication may consist of several specication cases, and all these specication
cases must be satised by a correct implementation.

One reason for using also and separate specication cases is to make distinct execution
scenarios clear to the specication’s reader. Consider now the two specification cases for
the method setSize:

//@ requires width > 0 && height > 0;

//@ requires width * height <= 400; // maz dimension

//@Q ensures this.width = width;

//@Q ensures this.height = height;

//@ signals_only \nothing;

//@ also

//@ requires width > 0 && height > 0;

//@ requires width * height > 400; // exceeding allowed dimension
//@Q ensures this.width = \old(this.width);

//@ ensures this.height = \old(this.height);

//@ signals (SizeDimensionException) width % height > 400;

//@ signals_only SizeDimensionException;

void setSize (double width, double height) throws SizeDimensionException{
if (width % height > 400) throw new SizeDimensionException ();

.

Each specification case handles distinct scenarios during a method execution. The first
specification case (just as before the also) provides the same specification we showed
before. It denotes the expected behavior in a successful scenario when the size dimen-
sion is in its expected limits. The main difference now is that we also provided another
specification case (guarded by a different precondition) for a different behavior; that is,
if we exceed now the package’s size dimension, we expect the fields to keep their old val-
ues/states (see the JML \old) expression, and this scenario must finish by throwing the
SizeDimensionException exception. The \old operator is often used in the postconditions
for methods that change the state of an object [Mey00].

Another way to refine this specification is to handle scenarios where one tries to pass
negative or zero valued arguments for the package’s size dimension. Instead of throwing
a JML precondition error, we just allow the method to receive and properly handle
the values. Of course that negative arguments will not be accepted to set a valid size
dimension. See the following refined version for method setSize’s specification.

//@Q requires width > 0 && height > 0;

//@ requires width % height <= 400; // maz dimension

//@ ensures this.width = width;

//@ ensures this.height = height;

//@ signals_only \nothing;

//@ also

//@ requires width > 0 && height > 0;

//@ requires width * height > 400; // exceeding allowed dimension

//@ ensures this.width = \old(this.width);
//@Q ensures this.height = \old(this.height);

29

//@ signals(SizeDimensionException) width * height > 400;
//@ signals_only SizeDimensionException;
//@ also
//@ requires width <= 0 && height <= 0;
//@Q ensures this.width = \old(this.width);
//@Q ensures this.height = \old(this.height);
//@Q signals(SizeDimensionException) width <= 0 && height <= 0;
//@ signals_only SizeDimensionException;
void setSize (double width, double height) throws SizeDimensionException{
if (width % height > 400)
throw new SizeDimensionException ();
else if(width <= 0 && height <= 0)
throw new SizeDimensionException ();

Therefore, when the third specification has its precondition satisfied, the rest of
the specification case must also be satisfied. Note that the method implementation
was adapted to match the desired behavior, which is now in accordance with method’s
specification; otherwise a violation will be detected and either the specification or the
implementation should be fixed.

Leavens refer to the combination of two method specications with also as their
“join”, since it is technically the join with respect to the renement scenarios on method
specications [Lea06].

Regarding preconditions and postconditions for specification cases, we use the fol-
lowing simpler definition based on Leavens [Lea06, Definition 1] notation:

Definition 2.4.1. Join of JML method specications. Let T > (pre, post) and
T > (pre’, post') be specification cases of an instance method m in type T. Then the
join of (pre, post) and (pre’, post’) for T, written (pre, post) " (pre’, post’), is the
specification T > (p,q) with precondition p:

pre || pré (2.1)

and postcondition q:

(\old(pre) ==> post) && (\old(pre') ==> post) (2.2)

In this definition, the precondition of the join of two specification cases is their
disjunction (with || as in Java). The postcondition of the join is a conjunction of
implications (written ==> in JML’s notation), such that when one of the preconditions
holds, then the corresponding postcondition must hold. The template of Desugaring 1
illustrates the mechanics of Definition 2.4.1. Figure 2.3 shows a concrete example of the
application of the template Desugaring 1.

30

Desugaring 1. (the join of specification cases)

class T {
//@ requires pre; class T {
//@ ensures post; //@ requires pre || pre;
//@ also //@Q ensures (\old(pre) ==> pos)
//@ requires pre’; N //@Q && (\old(pre’) ==> pos’);
//@ ensures post’; void m() {
void m() { body
body }
} }

}

//@ requires width > 0 && height > 0;
//@ requires width % height <= 400;
//@Q ensures this.width = width;
//@Q ensures this.height = height;
//@ also
//@ requires width > 0 && height > 0;
//@ requires width % height > 400;
//@Q signals(SizeDimensionException) width * height > 400;
void setSize (double width, double height)
throws SizeDimensionException {...}

Y
//@ requires ((width > 0 && height > 0)
/ /@ && (width * height <= 400))
//Q [| ((width > 0 && height > 0)
/ /@ && (width * height > 400))
//@ ensures \old (((width > 0 && height > 0)
//@ && (width * height <= 400)))
//a —
//a (this.width =— width)
/ /@ && (this.height = height)
//@ signals (SizeDimensionException)
//Q \old (((width > 0 && height > 0)
//@ && (width * height > 400)))
//Q =—> (width x height > 400)

void setSize (double width, double height)
throws SizeDimensionException {...}

Figure 2.3: An example of the application of the template Desugaring 1 for method
setSize .

Lightweight and Heavyweight specifications

In JML one is not required to specify behavior completely. Indeed, JML has a style of
method specification case, called lightweight. In this style, programmers only need to
specify what interest them. All the specifications discussed so far are lightweight.

In a heavyweight specification case, on the other hand, JML expects that the pro-
grammer works with a “complete” specification that includes both normal and excep-

31

tional situations or at least either normal or exceptional. Programmers distinguish
between such cases of method specifications by using different syntaxes. In essence, in
a method specification case in heavyweight mode, the programmer uses one of the be-
havior keywords, such as normal behavior, exceptional behavior, or behavior. The
absence of these keywords denotes a lightweight specification, as mentioned, the ones
we showed until now.

The revised syntax for method specification is as follows:

Method — Specification ::= Specification
Specification ::= Spec— Case [also Spec— Case]
Spec — Case ::= Lightweight — Spec — Case | Heavyweight — Spec — Case
Lightweight — Spec — Case ::= Generic — Spec — Clause
Heavyweight — Spec — Case ::= Behavior — Spec — Case
| Normal — Behavior — Spec — Case
| Eazceptional — Behavior — Spec — Case

Behavior — Spec — Case ::= [privacy| Behavior — Keyword
Generic — Spec — Clause
Behavior — Keyword ::= behavior | behaviour
Normal — Behavior — Spec — Case ::= [privacy] Normal — Behavior — Keyword
Generic — Spec — Clause
Normal — Behavior — Keyword ::= normal_behavior | normal_behaviour
Exceptional — Behavior — Spec — Case ::= |[privacy| FEzceptional — Behavior — Keyword
Generic — Spec — Clause
Exceptional — Behavior — Keyword ::= exceptional_behavior | exceptional_behaviour
Generic — Spec — Case ::= Requires — Clause [Requires — Clause]

| Ensures — Clause [Ensures — Clause]
| Signals — Clause [Signals — Clause] .
| Signals — Only — Clause [Signals — Only — Clause]

The code below is an example of a JML heavyweight of kind behavior.

//@ behavior

//@ requires width > 0 && height > 0;

//@ requires width * height <= 400; // maz dimension
//@Q ensures this.width = width;

//@Q ensures this.height = height;

//@ signals_only \nothing;

void setSize (double width, double height) {...}

The behavior spec is useful to describe a complete behavior including normal and ex-
ceptional ones. We can refine the above specification to the following normal_behavior
specification case:

//@ normal_behavior

//@ requires width > 0 && height > 0;

//@ requires width * height <= 400; // maz dimension
//@ ensures this.width = width;

//@Q ensures this.height = height;

void setSize (double width, double height) {...}

Note that now we removed the signals_only clause. Since it is a normal_behavior
specification it includes only detailed design about normal termination. Hence, such
a normal behavior specification is a sugar for a behavior specification with an im-
plicit signals only \nothing. Therefore, in a normal behavior mode, the method is not
allowed to throw exceptions; this includes runtime exceptions as well.

32

Consider now the following refinement:

//@ normal_behavior

//@ requires width > 0 && height > 0;

//@ requires width * height <= 400; // maz dimension

//@ ensures this.width = width;

//@ ensures this.height = height;

//@ also

//@Q exceptional_behavior

//@ requires width > 0 && height > 0;

//@ requires width % height > 400;

//@ signals(SizeDimensionException) width % height > 400;
//@ signals_only SizeDimensionException;

void setSize (double width, double height) throws SizeDimensionException{
if (width % height > 400) throw new SizeDimensionException ();

Contrasting to a normal_behavior specification case, when the precondition of an
exceptional behavior specification case is satisfied, the method must terminate abnor-
mally by throwing an exception. Thus exceptional behavior specification cases are
used to specify properties when a method throws exceptions. Since a method or con-
structor having a satisfied exceptional specification case cannot terminate in a normal
form, it has an implicitly ensures false clause. Hence the above specification provides
two distinct scenarios where the normal one cannot throw any exception and the second
cannot finish without throwing an exception.

Note that an exceptional behavior specification case cannot force a specific excep-
tion to be thrown, but it can enforce to have an exception thrown at least; otherwise an
exceptional postcondition error in JML is signalled during runtime checking.

In the revised syntax for method specification shown above, we can see the use of
the optional [Privacy| syntax. We describe it in Section 2.4.9.

2.4.7 Type Specifications

In addition to field and method declarations and specifications, a type specification
in JML may also contain invariants, history constraints, and initially clauses. In the
following we discuss invariant specifications. For information about other type specifi-
cations and even more details about invariants in JML, please refer to [Lea06, LPCT08,
LBRO6].

Invariants

[nvariants are predicates that must hold in all visible states during a method or con-
structor execution. A state is a visible state for an object o if it is the state that occurs
at one of these moments in a program’s execution:

e after the execution of a non-helper constructor that is initializing o;
e before the execution of a non-helper finalizer that is finalizing o;

e before and after the execution of a non-helper non-static non-finalizer method with
o as the receiver;

33

These visible states are enforced to instance invariants in JML. However, in JML we
can have both instance and static invariant declarations'. A static invariant can only
refer to static members of an object. An instance invariant, on the other hand, may
refer to both static and non-static members. We say members since we can also refer to
the result of a method as a part of the invariant condition.

In relation to the visible states in which static invariants must hold, we list them
below:

e before and after the execution of a non-helper of a non-helper constructor that is
initializing o;

e before and after the execution of a non-helper static method in 0’s class or some
subclass of 0’s class.

Note that these visible states exclude executions of helper methods or constructors
declared with the JML helper modifier. For more information about helper methods or
constructors, please refer to [LPCT08].

The JML invariant syntax is as follows:

Invariant ::= [Privacy] [static] Invariant — Keyword Predicate ;
Invariant — Keyword ::= invariant

For a concrete example of invariants, consider the two instance invariants below for
the type Package in Figure 2.1:

public class Package {
double width, height;
//@ invariant this.width >= 0 && this.height >= 0;
double weight ;
//@ invariant this.weight >= 0;

The first invariant restricts package’s dimension to be always greater than or equal
to zero and the second one has the same design constraint on package’s weight.

As can be seen above in the invariant’s syntax, we can use a visibility modifier
(privacy information) on an invariant declaration. We discuss this privacy feature about
JML specifications in Section Section 2.4.9.

Like pre- and postconditions in JML, we can have multiple invariant declarations
like those above. Multiple invariant declarations are desugared into a single one. All
invariants are combined by conjunction.

2.4.8 Specification Inheritance

In JML, there are various ways to inherit specifications: subclassing, interface extension
and implementation, and refinement [LBRO6]. A subtype inherits not only fields and
methods from its supertypes, but also specifications such as pre- and postconditions,

L JML carefully uses the standard names like object or class invariants. Object invariants are actually
related to the instances of a class, whereas class invariants denote properties of the class itself (no
instance involved). Hence, object invariants in JML is also called instance invariants. Class invariants
in JML is also known as static invariants.

34

and invariants. To provide the effect of specification inheritance, JML also employs
the also construct (already discussed in Section 2.4.6), which denotes a combination
(join) of specification cases (see Definition 2.4.1), which consist of clauses including pre-
, postconditions, and so forth. The main difference is that the two specification cases
connected by also is not local in the same method declaration; one is located in the
overridden method in a supertype and the other is located in an overriding method in
a subtype.

For a concrete example of a specification inheritance in JML, consider the following
specifications based on Figure 2.1:

public class Package {

double width, height ;

//@ invariant this.width >= 0 && this.height >= 0;
double weight ;

//@ invariant this.weight >= 0;

//@ requires weight > 0;

//@Q requires weight <= 5;

//@ ensures this.weight = weight;
//@ signals_only \nothing;

void setWeight (double weight) {...}

}

public class GiftPackage extends Package {
//@ also

//@ requires weight > 0;

//@Q requires weight <= 8§;

//@ ensures this.weight = weight;

//@ signals_only \nothing;

void setWeight (double weight) {...}

In this example, the method setWeight in Package is only allowed to set a pack-
age’s weight with a maximum of 5kg. In the overriding method setWeight in subtype
GiftPackage, we refined the specification to allow heavier packages of 8kg int total per-
mitted. The stronger precondition is located in the specification case in Package type,
whereas the weaker precondition is placed in the GiftPackage type. These specification
cases are connected using the also construct in JML. It means that we should con-
sider all the local specification cases in GiftPackage.setWeight in addition to ones in its
overridden method in Package.setWeight.

All overriding methods automatically inherit specifications from its supertypes. So
if one forgets to use the also construct, a JML tool should issue a warning about it. The
warning is to make the programmer aware that even if there is no also, specifications of
supertypes are still been considered.

Besides method’s pre- and postconditions, subtypes inherit other kinds of specifica-
tions like invariants. In this context, the above two invariants declared in type Package
are also inherited by GiftPackage. Hence, any call to setWeight of type GiftPackage must
establish those invariants both before and after its execution.

35

The Definition 2.4.1 (described in Section 2.4.6) describes the join of method spec-
ification cases (local or inherited) in JML. To define the join of (inherited) invariants,
Leavens introduces the notation added inv” [Lea06, Definition 2].

36

See the definition below:

Definition 2.4.2. Extended specification for invariant. the extended invariant of
T is the conjunction of all added invariants in T and its proper supertypes:

ext_inv’ = /\{added_va\U € supers(T)} (2.3)
O

2.4.9 Privacy Modifiers and Visibility in Specifications

Information hiding [Par72] (also known as black-box abstraction) is a widely accepted
principle that aids in software development. It advocates that a module should expose
its functionality but hide its implementation behind an interface. This supports modular
reasoning and independent evolution/maintenance of the hidden parts of a module. If
programmers have carefully chosen to hide the parts “most likely” to change [Par72],
most changes, in the hidden implementation details, do not affect client modules.
Information hiding and its benefits apply not only to code but also to other artifacts,
such as documentation and specifications [LMO07, Parl1]. In this context, a specification
declaration in JML can be public, protected, private, or default (package) visibility.
However, JML imposes some extra rules for specifications in addition to the usual Java
visibility rules [LBR06, LMO07] to preserve information hiding. We discuss them below.

Rule 1

The first rule is based on Leavens and Miiller’s Rule 1 [LMO07]. It states that a specifica-
tion cannot refer to members that are more hidden than the specification own visibility.
The reason for this restriction is that the programmers/users who are allowed to see the
specifications should be able to see each of the members referred in those specifications;
otherwise, they might not understand it [LMO07, Mey00].

In practical terms, this information hiding rule is fundamental while a programmer is
performing, for example, runtime checking. Suppose that the programmer gets a precon-
dition or postcondition violation where both are part of a public specification mentioning
hidden (e.g., private) fields in those clauses. The problem is that the programmer would
see a precondition or postcondition violation referring to hidden members that are not
visible to public clients. Thus such contract violations, involving hidden fields, are not
meaningful to all clients. As a consequence, clients confront an issue that the interface
claimed to hide [Kic96].

Therefore, public clients should be able to see all the declarations of public mem-
bers referred within the specification. However, public specifications cannot contain
protected, default access, or private members mentioned on them.

Consider the following invariant example for the type Package (Figure 2.1):

37

© 00 O U = W N~

10

12
13
14
15
16
17
18
19
20

public class Package {

protected double width;
private double height ;
double weight ;

//@ public invariant this.width >= 0; // illegal!
//@ public invariant this.height >= 0; // illegal!
//@ public invariant this.weight >= 0; // illegal!

//@ protected invariant this.width >= 0; // legal!
//@ protected invariant this.height >= 0; // illegal!
//@ protected invariant this.weight >= 0; // illegal!

//@ invariant this.weight >= 0; // legal!
//@ invariant this.height >= 0; J// illegal!
//@ private invariant this.height >= 0; // legal!

}

To illustrate the JML rules on visibility, we declare each field with a different privacy
modifier, and then we write several invariant clauses with also different privacy levels.
However, in the above example, only the invariants declared on lines 10, 14, and 17 are
valid. The others violate our first rule described here.

In relation to method specification cases, the same JML rule applies. For example,
consider the following heavyweight (normal) specification case for the method setSize in
Package:

public class Package {
protected double width, height ;

//@Q public normal behavior

//@ requires width > 0 && height > 0;

//@ requires width % height <= 400;

//@ ensures this.width = width; // illegal!
//@Q ensures this.height = height; // illegal!
void setSize (double width, double height) {...}

As observed, the protected fields width and height are both mentioned in ensures
clauses of a public specification case for the method setWeight. Thus, both usage are
illegal. The question that arises now is how to export a valid public specification case for
method setSize? To answer this question, JML has two ways to handle this situation.

The first one is to use spec_public modifier as follows:

38

public class Package {
protected /+Q spec_public @x/ double width, height;

//@Q public normal behavior

//@ requires width > 0 && height > 0;

//@ requires width % height <= 400;

//@ ensures this.width = width; // legal!
//@Q ensures this.height = height; // legall
void setSize (double width, double height) {...}

This JML modifier allows one to declare both fields width and height as public for
specification purposes. This way, the above public specification case is now valid for
method setSize. For the similar purpose, JML also offers the spec_protected modifier
(please refer to [LBR06, LPC*08] for more information).

It is important to note that when a method uses a lightweight specification case
where there is no privacy modifier, then the spec case has the same visibility as the
method itself.

The second way to handle hidden fields in specifications is by using model fields [CLSE05,
Lea06]. Model fields are specification-only fields that give an abstraction of some con-
crete state. Concrete state refers to state variables, which is one or more fields in a type.
Consider the following example:

public class Package {

//@Q public model double width;

protected double _width;

//@ protected represents width = _width;

//@ public model double height ;
protected double _height;
//@ protected represents height = _height;

//@Q public normal behavior

//@ requires width > 0 && height > 0;

//@ requires width % height <= 400;

//@ ensures this.width = width; // legall
//@ ensures this.height = height; // legall
void setSize (double width, double height) {...}

In this example, the value of the public model fields width and height are determined
directly by the value of the corresponding protected (Java) fields width and height.
This relationship is specified by JML represents clauses. Those represents clauses are
protected, since it mentions protected fields. In the end, the public specification case is
valid again.

If we consider the example and the two forms used to make a field visible in a

39

specification, we can observe that the second form only provided the benefit of field
name encapsulation. So if we refactor and change the concrete field _width to something
else, public clients are not affected due to the benefit of information hiding. However,
model fields could be used to hide more things than just a single name. A single model
field can be used to abstract several fields or even their concrete type representation.
For example, we can use the following refined specification to hide the fields involved in
package dimension:

public class Package {

//@ public model double dimension;

protected double width, height ;

//@Q protected represents dimension = width x height;

Now we have a model field with no direct corresponding Java field. Thus the model
field dimension is an abstract representation for the concrete Java fields width and height.
We can even change the type to a more abstract representation using the embedded JML
model Types. For example,

public class Package {

//@ public model JMLDouble dimension;

protected double width, height ;

//@ protected represents dimension = new JMLDouble (width % height);

}
the type JMLDouble now hides what representation is actually being used by the imple-

mentation. One does not know if we use a Java primitive type double or the wrapper
class Double.

Rule 2

The second rule for visibility in specifications prohibits a specification to constrain fields
that are more visible than the specification itself (see Leavens and Miiller’s Rule 6 [LMO07]
for more information). In particular this rule applies to JML type specifications like
invariants and history constraints.

For example, a private invariant cannot mention a public field, since clients could
see the public field without seeing the invariant, and thus would not know when they
might violate the private invariant by assigning to the public field.

In order to illustrate how this rule works in JML, please consider the following
Package’s invariant:

40

© 00 O U = W N~

10

12
13
14
15
16
17

public class Package {
public double width, height;
protected double weight ;

//@ protected invariant this.width >= 0; // illegal!
//@ protected invariant this.height >= 0; // illegal!

//@ invariant this.width >= 0; // illegal!
//@ invariant this.height >= 0; // illegal!
//@Q invariant this.weight >= 0; // illegal!

//@ private invariant this.width >= 0; // illegal!
//@ private invariant this.height >= 0; J// illegal!
//@ private invariant this.weight >= 0; // illegal!
}

All of these invariants are illegal since they violate rule 2. In other words, all of
these invariants are more hidden than the constrained fields. This situation leads to
unsoundness on program correctness.

JML Syntax for visibility involving fields

The privacy syntax in JML involving fields is as follows:

JML — Field — Decl ::= Model — Field — Decl | Represents — Clause | Field — Decl
Model — Field — Decl ::= [Privacy] [Modifiers] Model — Keyword FieldType Field — Ident ;
Model — Keyword ::= model

Represents — Clause :: [Privacy] [static] Represents — Keyword Field— Ident = Exp ;
Represents — Keyword ::= represents
Field — Decl ::= [Privacy] [Modifiers] [JML — Modifier] Fieldl'ype Field — Ident [= Exp] ;

Exp ::= FieldAccessExp | MethodCallExpr | ConstantExp

2.4.10 Modularity notes in JML when applying Design By
Contract

As an expressive design by contract language for Java, JML offers some mechanisms that
improve contract modularity while specifying classes and methods. In the following we
discuss these modularity mechanisms offered by JML for contract specification. For the
discussion recall the running example illustrated in Figure 2.1.

Pre- and postconditions as invariants

When a programmer is writing specifications, the tendency is to provide pre- and post-
conditions for methods. Afterwards type specifications like invariants are also consid-
ered. After all pre- and postconditions are met, the programmer can analyze if there are
pairs of a pre- and postconditions that are recurrent scattered across all the methods in
a particular type. If so, we can extract those pre- and postconditions and modularize
them using a quantified statement like an invariant declaration.

41

For example, consider the following pre- and postconditions for the methods in type
Package:

public class Package {
double width, height, weight;

//@ requires this.width >= 0;

//@Q requires this.height >= 0;

//@ requires this.weight >= 0;

//@Q requires ..

//@Q ensures thls width >= 0;

//@ ensures this.height >= 0;

//@Q ensures this.weight >= 0;

//@ ensures

void setSize (double width, double height) {...}

//@ requires this.width >= 0;

//@ requires this.height >= 0;

//@ requires this.weight >= 0;

//@Q requires

//@Q ensures this.width >= 0;

//@ ensures this.height >= 0;

//@ ensures this.weight >= 0;

//@Q ensures

void reSize(double width, double height) {...}

//@ requires this.width >= 0;

//@ requires this.height >= 0;

//@Q requires this.weight >= 0;

//@ requires ..

//@ ensures thls width >= 0;

//@Q ensures this.height >= 0,

//@ ensures this.weight >= 0;

//@ ensures

boolean containsSize (double width, double height) {...}

//@ requires this.width >= 0;
//@ requires this.height >= 0;
//@ requires this.weight >= 0;
//@Q requires

//@ ensures thls width >= 0;
//@ ensures this.height >= 0;
//@ ensures this.weight >= 0;
//@ ensures

double getSize() {...}

//@ requires this.width >= 0;
//@ requires this.height >= 0;
//@ requires this.weight >= 0;
//@Q requires

42

//@ ensures this.width >= 0;

//@ ensures this.height >= 0;

//@Q ensures this.weight >= 0;

//@Q ensures ...

void setWeight (double weight) {...}
... // other methods

}

As observed, there is a set of pre- and postconditions that are repeated in the specifi-
cation for all methods in Package. In order to avoid such annotation burden (scattering),
we write an invariant per pair of repeated pre- and postcondition. Hence, we have now
the specifications more modular as follows:

public class Package {

double width, height, weight;
//@Q invariant this.width >= 0;
//@ invariant this.height >= 0;
//@ invariant this.weight >= 0;

//@Q requires
//@ ensures
void setSize (double width, double height) {...}

//@Q requires
//@ ensures
void reSize(double width, double height) {...}

//@Q requires
//@ ensures
boolean containsSize (double width, double height) {...}

//@Q requires
//@Q ensures
double getSize() {...}

//@Q requires

//@ ensures

void setWeight (double weight) {...}
... // other methods

}

With quantified statements like invariants, we were able to remove the recurrent pre-
and postconditions and reduce the overall 40 specification clauses to only 13. Three
of these 13 specifications are now invariant declarations and provide the same design
constraints as before.

The drawback of this approach is that we can only refactor pre- and postconditions
to invariants iff they apply to all methods. That is, if we have just one method without
the recurrent pre- and postconditions, we cannot modularize them by using an invariant
declaration.

43

Reusing specifications with specification inheritance

Another way to reuse contracts is by using specification inheritance. Usually, expressive
DbC languages like JML or Eiffel provide this feature. So instead of duplicating the
specifications of an overridden method in an overriding method like below

public class Package {

//@ requires weight > 0;

//@Q requires weight <= 5;

//@ ensures this.weight = weight;
void setWeight (double weight) {...}

}

public class GiftPackage extends Package {
//@ requires weight > 0;

//@ requires weight <= 5;

//@ ensures this.weight = weight;

void setWeight (double weight) {...}

}..

we just leave the overridden method specifications as follows

public class Package {

//@Q requires weight > 0;

//@ requires weight <= 5;

//@Q ensures this.weight =— weight;
void setWeight (double weight) {...}

}
public class GiftPackage extends Package {
void setWeight (double weight) {...}

In the overriding method, we leave no specifications because the ones in overrid-
den method are automatically inherited and enforced with a modularization using a
hierarchical structure.

Reusing preconditions with the same predicate

Often in writing a method specification in a subtype, one wants the precondition of

the overriding method to be the same as that of the specification of the method being

overridden. This often occurs for a method in a subclass that does something extra.

JML'’s predicate \same can be used in the precondition of such a specification to say that

the method’s precondition is the same as that of the method being overridden [LPCT08].
For example, the overriding method (in type GiftPackage) below

public class Package {

//@ requires weight > 0;

//@Q requires weight <= 5;

//@ ensures this.weight = weight;

44

void setWeight (double weight) {...}

}

public class GiftPackage extends Package {
//@ also

//@Q requires weight > 0;

//@ requires weight <= 5;

//@ ensures this.weight =— weight;

//@ signals_only \nothing;

void setWeight (double weight) {...}

}

has the same specifications of the overridden method except that it adds a signals_only
clause (exceptional postcondition). For situations like that, we can use the JML same
predicate to avoid duplicating the same preconditions. In the following we have the
refined version, of the above example, using the JML same predicate.

public class Package {
//@ requires weight > 0;
//@ requires weight <= 5;

//@ ensures this.weight = weight;

void setWeight (double weight) {...}

}

public class GiftPackage extends Package {
//@ also

//@ requires \same;

//@ ensures this.weight = weight;

//@ signals_only \nothing;
void setWeight (double weight) {...}

We are allowed to add more requires clauses if needed. However, in JML there is
no similar construct to reuse postconditions.

Note that the same predicate is an exclusive construct of the JML language. No
other DbC language has a similar feature.

Reusing preconditions with nested specifications

Nested specifications is another (exclusive) feature in JML that can be used to modu-
larize recurring preconditions in local (non-inherited) specification cases. For a concrete
example, consider the following specification cases for the method setSize:

//@ requires width > 0 && height > 0;

//@ requires width * height <= 400; // maz dimension
//@Q ensures this.width = width;

//@Q ensures this.height = height;

//@ also

//@ requires width > 0 && height > 0;

//@ requires width * height > 400;

45

//@ signals_only SizeDimensionException;
void setSize (double width, double height) throws SizeDimensionException {...}

As observed, the first requires clause in each specification case is the same. In
JML, when we have a set of recurring preconditions in each (local and non-inherited)
specification case, we can write out a nested specification case by separating all recurring
preconditions (requires clauses). The refined example of the above specifications is:

//@Q requires width > 0 && height > 0;

//@ {l

//@ requires width * height <= 400; // mar dimension
//@ ensures this.width = width;

//@ ensures this.height = height;

//@ also

//@ requires width % height > 400;

/ /@ signals_only SizeDimensionException;

Q@
(f{)id | }setSize (double width, double height) throws SizeDimensionException {...}
Now the specification cases are placed between the nested specification markers {|
and |}. Note that on top of such nested specification we have the modularized requires
clause that was repeated in each specification case before nesting.
Unfortunately, this JML feature is only available to modularize preconditions. Post-
conditions like ensures clauses are not allowed to be reused like preconditions.

Non-null as default

As discussed in Section 2.4.4, null is not the default value for objects. Instead of writ-
ing several non—null annotations, JML implicitly write them for you. So the non-null
semantics in JML is a form to avoid scattering of annotations. However, it is no perfect.
For example, assume we have a type with a hundred reference types as fields, parameter
types, etc. Assume further that 50% of these reference types can be null. Hence, we
need to write out nullable for all of the nullable types. On the other way around, if
we consider that we have turned-off the non-null by default semantics to be nullable by
default, and we have 50% of type declarations to be non-null, then we need to scatter
such non—null annotations, and therefore having the same problem as before.

Untangling specifications in JML with separate files

Usually, JML specifications are written as annotation comments within .java files. How-
ever, there are some situations in which one may wish to separate specifications from
source code. The first reason for writing specifications in separate files is to prevent
specifications to be quite tangled and scattered (i.e., making it hard to see all of the
code at once) within the source code. Hence, instead of writing specifications in a .java
file, we add them in a corresponding .jml file.

Another important use of such separate files with .jml suffix is when one does not
own the sources for the Java code, but want to specify them. This way, we need to put
the specifications in a different file (i.e., .jml file).

Note that methods cannot contain body in such .jml files. Only the syntactic inter-
faces must be declared. These .jml files work just like Java interfaces.

46

Crosscutting contract specification support

Even though JML is an expressive DbC language for Java that can also be used to
modularize recurrent specification clauses such as requires (preconditions), there is no
support crosscutting contract specification. For example, there is no way to write the
same pre- and postconditions with a quantified statement and apply to some (specific)
methods in a type or set of types.

We discuss this problem in detail in Chapter 3 and solutions with AspectJ (Sec-
tion 2.5) and AspectJML (Section 4), respectively.

2.4.11 Tool Support

In the following we discuss some of the main JML tools available for users.

Static verification

Esc/Java2 [FLL"02] performs compile time verifications to check some common errors
in Java code, such as null dereferences, casting to incompatible types, or indexing an
array out of its bounds. With Esc/Java2 one can check the consistency between the
Java code and the given JML specifications. It issues a list of possible errors after the
program verification. The Esc/Java2 tool uses the theorem prover Simplify [DNS05],
which translates a given JML annotated program into logical formulas [L.SS99].

Similar to Esc/Java2 [FLLT02], the Loop tool [vdBJ01] performs a static verification
of the Java programs annotated with JML specifications. The Loop tool translates Java
classes into high order logic for two theorem provers: PVS [ORS92] and Isabelle [Pau94].
The Jack tool provides an environment for Java and Java Card program verification us-
ing JML annotations. As with the Loop tool, the Jack tool translates the annotated Java
class with JML into high order logic for different theorem provers such as PVS [ORS92].
The Krakatoa [MMUO4] tool uses JML as specification language and produces proof
obligations for the theorem prover Coq [Tea08].

Runtime assertion checking compilers

The jmlc compiler. The JML compiler (jmic) [Che03] was developed at lowa State
University. It is a runtime assertion checking compiler, which converts JML annotations
into runtime checks. Jmlc is built on top of the MultiJava compiler [CLCM00, CMLCO06].
It reuses the front-end of existent JML tools [BCC™05] to verify the syntax and semantics
of the JML annotations and produces a typechecked abstract syntax tree (AST). The
compiler introduces two new compilation passes: the “runtime assertion checker (RAC)
code generation”; and the “runtime assertion checker (RAC) code printing”. The RAC
code generation creates the assertion checker code from the AST. It modifies the abstract
syntax tree to add nodes for the generated checking code. The RAC code printing writes
the new abstract syntax tree to a temporary file.

The wrapper approach [Che03, Section 4.1.3] is a strategy used by the JML compiler
to implement the assertion checking. Each method is redeclared as private with a new
name. Then, a method known as wrapper method is generated with the name of the
original method. Its surrounds the original method (now with a new name) with the
assertion methods. Hence, client method calls the wrapper method, which is responsible

47

for calling the original method with appropriate assertion checks (e.g., precondition
checking). The JML compiler is responsible for controlling the order of execution of
assertion methods.

The ajmlc compiler. The ajmlc compiler [RSLT08][RLL*13c| is an alternative to
the classical jmlc compiler which uses aspect-oriented programming to instrument pre-
and postconditions and check them during runtime. Similar to Cheon [Che03], ajmlc
reuses the front-end of the JML Type Checker [BCCT05]. It traverses the typechecked
AST generating Aspect Assertion Methods (AAM) for each Java method. Then, the
AAM are compiled through the AspectJ compiler ajc or abc which weaves the AAM
with the Java code. The main difference between ajmlc and jmlc is that the former does
not use reflection to implement specification inheritance. This results in an instrumented
bytecode compliant to both Java SE and Java ME applications. Putting in other words,
with ajmlc it is possible to use the main JML features and apply them to other platforms
like Java ME.

Since ajmlc uses AspectJ under the hood, we can say that the wrapper approach
used in ajmlc is automatically performed by the Aspect]J weaver/compiler, whereas in
the standard jmlc, it is managed manually by the code generation. Moreover, the order
of execution and checking of assertions are controlled by the AspectJ weaver during code
instrumentation. In jmlc, it is done by the infrastructure of the JML compiler itself.

2.4.12 Exported JML example

In order to have an homogenous example that can be used in the discussion hereafter,
we provide JML specifications (with some features discussed so far in this chapter) for
the type Package (see our running example in Figure 2.1) in Figure 2.4.

2.5 An Overview of AspectJ

This section gives an overview of the AspectJ language, a general-purpose aspect-
oriented extension to Java. It provides support for implementing crosscutting concerns
(e.g., design by contract) in a modular way. In the following, we present the major
features of AspectJ such as pointcuts and advice.

2.5.1 The Anatomy of an aspect

The main construct of AspectJ is an aspect. Each aspect defines a specific function that
intercepts several classes in a system. Similarly to a class, an aspect can also define
fields and methods and a hierarchy of aspects, through the definition of subaspects.

Aspects may change the static structure of Java programs. With aspects one can
introduce new methods and fields to an existing class. In addition, aspects can be
used to convert checked exceptions into unchecked ones. Also, aspects can change the
hierarchy of a class, for example, making it to extend an existing class with another one.
These features are part of a broader concept called static crosscutting.

Besides the static structure, aspects can also affect the dynamic behavior of a system.
For instance, one can explicitly intercept certain points in the execution flow (called

48

public class Package {

//@ public model JMLDouble dimension;

//@ public model JMLDouble weight ;

protected double width, height, _weight;

//@ protected represents dimension = new JMLDouble(this.width % this.height);
//@Q protected represents weight = new JMLDouble(this._weight);

//@Q public invariant this.dimension.doubleValue() >= 0;
//@ public invariant this.weight.doubleValue() >= 0;

//@Q requires width > 0 && height > 0;

//@ requires width % height <= 400; // maz dimension

//@ ensures this.dimension.doubleValue() = width % height;
//@ signals_only \nothing;

public void setSize (double width, double height){...}

//@ requires width > 0 && height > 0;

//@Q requires width * height <= 400; // maz dimension

//@ requires this.dimension.doubleValue() != width * height;
//@ ensures this.dimension.doubleValue() = width % height;
//@ signals_only \nothing;

public void reSize(double width, double height){...}

//@Q requires width > 0 && height > 0;

//@Q requires width * height <= 400; // maz dimension

//@ signals_only \nothing;

public boolean containsSize (double width, double height){...}

//@ signals_only \nothing;
public double getSize (){...}

//@Q requires weight > 0;

//@Q requires weight <= 5;

//@Q ensures this.weight.doubleValue() = weight;
//@ signals_only \nothing;

public void setWeight (double weight) {...}

Figure 2.4: The JML pre- and postconditions for Package class of Figure 2.1.

join points), and add behavior before, after, or around (instead of) the behavior of the
intercepted join point.

Commonly an aspect composes several join points by means of a pointcut. Pointcuts
select join points and context (values) at these join points. Once pointcuts are identified,
the aspect define advice that execute when the join points (intercepted via pointcuts)
are reached.

In the following sections, we discuss the main AspectJ constructs and exemplify how
they can be used in practice. More detail can be found elsewhere [KHH"01, Lad03].

2.5.2 The Join Point Model

The most fundamental concept in the design of any aspect-oriented language is the
join point model. According to Kiczales [KHHT01], the join point model provides the
common frame of reference that makes it possible to define the structure of crosscutting
concerns.

In AspectJ, join points are well-defined points in the execution of the program.
AspectJ provides several kinds of join points, but this work discusses only two of them:
method (or constructor) execution and method (or constructor) call join points. The

49

former is on the declaration/server side itself. In other words, the execution join point is
on the method (or constructor) body. On the other hand, the latter is located at many
parts of the program, which are the places that are calling the methods. In terms of
AspectJ and for the purposes of this thesis, these join points represent the most useful
and commonly used points to inject the crosscutting behavior.

All join points also have a context associated with them. For example, a call to a
join point in a method has the caller object, the target object, and the arguments of
the method available as the context.

2.5.3 Pointcut Designators

In AspectJ, pointcut designators are used to identify collections of join points in the
program flow. For example, the pointcut designator:

call (void Package.setSize (double, double))

identifies all calls to the method setSize available on Package objects (Figure 2.1),
whereas the pointcut designator:

execution(void Package.setSize (double, double))

identifies all the executions of the method setSize defined in Package class.
Pointcuts designators can also be composed using pointcut operators, so for example:

call (void Package.setSize (double, double)) ||
call (void Package.setWeight (double))

identifies all calls to be either setSize or setWeight methods of Package class.

In summary, AspectJ provides one unary operation (!) and two binary operators (||
and &&) to form complex matching rules while combining several kinds of pointcuts.
The unary operator ! allows the matching of all join points except those specified by
the pointcut itself. For example, the following pointcut composition:

call(void Package.setx*(..)) &&
I'call(void Package.setWeight (double)) ||

identifies all calls to any set-like method of Package object, but excluding method
setWeight. We discuss AspectJ wildcarding using * or .. later in this section.

In relation to binary operators, the combination of two pointcuts with the || operator
causes the selection of join points that match either of the pointcuts, whereas combining
them with an && operator selects join points matching both pointcuts.

In AspectJ, pointcuts can be either anonymous or named. Anonymous pointcuts,
like anonymous classes, are defined at the place of their usage, such as a part of the
advice declaration (we discuss Aspect]’s advice after pointcuts).

Programmers can define their own pointcut designators by a name:

pointcut change(): call(void Package.setSize (double, double)) ||
call (void Package.setWeight (double))

This defines a pointcut named change that designates calls to methods that changes
Package’s dimension or weight.

Note that the name of the pointcut is at the left of the colon. Also, a pointcut can be
declared with any Java access modifier such as public or private as illustrated bellow:

50

Table 2.1: Examples of method signatures that can be used in pointcut designators.

Signature Pattern Matched Methods

public void Package.set™(*) | Any public method in the Package class with the name starting
with set that returns void and takes a single argument of any type.

public void Package.*() Any public method in the Package class that returns void
and takes no arguments.

public * Package.*() Any public method in the Package class that takes no arguments
and return any type.

public * Package.*(..) Any public method in the Package class that takes any number
(including zero) and type of arguments and returns any type

* Package.®(..) Any method in the Package class. This matches methods with public,
protected, private, and default access.

KAE(L) Any method regardless or return type, defining type, method name,
and arguments.

public Package.new() A public constructor of the Package class taking
no arguments.

public Package.new(..) A public constructor of the Package class taking
any number and type of arguments.

public pointcut change(): call(void Package.setSize (double, double)) ||
call (void Package.setWeight (double))
private pointcut setSizeCall (): call(void Package.setSize (double, double))
The general form of a named pointcut syntax is as follows:

[Privacy] pointcut Pointcut — Ident ([Args]) : Pointcut — Expression

Named and anonymous pointcuts

In AspectJ, pointcuts can be either anonymous or named. Named pointcuts are dec-
larations that can be referenced/reused from several places. Anonymous pointcuts, on
the other hand, cannot be reused. In order to see how anonymous pointcuts are used in
practice, please see Section 2.5.4.

Property-based primitive pointcut designators

The previous pointcut designators are all based on the explicit enumeration of a set of
method signatures (named-based primitive pointcut designators). AspectJ also provides
an expressive way to select join points in terms of method properties instead of its fully
qualified-signature. As an example, consider the following pointcut definition:

call(void Package.setx(..))

It identifies calls to any void method defined in Package, whose name begins with
“set” like setSize and setWeight. More options of method signature patterns that can
be used within pointcuts are illustrated in Table 2.1.

51

Table 2.2: Examples of other useful AspectJ pointcut designators.

Pointcut

Description

args(double, double)

Any method or constructor join point where the first and second
arguments are of type double.

args(double, .., double)

Any method or constructor where the first and last arguments
are of type double.

args(double, *)

Any method or constructor where the first argument is of type
double and the second is of any type.

args(..) Any method or constructor that takes any number
(including zero) and type of arguments.

within(Package) Any join point inside the Package class’s lexical scope including
inside any nested classes.

within(Package+) Any join point inside the lexical scope of the Package class
and its subclasses including inside any nested classes.

within(*) Any join point inside the lexical scope of any type and its

subclasses including inside any nested classes.

withincode(* Package.setSize(..))

Any join point inside the lexical scope of any setSize() method
of the Package class.

Any join point where this instanceof Package evaluates

this(Package) to true. This selects all join points, such as methods calls
where the current execution object is Package or one of its
subtypes, like GiftPackage.
Any join point where the object on which the method is being
target (Package) called is instanceof Package!. This selects all join points such as

method calls, where the target object is Package or its
subtypes like GiftPackage.

cflow(call(* Package.setSize(..)))

All join points in the control flow of call of any setSize()
method in Package, including the execution of the
setSize method itself.

cflowbelow(call(* Package.setSize(..)))

All join points in the control flow of call of any setSize()
method in Package, but excluding the execution of the
setSize method itself.

@annotation(AnnotationType)

Any join point inside the lexical scope of any type marked with
the AnnotationType annotation including nested classes.

Exposing context in pointcuts

In AspectJ, pointcut designators can also be used to expose part of the context associated
with the intercepted join points. In the following code, the pointcut setSizeCall exposes
three values from calls to setSize: the target object denoted by the target pointcut
designator, and the two double arguments width and height denoted by the args pointcut

designator.

pointcut setSizeCall (Package p, dobule w, double h):
call (void Package.setSize (double, double))
&& target (p) && args(w, h);

In Table 2.2, we describe both args and target pointcuts, among other useful point-

cut designators in AspectJ.

52

Matching static methods

AspectJ pointcuts also select static methods, but trying to match a call to a static
method using a combination of call and target pointcuts (or execution and this point-
cuts) will fail. The problem is that there is no target object in this case; the target
designator becomes unbound. What is needed is just referring to the name of the
declaring type in call or execution pointcut. For example, the following pointcut

pointcut pc(): execution(x Package.*(..));

will match both static and instance methods in Package class. If only static methods
are wanted to be matched, the following refined pointcut

pointcut pc(): execution(static * Package.x(..));

will do that. Note the static modifier used within the execution pointcut. This serves
to filer the join points to be static methods in Package class.

If we want to exclude static methods, we can use the unary operator ! to negate
static methods. Hence, the following pointcut

pointcut pc(): execution(!static * Package.x(..));

will exclude static methods from being selected.

2.5.4 Advice

The pointcuts discussed so far are useful to pick out join points. But they do not perform
anything else besides selecting join points. In order to actually implement crosscutting
behavior, AspectJ uses a special construct called advice. Aspect] has several different
kinds of advice that define additional code that should run at join points. Each form of
advice declaration follows the same basic structure:

[strictfp | Advice — Specification [throws TypeList] : Pointcut — Expression {
body of advice

}

In AspectJ advice, no other modifier besides strictfp is allowed. For example, vis-
ibility modifiers are not allowed since advice cannot be called explicitly. The optional
throws clause indicates the exceptions that the body of the advice may throw. Advice
may only throw exceptions compatible with the join points which are advised. For in-
stance, advice cannot throw a checked exception that the client executing at the join
point is not expecting.

In the following we discuss each kind of AspectJ advice. The examples will be
carried out by design by contract. DbC is one of the recurring crosscutting concerns
that AspectJ can modularize and deal with [KHHT01].

Before advice

Before advice executes before the action of the advised join points. So, if the before
advice is associated with a call pointcut, then the advice runs just before the “call” of
the advised join points. For an execution pointcut, the advice takes action just before
the “execution” of the advised join points.

As an example, recall the preconditions for the method setSize (see Figure 2.4).

53

//@Q requires width > 0 && height > 0;
//@ requires width % height <= 400; // mazr dimension
public void setSize (double width, double height) {...}

Consider further the following pointcut and before advice declarations in AspectJ
used to check the same above preconditions:

pointcut setSizePre(double w, double h):
execution(void Package.setSize (double, double)) && args(w, h);
before(double w, double h): setSizePre(w, h){
boolean pred = (w > 0 && h > 0) && (w x h <= 400);
Checker. Precondition (pred);

}

This before advice intercepts executions of method setSize and checks its precon-
ditions before its execution. If we take a closer look at Figure 2.4, we can observe
that besides setSize, the methods reSize and containsSize have the same preconditions.
Although JML is an expressive DbC language with constructs to offer modularity op-
portunities to deal with contracts, such recurrent preconditions cannot be written only
once and applied to these three methods. In Aspect], the above pair of before advice
and pointcut can be rewritten to do this job as follows:

pointcut sizes (double w, double h):
execution(void Package.* Size (double, double)) && args(w, h);
before(double w, double h): sizes(w, h){
boolean pred = (w > 0 && h > 0) && (w = h <= 400);
Checker. Precondition (pred);

}

Now a pointcut named sizes selects all methods ending with “Size” and have two
arguments of type double. This pointcut is used by the before advice in order to check
the recurrent preconditions for setSize, reSize, and containsSize methods.

After returning advice

After returning advice executes after the successful completion of advised join points.
In terms of DbC, such advice can be used to check JML normal postconditions. Recall
the following normal postcondition, specification in JML, for the method setSize:

//@ ensures this.dimension.doubleValue () = width * height;
public void setSize (double width, double height) {...}

The following pointcut and after-returning advice declarations in AspectJ used to
check the above normal postcondition specification:

pointcut setSizeNPost (Package obj, double w, double h):
execution(void Package.setSize (double, double))
&& args(w, h) && this(obj);
after (Package obj, double w, double h) returning
setSizeNPost (obj, w, h){
boolean pred = obj.dimension.doubleValue() = w * h;
Checker.nPostcondition (pred);

o4

This is the AspectJ code used to check the JML normal postcondition specification
of method setSize. Note that if the method throws an exception, this advice does not
execute. Also, if we need to use return value of and advised join point, AspectJ offers
the following syntax:

after () returning (<ReturnType returnObjectldent >)

This is useful for non-void methods. In addition, AspectJ uses this feature to check
JML’s result expression.

The method reSize contains the same normal postcondition. Thus, the following As-
pectJ pointcut-advice can be used to check the same normal postcondition specification
for both setSize and reSize methods in Package.

pointcut sizeChange(Package obj, double w, double h):
(execution(void Package.setSize (double, double))
execution(void Package.reSize(double, double)))
&& args(w, h) && this(obj);

after (Package obj, double w, double h) returning

sizeChange(obj, w, h){
boolean pred = obj.dimension.doubleValue() = w * h;
Checker.nPostcondition (pred);

After throwing advice

AspectJ offers the use of after throwing advice to take action when the advised join
point throws an exception. In terms of DbC, such advice can be used to check JML
exceptional postconditions. Consider the following JML signals only clause for setSize:

//@Q signals_only \nothing;
public void setSize (double width, double height) {...}

The following AspectJ pair of pointcut and advice can be used to forbid the method
setSize to throw exceptions like the above JML signals only clause:

pointcut setSizeXPost(Package obj, double w, double h):
execution(void Package.setSize (double, double))
&& args(w, h) && this(obj);
after (Package obj, double w, double h) throwing
setSizeXPost (obj, w, h){
boolean pred = false;
Checker.xPostcondition (pred);

Besides the method setSize, all methods in Package have this constraint about not
throwing exceptions. Hence, in AspectJ, we can write just a single pair of pointcut-
advice to enforce that:

pointcut allMeth (): execution(x Package.x(..));
after () throwing : allMeth (){

boolean pred = false;

Checker. xPostcondition (pred);

}

95

Note that if the method terminates normally without throwing any exception, this
advice does not execute. Also, if needed, we can access the exception thrown; AspectJ
offers the following syntax in order to do that:

after () throwing (<ExceptionType exceptionObjectIdent >)

To exemplify, consider the following JML exceptional postcondition for method
setSize

//@ signals (SizeDimensionException) width % height > 400;
public void setSize (double width, double height)
throws SizeDimensionException {...}

and its implementation using AspectJ:

pointcut setSizeXPost(Package obj, double w, double h):
execution(void Package.setSize (double, double))
&& args(w, h) && this(obj);
after (Package obj, double w, double h)
throwing (SizeDimensionException e) : setSizeXPost(obj, w, h){
boolean pred = w *x h > 400;
Checker.xPostcondition (pred);

This advice will be executed only if the method setSize throws a SizeDimensionException;
otherwise, the advice will not be executed.

Around advice

Around advice is the unique kind of advice that has the ability to surround the inter-
cepted join points. That is, an around advice can bypass the execution of the intercepted
join point completely, or to execute the join point with the same or different arguments
and with the same or different behavior. In summary, typical usages of around advice
are as follows:

e perform additional logic before and after the advised join point (e.g., pre- and
postcondition checking);

e bypass the original operation and perform some alternative logic with the same or
different arguments;

e surround the advice code with a try/catch block to perform an exception handling
functionality.

With these features, we can observe that around advice is the most powerful form
of advising that can always be used instead of before or after advice or even replacing
both.

If within the around advice one want to execute the original behavior behind the
intercepted join point, the use of a special keyword proceed in the body of the advice
is needed. If the call to proceed is missing, the original behavior of the intercepted join
point will be bypassed.

To illustrate the use of around advice, please consider first the following JML pre-
and postconditions in JML for method setSize:

56

//@Q requires width > 0 && height > 0;

//@ requires width % height <= 400; // mazr dimension

//@ ensures this.dimension.doubleValue () = width * height;
public void setSize (double width, double height) {...}

In AspectJ, one can implement such pre- and (normal) postcondition in JML using
the following code in AspectJ:

pointcut setSizePreNPost (Package obj, double w, double h):
execution(void Package.setSize (double, double))
&& args(w, h) && this(obj);
void around(Package obj, double w, double h)
setSizePreNPost (obj, w, h){
boolean prePred = w > 0 && h > 0;
Checker. precondition (prePred);
proceed(obj, w, h);
boolean nPostPred = obj.dimension.doubleValue() = w % h;
Checker.nPostcondition (nPostPred);

Note that the call to proceed method separates the code related to pre- and post-
condition. The code before proceed denotes the precondition checking, whereas the
code after proceed denotes normal postcondition checking, respectively.

Anonymous pointcut in advice

All pointcuts used so far are named, we can refer to them or reuse in other pointcuts.
In AspectJ, we can use a second category of pointcuts that are unnamed or anonymous.
Consider the following before advice using an anonymous pointcut:

before(double w, double h):
execution(void Package.setSize (double, double)) && args(w, h){
boolean pred = (w > 0 & h > 0) && (w * h <= 400);
Checker. Precondition (pred);

In this before advice, there is no named pointcut referred within it. So if we write
another advice that uses the same join points captured by the above execution pointcut,
we need to write out them entirely again. The programmer is free to choose which kind
of pointcuts to use, named or anonymous. But the former clearly offers maintainability
advantages over the latter.

Ordering of advice

As observed, we can have multiple advice declarations intercepting the same set of join
points. When this happens, AspectJ uses the following precedence rules to determine
the order in which the advice is applied:

e the aspect with higher precedence executes its before advice intercepting the same
set of join points before the aspect with lower precedence;

e the aspect with higher precedence executes its after advice intercepting the same
set of join points after the aspect with lower precedence;

57

Program flow

Highest Highest precedence Join point
precedence
Lowest
precedence
Lowest
precedence
Join point
Lowest
precedence v
Highest
Join point precedence
before advice around advice after advice

Figure 2.5: Ordering the execution of advice and join points. The darker areas represent
the higher-precedence [Lad03].

e the around advice in the higher-precedence aspect encloses the around advice.

Figure 2.5 illustrates the precedence rules. When we have multiple advice in one
aspect that apply to the same join points, the precedence is determined lexically. That
is, before advice that appears first has the precedence, whereas the after advice that
appears latter has the highest precedence. However, we can have multiple advice ad-
vising the same set of join points that are declared in different aspect declarations. In
this case, AspectJ provides a special construct declare precedence for explicitly aspect
precedence controlling. For instance, in the below declare precedence, the aspect Al
has a higher precedence over A2.

declare precedence : Al, A2;

2.5.5 Accessing Join Point Context via Reflection

AspectJ provides reflective access to join point context through three special constructs

available in each advice body. The special variables are: thisJoinPoint, thisJoinPointStaticPart,
and thisEnclosingJoinPointStaticPart. The constructs behave like the special variable

this in plain Java. Through reflective access, one can get information such as the name

of the current advised method, source location (line number). Also, we call methods or

access fields of the object type owner of the advised method.

pointcut setSizePreNPost (double w, double h):
execution(void Package.setSize (double, double)) && args(w, h);

void around (Package obj, double w, double h)

setSizePreNPost (obj, w, h){

Package obj = (Package)thisJoinPoint.getThis ();

boolean prePred = w > 0 && h > 0;

Checker. precondition (prePred);

proceed (obj, w, h);

boolean nPostPred = obj.dimension.doubleValue() = w #* h;

Checker.nPostcondition (nPostPred);

58

Instead of exposing the Package instance through parameterization as before, we
access it now through the thisJoinPoint special variable.
For more information about the reflective API of AspectJ, please refer to [Lad03].

2.5.6 Static Crosscutting

Besides modifying the dynamic behavior of a program using advice, AspectJ can also
affect the static structure of a program. This mechanism is known as static crosscutting
mechanism. We quickly introduce some static crosscutting features here. For more
information, please refer to [Lad03].

Member introduction

Member introduction, also known as inter-type declaration, is the ability to add members
to an existing type without being invasive. Suppose we want to add the following method
to type Package that is a part of the design by contract concern:

private void Package.precondition (boolean pred) {
if (!pred){
throw new JMLPreconditionError ();

}
}

Note that preceding the name of the method, we add the target type name which will
be declared. Physically, this is located within any aspect declaration, but in practical
terms, we can use such method just like if it was declared within type Package. AspectJ
also supports field introduction.

Modifying the class hierarchy

With AspectJ, we can also change the hierarchy structure of a class. To this end, AspectJ
provides the declare parents feature. Suppose that the GiftPackage in Figure 2.1 has
no supertype (no extends clause). Suppose further that we want to make this type to
be a subtype of Package, but without being invasive (changing the GiftPackage for that).
Hence, we can use the following declaring parents to do the job:

declare parents: GiftPackage extends Package;

Introducing compile-time errors and warnings

AspectJ provides special constructs in a static crosscutting manner to declare compile-
time errors and warnings. With this mechanism, one can implement behavior similar
to the #error and #warning preprocessor directives supported in C/C++ language pre-
Processors.

The AspectJ declare error construct provides a way to declare a compile-time error.
The error is issued when a given pointcut expression is satisfied. To exemplify this
feature, let us consider that in Package class no methods can assign to fields except

59

set-like methods of constructors. The following AspectJ declare error can implement
this rule:

declare error: set(x Package.x) && !withincode(* Package.setx(..))
&& !'withincode(Package .new(..)): "assignment forbidden!";

The pointcut within declare error states that any Package field assignment (denoted
by the AspectJ set pointcut [Lad03]) that is not within a set-like method or constructor
(expressed using withincode pointcut [Lad03]), should issue the compile-time error
message “assignment forbidden”.

To issue a warning instead of a compile-time error, we just need to adapt the above
declaration to declare warning. More details can be found in [Lad03].

2.5.7 Privileged aspects

The Java visibility rules are also applied to aspects. However, there are situations where
an aspect needs to access private or protected members of types. Hence, to allow this
kind of access, the AspectJ aspects must be declared privileged. In order to illustrate
that, consider the following aspect declaration accessing the protected fields width and
height of Package class (see Figure 2.4):

privileged public aspect PrivateAccess {
pointcut sizeChange(Package obj, double w, double h):
(execution(void Package.setSize (double, double))
execution(void Package.reSize(double, double)))
&& args(w, h) && this(obj);
after (Package obj, double w, double h) returning
sizeChange(obj, w, h){
boolean pred = (obj.width = w) && (obj.height = h);
Checker.nPostcondition (pred);
}
}

The above privileged aspect can access the fields width and height, even though they
are protected members of the Package class. The used after advice checks if such fields
are equal to those values passed as arguments (which are exposed by the advice).

It is important to note that privileged aspects can even access private members.

2.5.8 @AspectJ

In relation to AspectJ, what is new today is the presence of the @AspectJ alternative
syntax. The @Aspect]J (often pronounced as “at AspectJ”) syntax was conceived as a
part of the merge of standard AspectJ with AspectWerkz [Bon]. This merge enables
crosscutting concern implementation by using constructs based on the metadata annota-
tion facility of Java 5. The main advantage of this syntactic style is that one can compile
a program using a plain Java compiler, allowing the modularized code using AspectJ to
work better with conventional Java IDEs and other tools that do not understand the
traditional AspectJ syntax. The Spring Framework is an example that heavily uses the
alternative AspectJ syntax [Lad09].

60

| 4 S
@Aapect
publis (papect /Pracing { public class Tracing (

-
public pointcut traced() :

-
- -
SaedEEERTE * 1. .31 @Pointcut ("execution(* *(..))")

public void traced() {}
| 3

botoss())+ txneed() { “@Before ("traced()")

3 e public void trace(JoinPoint jp) {

} }

Figure 2.6: The mapping between the traditional and @AspectJ syntax [Lad09].

Figure 2.6 illustrates the general mapping between the traditional and the @AspectJ
syntax. The general idea behind the design of the @AspectJ syntax is to find a suit-
able Java counterpart and annotate it to express the traditional AspectJ feature. For
instance, instead of using the aspect keyword, we use an ordinary Java class annotated
with an @Aspect annotation. This tells the AspectJ/ ajc compiler to treat the class as
an aspect declaration. Similarly, the @Pointcut annotation marks the empty method
traced as a pointcut declaration. The expression specified in this pointcut is the same
as the one used in the standard AspectJ syntax. The name of the method serves as the
pointcut name. Finally, the @Before annotation marks the method trace as a before
advice. The body of the method is used to modularize the crosscutting concern/advising
code. This code is executed just before the matched join point’s execution.

Note that the method body for a concrete pointcut is empty, because the method is
just a placeholder, for the @Pointcut annotation, without any significance for the code
inside it. Therefore, any attempt to write a body for a pointcut method in @AspectJ
style raises a compile-time error.

2.5.9 Exported AspectJ example

Figure 2.7 presents the AspectJ code, using the feature discussed in this section, for
implementing the crosscutting contracts (identified in this section) illustrated in Fig-
ure 2.4).

2.5.10 AspectJ Compilers/Weavers

This section briefly presents the two well-known AspectJ compilers used by the AspectJ
community (academic and industry).

ajc compiler

The ajc compiler is the standard (official) compiler of the AspectJ language [KHH™01].
In early versions, ajc was a pre-compiler written in Java. It used to compile aspects
and classes together and to produce Java source code. Such a Java code was usually
referred as a “weave”, then ajc used to invoke javac to actually compile the “weave” into
bytecode. Nowadays, the ajc compiler generates Java bytecode directly from weaving.

61

0O~ O Ui W

I I R R N R N e e e e g S
DU WD OOV Uk W~ OO

public aspect PackagePreconditions {

pointcut sizes (double w, double h):

execution (void Package.x Size(double, double)) && args(w, h);

before (double w, double h): sizes(w, h){

boolean pred = (w > 0 && h > 0) && (w * h <= 400);

Checker . Precondition (pred);

}
}

public privileged aspect PackageNPostconditions {
pointcut sizeChange (Package obj, double w, double h):
(execution (void Package.setSize (double, double))
execution (void Package.reSize(double, double)))
&& args(w, h) && this(obj);
after (Package obj, double w, double h) returning :
sizeChange (obj, w, h){
boolean pred = obj.dimension.doubleValue() = w * h;
Checker.nPostcondition(pred);

}

public aspect PackageXPostconditions {

pointcut allMeth (): execution(x Package.*(..));
after () throwing : allMeth (){

boolean pred = false;

Checker . xPostcondition (pred);

}
}

Figure 2.7: The AspectJ implementation for the JML crosscutting contracts presented
in Figure 2.4.

The ajc compiler is also integrated in the Eclipse environment through the AJDT
plugin [AJD14] (AspectJ Development Tools, as an extension of the JDT, Java Devel-
opment tools).

Hilsdale and Hugunin [HH04] provide more details about how the ajc compiler weaves
aspects together with classes.

abc compiler

The AspectBench Compiler (abc) is an academic compiler [ACH'05] that implements
the full AspectJ language [KHHT01]. The compiler was conceived as a workbench to
facilitate easy experimentation with new language features and implementation tech-
niques. In particular, new features for AspectJ have been proposed that require exten-
sions in many dimensions: syntax, type checking and code generation, as well as data
flow and control flow analyses. Experiments conducted in this dissertation demonstrated
that abc produces code of better quality if compared with the ajc compiler.
For more details about the abc compiler please refer to [ACHT05].

2.6 Chapter Summary

In this chapter, we presented the main concepts related to this thesis. As presented,
JML is a formal behavioral interface specification language conceived to Java. As with
Eiffel [Mey92b], JML employs the design by contract style to the Java programming
language. JML supports a variety of features like method and type specifications, spec-
ification inheritance and syntax for visibility modifiers to achieve information hiding

62

in pre- and postcondition specifications. Afterwards, we discussed the aspect-oriented
programming concepts using the most well-known AOP language called AspectJ. We
showed how AspectJ tackles the crosscutting concern modularization problem using by
means of pointcuts and advice. We discussed in practice how AspectJ can be used to
check DbC features like pre- and postconditions. Also, we discussed the new AspectJ
syntax that is based on Java 5 annotations. This new syntax is called @AspectJ.

63

Chapter 3

Design by Contract and Modularity
Problems

In this chapter we discuss the existing modularity problems when using design by con-
tract in practice. To this end, we use the following criteria:

e modular reasoning;

e documentation;

e crosscutting contract specification;
e information hiding and RAC.

We use this criteria to analyze DbC/JML [LBR06] and AOP /AspectJ [KLM 97, KHH*01]
languages in terms of design by contract and modularity. This criteria is extracted from
the works [Ste06, BRLM11, BEMO05, Par72, Parl1].

In the following, we discuss the main modularity problems related to the design by
contract languages and using the criteria listed above.

3.1 The Modular Reasoning Criterion

If we consider plain JML/Java without AspectJ, the example in Figure 2.4 supports
modular reasoning [Mey00, Lea06, LN13, RLL*13b] (see our modular reasoning defini-
tions 2.1.1 and 2.1.2). For example, suppose one wants to write code that manipulates
objects of type Package. One could reason about Package objects using just Package’s
contract specifications in addition to ones inherited (expanded modular reasoning) from
its supertypes (if any) [DL96, Lea06, LN13].

Consider now the AspectJ crosscutting contract implementation of the Package class
(see Figure 2.7). In plain AspectJ, advice declarations are applied by the compiler
without explicit reference to aspects from a module or a client module; therefore by
definition, modular reasoning about the Package module does not consider any of the
advice declarations in the PackageContracts aspect. The aspect behavior is only available
via non-modular reasoning or global reasoning (see our Definition 2.1.3). That is, in
AspectJ, a programmer must consider every aspect that refers to the Package class in
order to reason about the Package module. So the answer to the question “Which

64

O UL W N

aspect Tracing {
void around (): execution(void Package.*(..)) {
proceed () ;
System.out.println ("Exiting"+thisJoinPoint);

}
}

Figure 3.1: The tracing crosscutting concern implementation in AspectJ.

advice/contract applies to the method setSize or setWeight in Package?” cannot (in
general) be answered modularly. Therefore, a programmer cannot study the system one
module at a time [Par72, BEMO05, ITB11, SGR*10, BRLM11, RLL*13b].

3.2 The Documentation Criterion

In a design by contract language like JML, the pre- and postconditions and invariant
specifications are typically placed directly in or next to the code they are specifying.
Hence, contracts increase system documentation [Mey00, BEMO05, Parl1]. In AspectJ,
however, the advising code (that checks contracts) is separated from the code it ad-
vises and this forces programmers to consider all aspects in order to understand the
correctness of a particular method. In addition, the physical separation of contracts
can be harmful in the sense that an oblivious programmer can break a method’s pre-
or postconditions when these are only recorded, through syntactic constructs, in as-
pects [Mey00, BEMO05, Parl1].

Consider now another crosscutting concern, say tracing. Figure 3.1 shows the mod-
ularization of tracing by the aspect Tracing. It prints a message after the successful
execution of any void method in the Package class (see Figure 2.4) when called. For this
concern, different orders of composition with other aspects (that check contracts) lead to
different behaviors/outputs. Hence, the around advice (Figure 3.1) could execute either
before or after the after—returning or after—throwing advice we have in Figure 2.7.
Without either documentation or the use of Aspect]’s declare precedence [KHH'01]
to enforce a specific order on aspects, it is quite difficult—perhaps impossible-to under-
stand the order in which pre- and postconditions will be executed until they are actually
executed.

Another problem caused by the lack of documentation implied by separating con-
tracts as aspects is discussed by Balzer, Eugster, Meyer’s work [BEMO05]. They ar-
gue that programmers become aware of contracts only when using special tools like
AJDT [KMO5]; they are more likely to forget to account for the contracts when chang-
ing the classes.

65

//@Q requires width > 0 && height > 0; //@ signals_only \nothing;
//@ requires width * height <= 400; public void setSize(..){...}
public void setSize(..){...}

//@ signals_only \nothing;

//@ requires width > 0 && height > 0; public void reSize(..){...}

//@ requires width * height <= 400;

public void reSize(..){...} //@ signals_only \nothing;
public boolean containsSize (..){...}

//@Q requires width > 0 && height > 0;

//@Q requires width * height <= 400; //@ signals_only \nothing;

public boolean containsSize(..){...} public double getSize (){...}

(1) //@ signals_only \nothing
public void setWeight(..) {...}
(3)
//@Q ensures this.dimension.doubleValue () == width * height;

public void setSize(..){...}

//@Q ensures this.dimension.doubleValue() = width * height;
public void reSize(..){...}

(2)

Figure 3.2: Crosscutting contracts in Package’s specifications (see Figure 2.4). Scenario
(1) illustrates the crosscutting preconditions, (2) illustrates the crosscutting normal
postconditions, and (3) the crosscutting exceptional postconditions.

3.3 The Crosscutting Contract Specification Crite-
rion

Balzer, Eugster, and Meyer’s study [BEMO05] helped to crystallize our thinking about
the goals of a DbC language and about the parts of such languages that provide good
documentation, modular reasoning, and contracts in general without obliviousness. One
straightforward way to avoid the previous problems discussed is to use a plain DbC
language like JML without AspectJ. As discussed in Section 2.4.10, a DbC language
like JML can be used to modularize some contracts. For example, the invariant clauses
(declared in Package) can be viewed as a form of built-in modularization. That is,
instead of writing the same pre- and postconditions for all methods in a type and its
subtypes, we declare a single invariant that modularizes those pre- and postconditions.
Also, specification inheritance is another form of modularization. In JML, an overriding
method inherits method contracts and invariants from the methods it overrides (see
Sections 2.4.8 and 2.4.10 for more details).

However, DbC languages (like JML) do not capture all forms of crosscutting contract
structure [KHH01, HK02] that can arise in specifications. For example, consider the
JML specifications illustrated in Figure 2.4. In this example there are three scenarios
(summarized in Figure 3.2) in which crosscutting contracts are not properly modularized
with plain JML constructs:

(1) we cannot write preconditions constraining the input parameters on the methods

setSize, reSize, and containsSize (in Package) to be greater than zero and less than
or equal to 400 (the package dimension) only once and apply them to these or other

66

methods with the same design constraint;

(2) the two normal postconditions of the methods setSize and reSize of Package are the
same. They ensure that the dimension model field is equal to the multiplication
of the method argument width with argument height; however, we cannot write a
simple and local quantified form of these postconditions and apply them to the
constrained methods; and

(3) the exceptional postcondition signals_only \nothing must be explicitly written for
all methods in Package which forbid exceptions; there is no way to modularize such
a JML contract in one place and apply it to all constrained methods.

In relation to AspectJ, as discussed in Section 2.5 and observed in Figure 2.7, it
supports crosscutting contract implementation in a modular way. By means of pointcuts
and advice combined with quantification, we can apply a crosscutting contract to several
join points.

3.4 The Information Hiding and RAC Criterion

Although there is a set of rules for information hiding in specifications [LMO07] and
although JML [LBRO6] supports visibility modifiers, existing runtime assertion checker
(RAC) tools (e.g., Eiffel’s RAC [Mey92b]) violate those information hiding rules during
runtime assertion checking and error reporting.

The problem is the way contemporary RACs implement runtime assertion checks for
method calls. Such RAC compilers operate by injecting code at the supplier side, thus
checking each method’s precondition at the beginning of its code, and injecting code to
check the method’s postcondition at the end of its code. Since supplier-side checks do
not take into account what kind of client (i.e., privileged or non-privileged) is calling a
method, a RAC checks all the specifications regardless of visibility. Therefore, we say
that a RAC that checks all the specifications at supplier side as overly-dynamic. For
example, consider the following specification cases for method setSize in Package (we
refined the specs for setSize shown in Figure 2.4 to add a protected specification case):

//@ requires width > 0 && height > 0;

//@ requires width % height <= 400; // maz dimension
//@ ensures this.dimension.doubleValue() = width % height;
//@ signals_only \nothing;

//@ also

//@Q protected behavior

//@Q requires width > 0 && height > 0;

//@ requires width % height <= 600; // maz dimension
//@ ensures this.width = width;

//@ ensures this.height = height;

//@ signals_only \nothing;

public void setSize (double width, double height){...}

If we use the standard JML compiler (jmlc) to compile these specification cases for
setSize method to runtime checks, we have the following code instrumentation:

67

public void setSize (double width, double height) {
checkPre$setSize$Package(width, height))

this.width = width;

this.height = height;

checkNPost$setSize$Package(width, height))

}

public void checkPre$setSize$Package(double width, double height){
boolean pred = ((width > 0 && height > 0) && (width % height <= 400))

|| ((width > 0 && height > 0) && (width * height <= 600));

if (!pred)
throw new JMLEntryPreconditionError();

}

public void checkNPost$setSize$Package (double width, double height) {
// check NPost when corresponding precondition hold
if ((width > 0 && height > 0) && (width * height <= 400)){
boolean pred = this.dimension.doubleValue() = width % height;
if (!pred)
throw new JMLExitNormalPostconditionError();
}

if ((width > 0 && height > 0) && (width % height <= 600)){
boolean pred = (this.width = width) && (this.height = height);
if (!pred)
throw new JMLExitNormalPostconditionError ();
}

}

As mentioned, due to the overly-dynamic checking, in this code instrumentation, all
the specification cases are checked during runtime regardless of visibility rules.

According to the rules discussed in Section 2.4.6, the first specification case is of kind
lightweight and the visibility is the same as the method itself; public in this case. The
second specification case is of kind heavyweight with a protected visibility, hence it is
allowed to mention protected fields in ensures clauses. This is intended for privileged
clients such as subtypes. Also, the protected specification case weakens the precondition
to handle bigger packages until 600cm? as a maximum dimension. Of course subtypes
of Packages can refine this inherited precondition to handle even bigger packages, but by
default any Package’s subtype can at least handle packages until 600cm? as the maximum
dimension.

Consider now the following public client code:

public class PackageClient {
public void setSizePackageClient (Package p) {
p.setSize (200, 2);

}
}

Consider further that the implementation of setSize mistakenly increments the width
by 1. In this scenario, we got the following normal postcondition error in the classical
JML RAC, when using the above JML specifications for setSize:

Exception in thread "main"

68

org.jmlspecs.ajmlrac.runtime. JMLExitNormalPostconditionError:
by method Package.setSize regarding specifications at
File "Package.java", line 23 (Package.java:23), when
‘this.width’ is 201.0
‘this.height’ is 2.0
‘this.dimension’ is 402.0
‘width’ is 200.0
‘height’ is 2

As can be seen, in this error output, the protected fields width and height are mentioned
(see the shadowed part). However, these fields are not meaningful to public clients,
as they are not visible. So, supplier side checking in JML makes it difficult to im-
plement client-oriented error reporting that only shows clients error reports that make
sense at the call site. This problem also occurs in other specification languages like
Eiffel [Mey92b], Spec# [BLS05], and Code Contracts [FBL10].

Indeed, another problem is that some expected violations are missed due to the
overly-dynamic checking. According to Leavens and Miiller’s rules [LMO7], only the
public specification case should be checked against the method call p.setSize (200,2) in
a public client. As such, suppose now that we do not have the implementation mistake
anymore in setSize and that the public call has the following inputs:

p.setSize (300, 2);

This leads to no violation at all in JML using an overly-dynamic checking. The
problem is that the hidden protected precondition which handles larger packages hold,
then no precondition violation is raised to a 600cm? package’s dimension. But the
protected precondition was designed for privileged clients such as subytpes. This way
only the public precondition should be checked against the above method call. Hence,
a precondition violation should be raised by doing that, but it was neglected by the
nature that JML/RAC checks specifications during runtime.

The problem is evident when we change the call to

p.setSize (301, 2);
and we got the following precondition error:

Exception in thread "main"
org.jmlspecs.ajmlrac.runtime. JMLExitNormalPostconditionError:
by method Package.setSize regarding specifications at
File "Package.java", [spec—case]: line1l5 (Package.java:15),
line 16 (Package.java:16), and [spec—case]|: line2l (Package.java:21),
line 22 (Package.java:22), when
‘width’ is 301.0
‘height’ is 2

The four shadowed lines in the error reporting denotes the two public requires
clauses and the two protected requires clauses, respectively.

In relation to AspectJ it is possible to check contracts respecting information hid-
ing. For example, consider the following AspectJ advice to check the protected normal
postcondition previously discussed:

69

after (p.Package obj, double width, double height) returning():
call (void p.Package.setSize (double, double))

&& within(p.*) || within(p.Package+)

&& target (obj) && args(width, height) {

if ((width > 0 && height > 0) && (width % height <= 600)){
boolean pred = (this.width = width) && (this.height = height);
JMLChecker . checkNormalPostcondition (pred, "errorMsg");

}

}

The main issue is the use of the within pointcut. The shadowed part illustrates
the protected visibility enforcement. That is, the within pointcut restricts where the
after returning advice will be checked; it will be executed iff clients refer to type Package
within package p or subtypes of Package. For the public normal postcondition, we have
a similar advice (not shown) but without the within pointcut. This ensures that the
postcondition will be checked to any call to setSize method regardless the context of
visibility.

In the next chapter, we discuss how our AspectJML DbC language combined with
a technique called client-aware checking enables the runtime checking in conformance
with information hiding. Since the instrumented code with runtime checks is injected at
the site of each method call, it properly checks only the visible specifications associated
with the clients.

3.5 Chapter Summary

In this chapter, we presented the main modularity problems with existing design by
contract and aspect-oriented languages. So, for AspectJ-like languages, although they
can physically modularize crosscutting contracts or preserve information hiding during
runtime, they are not suitable to ensure key DbC properties like modular reasoning
and documentation. On the other hand, a DbC language like JML can offers good
documentation and provide modular reasoning. However, such languages are not suit-
able to deal with the crosscutting structure nature of contracts. This situation leads to
a dilemma/trade-off between AOP and DbC. Another problem discussed here is that
existing DbC tools do violate information hiding principles during runtime assertion
checking and error reporting. This modularity analysis is summarized in Table 3.1.

Table 3.1: Summary of the analysis of modularity for DbC and AOP.

Criterion JML | AspectJ/@Aspect]
modular reasoning v D'
documentation v X
crosscutting contract specification | x v
information hiding and RAC X vV

70

Chapter 4

The AspectJML Language

In this chapter, we present AspectJML [RLB"14], a simple and practical aspect-oriented
extension to JML. We describe how the AspectJML features can be used to overcome
all the modularity problems discussed in the previous chapter.

4.1 Overview

AspectJML extends JML [LBRO6] with support for crosscutting contracts [MMvDO05].
It allows programmers to define additional constructs (in addition to those of JML)
to modularly specify pre- and postconditions and check them at certain well-defined
points in the execution of a program. We call this the crosscutting contract specification
mechanism, or XCS for short.

AspectJML also enables runtime checking on client side. We call this feature as
client-aware checking, or CAC for short. AspectJML with CAC respects information
hiding while checking contracts during runtime.

In the following, we present the main features of our AspectJML language. The
presentation is informal and running-example-based.

4.2 Design Decisions

In this section, we discuss the main design decisions of AspectJML.

4.2.1 AspectJML is DbC + Quantification

As we discussed in Chapter 3, DbC languages like JML and AOP languages like AspectJ
both have advantages and disadvantages when employed for specification and runtime
checking of contracts. The main discussion is that neither can achieve crosscutting
contract modularity nor the main DbC principles at the same time such as modular
reasoning and documentation.

In this context, to tackle this dilemma, we conceive the AspectJML language that
combines the advantages of both DbC and AOP techniques. Hence, all the benefits of
JML are kept as usual. The key difference is the addition of the AspectJ’s pointcut
language in AspectJML. We decided to include only this portion of an Aspect]-like
language because it is the main core of AOP. The core of an AspectJ-like language is

71

the quantification mechanism [FF00, VCFS10] that is responsible for selecting all the
join points of interest that are part of the crosscutting concern structure (DbC in our
case). Hence, we added in AspectJML this quantification mechanism of AspectJ, which
is represented by the pointcut language.

Therefore to be precise, the formula that AspectJML uses to provide crosscutting
contract modularity and keep documentation and modular reasoning is “DbC + Quan-
tification”. This formula is achieved by the AspectJML’s XCS feature.

4.2.2 @Aspectd

XCS in AspectJML is based on a subset of Aspect]’s constructs [KHH'01]. However,
since JML is a design by contract language tailored for plain Java, we would need special
support to use the traditional AspectJ syntax. To simplify the adoption of AspectJML,
we employ AspectJ constructs based on the alternative @AspectJ syntax [Bon|. Thus,
the AspectJML compiler, called ajmlec [BCCT05, RSLT08, RLL*13c], needs only to
process standard Java features. We already discussed @AspectJ syntax in Section 2.5.8.

4.2.3 AspectJML Supported Features

For the language scope, AspectJML supports all the JML features (excluding inline
assertions') presented in Section 2.4. In relation to AspectJ, we already mentioned that
AspectJML only inherits the pointcut language. For crosscutting contract specification
and runtime checking purposes, the pointcut designators that AspectJML supports are
call and execution. They are expressive enough to handle crosscutting contracts. Other
useful pointcuts that can be used together with call and execution are illustrated in
Table 2.2. With respect to this table, we exclude the pointcut designators withincode,
cflow, cflowbelow, this, and target. The first three we exclude because there is no
example until now that one really needs it to perform contract modularization. The
last two are forbidden to use. The compiler will complain if a programmer tries to
use the pointcut this or target. This is to avoid the problem of obliviousness and is
discussed in more detail in Section 4.4. AspectJML also supports the use of the special
AspectJ variable thisJoinPoint. In rest of this chapter, we discuss a special scenario
where thisJoinPoint is useful for crosscutting contract specification.

4.2.4 AspectJML Compatibility

One of the goals of this work is to support a substantial user community. To make this
concrete, we have chosen to design crosscutting contract specification in AspectJML as a
compatible extension to JML using AspectJ’s pointcut language. This takes advantage
of Aspect]’s familiarity among programmers. Our goal is to make programming and
specifying with AspectJML feel like a natural extension of programming and specifying
with Java and JML. The AspectJML/ajmlc compiler has the following properties:

e all legal JML annotated Java programs are legal AspectJML programs;

!Since we use AOP/AspectJ to instrument JML contracts we cannot intercept and instrument
method’s local variables related to inline assertions. Hence, this is a well-known limitation of Aspec-
tJML/ajmlc compiler.

72

e all legal AspectJ/@Aspect] programs are legal AspectJML programs;
e all legal Java programs are legal AspectJML programs; and

e all legal AspectJML programs run on standard Java virtual machines.

4.3 XCS in Action

In AspectJML only two mechanisms are necessary to modularize crosscutting contracts
at the source code level. Recall that a pointcut designator enables one to select well-
defined points in a program’s execution, which are known as join points [KHHT01].
Optionally, a pointcut can also include some of the values in the execution context
of intercepted join points. In AspectJML, we can compose these Aspect] pointcuts
combined with JML specifications. Hence, pointcuts and specifications are the two
basic mechanisms needed in AspectJML to specify crosscutting contracts in a modular
way.

The major difference, in relation to plain AspectJ, is that a specified pointcut is
always processed when using the AspectJML compiler (ajmlc). In standard Aspectl], a
single pointcut declaration does not contribute to the execution flow of a program unless
we define some Aspect] advice that uses such a pointcut. In AspectJML, we do not
need to define an advice to check a specification in a crosscutting fashion. This makes
AspectJML simpler and a programmer only needs to know AspectJ’s pointcut language
in addition to the main JML features supported.

4.3.1 XCS Syntax

This is the AspectJML’s program syntax for crosscutting contract specification. Note
that both JML and @AspectJ syntax were discussed in Chapter 2.

Method — Specification ::= Specification
Specification ::= Spec— Case [also Spec— Case]
Spec — Case ::= Lightweight — Spec — Case | Heavyweight — Spec — Case
Lightweight — Spec — Case ::= Generic — Spec — Clause
Heavyweight — Spec — Case ::= Behavior — Spec — Case
| Normal — Behavior — Spec — Case
| Ezceptional — Behavior — Spec — Case

Behavior — Spec — Case ::= [privacy]| Behavior — Keyword
Generic — Spec — Clause
Behavior — Keyword ::= behavior | behaviour
Normal — Behavior — Spec — Case ::= [privacy] Normal — Behavior — Keyword
Generic — Spec — Clause
Normal — Behavior — Keyword ::= normal_behavior | normal_behaviour
Exceptional — Behavior — Spec — Case ::= [privacy| FEzceptional — Behavior — Keyword
Generic — Spec — Clause
Ezceptional — Behavior — Keyword ::= exceptional_behavior | exceptional_behaviour
Generic — Spec — Case ::= Requires — Clause [Requires — Clause]

| Ensures — Clause [Ensures— Clause]
| Signals — Clause [Signals — Clause]
| Signals — Only — Clause [Signals — Only — Clause]

Requires — Clause ::= Requires — Keyword [!] Pred ;
| Reguires — Keyword \same;
Requires — Keyword ::= requires | pre
Pred ::= Predicate | \not_specified
Signals — Clause ::= Signals — Keyword (reference—type [ident]) [!] Pred ;
Signals — Keyword ::= signals | exsures
Signals — Only — Clause ::= Signals — Only — Keyword Reference — Type [, Reference —Type]| ... ;

| Signals — Only — Keyword \nothing ;

73

Signals — Only — Keyword ::= signals_only
Q@QPointcut (" Pointcut — Expression")
[Privacy] void Pointcut — Ident ([Args]) {}

A more complete description of the AspectJML features and syntax can be found in
Appendix A.

4.3.2 Specifying Crosscutting Preconditions

Recall our first crosscutting contract scenario described in Section 3.3. It consists of
two preconditions for any method, in Package (Figure 2.4) with a name ending with Size
that returns void and takes two arguments of type double. For this scenario, consider
the JML annotated pointcut with the following preconditions:

//@Q requires width > 0 && height > 0;

//@Q requires width % height <= 400; // maz dimension
@Pointcut ("execution(* Package.*Size(double, double))"+
"&& args(width, height)")

void sizes (double width, double height) {}

The pointcut sizes matches all the executions of methods ending with “Size” of class
Package like setSize and reSize. As observed, this pointcut is exposing the intercepted
method arguments of type double. This is done in @AspectJ by listing the formal
parameters in the pointcut method. We bind the parameter names in the pointcut’s
expression (within the annotation @Pointcut [Bon]) using the argument-based pointcut
args [KHHT01].

The main difference between this pointcut declaration and the standard pointcut
declarations in @AspectJ is that we are specifying two JML preconditions (using the
requires clause). In this example the JML says to check the declared preconditions
before the executions of intercepted methods.

4.3.3 Specifying Crosscutting Postconditions

We discuss now how to properly modularize crosscutting postconditions in AspectJML.
JML supports two kinds of postconditions: normal and exceptional. Normal postcon-
ditions constrain methods that return without throwing an exception. To illustrate
AspectJML’s design, we discuss scenarios (2) and (3) from Section 3.3. For scenario (2),
we use the following specified pointcut:

//@ ensures this.dimension.doubleValue() = width * height;
@Pointcut (" (execution (* Package.setSize(double, double))"+
"|| execution(* Package.reSize(double, double)))"+
"&& args(width, height)")
public void setOrReSize(double width, double height) {}

This pointcut constrains the executions of the setSize and reSize methods in Package to
ensure that, after their executions, the model field dimension is equal to the multiplication
of arguments width and height. Recall that this model field is a representation of the
protected fields width and height depicted in Figure 2.4. To modularize the crosscutting
postcondition of scenario (3), we use the following JML annotated pointcut declaration:

74

//@ signals_only \nothing;
@Pointcut ("execution (* Package+.*(..))")
public void allMeth () {}

The above specification forbids the executions of any method in Package (or in subtypes,
such as GiftPackage) to throw an exception. If any intercepted method throws an ex-
ception (even a runtime exception), a JML exceptional postcondition error is thrown
to signal the contract violation. In this pointcut, we do not expose any intercepted
method’s context.

4.3.4 Multiple Specifications Per Pointcut

All the crosscutting contract specifications discussed above consist of only one kind of
JML specification per pointcut declaration. However, AspectJML can include more
than one kind of JML specification in a pointcut declaration. For example, assume
that the Package type in Figure 2.4 does not contain the containsSize method or its
JML specifications. In this scenario, we can write a single pointcut to modularize the
recurrent pre- and postconditions of methods setSize and reSize. Therefore, instead
of having separate JML annotated pointcuts for each crosscutting contract, we specify
them in a new version of the pointcut sizeMeths:

//@ requires width > 0 && height > 0;

//@Q requires width % height <= 400; // maz dimension

//@ ensures this.dimension.doubleValue() = width * height;
@Pointcut ("execution(* Package.*Size(double, double))"+

"&& args(width, height)")

public void sizeMeths (double width, double height) {}

This pointcut declaration modularly specifies both preconditions and normal postcon-
ditions of the same intercepted size methods (setSize and reSize) of Package.

4.3.5 Pointcut Expressions Without Type Signature Patterns

In AspectJ, a pointcut expression can be defined without using a type signature pattern.
A type signature pattern is a name (or part of a name) used to identify what type
contains the join point. For example, the following AspectJ pointcut:

pointcut sizes (): execution(x *Size (double, double));

selects any method ending with “Size” and has two arguments of type double. In
AspectJ, this pointcut matches any type in a system. Since we omit the type signature
pattern, any type is candidate to expose the join points of interest. In AspectJ, although
not required, we can also use a wildcard (*) to represent a type signature pattern that
intercepts any type in the system. The pointcut looks like as follow:

pointcut sizes2 (): execution(x x."Size(double, double));

However AspectJML has a different semantics compared with AspectJ. For example,
recall the previous pointcut method sizes in AspectJML:

//@ requires width > 0 && height > 0;
//@Q requires width % height <= 400; // maz dimension

75

@Pointcut ("execution(* *Size (double, double))"+
"&& args(width, height)")
void sizes (double width, double height) {}

this pointcut method still selects the same methods ending with “Size” and that has
two arguments of type double. The main difference is that even with the absence of
the target type, AspectJML restricts the join points to the type (Package in this case)
enclosing the pointcut declaration (see Figure 4.1). AspectJML works in this manner to
avoid the obliviousness problem (see Section 4.4 for more details). Due to this restriction,
it does not matter if we write a general pointcut expression like:

//@ requires width > 0 && height > 0;

//@ requires width % height <= 400; // maz dimension
@Pointcut ("execution(* *.*x(..))"+

"&& args(width, height)")

void sizes (double width, double height) {}

4.3.6 Reusing Pointcuts

As with AspectJ, programmers can reuse pointcut declarations in AspectJML. The
main advantage of reusing a pointcut is when we want to select the same join points
already captured by another pointcut, but combined with more join points. For instance,
consider the following two pointcut declarations:

//@Q requires width > 0 && height > 0;

//@ requires width % height <= 400; // maz dimension
@Pointcut ("execution(* Package.*Size(double, double))"+
"&& args(width, height)")

void sizeMethsPre (double width, double height) {}

//@ ensures this.dimension.doubleValue() = width * height;
@Pointcut ("sizeMethsPre (width, height) &&" +

"(execution(* Package."Size2(double, double))" +

"&& args(width, height))")
void sizeMethsPost (double width, double height) {}

The first one defines the pointcut sizeMethsPre used to specify two crosscutting precon-
ditions. The second pointcut, named sizeMethsPost, reuses the pointcut sizeMethsPre to
apply one crosscutting normal postcondition. The main difference is that the second
pointcut besides reusing the pointcut sizeMethsPre, it also selects any method ending in
“Size2” with two arguments of type double. As a result, the reuse of pointcuts helps
programmers to write less verbose pointcuts in AspectJML.

4.3.7 Specification of Unrelated Types

Another issue to consider is whether or not AspectJML can modularize inter-type”
crosscutting specifications. All the crosscutting contract specifications we discuss are

2 Inter-types here are not the AspectJ feature [KHH'01] that allows adding methods or fields with
a static crosscutting mechanism. Instead, they are unrelated modules in a system; that is, types that
are not related to each other but can present a common crosscutting contract structure.

76

related to one type (intra-type) or its subtypes. However, AspectJ can advise methods
of different (unrelated) types in a system. This quantification property of AspectJ is
quite useful [VCFS10] but can also be problematic from the point of view of modular
reasoning, since one needs to consider all the aspect declarations to understand the over-
all system behavior [Ste06, SGR*10, SPAK10, ITB11, BRLM11, RLL*13b]. Instead of
ruling this completely out, the design of AspectJML allows the specifier to use specifi-
cations that constrain unrelated inter-types, but in an explicit and limited manner (see
Section 4.4 for more details about non-obliviousness in AspectJML).

As an example, recall the JML specifications in Figure 2.4. We know that all the
methods declared in Package are forbidden to throw exceptions (see the signals only
specification). Suppose now that the methods declared in type Courier and Package’s
subtype (GiftPackage and DiscountedPackage) (see Figure 2.1) also has this constraint.
Note that the type Courier is not a subtype of Package. They are related in the sense
that the method deliver depends on the Package type due to the declaration of a formal
parameter. Consider further that Courier contains many methods that are not dependent
on Package in any way. Consider the following type declaration:

interface ExceptionSignallingConstraint {

@InterfaceXCS

class ExceptionSignallingConstraintXCS {
//@Q signals_only \nothing;

@Pointcut ("execution(* ExceptionSignallingConstraint+.*(..))")
public void allMeth () {}

}
}

This type declaration illustrates how we specify crosscutting contracts for interfaces. In
@AspectJ, pointcuts are not allowed to be declared within interfaces. We overcome this
problem by adding an inner class that represents the crosscutting contracts of the outer
interface declaration. As a part of our strategy, the pointcut declared in the inner class
refers only to the outer interface (see the reference in the pointcut predicate expression).
Now any type that wants to forbid its method declarations to throw exceptions need
only to implement the interface ExceptionSignallingConstraint. Such an interface acts
like a marker interface [HU03]. This is important to avoid obliviousness and maintain
modular reasoning. (according to our definition 2.1.1).

Note that the inner class is marked with the @InterfaceXCS annotation. This is to
distinguish from any other inner class that could also be declared within our crosscutting
interface. Without this mechanism, the AspectJML compiler will not be able to find
the crosscutting contracts for the interface ExceptionSignallingConstraint.

Design decision behind crosscutting contract interfaces

One question that can arise is why inner classes for interface contracts? To justify our
decision let us discuss the reason why we cannot declare a pointcut within an interface.
The reason is that a pointcut in AspectJ can be declared with any privacy modifier.
Java interfaces, on the other hand, can only be declared as public. This is the first
reason we adopt an inner class for interface contracts.

Another reason to design interface contracts with inner classes was discussed in
Section 2.4. In JML one can specify contracts with different visibility access. As such,

7

suppose that we want to add a protected specification to methods in several unrelated
types. If we consider a plain method declaration in a Java interface, we cannot write
such a specification. We cannot write a protected specification case in a public method
in an interface type. Recall that in lightweight specifications, the visibility is defined
by the method own visibility. Therefore, due to these two limitations (both related to
visibility access), we decided to design crosscutting contracts in interfaces through inner
classes.

This solution is very similar to the one used by the DbC language Code Con-
tracts [FBL10]. Code Contracts add their clauses within a method body. Since the
C# language (whose Code Contracts language is used for) will not let one put method
bodies within an interface, writing contracts for interface requires creating a separate
class to hold them. The interface and its contract class are related/linked via a pair of
annotations in C# style. See the example below:

[ContractClass(typeof (IFooContract))]
interface IFoo {

int Count f get; g

void Put(int value);

}
[ContractClassFor (typeof (IFoo))]
abstract class IFooContract : IFoo {
int IFoo.Count {
get {
Contract . Ensures(0 <= Contract.Result<int >());
return default(int); // dummy return
}
}

void IFoo.Put(int value){
Contract . Requires (0 <= value);

}
}

What if we have partial quantification?

The crosscutting contract interface discussed above is useful to modularize some cross-
cutting contract that occurs in several types. As observed, the ExceptionSignallingConstraint
interface once implemented constrains all the methods in implementing types. What if
we want to specify contracts that affect only some methods of some unrelated types?
Basically, we have two ways to handle this situation in AspectJML.

Solution 1. One way is to negate some recurrent pattern. For example, suppose we
want to constrain all methods except setters and getters. Thus, we have the following
refined crosscutting contract interface:

interface ExceptionSignallingConstraint {
@InterfaceXCS
class ExceptionSignallingConstraintXCS {
//@Q signals_only \nothing;
@Pointcut (" (execution(* ExceptionSignallingConstraint+.*(..)) && "+
"lexecution(void ExceptionSignallingConstraint+.set*(..))"+

78

"lexecution(* ExceptionSignallingConstraint+.get*x()))")

public void allMeth () {}

}
}

We exclude the setters and getters by composing the negation of two execution pointcuts
with a wildcard; one for setters and one for getters, respectively.

Solution 2. If the excluded join points can vary to the extent that we cannot use a
property-based pointcut (which is part of a method name combined with a wildcard),
we can use the AspectJ’s @annotation pointcut (see Table 2.2) to exclude specific join
points (methods). Consider the following version of our crosscutting contract interface:

interface ExceptionSignallingConstraint {
@InterfaceXCS
class ExceptionSignallingConstraintXCS {
//@Q signals_only \nothing;
@Pointcut ("execution(* ExceptionSignallingConstraint+.*(..)) && "+
"l@annotation(ExcludeMarker)")

public void allMeth () {}

}
@QRetention(RetentionPolicy .RUNTIME)

@Documented
public @Qinterface ExcludeMarker {}

}

With this solution, we need to mark/annotate in the implementing types all the methods
that are not part of the crosscutting contract concern. So in the following Package type,
the crosscutting contract will be excluded from both setSize and reSize methods.

public class Package implements ExceptionSignallingConstraint {
@ExcludeMarker
public void setSize (double width, double height){...}

@ExcludeMarker
public void reSize(double width, double height){...}

public boolean containsSize (double width, double height){...}
public double getSize (){...}

public void setWeight (double weight) {...}

The second solution is good when we have few join points to exclude. If we have
a type with 200 methods and only 50 methods are part of the crosscutting contract,
maybe it would be better to modularize such a crosscutting structure in the type itself
by listing the join points in the pointcut expression and trying as much as possible to use
property-based pointcuts to capture this situation. Some examples of property-based
matching were discussed in Section 2.5.

79

It is important to note that even if we discuss the above two solutions for crosscutting
contract interfaces, we can apply those solutions for classes as well. In other words, we
can compose pointcuts within classes using the patterns described by the above solutions.
Another point to stress is that if we want to avoid implementing the crosscutting contract
interfaces for the solely purpose to inherit specifications, we can use annotation pattern
style. In other words, instead of activating crosscutting contracts by implementing an
interface, we just annotate a type by using an annotation type.

Crosscutting contract interfaces and separate files

There is a way to sidestep the disadvantage of having inner classes to declare interface
contracts. We discuss this workaround in the next section.

4.3.8 Separate Files for Crosscutting Contracts

As discussed, in JML, we can write specifications in separate files (see Section 2.4.10).
In AspectJML, we can also untangle specifications by putting them in a separate file.
Since AspectJML is an extension of JML, the extension of the separate file could be
either .jml or .ajml. Note that a method cannot contain an implementation (body) in
such .jml or .ajml files. Only the syntactic interface signatures must be declared.
Using separate files is beneficial when we want to specify a contract for an interface.
As we discussed in the previous section, we need to add an inner class to write contracts
for an interface. If we use a separate file, we can avoid such inner classes when we deal
with public specifications. Please, consider the following crosscutting contract interface:

// declared in the file FExceptionSignallingConstraint.jml
interface ExceptionSignallingConstraint {
//@Q signals_only \nothing;
@Pointcut ("execution(* ExceptionSignallingConstraint+.*(..))")
public void allMeth ();

}

This interface constraint looks like more natural than the solution with inner classes.
The AspectJML compiler handles such an interface in the same manner as it does with
ordinary Java source files. The disadvantage of this approach is that since we are writing
pointcut expressions in other files than .java, we do not get immediate feedback about
a malformed pointcut. We need to compile to get an error (if any). With Eclipse/A-
JDT [KMO05], we get early feedback before calling the AspectJML compiler. Note that
this solution only works for public specifications. If we need protected specifications
only, we need the inner class solution again.

4.3.9 XCS and Multiple Specification Cases

As we discussed in Section 2.4.6, JML has the notion of method specification cases. This
feature is useful to make distinct execution scenarios, which are separated as blocks with
the JML keyword also. Recall the following specification cases for the method setSize
in Package:

//@ requires width > 0 && height > 0;

80

//@ requires width * height <= 400; // maz dimension

//@Q ensures this.width = width;

//@ ensures this.height = height;

//@ signals_only \nothing;

//@ also

//@ requires width > 0 && height > 0;

//@ requires width * height > 400; // exceeding allowed dimension
//@ ensures this.width = \old(this.width);

//@ ensures this.height = \old(this.height);

//@ signals (SizeDimensionException) width % height > 400;

//@ signals_only SizeDimensionException;

void setSize (double width, double height) throws SizeDimensionException{...}

As noted, the two specification cases begin with a recurrent precondition. One way
to modularize this precondition is by means of JML nested specifications (as shown in
Section 2.4.10). Another way to modularize such a precondition is illustrated below:

//@Q requires width > 0 && height > 0;

@Pointcut ("execution(* Package.*Size(double, double))"+
"&& args(width, height)")

void sizes (double width, double height) {}

Among other join points, this pointcut intercepts the method setSize. As before, we
have the precondition checking for method setSize. The main difference is that the
crosscutting precondition crosscuts the two specification cases to enforce the modular-
ized recurrent precondition. With the modularization, we have the following refined
specification cases for setSize method:

//@ requires width % height <= 400; // maz dimension

//@ ensures this.width = width;

//@ ensures this.height = height;

//@ signals_only \nothing;

//@ also

//@ requires width * height > 400; // exceeding allowed dimension

//@ ensures this.width = \old(this.width);

//@ ensures this.height = \old(this.height);

//@ signals (SizeDimensionException) width % height > 400;

//@ signals_only SizeDimensionException;

void setSize (double width, double height) throws SizeDimensionException{...}

However, if the preconditions of the specification cases are different (without an
intersection between them), the previous pointcut cannot be used to check preconditions
since it will inject the precondition for all specification cases. Hence, if we have two
methods with two specification cases, where we have a recurrent precondition between
the methods but only occurring in one specification case for each method, we cannot
use AspectJML/XCS to modularize them.

Still considering method specification cases, one question that can arise is what if we
have recurrent specification cases? Does AspectJML handle this situation? The answer
is yes. AspectJML does handle crosscutting specification cases in JML that are scattered
among methods. As an example, let us assume that the following methods setSize and
reSize have two specification cases each and the first specification is duplicated among
these methods:

//@ requires width % height <= 400; // maz dimension
//@ ensures this.width = width;

81

//@Q ensures this.height = height;
//@ signals_only \nothing;
//@ also

//a ..

void setSize (double width, double height) throws SizeDimensionException{...}

//@ requires width * height <= 400; // maz dimension
//@ ensures this.width = width;

//@ ensures this.height = height;

//@ signals_only \nothing;

//@ also

//@

void reSize (double width, double height) throws SizeDimensionException{...}

In this context, the following AspectJML pointcut can be used to modularize the
recurrent specification case:

//@ public behavior

//@ requires width % height <= 400; // maz dimension
//@ ensures this.width = width;

//@ ensures this.height = height;

//@ signals_only \nothing;

@Pointcut ("execution(* Package.*Size(double, double))"+
"&& args(width, height)")

void sizes (double width, double height) {}

The key difference between this specified pointcut and others presented until now is that
the specification case denotes a heavyweight specification in JML. In AspectJML, we
decided that whenever a programmer add a heavyweight specification in a pointcut, it
will be applied as a join of specification cases instead of checking the contracts at every
specification case of an intercepted join point.

In summary, in AspectJML, lightweight specifications are checked at all the specifi-
cation cases that an intercepted method has. On the other hand, heavyweight specifica-
tions are conjoined as a regular JML specification case, which separates one to each other
through an also construct. This design decision in AspectJML gives more expressiveness
to handle more situations a specifier can face by using JML specifications.

4.3.10 More XCS Examples

We already discussed the main AspectJML features in relation to crosscutting contract
specifications. We discuss now two more scenarios where AspectJML is more expressive
than a conventional DbC language like JML.

Scenario 1

Consider again the implementation (without JML specifications) of the Package classes
illustrated in Figure 2.1. Consider further that each package type has a specific con-
straint on its dimension. For instance, suppose that the dimension of a package of static
type Package should be between 0 and 400 ¢m? and all methods (in Package) should
establish this constraint. To enforce this design constraint, we can write the following
invariant:

82

//@ invariant this.width x this.height > 0
//Q && this.width * this.height <= 400;

Suppose now that the dimension of a GiftPackage should be between 0 and 600
em? and all methods (in GiftPackage) should establish this constraint. Moreover, the
dimension of a DiscountedPackage should be between 0 and 800 ¢m? and all methods
(in DiscountedPackage) should establish this constraint. Hence, the following invariants
enforce these constrains, respectively:

//@ invariant this.width % this.height >=0

//Q && this.width * this.height <= 600;
//@ invariant this.width % this.height >=0
//Q && this.width * this.height <= 800;

Intuitively, the above invariants are the ones a programmer may write when trying
to enforce such design constraints. But the first invariant related to the type Package
has a problem. Since in JML an instance invariant is inherited by subtypes, the types
GiftPackage and DiscountedPackage should enforce such restrictions. The main problem
is that by inheriting the first invariant, a programmer cannot write the other two since
they are trying to weaken the inheriting constraint over a package’s dimension.

To solve this problem in plain JML, a programmer may write the following invariant
on top of the hierarchy, which is the type Package in this case:

//@ invariant this.width x this.height > 0;

This invariant will be inherited and enforced by all package types in the hierarchy.
Moreover, to fulfill the Package’s constraints, we need to write the following pair or pre-
and postcondition, for every method, to ensure that the dimension does not exceed 400
cm:

//@ requires this.width * this.height <= 400;
//@ ensures this.width *x this.height <= 400;

For type GiftPackage, we need to write the following pair or pre- and postcondition
for every method:

//@ requires this.width % this.height <= 600;
//@ ensures this.width * this.height <= 600;

This ensures that the package’s dimension does not exceed 600 cm?. Remember that we
do not need to write an invariant since it was inherited from type Package. Analogously,
we need to write the following pair of pre- and postcondition for every method in type
DiscountedPackage:

//@ requires this.width % this.height <= 800;
//@ ensures this.width % this.height <= 800;

This ensures that the package’s dimension does not exceed 800 cm?. As with GiftPackage,
we do not need to write an invariant since it was inherited from Package.

Considering that we have five methods per type, we need to write one invariant and
fifteen pairs or pre- and postcondition to fulfill the design constraints of the package
types. Unfortunately, there is no way to get rid of the scattering of pre- and postcondi-
tions if we use JML as our DbC language.

83

The good news is that a programmer can enhance this scenario if he/she considers
to use AspectJML/XCS feature. With AspectJML he/she needs to write the same
invariant constraint, but instead of fifteen pairs of pre- and postcondition, he/she only
needs three accompanying corresponding pointcuts. These pointcuts and specifications
are the following:

//@ requires this.width % this.height <= 400;

//@ ensures this.width * this.height <= 400;

@Pointcut ("execution(* Package.**(..)) && within(Package)")
void dimensionLimitPackage () {}

//@ requires this.width % this.height <= 400;

//@ ensures this.width % this.height <= 400;

@Pointcut ("execution(* Package.**(..)) && within(GiftPackage)")
void dimensionLimitGiftPackage () {}

//@ requires this.width % this.height <= 800;

//@Q ensures this.width % this.height <= 800;

@Pointcut ("execution(* DiscountedPackage.**(..))" +
"&& within(DiscountedPackage)")

void dimensionLimitDiscountedPackage () {}

Each pointcut should be placed in its corresponding type. So the first is for type Package,
the second is for type GiftPackage, and the last one is for type DiscountedPackage. In
order to avoid intercepting any method of a subtype, each pointcut includes the pointcut
designator within. For example, the pointcut method dimensionLimitPackage intercepts
all methods in type Package. It avoids intercepting any method on subtypes due to
within(Package). This ensures that the selected join points should be lexically contained
in type Package.

Scenario 2

For our scenario 2, let us consider that all methods (in type Package of Figure 2.1)
that have arguments of type double should be greater than zero. In JML, however,
there is no way to write this constraint only once and apply for all methods in Package.
For instance, the following preconditions are needed to enforce this constraint for the
methods setSize and reSize in Package:

//@ requires width > 0;
//@ requires height > 0;
void setSize (double width, double height){...}

//@ requires width > 0;
//@ requires height > 0;
void reSize(double width, double height){...}

In AspectJML, on the other hand, we can write only one precondition to enforce
our design constraint over the arguments of type double contained in methods of type
Package. Here is the pointcut in AspectJML:

/*@Q requires (\forall int i; 0 <= 1 && i < thisJoinPoint.getArgs ().length;

84

@ (thisJoinPoint.getArgs ()[i] instanceof Double)
@ =—> ((Double)thisJoinPoint.getArgs ()[i]).doubleValue() > 0);
@sx /

@Pointcut ("execution (* Package.*(..,double,..))")

void doubleParamXCS(JoinPoint thisJoinPoint){}

void setSize (double width, double height){...}

void reSize(double width, double height){...}

The pointcut doubleParamXCS is responsible for checking our design constraint. Note
that it uses a JML requires clause with a forall quantifier that inspects each parameter’s
value of the intercepted methods (which includes all the methods in Package). We access
each parameter’s value through the AspectJ’s thisJoinPoint variable that is exposed via
an argument type in the pointcut doubleParamXCS. This is the standard way to access
the reflective variable thisJoinPoint in AspectJ, which is the same in AspectJML.

If the discussed design constraint should be applied to other types, we can move the
pointcut doubleParamXCS to a crosscutting contract interface. This way, the constraint
in automatically applied to the implementing types.

4.3.11 Exported AspectJML/XCS Examples

The crosscutting contract specifications used to modularize the crosscutting contract
scenarios, discussed in Section 3.3, are illustrated in Figure 4.1 (the shadowed part
illustrates the XCS in AspectJML’s pointcuts and specifications).

4.4 AspectJML’s Benefits

In this section we discuss the main AspectJML benefits when used for crosscutting
contract specification.

Enabling modular reasoning

Recall that our notion of modular reasoning (Definition 2.1.1) means that one can
soundly verify a piece of code in a given module, such as a class, using only the module’s
own specifications, its own implementation, and the interface specifications of modules
that it references [DL96, Mey00, Lea06, LN13, RLL*13b].

With respect to whether or not AspectJML supports modular reasoning like a DbC
language such as JML, consider the client code, which we will imagine is written by
Cathy, shown in Figure 4.2.

To verify the call to setSize, Cathy must determine which specifications to use. If
she uses the definition of modular reasoning, she must use the specifications for setSize
in Package. Let us assume that she uses the JML specifications of Figure 2.4. Hence,
she uses:

(1) the pre- and postconditions located at the method setSize (lines 11-14);

(2) the first invariant definition on line 8, which constrains the Package’s dimension; and

85

public class Package {

//@ public model JMLDouble dimension;

//@ public model JMLDouble weight ;

protected double width, height, _weight;

//@ protected represents dimension = new JMLDouble(this.width % this.height);
//@Q protected represents weight = new JMLDouble(this._weight);

//@Q public invariant this.dimension.doubleValue() >= 0;
//@ public invariant this.weight.doubleValue() >= 0;

//@ requires width > 0 && height > 0;

//@ requires width * height <= 400; // maz dimension
@Pointcut ("execution (* Package.*Size(double ,double)) "+
"&& args(width, height)")

public void sizes (double width, double height) {}

//@Q ensures this.dimension.doubleValue() = width % height;
@Pointcut (" (execution (¥ Package.setSize (double ,double))"
+ "|| execution (* Package.reSize (double, double))) "+

"&& args(width, height)")
public void sizeChange (double width, double height) {}

//@Q signals_only \nothing;

@Pointcut ("execution (* Package+.*(..))")

public void packageMeths() {}

public void setSize (double width, double height){...}

//@ requires this.dimension.doubleValue() != width % height;
public void reSize(double width, double height){...}

public boolean containsSize (double width, double height){...}

public double getSize (){...}

//Q@ ...
public void setWeight (double weight) {...}
... // other methods

Figure 4.1: The crosscutting contract specifications with AspectJML used so far for the
type Package related to the crosscutting scenarios illustrated in Figure 3.2.

(3) the second invariant (line 9) related to the Package’s weight.

Cathy only needs these three steps, including six JML pre- and postcondition, and
invariant specifications, when using plain JML reasoning. (Package has no supertype;
otherwise, she would also need to consider specifications inherited from such supertypes.)
After obtaining these specifications, she can see that there is a precondition violation
regarding the width value of 0 passed to setSize (in Figure 4.2).

Suppose now that Cathy wants to perform again the same modular reasoning task,
but using the AspectJML specifications in Figure 4.1 instead of the JML specifications
defined in Figure 2.4. In this case she needs to find the following pieces of specified
code:

(1) the first invariant definition on line 8, that constrains the Package’s dimension;

(2) the second invariant (line 9) related to the Package’s weight;

86

// written by Cathy
public class ClientClass {
public void clientMeth (Package p)

{ p.setSize (0, 1); }
}

Figure 4.2: setSize’s client code.

(3) the preconditions of the pointcut (lines 11-12) sizes, since it intercepts the execution
of method setSize;

(4) the normal postcondition (line 17) located at the pointcut sizeChange; and

(5) the exceptional postcondition (line 23) of pointcut packageMeths.

As before, this involves only modular reasoning and she can still detect the potential
precondition violation related to the Package’s width. In this case, Cathy needed the
same six specifications, but with two more steps (five in total) to reason about the
correctness of the call to setSize (see our expanded modular reasoning Definition 2.1.2).
So, although AspectJML supports modular reasoning, Cathy must follow a slightly
more indirect process to reason about the correctness of a call. This confirms that
the obliviousness issue present in AspectJ-like languages [FF00] does not occur in this
example. Cathy is completely aware of the contracts of Package class, though it does
take her longer to determine them.

In summary, as with JML invariants, annotated pointcuts are quantified statements
that the way we reason about is the same as invariants in plain JML. The extra steps
we need during reasoning is related to our Definition 2.1.2.

Enabling documentation

This example shows that, despite the added indirection, reasoning with AspectJML
specifications does not necessarily have a modularity difference compared to reasoning
with JML specifications. Only the location where these specifications can appear can
be different, due to the use of pointcut declarations in AspectJML.

Our conclusion is that an inherent cost of crosscutting contract modularization and
reuse is the cost of some indirection in finding contract specifications (expanded modular
reasoning), which is necessary to avoid scattering (repeated specifications). However,
using AspectJML, users also have the choice to what extent we should modularize or
even not modularize at all crosscutting contracts.

Taming obliviousness

Since AspectJML allows pointcut declarations in AspectJ-style, one can argue that a
programmer can specify several unrelated modules in one single place. This phenomenon

brings into focus again whether AspectJML allows the controversial obliviousness prop-
erty of AOP [Ste06, SGR*10, SPAK10, ITB11, BRLM11, RLL"13b].

87

The answer is no. AspectJML rules out this possibility. If one tries to write such
pointcuts, they will have no effect with respect to crosscutting specification and runtime
checking. This happens because AspectJML associates the specified pointcut with the
type in which it was declared (see the discussion in the next section and the generated
code in Figure 4.3). Hence, only join points within the given type or its subtypes
are allowed. The cross-references generated by AspectJML (see Section 4.7) can help
visualize the intercepted types.

Even though there is no way in AspectJML to specify unrelated modules anony-
mously, the declared pointcuts can still be used within aspect types that can crosscut
unrelated types. Those pointcuts can be used to modularize other kinds of crosscutting
concerns using the standard AspectJ pointcuts-advice mechanisms [KHH01].

4.5 Enforcing Information Hiding in AspectJML with
Client-Aware Checking

One goal of AspectJML is to ease proper checking of visibility rules of JML specifications.
We call our technique for doing this client-aware checking (CAC). CAC aims to runtime
check contracts from the client’s point of view. We describe CAC in more detail below.

The most important feature of CAC is that it checks method specifications on the
client side of each call (i.e., at the call site). Doing this allows CAC to be consistent
with information hiding rules, by checking only the visible pre- and postconditions for
each call. This also avoids the not meaningful error reporting that may arise from
overly-dynamic RACs.

To see how these checks are made, consider again the public and protected specifi-
cation cases for method setSize discussed and shown in Section 3.4:

//@ requires width > 0 && height > 0;

//@Q requires width % height <= 400; // maz dimension
//@ ensures this.dimension.doubleValue() = width * height;
//@ signals_only \nothing;

//@ also

//@ protected behavior

//@ requires width > 0 && height > 0;

//@ requires width % height <= 600; // maz dimension
//@Q ensures this.width = width;

//@ ensures this.height = height;

//@ signals_only \nothing;

public void setSize (double width, double height){...}

Also, consider the same public client code also discussed in Section 3.4:

public class PackageClient {
public void setSizePackageClient (Package p) {
p.setSize (200, 2);
}
}

In order to reason about the correctness (using the above JML specifications) of method
call to setSize in class PackageClient, we use the proof rule for method calls that allows

88

one to derive . .
{pregla/ f1} p.m(@) {post,[a/ f1}

from a spemﬁcatlon (Tt>pre! , postl) associated with the receiver p’s the static type 7.
(The notation [@/f] means the substitution of the actual parameters @ for m’s formals f)
An automated static verifier that uses weakest precondition semantics can modularly re-
places a call p.m(@) by the sequence of “assert prel [@/f]; assume postZ [@/f]” [BLO5].

Hence, by using assert and assume statements in JML-style, we have the following
way to reason about the method setSize in class PackageClient:

89

public class PackageClient {
public void setSizePackageClient (Package p) {
// public preconditions reasoned as assert statements
//@ assert 200 > 0 && 2 > 0;
//@ assert 200 * 2 <= 400;
p.setSize (200, 2);
//@ assume p.dimension.doubleValue() = 200 x 2;
// public normal postconditions reasoned as assume statements

}
}

In AspectJML, the runtime checks are instrumented just like the above assert and
assume statements used for reasoning about the correctness of method setSize. That is,
in the CAC technique enabled, the AspectJML compiler injects runtime checks around
each method call to check the pre- and postconditions of the statically-visible specifica-
tions for the call.

As before, let us assume that the implementation of setSize mistakenly increments
the width by 1. Therefore, we got the following normal postcondition error, when
employing AspectJML with CAC enabled, for the method setSize:

Exception in thread "main"
org.jmlspecs.ajmlrac.runtime. JMLExitPublicNormalPostconditionError :
by method Package.setSize regarding specifications at
File "Package.java", line 23 (Package.java:23), when
‘this.dimension’ is 402.0
‘width’ is 200.0
‘height’ is 2

As observed, this time the error output does not mention the protected (hidden) fields
width or height anymore (as shown in Section 3.4). The public client now is aware of
the specifications that are being checked during runtime. In other words, information
hiding is working as expected and the client has all the benefits expected from runtime
assertion checking. Also, CAC provides a specific postcondition violation for public
postconditions (as shadowed above).

The protected postcondition should be omitted from the error reporting since spec-
ifications of wider visibility should be refined by their counterparts of narrower visibil-
ity (hence public method preconditions should imply the protected preconditions, and
protected postconditions should be implied by public postconditions, when the public
preconditions hold [DL96]). The reason for this is that a client would be surprised if
they encountered assertion violation errors with invisible assertions [Kic96].

Another problem that AspectJML with CAC avoids, in contrast to overly-dynamic
checking, is the missing expected violations. As discussed in Section 3.4, the following
public client code

p.setSize (300, 2);

misses the expected precondition violation when considering the specifications shown
above for method setSize. Since the overly-dynamic checking also considers the weaken
protected precondition, the above client does not break any precondition.

90

Fortunately, with AspectJML/CAC, a public client calling setSize (300, 2), will result
in a precondition error, as expected:

Exception in thread "main"
org.jmlspecs.ajmlrac.runtime. JMLEntryPublicPreconditionError :
by method Package.setSize regarding specifications at
File "Package.java", line 15 (Package.java:15),
line 16 (Package.java:16), when

‘width’ is 300.0

‘height’ is 2

4.6 Implementation

We have implemented the AspectJML crosscutting contract specification and client
aware checking techniques in the AspectJML compiler called ajmlc [RLBT14]. It also
has various code optimizations [RLL"13b] in relation to early versions of ajmlc and in
relation to the classical jmlc compiler [Che03]. AspectJML is an open source project
and is broadly available for download and for modication under GNU General Public
License. This is the first runtime assertion checking compiler to support crosscutting
contract specifications and information hiding during runtime.

The ajmlc compiler itself was described in previous works [RSLT08, Reb08]. The
main difference between AspectJML/ajmlc and JML/ajmlc is that the latter was de-
signed to support only JML features we described in Section 2.4 and to also generate
instrumented code compatible to Java ME applications [RSLT08, Reb08], which was not
possible otherwise. Both compiler versions generate AspectJ code to check contracts
during runtime. So the new ajmlc supports everything as before with the addition to
crosscutting contract specification using some @AspectJ constructs and the ability to
check contracts at client side.

4.6.1 Compilation strategy

In this section, we illustrate examples of instrumented code generated to check crosscut-
ting contracts written in XCS and instrumented code generated to check contracts at
client side (CAC). In addition, we discuss how the precedence order of generated advice
is enforced in AspectJML.

Implementation of XCS

Figure 4.3 shows the before advice generated by the ajmlc compiler to check the
crosscutting preconditions of class Package defined in Figure 4.1.° The variable rac$b
denotes the precondition to be checked. This variable is passed as an argument to
JMLChecker.checkPrecondition, which checks such preconditions; if it is not true, then a
precondition error is thrown. As discussed in Section 4.4, note that the exposed object

3 The ajmlc compiler provides a compilation option that prints all the checking code as aspects
instead of weaving them.

91

/*x Generated by AspectJML to check the precondition of
x method(s) intercepted by sizeMeths pointcut. x/
before (Package object$rac, final double width,
final double height)
(execution(x p.Package.*Size (double,double))
&& this(object$rac) && args(width, height)) {
boolean rac$b = (((width > +0.0D) && (height > +0.0D))
&& ((width x height) <= 400.0D));
JMLChecker . checkPrecondition (rac$b, "errorMsg");

}

Figure 4.3: Generated before advice to check the crosscutting preconditions of Package
in Figure 4.1.

/xx Generated by JML to check the protected
x precondition of method setSize. x/
before (p.Package object$rac, double width, double height):
call (void p.Package.setSize (double, double))
&& within(p.*) && within(p.Package+)
&& target (object$rac) && args(width, height) {
if ((&)
boolean rac$b = (((width > +0.0D) && (height > +0.0D)) &&
((width % height) <= 600.0D));
JMLChecker . checkPrecondition (rac$b, "...");
}

Figure 4.4: Generated before advice to check the protected preconditions of the method
setWeight in type Package.

type is Package. Hence, this precondition can only be checked to join points of Package
or its subtypes like GiftPackage.

Implementation of CAC

We also implemented the CAC technique in our AspectJML RAC compiler (ajmlc) [RLBT14].
Figure 4.4 shows the after returning advice generated by the ajmlc compiler to check
the protected preconditions of method setWeight discussed in Section 4.5.

Let us assume that the type Package is declared in a Java package, say p. The package
information is used for protected precondition checking. To properly check protected
preconditions, we rely on the AspectJ within pointcut in the generated advice (see
the shadowed part in Figure 4.4). It guarantees the effective protected precondition to
check all calls to method setSize that lexically occurs from within package p (denoted
by within(p.x)) or, if those calls are made from outside p, then they must occur in a
subclass of p.Package (e.g., GiftPackage) denoted by within(p.Package+).

For public preconditions, ajmlc uses the within(x) pointcut because any call to

92

the method setSize, regardless its client visibility, must respect the specified public
precondition. For the other privacy modifiers, ajmlc uses an appropriate variation of
the within pointcut.

For handling multiple specification cases, which is possible in JML, ajmlc generates a
dedicated before advice for each JML specification case with different privacy modifiers.
For instance, the following generated before advice is responsible for checking the public
preconditions of the method setSize:

/*x Generated by JML to check the public
x precondition of method setSize. x/
before (p.Package object$rac, double width, double height) returning():
call (void p.Package.setSize (double, double))
&& within(*) &&
target (object$rac) && args(width, height) {
if (&)
boolean rac$b = ((((width > +0.0D) && (height > +0.0D)) &&
((width = height) <= 400.0D));
JMLChecker . checkPrecondition (rac$b, "...");
}

Ordering of checks

As acknowledged, AspectJML can also compile AspectJ/@Aspect] programs. As As-
pectJML /ajmlc generates AspectJ aspects to check contracts during runtime, we need
precedence enforcement to avoid conflicts with other aspects in the system responsible
for other crosscutting concerns.

For example, if we compile a class named Package with ajmlc, it generates an As-
pectJ aspect called Aspect]MLRAC Package. So to ensure the precedence rules between
AspectJMLRAC Package and other aspects, the former declares the following AspectJ
construct:

declare precedence : AspectJMLRAC_*, x;

This precedence ensures that any aspect in the system that starts with “AspectJMLRAC_”
has higher precedence that any other aspect in the system (denoted by the second wild-
card). The declare precedence construct is discussed itself in Section 2.5. In terms of
precedence rules, the above construct ensures that all AspectJML preconditions , which
are implemented with before advice, to be checked first. Hence, once preconditions are
satisfied, the other aspects are allowed to run their respective before advice. Analo-
gously, the AspectJML postconditions, which is implemented by after advice, are only
checked after all the after advice of other aspects are executed first.

The use of declare precedence guarantees that no other code (i.e., within before
advice) runs if we have a precondition violation. In the same manner, the precedence
rule prevents undetected postcondition violations, which could happen if postconditions
were checked before the execution of any other after advice.

In summary, AspectJML generated aspects that have the higher precedence in re-
lation to other aspects in the system. The precedence rules that govern the runtime
checking are the same ones described in Section 2.5 and summarized by Figure 2.5.

93

4.6.2 Contract violation example in AspectJML

As an example of runtime checking using AspectJML/ajmlc, recall the client code il-
lustrated in Figure 4.2. In this scenario, we got the following precondition error in the
AspectJML RAC:

Exception in thread "main"
org.jmlspecs.ajmlrac.runtime. JMLEntryPreconditionError:
by method Package.setSize regarding code at
File "Package.java", line 13 (Package.java:13), when
'width’ is 0.0
’height’ is 1.0

As can be seen, in this error output, the shadowed input parameter width is displaying
0.0. But the precondition requires a package’s width to be greater than zero. As a result,
this precondition violation occurs during runtime checking when calling such client code.

class Package {
double width, height;
f/@ invariant this.width > @ && this.height > @;
double weight;
f/@ invariant this.weight > @;

/@ requires width > @ && height > @;
ff@ requires width * height <= 488; // max dimension
a @Pointcut({"execution(* *5ize(double,double})™+
"&& args(width, height)")
void sizes(double width, double height) {}

£ e void setSize(double width, double height){
this.width = width;
this.height = height;
¥

f@ requires this.width != width;
f@ regquires this.height != height;
& e |ad1.rised by PackageCrossRef.around({double double): sizes(BindingTypePatt
This.wldth = wldth;
this.height = height;

}

ff... other methaods

Figure 4.5: The crosscutting contract structure in the Package class using AspectJM-
L/AJDT [KMO05].

4.7 'Tool Support

In aspect-oriented programming, development tools like AJDT [KMO05], allow program-
mers to easily browse the crosscutting structure of their programs. For AspectJML, we

94

are developing analogous support for browsing crosscutting contract structure. We use
the existing functionality of AJDT to this end.

For example, consider the crosscutting contract structure of the Package class using
AspectJML/AJDT (see Figure 4.5). Note the arrows indicating where the crosscutting
contracts apply. In plain AspectJ/AJDT this example shows no crosscutting structure
information, because it has only pointcut declarations without advice. In AspectJ, we
need to associate the declared pointcuts to advice in order to be able to browse the
crosscutting structure of a system. We have implemented an option (that is enabled by
default) in AspectJML that generates the cross-references information for crosscutting
contracts, thus allowing one to visualize the crosscutting structure.

To enable the crosscutting contract structure view, AspectJML generates an around
advice in AspectJ, without effect in the base code, to associate with the corresponding
pointcut in AspectJML pointcuts. For instance, considering the Package type (Fig-
ure 4.5), AspectJML generates an AspectJ aspect called PackageCrossRef. Figure 4.5
illustrates this in practice. Once compiled, we can see that the method reSize in Package
is intercepted by the pointcut sizes from PackageCrossRef. Through the cross-references,
we go to the around advice (in the aspect PackageCrossRef) that actually activates the
arrow through AJDT. But the cross-reference code we generate for AspectJML allows
the programmers from a javadoc-link to point to the right pointcut sizes in type Package.
The generated code looks as follows:

public privileged aspect PackageCrossRef {
static boolean advise = false;

/+*x Generated by AspectJML to enable the crossref for

x the XCS pointcut { @link Package#sizes (double, double)}x/
pointcut sizes (double width, double height): ... ;
Object around(...): sizes(width, height) && if(advise){return null;}

/% Generated by AspectJML to enable the crossref for
x the XCS pointcut {@link Package#sizeChange (double, double)} x/
pointcut sizeChange(double width, double height): .. .;
Object around(...): sizeChange(width, height)
&& if (advise){return null;}

/% Generated by AspectJML to enable the crossref for

* the XCS pointcut {@link Package#packageMeths()} =/
pointcut packageMeths (): (execution(x Package+.x(..))) && .. .;
Object around (): packageMeths () && if(advise){return null;}

Figure 4.6 shows another example where the use of the AspectJ/AJDT helps an
AspectJML programmer to write a valid pointcut declaration. As depicted, the Aspec-
tJML programmer got an error from AJDT because he/she forgot to bind the formal
parameters of the pointcut method declaration with the pointcut expression by using
the argument-based pointcut args. The well-formed pointcut can be seen in Figure 4.5.
All the AJDT IDE validation is inherited by AspectJML.

Note that the AJDT is just a helpful functionality to assist (beginners) AspectJML
programmers to see where the specified pointcuts intercept. Once pointcut language
and quantification mechanism are understood, this tool is not required to reason about

95

class Package {
double width, height;
J/@ invariant this.width > @ && this.height > 8;
double weight;
J/@ invariant this.weight > @;

//@ requires width > @ &% height > 8;
/M@ requires width * height <= 488; // max dimension
=] @Pointcut("execution(* *Size(double,double}}™)

a void sizes(double width, double height) {}

= |Multiple markers at this line
- formal unbound in
pointcut

h, double height){

Figure 4.6: An example of a malformed pointcut declaration in AspectJML.

AspectJML in a modular way (as discussed in Section 4.4).

4.8 Chapter Summary

In this chapter, we presented the DbC language AspectJML. We demonstrated how
AspectJML can be used to tackle the crosscutting contracts problem while keeping the
benefits of a classical design by contract language such as JML or Eiffel. We showed
how to deal with crosscutting pre- and postconditions using JML specifications. Also,
exceptional postconditions are allowed to crosscutting contract specification. In addi-
tion to crosscutting modularity, we also discussed how the technique called client-aware
checking can be used to provide runtime checking at client side while respecting privacy
information in specifications which promotes information hiding. Since AspectJML is
an extension to JML using some AspectJ features, a programmer can decide which fea-
tures to use: (1) only JML annotated Java programs, (2) only AspectJ programs, (3)
only Java programs, or (4) all of them mixed including the pointcut specification that
is only available with AspectJML.

96

Chapter 5

Evaluation

This chapter reports our evaluation regarding the AspectJML language. Such an eval-
uation is important to provide some evidence that the modularity features available
in AspectJML are useful for developers using design by contract in practice. Sec-
tion 5.1 presents the selected case studies and Section 5.2 the main procedures as
phases we follow to conduct our evaluation. In Section 5.3, we quantitatively evalu-
ate the XCS feature of AspectJML through a set of metrics structured in the form of
a Goal-Question-Metric (GQM) (see Table 5.1). All the results are available online at:
https://dl.dropboxusercontent.com/u/875595/phd.zip.

5.1 Target Systems

The first major decision that we made in our investigation was the selection of the
target systems. The three chosen systems are Health Watcher (HW) [SLB02, GBF107],
Java Card API 2.2.1 [Teal4al, and HealthCard [Teal4b]. The first one is a real web-
based information system that allows citizens to register complaints regarding health
issues. We selected this system because it is an open source project with a detailed
requirements document available [GBFT07]. This requirements document describes 13
use cases and forms the basis for our JML specifications. In relation to the last two
systems, the former was selected because it consists in a detailed specification of the
Java Card (JC) API using JML (the specifications are available online'). The latter
consists of a prototype of a Java Card application for smart cards called HealthCard
(HC). It was selected because it is specified in JML (the specifications are also available
online?) to fulfill the requirements of the HealthCard application in Java Card. The size
of the selected systems can be observed by the lines of code metric in Table 5.2.

5.2 Study Phases

The study was divided into three major phases: (i) The specification of the Heath
Watcher contracts using JML in conformance with its requirements document; (ii) the
modularization of crosscutting contracts using AspectJML for the three target systems,

http://wwwhome.ewi.utwente.nl/~mostowskiwi/software.html
2 http://sourceforge.net/projects/healthcard/

97

4 GUI Layer

ServletSearchComplaintDatg ServletInsertEmployee
—{1 (< ISl
\\ A ~
N
»" S,
l’ H > .
~
/ Bu\smess Layer N \

HealthWatcherFacadg

. oife

=
—
_-
P

mp - ComplaintRecord] [EmployeeRecord
Legend:
c e o [
=L

GUI Concern g

-

Business Concern IComplaintRepository IEmployeeRepository

A

Persistence Concern I |

FomplaintRepositoryJDB(EmployeeRepositoryJDBC
C | Concurrency Concern [

Design by Contract Concern | P : - -_ J

BEE]=]=]e]

Figure 5.1: Health Watcher’s Design including design by contract concern.

and (iii) the quantitative assessment of the JML and AspectJML versions of the three
target systems.

Specification of the HW base release. In the first phase, we used JML to
specify the contracts for the HW base release implemented in Java [GBFT07]. To
create the JML specification, we analyzed the entire requirements document of the HW
system. Such analysis was essential to understand the HW functionalities and involved
actors. The inference of some contracts was not possible using only the requirements
document. In these cases, we performed a deep analysis (inspection) of the HW source
code. Figure 5.1 presents a partial class diagram of the HW base release implemented in
Java and now specified with JML. Note that the concern DbC is now part of the system’s
diagram. As observed, the Layer architectural pattern [BMR96] is used to structure
the system classes in three main layers: GUI (Graphical User Interface), Business, and
Data. The GUI layer implements a web user interface for the system. The Java Servlet
API is used to codify the classes of this layer. The Business layer aggregates the classes
that define the system business rules. Finally, the Data layer defines the functionality of
database persistence using the JDBC API. Also, several design patterns [AB01, LASBO1,
GHJVO95] are used in the design of the HW layers to achieve a reusable and maintainable
implementation.

Crosscutting Contract Modularization using AspectJML. With the HW sys-
tem specification in JML (in the previous phase), all the three target systems now
present their own JML specifications for the design by contract concern. Hence, the
second phase modularizes the crosscutting contracts contained in the selected systems.
The modularization was performed by using AspectJML and its features presented in
the last chapter.

Quantitative Assessment. The goal of the third phase was to compare in a
quantitative way the design by contract modularity of JML and AspectJML versions of

98

the chosen systems. The comparison was based on the size of the design by contract
concern and compilation time.

5.3 Quantitative analysis

To drive the quantitative evaluation of our AspectJML language, we follow the Goal-
Question-Metric (GQM) design [BCR94]. We structure it in Table 5.1. We answer Ques-
tion 1 measuring the size of AspectJML features in terms of lines of code (LOC) [CK94],
lines of DbC code (DbCLOC), number of preconditions (NOPre), number of postcondi-
tions (NOPo), number of operations (NOO) [CK94], and number of types (VS) [CK94].
To answer Question 2, we use instrumented source code (ISC) and instrumented byte-
code (IBC) measures in megabytes to quantify the overhead of JML contract instru-
mentation. Also, we measure the compilation time (CT) overhead in both milliseconds
and seconds.

We use the Google CodePro AnalytiX ® to obtain the LOC, NOO, and VS metrics.
In addition, we use sheets to help the computation of the other metrics, which were
collected manually. In order to gather the compilation time information, we use the
ajmlc compiler with the option —verbose enabled. This option prints in the end the
total compilation time in both milliseconds and seconds. For each system, we used 15
samples and employed the T-Test. All the compilation time results, we present, have a
95% of confidence.

5.3.1 System size results

To answer Question 1 and investigate whether our AspectJML XCS feature increases
the overall system size, we use the size metrics LOC, DbCLOC, NOPre, NOPo, NOO,
and VS. We use this set of size metrics to evaluate the selected three systems. The
results are illustrated in Table 5.2.

LOC and DbCLOC

As observed, the use of AspectJML XCS feature increases the lines of code (LOC) for all
analyzed systems. This is expected since to write crosscutting contract specifications,
we need to write pointcut methods with specifications. These pointcut methods are
counted as extra lines of code. Since JML specifications are written in the form of Java
comments, the LOC metric exclude them. Because of that, we use a specific metric to
count all DbC related code (including JML specifications). In this case, we have reduced
the overall system DbCLOC after crosscutting contract modularization with AspectJML
(see Table 5.2). This happens since we locate all the recurrent specifications in one place
with a pointcut-specification mechanism of AspectJML.

NOPre and NOPo

In Table 5.2 we can observe that by using AspectJML we can significantly reduce the
overall number of system pre- and postconditions. The more scattered a recurring

3https://developers.google.com/java-dev-tools/download-codepro.

99

Table 5.1: GQM

Goal

Purpose Evaluate AspectJML regarding

Issue size and compilation size and time of
its crosscutting contract specification (XCS)

Object from a

Viewpoint software engineer viewpoint

Questions and Metrics

Q1- Does AspectJML increase the system size

regarding lines of code, lines of DbC code (specs),

number of preconditions, number of postconditions,

number of operations, and number of types?

Lines of Code LOC [CK94]

Lines of DbC code DbCLOC

Number of Preconditions NOPre

Number of Postconditions NOPo

Number of Operations (methods or pointcuts) of each type NOO [CK94]

Vocabulary Size (number of types) Vs [CK94]

Q2- Does AspectJML increase code instrumentation before

and after compilation, and increase compilation time?

Instrumented Source Code ISC

Instrumented Bytecode IBC

Compilation Time CT

specification is, the better reuse and less lines we have when employing AspectJML. Note
that the metric NOPo denotes both normal and exceptional postconditions expressed
in JML.

NOO and VS

As expected, the use of AspectJML to specify and modularize crosscutting contracts
increase the overall system number of operations (NOO) and number of types (VS).
The number of operations is increased due to methods added in each studied system.
These methods are pointcut methods which contains JML specifications for crosscutting
contracts. For instance, in the HC system, we had an increasing of number of operations
in 9.47% (see Table 5.2). So the 36 extra methods denote pointcut methods written in
AspectJML for HC system.

In relation to VS metric, it shows us that the HC system had an increasing of
25% in terms of number of types. This happens in AspectJML when one modularize
crosscutting contracts behind an interface and applies the crosscutting functionality by
implementing this interface. Hence, each interface should be counted as a new type
in the system. Moreover, due to some limitations discussed in previous chapter, each
interface, which implements a crosscutting contract, needs an inner class to encapsulate
its crosscutting contract. In this context, each inner class is computed as additional
types as well. Therefore, each crosscutting contract interface adds two new types in the
system.

5.3.2 Compilation System results

This section answers Question 2 by investigating the extent of compilation overhead
when using AspectJML. Thus, we measure the compilation overhead in terms of code
instrumentation and compilation time. For code instrumentation we employ the metrics
ISC and IBC (see Table 5.1). The former denotes the source code generated to check

100

Table 5.2: LOC, DbCLOC, NOPre, NOPo, NOO, and VS metric results for all systems.

Metric LOC LOCDbLC | NOPre NOPo NOO VS
Before (HW) JML 5916 2129 363 778 456 89
Modularization | AspectJML - - - - - -
Total 5916 2129 363 778 456 89
After (HW) JML 5916 1459 222 419 456 89
Modularization | AspectJML 267 236 24 32 45 18
Total 6183 1695 246 451 501 107
Diff. +4.32% | -20.39% | -32.24% | -42.03% | +8.98% | +16.82%
Before (JC) JML 3224 2148 427 347 392 89
Modularization | AspectJML - - - - - -
Total 3224 2148 427 347 392 89
After (JC) JML 3224 1782 246 264 392 89
Modularization | AspectJML 93 126 15 20 12 10
Total 3317 1908 261 284 404 99
Diff. +2.80% | -11.17% | -38.87% | -18.15% | +2.97% | +10.10%
Before (HC) JML 1752 2424 257 333 344 36
Modularization | AspectJML - - - - - -
Total 1752 2424 257 333 344 36
After (HC) JML 1752 2249 250 191 344 36
Modularization | AspectJML 99 69 1 14 36 12
Total 1851 2318 251 205 380 48
Diff. +5.34% -4.37% -2.33% | -38.43% | +9.47% +25%

JML contracts but before compilation. The latter denotes the bytecode instrumenta-
tion after compilation. Both are measured in megabytes. In relation to compilation
time (CT), we present the measures in both milliseconds and seconds. The results are
illustrated in Table 5.3.

Code instrumentation

For the systems studied, we can observe that by using AspectJML to modularize cross-
cutting contracts creates a slight impact on the size of code instrumentation both before
and after compilation (see Table 5.3). The only exception, in terms of source code instru-
mentation, was the HC system. Our conjecture to this happen is when one modularize
crosscutting contracts and there is no remaining specifications in the methods whose
recurrent specifications were removed to pointcut methods. In this case the number of
AspectJ advice generated to check contracts are reduced.

On the other hand, the number of generated AspectJ advice could be greater than
usual because after modularization, we sill have specifications in the methods whose
recurrent specifications were removed to pointcut methods. This situation corroborates
to other two analyzed systems (HW and JC).

Compilation time

Table 5.3 also presents the results for compilation time. As observed, a system using
AspectJML to handle crosscutting contracts, presents a small overhead in terms of the
time needed to complete the system’s compilation. For the three studied systems, we had
an overall overhead of 4 seconds to compile a system. This is expected since in the end

101

we have more AspectJ advice to compile. Also, this extra advice contains quantification
that intercepts and instruments several join points. So, this also contributes to an
increasing in the overall system’s compilation time.

More compilation time

As discussed, we observed a small overhead in a system in relation to compilation time
when using AspectJML XCS feature. But one question that can arise is whether this
AspectJML’s feature (when enabled) can increase the compilation time of a system
without any JML specifications? To answer this question, we selected three more open-
source systems available online®:

e Database schema visualizer called dbviz implemented in Java (version 0.5) with
6.714 of lines of code (LOC);

e JavaScript compiler/interpreter called Rhino implemented in Java (version 1.5)
with 37.960 of LOC;

e Object-relational mapping tool called iBATIS implemented in Java (version 2.3)
with 15.855 of LOC.

We evaluated these systems as before. That is, in terms of compilation time in both
milliseconds and seconds, and we use the ajmlc’s compiler —verbose option enabled to
collect the compilation time in both milliseconds and seconds. We ran eight times each
system: four with XCS disabled and another four with XCS enabled. Then, we took the
mean of the compilation time results for each version (e.g., XCS enabled). The results
is presented in Table 5.4.

Comparing the compilation time results of Table 5.4 with Table 5.3, we can conclude
that the AspectJML/ajmlc compiler, where we do not have JML specifications at all,
behaves in the same manner when XCS is enabled or not. We have minor differences to
argue that one is better than other and vice versa. For example, in the dbviz system,
we had better results for XCS (only 4% of reduction in seconds). On the other hand,
considering the iBATIS system, we had better results for non-XCS (but only 1.66%
of reduction in seconds). The Rhino system showed a somewhat equivalence between
non-XCS and XCS compilation modes. In terms of seconds, they presented the same
compilation time. Only when we consider milliseconds we can observe that non-XCS is
better, but only 0.75% of reduction.

5.3.3 What about Scattering and Tangling metrics?

Since this empirical study is related to modularity, one natural question is why the
separation of concern metrics [GSF05, EZST08] which mainly includes scattering and
tangling, were not used? These metrics have been successfully applied to similar stud-
ies [GSFT05, KSGT06, FCFT06, GBFT07, CRG"08, EZST08, ARG"11]. The answer to
this question is based on how AspectJML deals with contracts in general. For example,
if we consider the degree of the scattering metric over classes (DOSC) [EZST08], even
if after modularization, we can see worse results than before. The reason is that to

Yhttp://www.cs.columbia.edu/~eaddy/concerntagger/

102

Table 5.3: ISC, IBC, and CT metric results for all systems.

Metric ISC (MB) | IBC (MB) | CT (ms) | CT (s)

JML 3.30 6.32 25231 25
HealthWatcher | AspectJML 3.37 6.83 30259 30
Diff. +0.07 +0.51 +5028 +5

Diff. (%) +2.07% +17.46% +16.61% | +16.66%
JML 2.52 4.96 25856 25
Java Card API | AspectJML 2.54 5.37 28939 28
Diff. +0.02 +0.41 +3083 +3

Diff. (%) +0.78% +17.63% +10.65% | +10.71%
JML 2.14 9.08 25968 25
HealthCard AspectJML 2.02 9.16 29682 29
Diff. -0.12 +0.08 +3714 +4

Diff. (%) -5.60% +0.87% +12.51% | +13.79%

Table 5.4: CT metric results for dbviz, Rhino, and iBATIS systems.

Metric CT (ms) | CT (s)
XCS-disabled 25053 25
dbviz XCS-enabled 24111 24
Diff. -942 -1
Diff. (%) -3.76% -4%
XCS-disabled 61525 61
Rhino XCS-enabled 61863 61
Diff. +338 0
Diff. (%) +0.54% 0%
XCS-disabled 59667 59
iBATIS | XCS-enabled 60123 60
Diff. +456 F1

Diff (%) | +0.75% | +1.66%

keep the documentation benefits, JML does not extract all the contracts to one place
(e.g., type or method). Hence, the additional operations and crosscutting interfaces for
crosscutting contract specifications can present more scattering than before the modu-
larization. The same principle applies to metrics considering tangling. AspectJML does
not eliminate tangling in its standard use.

Fortunately, AspectJML can help one eliminate the amount of specifications that
are placed throughout the source code. As discussed in Section 2.4.10, JML specifi-
cations can be written in a separate corresponding file. Thus, instead of writing JML
specifications in a file say Package.java, we write them in a corresponding file named, for
example, Package.jml. As mentioned, this feature is also provided in AspectJML, and
once used, it removes the tangling and scattering we have before in original source files.
Therefore, the results of such separation of concern metrics are directly dependent of
the use of separate files in AspectJML. This is somewhat like aspects (modular units to
separate crosscutting functionality). If we use separate files, we have good modularity
indicators through the set of separation of concern metrics, whereas we do not if we do
not use separate files for specifications. This justifies why we are not considering these
metrics (although useful) in our study. Considering our previous target applications,
the JML specifications written for the JavaCard API 2.2.1 were written in separate .jml
files

103

5.4 Representative Crosscutting Scenarios

This section presents some examples of scenarios that were identified during the process
of refactoring the systems described in Section 5.1 with AspectJML. These scenarios
represent recurring situations in which a developer would have to deal if faced with
the task of modularizing design by contract code using AspectJML/XCS. We mainly
discuss in our experience in detail using the HW system. We give more attention to this
system because it was studied by using both requirements document and code analysis.
Hence, we analyzed the crosscutting contract structure of the HW system, comparing
its specification in JML and AspectJML. Even though the discussion is HW driven, we
also provide some scenarios relative to the other two studied systems (Section 5.1).

5.4.1 Understanding the Crosscutting Contract Structure

One of the most important steps in the evaluation is to recognize how the contract struc-
ture crosscuts the modules of the HW system. We now show some of the crosscutting
contracts present in HW using the standard JML specifications.

Crosscutting preconditions

Crosscutting preconditions occur in the HW system’s IFacade interface. This facade
makes available all 13 use cases as methods. Consider the following code snippet from
this interface:

//@ requires code >= 0;
IteratorDsk searchSpecialitiesByHealthUnit(int code);

//@Q requires code >= 0;
Complaint searchComplaint(int code);

//@ requires code >= 0;
DiseaseType searchDiseaseType (int code);

//@Q requires code >= 0;
IteratorDsk searchHealthUnitsBySpeciality(int code);

//@ requires healthUnitCode >= 0;
HealthUnit searchHealthUnit(int healthUnitCode);

These methods comprise all the search-based operations that HW makes available. The
preconditions of these methods are identical, as each requires that the input parameter,
the code to be searched, is at least zero. However, in plain JML one cannot write a
single precondition for all 5 search-based methods.

Crosscutting postconditions

Still considering the HW'’s facade interface IFacade, we focus now on crosscutting post-
conditions. First, we analyze the crosscutting contract structure for normal postcondi-
tions:

//@ ensures \result != null;
IteratorDsk searchSpecialitiesByHealthUnit(int code);

104

//@ ensures \result != null;
IteratorDsk searchHealthUnitsBySpeciality(int code);

//@ ensures \result != null;
IteratorDsk getSpecialityList()

//@ ensures \result != null;
IteratorDsk getDiseaseTypeList ()

//@ ensures \result != null;
IteratorDsk getHealthUnitList ()

//@ ensures \result != null;
IteratorDsk getPartialHealthUnitList()

//@ ensures \result != null;
IteratorDsk getComplaintList ()

As observed, all the methods in IFacade that return an object of type IteratorDsk should
return a non-null object reference. In standard JML there are two more ways to express
this constraint [CJ07]. The first one, as discussed in Section 2.4.4, uses the non-null
semantics for object references. In this case we do not need to write out such normal
postconditions to handle non-null. However, we can deactivate this option in JML
if most reference types in the system are possibly null or just by the programmer’s
decision. In this scenario, whenever we find a method that should return non-null, we
still need to write these normal postconditions. So, by assuming that we are not using
the non-null semantics of JML as default, these postconditions become redundant. The
second option is to use the JML type modifier non null; however, even this would lead
to several repeated annotations.

With respect to exceptional postconditions of IFacade interface, we found an inter-
esting crosscutting structure scenario. Consider the following code:
//@ signals_only java.rmi.RemoteException;

void updateComplaint (Complaint q) throws
java.rmi.RemoteException, .. .;

//@ signals_only java.rmi.RemoteException;
IteratorDsk getDiseaseTypeList () throws
java.rmi.RemoteException, .. .;

//@ signals_only java.rmi.RemoteException;
IteratorDsk getHealthUnitList() throws
java.rmi.RemoteException , .. .;

//@ signals_only java.rmi.RemoteException;
int insertComplaint (Complaint complaint) throws
java.rmi.RemoteException, .. .;

... // the other 12 facade methods contain this constraint

As can be seen, these IFacade methods can throw the Java RMI exception RemoteException
(see the methods throws clause). This exception is used as a part of the Java RMI API
used by the HW system. Even though we list only four methods, all the methods con-

105

tained in the IFacade interface contain this exception in their throws clause. Because of
that, the signals_only clause shown needs to be repeated for all methods in the IFacade
interface. However, in JML one cannot write a single signals only clause to constrain
all such methods in this way.

Another example of exceptional postconditions occurs with the search-based methods
discussed previously. All these search-based methods should have a signals_only clause
that allows the ObjectNotFoundException to be thrown. As with the RemoteException,
one cannot write this specification once and apply it to all search-based methods.

5.4.2 Modularizing Crosscutting Contracts in HW

To restructure/modularize the crosscutting contracts of the HW system, we use the XCS
mechanisms of AspectJML. By doing this, we avoid repeated specifications, which is an
improvement over standard DbC mechanisms. In the following we show the details of
how AspectJML achieves a better separation of the contract concern for this example.

Specifying crosscutting preconditions

We can properly modularize the crosscutting preconditions of HW with the following
JML annotated pointcut in AspectJML:

//@Q requires code >= 0;

@Pointcut ("execution(* IFacade.search®(int))"+

"&& args(code)")
void searchMeths(int code) {}

With this pointcut specification, we are able to locate the preconditions for all the
search-based methods in a single place. To select the search-based methods, we use a
property-based pointcut [KHHT01] that matches join points by using wildcarding. Our
pointcut matches any method starting with search and taking an int parameter. Before
the executions of such intercepted methods, the precondition that constrains the code
argument to be at least zero is enforced during runtime; if it does not hold, then one
gets a precondition violation error.

Specifying crosscutting postconditions

Consider the modularization of the two kinds of crosscutting postconditions we discussed
previously. For normal postconditions, we add the following code in AspectJML:
//Q ensures \result != null;

@Pointcut ("execution(IteratorDsk IFacade.*(..))")
void nonNullReturnMeths () {}

With this pointcut specification, we are able to explicitly modularize the non-null con-
straint. The pointcut expression we use matches any method with any list of parameters
returning IteratorDsk.
The AspectJML code responsible for modularizing the exceptional postconditions is
similar:
//@Q signals_only java.rmi.RemoteException;

@Pointcut ("execution(* IFacade.*(..))")
void remoteExceptionalMeths () {}

106

//@Q signals_only ObjectNotFoundException;
@Pointcut ("execution(x* IFacade.search®(..))")
void objectNotFoundExceptionalMeths () {}

These two specified pointcuts in AspectJML are responsible for modularizing the excep-
tional postconditions for methods that can throw RemoteException and methods that
can throw ObjectNotFoundException, respectively. The first pointcut applies the specifi-
cation for all methods in IFacade, whereas the second one intercepts just the search-based
methods.

5.4.3 Reasoning About Change

The main benefit of AspectJML is to allow the modular specification of crosscutting
contracts in an explicit and expressive way. The key mechanism is the quantification
property inherited from AspectJ [KHH"01]. In addition to the documentation and mod-
ularization of crosscutting contracts achieved by using AspectJML, another immediate
benefit of using our approach is easier software maintenance.

For example, if we add a new exception that can be thrown by all IFacade meth-
ods, instead of (re)writing a signals_only clause, we can add this exception to the
signals_only list of the remoteExceptionalMeths pointcut. This pointcut can be reused
whenever we want to apply constraints to methods already intercepted by the pointcut.

Another maintenance benefit occurs during system evolution. On one hand, we may
add more methods in the IFacade interface to handle system’s new use cases. On the
other hand, we do not need to explicitly apply existing constraints to the newly added
methods. The modularized contracts that apply to all methods also automatically apply
to the newly added ones, with no cost. Finally, even if the crosscutting contracts are
well documented by using JML specifications, the AJDT tool helps programmers to
visualize the overall crosscutting contract structure. Just after a method is declared, we

can see which crosscutting contracts apply to it through the cross-references feature of
AJDT [KMO5].

5.4.4 More Crosscutting Scenarios and their Modularization

In the following we present some code snippets that illustrate the crosscutting structure
present in the JavaCard API 2.2.1 and in the HealthCard system. We also show how
we modularized them with AspectJML. We give no much details about the code. We
just looked for specification clones for modularization.

Crosscutting contracts in JavaCard

Consider the interface Service part of JavaCard API:

public interface Service {
/*Q@Q public normal behavior
@ requires apdu != null;
@ ensures true;
@ assignable apdu._buffer [x];
@« /
public boolean processDataln(APDU apdu);

107

/*Q@Q public normal_behavior
@ requires apdu != null;
@ ensures true;
@ assignable apdu._buffer [x];
@sx /
public boolean processCommand (APDU apdu);

/*Q@Q public normal behavior
@ requires apdu != null;
@ ensures true;
@ assignable apdu._buffer [x%];
@« /
public boolean processDataOut(APDU apdu);

}

As observed, the three interface methods have exactly the same JML specification
case. Consider now the same interface specifications using AspectJML:
public interface Service {
/*Q@Q public normal_behavior
@ requires apdu != null;
@ ensures true;
@ assignable apdu. _buffer [x];
@« /
@Pointcut ("execution(public boolean process*(javacard.framework.APDU))" +
"&& args(apdu)")
public void processXCS (APDU apdu);

public boolean processDataln(APDU apdu);
public boolean processCommand (APDU apdu);

public boolean processDataOut(APDU apdu);

The pointcut method processXCS is responsible for modularizing the crosscutting
contracts. Now, instead of 15 lines of DbC code, we just have five. The pointcut mainly
selects the three interface methods by using process*, which denotes any method starting
with process.

As discussed in Chapter 4, this crosscutting contract specification for the interface
Service does not need an inner class since it is supposed to be declared within a separate
Jjml file. For a public method and within a .jml file, we do not need to create an inner
class to modularize the interface’s crosscutting contracts.

Crosscutting contracts in HealthCard

To exemplify crosscutting contracts for HealthCard system, consider the following in-
terface methods and their specifications:

//a ...

//@ signals_only UserException;

//@Q signals (UserException e)

//@ medicines_model.equals(\old(medicines_model));
public byte addMedicine (...) throws UserException;

108

//a ...

//@ signals_only UserException;

//@ signals (UserException e)

//@ medicines_model.equals(\old(medicines_model));
public void removeMedicine (...) throws UserException;

//a ..

public short countAllMedicines () throws UserException;

/x more 12 interface methods with the same
crosscutting specifications presented
by both addMedicine and removeMedicine x/

This crosscutting scenario is presented in the interface Medicines. As illustrated, the
interface consists in 15 methods in which 13 presents the same crosscutting structure
involving JML exceptional postconditions. Only the method countAllMedicines present
different specifications and is not a part of our crosscutting scenario.

An expected solution is an AspectJML pointcut method to modularize both signals_only
and signals crosscutting clauses. However, we break down our solution in two parts since
the signals_only clauses are crosscutting in other unrelated types. Hence, we have a sep-
arate crosscutting interface useful for all types that present this recurrent crosscutting
contract. See crosscutting interface UserExceptionAllowedSignallingConstraint below:
public interface UserExceptionAllowedSignallingConstraint {

@InterfaceXCS
class UserExceptionAllowedSignallingConstraintXCS {
//Q signals only javacard.framework. UserException;
@Pointcut ("execution(* UserExceptionAllowedSignallingConstraint+.*(..)) && "

+ "!@annotation(cc.UserExceptionAllowedSignallingConstraint.ExcludeMarker)")
public void userExceptionAllowedXCS (){}

}

public @interface ExcludeMarker {}

We use the standard way to add crosscutting contracts for an interface. Note the
inner class declaration. The pointcut userExceptionAllowedXCS is responsible to add
the above signals_only clause to all methods in a type that implements the interface
UserExceptionAllowedSignallingConstraint. But the pointcut expression also says to ex-
clude any member annotated with ExcludeMarker (see the use of @annotation pointcut).
This is useful when not all methods should present the crosscutting functionality. We
just need to implement the crosscutting interface in addition to mark all methods that
should be excluded from the pointcut userExceptionAllowedXCS. So assuming that the in-
terface medicines implements the crosscutting one UserExceptionAllowedSignallingConstraint,
we have the following change:

//a ...

//@ signals (UserException e)
//@ medicines_model.equals(\old(medicines_model));
public byte addMedicine (...) throws UserException;

//a ...

//@Q signals (UserException e)
//@ medicines_model.equals(\old(medicines_model));

109

public void removeMedicine (...) throws UserException;

//a ..

@UserExceptionAllowedSignallingConstraint. ExcludeMarker
public short countAllMedicines () throws UserException;

... /x more 12 interface methods with the same
x crosscutting specifications presented
* by both addMedicine and removeMedicine x/

In our first step, we removed all signals only clauses modularized by implement-
ing the above crosscutting interface. Moreover, note that we exclude the method
countAllMedicines by adding the annotation ExcludeMarker on it. Let us now modu-
larize the remaining crosscutting contract denoted by the JML signals clauses. See our
second (and final) step below:

@InterfaceXCS
class MedicinesXCS {
//@ signals (UserException e)
//@ medicines_model.equals(\old (medicines_model));

@Pointcut ("execution(public * *Medicinex(..)) &&" +

"lexecution(public short countAllMedicines())")
public void medicinesSignalsXCS(){}

}
//a ...

public byte addMedicine (...) throws UserException;

//a ..

public void removeMedicine (...) throws UserException;

//a ...

@UserExceptionAllowedSignallingConstraint. ExcludeMarker
public short countAllMedicines () throws UserException;

... /x more 12 interface methods with the same
x crosscutting specifications presented
* by both addMedicine and removeMedicine x/

Since the type Medicines is an interface, we add an inner class to modularize its cross-
cutting contracts. So the pointcut medicinesSignalsXCS intercepts all methods in inter-
face Medicines but excludes the execution of countAllMedicines (which does not present
crosscutting contracts).

5.4.5 Study Constraints

In what follows, we present the threats to validity of our study.

External validity. The scope of our experience is limited to Java, JML, and As-
pectJ languages. With respect to design by contract features, our experience about
crosscutting contract modularization only considered the implementation of pre- and
postconditions. Our results may potentially generalize to other OO and AO languages
and design by contract features, though that requires further analyses.

Internal validity. The authors implemented the contracts in the HW system, which
is a threat to internal validity. However, we minimize this threat since we followed the

110

HW requirements documentation, which contains information with respect to pre- and
postconditions. We complemented our specification with code analysis. Hence, we
implemented all contracts according to the documentation [GBFT07] and current code.
As explained, the existence of this requirement document was one of the main reasons
to use HealthWatcher in our analysis. Another reason to minimize this internal threat
is that we used other applications which already came with JML specifications.

Conclusion validity. The applicability, usefulness, and representativeness of the set
of metrics used in this study can be questioned. For example, we did not use the specific
set of metrics for separation of concerns. This set of metrics have already been proved
to be effective quality indicators in several case studies [GSFT05, KSGT06, FCFT06,
GBFT07, CRG'08]. As discussed in Section 5.3.3, we explained that the use of this set
of separation of concern metrics can diverge depending on how we use AspectJML. As
such, we just leave those metrics that can really reveal some indications of the usefulness
and drawbacks of the modularization of crosscutting contracts with AspectJML.

5.5 Chapter Summary

In this chapter, we conducted an evaluation to assess the expressiveness of AspectJML
to handle crosscutting contracts in practice. To this end we quantitatively evaluated
three real systems with metrics to gather information about the impact of crosscutting
contract modularization. We concluded that by using AspectJML a programmer can
significantly reduce the overall DbC lines of code of crosscutting contracts. However,
we also observed a small overhead of XCS feature in terms of code instrumentation
and compilation time. Also, we demonstrated several scenarios in which pointcuts-
specifications written in AspectJML could be beneficial to the day-by-day development.
We also discussed that when maintenance tasks are performed, the effort to specify new
methods could be minimized due to the use of AspectJML pointcuts-specifications that
could automatically apply to such new methods.

111

Chapter 6

Related Work

In this chapter, we present the main works related to this thesis.

6.1 Empirical Evidence About Crosscutting Con-
tracts

Chalin et al. [CR05a, CR05b, CJO7, CJRO8] conducted the most well-known study
involving the non-null annotation crosscutting concern. They argue that specifying
moderately large code bases, the use of non-null annotations is more intensive than it
should be. Hence, a programmer needs to scatter non-null annotations repeatedly in
several types. As a result, programmers may forget to add some non-null annotation to
some reference type, thus leading clients to call methods with null arguments resulting
in NullPointerException. In order to confirm this hypothesis, they conducted a study
with 5 open source projects totaling 700 KLOC which confirms that on average, 75% of
reference declarations are meant to be non-null, by design. With their findings, Chalin
et al. proposed to change the JML semantics by allowing reference type declarations to
be non_null by default. Since then, JML adopted the non_null semantics by default.
Another study conducted to assess the crosscutting structure of DbC was performed
by Lippert and Lopes [LL00]. They used AO techniques to modularize design by contract
features such as pre- and postconditions in a large OO framework, called JWAN. Also,
they attempted to identify situations where it was easy to aspectize design by contract
code. These situations were only two: (1) for preconditions, they wanted to make
sure those objects references, used as parameters, are non-null, and (2) ensure that the
return object reference for any method is non-null. This scenario is similar to non-null
annotations studied by Chalin et al. [CR05a, CR05b, CJ07, CJR08]. The only problem
with this study was that they only investigated scenarios where the use of AOP is good
for. But, the study lack results to show where is not advantageous to aspectize DbC.
In this context, Rebélo et al. [RLKT13] complements the Lippert and Lopes’ work
since they also considered heterogenous contracts. Moreover, Lippert and Lopes’ work
only considered pre- and postconditions, whereas Rebélo et al. also include invariants
in the analysis. Finally, Rebélo et al.’s work was the first to include a quantitative and
qualitative analysis of the aspectization of design by contract concern and also with an
analysis of the implementations regarding modularity and change propagation. Their
main findings indicate that aspectual decompositions are superior especially when con-

112

sidering the Open-Closed principle. In certain circumstances aspectual decompositions
tended to propagate to unrelated components due to ripple-effects caused by OO refac-
torings. In addition, even with higher reuse, AO implementations tended to present
no significant gains regarding system and design by contract size in relation to OO
decompositions as usually advertised by the literature [L1.00, LLH02, KHHT01].

6.2 Crosscutting Contract Modularization

As discussed throughout the thesis, there are several works in the literature that argue
in favor of implementing DbC with AOP [KHH"01, LLH02, FT06, RLL11]. Kiczales
opened this research avenue by showing a simple precondition constraint implementation
in one of his first papers on AOP [KHHT01]. In addition, in an interview, Kiczales
explicitly cites DbC as an example of a crosscutting concern:

“[...] there are many other concerns that, in a specific system, have crosscutting structure.
Aspects can be used to maintain internal consistency among several methods of a class.
They are well suitable to enforcing a Design by Contract style of programming” [Kic03].

After that, Lopes et al. also patented this idea [LLHO02].

Briand [BDLO05] discusses how to implement contracts with Aspect-Oriented Pro-
gramming (AOP) using AspectJ. He defines how to efficiently instrument contracts and
invariants in Java. The two main objectives of this work are: (1) to work at bytecode
level avoiding polluting the source code; (2) to apply the Liskov Substitution Principle
(LSP) [LW94] in order to check inheritance hierarchies.

Diotalevi [Dio04] proposes an approach for adopting design by contract [Mey92a] in
the development of Java application using Aspect-Oriented Programming (AOP) with
AspectJ. The work states that inserting pre- and postconditions assertions directly into
the application code has serious drawbacks — in terms of code modularity, reusability,
and cohesion — that lead to a common OO limitation called tangled code. These
assertions are crosscutting concerns and mix business logic code with the nonfunctional
code that assertions require; they are inflexible because we cannot change or remove
assertions without updating the application code. Because of that, the work provides a
solution based on the following four requirements:

e transparency — the pre- and postconditions code is not mixed with business logic;
e rcusability — most of the solution is reusable;

e flexibility — the assertion modules can be added to, removed, and modified;

e simplicity — assertions can be specified using a simple syntax.

This solution has a “bridge” that is an AspectJ aspect. This aspect specifies the exact
point where the contract is to be applied. The AspectJ implementation of contracts
covers pre-, postconditions and invariant checks. As a result, this solution provides a
clean and flexible solution, because it eliminates the drawbacks previously mentioned.
The solution lets one code the contracts of the application separately (untangled) from
one’s business logic. Different from our approach, this work concentrates only on pre-,
(normal) postcondition, and (instance) invariants.

113

“Assertion with Aspect” [IKKI04, IKIK05] proposes aspects for implementing asser-
tions. The work aims to use AspectJ in order to inject assert statements into classes
— the assert statement is a Java function of the standard library (available since JDK
1.4). Finally, this work enhances reusability of Java programs by eliminating tangled
code with assert statements. As a result, programmers can add and remove assertions
(contracts) of a class, thus enabling the programmers to separate (untangled) a class
from its assertions. The proposed work differs from ours in that it covers only two types
of assertions, precondition and (normal) postcondition assertions, and does not consider
the inheritance of assertions.

In relation to the works discussed above, Balzer, Eugster, and Meyer argued that
DbC aspectization is more harmful than good [BEMO05], since one loses all the key
properties of a DbC language: documentation, specification inheritance, and modular
reasoning. Indeed, they argue that aspect interaction can make even worse the un-
derstanding of how contracts are checked, and in what order they are checked. They
conclude that contracts are not crosscutting and that AOP cannot emulate contracts
properly. Rebélo, Lima, and Leavens’ work contradict some of the finding by Balzer,
Eugster, and Meyer. First of all, they show that AspectJ-like languages are suitable to
enforce design by contract. They also show that with AspectJ we can implement and
check properly contract inheritance. Finally, Rebélo, Lima, and Leavens disagree with
Balzer, Eugster, and Meyer’s work in relation to the crosscutting structure of contracts.
They believe and share the opinion of others [KHH"01, LL00, LLH02, SL04, MMvDO05,
BDL05, LKR05, FT06, RLL11, RLK"13] that contracts are crosscutting. What is ques-
tionable here is if AspectJ-like languages are suitable to provide all benefits of a DbC
language besides crosscutting modularity.

In this thesis, we go beyond these works by showing how to combine the best design
features of a design by contract language like JML and the quantification benefits of
AOP [FF00, VCFS10] such as AspectJ. As a result we conceive the AspectJML spec-
ification language that is suitable for specifying crosscutting contracts and preserving
information hiding. In AspectJML, one can specify crosscutting contracts in a modular
way while preserving key DbC principles such as documentation and modular reason-
ing [BEMO5].

Moxa [YWO06] is a behavioral interface specification language (BISL), which is an
extension to JML, with a new modularization mechanism called assertion aspect. It
captures the crosscutting properties among assertions. Like AspectJML, Moxa uses
JML specifications to modularize crosscutting contracts. The problem is that they sep-
arate such contracts in a new module called assertion aspect. This brings back the
obliviousness issue and compromises modular reasoning and documentation. Although
the contracts are written in JML, a programmer cannot reason about a method’s cor-
rectness with such a documentation in a modular way. This is even worse because Moxa
does not use the AspectJ/AJDT IDE validation as we do with AspectJML. Therefore,
all the crosscutting contract structure information is not available. A programmer does
need to look at all assertion aspect modules to understand the use/correctness about a
method. As such, this approach tends to help much less than the traditional AspectJ
syntax to write contracts. Another major difference is that Moxa does not support
pointcut specification as we do in AspectJML. For example, the wildcarding to apply
to several join points is not supported. Moreover, named pointcuts are useful to reuse

114

to other crosscutting contract specification. In Moxa, we need to list all methods with
their corresponding syntactic interface all the time. Moxa does only support crosscut-
ting contracts for preconditions and normal postconditions using JML. In AspectJML
we support both in addition to exceptional postconditions and specification inheritance.
Finally, similar to AspectJML, Moxa translates such crosscutting contract specifications
written in JML to AspectJ aspects responsible to check them during runtime.

As with our work with AspectJML, Lam, Kuncak, and Rinard [LKRO05] advocates
that previous research in the field of aspect-oriented programming has focused on the
use of aspect-oriented concepts in design and implementation of crosscutting concerns.
Their experience indicates that aspect-oriented concepts can also be extremely useful for
specification, analysis, and verification. In this sense, among other things, Lam, Kuncak,
and Rinard designed constructs called scopes and defaults that can be used to improve
the locality and clarity of specifications, and, at the same time, reducing the sizes of
these specifications. These constructs cut across the preconditions and postconditions
of procedures in a system. Like our work, their language provides a pointcut language
to select where to apply constraints. The main difference is that their pointcut is
not expressive as ours (since we reused the standard AspectJ pointcut language). For
instance, in their language we cannot use wildcarding to select join points. Also, their
pointcut language can apply to several modules, but this can break modular reasoning
as we preserve using AspectJML. Finally, their work is intended to specification and
verification, whereas we are concerned to specification and runtime checking.

6.3 Crosscutting Modularity and Modular Reason-
ing with Design Rule Languages

AOQOP is a popular technique for modularizing crosscutting concerns. However, constructs
aimed at supporting crosscutting modularity may break class modularity. For example,
to understand a method call may require a whole-program analysis to determine what
advice applies and what that advice does. Moreover, in AspectJ, advice is coupled to
the parts of the program advised, the base code, so the meaning of advice may change
when the base code changes. Such coupling also hinders parallel development between
base code and aspects.

In this context, several works based on design rules and/or specifications have
been proposed to solve mainly the modular reasoning problem of aspect-oriented lan-
guages [GSST06, SGRT10, BRLM11, BRD13, CNBR*13, RLL*13b]. Therefore, now
it is possible to modularly reason about a modularized crosscutting concern that uses
AspectJ-like features such as pointcuts and advice. However, the main problem in terms
of DbC modularization is that such languages cannot provide crosscutting contract mod-
ularization while keeping the main DbC benefits such as documentation. Also, to use
such languages for DbC modularization, we need more AOP features than those we need
with AspectJML. Hence, AspectJML is simpler compared to those languages for DbC
modularization and documentation.

115

6.4 Design by Contract Languages and Generative
Programming

Feldman [F06] presents a design by contract (DbC) [Mey92a] tool for Java, know as
Jose. This tool provides a DSL for a DbC language for expressing contracts. Similar to
our AspectJML, Jose adopts AspectJ for implementing and checking contracts during
runtime. The semantics of postconditions and invariants in Jose are distinct from JML.
Jose states that postconditions are simply conjoined without taking into account the
corresponding preconditions. Moreover, it establishes that private methods can modify
invariant assertions. In the JML semantics, if a private method violates an invariant,
an exception must be thrown. Only helper methods can violate invariants. Concerning
recursive assertion checking, Jose, like Eiffel [Mey92b], only allows one level of assertion
checking. To enforce this policy, Jose uses the control-flow based pointcut (using the
AspectJ designator cflowbelow). We can do the same with AspectJML, but by default
recursive assertion checking is allowed.

Contract4J [Wam06] is another AspectJ implementation of contracts. It is an open-
source tool that supports design by contract [Mey92a] for Java. Like JML, Contract4J
allows programmers to specify contracts as annotations. As with our crosscutting con-
tract specification in AspectJML, their annotations are based on Java 5 annotations.
The @Contract annotation signals that a class has a contract specification defined. Fur-
thermore, Contract4J employs the @Pre, @Post, and @Invar annotations that indicate,
respectively, a precondition, postcondition, and invariant test. The Contract4J tool also
employs the use of @old annotation, which represents the evaluation of old expressions in
pre-state (before method call). It is applied to state variables (attributes) that are used
in post-state (after method call) within the postcondition test. The annotation-based
approach (annotations) is interpreted and converted into AspectJ aspects (responsible
for instrumenting and verifying the contracts during runtime).

Besides the annotation-based approach, the author of the Contract4J provides a sec-
ond experimental syntax that uses a JavaBeans-style naming convention (method-based
approach), which he called “ContractBeans”. According to this style, the precondition
and postcondition tests for a method named add, for example, are respectively writ-
ten as preAdd and postAdd. (Compare with the JavaBeans convention for defining a
getResult method for the result field present in a class.) This implementation approach
is also based on AspectJ and has a significant runtime overhead, because it uses runtime
reflection to discover and invoke the tests (when present). In addition, the work men-
tions another two drawbacks when using the method-based approach: (1) if the tests
are not declared with public visibility, they are not visible for clients; (2) if the tests are
not written in a proper JavaBeans-like convention, the tests are ignored. This happens
because there is no mechanism in the Contract4J tool to warn the user. With relation
to contract support, the method-based approach does not yet support old expressions
when compared with the annotation-based approach.

Concerning the supported kinds of assertions and their implementation in AspectJ,
the work covers only pre-, postcondition (normal), and invariant (instance) when com-
pared with ours. Moreover, in contrast to our work, there is an important issue not
covered by Contract4] — the current version does not provide support for inherited
contracts — contravariance (used in precondition inheritance mechanism) and covari-

116

ance (used in postcondition and invariant inheritance) behavior. Nevertheless, the Con-
tract4J tool imposes at least the same contract conditions on derived classes. According
to the author, he is planning to work on inheritance of contracts and release a new
version at some time.

Pipa [ZR03] is a behavioral interface specification language (BISL) tailored to As-
pectJ. It uses the same approach (based on annotations) of JML language to specify
AspectJ classes and interfaces, and extends JML with a few new constructs in order
to specify AspectJ programs. The Pipa language also supports aspect specification in-
heritance and crosscutting. Pipa specifies AspectJ programs with pre-, postconditions,
and invariants. Moreover, Pipa also can specify aspect invariants and the “decision”
whether or not to call the proceed method within the around advice (using the proceed
extended annotation). The aim in designing Pipa based on JML is to reuse the existing
JML-based tools. In order to make this possible the authors developed a tool (compiler)
to automatically transform an AspectJ program with Pipa specifications into a standard
Java program with JML specifications. To this end, the authors modified the AspectJ
compiler (ajc) to retain the comments during the weaving process. After the weaving
process, all JML-based tools can be applied to AspectJ programs. Therefore, the main
goal of Pipa is to facilitate the use of JML language to verify AspectJ programs. On the
other hand, our aim is to use AspectJ to specify, implement, and check JML contracts
for Java programs.

In summary, unlike AspectJML, none of these works provides all the benefits of
a classical DbC language, such as Eiffel or JML, combined with constructs to specify
crosscutting contracts in a modular and convenient way.

6.5 Design by Contract Languages and Information
Hiding

A crucial feature of modules is that they support information hiding. Essentially, this
means that the module’s declarations are sliced into a public module interface, which is
visible to all clients of the module, and a private module body, which contains the module
implementation and is hidden from clients. The public module interface’s behavior can
be specified using a formal interface specification language. In this context, the most
related work is by Leavens and Miiller [LMO07]. They present rules for information hiding
in specifications for Java-like languages. Although some of these rules are enforced
during compile time in JML, during the runtime assertion checking they are not taken
into account as described in Section 3.4.

We complement their work with a precise runtime checking for JML information
hiding features. We call this feature as client-aware checking and it is implemented
as a part of our AspectJML compiler/ajmlc. AspectJML is the first DbC language to
support information hiding rules for specifications that are checked both statically and
dynamically.

117

6.6 Design by Contract Languages and Client-Side
Checking

Code Contracts [FBL10] has an interesting relationship to our work: it also supports
runtime checking at call sites. However, in Code Contracts only preconditions can
be checked at call sites. With AspectJML/CAC, we can also check postconditions
and invariants at call sites. In addition, Code Contracts do not support information
hiding features. As a consequence, Code Contracts would not be able to properly check
specifications with different privacy modifiers.

The work by Findler and Felleisen [FFO01, FLFOla, FLFO1b] is closest in spirit to
our client-aware checking (CAC for short) in AspectJML. Their work describes contract
soundness for a language called Contract Java. In Contract Java a programmer can
specify pre- and postconditions of methods defined in classes and interfaces. Their work
is closely related to ours in the sense that their translation rules for Contract Java also
inject runtime checking code at call sites; that is, they perform client-side checking for
pre- and postconditions. Hence their work is a precedent for runtime checking at call
site, and for our work on AspectJML/CAC.

However, Findler and Felleisen’s work is primarily concerned with enforcing behav-
ioral subtyping and presenting the novel idea of soundness of contract checking. Hence,
unlike our work, their work neither considers separate specifications for different privacy
levels nor enforces information hiding of specifications, as we do in AspectJML.

118

Chapter 7

Conclusions

This work introduced AspectJML, a seamless aspect-oriented extension to JML. Pro-
gramming with design by contract with AspectJML feels like a small extension of
programming with Java and JML specifications. AspectJML annotated programs are
largely ordinary Java programs in which we use ordinary Java for class-like modular-
ity, and use AspectJ pointcuts (as Java 5 features) to specify crosscutting contracts
(XCS). With XCS, AspectJML supports both specification and runtime checking for
crosscutting contracts in a modular way:.

Using AspectJML, allows programmers to enable modular reasoning in the presence
of crosscutting contracts, and to recover the main DbC benefits such as documenta-
tion. Also, AspectJML gives programmers limited control over modularity for spec-
ifications. An AspectJML programmer cannot implicitly add contracts to unrelated
modules. Therefore, using AspectJML, programmers get modular reasoning benefits at
any time.

Since AspectJML is AspectJ-based, the AJDT tools can help the programmer nav-
igate and understand the crosscutting contract structure. The main difference is that
this feature is an add since we do not require it to perform modular reasoning. A
programmer does need to know only the AspectJ’s pointcut language to do so.

In relation to the client-aware checking technique (CAC), AspectJML enables en-
ables consistent runtime assertion checking and modular reasoning in the presence of
information hiding in specifications. CAC represents a change in the way the runtime
checks are injected into code, since checks are placed in client code as opposed to being
only done in supplier classes. Since runtime checks are injected at the point of method
calls, the client’s perspective on the called method can be taken into account, which
allows runtime checking to be consistent with privacy modifiers used for information
hiding.

We also conducted an evaluation to assess the expressiveness of AspectJML while
handling crosscutting contracts. Hence, we quantitatively evaluated three real systems
using a set of metrics to gather information about the impact of the crosscutting con-
tract modularization. The evaluation provides evidence that the use of AspectJML can
significantly reduce the overall DbC lines of code related to crosscutting contracts. For
each analyzed system, we showed representative scenarios where AspectJML is benefi-
cial in the day-by-day development. Despite the promising results, we did not evaluate
many other interesting scenarios. For example, we did not consider the scalability of
AspectJML when a system is evolving.

119

Finally, the benefits of AspectJML are currently being used in practice for teaching
purposes. It has been used successfully in classes (for both undergraduate and graduate
level) taught by professor Marcel Oliveira, at Federal University of Natal (UFRN),
Brazil, and by professor Ana Cavalcanti, at University of York, UK. Prof. Marcel
Oliveria is teaching JML using AspectJML/ajmlc for the second time, whereas Prof.
Ana Cavalcanti just started using AspectJ/ajmlc this semester. As a feedback, we get
a lot of suggestions for improving the AspectJML/ajmlc compiler and usage (which
several issues were already implemented). In addition we fixed several bugs raised by
them; other fixes and improvements are on the way.

7.1 Review of the Contributions

This work makes the following contributions:

e the concept of crosscutting contract specification (XCS) [RLK ™10, RCL*11, RLL11,
RLK"13, RLB"14] that enables developers to specify crosscutting contracts in a
modular way, keeping the benefits of classical DbC languages such as documenta-
tion and modular reasoning;

e the concept of client-aware checking (CAC) [RLL12, RLL13a], that keeps the
Parna’s concept of information hiding when performing runtime assertion checking
and error reporting, avoiding undesired surprises to clients;

e a compiler named ajmlc [RSLT08, RLLT13¢c, RLBT14] that is a part of the As-
pectJML DbC language to support both concepts of XCS and CAC;

e the compatibility with AspectJ/AJDT to support the crosscutting contract struc-
ture view, allowing better navigation between contracts and their application
points in code;

e an empirical study to evaluate our proposal,

e cmpirical evidence of the expressiveness of the concepts/features available in As-
pectJML;

e AspectJML/ajmlc is being used in practice to teach JML language and formal
methods at UFRN and University of York-UK.

7.2 Future Work

In particular, we intend to complement this work with the following future work:

e AspectJML covers only a subset of the JML language regarding crosscutting con-
tract specification. It supports only pre- and postconditions in a crosscutting con-
tract specification. Hence, we intend to support other JML features like assignable
clauses.

120

Currently, AspectJML can only be used to specify Java types. But as the name al-
ready suggests, we intend to allow programmers to also specify AspectJ programs.
Hence, the crosscutting contract specification feature can be used for both Java
and AspectJ programs.

Enhancing AspectJML to fix the problem of modular reasoning in aspect-oriented
programming. An early effort and discussions is provided with XPIDRs [RLL*13b].

Our evaluation was only concerned to modularize the crosscutting contracts with
AspectJML and compare the XCS version with a non-XCS version through a set
of metrics. We also intend to consider other kinds of studies. For instance, studies
considering maintenance tasks to analyze the gains of a system (that already uses
AspectJML) while it evolves.

Another future work we intend to perform is to use the SafeRefactor tool [SGM13]
to improve the safeness of the AspectJML/XCS features to modularize crosscutting
concerns. With SafeRefactor, for example, we can ensure that the refactored
systems (with AspectJML) described in Chapter 5 are equivalent to the ones
using JML. Its important to note that Aspect] already passed to a very similar
assessment over the last 15 years.

One important open issue is related to formal semantics. We intend to give a
formal semantics to AspectJML regarding JML features and crosscutting fea-
tures(XCS).

We intend to investigate the use of emergent interfaces approach [RPTBI10] to
enhance and reduce the modular reasoning steps necessary when using AspectJML.

121

References

[ABO1]

[ABKS13]

[ACH*05]

[AJD14]
[ARG*11]

[BCC*05]

[BCR94]

[BDLO5]

Vander Alves and Paulo Borba. Distributed adapters pattern: A design pat-
tern for object-oriented distributed applications. In Proceedings of the 1st
Latin American Conference on Pattern Languages of Programming, Sugar-
LoafPLoP '01, 2001.

Sven Apel, Don Batory, Christian Kstner, and Gunter Saake. Feature-
Oriented Software Product Lines: Concepts and Implementation. Springer
Publishing Company, Incorporated, 2013.

Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Jennifer Lhotak, Ondiej Lhotdk, Oege de Moor, Damien Sereni,
Ganesh Sittampalam, and Julian Tibble. abc: an extensible AspectJ com-
piler. In AOSD °05: Proceedings of the jth international conference on
Aspect-oriented software development, pages 87-98, New York, NY, USA,
2005. ACM.

AJDT AspectJ Development Tools., 2014. http://www.eclipse.org/ajdt/.

Rodrigo Andrade, Marcio Ribeiro, Vaidas Gasiunas, Lucas Satabin, Hen-
rique Rebelo, and Paulo Borba. Assessing idioms for implementing fea-
tures with flexible binding times. In Proceedings of the 2011 15th Furopean
Conference on Software Maintenance and Reengineering, CSMR 11, pages
231-240, Washington, DC, USA, 2011. IEEE Computer Society.

Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joeseph R.
Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview

of JML tools and applications. International Journal on Software Tools for
Technology Transfer (STTT), 7(3):212-232, June 2005.

Victor Basili, Gianluigi Caldiera, and Dieter H. Rombach. The goal ques-
tion metric approach. In Encyc. of Software Engineering, pages 528-532.
John Wiley and Sons, New York, 1994.

Lionel C. Briand, W. J. Dzidek, and Yvan Labiche. Instrumenting Con-
tracts with Aspect-Oriented Programming to Increase Observability and
Support Debugging. In ICSM ’05: Proceedings of the 21st IEEE Inter-
national Conference on Software Maintenance (ICSM’05), pages 687690,
Washington, DC, USA, 2005. IEEE Computer Society.

122

[BEMO5]

[BLO5]

[BLS03]

[BLS05]

[BMR+96]

[BRLM11]

[BvWOSg]

[Cha07]

[Che03]

Stephanie Balzer, Patrick Th. Eugster, and Bertrand Meyer. Can Aspects
Implement Contracts. In In: Proceedings of RISE 2005 (Rapid Implemen-
tation of Engineering Techniques, pages 13—15, September 2005.

Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstruc-
tured programs. SIGSOFT Softw. Eng. Notes, 31:82-87, September 2005.

L. C. Briand, Y. Labiche, and H. Sun. Investigating the use of analysis
contracts to improve the testability of object-oriented code. Softw. Pract.
Ezper., 33:637-672, June 2003.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: an overview. In Gilles Barthe, Lilian Burdy, Marieke
Huisman, Jean-Louis Lanet, and Traian Muntean, editors, Post Conference
Proceedings of CASSIS: Construction and Analysis of Safe, Secure and
Interoperable Smart devices, Marseille, volume 3362 of LNCS. Springer-
Verlag, 2005.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and

Michael Stal. Pattern-oriented software architecture: a system of patterns.
John Wiley & Sons, Inc., New York, NY, USA, 1996.

Jonas Boner. Aspectwerks. http://aspectwerkz.codehaus.org/.

Mehdi Bagherzadeh, Hridesh Rajan, and Ali Darvish. On exceptions,
events and observer chains. In Proceedings of the 12th annual international

conference on Aspect-oriented software development, AOSD 13, pages 185—
196, New York, NY, USA, 2013. ACM.

Mehdi Bagherzadeh, Hridesh Rajan, Gary T. Leavens, and Sean Mooney.
Translucid contracts: Expressive specification and modular verification for
aspect-oriented interfaces. In Proceedings of the tenth international confer-
ence on Aspect-oriented software development, AOSD 11, pages 141-152,
New York, NY, USA, March 2011. ACM.

Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Sys-
tematic Introduction. Graduate Texts in Computer Science. Springer-
Verlag, 1998.

Patrice Chalin. A sound assertion semantics for the dependable systems
evolution verifying compiler. In Proceedings of the 29th International Con-
ference on Software Engineering, ICSE ’07, pages 23-33, Washington, DC,
USA, 2007. IEEE Computer Society.

Yoonsik Cheon. A runtime assertion checker for the Java Modeling Lan-
guage. Technical report 03-09, Iowa State University, Department of Com-
puter Science, Ames, IA, April 2003. The author’s Ph.D. dissertation.

123

[CJ07)

[CIROS]|

[CK94]

[CL94]

[CLCMO0]

[CLSEO05]

[CMLCO06]

[CNBR*13]

[CRO5a]

[CRO5D)

[CROG]

[CRG*08]

Patrice Chalin and Perry R. James. Non-null references by default in java:
alleviating the nullity annotation burden. In Proceedings of the 21st Euro-
pean conference on Object-Oriented Programming, ECOOP’07, pages 227—
247, Berlin, Heidelberg, 2007. Springer-Verlag.

P. Chalin, P.R. James, and F. Rioux. Reducing the use of nullable types
through non-null by default and monotonic non-null. Software, IET,
2(6):515-531, 2008.

S. R. Chidamber and C. F. Kemerer. A Metrics Suite for Object Oriented
Design. IEEFE Trans. Softw. Eng., 20:476-493, June 1994.

Yoonsik Cheon and Gary T. Leavens. A quick overview of Larch/C++.
Journal of Object-Oriented Programming, 7(6):39-49, October 1994.

Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein.
MultiJava: Modular open classes and symmetric multiple dispatch for Java.
In OOPSLA 2000 Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Minneapolis, Minnesota, volume 35(10) of
ACM SIGPLAN Notices, pages 130-145, October 2000.

Yoonsik Cheon, Gary T. Leavens, Murali Sitaraman, and Stephen Edwards.
Model variables: Cleanly supporting abstraction in design by contract.
Software—Practice € Ezperience, 35(6):583-599, May 2005.

Curtis Clifton, Todd Millstein, Gary T. Leavens, and Craig Chambers.
MultiJava: Design rationale, compiler implementation, and applications.
ACM Transactions on Programming Languages and Systems, 28(3):517—
575, May 2006.

Alberto Costa Neto, Rodrigo Bonifdcio, Marcio Ribeiro, Carlos Eduardo
Pontual, Paulo Borba, and Fernando Castor. A Design Rule Language for
Aspect-oriented Programming. J. Syst. Softw., 86(9):2333-2356, September
2013.

Patrice Chalin and Frédéric Rioux. Non-null references by default in the
java modeling language. In Proceedings of the 2005 Conference on Speci-
fication and Verification of Component-based Systems, SAVCBS 05, New
York, NY, USA, 2005. ACM.

Patrice Chalin and Frédéric Rioux. Non-null references by default in the
java modeling language. SIGSOFT Softw. Eng. Notes, 31(2), September
2005.

Lori A. Clarke and David S. Rosenblum. A historical perspective on runtime
assertion checking in software development. SIGSOFT Softw. Eng. Notes,
31:25-37, May 2006.

Roberta Coelho, Awais Rashid, Alessandro Garcia, Fabiano Ferrari, Nélio
Cacho, Uird Kulesza, Arndt Staa, and Carlos Lucena. Assessing the impact

124

[Dio04]

[DLIG6]

[DNS05]

[EZST08]

[F+06]

[FBL10]

[FCF+06]

[FFOO]

[FFO1]

[FLFO1a]

of aspects on exception flows: An exploratory study. In Proceedings of the
22nd European conference on Object-Oriented Programming, ECOOP 08,
pages 207234, Berlin, Heidelberg, 2008. Springer-Verlag.

Filippo Diotalevi. Contract enforcement with AOP: Apply Design by Con-
tract to Java software development with AspectJ. July 2004. Avaliable at
http://www.ibm.com/developerworks/library /j-ceaop.

Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral sub-
typing through specification inheritance. In Proceedings of the 18th In-
ternational Conference on Software Engineering, Berlin, Germany, pages
258-267. IEEE Computer Society Press, March 1996. A corrected version
is ISU CS TR #95-20c, http://tinyurl.com/s2krg.

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover
for program checking. J. ACM, 52(3):365-473, 2005.

Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav Garg,
Gail C. Murphy, Nachiappan Nagappan, and Alfred V. Aho. Do crosscut-
ting concerns cause defects? IEEE Trans. Softw. Eng., 34(4):497-515, July
2008.

Yishai A. Feldman et al. Jose: Aspects for Design by Contract80-89. IEEE
SEFM, 0:80-89, 2006.

Manuel Fahndrich, Michael Barnett, and Francesco Logozzo. Embedded
contract languages. In Proceedings of the 2010 ACM Symposium on Applied
Computing, SAC ’10, pages 2103-2110, New York, NY, USA, 2010. ACM.

Fernando Castor Filho, Nelio Cacho, Eduardo Figueiredo, Raquel Maranh
ao, Alessandro Garcia, and Cecilia Mary F. Rubira. Exceptions and aspects:
the devil is in the details. In SIGSOFT '06/FSE-14: Proceedings of the
14th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 152-162, New York, NY, USA, 2006. ACM.

Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Programming
is Quantification and Obliviousness. Technical report, 2000.

Robert Bruce Findler and Matthias Felleisen. Contract soundness for
object-oriented languages. In Proceedings of the 16th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and ap-

plications, OOPSLA ’01, pages 1-15, New York, NY, USA, 2001. ACM.

Robert Bruce Findler, Mario Latendresse, and Matthias Felleisen. Behav-
ioral contracts and behavioral subtyping. In Proceedings of the 8th European
software engineering conference held jointly with 9th ACM SIGSOFT inter-

national symposium on Foundations of software engineering, ESEC/FSE-9,
pages 229-236, New York, NY, USA, 2001. ACM.

125

[FLFO1D)

[FLL*02]

[GBF*07]

[GHIV95]

[GSF+05]

[GSS™06]

[HHO04]

[HK02]

[Hoa69]

[Hoa72]

[HU03]

Robert Bruce Findler, Mario Latendresse, and Matthias Felleisen. Object-
oriented programming languages need well-founded contracts. Technical
report, Department of Computer Science, Rice University, 2001.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for Java. In
PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on Pro-
gramming language design and implementation, pages 234-245, New York,
NY, USA, 2002. ACM.

Phil Greenwood, Thiago Bartolomei, Eduardo Figueiredo, Marcos Dosea,
Alessandro Garcia, Nelio Cacho, Claudio Sant’Anna, Sergio Soares, Paulo
Borba, Uird Kulesza, and Awais Rashid. On the impact of aspectual de-
compositions on design stability: An empirical study. In Proceedings of the
21st FEuropean conference on Object-Oriented Programming, LNCS, pages
176-200. Springer-Verlag, 2007.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: elements of reusable object-oriented software. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1995.

Alessandro Garcia, Claudio Sant’Anna, Eduardo Figueiredo, Uird Kulesza,
Carlos Lucena, and Arndt von Staa. Modularizing Design Patterns with
Aspects: A Quantitative Study. In Proceedings of the 4th International
Conference on Aspect-oriented Software Development, AOSD 05, pages 3—
14, New York, NY, USA, 2005. ACM.

William G. Griswold, Kevin Sullivan, Yuanyuan Song, Macneil Shonle,
Nishit Tewari, Yuanfang Cai, and Hridesh Rajan. Modular Software Design
with Crosscutting Interfaces. IEEE Softw., 23(1):51-60, January 2006.

Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ. In AOSD °04:
Proceedings of the 3rd international conference on Aspect-oriented software
development, pages 26-35, New York, NY, USA, 2004. ACM.

Jan Hannemann and Gregor Kiczales. Design pattern implementation in
Java and AspectJ. In Proceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, OOP-
SLA 02, pages 161-173, New York, NY, USA, 2002. ACM.

Charles Antony R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576-580, 1969.

Charles Antony R. Hoare. Proof of Correctness of Data Representations.
Acta Inf., 1:271-281, 1972.

Stefan Hanenberg and Rainer Unland. AspectJ idioms for aspect-oriented
software construction. In FuroPlop’03, 2003.

126

[IKIKO5]

[TKKI04]

[ITB11]

[Jon90]

[KHH*01]

[Kic96]

[Kic03]

[KLM*97]

[KMOS5]

[KSGT06]

[Lad03]

[Lad09]

Takashi Ishio, Shinji Kusumoto, Katsuro Inoue, and Toshihiro Kamiya.
Aspect-oriented modularization of assertion crosscutting objects. In Pro-
ceedings of the 12th Asia-Pacific Software Engineering Conference, APSEC
‘05, pages 744-751, Washington, DC, USA, 2005. IEEE Computer Society.

Takashi Ishio, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.

Assertion with Aspect. In International Workshop on Software Engineering
Properties for Aspect Technologies (SPLAT2004), March 2004.

Milton Inostroza, Eric Tanter, and Eric Bodden. Join point interfaces for
modular reasoning in aspect-oriented programs. In Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on Founda-
tions of software engineering, ESEC/FSE ’11, pages 508-511, New York,
NY, USA, 2011. ACM.

Cliff B. Jones. Systematic software development using VDM (2nd ed.).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William Griswold. Getting tarted with AspectJ. Commun. ACM,
44:59-65, October 2001.

Gregor Kiczales. Beyond the black box: Open implementation. [EEE
Softw., 13(1):8-11, January 1996.

Gregor Kiczales. TheServerSide.COM: Interview with Gregor
Kiczales, topic: Aspect-oriented programming (AOP)., July 2003.
http://www.theserverside.com/tt/talks/videos/GregorKiczalesText /interview.tss.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented program-
ming. In Mehmet Aksit and Satoshi Matsuoka, editors, ECOOP’97 Object-
Oriented Programming, volume 1241 of Lecture Notes in Computer Science,
pages 220-242. Springer Berlin / Heidelberg, 1997.

Gregor Kiczales and Mira Mezini. Aspect-oriented programming and mod-
ular reasoning. In Proceedings of the 27th international conference on Soft-
ware engineering, ICSE '05, pages 49-58, New York, NY, USA, 2005. ACM.

Uira Kulesza, Claudio Sant’Anna, Alessandro Garcia, Roberta Coelho,
Arndt von Staa, and Carlos Lucena. Quantifying the effects of aspect-
oriented programming: A maintenance study. In Proceedings of the 22nd
IEEE International Conference on Software Maintenance, pages 223-233,
Washington, DC, USA, 2006. IEEE Computer Society.

Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Program-
ming. Manning Publications Co., Greenwich, CT, USA, 2003.

Ramnivas Laddad. AspectJ in Action: Enterprise AOP with Spring Ap-
plications. Manning Publications Co., Greenwich, CT, USA, 2nd edition,
20009.

127

[LASBO1]

[LBROY]

[LBROG]

[LCCH05)

[Lea06]

[LKRO5]

[LLOO]

[LLH02|

[LMO7]

[LN13]

[LPCT08]

Tiago Lima, Vander Alves, Sérgio Soares, and Paulo Borba. Pdc: Per-
sistent data collections pattern. In Proceedings of the 1st Latin American
Conference on Pattern Languages of Programming, SugarLoafPLoP 01,
2001.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation
for detailed design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds,
editors, Behavioral Specifications of Businesses and Systems, pages 175—
188. Kluwer Academic Publishers, Boston, 1999.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of JML: A behavioral interface specification language for Java. ACM SIG-
SOFT Software Engineering Notes, 2006.

Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and David R.
Cok. How the design of JML accommodates both runtime assertion check-
ing and formal verification. Science of Computer Programming, 55(1-

3):185-208, March 2005.

Gary T. Leavens. JML’s rich, inherited specifications for behavioral sub-
types. In Zhiming Liu and He Jifeng, editors, Formal Methods and Software
Engineering: 8th International Conference on Formal Engineering Methods
(ICFEM), volume 4260 of Lecture Notes in Computer Science, pages 234,
New York, NY, November 2006. Springer-Verlag.

Patrick Lam, Viktor Kuncak, and Martin Rinard. Crosscutting Techniques
in Program Specification and Analysis. In Proceedings of the 4th Inter-
national Conference on Aspect-oriented Software Development, AOSD 05,
pages 169-180, New York, NY, USA, 2005. ACM.

Martin Lippert and Cristina Videira Lopes. A study on exception detection
and handling using aspect-oriented programming. In Proceedings of the
22nd international conference on Software engineering, ICSE 00, pages
418427, New York, NY, USA, 2000. ACM.

Cristina V. Lopes, Martin Lippert, and Eric A. Hilsdale. Design By Con-
tract with Aspect-Oriented Programming. In U.S. Patent No. 06,442,750,
issued August 27, 2002.

Gary T. Leavens and Peter Miiller. Information hiding and visibility in in-
terface specifications. In International Conference on Software Engineering
(ICSE), pages 385-395. IEEE, May 2007.

Gary T. Leavens and David A. Naumann. Behavioral subtyping, specifica-
tion inheritance, and modular reasoning. Technical Report CS-TR-13-03a,
Computer Science, University of Central Florida, Orlando, FL, 32816, July
2013.

Gary T. Leavens, FErik Poll, Curtis Clifton, Yoonsik Cheon, Clyde
Ruby, David R. Cok, Peter Miiller, Joseph Kiniry, Patrice Chalin,

128

[LSS99]

[LTBJO6]

[LW94]

[Mey92a]

[Mey92b]

[Mey00]

[MMMO02]

[MMUO04]

[MMvD05]

[ORS92

[Par72]

[Parl1]

[Pau94|

and Daniel M. Zimmerman. JML Reference Manual. Available from
http://www. jmlspecs.org, May 2008.

K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking Java
Programs via Guarded Commands. In Proceedings of the Workshop on
Object-Oriented Technology, pages 110-111, London, UK, 1999. Springer-
Verlag.

Yves Le Traon, Benoit Baudry, and Jean-Marc Jezequel. Design by contract
to improve software vigilance. [EEE Trans. Softw. Eng., 32(8):571-586,
August 2006.

Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyp-
ing. ACM Trans. Program. Lang. Syst., 16:1811-1841, November 1994.

Bertrand Meyer. Applying “design by contract”. Computer, 25(10):40-51,
1992.

Bertrand Meyer. FEiffel: The Language. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1992.

Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
PTR, 2nd edition, 2000.

Richard Mitchell, Jim McKim, and Bertrand Meyer. Design by contract,
by example. Addison Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA, 2002.

C. Marche, Paulin C. Mohring, and X. Urbain. The Krakatoa Tool for
Certification of Java/JavaCard Programs Annotated in JML. Journal of
Logic and Algebraic Programming, 58(1-2):89-106, 2004.

Marius Marin, Leon Moonen, and Arie van Deursen. A Classification of
Crosscutting Concerns. In ICSM °05: Proceedings of the 21st IEEE Inter-
national Conference on Software Maintenance, pages 673-676, Washington,
DC, USA, 2005. IEEE Computer Society.

Sam Owre, John M. Rushby, and Natarajan Shankar. Pvs: A prototype
verification system. In CADE-11: Proceedings of the 11th International
Conference on Automated Deduction, pages 748-752, London, UK, 1992.
Springer-Verlag.

D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15(12):1053-1058, 1972.

David Lorge Parnas. Precise Documentation: The Key to Better Software.
In Sebastian Nanz, editor, The Future of Software Engineering, pages 125—
148. Springer Berlin Heidelberg, 2011.

Lawrence C. Paulson. Isabelle: a generic theorem prover, volume 828 of
LNCS. Springer-Verlag Inc., New York, NY, USA, 1994.

129

[RCLT11]

[Reb08]

[RLB*14]

[RLK*10]

[RLK*13]

[RLL11]

[RLL12]

[RLL13a)]

[RLL*13b)]

[RLL+13c]

Henrique Rebélo, Roberta Coelho, Ricardo Lima, Gary T. Leavens, Alexan-
dre Mota, and Fernando Castor. On the interplay of exception handling
and design by contract: An aspect-oriented recovery approach. Technical
Report CS-TR~11-02, 4000 Central Florida Blvd., Orlando, Florida, 32816-
2362, April 2011.

Henrique Emanuel Mostaert Rebélo. Implementing jml contracts with as-
pectj. Master’s thesis, Departament of Computing and Systems, State
University of Pernambuco, May 2008.

Henrique Rebélo, Gary T. Leavens, Mehdi Bagherzadeh, Hridesh Rajan,
Ricardo Lima, Daniel Zimmerman, Marcio Cornélio, and Thomas Thiim.
AspectJML: Modular Specification and Runtime Checking for Crosscutting
Contracts. In Proceedings of the Thirteenth International Conference on

Modularity, Modularity 14, New York, NY, USA, 2014. ACM.

Henrique Rebélo, Ricardo Lima, Uirda Kulesza, Roberta Coelho, Alexandre
Mota, Mafio Ribeiro, and José Elias Araujo. The contract enforcement
aspect pattern. In Proc. of the 2010 SugarLoafPLoP, pages 99-114, 2010.

Henrique Rebélo, Ricardo Lima, Uird Kulesza, Marcio Ribeiro, Yuanfang
Cai, Roberta Coelho, Caudio Sant’Anna, and Alexandre Mota. Quan-
tifying the Effects of Aspectual Decompositions on Design by Contract
Modularization: A Maintenance Study. International Journal of Software
Engineering and Knowledge Engineering, 23(07):913-941, 2013.

Henrique Rebélo, Ricardo Lima, and Gary T. Leavens. Modular Con-
tracts with Procedures, Annotations, Pointcuts and Advice. In SBLP ’11:
Proceedings of the 2011 Brazilian Symposium on Programming Languages.
Brazilian Computer Society, 2011.

Henrique Rebélo, Gary T. Leavens, and Ricardo Lima. Modular en-
forcement of supertype abstraction and information hiding with client-side
checking. Technical Report CS-TR-12-03, 4000 Central Florida Blvd., Or-
lando, Florida, 32816-2362, January 2012.

Henrique Rebélo, Gary T. Leavens, and Ricardo Massa Lima. Client-
aware checking and information hiding in interface specifications with jm-
1/ajmle. In Proceedings of the 2013 Companion Publication for Conference
on Systems, Programming, E#38; Applications: Software for Humanity,
SPLASH ’13, pages 11-12, New York, NY, USA, 2013. ACM.

Henrique Rebelo, Gary T. Leavens, Ricardo Massa Ferreira Lima, Paulo
Borba, and Marcio Ribeiro. Modular aspect-oriented design rule enforce-
ment with XPIDRs. In Proceedings of the 12th workshop on Foundations
of aspect-oriented languages, FOAL 13, pages 13-18, New York, NY, USA,
2013. ACM.

Henrique Rebélo, Ricardo Lima, Gary T. Leavens, Marcio Cornélio,
Alexandre Mota, and César Oliveira. Optimizing generated aspect-oriented

130

[Ros95]

[RPTB10]

[RSL*08]

[SGM13]

[SGR*10]

[SLO4]

[SLB02]

[Som01]

[SPAK10]

Spiso]
[Ste06]

assertion checking code for JML using program transformations: An em-
pirical study. Science of Computer Programming, 78(8):1137 — 1156, 2013.

David S. Rosenblum. A practical approach to programming with assertions.
IEEFE Trans. Softw. Eng., 21(1):19-31, January 1995.

Marcio Ribeiro, Humberto Pacheco, Leopoldo Teixeira, and Paulo Borba.
Emergent feature modularization. In Proceedings of the ACM Interna-
tional Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion, SPLASH 10, pages 11-18, New
York, NY, USA, 2010. ACM.

Henrique Rebélo, Sérgio Soares, Ricardo Lima, Leopoldo Ferreira, and
Marcio Cornélio. Implementing Java modeling language contracts with As-
pectJ. In Proceedings of the 2008 ACM symposium on Applied computing,
SAC 08, pages 228-233, New York, NY, USA, 2008. ACM.

G. Soares, R. Gheyi, and T. Massoni. Automated behavioral testing
of refactoring engines. Software Engineering, IEEE Transactions on,
30(2):147-162, Feb 2013.

Kevin Sullivan, William G. Griswold, Hridesh Rajan, Yuanyuan Song,
Yuanfang Cai, Macneil Shonle, and Nishit Tewari. Modular aspect-oriented
design with XPIs. 20(2):5:1-5:42, September 2010.

Therapon Skotiniotis and David H. Lorenz. Cona: aspects for contracts and
contracts for aspects. In Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and appli-
cations, OOPSLA 04, pages 196-197, New York, NY, USA, 2004. ACM.

Sergio Soares, Eduardo Laureano, and Paulo Borba. Implementing distri-
bution and persistence aspects with AspectJ. In Proceedings of the 17th
ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, OOPSLA 02, pages 174-190, New York, NY,
USA, 2002. ACM.

Ian Sommerville. Software engineering (6th ed.). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

Friedrich Steimann, Thomas Pawlitzki, Sven Apel, and Christian Kéastner.
Types and modularity for implicit invocation with implicit announcement.

ACM Trans. Softw. Eng. Methodol., 20(1):1:1-1:43, July 2010.
M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 19809.

Friedrich Steimann. The Paradoxical Success of Aspect-Oriented Program-
ming. In OOPSLA 2006: Proceedings of the 21st International Confer-
ence on Object-oriented Programming Systems, Languages, and Applica-

tions, ACM SIGPLAN Notices, pages 481-497, October 2006.

131

[Tea08]

[Tealdal

[Tealdb]

[TOHS9Y]

[TSK*12]

[VCFS10]

[vdBJO1]

[Ver03]

[Wam06]

[WK99]

[YWO06]

[ZR03)

The Coq Development Team. The Coq Proof Assistant Reference Manual,
Version 8.1, May 2008. http://pauillac.inria.fr/coq/doc/main.html.

HealthCard Specification Team. HealthCard: JavaCard 4+ JML specs, Jan-
uary 2014. http://wwwhome.ewi.utwente.nl/ mostowskiwi/software.html.

Java Card Specification Team. The Java Card API Specification in JML,
Version 2.2.1, January 2014. http://healthcard.sourceforge.net/.

Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr.
N degrees of separation: Multi-dimensional separation of concerns. In

Proceedings of the 21st International Conference on Software Engineering,
ICSE 99, pages 107-119, New York, NY, USA, 1999. ACM.

Thomas Thiim, Ina Schaefer, Martin Kuhlemann, Sven Apel, and Gunter
Saake. Applying design by contract to feature-oriented programming.
In Proceedings of the 15th international conference on Fundamental Ap-
proaches to Software Engineering, FASE’12, pages 255-269, Berlin, Heidel-
berg, 2012. Springer-Verlag.

Marco Tulio Valente, Cesar Couto, Jaqueline Faria, and Sérgio Soares. On
the benefits of quantification in AspectJ systems. Journal of the Brazilian
Computer Society, 16(2):133-146, 2010.

Joachim van den Berg and Bart Jacobs. The LOOP Compiler for Java and
JML. In TACAS 2001: Proceedings of the 7thinternationalConference on
Tools and Algorithms for the Construction and Analysis of Systems, pages
299-312, London, UK, 2001. Springer-Verlag.

Joe Verzulli. Getting started with JML: Improve your Java
programs with JML annotation., march 2003. http://www-
128.ibm.com/developerworks/java/library /j-jml.html.

Dean Wampler. Contract4J for Design by Contract in Java: Design
Pattern-Like Protocols and Aspect Interfaces. In ACP4IS Workshop at
AOSD 20006, pages 27-30, March 2006.

Jos Warmer and Anneke Kleppe. The object constraint language: pre-
cise modeling with UML. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

Kiyoshi Yamada and Takuo Watanabe. An aspect-oriented approach to
modular behavioral specification. Flectronic Notes in Theoretical Computer
Science, 163(1):45 — 56, 2006.

Jianjun Zhao and Martin Rinard. Pipa: a behavioral interface specification
language for AspectJ. In Proceedings of the 6th international conference on
Fundamental approaches to software engineering, FASE’03, pages 150-165,
Berlin, Heidelberg, 2003. Springer-Verlag.

132

Appendix A

AspectJML Grammar Summary

The following is a summary of the grammar for AspectJML language that ajmlc compiler
handles.

A.1 JML-based Reserved Words

\requires \pre \same

\ensures \post \result

\signals \exsures \old

\assignable \modifies pure

\not_specfied also invariant

behavior normal_behavior exceptional_behavior
spec_public spec_protected instance

static \everything \nothing

\only_assigned

A.2 @AspectJ-based Reserved Words

Q@Pointcut @InterfaceXCS thisJoinPoint
call execution within
args Q@annotation

A.3 Method Specfication

Method — Specification ::= Specification
Specification ::= Spec— Case [also Spec— Case]
Spec — Case ::= Lightweight — Spec — Case | Heavyweight — Spec — Case

Lightweight — Spec — Case ::= Generic — Spec — Clause
Heavyweight — Spec — Case ::= Behavior — Spec — Case

| Normal — Behavior — Spec — Case

| Ezceptional — Behavior — Spec — Case
Behavior — Spec — Case ::= |[privacy| Behavior — Keyword

133

Generic — Spec — Clause

Behavior — Keyword ::= behavior | behaviour

Normal — Behavior — Spec — Case ::= [privacy] Normal — Behavior — Keyword
Generic — Spec — Clause

Normal — Behavior — Keyword ::= normal_behavior | normal_behaviour

Exzceptional — Behavior — Spec — Case ::= |[privacy] FEzceptional — Behavior — Keyword
Generic — Spec — Clause

Ezceptional — Behavior — Keyword ::= exceptional_behavior | exceptional_behaviour

Generic — Spec — Case ::= Requires — Clause [Requires — Clause]

| Ensures — Clause [Ensures— Clause]
| Signals — Clause [Signals — Clause] .
| Signals — Only — Clause [Signals — Only — Clause]

A.4 Type Specfication

Invariant ::= [Privacy] [static] Invariant — Keyword Predicate ;

Invariant — Keyword ::= invariant

JML — Field — Decl ::= Model — Field— Decl | Represents — Clause | Field — Decl

Model — Field — Decl ::= [Privacy] [Modifiers] Model — Keyword FieldType Field — Ident
Model — Keyword ::= model

Represents — Clause ::= [Privacy]| [static] Represents — Keyword Field — Ident = Ezp ;
Represents — Keyword ::= represents

Field — Decl ::= [Privacy] [Modifiers] [JML — Modifier] Fieldl'ype Field — Ident [= Exp] ;

Exp ::= FieldAccessExp | MethodCallExpr | ConstantExp

A.5 Predicates and Specification Expressions

predicate ::= spec — expression
Spec — expression = erpression
I € identifier
E € expression
E = El<=> E2

| El <=l=> E2

| E—E

| E<= E2

| E1 || E2

| E1 & E2

| E2 = E2

| E1 = E2

| E. 1

| 'E

|

|

jml—expressions

jml — expressions ::= result — expression
| old—expression

result — expression ::= \result
old — expression ::= \old (spec— expression)
| \pre (spec— expression)

A.6 Pointcut Expressions

134

Method — Specification ::= ...
@Pointcut (" Pointcut — Expression")
[Privacy] void Pointcut — Ident ([Args]) {}
Pointcut — Expression ::= Call — Pointcut

| Ezecution — Pointcut

| Args — Pointcut

| Within — Pointcut

| Annotation — Pointcut

| Pointcut — Expression && Pointcut — Expression
|
|

Pointcut — Expression || Pointcut — Expression

! Pointcut — Expression
Call — Pointcut ::= call(Method — Pattern)
Ezecution — Pointcut ::= execution (Method — Pattern)
Args — Pointcut ::= args(Type | Id [, Type | Id] ...)
Within — Pointcut ::= within (Type — Pattern)
Annotation — Pointcut ::= @annotation(AnnotationType)

Method — Pattern =
[Modifiers — Pattern] Type — Pattern
[Type — Pattern . | Id— Pattern (Type — Pattern | ".." |, ...)
[throws Throws — Pattern]
Constructor — Pattern =
[Modifiers — Pattern |
[Type — Pattern . | new (Type— Pattern | ".." , ...)
[throws Throws — Pattern]
Throws — Pattern =
['] Type— Pattern
Type — Pattern =
Id — Pattern [+] [[] ...]
| ! Type — Pattern
| Type — Pattern && Type — Pattern
| Type — Pattern || Type — Pattern
| (Type — Pattern)
Id — Pattern =
Sequence of characters , possibly with special % and .. wildcards
Modifiers — Pattern =
['] JavaModifier

135

