‘Centro

wnformética
U-F:P-E

Pos-Graduacdo em Ciéncia da Computacao

“Idioms to Implement Flexible Binding Times for Features”
By
Rodrigo Cardoso Amaral de Andrade

M.Sc. Dissertation

=g
e

¢

B

Federal University of Pernambuco

5

posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE, MARCH/2012

www.cin.ufpe.br/~posgraduacao

| [

(% Federal University of Pernambuco

Informatics Center
&55% Graduate in Computer Science

Rodrigo Cardoso Amaral de Andrade

“Idioms to Implement Flexible Binding Times for
Features”

A M.Sc. Dissertation presented to the Informatics Center
of Federal University of Pernambuco in partial fulfillment

of the requirements for the degree of Master of Science in

Computer Science.

Advisor: Paulo Henrigue Monteiro Borba

RECIFE, MARCH/2012

Catalogacao na fonte
Bibliotecaria Jane Souto Maior, CRB4-571

Andrade, Rodrigo Cardoso Amaral de

Idioms to implement flexible binding times for features
| Rodrigo Cardoso Amaral de Andrade. - Recife: O Autor,
2012.

102 folhas: il., fig., tab.

Orientador: Paulo Henrique Monteiro Borba.

Dissertagcdo (mestrado) - Universidade Federal de
Pernambuco. Cin, Ciéncia da Computagao, 2012.

Inclui bibliografia e apéndice.

1. Engenharia de software. 2. Linhas de produtos de software. 3.
Programacdo orientada a aspectos. |. Borba, Paulo Henrique
Monteiro (orientador). Il. Titulo.

005.1 CDD (23. ed.) MEI2012 - 036

Dissertagao de Mestrado apresentada por Rodrigo Cardoso Amaral de Andrade i Pos-
Graduagao em Ciéncia da Computagio do Centro de Informética da Universidade Federal
de Pernambuco, sob o titulo “Idioms to Implement Flexible Binding Times for
Features”, orientada pelo Prof. Paulo Henrique Monteiro Borba e aprovada pela
Banca Examinadora formada pelos professores:

Prof. Sérgio CastéTo Branco Soares
Centro de Informitica / UFPE

Prof. Cliudip Negueira Sant'Anna
Departamento de Ciéncia da Computagio / UFBA

Prof. Paulo Henrique Monteiro Borba
Centro de Informatica / UFPE

Visto e permitida a impressao.
Recife, 2 de marco de 2012,

Prof. Nelson Souto Rosa
Coordenador da Pés-Graduaciao em Ciéncia da Computacio do
Centro de Informdtica da Universidade Federal de Pernambuco.

Dedico essa dissertacdo a minha familia.

Acknowledgements

Eu gostaria de agradecer o suporte do meu orientador Paulo Borba. Nio s6 na orientacio
impecdvel da nossa pesquisa, mas também nas horas de didvidas sobre: "o que danado
eu vou fazer depois do mestrado?". Esse suporte foi fundamental para a conclusiao do
mestrado e para a tomada de decisdes bastante importantes sobre o meu futuro.

Agradeco muito também a minha familia: minha mae, meu pai € meu irmao, pelo
apoio e incentivo incondicional em todos os momentos. Sempre pude contar com eles.

No mais, gostaria de agradecer a minha namorada, por estar sempre perto de mim,
incentivando e me motivando nos trabalhos e aos meus amigos de mestrado que sempre
foram desvelados e benevolentes.

Finalmente, agradeco a FACEPE, CNPq e ao projeto INES — Instituto Nacional de

Ciéncia e Tecnologia para Engenharia de Software — por financiarem minha pesquisa.

v

Diz o sabio cataldo que trés exemplos deve o homem imitar, cada qual
vindo de um dos reinos da natureza: 1. dos minerais, deve aprender
com a dgua, que obedece a forma do cdlice que a contém; 2. entre os
vegetais, deve ser como a orquidea, que cresce a sombra das grandes
drvores; e 3. do mundo animal, deve espelhar-se na hiena, que segue
os ledes e ndo conhece a fome. Assim deve ser o0 homem: maledvel

como a dgua, prudente como as orquideas e sdbio como as hienas.

—FRANCISCO GOMES, O CHALACA

Resumo

Empresas tém adotado Linhas de Produtos de Software (LPS) como paradigma de
desenvolvimento para obter melhoras significativas no tempo de produgao, custos de
manuten¢ao, produtividade e qualidade dos produtos. LPS engloba uma familia de sis-
temas intensivos de software que sdo desenvolvidos a partir de artefatos reusdveis. Com
o reuso de tais artefatos, é possivel construir um grande nimero de produtos diferentes
aplicando diversas composicdes. H4 uma variedade de técnicas usadas amplamente
para desenvolver LPS. Por exemplo, programacao orientada a aspectos (POA), progra-
macao orientada a feature e compilagao condicional. Essas técnicas diferem no tipo de
composi¢do para criar um produto de uma LPS tanto estitica quanto dinamicamente.

Neste contexto, € importante definir quando determinadas features devem ser ativadas
no produto devido a requisitos especificos de clientes e aplicacdes em cendrios diferentes.
Desse modo, o binding time de uma feature € o tempo em que se decide ativar ou desativar
uma feature de um produto. No geral, binding time estatico ou dinamico sdo levados
em consideragdo. Por exemplo, produtos feitos para dispositivos que possuem recursos
restritos podem usar binding time estatico ao invés de dindmico, devido ao overhead
introduzido por este tltimo. Para dispositivos sem restricdes de recursos, o binding time
pode ser flexivel, features podem ser ativadas estdtica ou dinamicamente.

Para prover binding time flexivel para features, pesquisadores propuseram um idioma
baseado em Aspect] e padrdes de projeto chamado Edicts. A ideia consiste em suportar
flexibilidade de binding time para features de maneira modular e conveniente. No entanto,
nds observamos problemas de modularidade no idioma Edicts. Apesar de geralmente
nds usarmos aspectos para resolver problemas crosscutting comum em classes, esses
problemas aparecem nos proprios aspectos. De fato, muitos estudos indicam que esses
problemas sao ruins para modularidade de software. Desta forma, n6s observamos que
Edicts clona, espalha e entrelaga cédigo através da sua implementacdo, o que pode
acarretar em tarefas demoradas, como manutencao de c6digo duplicado.

Desta forma, nds desenvolvemos trés idiomas e os implementamos para prover binding
time flexivel para features de quatro aplicacdes diferentes. Além disso, nds avaliamos
Edicts e os trés idiomas quantitativamente através de métricas considerando duplicagao,
espalhamento, entrelacamento e tamanho de c6digo, além de tentar garantir que nao ha

alteracdo de comportamento entre suas implementagdes.

Palavras-chave: Binding Time Flexivel; Linha de Produtos de Software; Idiomas;

Aspectl]; Caesar].

Vi

Abstract

Companies are adopting the Software Product Line (SPL) development paradigm to
obtain significant improvements in time to market, maintenance cost, productivity, and
quality of products. SPL encompasses a family of software-intensive systems developed
from reusable assets. By reusing such assets, it is possible to construct a large number of
different products applying various compositions. There is a variety of widely used tech-
niques to develop SPLs, such as aspect-oriented programming (AOP), feature-oriented
programming (FOP), and conditional compilation. These techniques differ in the type of
composition to create a product within the SPL static or dynamically.

In this context, it is important to define when certain features should be activated
in the product due to specific client requirements and different application scenarios.
Thereby, the binding time of a feature is the time that one decides to activate or deactivate
the feature from a product. In general, static and dynamic binding times are considered.
For example, products for devices with constrained resources may use static binding time
instead of dynamic due to the performance overhead introduced by the latter. For devices
without constrained resources, the binding time can be flexible, features can be activated
or deactivated statically or users may do it on demand (dynamically).

To provide flexible binding time for features, researchers proposed an AOP idiom
based on Aspect] and design patterns named Edicts. The idea consists of supporting
binding time flexibility of features in a modular and convenient way. However, we
observe modularity problems in the Edicts idiom. Although we usually use aspects to
tackle crosscutting concerns common in classes, such a problem now appears within the
own aspects. Indeed, several studies indicate that these concerns hurt software modularity.
This way, we observe that Edicts clones, scatters, and tangles code throughout its im-
plementation, which may lead to time consuming tasks, such as maintaining duplicated
code.

This way, we develop three idioms and implement them to provide flexible binding
time for features of four different applications. In addition, we evaluate Edicts and the
three idioms quantitatively by means of metrics with respect to code tangling, scattering,
cloning, size, and also try to guarantee that our idioms do not change feature code

behavior among the different implementations.

Keywords: Flexible Binding Time; Software Product Line; Idioms; Aspect]; CaesarJ.

vii

List of Figures
List of Tables

1 Introduction

1.1 Problem
1.2 Proposed Solution
1.3 Contribution

1.4 Outline

2 Background

2.1 Software Product Lines
Feature Models

2.1.1

2.2 Aspect-Oriented Programming
2.2.1
222

Aspect)
Caesar]

3 Flexible Binding Time

3.1 Motivation

3.2 Idioms
3.2.1

322

323

3.3 Feature

4 Evaluation

4.1 Study settings

4.1.1

Design
Example
Layered Aspects
Design
Example

Flexible Deployment

Design
Example

interaction

Casestudies

Tetris

Contents

xi

AW W N

O 00 9 O L W

viii

Freemind

ArgoUML
BerkeleyDB
412 GQM
Goal e
Questions e
Metricso
4.1.3 Assessmentprocedures
42 Results. e e
421 Cloning o v i e e e e
422 Scattering o i e e e e
Driver e
Feature
423 Tangling
424 Size e
425 Behavior
42.6 Threatstovalidity
427 Discussion e e e e
S Conclusion
5.1 Relatedwork
5.2 Futurework
Bibliography
A Appendix A - Implementation of idioms
Al Edicts e
A.2 Pointcut Redefinition
A3 Layered Aspects.
A.4 Flexible Deployment
B Appendix B - Metric Results

50
51
53

55

62
62
71
78
78

86

iX

2.1
22

3.1
32
33
3.4
3.5
3.6

4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9

Tetris SPL.
Tetris SPL Feature Model

The structure of Edicts [CREOS]
The structure of Pointcut Redefinition
The structure of Layered Aspects
The structure of Flexible Deployment
Feature Interaction
Tetris SPL.

Tetris Features
Freemind SPL feature model
Mind map constructed in Freemind.
ArgoUML SPL feature model. 31
BerkeleyDB SPL feature model.
DOSO Driver metric results
DOSC Driver metric results
DOSC Feature metric results
CDC metric results

DOTO metric results
DOTC metric results

PCC metric results
DOSO Driver metric results
DOSC Driver metric results
DOSC Feature metric results
CDC metric results

DOTO metric results
DOTC metric results
SLOC metric results

VS metric results

List of Figures

4.1
4.2
4.3
4.4
4.5

List of Tables

BerkeleyDB Features
PCCmetricresults 37

SLOC metricresults 44
VSmetricresults L oL 44
Number of unit tests generated by SafeRefactor 45

xi

Introduction

Nowadays, it is primordial to develop software taking into account the client’s needs.
Hence, companies are offering software increasingly customized. However, developing
customized software is expensive but clients/customers do not want to pay such high
costs for it. In this context, software reuse [Kru92, JGJ97] has been proposed to avoid
repetition of tasks, such as writing code that already has been written. Thus, it allows
reduction of cost of development. Nevertheless, it is necessary to plan the reuse of
software artifacts in order to make this practice viable.

In this context, companies are adopting the Software Product Line (SPL) develop-
ment paradigm to obtain significant improvements in time to market, maintenance cost,
productivity, and quality of products. SPLs provide means to compose software prod-
ucts that match the requirements of different application scenarios from a single assets
base [RSSAO08]. It encompasses a family of software-intensive systems developed from
reusable assets. By reusing such assets, it is possible to construct a large number of
different products applying various compositions [PBvdL05].

Researchers proposed some techniques to develop SPLs, such as aspect-oriented
programming (AOP) [KLM"97], feature-oriented programming (FOP) [Pre97], and
conditional compilation. These techniques differ in the type of composition to define a
product within the SPL. However, these compositions may be defined while the clients
are using the product. For instance, the client may need to deactivate some database
transactions at peak times to avoid interrupting the complete process. Therefore, de-
velopers should provide the binding of these compositions not only when building it,
but also while clients use their product. The variation among the products generated by
different compositions is represented through features in the SPL context. Features are
the semantic units by which different applications within an SPL can be differentiated
and defined [TBDO6].

1.1. PROBLEM

In this context, it is important to define when certain features should be activated
in the product due to specific client requirements and different application scenarios.
Thereby, the binding time of a feature is the time that one decides to activate or deactivate
the feature from a product [CREOS]. In general, we consider two different binding times:
static and dynamic. For example, products for devices with constrained resources may
use static binding time instead of dynamic due to the performance overhead introduced
by the latter [RSSAO08]. For devices without constrained resources, the binding time
can be flexible, features can be activated or deactivated statically or users may do it on
demand (dynamically). Besides these reasons, previous works identified the importance
of flexible binding time too [vO02, CRE08, RSSA0S].

In this work, we are concerned with the flexibility of the aforementioned composition.
We use the AOP technique to develop solutions that implement the flexibility of binding
time for features to achieve customization of software with the advantages of using the

SPL approach.

1.1 Problem

To provide flexible binding time for features, researchers proposed an AOP idiom based
on Aspect] [KHH'01a] and design patterns [GHJV95] named Edicts. Chakravarthy
et al. [CREOS] claims it consists of supporting binding time flexibility of features in a
modular and convenient way. However, we observed modularity problems in the Edicts
idiom. Although we usually use aspects to tackle crosscutting concerns [KLM'97]
common in classes, such a problem now appears within the own aspects. Indeed, several
studies indicate that these concerns hurt software modularity [KSG'06, LB05, EZS™08].
This way, we observe that Edicts clones code throughout its implementation, which may
lead to time consuming tasks, such as maintaining duplicated code. Code cloning, which
is a duplication of code fragments, means that bugs can appear in several places, it may
lead to poor code readability, and difficulties to make changes. Additionally, Edicts
presents code scattering and tangling, which are evidences that the implementation of a
concern is not well modularized [LLOO3]. This could hamper the reuse and understanding
of the source code. Little reuse and understanding may impact on the productivity of
development, for example.

In this scenario, there is no AOP-based idiom to implement flexible binding time that
reduce these problems. Hence, we introduce idioms to address these shortcomings pre-

sented by Edicts [ARG™ 11]. Furthermore, there is no previous work in the literature that

1.2. PROPOSED SOLUTION

evaluate idioms considering modularity by means of metrics. Thus, besides introducing
idioms, we need to assure they present better results than Edicts regarding code cloning,

scattering, and tangling.

1.2 Proposed Solution

Given the problems introduced in Section 1.1, we propose three idioms to implement
flexible binding time for features. The idioms are AOP-based, so we use some of its
constructs to modularize feature code and implement static and dynamic binding time.
We design them with the goal of reducing code cloning, scattering, and tangling presented
by Edicts. We implement Edicts and our three idioms to provide flexible binding time into
several features of four applications (Tetris [Tet09], Freemind [Fre09], ArgoUML [Arg09]
and BerkeleyDB [Ber10]).

In addition, we evaluate Edicts and the proposed idioms with respect to modularity,
source code size, and behavioral changes between the feature implementation with the
different idioms. To evaluate modularity, we use a metric suite, which encompasses
metrics that measure code cloning, scattering, and tangling considering different levels
of granularity. For example, we measure code scattering for package, class or aspect,
and method or advice levels. We define our idioms to achieve low rates of these metrics,
and consequently, better modularity. To evaluate source code size, we use metrics to
measure the number of components and source lines of code for a given application.
In summary, the evaluation results show that Edicts presents code cloning, scattering,
and tangling in contrast to our idioms, which mitigate these problems. Furthermore, we
investigate behavioral changes in our implementations. We compare the behavior of the
same application implemented with different idioms to detect an eventual change. For
example, we compare the execution between a given feature, which we provide flexible
binding time with Edicts, and the same feature implemented with other idiom. Ideally,

there should not be differences in the feature behavior among these implementations.

1.3 Contribution
The main contributions of this work are the following:

1. Propose two idioms based on Aspect] and one idiom based on Caesar] [AGMOO06]
to implement flexible binding time for features;

1.4. OUTLINE

2. Implement Edicts and the proposed idioms in 18 features of four real applications;

3. Evaluate the four idioms quantitatively by means of metrics with respect to code

tangling, scattering, cloning, and size;

4. Verify that no behavioral changes is found in the four applications.

1.4 Outline

The remainder of this dissertation is organized as follows:

» Chapter 2 reviews essential concepts used throughout this work. Namely, Software

Product Lines and Aspect-Oriented Programming;

* Chapter 3 shows the problems found with Edicts and introduces the three proposed
idioms to implement flexible binding time. We explain the design and an example

of each idiom;

» Chapter 4 presents the study settings which explains each case study, the Goal-
Question-Metric approach we used, and the assessment procedure we performed in
this work. Additionally, it presents the metric results and the behavior validation
for the applications implemented with the four different idioms. Finally, it discuss

the results;
» Chapter 5 concludes our work and discusses some related and future work;
* Appendix A presents the implementation of the four idioms for a given feature.

* Appendix B presents the complete metric results.

Background

In this chapter, we provide details about concepts used throughout this work. First, we
introduce Software Product Lines (SPL) in Section 2.1. We use Aspect] and CaesarJ to

implement SPLs, so we explain both in Section 2.2.

2.1 Software Product Lines

Product Lines allow the development of products using platforms and mass customiza-
tion [PBvdLO05]. Developing platforms means to aim at reuse by building reusable parts.
Mass customization focuses on large scale production. Thus, the variability between the
products is important to attend the client’s requirements.

More specifically, Software Product Lines provide means to compose software applica-
tions that match the requirements of different scenarios from a single code base [RSSAOS].
The single code base represents the commonalities between the applications within the
SPL. In addition, to match these requirements, SPL. encompass variabilities, which define
different properties for each SPL instance. This way, SPL simplify software reuse because
it uses a wide variety of common artifacts to define different applications. For example,
we may reuse software requirements, architecture, and tests.

By using SPLs to provide customized applications at reasonable costs, we can achieve

improvements on software development [PBvdL05], as follows:

1. Reduction of development costs. SPL are meant to reuse artifacts in several
different kinds of applications, this implies in cost reduction since we do not

develop each application from scratch;

2. Enhancement of quality. The common artifacts are reviewed and tested in each

product. This enhances the chance to find errors and fix them. Therefore, it

2.1. SOFTWARE PRODUCT LINES

increases the quality of applications;

3. Reduction of time to market. Although the time to market is initially higher for
SPL, it is shortened after the common parts are built, as many artifacts can be

reused for new applications.

To exemplify a Software Product Line, consider our Tetris example. It is possible
to generate two different applications from the same base code. Figure 2.1 illustrates
two instances of Tetris. The first instance (Figure 2.1(a)) is a Tetris version running
for the desktop environment, whereas the second instance (Figure 2.1(b)) runs for the
mobile environment. For this example, we first implement the code corresponding to
the platform, which is the common part independently of what environment it runs.
Next, we implement the variabilities of each application within the SPL, which is the
specific code of each environment. Thereby, if we need to create an application to run for
an additional environment, we reuse the platform code and implement the variabilities

instead of building the application from scratch.

(&) Tetris o
e
[
L =
.] | S—
(a) Tetris for desktop. (b) Tetris for
mobile.

Figure 2.1 Tetris SPL.

In this context, we can map these variabilities in features and use models to describe
the commonalities and variabilities of an SPL, beyond the implementation artifacts.

Hence, Section 2.1.1 introduces the concept of feature and discusses feature models.

2.1.1 Feature Models

Features are increments in application functionality. They are the semantic units by
which different applications within an SPL can be differentiated and defined. Different

compositions of features yields different instances within an SPL [TBDO06].

2.2. ASPECT-ORIENTED PROGRAMMING

Tetris Legend:
o Mandatory
~ o Optional
NextPiece = Environment | Record A Alternative

5,

Mc:-bile Desktop
Figure 2.2 Tetris SPL Feature Model

Different composition of features forms distinct applications within an SPL. Feature
Models [KCH'90] outline these compositions in a simple way, depicting the possible
commonalities and variabilities among these applications. A Feature Model consists of
diagrams, which describe a hierarchical decomposition of features. Features may assume

four types in a Feature Model, as follows:

1. Mandatory. It is part of the commonalities, so it is present in all applications
within an SPL (filled circle);

2. Optional. It is part of the variabilities, so it may be present or not (empty circle);

3. Alternative. It is part of the variabilities, however it is mutually exclusive within
a group of features. Thus, at least one, and only one feature can be selected for a

single application (empty arc);

4. OR. It is part of the variabilities, as it is freely selected within a group of features,

albeit at least one has to be selected (filled arc).

For instance, Figure 2.2 illustrates the Feature Model of our Tetris example. Notice
that the Environment feature is mandatory, it is present in all possible feature compo-
sitions. In addition, Mobile and Desktop are alternative features, so it means they are
mutually exclusive, only one of them can be present in an SPL instance. On the other
hand, NextPiece and Record are optional features. They may be present or not in a

feature composition.

2.2 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) [KLM197] is a programming paradigm proposed
to overcome Object Orientation (OO) deficiencies. When using OO, some concerns

(98]

—_

2.2. ASPECT-ORIENTED PROGRAMMING

are crosscutting. It means that they are tangled and scattered, and consequently hard
to understand and maintain. By using AOP, it is possible to separate these crosscutting
concerns. Therefore, it modularizes code related to specific functionalities that are
scattered and tangled among other parts of the application. Thereby, AOP enhances
software modularity. For example, transaction management, persistence, binding time
are well-accepted example of such concerns [CREOS, SLB02].

In this context, there are several languages that support AOP. In this work, we focus
on two languages (Aspect] and CaesarJ). Thus, we present the first one in Section 2.2.1

and the second one in Section 2.2.2.

2.2.1 Aspect]

Aspect] [KHH'01b] extends Java with support to AOP. It modularizes crosscutting
concerns using units called aspects, which are associated with classes by a weaving
process. Thus, well defined OO concepts are implemented in classes whereas crosscutting
concerns are tackled by Aspect] aspects. By defining aspects it is possible to alter or
add class members, such as methods. Furthermore, it can alter hierarchy of classes,
manipulate exception, and add behavior at specific points. In what follows, we detail the
structures that we can define within an aspect.

Intertype declaration. It allows the modification of an application’s static structure.
We may declare class members in a separate aspect, such as methods, attributes, interfaces,
and constructors. Then, the aspect associates these members to the existing classes. For
example, Listing 2.1 illustrates an alteration of the TetrisCanvas class hierarchy
(Line 1), and an introduction of the field nextpiecebox into the TetrisCanvas
class (Line 3).

Listing 2.1 Example of intertype declaration.

declare parents : TetrisCanvas extends JPanel;

NextPieceBox TetrisCanvas.nextPieceBox;

Listing 2.2 Pointcut example.

pointcut pcnextpiecebox () : execution(x TetrisCanvas.createNextPieceBoxHook ());

Pointcut. It is a set of join points, which are points in application execution flow. This
way, pointcuts are expressions that match certain join points at run-time. For instance, join
points could be method execution, variable access, or object instantiation. Listing 2.2 illus-

trates a pointcut that defines an expression to match the createNextPieceBoxHook

—_

O 0 N O LN AW N =

—_
(=]

2.2. ASPECT-ORIENTED PROGRAMMING

method execution from the Tet risCanvas class.

In this work, we use a special pointcut named adviceexecution. It picks out a
set of advice execution join point. For example, we could intercept the execution of all
pieces of advice defined in a specific aspect.

Advice. It implements behavior to be added when a join point is reached. The
behavior is executed before, after or around a join point. Listing 2.3 implements an
advice that instantiates a new NextPieceBox after the join point, which is matched by

the pcnextpiecebox (Listing 2.2), is reached in the execution flow.

Listing 2.3 Advice example.

after () : createNextPieceBoxHook () {
nextPieceBox = new NextPieceBox ();

}

In this work, we define two AspectJ-based idioms to implement flexible binding time
for features. The third idiom is based on CaesarJ, which is another language that supports
AOP.

2.2.2 Caesar]J

Caesar] [AGMOO06] is an extension of Java [AG96], which supports AOP. It combines
pointcut and advice with advanced OO modularization mechanisms, such as virtual class
and dynamic aspect deployment. Caesar] addresses the intertype declaration problem
of integrating independent components into an application. Therefore, CaesarJ does not
modify the component to be integrated. In what follows, we explain CaesarJ constructors

we use in this work.

Listing 2.4 CaesarJ class example.

cclass Checksum {
ChecksumValidator validator;

pointcut readHeader () : call(void EntryHeader.readHeader ());

after () throws DatabaseException : readHeader () {
validator = new ChecksumValidator ();
validator .update ();

}

}

Caesar]J class. It is defined using the keyword cclass. Differently from pure
Java classes, it also can define aspect constructs, such as pointcut and advice. We can

instantiate and reference it as an object. Furthermore, inheritance hierarchies of CaesarJ

B W N =

N =

N O R W =

2.2. ASPECT-ORIENTED PROGRAMMING

and Java classes are strictly separated in Caesar]. A cclass may not inherit from a Java
class and vice versa. Listing 2.4 illustrates an example of a Caesar]J class. It defines an
attribute (Line 2), a pointcut to intercept calls to the readHeader method (Line 4), and
an advice to add behavior after calling this method (Lines 6-9).

Wrapper class. It is a dynamic extension of other classes, called wrappees. A
wrapper class can introduce new state and operations, as well as adapt the wrappee
to required interfaces. The wrapper-wrappee relationship is established by the key-
word wraps. A wrapper can access its wrappee by means of the special identifier
wrappee [AGMOO06]. Hence, we are able to separate different concerns by means of
wrapper classes. In Aspect], we could do this by using intertype declarations. Listing 2.5
defines the Fi1eReaderW wrapper class. It implements the st art Check sum method.
This method calls the threadSafeBufferPosition method, which is defined in

the FileReader class from the base code, by the keyword wrappee.

Listing 2.5 Wrapper class example.

cclass FileReaderW wraps FileReader {
void startChecksum () {
wrappee . threadSafeBufferPosition ();

}

Aspect deployment. We can instantiate CaesarJ classes equally to conventional
object aspects by using the keyword new. However, instantiation does not activate its
pointcuts and advice because CaesarJ classes are not deployed by default. We may explic-
itly deploy them statically or dynamically. Listing 2.6 and 2.7 illustrate the Checksum
class (Listing 2.4) static and dynamic deployment, respectively. Notice that using the
keyword deployed, the Checksum class is deployed statically. On the other hand,
when using the keyword deploy, the Checksum class is deployed dynamically. This
allows us to control whether the feature code is executed either statically or dynamically.

Listing 2.6 Static deployment example.

deployed cclass ChecksumStatic extends Checksum {

}

Listing 2.7 Dynamic deployment example.

deployed cclass ChecksumValidatorAspect {
pointcut pc_jarmain() : execution(x JarMain.main(..));
before () : pc_jarmain () {
if (isActivated ("checksum"))
deploy new Checksum ();
}
}

10

Flexible Binding Time

In this chapter, we depict problems we found in an existent solution for supporting flexible
binding time and we introduce our idioms to reduce these problems. We discuss the
motivation for supporting flexible binding time in Section 3.1. Then, we present our
three idioms, detailing its design and illustrating how it works in a running example in
Section 3.2. We introduce these idioms to address the shortcomings we found in Edicts.
Each idiom improves the one introduced previously in some way, such as less code
scattering or tangling. Later in Chapter 4, we evaluate these idioms regarding to code
cloning, scattering, tangling, size, and behavior. In the end, we discuss how to apply our
idioms in the presence of feature interaction. This happens when a given feature code we

want to provide flexible binding time is part of another feature code (Section 3.3).

3.1 Motivation

To implement flexible binding time, we could use the Edicts idiom [CREO08], which makes
it possible to choose between compile (static) and run-time (dynamic) binding for features.
The basic idea is to modularize feature implementation by means of Aspect] [KHH01a]
aspects. The programmer applies the Edicts idiom using separate aspects for static and
dynamic binding, as illustrated in Figure 3.1. The Abst ractAspect contains intertype
declarations to modularize the part of a feature implementation that we do not need to
deactivate because they are called only from within the own feature implementation,
therefore this code is not executed if the feature is deactivated. The implementation
of intertypes in the abstract aspect avoids duplicating feature code among the concrete
subaspects. However, we may need to deactivate some intertype declarations in specific
situations by introducing driver code. For example, a mandatory feature could call a

method that is implemented differently among a group of alternative features. There-

11

3.1. MOTIVATION

Rbstracthspect

pointcut ()

intertypel)
StaticBinding DynamicEinding
advice () advice ()

Figure 3.1 The structure of Edicts [CREOS]

fore, the call to this method always exist in the base code, albeit its implementation is
modularized within the feature implementation. So, we need to introduce driver code
in the intertypes for such situations. Additionally, the AbstractAspect contains
concrete pointcuts that target the variation points, which are points in the base code where
the feature code should be introduced when activated. The StaticBinding and the
DynamicBinding are concrete subaspects that implement static and dynamic binding
time, respectively. They differ because the DynamicBinding aspect implements a
driver mechanism, for example an if statement, to dynamically decide whether the
feature code should be executed, but both contain advice declarations that alter system
behavior by adding or changing feature functionality into the join points identified by
the pointcuts defined in the AbstractAspect. Note that the intertype declarations
aforementioned are referenced within these pieces of advice. Hence, they are executed
only when these pieces of advice are activated.

Despite of separating feature code and supporting flexible binding time, Edicts may
lead to a number of modularity issues, including code cloning, tangling, and scattering.
To illustrate these problems, consider the Checksum optional feature from BerkeleyDB,
which is an open-source database written in Java. This feature implementation detects
data corruption when writing or reading a database page. Following the structure of Edicts
(Figure 3.1), we have concrete pointcuts and intertypes in abstract aspects, and advice
declarations in concrete subaspects. However, this design may lead to code cloning
because we duplicate the pieces of advice among the concrete subaspects to implement
static and dynamic binding time. For the Checksum feature, we would end up cloning 17
pieces of advice. Listing 3.1 and 3.2 show part of the cloned code. The only difference
appears in Lines 4 and 9 from Listing 3.2. These lines implement the aforementioned
driver mechanism. Hence, the code between Lines 5 and 8 is executed only if the

driver activates the feature, which can be based on an user decision, for example. For

12

O 00 N O L AW N -

—_
[=]

3.1. MOTIVATION

simplicity, we do not show the ChecksumAbst ract implementation, which declares
concrete pointcuts and intertypes related to the Checksum feature and referenced by the
concrete subaspects. Section A.1 from Appendix A contains the Checksum complete
implementation using Edicts.

In our experience, the presence of advice is very common in feature implementation
modularized by aspects. It is common because most of the feature implementations are
tangled with other concerns in method level. Thus, we often need to extract part of a
method code to a piece of advice [KAB0O7, MLWRO1]. For instance, only one of our 18
implementations of features from four case studies does not have advice. In fact, applying
Edicts contributes to clone each piece of advice among the concrete subaspects of 17
features, resulting in 177 pieces of advice cloned in our studies, we provide further details
in Section 4.2.1.

Listing 3.1 Checksum static binding.

aspect ChecksumStatic extends ChecksumAbstract {

after () throws DatabaseException : readHeader () {
if (Im.doChecksumOnRead) {
validator = new ChecksumValidator ();

Besides the cloning problem, the code in Listing 3.2 does not have only feature
implementation, it is tangled with the code of the aforementioned driver mechanism.
This may lead to increased complexity of addition, removal or modification of driver
code [CHOT99]. For example, we may need to change the driver mechanism due to
a new configuration of the environment where the application is running, such as less
memory resources. In this scenario, we would have to add the new driver condition into
each piece of advice. Moreover, the situation can get even worse when applying Edicts
to large features that require many advice declarations, since we tangle this mechanism
code with feature implementation for each piece of advice. Even if we use an interface to
reference the driver within the pieces of advice, we could still have a problem because
these interfaces may vary as well. This way, when using Edicts, we apply aspects to
modularize feature code, but we do not use aspects to modularize the driver mechanism
code.

Furthermore, i f statements like the one in line 4 (Listing 3.2) are scattered through-

out the pieces of advice to support dynamic binding time. Such code scattering is

13

O 00 N O LN AW =

—_ = =
N = O

3.1. MOTIVATION

error-prone, because forgetting an i f statement may raise run-time exceptions in the
application, such as NullPointerException. Changing the driver mechanism is
also time consuming because we have to alter driver code within each piece of advice.
The cloning issue could be mitigated by writing the feature code as methods in a
separate aspect or class, which is not part of the application’s logic. Indeed, we could
decrease code cloning by duplicating only advice declarations, and calling these methods
in the pieces of advice. Thus, the cloning problem would be reduced but not eliminated.
Besides that, this solution might often not work since AspectJ does not support proceed
calls outside advice. Thus, we could not call it from within the methods in a separate
aspect. Further, we could not pass parameters through these absent proceed calls,
which could lead to inconsistent object states. For instance, if we alter an object in these
methods that is used in the base code, we could not access its new state in the base
code. If we create a separate class instead of an aspect to implement the aforementioned
methods, we would worsen the problem because classes do not support privileged access
to non-public members, so we would have to change the visibility of non-public methods

called within the advice body.

Listing 3.2 Checksum dynamic binding.

aspect ChecksumDynamic extends ChecksumAbstract {

after () throws DatabaseException : readHeader () {
if (driver.isActivated ("checksum")) {

if (Im.doChecksumOnRead) {

validator = new ChecksumValidator ();

Furthermore, this design to mitigate the cloning issue would increase code scattering
because it uses an additional component that contains feature code. For example, the
Checksum feature implementation would have four aspects instead of three. The feature
code would be even more scattered when its implementation uses more aspects. Never-
theless, the tangling would be the same because the i f statements (Line 5, Listing 3.2)
would still be implemented in the same way, as we would only extract feature code.

As the problems just presented might harm software modularity, we propose three
idioms to address the Edicts shortcomings. The first idiom address the Edicts short-
comings we just presented. The second idiom address the problems of Edicts and also

some issues of our first idiom. The third idiom reduces the problems even more and is

14

3.2. IDIOMS

not Aspect]-based. Moreover, we evaluate these idioms in Chapter 4 and discuss these

problems more specifically throughout this work.

3.2 Idioms

In this section, we describe our idioms to provide flexible binding time for features with
the aim of mitigating the discussed problems with Edicts. As a consequence, we have
less code cloning, tangling, and scattering. In Section 3.2.1, we introduce the Pointcut
Redefinition idiom. It avoids cloning pieces of advice as well as reduces feature and driver
code tangling and scattering. However, this idiom may increase the implementation size
because it redefines the pointcuts related to the feature. Hence, we describe the Layered
Aspects idiom in Section 3.2.2. It also addresses the discussed problems with Edicts, but
the implementation size and the driver scattering are smaller. Additionally, we introduce
the Flexible Deployment idiom in Section 3.2.3 to evaluate idioms implemented with
different techniques. Unlike the others, this idiom is based on CaesarJ, which allows an
improvement regarding the discussed problems, but on the other hand, it does not work

in some cases that we describe in Section 4.2.7.

3.2.1 Pointcut Redefinition

The Pointcut Redefinition idiom uses inheritance of Aspect] aspects and redefinition
of pointcuts to provide binding time flexibility. Essentially, we modularize the feature
code, either advice or intertypes, in an abstract aspect. To implement static binding, we
define an empty concrete subaspect to permit feature code instantiation by inheriting the
abstract aspect. By compiling the application with this concrete subaspect, we activate
all intertypes and advice declarations, so the application execution will run the feature
code. On the other hand, if we do not compile this concrete subaspect, the application
execution will not run the feature code. For dynamic binding, we define another concrete
subaspect that redefines the pointcuts from the abstract aspect restricting them with the
driver mechanism, that is, the new pointcuts we define in this aspect. This way, when
compiling the application with this concrete subaspect, we are able to dynamically decide
whether the feature code is executed. In what follows, we provide details about this

idiom.

15

3.2. IDIOMS

AbstractAspect

pointcut()
advice()
intertype()

StaticBinding DynamicBinding

pointcut() && driver()

Figure 3.2 The structure of Pointcut Redefinition

Design

Pointcut Redefinition is implemented using Aspect] aspects. We define an abstract
aspect which may contain advice, pointcuts, and intertypes related to the feature code
modularization. Figure 3.2 illustrates an overview of Pointcut Redefinition‘s structure.

This idiom provides static binding by an empty concrete subaspect to allow the
AbstractAspect instantiation and the feature code execution. For dynamic binding,
we redefine the AbstractAspect concrete pointcuts and associate them with the
driver code, which is a mechanism (or a set of mechanisms) responsible for providing
information about whether a feature should be executed at run-time, we show an example
in Listing 3.4 of Section 3.2.1. This way, the pointcuts defined in the AbstractAspect
intercept the corresponding join points only if the driver activates the feature.

Notice that we apply the driver to advice and pointcuts. However, we may need to
apply the driver for intertypes in specific situations, as we do with Edicts. For example, a
mandatory feature could call a method that is implemented differently among a group
of alternative features. This way, the call to this method always exist in the base code,
albeit its implementation is modularized within the feature implementation. Therefore, in
such situations, we introduce driver code in the intertype declarations as an i f statement
similarly to Edicts. Nevertheless, our case studies do not present this scenario in any
feature.

In addition, notice that static and dynamic binding time do not coexist at the same
product. We include only the StaticBinding aspect or the DynamicBinding
aspect in the compilation with the AbstractAspect. Therefore, we provide three
different variability possibilities: feature dynamically bound or unbound, feature statically
bound and, feature statically unbound. This also applies to our idiom presented in
Section 3.2.2.

The discussed structure of Pointcut Redefinition avoids advice code cloning because
there is no need to duplicate pieces of advice with feature code among the concrete

subaspects because they are in the abstract aspect. Moreover, it solves the tangling

16

3.2. IDIOMS

between driver and feature code because the driver mechanism is implemented in a
separate subaspect (DynamicBinding). There is no feature code in the concrete
subaspects and no driver code in the abstract aspect, so they are not scattered among
the three aspects. However, the redefinition of pointcuts may increase the idiom’s
implementation size when several pointcuts are present. This also leads to scattering of

driver code.

Example

To explain the Pointcut Redefinition idiom more clearly, we use the same example from
Section 3.1, the Checksum optional feature. In addition, Section A.2 from Appendix A

contains the Checksum complete implementation using this idiom.

Listing 3.3 ChecksumAbstract.

abstract aspect ChecksumAbstract {
pointcut readHeader() : call(void EntryHeader.readHeader ());

pointcut addPrevOffset(int entrySize)
: execution (ByteBuffer LogManager.addPrevOffset()) && args(entrySize);

after () throws DatabaseException : readHeader () {
if (doChecksumOnRead) {
validator = new ChecksumValidator ();

}
}

ByteBuffer around(int entrySize) : addPrevOffset(entrySize) ({
return proceed(entrySize);

}

void FileReader.validateChecksum () {

}
}

Feature implementation. The abstract aspect contains intertype and advice declara-
tions as well as the pointcuts related to the Checksum feature code. Listing 3.3 shows a
simplified abstract aspect that implements the aforementioned elements. Lines 3 and 5
define pointcuts that match join points where the feature code should be introduced. The
pieces of advice defined between Lines 8 and 17, contain feature code that we introduce
in the join points matched by these pointcuts. Moreover, Lines 19-21 define an intertype
declaration that introduces the validateChecksum method in the FileReader

class. In contrast to the code in the pieces of advice, the code of this method should not

17

O 00 N O L AW N -

3.2. IDIOMS

be introduced at a given join point, the own method is referenced by another member in
the feature implementation, therefore we use intertype declaration.

To avoid cloning the pieces of advice, we implement them in the abstract aspect
differently from Edicts. We may have as many aspects as needed to modularize code
related to the feature, this is an engineering decision. Nevertheless, we apply the structure
illustrated in Figure 3.2 for each aspect created.

Implementing static binding time. As mentioned in Section 3.2.1, we create an
empty concrete subaspect to allow the ChecksumAbstract instantiation. To activate
the feature statically, we include the ChecksumAbstract and ChecksumStatic
aspects in the project build. To deactivate the feature statically, we do not include any of
these aspects.

Implementing dynamic binding time. Now we are ready to define the aspect
responsible for dynamic binding time. In Line 3 of Listing 3.4, we show the driver
implementation. In this case, we check if the checksum property corresponds to t rue
or false in a properties file. If this property’s value corresponds to t rue, the feature
is activated and its code should be executed. However, we may need to implement the
driver in a different way. For example, we could have many different drivers, which could
lead to complex boolean expressions. Furthermore, the driver mechanism does not need
to obtain information about whether the feature code should be executed on properties
file. It could vary from GUISs that ask the user if he/she wants to activate the feature to
more complex ones like sensors that decide by themselves. In Lines 5-8, we redefine the
pointcuts defined in ChecksumAbstract and associate the driver mechanism. This
way, the driver controls whether the pointcuts are applied dynamically. If the feature is
activated, the pointcuts are applied and consequently the code within the pieces of advice
is executed. On the other hand, if the feature is deactivated, the pointcuts are not applied

and the feature code is not executed.

Listing 3.4 ChecksumDynamic.

aspect ChecksumDynamic extends ChecksumAbstract {

pointcut driver (): if(mew Driver().isActivated ("checksum"));

pointcut readHeader () : ChecksumAbstract.readHeader () && driver ();

pointcut addPrevOffset(int entrySize)
: ChecksumAbstract. addPrevOffset(entrySize) && driver ();

To observe the Pointcut Redefinition disadvantages, notice that when we define several

pointcuts, the dynamic binding implementation may increase its size because we redefine

18

3.2. IDIOMS

all pointcuts. Additionally, we scatter the driver throughout the redefined pointcuts, as
showed in Lines 5-8 of Listing 3.4. To mitigate these problems, we introduce the Layered

Aspects idiom.

3.2.2 Layered Aspects

Now, we propose the Layered Aspects idiom to implement flexible binding time for
features. Similarly to Pointcut Redefinition, the basic idea of Layered Aspects is to
have the feature code in an abstract aspect and two concrete subaspects to implement
static and dynamic binding time. For the static binding time, we compile an empty
concrete subaspect which inherits the feature code from the abstract aspect and allows its
instantiation, likewise the Pointcut Redefinition idiom. For the dynamic binding time, we
compile another concrete subaspect that intercepts the execution of the pieces of advice
that implement feature code defined in the abstract aspect to dynamically decide whether
the feature code is executed. We implement this using the adviceexecut ion pointcut
provided by Aspect]. In the following, we show this idiom’s design and how it tries to

address the problems of Edicts and Pointcut Redefinition.

Design

Layered Aspects is implemented using Aspect] aspects, as in Pointcut Redefinition. To
modularize a given feature, we implement its related code in an abstract aspect. This
aspect may contain advice, pointcuts and intertypes associated with the feature code.

Then, we implement static and dynamic binding time by creating two new concrete
subaspects inheriting the abstract one, as illustrated in Figure 3.3. An empty concrete as-
pect (StaticBinding)isnecessary in the compilation to allow the Abst ractAspect
instantiation when the feature binding occurs statically. For dynamic binding of features,
we compile the DynamicBinding aspect, which has code for dealing with different
kinds of advice defined in AbstractAspect. For before and after advice, we
have the adviceexecut ion pointcut, which intercepts these advice and only proceeds
their execution if the feature is activated. For around advice, this does not work because
if the feature is deactivated, the base code overridden by the around advice would not be
restored. So Dynamic Binding contains redefinitions of pointcuts that are related to
around advice, similarly to Pointcut Redefinition. Thereby, we compile the application
with the DynamicBinding aspect to provide dynamic binding time for features.

Moreover, the structure of Layered Aspects uses aspect inheritance because the

19

3.2. IDIOMS

AbstractAspect

pointcut()
advice()
intertype()

T

StaticBinding DynamicBinding

adviceexecution() && driver(}
pointcut() && driver(}

Figure 3.3 The structure of Layered Aspects

adviceexecution pointcut works only for before and after advice. Dealing
with around advice is complicated, because when the driver states the feature de-
activation, we must restore the base code overridden by the around advice. Since
there is no way to access the proceed join point of the advice intercepted by the
adviceexecution pointcut, it is not possible to call it in a generic way. Thus, the
pieces of around advice of the feature implementation must be deactivated one by one.
Hence, we redefine the pointcuts related to around advice declarations and associate
them with the driver in the DynamicBinding aspect. Thus, we apply the Pointcut
Redefinition design for around advice.

The aforementioned structure of Layered Aspects avoids feature code cloning, tan-
gling and scattering for the same reasons Pointcut Redefinition does. Layered Aspects
does not duplicate advice with code between Stat icBindingand DynamicBinding,
since these pieces of advice are defined only in AbstractAspect. Additionally, it
does not tangle driver and feature code because we implement the driver mechanism only
in DynamicBinding, which does not contain feature code. Furthermore, the feature
code is not scattered between the concrete subaspects because we implement it solely in
AbstractAspect. However, Layered Aspects only increases its implementation size
when several around advice are present due to the discussed adviceexecution

pointcut. In the following, we provide more details about Layered Aspects.

Example

To better explain Layered Aspects, consider the Checksum feature introduced in Sec-
tion 3.1. We show how to apply flexible binding time for this feature and how this
idiom addresses the Edicts shortcomings. We omit Feature implementation and Im-
plementing static binding time explanation because it is identical to the one presented
in Section 3.2.1. However, Section A.3 from Appendix A contains the Checksum com-
plete implementation using this idiom. The difference of Layered Aspects consists of

implementing the dynamic binding time, as follows.

20

3.2. IDIOMS

Implementing dynamic binding time. Now, we show how Layered Aspects allows
dynamic feature activation. Listing 3.5 shows how we implement dynamic binding of fea-
tures. Line 3 defines the driver, which is a pointcut that checks if the checksum property
corresponds to t rue or false in a property file, equally to the driver defined in line 3
of Listing 3.4. This way, the feature code is executed depending on this pointcut. Addi-
tionally, for dynamic feature binding, Lines 7-10 implement the adviceexecution
pointcut to deal with before and after advice. If the driver () condition corre-
sponds to false, the feature is deactivated, so this pointcut intercepts the pieces of
advice defined in the ChecksumAbstract aspect, but it does not call the proceed ()
join point within the advice defined in Lines 7-10, so the feature code is not executed.
On the other hand, if the driver () condition is t rue, the feature is activated, so
this pointcut does not intercept any advice declaration, thus the feature code is exe-
cuted. Moreover, line 5 redefines the addPrevOf fset pointcut, which is defined in
the ChecksumAbstract aspect, in order to associate it with the driver because this
pointcut is related to an around advice. As explained in Section 3.2.2, such type of
advice is handled separately, it is deactivated one by one. Therefore, we implement the
dynamic binding following the Pointcut Redefinition structure for around advice.

Last but not least, returning null in Line 9 (Listing 3.5) is not harmful when the
feature is deactivated because we apply the adviceexecution pointcut only for
before and after advice, it does not intercept around advice. This way, when the
feature is deactivated, the new pointcuts related to around advice are not applied and
so the adviceexecution () does not intercept the execution of the advice defined in
Lines 15-17 (Listing 3.3). If we remove the null statement, we may have a compilation
error, since the adviceexecution () pointcut tries to intercept the execution of

pieces of advice that return an Ob ject or a primitive type.

Listing 3.5 ChecksumDynamic.

aspect ChecksumDynamic extends ChecksumAbstract {

pointcut driver() : if(mew Driver ().isActivated ("checksum"));

[.)~0~intcut addPrevOffset () : ChecksumAbstract.addPrevOffset () && driver ();
(.).b.ject around () : adviceexecution () && within (com.checksum.ChecksumAbstract)

&& !driver () {

return null;

}

Despite reducing some of the issues, this idiom could scatter driver code when

21

3.2. IDIOMS

several around advice are defined because we redefine the pointcuts related to it, as
discussed above. The Pointcut Redefinition idiom presents the same deficiency, however
it redefines all the pointcuts whereas Layered Aspects redefines only the pointcuts related
to around advice. Hence, Layered Aspects design does not reduce the implementation
size comparing to Pointcut Redefinition in such cases. To handle these issues, we present

next the Flexible Deployment idiom.

3.2.3 Flexible Deployment

The Flexible Deployment idiom uses dynamic deployment of aspects provided by Cae-
sar] [AGMOO06] to allow feature binding time flexibility. CaesarJ is an aspect-oriented
language that extends Java and supports flexible deployment of classes and advanced
object-oriented modularization mechanisms. The idea is to define a Caesar]J class, which
can define aspect-oriented constructs, as explained in Section 2.2.2, to modularize the
feature code and two additional CaesarJ classes to implement static and dynamic binding.
For static binding, we define a statically deployed CaesarJ class that inherits the other
Caesar] class that contains the feature code, as showed in Listing 2.6 of Section 2.2.2. For
dynamic binding, a deployed CaesarJ class implements the driver mechanism. It activates
the feature by dynamically deploying the CaesarJ class that contains the feature code and
consequently allowing its execution, as illustrated in Listing 2.7 of Section 2.2.2. We

provide more details about this idiom in the following sections.

Design

Flexible Deployment is implemented using CaesarJ classes. We define a CaesarJ class
to modularize a given feature. It may contain pointcuts, advice, and wrapper classes
associated with the feature implementation. These wrapper classes contain feature code
and they wrap a class from the base code, as explained in Section 2.2.2. Unlike Aspect]
intertype declarations, these wrapper classes do not introduce feature code in base code
classes. Figure 3.4 shows the structure of Flexible Deployment.

Furthermore, we implement static binding by defining an empty deployed Cae-
sar] class (StaticBinding) that inherits from FeatureCaesarJClass. Thereby,
when both Caesar]J classes are present in a build, the feature is statically activated. For
dynamic binding, we define a separate CaesarJ class (DynamicBinding), which con-
tains the driver mechanism implemented as a pointcut and an advice. We provide more

details in this section.

22

3.2. IDIOMS

FeaturaCaesarlClass

paintcut()
advice()
cclass()

DynamicBinding

pointcut()
Lﬁ advice()
StaticBinding

Figure 3.4 The structure of Flexible Deployment

This idiom does not clone, tangle, or scatter code. The feature code is implemented
only in a separate Caesar]J class. Therefore, there is no cloning of pieces of advice and
there is no feature code scattering throughout the classes either. Since we implement the
driver mechanism in a separate CaesarJ class, the driver code is not tangled with feature

code. Moreover, the idiom implementation size does not increase when several pointcuts

are present as Pointcut Redefinition does.

Listing 3.6 ChecksumCaesarJClass.

cclass ChecksumCaesarJClass {
pointcut readHeader() : call(void EntryHeader.readHeader ());

pointcut addPrevOffset(int entrySize)
execution (ByteBuffer LogManager.addPrevOffset()) && args(entrySize);

after () throws DatabaseException : readHeader () {

if (doChecksumOnRead) {
validator = new ChecksumValidator ();

}
}

ByteBuffer around(int entrySize) : addPrevOffset(entrySize) ({

return proceed(entrySize);

}

cclass FileReaderCaesar]J wraps FileReader {

void validateChecksum () {

23

—_

00 N AN N kW N =

3.2. IDIOMS

Example

Now, we use the Checksum feature to describe how to implement flexible binding time
using the Flexible Deployment idiom more clearly. In addition, Section A.4 contains the
Checksum complete implementation using this idiom.

Feature implementation. The CaesarJ class that contains feature code may de-
fine pointcuts, advice, and wrapper classes, as illustrated in Listing 3.6. Differently
from the other two AspectJ-based idioms, Caesar] does not support intertypes, so we
define wrapper classes (Lines 20-26) in ChecksumCaesarJClass instead. The
FileReaderCaesard wrapper class is a dynamic extension of the FileReader
class. It can introduce new state and operations [AGMOO06]. For example, we introduce
the validateChecksum method related to the feature implementation (lines 22-24).
The ChecksumCaesarJClass encompass the feature implementation in this exam-
ple. Lines 3-6 define pointcuts that match certain join points in the base code where
we should introduce feature code. Lines 8-18 define pieces of advice that contains this
feature code.

Implementing static binding time. We define a deployed CaesarJ subclass extend-
ing ChecksumCaesarJClass, as illustrated in Listing 3.7. Since instantiation does
not automatically activate a class in CaesarJ, we have to declare the CaesarJ subclass
with the deployed keyword (Line 1). Therefore, we activate the feature execution by
including both Caesar] classes in the project build. On the other hand, to deactivate

feature execution, we do not include any of these Caesar]J classes.

Listing 3.7 ChecksumStatic.

deployed cclass ChecksumStatic extends ChecksumCaesarJClass {

}

Listing 3.8 ChecksumDynamic.

deployed cclass ChecksumDynamic {

pointcut pc_jarmain() : execution(x JarMain.main(..));
before () : pc_jarmain () {
if (nmew Driver (). isActivated ("checksum")) {

deploy new ChecksumCaesarJClass ();
}

}

}

Implementing dynamic binding time. Now, we describe how the Flexible Deploy-
ment idiom allows dynamic feature activation. Listing 3.8 shows the driver mecha-

nism implementation in a deployed CaesarJ class. In this case, we define a pointcut

24

3.3. FEATURE INTERACTION

that intercepts the system main method execution in Line 2. This allows the advice
defined in Line 3 to dynamically deploy the CaesarJ class that contains feature code
(ChecksumCaesarJClass) before the main method execution. Thereby, the feature
code is executed depending on the driver mechanism. Furthermore, this driver mechanism
is implemented according to the application requirements. Thus, it is not necessarily
implemented as in Listing 3.8. As we mentioned in Section 3.2.1, it could vary from
simple GUIs to complex sensors.

Indeed, Flexible Deployment implementation does not clone and scatter feature code
because we do not need to duplicate it among the classes that implement static and
dynamic binding time, so we implement feature code only in one class. In addition, this
idiom does not tangle feature and driver code since we define a separate class to implement
the driver mechanism. Finally, Flexible Deployment reduces the implementation size
comparing to the other idioms because its size does not vary due to certain advice, as in
Layered Aspects. However, we cannot apply the Flexible Deployment idiom for some
features because CaesarJ does not support all Aspect] constructs. Therefore, if a given
feature implementation uses these constructs, we would not be able to provide flexible

binding time with Flexible Deployment. We provide further details in Section 4.2.7.

3.3 Feature interaction

We already explained how to implement flexible binding time for features in the previous
sections. However, it might be the case that part of the code of a feature alters the behavior
of another feature. In this case, we use separate aspects to modularize code related to
both features at the same time, and we implement flexible binding time to such separate
set of aspects. Figure 3.5 illustrates this scenario. Part of the code of Feature A alters
the execution of Feature B. Hence, we modularize the joint selection of Features A and
B in an aspect. Thus, we implement flexible binding time for this aspect. The main
difference to the approach we presented in the previous sections is that we implement
flexible binding time for the interaction between features instead of a single feature.
For example, Figure 2.2 illustrates a product line that define applications for Deskt op
or Mob1i le environments. Thus, these two features are modularized in aspects but their
binding is only static since it does not make sense to alter the environment dynamically.
Thereby, despite of they are modularized in aspects, we do not implement our idioms in
such case. However, notice that the NextPiece and Record features may be activated

dynamically. But, when we identify their code, we observe they contain code tangled

25

3.3. FEATURE INTERACTION

-.

Figure 3.5 Feature Interaction

with the Desktop or Mobile aspects.

MextPieceAbstractDeskiop
- MNextPieceAbstractMahbile
Desktop pmntcutO - -
intertypel) mabile pointeut)
pointcut) pointout) intertyped
advice() advicel
intertine(intertype T
MextPieceDynamicDeskiop
- MextFieceStaticMohile
advicel
driver() advicel
(a) Tetris for desktop. (b) Tetris for mobile.

Figure 3.6 Tetris SPL.

To deal with such situation, we implement two products (NextPiece and Record)
for desktop and mobile environment. For instance, Figures 3.6(a) and 3.6(b) illustrate
the structure for this case using the Edicts idiom. Notice that Figure 3.6(a) contains
NextPiece and Desktop code. Hence, the Desktop aspect modularizes the code
exclusively associated to the desktop environment, it may define pointcuts, advice, and
intertype declarations. The NextPieceAbstractDesktop aspect modularizes the
NextPiece code and the NextPieceDynamicDesktop aspect implements dynamic
binding time following the structure of Edicts. Analogously, we implement the mobile
product, as illustrated in Figure 3.6(b).

Last but not least, we only provide dynamic binding for the desktop environment and
static binding for the mobile environment for this case study. Although, we could have
both static and dynamic binding for each environment in other scenario. We give further

explanation in Section 4.1.1.

26

Evaluation

To evaluate the idioms discussed in the previous chapter, in this chapter we discuss
empirical assessments we performed regarding code cloning, scattering, tangling, and
size. In particular, we implemented the four idioms in 18 features of four applications.
We now present the study settings detailing the case studies and their features, which are
implemented using the flexible binding time idioms, in Section 4.1.1. In addition, we
discuss the GQM approach used to assess the idioms in Section 4.1.2. In Section 4.1.3,
we explain the assessment procedures we followed to do this work. Moreover, we
observed modularity problems in the Edicts idiom implementation. This way, we discuss
the evaluation regarding modularity and code quality metrics, such as code cloning,
scattering, tangling, and size in Section 4.2. Therefore, we assess the implementations
of the idioms to confirm that we reduce the modularity problems that we identified in
Edicts, for our idioms. In addition, to confirm that there is no difference in the execution
of a given feature code implemented by different idioms, we evaluate if the execution
behavior changes between these idioms, that is, we use the SafeRefactor tool to compare
the behavior of the same feature implemented with two different idioms. We conclude
this chapter presenting some threats to the validity of our studies. At last, we discuss the

advantages and disadvantages of our idioms.

4.1 Study settings

To evaluate the idioms we discussed in Chapter 3, we performed an empirical assessment
of the idioms focusing on software modularity. Now we detail the study configuration,
which involved the implementation of flexible binding time using Edicts, Pointcut Redef-
inition, Layered Aspects, and Flexible Deployment in 18 features of four case studies.

Firstly, we explain the four case studies we selected to this work, and then we discuss the

27

4.1. STUDY SETTINGS

Goal-Question-Metric (GQM) approach [BCR94] that was used to evaluate our work. To
guide our evaluation, we present the goals we aim to reach, which consists of assessing
idioms to implement flexible binding times for features regarding software modularity. In
addition, we present the research questions we intend to investigate, such as what idiom
helps to reduce code cloning. Further, this section outlines the metrics used to measure
software modularity and consequently answer these questions. Finally, to explain how

we performed this work, we explain the assessment procedures.

4.1.1 Case studies

This section presents the applications and their features that require flexible binding time
support. We apply the three idioms introduced in Section 3.2 plus Edicts.

BerkeleyDB, which is one of our case studies, already was a product line [KABO7].
Therefore, we reviewed and refactored the ten features implementations we selected from
BerkeleyDB to comply with the way we implement the other eight feature implemen-
tations we selected from the other three case studies. One example of this refactoring
consists of separating pointcuts from advice declarations. Leaving them together would al-
ter the evaluation and introduce bias, such as increasing code cloning for the Edicts idiom
because following its structure, presented in Section 3.1, we would have to duplicate point-
cuts and advice instead of only pieces of advice among the concrete subaspects. Besides
BerkeleyDB, we considered three other applications: Tetris [Tet09], Freemind [Fre09],
and ArgoUML [Arg(09]. They were plain object-oriented applications. We modularized
some of their features with aspects obtaining an SPL before applying the idioms. In what

follows, we provide more details about these four applications.

Tetris

Tetris [Tet09] is an open-source implementation in Java of the well know Tetris game. It
runs on the Java ME (Micro Edition) platform. We created a product line by modularizing
the code related to Java ME. Thus, we are able to code and add Java SE (Standard Edition)
support as well. This way, we can run Tetris for both platforms. Figure 2.2 in Section 2.1.1
shows the feature model of our Tetris SPL. Note that Mobile and Desktop are alternative
features that represent the platforms we can run this case study. We implement flexible
binding time for Record and NextPiece optional features. The red circles in Figure 4.1
illustrate both features. The Record feature shows to the user what is the highest score

any player has already achieved. The second feature, named NextPiece, shows the next

28

4.1. STUDY SETTINGS

. "

tetris lines

Figure 4.1 Tetris Features

piece which is about to drop on the screen. This product line has about 1500 lines of code.
The Record and NextPiece features have nearly 400 lines of code within aspects and
classes. We chose these features because they represent a scenario where both optional
features interact with alternative features, as we explained in Section 3.3.

For the Java SE platform, we provide a dialog box in the beginning of the execution
to let the user choose what features should be activated. Thus, we provide dynamic
feature binding. On the other hand, for the Java ME platform, it is desirable to avoid
overhead introduced by dynamic binding [RSSAO08] due to restrictions of performance,
so we provide a simple user interface without this dialog box, so we statically activate or
deactivate the features.

Therefore, it is possible to generate different products: (i) features dynamically bound
for the Java SE platform and (ii) features statically bound or (iii) unbound for the Java
ME platform. Notice that the Record and NextPiece features do not interact. Therefore,
we may have any combination. Both may be activated or deactivated or one may be

deactivated while the other is activated or vice-versa.

Freemind

Freemind [Fre09] is an open-source system used to construct diagrams to organize ideas
by using mind maps. It is written in Java and runs on the Java SE platform. We selected
this case study because it is a widely used application, which presents code related to
particular functionalities scattered throughout several layers and classes. In this context,
we modularize two features to create a product line and provide flexible binding time.

Figure 4.2 illustrates the feature model of our resulting SPL.

29

4.1. STUDY SETTINGS

Freemind Legend:
3 Mandatory
o Opticnal
Node Ahstract
7, Concrete

Clouds | [tcons
Figure 4.2 Freemind SPL feature model.

— | 100% DO EE e y|E B D h@s.ansSerif

Two features
ﬁ Two features I
Written in Java | Freemind ¥ o @ Tetris¢ Runs on J2ME and J2SE

Q {Case Studies -
» JRuns on J28E /

' Written in Java

<=

Figure 4.3 Mind map constructed in Freemind.

The Clouds optional feature (right hand-side circle) may alert an important node
from the mind map. For instance, in Figure 4.3, we use a cloud to call our attention
about what platforms Tetris runs on. The Icons optional feature decorates these nodes.
The Tetris and Freemind nodes contain icons. We chose these features due to their code
representativeness. They are crosscutting, scattered and tangled throughout different
architecture layers. We also use several different Aspect] constructs to modularize these
features. Figure 4.3 illustrates a mind map in Freemind that organizes the information of
our case studies. The circles represent the two features we modularized.

The Freemind product line has about 67000 lines of code and both features have ap-
proximately 4000 lines. Note that following the Figure 4.2, we can have any combination
of optional features. In this context, we can generate different products with dynamic and

static feature bind and static feature unbind.

ArgoUML

ArgoUML [Arg09] is an open-source UML modeling tool written in Java that includes
support for standard UML 1.4 diagrams. We selected this case study because the ap-
plication code is separated into subsystems that have different responsibilities and are
organized in layers. This way, the feature code should be scattered within a subsystem
instead of the whole application as in Freemind, which turns its feature code different

from the other case studies increasing the representativeness of these features. In this

30

4.1. STUDY SETTINGS

ArgoUML Legend:
’ & Mandatory
; o Opticnal
e .
Guilemet | | Notation A or
F Y Abstract
TN Concrete
Jawa | | UML14

Figure 4.4 ArgoUML SPL feature model.

context, we create a product line by modularizing two features and introducing flexible
binding time for both.

For the first feature, we focus on the Notation subsystem which defines the notation
language used in UML diagrams. ArgoUML provides two notations: UML 1.4 and Java.
This is an OR feature, so we may have only UML 1.4, only Java or both. We also consider
the Guillemets optional feature. It is responsible for showing the symbols “< < “>>"
to accommodate the stereotypes of classes in the diagrams. Despite the simplicity, the
Guillemets feature code is scattered throughout many modules of ArgoUML.

The ArgoUML product line has nearly 113000 lines of code and 468 of feature code.
Figure 4.4 shows the feature model of this product line. Note that we may have any
combination between the two selected features. This way, we can generate different
products with dynamic and static feature bind and static feature unbind, equally to the

Freemind case study.

BerkeleyDB

BerkeleyDB! is an open-source database written entirely in Java. It uses the Java En-
vironment advantages to simplify development and redeployment and provides simple
store key/value pairs of arbitrary data. For this work, we use the BerkeleyDB product
line [KABO7]. Kistner et al. modularized several features using aspects.

Table 4.1 explains the responsibility of each feature. The /O and NIO features are
alternatives, which means that only one may be present at a time. The other features are
optional. However, these optional features have interactions between each other. For
example, Truncate depends on Delete to delete the database before creating a new empty
one. In other words, Delete must be present in the product when Truncate is activated.

We discuss these interactions later in Section 4.2.7. Due to the quantity of features, we

"http://www.oracle.com/technetwork/database/berkeleydb/overview/
index-093405.html

31

http://www.oracle.com/technetwork/database/berkeleydb/overview/index-093405.html
http://www.oracle.com/technetwork/database/berkeleydb/overview/index-093405.html

4.1. STUDY SETTINGS

Legend:
B » Mandatony
erkele 5
____l}r?__*_‘r____ o Optional
e/ Te— l,.-f:t\ Alternative
.______——-‘ _. .-‘ "'----.__. Apstract
CatabaseCperations | | MemoryBudget BETree Persistence Concrete
{7 = L s T —=="}
Truncates Delete Evictor | | INCompressor | | InputéndOutput | | EmvironmentLock | | Cleaner | | Checksum
(o] NIO LookAheadCache
Figure 4.5 BerkeleyDB SPL feature model.
Table 4.1 BerkeleyDB Features
Feature Definition
Checksum Checksum read and write validation of persistence subsystem.
Delete Deletes database.
EnvironmentLock Prevents two instances on the same database directory.
Evictor Reduces memory consumption by evicting non persistent nodes from
the database tree.
INCompressor Removes delete entries and empty nodes from the tree.
10 Classic 1/0 implementation.

Look Ahead Cache

Keeps track of memory used, and when full (over budget), the node offsets
should be queried and removed.

Memory Budget

Calculates the available memory for the database and how to apportion
it between cache and log buffers.

NIO

New I/O implementation.

Truncate

Deletes the database and creates a new one without the previous data.

can have several number of product configurations.

This product line, has approximately 32000 lines of code. All the ten features selected

sum up approximately 4000 lines of code. Figure 4.5 illustrates the feature model of this

case study. Differently from the other case studies, we cannot have any combinations

of features. As aforementioned, some implementation of features depend on other

implementation of features to execute correctly. This limits the possible products we may

generate.

412 GOQM

We use the Goal-Question-Metric (GQM) approach to drive the evaluation process. We

first specify the goal (Section 4.1.2), which states what we aim to evaluate. Second, we

define a set of questions to characterize the way we perform the assessment (Section 4.1.2).

Finally, we refine the questions into metrics in order to obtain answers in a quantitative
way (Section 4.1.2) [BCR94].

32

4.1. STUDY SETTINGS

Goal

The main goal of our evaluation consists of assessing idioms to implement flexible binding
times for features. Notice that such assessment regards software modularity, so we are
concerned about aspects like (1) code duplication, (ii) feature and driver code scattering,
(111) tangling between driver and feature code, and (iv) the source code size.

Questions

In what follows, we detail the questions we investigate in this paper related to the metrics

we use to answer them.

Which idiom contributes to reduce:

Q1- the code duplication when implementing binding time flexibility?
1. Pairs of Cloned Code (PCC)

Q2- the driver and feature code scattering?

1. Degree of Scattering across Components (DOSC)
2. Degree of Scattering across Operations (DOSO)

3. Concern Diffusion over Components (CDC)
Q3- the tangling between the driver and feature code?

1. Degree of Tangling within Components (DOTC)
2. Degree of Tangling within Operations (DOTO)

Q4- the lines of code and number of components?

1. Source Lines of Code (SLOC)
2. Vocabulary Size (VS)

Metrics

In order to answer the questions just presented, we evaluate the implementation of the
idioms in the case studies using a metrics suite. Most metrics we chose have already

been defined and successfully used to measure quality factors in several works [EZS™08,

33

4.1. STUDY SETTINGS

BB09, GSFT06, Ape07, FGS*05, BBM96]. All of these metrics are defined to be used

at the implementation level, which we focus on this work.

Clone

Pairs of Cloned Code (PCC) - It measures the number of pairs of duplicated code
based on tokens.

Modularity

Degree of Scattering across Components (DOSC) - It measures how distributed
is a concern code across components (classes or aspects). It varies from O to 1. If
DOSC is 0, then the code of a concern is in a single component. On the other hand,
if DOSC is 1, then the code of a concern is equally divided among all considered
components [EAMO7];

Degree of Scattering across Operations (DOSO) - Similarly to DOSC, DOSO
measures how distributed is a concern across methods and advice. It varies from 0
to 1. If DOSO is 0, then the code of a concern is in a single method or advice. On
the other hand, if DOSO is 1, then the code of a concern is equally divided among
all considered methods and advice [EAMO7];

Concern Diffusion over Components (CDC) - Number of components that has
code of a concern [GSF105];

Degree of Tangling within Components (DOTC) - It measures how dedicated
a component (class or aspect) is to one or more concerns under consideration.
Like DOSC and DOSO, it varies from O to 1. If DOTC is 0, then the code of a
component is totally dedicated to one concern. On the other hand, it is 1 if the code

of a component is dedicated to all concerns under consideration [Ead08];

Degree of Tangling within Methods (DOTO) - It measures how dedicated a
method or advice is to one or more concerns under consideration. It varies from 0
to 1. If DOTO is 0, then the code of a method or advice is totally dedicated to one
concern. On the other hand, it is 1 if the code of a method or advice is dedicated to

all concerns under consideration [Ead08].

Size

Source Lines of Code (SLOC) - Number of source lines of a component (e.g.,

classes or aspects);

34

4.1. STUDY SETTINGS

* Vocabulary Size (VS) - Number of program components (e.g., classes or aspects);

We use Pairs of Cloned Code (PCC) in Section 4.2.1 to answer Question 1, as it may
indicate a design that could increase maintenance costs [BYM'98] because a change
would have to be replicated to the duplicated code as well. To answer Question 2, we
use CDC, DOSC, and DOSO in Section 4.2.2 to measure the implementation scattering
for each idiom. This way, we measure code scattering through different perspectives,
such as number of components in which the code is scattered, and how dedicated the
code is with respect to components or methods. To answer Question 3, we measure the
tangling between driver and feature code considering the DOTC and DOTO metrics in
Section 4.2.3. Hence, our evaluation considers code tangling within components and
methods. In addition, Source Lines of Code (SLOC) and Vocabulary Size (VS) are well
known metrics for quantifying a module size and complexity. So, in Section 4.2.4, we
answer Question 4 measuring the size of each idiom in terms of lines of code and number

of components.

4.1.3 Assessment procedures

To compute the metrics values and perform our assessment, we follow the following
procedure. We detail these procedures in five steps.

1- Selection of case studies. In order to generalize the results of our study to other
contexts, we selected four different applications and eighteen different features. The
applications we chose represent different sizes, purposes, and architectures. Additionally,
the selected features have different sizes, architectures, types, granularity, and com-
plexity. Moreover, they have different types, such as optional, alternative, OR, and
mandatory [KCH"90].

2- Feature code identification and assignment. After choosing the feature, we
apply Prune Dependency [EAMO7] rules to identify feature code scattered throughout the
application. These rule state that "a program element is relevant to a concern if it should
be removed, or otherwise altered, when the concern is pruned from the application".
By following these rules, two different people can identify the same code related to a
given concern. We chose this rule to reduce introducing bias while identifying feature
code. We execute this task manually by following the Prune Dependency rules. We use
comments to assign the program elements related to each feature. This way, two different
researchers could identify and assign our feature code.

3- Code modularization. For this phase, we extracted the feature code assigned from

35

4.2. RESULTS

the classes to aspects, except for BerkeleyDB, which the feature code was modularized
before. This way, we aim at separating the feature and core code. This allows the
creation of product lines from the applications. After this phase, the application should
be independent from the modularized feature. For example, the application may compile
and execute properly without the optional feature code.

4- Flexible binding time implementation. We then implement the idiom for the
modularized features that we wish to provide binding time flexibility. We use the chosen
idiom to control whether the feature code is executed. In this work, we apply the four
idioms for each feature, but only one idiom is necessary to obtain binding time flexibility.

5- Evaluate idioms. In this phase, we use the GQM approach to evaluate the four
idioms. Our goal is to assess the implementation of the idioms in the case studies. We
elaborate four questions with respect to points that we want to investigate about the
idioms. Then, we answer the questions by analyzing the measures obtained for the
metrics we selected. In addition, we investigate possible changes concerning the behavior

of the implementations.

4.2 Results

In this section, we evaluate the presented idioms. We aim at answering the questions
outlined in Section 4.1.2, so that we answer each question in the following subsections.
In some sections, we only show the metric results for some features, which are enough
to drive our discussion. However, in Appendix B, we show the complete metric results.
Moreover, the material produced in this work is available in our website?. In addition, we
do not present the Flexible Deployment idiom results for the Tetris product line because
CaesarlJ does not support some aspect constructs needed to modularize the features of

Tetris, we provide more details in Section 4.2.7.

4.2.1 Cloning

To answer Question 1 and try to determine which idiom reduces code cloning, we use the
CCFinder [ccf07] tool to obtain the PCC metric results. CCFinder is a widely used tool
to detect cloned code, and several works used it with the same purpose [SR05, KGO6,
BvDvVET05, AEKHGO05, DHJ"08]. We use 40 as the minimum clone length (in tokens),

which means that to be considered cloned, two pairs of code must have at least 40 equal

Zhttp://twiki.cin.ufpe.br/twiki/bin/view/SPG/FlexibleBinding Time

36

4.2. RESULTS

Table 4.2 PCC metric results

Feature Edicts PointcutRedef Layered Aspects FlexDeploy
Icons 19 4 4
Clouds

Notation
Guillemets
NextPiece-Desktop
NextPiece-Mobile
Record-Desktop
Record-Mobile
EnvironmentLock
Checksum
Truncate

Delete
LookAheadCache
Evictor

NIO
MemoryBudget
10
INCompressor

9]

1
8
0

—
NO 1O O DDWNODODODOOO OO0~

W
NO PR, OO ONDUNNDNOODOOO A~V

— O N O OO NN ODODODODOO O V0~ W

— O = OO OO Wn O W

tokens. Pairs of similar code that have 39 tokens are not considered cloned, so that they
are discarded by CCFinder. Results using less than 40 similar tokens are discarded due
to the frequent appearance of undesired clones, such as package names. On the other
hand, we do not apply a higher minimum clone length because we miss some relevant
pairs of cloned code. We chose to use a token-based detection of code cloning because
representing a source code as a token sequence enables to detect clones with different
line structures, which cannot be detected by line-by-line algorithm [KKI02]. This allow
us to detect more clones in our case studies. In addition, we use 12 as the token set size
(TKS). This way, the TKS is not small enough to consider that the cloned code fragment
is a simple statement, such as a series of variable declarations, which is often present in
classes and in most of the cases is irrelevant. On the other hand, the TKS is not higher
because we may miss some interesting duplication of code because the cloned code
fragment would be very large. Table 4.2 summarizes the results of the Pairs of Clone
Code (PCC) metric.

As in Section 3.1, Edicts duplicates feature code in the concrete subaspects. This
leads to high PCC rates specially for large features that define many pieces of advice,
such as the Memory Budget and Icons features. The NextPiece and Record features do
not present clones because they have only static binding time for the mobile version, and
only dynamic binding for the desktop version. Therefore, Edicts do not clone feature

code in the concrete subaspects, since it has only one subaspect to implement static or

37

4.2. RESULTS

& Edicts
W PointcutRedef

LayAspects

E FlexDeploy

Figure 4.6 DOSO Driver metric results

dynamic binding time. The Pointcut Redefinition idiom presents high PCC rate for the
Memory Budget feature because it is a large feature, which contains many pointcuts.
Hence, following the Pointcut Redefinition idiom design, we redefine these pointcuts in
the concrete subaspects, and consequently we clone their signatures. Layered Aspects

and Flexible Deployment have low PCC results for most features.

4.2.2 Scattering

As mentioned in Section 4.1.2, we use DOSO, DOSC, and CDC to analyze feature and
driver code scattering for each idiom. Feature and driver are different concerns, so we
analyze them separately. By using these metrics, we intend to answer Question 2 from
Section 4.1.2. In particular, we study the driver code scattering and the feature code

scattering in the following.

Driver

Now, we discuss the driver code scattering. Figure 4.6 presents the results considering
the DOSO metric. Edicts and Pointcut Redefinition have the worst results because they
scatter driver code throughout many program elements. For example, the Edicts idiom
introduces driver code into several pieces of advice. Moreover, Pointcut Redefinition
introduces driver code into the redefined pointcuts in the concrete subaspect. On the other
hand, Layered Aspects only increases the DOSO results in cases which we redefine the

pointcuts related to around advice (see Section 3.2.2). Accordingly, Flexible Deployment

38

4.2. RESULTS

0,9
0,8
0,7
0,6

r

05 W Edicts

0,4
0,3

0.2 LayAspects
01 ' ' i FlexDeploy
0 - T

i PointcutRedef

Figure 4.7 DOSC Driver metric results

has low driver scattering due to its dynamic deployment of aspects which implements
the driver mechanism in only one pointcut and advice. The Truncatefeature has zero
DOSO because it does not implement pieces of advice. The Notation feature has equal
results for all the idioms because its implementation is similar independently of the idiom.
This happens because the Notation feature consists of a subsystem in the architecture
of ArgoUML. Hence, this feature is not scattered throughout the source code so that we
only need to deactivate this subsystem. The /0 and NIO features have only one advice,
so the DOSO 1is zero for them, since there is only one i f statement in a single advice.
To provide the scattering results in another perspective, we also consider the DOSC
metric. This allow us to identify in which cases the code scattering occurs in a class or
aspect level. Although driver code scattering is common when considering pointcuts and
advice, it is unusual when considering classes or aspects because most of our features do
not need more than one aspect in its implementation. Therefore, we implement the driver
code only in one concrete subaspect. Figure 4.7 shows the results regarding the DOSC
metric. The Delete, Memory Budget, and INCompressor features use more than one
aspect to implement the feature code. Therefore, their DOSC results may vary because
we implement the driver in more than one aspect too, since we have to implement static
and dynamic binding time in concrete subaspects defined for each abstract aspect. This is
specially bad for Edicts and Pointcut Redefinition since we may have to introduce driver
code in the concrete subaspects to implement dynamic binding time. On the other hand,

for the other features, the DOSC is zero because the driver code is implemented only

39

4.2. RESULTS

& Edicts

¥ PointcutRedef

LayAspects

H FlexDeploy

Figure 4.8 DOSC Feature metric results

in one aspect. Therefore, it is not scattered throughout the components that implement

feature code.

Feature

Now, we discuss the feature code scattering. The DOSC metric depends on the num-
ber of components related to the feature implementation. Therefore, we consider two
perspectives. From a package perspective, the feature code is well modularized as its
implementation is in a single package. This way, there is no scattering at the package
level. On the other hand, one feature implementation may use multiple aspects, leading
to a higher feature scattering.

According to the results showed in Figure 4.8, Edicts scatters feature code because
its design leads to the implementation of feature code in the abstract aspect and also
in the concrete subaspects. In contrast, the other idioms only scatter feature code in
cases multiple aspects are used in its implementation, as in Memory Budget. In these
features, we used more aspects to modularize their code because they are large so each
aspect would be responsible for a particular feature concern. In other cases, Layered
Aspects, Pointcut Redefinition, and Flexible Deployment present low DOSC results. This
is expected due to the concrete empty aspect used to allow the feature code instantiation,
as explained in Section 3.2.

In addition, we apply another metric to measure the scattering through a different

perspective. The CDC metric allows us to identify potential differences among the idioms

40

4.2. RESULTS

& Edicts

H PointcutRedef

LayAspects

HE FlexDeploy

Figure 4.9 CDC metric results

(Figure 4.9).

The difference between the idioms appears when we use more than one aspect to
modularize the feature code. Notice that Edicts and Pointcut Redefinition have the worst
results due to their design. These idioms define two concrete subaspects to implement
static and dynamic binding time for each abstract aspect. On the other hand, Layered
Aspects and Flexible Deployment implementation contain less components because they
do not have to define these concrete subaspects for each abstract aspect.

To sum up, DOSC and CDC show that our idioms reduce feature code scattering
comparing to the Edicts idiom. The CDC metric complements DOSC because it shows
that our idioms reduce feature code scattering also when we use multiple aspects to

implement the feature, as in the Memory Budget feature.

4.2.3 Tangling

This section answers Question 3 by investigating the extent of tangling between feature
and driver code. According to the principle of separation of concerns [Par72], one should
be able to implement and reason about each concern independently.

In this work, we assume that the greater is the tangling between feature code and its
driver code, the worse is the separation of those concerns. As mentioned in Section 4.1.2,
we measure the Degree of Tangling within Methods (DOT O) and the Degree of Tangling
within Components (DOTC). Figure 4.10 and 4.11 show the DOT O and DOTC results,
respectively.

41

4.2. RESULTS

0,5
0,45
0,4
0,35
0,3
025 1 — 7 ®Edicts

0,2 17— | 8 8
0,15 +— — A & PointcutRedef

0,1 I { i I LayAspects
1 1 1

0,05 -
0 - T \ \ T T T) & FlexDeploy

Figure 4.10 DOTO metric results

Edicts has high DOT O rates because we implement driver code in each piece of advice.
As a consequence, feature and driver code are tangled in the concrete subaspect that
implement dynamic binding time. The other three idioms do not tangle driver and feature
code since the abstract aspect contains only feature code and the concrete subaspect that
implement dynamic binding contains only the driver implementation. Hence, there is
no advice or pointcut with feature code defined in the Pointcut Redefinition, Layered
Aspects, or Flexible Deployment implementation that is associated with driver code.

The NextPiece-Desktop feature presents the highest DOT O because its implementa-
tion contains only advice and following the Edicts design, all of these advice are tangled
with driver code. As we explained in Chapter 3, the driver code is equally distributed
among the pieces of advice, that is, they contain the same i f statement, so it is the same
amount of driver code that each piece of advice has. On the contrary, features that present
low DOT O have few pieces of advice that contain feature and driver code comparing to
the total number of operations of this feature implementation.

Likewise, Edicts implementation tangles driver and feature code considering aspects,
as illustrated in Figure 4.11. At least one concrete subaspect has code tangling due to
Edicts structure. The situation is even worse for feature implementation that uses more
than one aspect, such as Memory Budget. On the other hand, the other three idioms
implement a separated aspect that contains only the driver mechanism. Therefore, the
DOTC is zero, except for the Notation feature, which presents similar implementations
for all idioms, as we explained in Section 4.2.2.

Notice that DOT O and DOTC are zero for features seven NextPiece and eight Record

42

4.2. RESULTS

0,4
0,35
0,3
0,25
0,2 1 W Edicts
0,15 1

i PointcutRedef

01 1 —
0,05 - I I I LayAspects
0 - & FlexDeploy

o e o
& & R N & &
% o) o o O
A & & O \)Q Q,\)
N A A
,8'\6 @?,&
+
QQ'

Figure 4.11 DOTC metric results

because we implement them to mobile platform which only binds feature statically, so
there is no driver. In addition, DOT O and DOTC are zero for the Truncate feature too

because it does not implement pieces of advice, so there is no driver code too.

4.2.4 Size

To identify the idiom that reduces the size of its implementation, we try to answer the
fourth question, which is related to the size of each idiom in terms of lines of code and
the number of components. For this purpose, we use the SLOC and V'S metrics.

As explained in Section 3.1, in order to support flexible binding time of a feature, the
Edicts idiom introduces two additional concrete subaspects for each aspect implementing
the feature. This situation leads to higher SLOC rates, mainly due to the code duplication
introduced by dynamic and static aspects. Table 4.3 presents the SLOC metric results. In
general, the other three idioms achieve better results than Edicts due to the absence of
feature and driver code duplication. The difference becomes higher when the feature is
large and contains many advice, which will be duplicated among the concrete subaspects.
For example, SLOC presents high rates for Edicts to the Memory Budget feature compar-
ing to the other idioms because it is large and contains many pieces of advice. In contrast,
the Truncate feature does not contain pieces of advice and consequently, the Edicts idiom
does not duplicate them, so the SLOC of Edicts is not the highest.

Now, we analyze the size from the number of components perspective by using
the VS metric. We detail the results in Table 4.4. Unlike the other graphs, here we

43

4.2. RESULTS

Table 4.3 SLOC metric results

Feature Edicts PointcutRedef Layered Aspects FlexDeploy
Icons 2198 2180 2127 2031
Clouds 2015 1919 1897 1833
Notation 172 172 172 153
Guillemets 320 208 181 178
NextPiece-Desktop 516 515 506 -
NextPiece-Mobile 450 449 435 -
Record-Desktop 511 507 387 -
Record-Mobile 460 335 455 -
EnvironmentLock 160 119 116 118
Checksum 476 469 441 456
Truncate 157 157 157 178
Delete 460 358 338 358
LookAheadCache 140 146 134 134
Evictor 452 466 460 470
NIO 61 52 52 52
MemoryBudget 1891 1397 1397 1285
10 74 66 66 62
INCompressor 592 584 584 570

illustrate the difference between the case studies. Most of the case studies use a similar
number of components to implement the features. However, the small differences happens
because the Flexible Deployment implementation presents wrapper classes (Section 3.2.3),
so it presents more components than the other idioms for Freemind, ArgoUML, and
BerkeleyDB. The Tetris case study has few aspect on implement its features, then the V'S

results are equal to Edicts, Pointcut Redefinition, and Layered Aspects.

Table 4.4 VS metric results

Application Edicts PointcutRedef Layered Aspects FlexDeploy

Freemind 550 551 549 557
ArgoUML 1622 1621 1621 1629
Tetris 21 21 21 -
Berkeley 345 338 345 350

4.2.5 Behavior

To obtain reliability that the execution of the implementation of flexible binding time
does not change when implementing the same feature code with different idioms, we use

the SafeRefactor [SGSM10] tool>. It automatically generates a test suite for two different

3http://code.google.com/p/saferefactoraj/downloads/detail ’name=saferefactor.0.1.6.jar

44

4.2. RESULTS

versions (e.g., before and after the refactoring) of a given target program and reports
whether it presents behavioral changes between them.

This way, we provide two different versions of the same application as inputs to
SafeRefactor. These versions differ in the idiom used to implement flexible binding
time for the features of this application. For example, we provide one version of the
BerkeleyDB case study with Edicts and other version with Layered Aspects. Thus,
SafeRefactor generates and execute a test suite to determine whether there is behavioral
changes between the two versions. The Table 4.5 summarizes our results. Notice that
SafeRefactor generates several unit tests for each of the four case studies. In addition,
it generates the same number of tests for the source and target projects. For example,
it generates 2005 tests for Freemind implemented with Edicts (source) and 2005 tests
for Freemind implemented with Pointcut Redefinition (target). Then, it checks if the
test results of both implementations are equal. If they are equal, then it informs that no
behavioral changes are found.

We did not find behavioral changes in the Freemind and Tetris case studies. However,
the SafeRefactor tool found some behavioral changes in the BerkeleyDB case study.
Based on its results, we could identify that we had removed accidentally a line of code
within a constructor defined in the FileManager class in the base code. Thereby, we
could fix such inconsistence and increase the reliability of our implementations.

Unfortunately, SafeRefactor does not support the CaesarJ language. Hence, we could
not test the Flexible Deployment implementation. However, we have not so far detected

behavioral changes when using the applications implemented with this idiom.

Table 4.5 Number of unit tests generated by SafeRefactor

Application Edicts and PcRedef Edicts and LayAspects PcRedef and LayAspects

Freemind 2005 2072 2072
ArgoUML 1443 1443 1443
Tetris 2394 2380 2384
BerkeleyDB 3362 3141 3141

4.2.6 Threats to validity

In this section, we discuss some threats to the validity of our study.
Case Studies. Our work is based on only four case studies, which could be a limiting
factor. In addition, these case studies were not widely used. However, we believe the

selected case studies cover different architecture and code complexity. Tetris is a small

45

4.2. RESULTS

application implemented in few layers that runs for mobile and desktop environments.
Freemind, ArgoUML, and BerkeleyDB are widely used applications. They are large
systems implemented in many layers. Their functionalities are scattered throughout these
layers.

Selected Features. Our selected features do not approach all existing architectures,
granularity, and levels of complexity. Nevertheless, we modularized six feature for
Freemind, ArgoUML, and Tetris, and we selected 12 features of the BerkeleyDB product
line. They vary on the way they were implemented, on size, and on granularity. In
addition, regarding feature model, we have mandatory, optional, OR, and alternative
features, which turned possible to identify differences between them, and consequently
improve our idioms in order to work with all these types of feature.

Application refactoring. To provide flexible binding times, we need to refactor the
applications. As explained in Section 4.1.3, we first modularize the feature in cases which
it is not modularized before, and then we implement the idiom. In this work, we only use
the SafeRefactor [SGSM10] tool to validate refactoring. As explained in Section 4.2.5,
this tool does not support the CaesarJ language. Thus, we only validate refactoring by
performing user interface tests of the applications implemented with Flexible Deployment
idiom.

Multiple drivers. In this work, we only consider applying one driver at a time.
However, we realize that some applications may depend on several conditions to activate
or deactivate a certain feature. For instance, Lee et al. utilize a home service robot product
line as case study [LKO06]. This robot changes its configuration dynamically depending
on the environment brightness or its remaining battery. It would demand at least two
drivers to (de)activate some of its features in our context. It may appear some problems,
such as more driver tangling and scattering.

Metrics. Someone could argue that metrics do not cover all software code attributes
affecting the system modularity. However, to improve the confidence in our evaluation,
we gathered our conclusions based on a set of metrics, which considers eight metrics
with respect to clone, modularity, and size. In addition, there is no previous work that
considers evaluating the implementation of flexible binding time regarding code cloning,
modularity, and size.

Cloning results. Our results for the PCC metric are based on the same parameters
(token length and token set size) for all the four case studies, which could harm these
results. Additionally, we do not use a manual filter, in which we would eliminate the

cloned code that the tool detected but it is not interesting to our context. However, we

46

4.2. RESULTS

actually looked at the code to confirm that the PCC results show what idiom presents
more cloned code. Indeed, it was apparent that Edicts presented more cloned code than

the other idioms.

4.2.7 Discussion

In this section, we discuss the idioms qualitatively. The Edicts idioms may cause modular-
ity problems in the most of the cases. It clones feature code because it duplicates pieces
of advice among the subaspects of its structure. Further, it scatters and tangles driver
code throughout these pieces of advice. In addition, its implementation size tends to be
larger, since it clones part of the feature code. These problems are harmful to software
maintenance. For instance, if we forget to introduce the driver mechanism into a piece of
advice, we could have a run-time exception in case the feature is deactivated. Besides,
maintaining the feature code may be time consuming and error prone due to the code
cloning and scattering. For example, we have to fix the same problem twice for both
concrete subaspects.

In contrast, Pointcut Redefinition does not clone feature code because it is modularized
in the abstract aspect, therefore, it is not duplicated among the subaspects. However, it
scatters driver code throughout the pointcuts redefined in the concrete subaspect. This
could be harmful when adding, updating or removing the driver mechanism. If the feature
implementation presents many pointcuts, we would have to change driver code in several
pointcuts. In addition, Pointcut Redefinition does not tangle feature and driver code
because the concrete subaspect that implements the driver mechanism does not contain
feature code.

Moreover, Layered Aspects does not clone feature code too. Unlikely Pointcut
Redefinition, this idiom only scatters driver code when around advice are present.
This way, we mitigate the problem of changing the driver mechanism aforementioned.
However, Layered Aspects does not solve it completely for such case because it still has
to scatter driver code throughout the redefined pointcuts. In addition, this idiom does not
tangle feature and driver code because neither of the concrete subaspects contain feature
code. The feature code is implemented only in the abstract aspect, which does not contain
driver code.

To sum up, Flexible Deployment does not clone, scatter or tangle feature and driver
code. Nevertheless, Caesar] does not support some Aspect] constructors we use to
implement features. For example, we face problems to implement two features from

Tetris because a class that is inherited from another may vary between desktop and

47

4.2. RESULTS

mobile platforms. Since Caesar] does not modularize inheritance of classes, we could
not implement these features without introducing a bias in the evaluation due to the
several changes that we would have to do in Tetris. In addition, CaesarJ does not support
privileged access for non-public members. Thus, we have to change the visibility of some
methods in order to access them from within the Caesar] virtual classes.

The implementations of flexible binding time using the four idioms were made by
the same person to avoid introducing a bias. This way, the code of the features were
modularized in the same way, and each idiom was applied following its design for the 18
features of the four applications.

Nevertheless, our idioms may present some deficiencies. For example, the (de)activation
of one feature may need the (de)activation of other features. In the dynamic binding
time context, if we do not validate feature composition when applying changes, it may
lead to run-time errors and possibly compromise the program execution. In this work,
we do not validate the composition of features dynamically. Thereby, our idioms may
present deficiencies when (de)activating features at run-time. This could happen in the
BerkeleyDB case study. For example, the activation of the Truncate feature implies
the activation of the Delete feature. Hence, if we use one of our idioms to dynamically
deactivate Delete, then the Truncate feature will not work properly. We plan to circumvent
this issue in future work.

In addition, previous works documented a more efficient execution of systems for
static binding rather than dynamic binding [RSSAO0S8, GS10]. Our work does not include
an evaluation regarding performance and memory consumption. Thus, we do not know
whether our idioms improve or deteriorate the feature code execution. Nevertheless, we
do not use techniques or constructs that might harm performance or memory consump-
tion [CREO8]. We do not notice significant differences when using the applications.

Besides that, we only use aspect-oriented based idioms to implement flexible binding
time for features in applications written in Java. This way, some disadvantages of our
idioms may appear due to these technologies. For example, in Section 3.2.2, we explain
that AspectJ does not provide access to the proceed join point of the advice. This is a
disadvantage since we have to deactivate the pieces of advice one by one instead of all of
them once.

Finally, the implementations of Edicts, Layered Aspects, and Pointcut Redefinition
do not present behavioral changes according to SafeRefactor. We aim to avoid changing
the behavior of the applications so that the only modification is the implementation of

flexible binding time. Unfortunately, SafeRefactor does not support CaesarJ, then we

48

4.2. RESULTS

could not run it for the Flexible Deployment idiom. However, we run the applications to

verify changes in their behavior and we do not find any.

49

Conclusion

In this work, we discuss the implementation of flexible binding time for features. With
this purpose, we introduce three idioms to address the shortcomings presented by an
idiom called Edicts. Our idioms mitigate some issues, such as code cloning, scattering,
and tangling.

In this context, the Pointcut Redefinition idiom uses inheritance of Aspect] aspects
and redefinition of pointcuts to implement flexible binding time. We modularize feature
code in an abstract aspect and implement the static and dynamic binding time in different
concrete subaspects. The subaspect that implements static binding is empty and inherits
the abstract aspect to allow its instantiation. The subaspect that implements dynamic
binding redefines the pointcuts defined in the abstract aspect and associate them to the
driver mechanism. This idiom mitigates the code cloning and tangling presented by
Edicts. However, it does not reduce driver code scattering significantly because we have
to redefine the pointcuts one by one and associate them with the driver mechanism.

The second idiom, Layered Aspects, is based on Aspect]. We modularize feature code
in an abstract aspect and implement static binding in the same way we do for Pointcut
Redefinition. To implement dynamic binding time, we define a concrete subaspect that
uses the Aspect] adviceexecution in association with redefinition of pointcuts.
Layered Aspects reduce code cloning, scattering, tangling, and size comparing to Edicts.

The third idiom, Flexible Deployment, uses the dynamic deployment mechanism
provided by CaesarJ to implement binding time flexibility. We modularize feature code
in a CaesarJ class and implement the static and dynamic binding time in different CaesarJ
classes. To implement static binding, we define an empty CaesarJ subclass to allow the
instantiation of the class that contains feature code. To implement dynamic binding, we
define a CaesarJ class that contains one pointcut and one advice, they implement the

dynamic deployment mechanism. Despite of we could not apply Flexible Deployment to

50

5.1. RELATED WORK

four of our 18 features, this idiom presents good results regarding the metrics. It reduces
code cloning, scattering, and tangling comparing to Edicts.

Additionally, this work evaluates these idioms by means of metrics. To achieve
representative results, we use the four idioms to implement flexible binding time for 18
features of four different case studies. Our evaluation is based on the GQM approach.
Thus, we define goals, questions, and metrics to assess the idioms for each one of the 18
features. Furthermore, we illustrate an example of interaction between features, such as a
group of alternative features and how to apply our idioms for such situations. We also
discuss the idioms qualitatively regarding advantages and disadvantages of each one.

Finally, this work presents some known threats we wish to address as future work
such as safe dynamic composition of features and implementation of idioms with multiple

drivers.

5.1 Related work

Besides Edicts, we point out other work regarding flexible binding times as well as studies
that relate aspects and product line features. Additionally, we discuss how our work differ
from them.

Tailoring Dynamic Software Product Lines. Rosenmuller et al. propose an ap-
proach of statically generating tailor-made dynamic software product lines (DSPL) from
SPL features [RSPA11]. Besides, the authors describe a feature-based approach of
adaptation and self-configuration to ensure composition safety. They statically select
the features required for dynamic binding and generate a set of binding units that are
composed at run-time to yield the program. Additionally, they implement their approach
in one case study and evaluate it with concern to reconfiguration performance at run-time.

In contrast, we believe that our evaluation (Section 4.2) covers more important aspects.
It is relevant to actually evaluate the approaches with respect to modularity, size, and code
cloning. This way, we avoid undesired solutions that are hard to maintain, for example.
We also provide all the source code and metric sheets to permit researchers to replicate
our work.

Code Generation to Support Static and Dynamic Composition of Software Prod-
uct Lines. Rosenmuller et al. present an approach that supports static and dynamic
composition of features from a single code base [RSSA08]. They provide an infras-
tructure for dynamic instantiation and validation of SPLs. Their approach is based on
FOP [Pre97], and it uses an FOP extension called FeatureC++ [ALRSO05] to automate

51

5.1. RELATED WORK

dynamic instantiation of SPLs.

The usage of C++ as a client language introduces some specific problems. Static
constructs when using dynamic composition, virtual classes, semantic differences when
comparing static and dynamic compositions are examples of such problems [RSSA08].
Despite of our work uses only Java as a client language, we did not observe these problems
in our implementations. Furthermore, the authors only evaluate the approach regarding
to performance, applicability and memory consumption. In our work, we have a wider
evaluation as showed in Section 4.2.

A Feature-Oriented Approach to Developing Dynamically Reconfigurable Prod-
ucts in Product Line Engineering. Lee et al. propose a systematic approach to develop
dynamically reconfigurable core assets [LKO06]. Besides, they present strategies to man-
age product configuration at run-time.

This work only consider dynamic binding time whereas we take into account dynamic
and static binding time. Additionally, the authors utilize a home service robot product line
as an example of their dynamically reconfigurable product. Nevertheless, differently of
us, they do not evaluate their approach considering software modularity or code quality.

The Variability of Binding Time of Variation Points. An alternative proposal
considers conditional compilation as a technique to implement features with flexible
binding times [UFDO03]. This work discusses how to apply conditional compilation in real
applications like operating systems. Likewise we describe in our work, developers need
to decide what features should be included to compose the product and their respective
binding times.

However, the work concludes that, in fact, conditional compilation is not a very
elegant solution to flexible the binding time. Hence, for complex variation points, the
situation becomes even worse.

Mapping Feature Models onto Component Models to Build Dynamic Software
Product Lines. Trinidad et al. propose a process to generate a component architecture
that is able to activate or deactivate features dynamically and performs some analysis
operations on feature models to ensure that the feature composition is valid [TCPBO7].
They apply their approach to generate an industrial real-time television SPL.

This work provides only dynamic binding time. It aim at adapting systems to changing
requirements. This way, they do not consider the performance overhead that dynamic
binding should introduce [RSSAO0S8]. Besides, there is no evaluation of the approach.

Aspect Inheritance. Another proposal to implement flexible binding time into

features considers aspect inheritance [RCB709]. It defines an idiom that relies on aspect

52

5.2. FUTURE WORK

inheritance through the abstract pointcut definition. This solution states that we have to
create an abstract aspect with feature code and an abstract pointcut definition, then we
associate this driver with the advice. Furthermore, we create two concrete subaspects
inheriting from the abstract one in order to implement the concrete driver. Differently
from Edicts, Aspect Inheritance avoids feature code duplication. However, this solution
is not suitable, because despite of avoiding feature code cloning, the other results are
similar to Edicts.

Dynamic Software Product Line Approach using Aspect Models at Runtime.
Dinkelaker et al. [DMFM10] propose an approach that uses a dynamic feature model to
describe variability and uses a domain-specific language for declaratively implementing
variations and their constraints. Their approach has mechanisms to detect and resolve
feature interactions dynamically by validating an aspect-oriented model at run-time.

Composing Aspect with Aspects. Marot et al. [MW 10] propose OARTA, which is
a declarative extension to the AspectBench Compiler [ACH05], which allows dynamic
weaving of aspects. OARTA extends the Aspect] language syntax so that a developer can
name a pointcut, which allows referring to it later on. It is possible that aspects weave
on other aspects. Therefore, they exemplify how to dynamically deactivate features in
run-time situations (e.g. features competing for resources, which may be deactivated
to speed up the execution). By using Aspect], we would have to add an if(..) pointcut
predicate to the pointcut of the advice that contains feature code. However, they do not
perform an assessment considering quality of code factors or modularity of their approach.

Moreover, they only consider dynamic binding time of features.

5.2 Future work

As explained in Section 4.2.6, we do not consider dynamic safe composition of features.
Our applications may present some problems we (de)activating some features. For
example, the features NIO and IO from BerkeleyDB are alternatives. Thus, if NIO is
activated and we activate 10, BerkeleyDB will not work correctly because only one of
the features can be activated at a given time. Hence, we intend to support dynamic safe
composition of features. We consider two alternatives for solving this issue. The first
one is trying to integrate the domain-specific language proposed by Dinkelaker et al.
introduced in Section 5.1. The second one is creating a new technique to contemplate our
idioms. We still need to evaluate both alternatives and decide which one is better for our

context.

53

5.2. FUTURE WORK

Another possible future work is to evaluate the performance and memory consumption
comparing static and dynamic binding time, and considering different idioms. To do
this, we may analyze the consumption of working memory by observing the size of
instances of the aspects that implement feature and binding time. Furthermore, we intend
to compare static and dynamic binding time, and the distinct idioms with respect to
performance. The results could lead in new conclusions about what idiom we may adopt.
This way, we would have a more complete evaluation, not only considering code quality,
but also regarding to the code execution.

Besides, we intend to include applications that use multiple driver scenarios. This
would increase the representativeness of our study because it may reveal problems, such
as driver code scattering and tangling. Additionally, we may investigate addition and
removal of drivers. We believe it may lead to complex situations. For example, we apply
the driver mechanism in Edicts by introducing i £ statements in pieces of advice. Thus,
it should be problematic to add new driver conditions because we would increase the
complexity of the expressions evaluated in these i f statements. Furthermore, it turns the
driver code maintenance error-prone and time consuming.

It is also our intent to define an idiom not based on AOP. We could mitigate some
problems related to this paradigm, such as the one presented in Section 3.2.2. Additionally,
our case studies are written in Java, we do not consider other language in this work.
Thereby, we also could implement a new idiom based on feature-oriented programming
and the C++ language, similar to what Rosenmuller et al. do in their work [RSPA11].
Since there is no assessment in related work that evaluates the results regarding to metrics,
we may achieve some interesting results.

Last but not least, we may add other metrics to our metric suite. Chidamber et al.
define the Coupling Between Components [CK94] metric that we could use to count the
number of classes or aspects declaring methods, constructors or fields that are possibly
called or accessed by another aspect or class. This metric could show opportunities to
mitigate the coupling of feature modularization, for example. In addition, we intend
to use the Lack of Cohesion over Operations metric [CT04]. Thus, it could show what
idiom has low code cohesion and consequently identify difficult reuse, maintenance, and

understanding of code.

54

[ACHT05]

[AEKHGO5]

[AGY6]

[AGMOO06]

[ALRSO5]

[Ape07]

[Arg09]

[ARG'11]

Bibliography

Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Jennifer Lhotdk, Ondfej Lhotdk, Oege de Moor, Damien Sereni,
Ganesh Sittampalam, and Julian Tibble. abc: an extensible aspectj compiler.
In Proceedings of the 4th international conference on Aspect-oriented soft-
ware development, AOSD ’05, pages 87-98, New York, NY, USA, 2005.
ACM.

Raihan Al-Ekram, Cory Kapser, Richard Holt, and Michael Godfrey.
Cloning by accident: An empirical study of source code cloning across
software systems. In Across Software Systems.International Symposium
on Empirical Software Engineering (ISESEO05, pages 376-385, 2005.

Ken Arnold and James Gosling. The Java Programming Language.
Addison-Wesley, 1996.

Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An
overview of caesarj. Lecture Notes in Computer Science : Transactions on
Aspect-Oriented Software Development I, pages 135-173, 2006.

Sven Apel, Thomas Leich, Marko Rosenmuller, and Gunter Saake. Fea-
turec++: On the symbiosis of feature-oriented and aspect-oriented pro-
gramming. In In Proceedings of the International Conference on Genera-
tive Programming and Component Engineering, pages 125-140. Springer,
2005.

S. Apel. The Role of Features and Aspects in Software Development. PhD

thesis, School of Computer Science, University of Magdeburg, March
2007.

ArgoUML. Argouml, October 2009. http://argouml.tigris.org/.

Rodrigo Andrade, Marcio Ribeiro, Vaidas Gasiunas, Lucas Satabin, Hen-
rique Rebelo, and Paulo Borba. Assessing idioms for implementing fea-
tures with flexible binding times. In Proceedings of the 15th European
Conference on Software Maintenance and Reengineering, pages 231-240,
Oldenburg, DE, 2011. IEEE Computer Society.

55

BIBLIOGRAPHY

[BB09]

[BBM96]

[BCRY94]

[Ber10]

[BVDVETOS]

[BYM™'98]

[ccfO7]

[CHOT99]

[CK9%4]

[CREO8]

Rodrigo Bonifacio and Paulo Borba. Modeling scenario variability as
crosscutting mechanisms. In Proceedings of the 8th ACM international
conference on Aspect-oriented software development (AOSD’09), pages
125-136. ACM, 2009.

V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented
design metrics as quality indicators. [EEE Transactions on Software
Engineering, 22(10):751-761, October 1996.

Victor Basili, Gianluigi Caldiera, and Dieter H. Rombach. The goal
question metric approach. InJ. Marciniak, editor, Encyclopedia of Software
Engineering, pages 528-532. Wiley, 1994.

Berkeley. Oracle berkeley db, April 2010.
http://www.oracle.com/technology/products/berkeley-db/index.html.

Magiel Bruntink, Arie van Deursen, Remco van Engelen, and Tom Tourwe.
On the use of clone detection for identifying crosscutting concern code.
IEEE Trans. Softw. Eng., 31:804-818, October 2005.

1.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone
detection using abstract syntax trees. In Proceedings of the International
Conference on Software Maintenance (ICSM’98), pages 368-377, 1998.

CCfinder Official Site, May 2007. http://www.ccfinder.net/.

Siobhan Clarke, William H. Harrison, Harold Ossher, and Peri L. Tarr.
Separating concerns throughout the development lifecycle. In Proceedings
of the Workshop on Object-Oriented Technology, pages 299—, London, UK,
1999. Springer-Verlag.

S.R. Chidamber and C.F. Kemerer. A Metrics Suite for Object Oriented
Design. IEEE Transactions on Software Engineering, 20(6):476-493, June
1994.

Venkat Chakravarthy, John Regehr, and Eric Eide. Edicts: Implementing
Features with Flexible Binding Times. In Proceedings of the 7th Interna-
tional Conference on Aspect-Oriented Software Development (AOSD’08),
pages 108—119, New York, NY, USA, 2008. ACM.

56

BIBLIOGRAPHY

[CTO04]

[DHJ08]

[DMFM10]

[EadO8]

[EAMO7]

[EZST08]

[FGST05]

[Fre09]

[GHIV95]

M. Ceccato and P. Tonella. Measuring the effects of software aspectization.

In 15t Workshop on Aspect Reverse Engineering, 2004.

Florian Deissenboeck, Benjamin Hummel, Elmar Jiirgens, Bernhard
Schitz, Stefan Wagner, Jean-Francois Girard, and Stefan Teuchert. Clone
detection in automotive model-based development. In Proceedings of the
30th international conference on Software engineering, ICSE 08, pages
603-612, New York, NY, USA, 2008. ACM.

Tom Dinkelaker, Ralf Mitschke, Karin Fetzer, and Mira Mezini. A dy-
namic software product line approach using aspect models at runtime. In

Proceedings of the 1st Workshop on Composition and Variability, March
2010.

Marc Eaddy. An Empirical Assessment of the Crosscutting Concern Prob-
lem. PhD thesis, Graduate School of Arts and Sciences, Columbia, USA,
2008.

Marc Eaddy, Alfred Aho, and Gail C. Murphy. Identifying, assigning, and
quantifying crosscutting concerns. In Proceedings of the First International
Workshop on Assessment of Contemporary Modularization Techniques,
ACoM ’07, pages 2—, Washington, DC, USA, 2007. IEEE Computer
Society.

Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav Garg,
Gail C. Murphy, Nachiappan Nagappan, and Alfred V. Aho. Do crosscut-
ting concerns cause defects? IEEE Transactions on Software Engineering,
34(4):497-515, 2008.

E. Figueiredo, A. Garcia, C. Sant’anna, U. Kulesza, and C. Lucena. As-
sessing Aspect-Oriented Artifacts: Towards a Tool-Supported Quantitative
Method. In Proc. of the 9th ECOOP Workshop on Quantitative Approaches
in OO0 Soft. Engineering (QAOOSE. 05), Glasgow, July 2005.

Freemind. Free mind mapping software, July 2009.

http://freemind.sourceforge.net/.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, January 1995.

57

BIBLIOGRAPHY

[GS10]

[GSFT05]

[GSFT06]

[JGJ97]

[KABO7]

[KCH"90]

[KGO6]

[KHH*'01a]

Sebastian Giinther and Sagar Sunkle. Dynamically adaptable software
product lines using ruby metaprogramming. In Proceedings of the 2nd In-
ternational Workshop on Feature-Oriented Software Development, FOSD
’10, pages 80-87, New York, NY, USA, 2010. ACM.

Alessandro Garcia, Cldudio Sant’ Anna, Eduardo Figueiredo, Uird Kulesza,
Carlos Lucena, and Arndt von Staa. Modularizing Design Patterns with
Aspects: A Quantitative Study. In Proceedings of the 4th International
Conference on Aspect-Oriented Software Development (AOSD’05), New
York, NY, USA, March 2005. ACM Press.

Alessandro Garcia, Cldudio Sant’ Anna, Eduardo Figueiredo, Uird Kulesza,
Carlos Lucena, and Arndt von Staa. Modularizing Design Patterns with
Aspects: A Quantitative Study. In LNCS Transactions on Aspect-Oriented
Software Development I, pages 36—74. Springer, 2006.

Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software reuse: architec-
ture, process and organization for business success. ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 1997.

Christian Kastner, Sven Apel, and Don Batory. A case study implementing
features using aspectj. In Proceedings of the 11th International Software
Product Line Conference (SPLC’07), pages 223-232, Washington, DC,
USA, 2007. IEEE Computer Society.

Kyo-Chul Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and
A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA). Feasi-
bility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, November 1990.

Cory J. Kapser and Michael W. Godfrey. Supporting the analysis of clones
in software systems: A case study. JOURNAL OF SOFTWARE MAIN-
TENANCE AND EVOLUTION: RESEARCH AND PRACTICE, 18:2006,
2006.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. Getting Started with Aspect]. Communications
of the ACM, 44(10):59-65, October 2001.

58

BIBLIOGRAPHY

[KHH'01b]

[KKIO2]

[KLM197]

[Kru92]

[KSG106]

[LBOS]

[LKO6]

[LLOO3]

[MLWROI1]

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of aspectj. In Proceedings of the
15th European Conference on Object-Oriented Programming, ECOOP 01,
pages 327-353, London, UK, UK, 2001. Springer-Verlag.

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: A
Multi-Linguistic Token-based Code Clone Detection System for Large
Scale Source Code. IEEE Trans. Software Engineering, 28(7):654—670,
2002.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect—Oriented Pro-
gramming. In Proceedings of European Conference on Object—Oriented
Programming (ECOOP’97), LNCS 1241, pages 220-242, 1997.

Charles W. Krueger. Software reuse. ACM Comput. Surv., 24:131-183,
June 1992.

Uira Kulesza, Claudio Sant’ Anna, Alessandro Garcia, Roberta Coelho,
Arndt von Staa, and Carlos Lucena. Quantifying the Effects of Aspect-
Oriented Programming: A Maintenance Study. In Proceedings of the
22th IEEE International Conference on Software Maintenance (ICSM’06),
pages 223-233, Washington, DC, USA, 2006. IEEE Computer Society.

Cristina Videira Lopes and Sushil Krishna Bajracharya. An Analysis of
Modularity in Aspect-Oriented Design. In Proceedings of the 4th Interna-
tional Conference on Aspect-Oriented Software Development (AOSD’05),
pages 15-26, New York, NY, USA, March 2005. ACM Press.

Jaejoon Lee and Kyo C. Kang. A feature-oriented approach to developing
dynamically reconfigurable products in product line engineering. In Pro-
ceedings of the 10th International on Software Product Line Conference,
pages 131-140, Washington, DC, USA, 2006. IEEE Computer Society.

Karl Lieberherr, David H. Lorenz, and Johan Ovlinger. Aspectual collabo-
rations: Combining modules and aspects. The Computer Journal, 46:2003,
2003.

Gail C. Murphy, Albert Lai, Robert J. Walker, and Martin P. Robillard.

Separating features in source code: an exploratory study. In Proceedings

59

BIBLIOGRAPHY

[MW10]

[Par72]

[PBvdLO5]

[Pre97]

[RCBT09]

[RSPA11]

[RSSAO08]

[SGSMI10]

[SLBO2]

of the 23rd International Conference on Software Engineering, ICSE 01,
pages 275-284, Washington, DC, USA, 2001. IEEE Computer Society.

Antoine Marot and Roel Wuyts. Composing aspects with aspects. In Pro-
ceedings of the 9th International Conference on Aspect-Oriented Software
Development, AOSD 10, pages 157-168, New York, NY, USA, 2010.
ACM.

D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15:1053-1058, December 1972.

Klaus Pohl, Gunter Bockle, and Frank J. van der Linden. Software Product
Line Engineering. Springer, 2005.

Christian Prehofer. Feature-oriented programming: A fresh look at objects.
In ECOOP, pages 419-443, 1997.

Mircio Ribeiro, Rodrigo Cardoso, Paulo Borba, Rodrigo Bonifacio, and
Henrique Rebélo. Does aspectj provide modularity when implementing
features with flexible binding times? In Third Latin American Workshop
on Aspect-Oriented Software Development (LA-WASP 2009), pages 1-6,
Fortaleza, Cear’a, Brazil, 2009.

Marko Rosenmiiller, Norbert Siegmund, Mario Pukall, and Sven Apel.
Tailoring dynamic software product lines. In Proceedings of the 10th

ACM international conference on Generative programming and component
engineering, GPCE ’11, pages 3—12, New York, NY, USA, 2011. ACM.

Marko Rosenmiiller, Norbert Siegmund, Gunter Saake, and Sven Apel.
Code generation to support static and dynamic composition of software
product lines. In Proceedings of the 7th International Conference on
Generative Programming and Component Engineering (GPCE’08), pages
3-12, New York, NY, USA, 2008. ACM.

G. Soares, R. Gheyi, D. Serey, and T. Massoni. Making program refactoring
safer. Software, IEEE, 27(4):52 —57, july-aug. 2010.

Sérgio Soares, Eduardo Laureano, and Paulo Borba. Implementing distribu-

tion and persistence aspects with Aspect]. In Proceedings of the 17th ACM

60

BIBLIOGRAPHY

[SRO5]

[TBDO6]

[TCPBO7]

[Tet09]

[UFDO3]

SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications, OOPSLA’2002, pages 174—190, Seattle, USA,
4th—8th November 2002.

Damith Rajapakse School and Damith C. Rajapakse. An investigation
of cloning in web applications. In In Proceedings of the Special Interest
Tracks and Posters of the 14th International Conference on World Wide
Web (WWWOOS5, pages 924-925. Springer, 2005.

Salvador Trujillo, Don Batory, and Oscar Diaz. Feature refactoring a
multi-representation program into a product line. In Proceedings of the
Sth International Conference on Generative Programming and Component
Engineering (GPCE’06), pages 191-200, New York, NY, USA, 2006.
ACM.

Pablo Trinidad, Antonio Ruiz Cortés, Joaquin Pefia, and David Benavides.
Mapping feature models onto component models to build dynamic software
product lines. In SPLC (2), pages 51-56, 2007.

Tetris. Tetris, July 2009. http://kiang.org/jordan/software/tetrismidlet/.

Eelco Utrecht, Gert Florijn, and Eelco Dolstra. Timeline variability: The
variability of binding time of variation points. In Proceedings of the
Workshop on Software Variability Management (SVM’03), pages 119-122,
2003.

[vO02] R. van Ommering. Building product populations with software compo-

nents. Software Engineering, 2002. ICSE 2002. Proceedings of the 24rd
International Conference on, pages 255 — 265, 2002.

61

O 00 N O W kAW N =

N —m —m m = — s s
S O X 3 N R W N = O

21

Appendix A - Implementation of idioms

In this appendix, we present the implementation of flexible binding time for the Berke-
leyDB feature Checksum. This feature implementation detects corruptions when writing
or reading a database page. Each one of the following sections, correspond to a different

idiom.
A.1 Edicts

Listing A.1 ChecksumDynamic.

package com.checksum;

import java.io.RandomAccessFile;

import java.nio.ByteBuffer;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.cleaner. FileProcessor;
import com.sleepycat.je.dbi.EnvironmentIlmpl;
import com.sleepycat.je.log.EntryHeader;
import com.sleepycat.je.log.FileManager;
import com.sleepycat.je.log.FileReader;

import com.sleepycat.je.log.LogManager;

import com.sleepycat.je.log.PrintFileReader;
import com.sleepycat.je.log.entry.LogEntry;
import com.sleepycat.je.recovery.RecoveryManager;
import com.sleepycat.je.log.x;

import com.sleepycat.je.log.LogSource;

public privileged abstract aspect ChecksumAbstract {

pointcut fileReaderConstructor (FileReader fileReader, EnvironmentImpl env) : execution
(FileReader .new(EnvironmentImpl, int, boolean, long, Long, long, long)) && args(
env,int, boolean, long, Long, long,long) && this(fileReader) && within(FileReader)

B

62

22

23

24

25

26

27

28

29

30

31
32

34

35
36

37
38

39
40

41
42
43
44

45
46

47
48

49
50

51

A.1. EDICTS

pointcut hook_checksumValidation(FileReader fileReader, ByteBuffer dataBuffer) : call(
void FileReader.hook_checksumValidation(ByteBuffer)) && target(fileReader) && args
(dataBuffer);

pointcut hook_checkType (FileReader fr, byte currentEntryTypeNum) : execution(void
FileReader.hook_checkType(byte)) && args(currentEntryTypeNum) && this (fr);

pointcut logManagerConstructor (LogManager logManager, EnvironmentImpl env) : execution
(LogManager.new(EnvironmentImpl , boolean)) && this (logManager) && args(env, boolean
)3

pointcut addPrevOffset(int entrySize) : execution(ByteBuffer LogManager.addPrevOffset(
ByteBuffer ,long,int)) && args(ByteBuffer ,long,entrySize) && within(LogManager);

pointcut readHeader (LogManager Im, ByteBuffer entryBuffer, EntryHeader entryHeader)
call (void EntryHeader.readHeader (ByteBuffer, boolean)) && this (Im) && args(
entryBuffer ,boolean) && target(entryHeader);

pointcut getRemainingBuffer (LogManager Im, ByteBuffer entryBuffer, EntryHeader
entryHeader , long lsn) : call(ByteBuffer LogManager.getRemainingBuffer(ByteBuffer,
LogSource, long, EntryHeader)) && target(lm) && args(entryBuffer, LogSource, long
, entryHeader) && cflow (getLogEntryFromLogSource(lsn));

pointcut readHeader2 (EntryHeader eh, ByteBuffer dataBuffer) : execution(void
EntryHeader.readHeader (ByteBuffer ,boolean)) && target(eh) && args(dataBuffer ,
boolean) ;

pointcut lasFileReaderConstructor(FileReader fr) : execution(LastFileReader.new(..))
&& this (fr);

pointcut iNFileReaderConstructor() : (call(INFileReader.new(..)) && withincode (void
RecoveryManager.readINsAndTracklds(long))) Il (call(CleanerFileReader .new(..)) &&
within (FileProcessor));

pointcut hook_recomputeChecksum (ByteBuffer data, int recStartPos, int itemSize) : call
(void FileManager.hook_recomputeChecksum (ByteBuffer, int, int)) && args(data,

recStartPos ,itemSize);

pointcut readNextEntry () : execution(boolean LastFileReader.readNextEntry ());

pointcut readAndValidateFileHeader (RandomAccessFile newFile, String fileName,
FileManager fm) : execution(boolean FileManager.readAndValidateFileHeader (
RandomAccessFile, String, long)) && args(newFile,fileName ,long) && target(fm) &&
within (FileManager) ;

pointcut readHeader3 (ByteBuffer dataBuffer, FileReader fileReader) : execution(void
FileReader.readHeader (ByteBuffer)) && args(dataBuffer) && target(fileReader);

pointcut allocate () : call(ByteBuffer ByteBuffer.allocate (int)) && withincode (
ByteBuffer LogManager. marshalllntoBuffer(LoggableObject, int, boolean, int));

pointcut hook_printChecksum (StringBuffer sb, PrintFileReader pfr) : call(void
PrintFileReader.hook_printChecksum (StringBuffer)) && args(sb) && this (pfr);

63

52

53
54
55
56
57
58
59
60
61
62

63
64
65
66

67
68
69
70
71
72

73
74
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

A.1. EDICTS

private pointcut getLogEntryFromLogSource(long lsn) : execution(LogEntry LogManager.
getLogEntryFromLogSource (long ,LogSource)) && args(lsn, LogSource);

public ChecksumValidator FileReader.cksumValidator;

private boolean FileReader.doValidateChecksum;

private boolean FileReader.alwaysValidateChecksum ;

public boolean FileReader.anticipateChecksumErrors;

private void FileReader.startChecksum (ByteBuffer dataBuffer) throws DatabaseException
{

cksumValidator.reset () ;

int entryStart = threadSafeBufferPosition(dataBuffer);

dataBuffer.reset();

cksumValidator.update (env, dataBuffer, LogManager. HEADER_CONTENT BYTES,
anticipateChecksumErrors) ;

threadSafeBufferPosition (dataBuffer, entryStart);
}

public long FileReader.currentEntryChecksum;

private void FileReader.validateChecksum (ByteBuffer entryBuffer) throws
DatabaseException {

cksumValidator.update (env, entryBuffer, currentEntrySize , anticipateChecksumErrors);

cksumValidator. validate (env, currentEntryChecksum , readBufferFileNum ,
currentEntryOffset , anticipateChecksumErrors);

public void FileReader.setAlwaysValidateChecksum (boolean validate) {
alwaysValidateChecksum = validate;

}
private boolean LogManager.doChecksumOnRead;

public boolean LogManager.getChecksumOnRead () {
return doChecksumOnRead;

}

private ChecksumValidator validator = null;
private long EntryHeader.checksum;

public long EntryHeader.getChecksum () {

return checksum;

}
static final int LogManager.CHECKSUM BYTES = 4;

static final int LogManager . HEADER CHECKSUM OFFSET = O0;
}

64

A.1. EDICTS

Listing A.2 ChecksumStatic.

package com.checksum;

import java.io.RandomAccessFile;
import java.nio.ByteBuffer;
import java.util.zip.Checksum;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.config.EnvironmentParams;

O 00 N O W kAW N =

import com.sleepycat.je.dbi.DbConfigManager;

—_
(=]

import com.sleepycat.je.dbi.EnvironmentIlmpl;

—_
—_

import com.sleepycat.je.log.EntryHeader;

58]

import com.sleepycat.je.log.FileManager;

—
(98]

import com.sleepycat.je.log.FileReader;

—_
»~

import com.sleepycat.je.log.LogEntryType;

—
W

import com.sleepycat.je.log.LogManager;

—
[=))

import com.sleepycat.je.log.LogUtils;

—_
e

import com.sleepycat.je.log.PrintFileReader;

—_ =
O o

public privileged aspect ChecksumValidatorAspectStatic extends ChecksumAbstract {

NN
—_ O

Object around(FileReader fileReader, EnvironmentImpl env) throws DatabaseException
fileReaderConstructor (fileReader , env) {

22 fileReader.doValidateChecksum = env.getLogManager () .getChecksumOnRead () ;

23 Object r = proceed(fileReader, env);

24 if (fileReader.doValidateChecksum) {

25 fileReader.cksumValidator = new ChecksumValidator () ;
26 }

27 fileReader . anticipateChecksumErrors = false;

28 return r;

29| '}

30

31| after (FileReader fileReader, ByteBuffer dataBuffer) throws DatabaseException
hook_checksumValidation (fileReader , dataBuffer) {

32 boolean doValidate = fileReader.doValidateChecksum && (fileReader.
alwaysValidateChecksum || fileReader .isTargetEntry(fileReader.
currentEntryTypeNum , fileReader.currentEntryTypeVersion));

33 if (doValidate) {

34 fileReader .startChecksum (dataBuffer);

35 }

36 if (doValidate)

37 fileReader.currentEntryCollectData = true;
38| }

39

40| before(FileReader fr, byte currentEntryTypeNum) throws DatabaseException
hook_checkType (fr, currentEntryTypeNum) {
41 if (!LogEntryType.isValidType (currentEntryTypeNum))

n

42 throw new DbChecksumException ((fr.anticipateChecksumErrors ? null : fr.env),

FileReader_read_invalid_log_entry_type:_" + currentEntryTypeNum);
43| }
44

45| after (LogManager logManager, EnvironmentImpl env) throws DatabaseException

logManagerConstructor (logManager , env) {

65

46
47

48
49
50
51
52
53

54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
71
78
79
80
81
82
83
84
85
86
87
88

89
90
91

92

A.1. EDICTS

DbConfigManager configManager = env.getConfigManager () ;
logManager .doChecksumOnRead = configManager. getBoolean(EnvironmentParams .
LOG_CHECKSUM _READ) ;

ByteBuffer around(int entrySize) : addPrevOffset(entrySize) ({

ByteBuffer destBuffer = proceed(entrySize);

Checksum checksum = Adler32.makeChecksum () ;

checksum.update (destBuffer.array (), LogManager.CHECKSUM_BYTES, (entrySize —
LogManager .CHECKSUM_BYTES)) ;

LogUtils . writeUnsignedInt (destBuffer , checksum.getValue());

destBuffer.position (0);

return destBuffer;

after (LogManager Im, ByteBuffer entryBuffer, EntryHeader entryHeader) throws

DatabaseException : readHeader(lm, entryBuffer, entryHeader) {
if (lm.doChecksumOnRead) {
validator = new ChecksumValidator () ;
int oldpos = entryBuffer.position();
entryBuffer. position (oldpos — LogManager . HEADER_CONTENT BYTES) ;

validator .update (Im.envIimpl, entryBuffer , LogManager. HEADER_CONTENT BYTES, false);

entryBuffer. position (oldpos);
}
}

after (LogManager Im, ByteBuffer entryBuffer, EntryHeader entryHeader, long Isn) throws

DatabaseException : getRemainingBuffer(lm, entryBuffer, entryHeader, lsn) {

if (Im.doChecksumOnRead) {
validator.update (Im.envIimpl, entryBuffer, entryHeader.getEntrySize (), false);
validator.validate (Im.envimpl, entryHeader.getChecksum(), lsn);
}
}

before (EntryHeader eh, ByteBuffer dataBuffer): readHeader2(eh, dataBuffer) {

}

eh.checksum = LogUtils. getUnsignedInt(dataBuffer);

after (FileReader fr) : lasFileReaderConstructor(fr) {

}

fr.anticipateChecksumErrors = true;

after () returning (FileReader fr) : iNFileReaderConstructor () {

}

fr.setAlwaysValidateChecksum (true);

after (ByteBuffer data, int recStartPos, int itemSize) : hook_recomputeChecksum(data,

recStartPos ,itemSize) {
Checksum checksum = Adler32.makeChecksum() ;
data.position(recStartPos);

int nChecksumBytes = itemSize + (LogManager . HEADER BYTES — LogManager .CHECKSUM_BYTES)

B

byte[] checksumBytes = new byte[nChecksumBytes];

66

A.1. EDICTS

93 System . arraycopy (data.array (), recStartPos + LogManager . CHECKSUM_BYTES, checksumBytes
, 0, nChecksumBytes);

94 checksum . update (checksumBytes, 0, nChecksumBytes) ;

95 LogUtils . writeUnsignedInt(data, checksum.getValue());

9%| }

97

98| boolean around() : readNextEntry () {
99 boolean r = false;

100 try {

101 r = proceed();
102 } catch (DbChecksumException e) {

103 }

104 return r;
105 }

106

107| boolean around(RandomAccessFile newFile, String fileName, FileManager fm) throws
DatabaseException: readAndValidateFileHeader (newFile, fileName, fm) {

108 try {

109 return proceed(newFile, fileName, fm);

110 } catch (DbChecksumException e) {

111 fm. closeFileInErrorCase (newFile) ;

112 throw new DbChecksumException(fm.envIimpl, "Couldn’t_open_file " + fileName, e);
113 }

114] }

115

116| before(ByteBuffer dataBuffer, FileReader fileReader) : readHeader3(dataBuffer,
fileReader) {

117 fileReader.currentEntryChecksum = LogUtils.getUnsignedInt(dataBuffer);

118 }

119
120| after (): staticinitialization (LogManager) ({

121 LogManager .HEADER_BYTES += LogManager .CHECKSUM_BYTES;

122 LogManager .PREV_BYTES = 4;

123 LogManager . HEADER_CONTENT_BYTES = LogManager . HEADER BYTES — LogManager . CHECKSUM_BYTES
124 LogManager . HEADER_ENTRY_TYPE_OFFSET += 4;

125 LogManager . HEADER_VERSION_OFFSET += 4;

126 LogManager . HEADER_PREV_OFFSET += 4;

127 LogManager . HEADER_SIZE_OFFSET += 4;

128 }

129
130| after () returning (ByteBuffer buffer) : allocate () {
131 buffer.position (LogManager .CHECKSUM_BYTES) ;

132 }

133
134| after (StringBuffer sb, PrintFileReader pfr) : hook_printChecksum(sb, pfr){
135 sb.append ("\" _cksum=\"").append(pfr.currentEntryChecksum);

136] }

137| }

Listing A.3 ChecksumDynamic.

1| package com.checksum;
2

67

O 00 N N W kW

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38

39
40

41
4
43
44
45
46
47
48
49

50
51

A.1. EDICTS

import java.io.RandomAccessFile;
import java.nio.ByteBuffer;
import java.util.zip.Checksum;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.config.EnvironmentParams;
import com.sleepycat.je.dbi.DbConfigManager;
import com.sleepycat.je.dbi.EnvironmentIlmpl;
import com.sleepycat.je.log.EntryHeader;
import com.sleepycat.je.log.FileManager;
import com.sleepycat.je.log.FileReader;
import com.sleepycat.je.log.LogEntryType;
import com.sleepycat.je.log.LogManager;
import com.sleepycat.je.log.LogUtils;

import com.sleepycat.je.log.PrintFileReader;

import driver.Driver;

public privileged aspect ChecksumValidatorAspectStatic extends ChecksumAbstract {

Driver driver = new Driver();

Object around(FileReader fileReader, EnvironmentImpl env) throws DatabaseException
fileReaderConstructor (fileReader , env) {
if (driver.isActivated ("checksum")) {
fileReader.doValidateChecksum = env.getLogManager () .getChecksumOnRead () ;
Object r = proceed(fileReader, env);
if (fileReader.doValidateChecksum) {
fileReader.cksumValidator = new ChecksumValidator () ;

}

fileReader. anticipateChecksumErrors = false;
return r;

}

return proceed(fileReader, env);

}

after (FileReader fileReader, ByteBuffer dataBuffer) throws DatabaseException
hook_checksumValidation(fileReader , dataBuffer) {
if (driver.isActivated ("checksum")) {
boolean doValidate = fileReader.doValidateChecksum && (fileReader.
alwaysValidateChecksum |l fileReader .isTargetEntry(fileReader.
currentEntryTypeNum , fileReader.currentEntryTypeVersion));
if (doValidate) {
fileReader.startChecksum (dataBuffer);
}
if (doValidate)
fileReader.currentEntryCollectData = true;

}

before (FileReader fr, byte currentEntryTypeNum) throws DatabaseException
hook_checkType (fr, currentEntryTypeNum) {
if (driver.isActivated ("checksum")) {

if (!LogEntryType.isValidType (currentEntryTypeNum))

68

52

53
54
55
56

57
58
59

60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95
96
97
98
99

A.1. EDICTS

throw new DbChecksumException ((fr.anticipateChecksumErrors ? null : fr.env),

FileReader_read_invalid_log_entry_type:_" + currentEntryTypeNum);

after (LogManager logManager, EnvironmentImpl env) throws DatabaseException
logManagerConstructor (logManager, env) {
if (driver.isActivated ("checksum")) {
DbConfigManager configManager = env.getConfigManager () ;
logManager .doChecksumOnRead = configManager. getBoolean (EnvironmentParams .
LOG_CHECKSUM_READ) ;

ByteBuffer around(int entrySize) : addPrevOffset(entrySize) {
ByteBuffer destBuffer = proceed(entrySize);
if (driver.isActivated ("checksum")) {
ByteBuffer destBuffer = proceed(entrySize);
Checksum checksum = Adler32.makeChecksum () ;
checksum.update (destBuffer.array (), LogManager.CHECKSUM_BYTES, (entrySize —
LogManager .CHECKSUM_BYTES)) ;
LogUtils . writeUnsignedInt (destBuffer , checksum. getValue());
destBuffer.position (0);
}
return destBuffer;

}

after (LogManager Im, ByteBuffer entryBuffer, EntryHeader entryHeader) throws
DatabaseException : readHeader(Im, entryBuffer, entryHeader) {
if (driver.isActivated ("checksum")) {
if (Im.doChecksumOnRead) {
validator = new ChecksumValidator () ;
int oldpos = entryBuffer.position();
entryBuffer. position(oldpos — LogManager . HEADER CONTENT BYTES) ;
validator.update (Im.envIimpl, entryBuffer, LogManager . HEADER CONTENT BYTES, false);
entryBuffer. position (oldpos);

after (LogManager Im, ByteBuffer entryBuffer, EntryHeader entryHeader, long Isn) throws
DatabaseException : getRemainingBuffer(lm, entryBuffer, entryHeader, lsn) {
if (driver.isActivated ("checksum")) {
if (Im.doChecksumOnRead) {
validator.update (Im.envimpl, entryBuffer, entryHeader.getEntrySize (), false);
validator.validate (Im.envimpl, entryHeader.getChecksum(), lsn);
}
}
}

before (EntryHeader eh, ByteBuffer dataBuffer): readHeader2(eh, dataBuffer) {
if (driver.isActivated ("checksum")) {

eh.checksum = LogUtils.getUnsignedInt(dataBuffer);

}

69

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

115
116
117
118

119
120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

139
140
141
142
143
144
145
146
147
148
149

A.1. EDICTS

after (FileReader fr) : lasFileReaderConstructor(fr) {
if (driver.isActivated ("checksum")) {
fr.anticipateChecksumErrors = true;

}

}

after () returning (FileReader fr) : iNFileReaderConstructor () {
if (driver.isActivated ("checksum")) {
fr.setAlwaysValidateChecksum (true);

}

}

after (ByteBuffer data, int recStartPos, int itemSize) : hook_recomputeChecksum(data,
recStartPos ,itemSize) {
if (driver.isActivated ("checksum")) {
Checksum checksum = Adler32.makeChecksum () ;
data.position(recStartPos);
int nChecksumBytes = itemSize + (LogManager.HEADER BYTES — LogManager . CHECKSUM_BYTES
)3
byte[] checksumBytes = new byte[nChecksumBytes];
System . arraycopy (data.array (), recStartPos + LogManager.CHECKSUM_BYTES,
checksumBytes, 0, nChecksumBytes) ;
checksum . update (checksumBytes, 0, nChecksumBytes) ;
LogUtils . writeUnsignedInt (data, checksum.getValue());
}
}

boolean around() : readNextEntry () {
if (driver.isActivated ("checksum")) {
boolean r = false;
try {
r = proceed();
} catch (DbChecksumException e) {

}

return r;

}

return proceed();

}

boolean around(RandomAccessFile newFile, String fileName, FileManager fm) throws
DatabaseException: readAndValidateFileHeader (newFile, fileName, fm) {
if (driver.isActivated ("checksum")) {
try {
return proceed (newFile, fileName, fm);
} catch (DbChecksumException e) {
fm.closeFileInErrorCase (newFile);

n

throw new DbChecksumException(fm.envIimpl, "Couldn’t_open_ file " + fileName, e);
}
}

return proceed(newFile, fileName, fm);

}

70

A.2. POINTCUT REDEFINITION

150| before(ByteBuffer dataBuffer, FileReader fileReader) : readHeader3(dataBuffer,
fileReader) {

151 if (driver.isActivated ("checksum")) {

152 fileReader.currentEntryChecksum = LogUtils.getUnsignedInt(dataBuffer);

153 }

154 }

155
156| after (): staticinitialization (LogManager) {

157 if (driver.isActivated ("checksum")) {

158 LogManager . HEADER _BYTES += LogManager .CHECKSUM_BYTES;

159 LogManager .PREV_BYTES = 4;

160 LogManager . HEADER_CONTENT_BYTES = LogManager . HEADER BYTES — LogManager.
CHECKSUM_BYTES;

161 LogManager .HEADER _ENTRY_TYPE_OFFSET += 4;

162 LogManager . HEADER_VERSION_OFFSET += 4;

163 LogManager . HEADER_PREV_OFFSET += 4;

164 LogManager . HEADER_SIZE_OFFSET += 4;

165 }

166| }

167
168| after ()returning (ByteBuffer buffer) : allocate () {
169 if (driver.isActivated ("checksum")) {

170 buffer.position (LogManager .CHECKSUM_BYTES) ;

171 }

172 }

173
174| after (StringBuffer sb, PrintFileReader pfr) : hook_printChecksum(sb, pfr) {
175 if (driver.isActivated ("checksum")) {

176 sb.append ("\" _cksum=\"").append(pfr.currentEntryChecksum);

177 }

178] '}

179| }

A.2 Pointcut Redefinition

Listing A.4 ChecksumDynamic.

package com.checksum;

import java.io.RandomAccessFile;

import java.nio.ByteBuffer;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.cleaner. FileProcessor;
import com.sleepycat.je.dbi.EnvironmentImpl;
import com.sleepycat.je.log.EntryHeader;

O 00 N O W kAW N =

import com.sleepycat.je.log.FileManager;

—_
(=]

import com.sleepycat.je.log.FileReader;

—_
—_

import com.sleepycat.je.log.LogManager;

—_
%)

import com.sleepycat.je.log.PrintFileReader;

(98]

import com.sleepycat.je.log.entry.LogEntry;

—_
»~

import com.sleepycat.je.recovery.RecoveryManager;

71

15
16
17
18
19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42
43
44

A.2. POINTCUT REDEFINITION

import com.sleepycat.je.log.x;

import com.sleepycat.je.log.LogSource;

public privileged abstract aspect ChecksumAbstract {

pointcut fileReaderConstructor (FileReader fileReader, EnvironmentImpl env) : execution
(FileReader .new(EnvironmentImpl , int, boolean, long, Long, long, long)) && args(
env,int, boolean, long, Long, long,long) && this(fileReader) && within(FileReader)

B

pointcut hook_checksumValidation(FileReader fileReader , ByteBuffer dataBuffer) : call(
void FileReader.hook_checksumValidation (ByteBuffer)) && target(fileReader) && args
(dataBuffer);

pointcut hook_checkType(FileReader fr, byte currentEntryTypeNum) : execution(void
FileReader.hook_checkType(byte)) && args(currentEntryTypeNum) && this (fr);

pointcut logManagerConstructor (LogManager logManager, EnvironmentImpl env) : execution
(LogManager.new(EnvironmentImpl , boolean)) && this(logManager) && args(env, boolean
)

pointcut addPrevOffset(int entrySize) : execution(ByteBuffer LogManager.addPrevOffset(
ByteBuffer ,long,int)) && args(ByteBuffer ,long,entrySize) && within(LogManager);

pointcut readHeader (LogManager Im, ByteBuffer entryBuffer, EntryHeader entryHeader)
call (void EntryHeader.readHeader (ByteBuffer, boolean)) && this (Im) && args(
entryBuffer ,boolean) && target(entryHeader);

pointcut getRemainingBuffer (LogManager Im, ByteBuffer entryBuffer, EntryHeader
entryHeader , long lIsn) : call(ByteBuffer LogManager. getRemainingBuffer(ByteBuffer,
LogSource, long, EntryHeader)) &% target(lm) && args(entryBuffer, LogSource, long
, entryHeader) && cflow(getLogEntryFromLogSource(lsn));

pointcut readHeader2 (EntryHeader eh, ByteBuffer dataBuffer) : execution(void
EntryHeader.readHeader (ByteBuffer ,boolean)) && target(eh) && args(dataBuffer ,
boolean) ;

pointcut lasFileReaderConstructor (FileReader fr) : execution(LastFileReader.new(..))
&& this (fr);

pointcut iNFileReaderConstructor () : (call(INFileReader.new(..)) && withincode (void
RecoveryManager.readINsAndTracklds(long))) Il (call(CleanerFileReader .new(..)) &&
within (FileProcessor));

pointcut hook_recomputeChecksum (ByteBuffer data, int recStartPos, int itemSize) : call
(void FileManager.hook_recomputeChecksum (ByteBuffer, int, int)) && args(data,
recStartPos ,itemSize);

pointcut readNextEntry () : execution(boolean LastFileReader.readNextEntry ());

pointcut readAndValidateFileHeader (RandomAccessFile newFile, String fileName,
FileManager fm) : execution(boolean FileManager.readAndValidateFileHeader (
RandomAccessFile, String, long)) && args(newFile,fileName ,long) && target(fm) &&
within (FileManager) ;

72

45
46

47
48

49
50

51
52

53
54

55
56
57
58
59
60
61
62
63
64

65

66
67
68
69
70
71
72
73

74
75

76
77
78

79
80

81
82
83
84
85

A.2. POINTCUT REDEFINITION

pointcut readHeader3 (ByteBuffer dataBuffer, FileReader fileReader) : execution(void
FileReader.readHeader (ByteBuffer)) && args(dataBuffer) && target(fileReader);

pointcut allocate () : call(ByteBuffer ByteBuffer.allocate (int)) && withincode (
ByteBuffer LogManager. marshalllntoBuffer (LoggableObject, int, boolean, int));

pointcut hook_printChecksum (StringBuffer sb, PrintFileReader pfr) : call(void
PrintFileReader.hook_printChecksum (StringBuffer)) && args(sb) && this (pfr);

private pointcut getLogEntryFromLogSource(long Isn) : execution(LogEntry LogManager.
getLogEntryFromLogSource (long ,LogSource)) && args(lsn, LogSource);

Object around(FileReader fileReader, EnvironmentImpl env) throws DatabaseException
fileReaderConstructor (fileReader , env) {

fileReader.doValidateChecksum = env.getLogManager () .getChecksumOnRead () ;

Object r = proceed(fileReader, env);

if (fileReader.doValidateChecksum) {

fileReader.cksumValidator = new ChecksumValidator () ;
}
fileReader . anticipateChecksumErrors = false;

return r;

after (FileReader fileReader, ByteBuffer dataBuffer) throws DatabaseException
hook_checksumValidation(fileReader , dataBuffer) {
boolean doValidate = fileReader.doValidateChecksum && (fileReader.
alwaysValidateChecksum |l fileReader .isTargetEntry(fileReader.
currentEntryTypeNum , fileReader.currentEntryTypeVersion));
if (doValidate) {
fileReader.startChecksum (dataBuffer);
}
if (doValidate)
fileReader.currentEntryCollectData = true;

before (FileReader fr, byte currentEntryTypeNum) throws DatabaseException
hook_checkType (fr, currentEntryTypeNum) {
if (!LogEntryType.isValidType (currentEntryTypeNum))

throw new DbChecksumException ((fr.anticipateChecksumErrors ? null : fr.env),

"

FileReader _read_invalid_log_entry_type:_" + currentEntryTypeNum);

after (LogManager logManager, EnvironmentImpl env) throws DatabaseException
logManagerConstructor (logManager, env) {

DbConfigManager configManager = env.getConfigManager () ;

logManager .doChecksumOnRead = configManager. getBoolean(EnvironmentParams .
LOG_CHECKSUM_READ) ;

ByteBuffer around(int entrySize) : addPrevOffset(entrySize) ({
ByteBuffer destBuffer = proceed(entrySize);
Checksum checksum = Adler32.makeChecksum () ;

73

86

87
88
89
90
91
92

93
94
95
96
97
98
99
100
101
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122
123
124

125
126

127
128
129
130
131
132
133

A.2. POINTCUT REDEFINITION

checksum.update (destBuffer.array (), LogManager . CHECKSUM_BYTES, (entrySize —
LogManager .CHECKSUM_BYTES)) ;

LogUtils . writeUnsignedInt (destBuffer , checksum.getValue());

destBuffer.position (0);

return destBuffer;

after (LogManager Im, ByteBuffer entryBuffer, EntryHeader entryHeader) throws
DatabaseException : readHeader(Ilm, entryBuffer, entryHeader) {
if (Im.doChecksumOnRead) {
validator = new ChecksumValidator () ;
int oldpos = entryBuffer.position();
entryBuffer. position (oldpos — LogManager . HEADER_CONTENT_BYTES) ;
validator.update (Im.envimpl, entryBuffer, LogManager . HEADER CONTENT BYTES, false);
entryBuffer. position (oldpos);
}
}

after (LogManager Im, ByteBuffer entryBuffer, EntryHeader entryHeader, long lsn) throws
DatabaseException : getRemainingBuffer(lm, entryBuffer, entryHeader, lsn) {
if (Im.doChecksumOnRead) {
validator .update (Im.envIimpl, entryBuffer, entryHeader.getEntrySize (), false);
validator.validate (Im.envimpl, entryHeader.getChecksum(), lsn);
}
}

before (EntryHeader eh, ByteBuffer dataBuffer): readHeader2(eh, dataBuffer) {
eh.checksum = LogUtils.getUnsignedInt(dataBuffer);
}

after (FileReader fr) : lasFileReaderConstructor(fr) {
fr.anticipateChecksumErrors = true;

}

after () returning (FileReader fr) : iNFileReaderConstructor () {
fr.setAlwaysValidateChecksum (true) ;
}

after (ByteBuffer data, int recStartPos, int itemSize) : hook_recomputeChecksum (data ,
recStartPos ,itemSize) {

Checksum checksum = Adler32.makeChecksum () ;

data . position(recStartPos);

int nChecksumBytes = itemSize + (LogManager . HEADER BYTES — LogManager . CHECKSUM_BYTES)

byte[] checksumBytes = new byte[nChecksumBytes];

System . arraycopy (data.array (), recStartPos + LogManager.CHECKSUM_BYTES, checksumBytes
, 0, nChecksumBytes) ;

checksum . update (checksumBytes, 0, nChecksumBytes) ;

LogUtils. writeUnsignedInt(data, checksum.getValue());

}

boolean around () : readNextEntry () ({
boolean r = false;

try {

74

134
135
136
137
138
139
140

141
142
143
144
145
146
147
148
149

150
151
152
153
154
155
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

180
181
182

A.2. POINTCUT REDEFINITION

r = proceed();

} catch (DbChecksumException e) {
}

return r;

}

boolean around(RandomAccessFile newFile, String fileName , FileManager fm) throws
DatabaseException: readAndValidateFileHeader (newFile, fileName, fm) {
try {
return proceed (newFile, fileName, fm);
} catch (DbChecksumException e) {
fm.closeFileInErrorCase (newFile) ;
throw new DbChecksumException(fm.envIimpl, "Couldn’t_open_file "
}
}

+ fileName, e);

before (ByteBuffer dataBuffer, FileReader fileReader) : readHeader3(dataBuffer,
fileReader) {

fileReader.currentEntryChecksum = LogUtils.getUnsignedInt(dataBuffer);

}

after (): staticinitialization (LogManager) {
LogManager .HEADER _BYTES += LogManager .CHECKSUM_BYTES;
LogManager .PREV_BYTES = 4;
LogManager . HEADER_CONTENT _BYTES = LogManager . HEADER BYTES — LogManager .CHECKSUM_BYTES
LogManager . HEADER_ENTRY_TYPE_OFFSET += 4;
LogManager . HEADER_VERSION_OFFSET += 4;
LogManager . HEADER_PREV_OFFSET += 4;
LogManager . HEADER_SIZE_OFFSET += 4;

after () returning (ByteBuffer buffer) : allocate () {
buffer.position (LogManager .CHECKSUM_BYTES) ;
1

after (StringBuffer sb, PrintFileReader pfr) : hook_printChecksum(sb, pfr){
sb.append ("\" _cksum=\"").append(pfr.currentEntryChecksum);
}

public ChecksumValidator FileReader.cksumValidator;

private boolean FileReader.doValidateChecksum;

private boolean FileReader.alwaysValidateChecksum;

public boolean FileReader.anticipateChecksumErrors;

private void FileReader.startChecksum (ByteBuffer dataBuffer) throws DatabaseException
{

cksumValidator.reset () ;

int entryStart = threadSafeBufferPosition(dataBuffer);
dataBuffer.reset () ;

75

183

184
185
186
187
188
189

190
191
192

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

A W o =

AN W AW N =

A.2. POINTCUT REDEFINITION

cksumValidator.update (env, dataBuffer, LogManager. HEADER_CONTENT BYTES,
anticipateChecksumErrors) ;
threadSafeBufferPosition (dataBuffer , entryStart);

}

public long FileReader.currentEntryChecksum;

private void FileReader.validateChecksum (ByteBuffer entryBuffer) throws
DatabaseException {

cksumValidator.update (env, entryBuffer, currentEntrySize , anticipateChecksumErrors);
cksumValidator. validate (env, currentEntryChecksum , readBufferFileNum ,
currentEntryOffset , anticipateChecksumErrors);

public void FileReader.setAlwaysValidateChecksum (boolean validate) {
alwaysValidateChecksum = validate;

}

private boolean LogManager.doChecksumOnRead;

public boolean LogManager.getChecksumOnRead () {
return doChecksumOnRead;

}

private ChecksumValidator validator = null;
private long EntryHeader.checksum;
public long EntryHeader.getChecksum () {

return checksum;

}
static final int LogManager.CHECKSUM BYTES = 4;

static final int LogManager . HEADER CHECKSUM_OFFSET = 0;
1

Listing A.5 ChecksumStatic.

package com.checksum;

public privileged aspect ChecksumValidatorAspectStatic extends ChecksumAbstract {
}

Listing A.6 ChecksumDynamic.

package com.checksum;

import java.io.RandomAccessFile;

import java.nio.ByteBuffer;

import com.sleepycat.je.dbi.EnvironmentImpl;
import com.sleepycat.je.log.EntryHeader;

76

10
11
12
13
14
15
16
17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40
41
42

43
44

45

A.2. POINTCUT REDEFINITION

import com.sleepycat.je.log.FileManager;
import com.sleepycat.je.log.FileReader;
import com.sleepycat.je.log.LogManager;
import com.sleepycat.je.log.PrintFileReader;

import driver.Driver;

public privileged aspect ChecksumValidatorAspect extends ChecksumAbstract {

pointcut driver () : if(mew Driver().isActivated ("checksum"));

pointcut fileReaderConstructor (FileReader fileReader, EnvironmentImpl env)
ChecksumAbstract. fileReaderConstructor (fileReader , env) && driver();

pointcut hook_checksumValidation(FileReader fileReader, ByteBuffer dataBuffer)
ChecksumAbstract. hook_checksumValidation (fileReader , dataBuffer) && driver();

pointcut hook_checkType(FileReader fr, byte currentEntryTypeNum) : ChecksumAbstract.
hook_checkType (fr, currentEntryTypeNum) && driver () ;

pointcut logManagerConstructor (LogManager logManager, EnvironmentImpl env)

ChecksumAbstract.logManagerConstructor (logManager, env) && driver ();

pointcut addPrevOffset(int entrySize) : ChecksumAbstract.addPrevOffset(entrySize) &&
driver () ;

pointcut readHeader (LogManager Im, ByteBuffer entryBuffer, EntryHeader entryHeader)
ChecksumAbstract.readHeader (Im, entryBuffer, entryHeader) && driver () ;

pointcut getRemainingBuffer (LogManager Im, ByteBuffer entryBuffer, EntryHeader
entryHeader , long lsn) : ChecksumAbstract. getRemainingBuffer (Im, entryBuffer,
entryHeader , lsn) && driver();

pointcut readHeader2 (EntryHeader eh, ByteBuffer dataBuffer) : ChecksumAbstract.
readHeader2 (eh, dataBuffer) && driver();

pointcut lasFileReaderConstructor (FileReader fr) : ChecksumAbstract.
lasFileReaderConstructor (fr) && driver ();

pointcut iNFileReaderConstructor () : ChecksumAbstract.iNFileReaderConstructor () &&
driver () ;

pointcut hook_recomputeChecksum (ByteBuffer data, int recStartPos, int itemSize)
ChecksumAbstract. hook_recomputeChecksum (data, recStartPos, itemSize) && driver ()

pointcut readNextEntry () : ChecksumAbstract.readNextEntry () && driver () ;
pointcut readAndValidateFileHeader (RandomAccessFile newFile, String fileName,
FileManager fm) : ChecksumAbstract.readAndValidateFileHeader (newFile, fileName , fm

) && driver();

pointcut readHeader3 (ByteBuffer dataBuffer, FileReader fileReader) : ChecksumAbstract.
readHeader3 (dataBuffer , fileReader) && driver () ;

77

46
47
48

49
50

51

S S

O 0 N N W A~

11
12
13
14
15

16
17

18
19
20
21

22
23

24
25
26

A.3. LAYERED ASPECTS

pointcut allocate () : ChecksumAbstract. allocate () && driver ();

pointcut hook_printChecksum (StringBuffer sb, PrintFileReader pfr) : ChecksumAbstract.
hook_printChecksum (sb, pfr) && driver();

pointcut getLogEntryFromLogSource(long lsn) : ChecksumAbstract.
getLogEntryFromLogSource(lsn) && driver () ;

A.3 Layered Aspects

The ChecksumAbstract and the ChecksumStatic aspects are equal to the one in Listing A.4 and A.5, respectively.

Listing A.7 ChecksumDynamic.

package com.checksum;

import java.io.RandomAccessFile;

import com.sleepycat.je.dbi.EnvironmentImpl;

import com.sleepycat.je.log.FileManager;

import com.sleepycat.je.log.FileReader;

import driver.Driver;

public privileged aspect ChecksumValidatorAspect extends ChecksumAbstract {

pointcut driver() : if(mew Driver().isActivated ("checksum"));

pointcut fileReaderConstructor (FileReader fileReader, EnvironmentImpl env)
ChecksumAbstract. fileReaderConstructor (fileReader , env) && driver () ;

pointcut addPrevOffset(int entrySize) : ChecksumAbstract.addPrevOffset(entrySize) &&
driver () ;

pointcut readNextEntry () : ChecksumAbstract.readNextEntry () && driver ();

pointcut readAndValidateFileHeader (RandomAccessFile newFile, String fileName,
FileManager fm) : ChecksumAbstract.readAndValidateFileHeader (newFile , fileName , fm
) && driver ();

Object around() : adviceexecution () && within (com.checksum.ChecksumAbstract) && !
driver () {
return null;
}
}

A.4 Flexible Deployment

78

O 00 N O W kAW N =

I I R R R R R R e
® VAR DN =S 0w aANE LR~ O

29
30

31
32

34

35
36

37

38

39
40

A.4. FLEXIBLE DEPLOYMENT

Listing A.8 ChecksumDynamic.

package com.checksum;

import java.awt. List;

import java.io.RandomAccessFile;

import java.nio.ByteBuffer;

import java.util.ArrayList;

import java.util.zip.Checksum;

import com.sleepycat.je.DatabaseException;

import com.sleepycat.je.dbi.Environmentlmpl;
import com.sleepycat.je.log.EntryHeader;

import com.sleepycat.je.log.FileManager;

import com.sleepycat.je.log.FileReader;

import com.sleepycat.je.log.LogManager;

import com.sleepycat.je.log.PrintFileReader;
import com.sleepycat.je.config.EnvironmentParams;
import com.sleepycat.je.dbi.DbConfigManager;
import com.sleepycat.je.log.LogEntryType;

import com.sleepycat.je.log.LogUtils;

import com.sleepycat.je.cleaner.FileProcessor;
import com.sleepycat.je.log.entry.LogEntry;
import com.sleepycat.je.recovery.RecoveryManager;

import com.sleepycat.je.log.x;

public cclass ChecksumAbstract {

public static final ChecksumAbstract instance = new ChecksumAbstract();

pointcut fileReaderConstructor (FileReader fileReader, EnvironmentImpl env) : execution
(FileReader .new(EnvironmentImpl, int, boolean, long, Long, long, long)) && args(
env,int, boolean, long, Long, long,long) && this(fileReader) && within(FileReader)

>

pointcut hook_checksumValidation(FileReader fileReader, ByteBuffer dataBuffer) : call(
void FileReader.hook_checksumValidation(ByteBuffer)) && target(fileReader) && args
(dataBuffer);

pointcut hook_checkType (FileReader fr, byte currentEntryTypeNum) : execution(void
FileReader .hook_checkType(byte)) && args(currentEntryTypeNum) && this (fr);

pointcut logManagerConstructor (LogManager logManager, EnvironmentImpl env) : execution
(LogManager.new(EnvironmentImpl , boolean)) && this (logManager) && args(env, boolean
)3

pointcut addPrevOffset(int entrySize) : execution(ByteBuffer LogManager.addPrevOffset(

ByteBuffer ,long,int)) && args(ByteBuffer ,long,entrySize) && within(LogManager);

pointcut readHeader (LogManager Im, ByteBuffer entryBuffer, EntryHeader entryHeader)
call (void EntryHeader.readHeader (ByteBuffer, boolean)) && this (Im) && args(
entryBuffer ,boolean) && target(entryHeader);

pointcut getRemainingBuffer (LogManager Im, ByteBuffer entryBuffer, EntryHeader
entryHeader , long lsn) : call(ByteBuffer LogManager.getRemainingBuffer(ByteBuffer,

79

41
42

43
44

45
46

47
48

49
50
51
52

53
54

55
56

57
58

59
60

61
62

63
64
65
66
67
68
69
70
71
72

73

74

A.4. FLEXIBLE DEPLOYMENT

LogSource, long, EntryHeader)) &% target(lm) && args(entryBuffer, LogSource, long

, entryHeader) && cflow(getLogEntryFromLogSource(lsn));

pointcut readHeader2 (EntryHeader eh, ByteBuffer dataBuffer) : execution(void
EntryHeader.readHeader (ByteBuffer ,boolean)) && target(eh) && args(dataBuffer ,
boolean) ;

pointcut lasFileReaderConstructor (FileReader fr) : execution(LastFileReader.new(..))

&& this (fr);

pointcut iNFileReaderConstructor() : (call(INFileReader.new(..)) && withincode (void

RecoveryManager.readINsAndTracklds(long))) Il (call(CleanerFileReader .new(..)) &&

within (FileProcessor));

pointcut hook_recomputeChecksum(ByteBuffer data, int recStartPos, int itemSize) : call

(void FileManager.hook_recomputeChecksum (ByteBuffer, int, int)) && args(data,
recStartPos ,itemSize);

pointcut readNextEntry () : execution(boolean LastFileReader.readNextEntry ());

pointcut readAndValidateFileHeader (RandomAccessFile newFile, String fileName ,
FileManager fm) : execution(boolean FileManager.readAndValidateFileHeader (

RandomAccessFile, String, long)) && args(newFile,fileName ,long) && target(fm) &&

within (FileManager) ;

pointcut readHeader3 (ByteBuffer dataBuffer, FileReader fileReader) : execution(void
FileReader.readHeader (ByteBuffer)) && args(dataBuffer) && target(fileReader);

pointcut allocate () : call(ByteBuffer ByteBuffer.allocate (int)) &% withincode (
ByteBuffer LogManager. marshalllntoBuffer(LoggableObject, int, boolean, int));

pointcut hook_printChecksum (StringBuffer sb, PrintFileReader pfr) : call(void
PrintFileReader.hook_printChecksum (StringBuffer)) && args(sb) && this (pfr);

private pointcut getLogEntryFromLogSource(long lsn) : execution(LogEntry LogManager.

getLogEntryFromLogSource (long ,LogSource)) &% args(lsn, LogSource);

Object around(FileReader fileReader, EnvironmentImpl env) throws DatabaseException
fileReaderConstructor (fileReader , env) {

fileReader.doValidateChecksum = env.getLogManager () .getChecksumOnRead () ;

Object r = proceed(fileReader, env);

if (fileReader.doValidateChecksum) {

fileReader.cksumValidator = new ChecksumValidator () ;
}
fileReader . anticipateChecksumErrors = false;

return r;

after (FileReader fileReader, ByteBuffer dataBuffer) throws DatabaseException
hook_checksumValidation (fileReader , dataBuffer) {

boolean doValidate = fileReader.doValidateChecksum && (fileReader.
alwaysValidateChecksum || fileReader .isTargetEntry (fileReader.
currentEntryTypeNum , fileReader.currentEntryTypeVersion));

if (doValidate) {

80

75
76
71
78
79
80
81

82
83

84
85
86

87
88

89
90
91
92
93
94

95
96
97
98
99
100

101
102
103
104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
120
121

A.4. FLEXIBLE DEPLOYMENT

fileReader.startChecksum (dataBuffer);

}

if (doValidate)
fileReader.currentEntryCollectData = true;

before (FileReader fr, byte currentEntryTypeNum) throws DatabaseException
hook_checkType (fr, currentEntryTypeNum) {
if (!LogEntryType.isValidType (currentEntryTypeNum))

throw new DbChecksumException ((fr.anticipateChecksumErrors ? null : fr.env),

"

FileReader _read_invalid_log_entry_type:_" + currentEntryTypeNum);

after (LogManager logManager, EnvironmentImpl env) throws DatabaseException
logManagerConstructor (logManager, env) {

DbConfigManager configManager = env.getConfigManager () ;

logManager.doChecksumOnRead = configManager. getBoolean (EnvironmentParams .
LOG_CHECKSUM_READ) ;

ByteBuffer around(int entrySize) : addPrevOffset(entrySize) ({

ByteBuffer destBuffer = proceed(entrySize);

Checksum checksum = Adler32.makeChecksum () ;

checksum . update (destBuffer.array (), LogManager .CHECKSUM _BYTES, (entrySize —
LogManager . CHECKSUM_BYTES)) ;

LogUtils . writeUnsignedInt (destBuffer , checksum.getValue());

destBuffer.position (0);

return destBuffer;

after (LogManager Im, ByteBuffer entryBuffer, EntryHeader entryHeader) throws
DatabaseException : readHeader(Ilm, entryBuffer, entryHeader) ({

if (Im.doChecksumOnRead) {
validator = new ChecksumValidator () ;
int oldpos = entryBuffer.position();
entryBuffer. position(oldpos — LogManager .HEADER CONTENT BYTES) ;
validator .update (Im.envIimpl, entryBuffer , LogManager. HEADER_CONTENT BYTES, false);
entryBuffer. position (oldpos);

after (LogManager Im, ByteBuffer entryBuffer, EntryHeader entryHeader, long Isn) throws
DatabaseException : getRemainingBuffer(lm, entryBuffer, entryHeader, lsn) {
if (Im.doChecksumOnRead) {
validator.update (Im.envimpl, entryBuffer, entryHeader.getEntrySize (), false);
validator.validate (Im.envimpl, entryHeader.getChecksum(), lsn);
}
}

before (EntryHeader eh, ByteBuffer dataBuffer): readHeader2(eh, dataBuffer) {
eh.checksum = LogUtils. getUnsignedInt(dataBuffer);
}

after (FileReader fr) : lasFileReaderConstructor(fr) {

81

122
123
124
125
126
127
128
129

130
131
132

133
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148

149
150
151
152
153
154
155
156
157

158
159
160
161
162
163
164

165
166
167
168
169

A.4. FLEXIBLE DEPLOYMENT

fr.anticipateChecksumErrors = true;

}

after () returning (FileReader fr) : iNFileReaderConstructor () {
fr.setAlwaysValidateChecksum (true) ;
}

after (ByteBuffer data, int recStartPos, int itemSize) : hook_recomputeChecksum (data ,
recStartPos ,itemSize) {

Checksum checksum = Adler32.makeChecksum () ;

data . position(recStartPos);

int nChecksumBytes = itemSize + (LogManager . HEADER BYTES — LogManager . CHECKSUM_BYTES)

byte[] checksumBytes = new byte[nChecksumBytes];

System . arraycopy (data.array (), recStartPos + LogManager . CHECKSUM_BYTES, checksumBytes
, 0, nChecksumBytes);

checksum.update (checksumBytes, 0, nChecksumBytes);

LogUtils . writeUnsignedInt (data, checksum.getValue());

}

boolean around() : readNextEntry () {
boolean r = false;

try {

r = proceed();

} catch (DbChecksumException e) {
}

return r;

}

boolean around(RandomAccessFile newFile, String fileName, FileManager fm) throws
DatabaseException: readAndValidateFileHeader (newFile, fileName, fm) {
try {
return proceed(newFile, fileName, fm);
} catch (DbChecksumException e) {
fm.closeFileInErrorCase (newFile) ;

[

throw new DbChecksumException(fm.envImpl, "Couldn’t_open_file " + fileName, e);

}
}

before (ByteBuffer dataBuffer, FileReader fileReader) : readHeader3(dataBuffer,
fileReader) {
fileReader.currentEntryChecksum = LogUtils.getUnsignedInt(dataBuffer);

}

after (): staticinitialization (LogManager) {
LogManager .HEADER_BYTES += LogManager .CHECKSUM_BYTES;
LogManager .PREV_BYTES = 4;
LogManager .HEADER_CONTENT_BYTES = LogManager .HEADER BYTES — LogManager .CHECKSUM_BYTES
LogManager . HEADER_ENTRY_TYPE_OFFSET += 4;
LogManager . HEADER_VERSION_OFFSET += 4;
LogManager . HEADER _PREV_OFFSET += 4;
LogManager . HEADER_SIZE_OFFSET += 4;

82

A.4. FLEXIBLE DEPLOYMENT

170
171| after () returning (ByteBuffer buffer) : allocate () {
172 buffer.position (LogManager .CHECKSUM _BYTES) ;

173 }

174
175| after (StringBuffer sb, PrintFileReader pfr) : hook_printChecksum(sb, pfr){
176 sb.append ("\" _cksum=\"").append(pfr.currentEntryChecksum);

177 }

178
179| public cclass FileReaderCaesar] wraps FileReader {
180 public ChecksumValidator cksumValidator;

181 public boolean doValidateChecksum;

182 public boolean alwaysValidateChecksum ;

183 public boolean anticipateChecksumErrors;

184
185 public void setAnticipateChecksumErrors (boolean anticipateChecksumErrors) {
186 this . anticipateChecksumErrors = anticipateChecksumErrors;

187 }

188
189 public void setCksumValidator (ChecksumValidator cksumValidator) {
190 this.cksumValidator = cksumValidator;

191 }

192
193 public void setDoValidateChecksum (boolean doValidateChecksum) {
194 this .doValidateChecksum = doValidateChecksum ;

195 }

196
197 public void startChecksum (ByteBuffer dataBuffer) throws DatabaseException {
198 cksumValidator.reset () ;

199 int entryStart = wrappee.threadSafeBufferPosition(dataBuffer);
200 dataBuffer.reset ();
201 cksumValidator.update (wrappee.env, dataBuffer , LogManager. HEADER_CONTENT_BYTES,

anticipateChecksumErrors);
202 wrappee. threadSafeBufferPosition (dataBuffer, entryStart);

203 }

204

205 public long currentEntryChecksum;

206

207 public void setCurrentEntryChecksum (long currentEntryChecksum) {

208 this.currentEntryChecksum = currentEntryChecksum;

209 }

210

211 private void validateChecksum (ByteBuffer entryBuffer) throws DatabaseException {

212 cksumValidator.update (wrappee.env, entryBuffer, wrappee.currentEntrySize ,
anticipateChecksumErrors);

213 cksumValidator. validate (wrappee.env, currentEntryChecksum , wrappee.readBufferFileNum
, wrappee.currentEntryOffset , anticipateChecksumErrors);

214 }

215

216 public void setAlwaysValidateChecksum (boolean validate) {
217 alwaysValidateChecksum = validate ;

218 }

219
220 }

83

A.4. FLEXIBLE DEPLOYMENT

221
222| public cclass LogManagerCaesar] wraps LogManager {
223 private boolean doChecksumOnRead;

224 public boolean getChecksumOnRead () {

225 return doChecksumOnRead;

226 }

227
228 public void setDoChecksumOnRead(boolean doChecksumOnRead) {
229 this . doChecksumOnRead = doChecksumOnRead ;

230 }

231
232 public static final int CHECKSUM_BYTES = 4;
233
234 public static final int HEADER_CHECKSUM_OFFSET = 0;
235| '}

236
237| public cclass EntryHeaderCaesar] wraps EntryHeader {
238 private long checksum;

239 public long getChecksum () {

240 return checksum;
241 }
242
243 public void setChecksum (long checksum) {
244 this .checksum = checksum;
245 }
246 }
247
248| private ChecksumValidator validator = null;
249| }
Listing A.9 ChecksumStatic.
1| package com.checksum;
2
3| public deployed cclass ChecksumValidatorAspectStatic extends ChecksumAbstract {
4|}

Listing A.10 ChecksumDynamic.

1| package com.checksum;

2

3| import com.sleepycat.je.utilint.JarMain;

4| import driver.Driver;

5

6| public deployed cclass ChecksumValidatorAspect {

7

8| pointcut pc_jarmain() : execution(x JarMain.main(..));
9

10| before() : pc_jarmain() {

11 if (new Driver().isActivated ("checksum")) {

12 ChecksumAbstract checksumAbstract = new ChecksumAbstract() ;
13 deploy checksumAbstract;

14 }

84

A.4. FLEXIBLE DEPLOYMENT

15
16| }

85

Appendix B - Metric Results

In this appendix, we present the complete metric results of our evaluation. We provide

for each metric, a graphic, which contains all the features from our four case studies.

86

i Edicts

HE PointcutRedef

“ LayAspects
i FlexDeploy

4 JossaidwodN|
ol

{ 1e8pnghAiowaln

OIN
10101A3

ayoe)peayy»|oo]

913]3@
M. ajeaund)

wnsy2ayd

Yao07juawuodiaug
9|IqON-pP402=Y
dopysag-pioday
9|IqO|AI-9931dIXaN
dopysag-a0aidixanN
SEIVE]T]5)
uonelon

spnojd

suodj

35

30
25

20
15
10

S —S

0 -

Figure B.1 PCC metric results

E Edicts

il PointcutRedef

“ LayAspects

& FlexDeploy

JossasdwonN|

Ol
1@8pngAioway
OIN

10101A3
AYIBR)PRIYYHOOT]
EYEIETg

23e2UNd |
wns}aayd

J}P0 U WIUOIIAUT
9|IqOIN-P41023Y
dopysaq-plooay
9|IqOIN-323IdIX3aN
dopjsag-adaidIxaN
S12Wa||INg
uonelon

spnoj)

Suo?|

Figure B.2 DOSO Driver metric results

87

W PointcutRedef
~ LayAspects
E FlexDeploy

& Edicts

E JossaidwoN|

0l

e — 93PNgAIOLAN

" OIN

10]121A3
aydepeayyoo]
| —— 219130

aledund
wnsyaayd
H207JUauodiaug
3]1GOIN-P1023Y
dopjsaqg-p402ay
3]IqOIN-9931d XN
dopjsaqg-a3aidp@EN

s}aWBI||INY
- uoueIoN
- spnojd
 suo?|
Qe M~ E... n 4... 3... 2... - =]
Lo I an I T o N o Y o R o T o O 8

Figure B.3 DOSC Driver metric results

H PointcutRedef
- LayAspects
i FlexDeploy

& Edicts

Jossaidwo]|

Ol

1o8pngAlowan
OIN

Joping
2Yae)peayyo0]
EXEIEl

23eaunJj
winsyaayd
32071UBWIUOIIAUT
9|IqoN-pJ033Yy
dopjsaqg-pioday

- 3|1qO|N-9231dIXaN

- dopjsag-a23idIxenN

1 syawa|Ino

L UOHEION

J spnop

" su0))
9.., 8.., _._........ rn_... 5... 4... 3... 2... ..I_...U
cooocoococo o

Figure B.4 DOSC Feature metric results

88

E PointcutRedef
“ LayAspects

H Edicts

40

i FlexDeploy

JossalsdwodN]|

Ol
128pnghAiowa
OIN

10121A7
3IYyIe)peayy>oo
EYETE!

ajeoaund |
wnsy2ay)
3207IUBWILOIIAUT
3[1qON-pJ0d33Y
dopisag-piooday
3|1qOIN-323IdIXaN
dopjsag-adaidpeEN
s}1aWwa|Ing
uonejoN

spnoj|d

Suo?|

H PointcutRedef
“ LayAspects

W Edicts

Figure B.5 CDC metric results

0,5
0,45
0,4
0,35
0,3
0,25
0,2
0,15
0,1
0,05

K FlexDeploy

Jossaidwo)N|

Ol
1@8pngAloway
OIN

J032IAT
aydepeayy3oo]
EIEIE]y

a1eaund)
wnsyaay)
3207IUDWUOIIAUT
3[1qON-pJ0d3Y
dopjsag-pioaray
9|IQOIA|-2331dIXON
dop|sag-a3aidIxaN
SEIETIS)
uonelon

spnop)

Suo?|

89

Figure B.6 DOTO metric results

K Edicts
N PointcutRedef
© LayAspects

& FlexDeploy

" 10ssa1dwonN|

0l

 198pngAioway

OIN

~ J01DIAT

| 9YdeDpeayYyooT

JEIEEN

 @1e3una|
- wnsyaY)

~ 3207IUSWUOIIAUT

~ 9]IqON-pi0IaY
- dopjsag-pioiay
- 3|IgON-223141X3N

" dopjsag-2221dIxaN

- s}PWa||Ino

g UOHEION

~ spnop)

 su09)

0,4
0,35
0,3
0,25
0,2
0,15
0,1
0,05

o

B Edicts
M LayAspects
" PointcutRedef

Figure B.7 DOTC metric results

2200
2000
1800 -
1600 -
1400 -
1200 -
1000 -
800 1
600 -
400
200 A
0 .

M FlexDeploy

Jossaldwo)N]|

ol
128pngAioway
OIN

10121A3
ayoe)peayy| oo
219]2Q

aleaund]
wnsyayd

207U WIUOIIAUT
9|IqO|N-p1023Yy
dopjsag-pioaay
9|IqO|IN-923IdIXaN
doyysag-23aidIxaN
SETTET]s)
uoneloN

spnopd

Suo|

90

Figure B.8 SLOC metric results

1700
1600
1500
1400
1300
1200
1100
1000
900
800
700
600
500
400

200
100

Edicts LayAspects PointcutRedef FlexDeploy

B Freemind
B ArgoUML
W Tetris

M Berkeley

Figure B.9 VS metric results

91

	List of Figures
	List of Tables
	Introduction
	Problem
	Proposed Solution
	Contribution
	Outline

	Background
	Software Product Lines
	Feature Models

	Aspect-Oriented Programming
	AspectJ
	CaesarJ

	Flexible Binding Time
	Motivation
	Idioms
	Pointcut Redefinition
	Design
	Example

	Layered Aspects
	Design
	Example

	Flexible Deployment
	Design
	Example

	Feature interaction

	Evaluation
	Study settings
	Case studies
	Tetris
	Freemind
	ArgoUML
	BerkeleyDB

	GQM
	Goal
	Questions
	Metrics

	Assessment procedures

	Results
	Cloning
	Scattering
	Driver
	Feature

	Tangling
	Size
	Behavior
	Threats to validity
	Discussion

	Conclusion
	Related work
	Future work

	Bibliography
	Appendix A - Implementation of idioms
	Edicts
	Pointcut Redefinition
	Layered Aspects
	Flexible Deployment

	Appendix B - Metric Results

