

Pós-Graduação em Ciência da Computação

“Quality-aware Automated Service Composition

using Reverse Engineering and Incomplete

Information”

Por

Ramide Augusto Sales Dantas

Tese de Doutorado

Universidade Federal de Pernambuco

posgraduacao@cin.ufpe.br
www.cin.ufpe.br/~posgraduacao

RECIFE, MARÇO/2012

 UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

RAMIDE AUGUSTO SALES DANTAS

“Quality-aware Automated Service Composition using Reverse
Engineering and Incomplete Information"

ESTE TRABALHO FOI APRESENTADO À PÓS-GRADUAÇÃO EM
CIÊNCIA DA COMPUTAÇÃO DO CENTRO DE INFORMÁTICA DA
UNIVERSIDADE FEDERAL DE PERNAMBUCO COMO REQUISITO
PARCIAL PARA OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIA DA
COMPUTAÇÃO.

 ORIENTADOR: Prof. Djamel Sadok
 CO-ORIENTADOR: Prof. Carlos Kamienski

RECIFE, MARÇO/2012

Catalogação na fonte

Bibliotecária Jane Souto Maior, CRB4-571

Dantas, Ramide Augusto Sales

 Quality-aware automated service composition using
reverse engineering and incomplete information / Ramide
Augusto Sales Dantas. - Recife: O Autor, 2012.
 xi, 100 p. : il., fig., tab.

 Orientador: Djamel Sadok.
 Dissertação (mestrado) - Universidade Federal de
Pernambuco. CIn, Ciência da Computação, 2012.
 Inclui bibliografia.

 1. Redes de computadores. 2. Composição de serviços. I.
Sadok, Djamel (orientador). II. Título.

 004.6 CDD (23. ed.) MEI2012 – 072

Tese de Doutorado apresentada por Ramide Augusto Sales Dantas à Pós- Graduação

em Ciência da Computação do Centro de Informática da Universidade Federal de

Pernambuco, sob o título “Quality-aware Automated Service Composition using

Reverse Engineering and Incomplete Information” orientada pelo Prof. Djamel

Fawzi Hadj Sadok e aprovada pela Banca Examinadora formada pelos professores:

 Prof. Nelson Souto Rosa

 Centro de Informática / UFPE

 __

 Prof. Stênio Flávio de Lacerda Fernandes

 Centro de Informática / UFPE

 __

 Prof. Kelvin Lopes Dias

 Centro de Informática / UFPE

 Profa. Thaís Vasconcelos Batista

 Depto. de Informática e Matemática Aplicada/UFRN

 Prof. Edmundo Roberto Mauro Madeira

 Instituto de Computação / UNICAMP

Visto e permitida a impressão.

Recife, 13 de março de 2012.

Prof. Nelson Souto Rosa

Coordenador da Pós-Graduação em Ciência da Computação do

Centro de Informática da Universidade Federal de Pernambuco.

iii

Contents

ABSTRACT .. X

RESUMO .. XI

CHAPTER 1 INTRODUCTION .. 1

1.1. MOTIVATION .. 1

1.2. OBJECTIVES .. 4

1.3. ORGANIZATION OF THE THESIS ... 5

CHAPTER 2 BACKGROUND ... 6

2.1. SERVICE ORIENTED COMPUTING .. 6

2.1.1. Service Composition ... 8

2.2. SEMANTIC WEB .. 9

2.2.1. Ontologies ... 10

2.2.2. Ontology Languages ... 11

2.3. AUTOMATED PLANNING ... 13

2.4. CLASSICAL PLANNING .. 14

2.4.1. Planning Techniques .. 16

2.4.2. Planning Domain Definition Language (PDDL) ... 17

2.5. SUMMARY AND DISCUSSION ... 20

CHAPTER 3 AUTOMATED COMPOSITION TECHNIQUES 21

3.1. PLANNING GRAPH ... 21

3.2. LOGIC PROGRAMMING .. 22

3.3. HIERARCHICAL TASK NETWORKS ... 23

3.4. CONTINGENCY PLANNING .. 24

3.5. PLANNING AS MODEL CHECKING ... 25

3.6. SERVICE DEPENDENCY/CAUSAL MATRIX ... 25

3.7. AUTOMATED THEOREM PROVING ... 26

3.8. GENETIC ALGORITHMS ... 26

3.9. SUMMARY AND DISCUSSION ... 27

iv

CHAPTER 4 REVERSE ENGINEERING COMPOSITIONS 30

4.1. COMPOSITION AND SERVICE MODELS .. 30

4.2. EXTRACTING INFORMATION FROM COMPOSITIONS ... 33

4.2.1. Parameter Analysis .. 33

4.2.2. Service Analysis .. 35

4.3. CASE STUDY: THE MYEXPERIMENT REPOSITORY.. 37

4.3.1. The myExperiment Workflow Repository ... 37

4.3.2. The Taverna Workbench and Workflow Format .. 38

4.3.3. Analysis of the myExperiment Repository .. 40

4.3.4. Reverse Engineering Results .. 42

4.3.4.1. Parameter Compatibility ... 42

4.3.4.2. Service Relationships ... 44

4.4. SUMMARY AND DISCUSSION ... 47

CHAPTER 5 PROPOSED ALGORITHMS ... 50

5.1. FROM PLANNING TO SERVICE COMPOSITION .. 50

5.2. BASE ALGORITHM: GRAPHPLAN ... 52

5.3. GRAPHPLAN FOR SERVICE COMPOSITION ... 56

5.3.1. Enforcing Input Parameters ... 56

5.3.2. Incomplete Input Specification ... 58

5.4. FAST FORWARD WITH ENFORCED AND MISSING INPUTS 59

5.5. PREFERRED SERVICES WITH REVERSE GRAPHPLAN .. 64

5.6. SUMMARY AND DISCUSSION ... 66

CHAPTER 6 PERFORMANCE EVALUATION .. 67

6.1. EVALUATION PRELIMINARIES ... 67

6.1.1. Automated Planners ... 68

6.1.2. PDDL Generation .. 69

6.1.3. Evaluation Methodology... 71

6.1.4. Quality Metrics ... 72

6.2. EVALUATION RESULTS ... 74

6.2.1. Basic Evaluation ... 74

6.2.2. Enforcing Inputs to Improve Quality .. 79

6.2.3. Missing Inputs .. 83

v

6.2.4. Service Precedence ... 84

6.3. SUMMARY AND DISCUSSION ... 86

CHAPTER 7 FINAL REMARKS .. 88

7.1. CONCLUSIONS ... 89

7.2. CONTRIBUTIONS ... 90

7.3. FUTURE WORK ... 90

7.4. PUBLICATIONS .. 92

7.4.1. On Service Composition or Related Subjects ... 92

7.4.2. Other Publications during the PhD .. 93

REFERENCES ... 95

vi

Figure Index

Figure 2-1. Web Services protocol stack [27]. ... 7

Figure 2-2. Example of Service Orchestration and Choreography [43]. 9

Figure 2-3. Example of Ontology. .. 11

Figure 2-4. Example of PDDL description for the Logistics domain. 19

Figure 2-5. Example of problem description in PDDL for the Logistics domain. 20

Figure 4-1. Type hierarchy generated from 2 sample service compositions. 34

Figure 4-2. The Taverna Workbench. .. 38

Figure 4-3. Structure of a Taverna workflow. .. 39

Figure 4-4. Histogram of the number of service invocations per workflows. 41

Figure 4-5. Histogram of the number of workflows that use each Web Service. 42

Figure 4-6. Parameter Compatibility Matrix for a simple banking scenario. 43

Figure 4-7. Service relation based on workflows for the 100-workflows dataset. 44

Figure 4-8. Service precedence relations for the 100-workflows base. 46

Figure 4-9. Service dependency relation for the 100-workflows base. 47

Figure 5-1. Example of planning graph. .. 54

Figure 5-2. Example of graph expansions: a) not meeting b) meeting

 . (NO-OP invocations are not shown).. 61

Figure 6-1. PDDL code for the SetBalance service. .. 70

Figure 6-2. PDDL code for the GetBalance service. ... 70

Figure 6-3. Problem specification in PDDL. ... 71

Figure 6-4. PDDL plan generated for the example.. 71

Figure 6-5. Similarity histogram for FDSS1 (a) and GP (b). .. 76

Figure 6-6. Example of workflow from the myExperiment repository. 78

Figure 6-7. Resulting workflow using FDSS1 or GP for the previous example. 79

Figure 6-8. Hit rate histograms for and (b). 80

Figure 6-9. Resulting workflow enforcing the use of all inputs. 82

Figure 6-10. Histogram of similarity for (a) and (b). 84

Figure 6-11. Histogram of similarity for FDSS1 (a) and GP (b) with Service

Precedence.. 85

vii

Algorithm Index

Algorithm 5-1. Graphplan algorithm. .. 53

Algorithm 5-2. Graph expansion algorithm. .. 54

Algorithm 5-3. Plan extraction algorithm. ... 55

Algorithm 5-4. Plan extraction with unused inputs checking. .. 57

Algorithm 5-5. Plan extraction with verification of unused and missing inputs. 59

Algorithm 5-6. Modified Best-First search algorithm. ... 64

Algorithm 5-7. Planning graph reduction algorithm. .. 65

viii

Table Index

Table 4-1. Workflow-based Service Relation Metrics. ... 45

Table 4-2. Service Precedence Relation Metrics ... 46

Table 4-3. Service Dependency Relation Metrics .. 47

Table 5-1. Mapping between planning and service composition concepts. 52

Table 6-1. Evaluation summary for the Main scenario. ... 74

Table 6-2. Evaluation summary for the Random scenario. .. 75

Table 6-3. Composition metrics for the Main scenario. ... 76

Table 6-4. Similarity: FD heuristics vs. GP for the cases where both succeeded. 76

Table 6-5. Composition metrics enforcing the use of input parameters. 80

Table 6-6. Success and time metrics when enforcing the use of input parameters. 81

Table 6-7. Composition quality when enforcing the use of input parameters; only cases

affected by the algorithms. ... 81

Table 6-8. Composition metrics for the scenario with one missing input parameter. ... 83

Table 6-9. Success and time metrics with one missing input. .. 84

Table 6-10. Composition metrics with and without the use of service precedence. 85

Table 6-11. Success and time metrics with and without service precedence. 86

ix

Abbreviations and Acronyms

ASC Automated Service Composition

BPEL Business Process Execution Language

CLM Causal Link Matrix

DM Dependency Matrix

EHC Enforced Hill Climbing

FD Fast Downward (planner)

FF Fast Forward (planner)

GP Graphplan (planner)

GUI Graphical User Interface

HTN Hierarchical Task Network

IPC International Planning Competition

IT Information Technology

OWL Web Ontology Language

OWL-S Web Ontology Language

PDDL Planning Domain Definition Language

RDF Resource Description Framework

RDFS RDF Schema

SD Service Developer

SOA Service-Oriented Architecture

SOC Service-Oriented Computed

STRIPS Stanford Research Institute Problem Solver

SWRL Semantic Web Rule Language

WS Web Services

WSDL Web Services Description Language

WSML Web Service Markup Language

x

Abstract

Service Composition is one of the most important features offered by Service Oriented

Computing. The composition allows a new service to be created through the reuse of

existing ones. The process of creating a composition involves discovering the necessary

services and combining them in an appropriate manner using specific languages and tools.

This process, however, is still carried out mainly by hand. Considering the dynamic nature

of distributed services, manual composition may become too complex, affecting the

productivity gains provided by reuse. Proposals to fully or partially automate this process

already exist, most of them based on Automated Planning algorithms borrowed from

Artificial Intelligence. Although functional, these approaches have practical problems that

hinder their effective implementation in production scenarios. In this Thesis, we addressed

some of the practical problems of automated composition, starting with the need for

formal descriptions of services. These formal descriptions are necessary for the

composition algorithms, however, are rarely available from services. This issue was

addressed by means of reverse engineering a repository of service compositions. By

analyzing how the services were related to each other in the compositions, it was possible

to obtain the necessary information for the algorithms to work. We also evaluated the

quality of the compositions generated by the algorithms and their similarity with respect to

compositions created manually. Automated Planning algorithms from the literature have

been modified in order to generate solutions closer to those expected by the developer.

Finally, the composition algorithms were adapted to accept incomplete specifications, thus

allowing the developer to obtain a solution even not knowing a priori all the composition

details. Comparisons with automated planning tools were conducted in order to ascertain

the effectiveness of the algorithms. The results show that the automated composition, as

presented in the Thesis, can be an invaluable tool to the service developer.

Keywords: Service Composition, Web Services, Automated Planning.

xi

Resumo

A composição de serviços é um dos recursos mais importantes disponibilizados pela

Computação Orientada a Serviços. A composição permite que um novo serviço seja criado

através do reuso de serviços existentes. O processo de composição envolve a descoberta

dos serviços relevantes e sua combinação de forma adequada, por meio de ferramentas e

linguagens específicas. Esse processo, no entanto, ainda é realizado essencialmente de

forma manual. Considerando a natureza distribuída e dinâmica dos serviços, a composição

manual pode se tornar demasiado complexa, comprometendo os ganhos em produtividade

proporcionados pelo reuso. Propostas para automatizar completa ou parcialmente esse

processo já existem, a maioria dessas propostas é baseada em algoritmos de planejamento

automatizado emprestados da Inteligência Artificial. Apesar de funcionais, essas

abordagens possuem problemas práticos que dificultam sua aplicação efetiva. Nesta Tese

foram abordados problemas práticos da composição automatizada, começando pela

necessidade de descrições formais dos serviços. Essas descrições formais são necessárias

aos algoritmos de composição, porém, raramente estão disponíveis junto aos serviços. Esse

problema foi abordado por meio da engenharia reversa de um repositório de composições

de serviços. Analisando como os serviços estavam relacionados entre si nas composições,

foi possível obter as informações necessárias aos algoritmos de composição. Também foi

avaliada a qualidade das composições geradas pelos algoritmos quanto a sua semelhança

com relação a composições criadas manualmente. Algoritmos da literatura de planejamento

automatizado foram modificados com o objetivo de gerar soluções mais próximas das

esperadas pelo desenvolvedor. Finalmente, os algoritmos de composição foram adaptados

de forma a aceitar especificações incompletas, assim permitindo ao desenvolvedor obter

uma solução mesmo não sabendo a priori todos os seus detalhes. Comparações com

ferramentas de planejamento automatizado foram conduzidas com o objetivo de averiguar

a efetividade dos algoritmos. Os resultados mostram que a composição automatizada,

como apresentada nessa Tese, pode ser uma ferramenta valiosa ao desenvolvedor de

serviços.

Palavras-chave: Composição de Serviços, Web Services, Planejamento Automatizado.

1

Chapter 1 Introduction

1.1. MOTIVATION

The Internet is increasingly becoming a service – not only a content – network, with

various organizations using its tools and protocols to provide and access services from

other parties and leverage their businesses. Amazon, the book retailer and cloud provider,

for example, has just recently launched1 the Simple Workflow Service (SWF) [3]. The SWF

service allows organizations to host and maintain their businesses processes and services

using the Amazon's cloud infrastructure. The OASIS organization defines service as "a

mechanism to enable access to one or more capabilities, where the access is provided using

a prescribed interface and is exercised consistent with constraints and policies as specified

by the service description" [42]. The use of services as building blocks for distributed

applications has led to the emergency of the Service Oriented Computing (SOC) paradigm

[12], which has been part of corporate IT strategies for years already. In this context, the

Web Service technology [9] has played an important role, enabling enterprises and Web

sites to offer, locate and access services worldwide using standard Web protocols.

Today’s Internet offers a multitude of Web-based services to service developers and

advanced users. With services varying from access to stock prices and weather forecast to

advanced enterprise-wide services, the Web has become a playground for innovative and

ambitious applications developers. Those who can create and make available new services

quickly stand better chances to leap ahead of competitors and succeed. The same way

standalone software is built using known libraries of functions or classes, a new service can

also descend from more general, “smaller” services that are composed together to provide

the new functionality. The arrangement of these services can be made using regular

programming languages (Java, C#, etc.) or languages specially tailored for this purpose (for

example, WS-BPEL [44]).

1 Amazon SWF launched in February, 2012.

2

This task, however, has become complex and time consuming. The increasing number of

services available today imposes a challenge to service developers, and the lack of

organization of these services adds up to the problem. Unlike application APIs in

traditional programming languages, Web Services are not sorted into libraries or packages,

thus requiring a developer to search for the desired functionality within a wider range of

options, with different descriptions and interfaces. Moreover, during the process of

combining these services, new interesting ones may come up and services already in the

composition can change or be removed, leading to frequent changes in the service process.

The difficulty in creating and maintaining new services out of existing ones has led

Academy and Industry to pursue new ways for a smoother, yet powerful, services

development process. The idea is to streamline service creation in order to keep pace with

the dynamicity of technology markets. In one foreseeable scenario, users with low technical

skills would be able to create and make available their own services – for profiting from

them or simply to share with friends on Facebook for example. Examples like those from

Facebook, Apple and Firefox – which provide rich platforms for application developers,

leveraging their own products – can inspire other IT providers. Telecommunication

Operators that no longer want to be simple data “pipes” should also invest to provide

more flexible (and profitable) service platforms.

The notion of Services can be extrapolated to infrastructure services and not be limited to

the “business” level. Services can be used to control telecom and IT infrastructure

“services” (e.g., data paths, telephony intelligent services, messaging), thus making business

and technology work under a common design paradigm, that of services creation and their

composition. Initiatives as the Parlay X [51] have proposed WS interfaces to common

telecom services, so that application developers could take advantage of them to address

new business opportunities. One also can see a future where devices and equipments

would leave the factory floor with WS-compatible APIs and hence be ready for use by

composition techniques to deploy new functionalities to the network. In this sense Web

Services can be a powerful replacement to MIB/SNMP-based management [43]. This kind

of solution also fits nicely into the Platform and Infrastructure as a Service ideas (PaaS and

IaaS, [65]), offering standard-compliant interfaces to platform management software.

The best scenario for the efficient service creation would be to completely automate the act

of composing services, but it brings new challenges by itself. Several approaches have been

3

proposed to address automating service composition (described in Chapter 3), which try to

completely automate the process of finding and combining services to achieve a user-

specified functionality. These approaches are often inserted in the context of the Semantic

Web (SW) [6], comprising the more specific Semantic Web Services research field [36]. The

Semantic Web advocates the idea of semantic-equipped Web content over which

automated agents could reason and generate new content; Semantic Web Services extend

this idea to more “active” content, i.e., services.

In the fully automated Service Composition solutions, Artificial Intelligence (AI) planning

is a recurring technique and presents interesting results. Using logic-enabled semantic

languages provided by the SW community (for example, DAML-S [3], OWL-S [70] and

WSML [31]), automated composition tools can find service compositions meeting user

requests provided that the underlying services are completely and correctly described in

terms of their capabilities. These approaches go beyond typical WS description – i.e.,

WSDL – which focuses on the service interface by looking at enriched Input and Output

descriptions (e.g., [78], [4], [32]), pre- and postconditions (e.g., [1] and [2]) and, eventually,

even internal execution flows [37]. Several factors, however, prevent the adoption of such

proposals by the industry. In this Thesis, we identified and addressed four of these factors,

as listed below:

 Services need to be formally described in order for algorithms to work

properly. The process of describing the services is manual, time-consuming and

error-prone, requiring special language skills different from the usual skills of

service developers. That explains why despite semantic description languages being

available for years already, semantic-described services (in production) are still very

uncommon.

 Algorithms efficacy and efficiency. The problem of finding a set of services

among several candidates that can be combined in the correct order to provide a

given functionally is widely accepted as a complex undertaking [5], [20]. The

existing approaches tackle the problem by limiting the complexity of the solutions

(e.g., not allowing control structures such as if’s and loops), thus reducing the

search space. Nonetheless, by limiting the complexity of solutions, a whole set of

classes of compositions can no longer be generated, hence reducing the

applicability of such approach. The alternative is hardly more attractive: a complete

search for full-fledged service compositions over the space of thousands of services

4

may not terminate at all. A compromise need to be found between expressiveness

and efficiency in order for a practical solution to be possible.

 Lack of confidence in the resulting compositions. Automated composition

algorithms can render correct-by-construction service compositions provided that

the domain is correctly described (what is not simple, given point 1). However,

developers and service providers are not willing to deploy new services without

knowing whether they meet users’ expectations and do not risk compromising their

infrastructures. It is expected that the developer will have to deal with the result of

the automated process, fixing and adapting the composition to ensure that it

achieves its purpose. The quality of the automated solutions will determine how

much extra effort will be needed by this task.

 Lack of adequate tools for service specification. Providing the initial service

specification as an input to a composition algorithm is not a straightforward task.

Detailed knowledge in the underlying formalisms used by algorithms is often

required so that meaningful and sound specifications can be written. Automated

solutions are often little tolerant to malformed or incomplete specifications, and

this all-or-nothing behavior ends up harming the developer's productivity.

1.2. OBJECTIVES

The general objective of the Thesis is to facilitate the creation of new services through the

process of service compositions, focusing on Web Services for the matter of practicality,

but not being limited to WS technologies. In particular, in this Thesis we addressed the

scenario with Automated Service Composition (ASC), which we believe can help to

improve the productivity of developers and reduce the time-to-market of new services. We

addressed the issues with ASC listed in the previous sections as described below:

 Need for semantic descriptions. Instead of working with manually written

descriptions of services using Semantic Web languages, we opted to apply a

Reverse Engineering approach in order to obtain the semantic information needed

by automated algorithms. We used compositions available at the myExperiment

project [60], a repository of scientific workflows and social networks that promotes

the exchange of data-intensive service compositions.

 Algorithms efficiency and efficacy. We chose to work with existing algorithms

from Automated Planning literature that showed suitable to the problem of

Automated Service Composition. We simplified the algorithms, in order to keep

5

them efficient, at the same time that we extended them to improve the quality of

the solutions.

 Confidence on automated solutions. In order to establish the quality of the

compositions generated via ASC we conducted a performance evaluation where

our algorithms faced an award-winning AI planner. The results showed the overall

quality of the solutions is acceptable using the AI planner but can be improved for

specific scenarios – e.g., when not all input parameters were used – using our

algorithms.

 Composition specification. In early works, we worked on a Graphical User

Interface that allowed a composition to be specified in a mixed way: part manually

and other parts left to the ASC algorithm to complete. In this Thesis, we addressed

the related problem of incomplete service specifications, where the developer does

not provide enough information for an exact solution to be found but expects from

the composition algorithm at least an approximate response.

In special, in this Thesis we focused on Automated Service Composition as an auxiliary

tool for the composition developer, not as a complete solution that will take his/her place

in the development cycle. Although this latter case seems to be the target scenario for most

ASC proposals, we believe that there is a long way before complete automation of service

creation can be achieved.

1.3. ORGANIZATION OF THE THESIS

This Thesis is organized as follows. Chapter 2 brings some background on the Service

Oriented paradigm and Automated Planning. Chapter 3 describes current service

composition techniques and discusses their strengths and limitations. Chapter 4 presents

the reverse engineering process employed to extract semantic information from repository

of scientific workflows myExperiment. In Chapter 5 we describe our extensions to

planning algorithms aimed at increasing the quality of compositions. A performance

evaluation of the algorithms and comparison to a state-of-the-art planner is presented in

Chapter 6. Chapter 7 concludes this Thesis with the contributions, future work and final

remarks.

6

Chapter 2 Background

2.1. SERVICE ORIENTED COMPUTING

Service Oriented Computing is a paradigm that employs “services” as the basic unit for the

separation of concerns in computing systems’ development [20]. Services can be seen as

the means by which consumers access providers’ capabilities [63]. Among other interesting

features, services provide loosely coupled interaction between partners in a business

process (or any other computing activity). Partners can implement services in diverse ways

and still cooperate as long as clear interfaces are made available.

Service-oriented architectures (SOA) have been dictating distributed systems construction

in the last years, especially across organizational boundaries. SOA is a paradigm for the

organization, design, implementation and utilization of distributed capabilities packaged as

services [20]. Enterprises see in SOA an opportunity to boost Business-to-Business (B2B)

transactions and reduce integration costs of legacy systems. In the latter case, old systems

are equipped with service-oriented APIs, which enable them to interact with new ones. To

achieve such interoperability, well-known protocols and languages are necessary. The most

common realization of service-oriented architectures is through the use of Web Services

(WS).

Web Services are an XML-based technology that has as main protocols and specifications

SOAP (Simple Object Access Protocol), WSDL (Web Services Description Language) and

UDDI (Universal Description, Discovery and Integration) [16]. For network transport

capabilities, Web Services utilize standard Internet protocols: HTTP, SMTP, FTP, among

others. Web Services messages are built and exchanged at the application layer using SOAP

for XML serialization of method invocations and objects. WSDL is used to describe web

services interfaces, i.e., how other web services can access it; WSDL service descriptions

can be published and located through the UDDI directory service. The stack of protocols

used by Web Services is shown in Figure 2-1.

7

Figure 2-1. Web Services protocol stack [27].

Web Services take advantage of the ubiquitously deployed Web protocols and standards to

allow XML-encapsulated remote service invocation. Organizations can publicize internal

services as Web Services and allow other organizations to find and use them. Intra-

organization tasks can also benefit from Web Services high interoperability. The most

evident drawback of using the Web stack along with XML parsing/encoding is the built-in

overhead, what makes service invocation suboptimal compared to pure RPC-like

technologies. Nevertheless, as computer power increases and even small, low-capacity

devices become able to run web servers (e.g., DSL modems); such overhead can

compensate the gain in interoperability. Another drawback comes from the effort needed

to change ones development paradigm within companies with long established

development traditions and a large set of accumulated “legacy” software. It is hoped that

the benefits of Web Services will outweigh such limitations and soon become ubiquitous.

More studies point the benefits of using SOA [20], [77]. It is believed to facilitate the

growth of large-scale enterprise systems, allow Internet-scale provisioning and service

usage and reduce costs in the cooperation between organizations. The main value of SOA

is that it provides a simple scalable paradigm for organizing large networks of systems that

require interoperability to draw from the value in the individual components. SOA

scalability derives from its almost-null assumptions about the underlying network and trust

that are often implicitly made in small-scale systems.

8

2.1.1. Service Composition

Composing services into business processes is a fundamental, yet potentially complex task

in service-oriented design. A service composition is a coordinated aggregation of services

that have been assembled to provide the functionality required to automate a specific

business task or process [20]. Services are expected to be capable of participating as

effective composition members, regardless of whether they need to take part in a

composition from scratch. As the sophistication of service-oriented solutions continues to

grow, so does the complexity of underlying service composition configurations.

Service Orchestration and Choreography are two concepts used to tackle service

composition complexity, see Figure 2-2. Both regard to the coordination or control of

individual services in order to make them work together in a coherent manner [70].

Orchestration refers to coordination at the level of a single participant's process, specifying

the control and data flows needed for the process to be executed correctly. Among the

several existing languages to describe service orchestration, the most representative is

Business Process Execution Language for Web Services (WS-BPEL, or just BPEL) [12],

[76], [65]. Service Choreography refers to the protocol that ensures harmony and

interoperability among the interacting participants (processes), in order for the processes to

cooperate with no dependency on a centralized controller. Choreographies specify the

temporal relationship in message exchanging, providing rules to the correct execution of

the individual processes. The most accepted language for service choreography is W3C’s

Web Service Choreography Description Language (WS-CDL) [86].

9

Buyer

Choreography

Orchestration

Complete

Submit PO

Approve

PO

Send PO

Plan

Procur.

Receive

Ack.

Receive

Ship. Ack.

Orchestration

Complete

Receive

PO

Check

Order

Check

Availability

Send PO

Ack.

Send Ship.

Req.

Complete

Receive

Ship Req.

Plan

Shipment

Send Ship

Date

Orchestration

Seller Shipper

Figure 2-2. Example of Service Orchestration and Choreography [43].

An example of the relation between service orchestration and choreography is shown in

Figure 2-2, reproduced from [43]. This picture illustrates a classical example involving an

internal process for buyers (procurement), another process for sellers, and yet a third one

for shippers. Each one of these trading partners will be executing its own internal process.

Procurement, for instance, could involve approvals at multiple layers. These business

processes are the orchestration of activities within each partner. Choreography, on the

other hand, does not focus on the details of the internal orchestration process; rather, the

focus is on the information exchange among the participants.

2.2. SEMANTIC WEB

The idea of a Semantic Web [9], term coined by Web’s inventor Tim Berners-Lee, views

the Web as a global knowledge base that machines could interpret and operate over. To

accomplish this perspective, efforts were directed to find ways of enhancing Web content

with meta-information carrying a formally specified semantic description of the content

being published. This would allow not only humans but also software agents to understand

and aggregate content from several sources, filter it and generate new, valuable knowledge

to users or other computer agents.

10

Ontologies have been adopted as the preferred way to describe content for the Semantic

Web. The following sections describe the concept of Ontology, present languages and

tools used for semantic descriptions.

2.2.1. Ontologies

Ontology is a concept borrowed from Philosophy for which there are several definitions

[29], [93], [85] and [91]. One definition describes ontology as an explicit and formal

specification of a shared conceptualization [28]. It is explicit because it describes

unambiguously concepts, their properties, relationships, functions, axioms and restrictions

– allowing it to be read and interpreted by machines –, and it is a conceptualization because

it is an abstract model and a simplified view of the entities it represents. Finally, it is shared

because it has been agreed upon by a group of experts. To sum up, an ontology is the

definition of a set of concepts, their taxonomy, interrelation and the rules that govern these

concepts [85].

Ontologies represent knowledge in a similar way Object Oriented approaches do. There are

means for defining static structures such as classes (concepts), class hierarchies (using

inheritance), attributes, relationships and instances. The significant differences are within

the representations of implicit semantics often left hidden in Object Oriented models.

Ontologies allow the use of constraints, axioms and rules whereas object-orientation relies

on methods (sequences of imperative commands) associated with classes and objects for

semantic verification. Both approaches are equally expressive although a declarative

approach is better suited for a domain modeling than an imperative one [94].

11

Figure 2-3. Example of Ontology.

A simple ontology for the domain of vehicles is graphically represented in the Figure 2-3

above. In this example, Ships are a kind of Watercraft or Sea Vessel. Ships have a Crew and

Cargo. Through the transitivity of the hypernym relation, Ships also have a Location. The

Location of a Ship consists of a Longitude and Latitude. Vehicle, Sea Vessel, Watercraft

and Ship are classes; Location, Crew, Cargo, Longitude and Latitude are Slots or

Properties.

2.2.2. Ontology Languages

In computer science and artificial intelligence, ontology languages are used to encode

knowledge about specific domains and often include reasoning rules to allow the

processing of this knowledge. Foundational ontologies (sometimes called “upper level

ontologies”) define a range of top-level domain-independent ontological categories, which

form a general foundation for more elaborated domain-specific ontologies (e.g., the

Unified Foundational Ontology (UFO) [30]). Foundational ontologies can be used to

evaluate conceptual modeling languages and to develop guidelines for their use.

Several ontology languages have been created in the semantic Web community, usually

based on frame-based representation of knowledge [58]. Frame languages are rather

focused on the recognition and description of objects and classes; relations and interactions

are not given the same importance. Generally speaking, “frame” in this context means

"something that can be fulfilled". For instance, object oriented languages are frame-based

languages. Examples of traditional ontology languages are Frame Logic [44], the

12

Knowledge Interchange Format (KIF) [47], Ontolingua [21], LOOM [54], the Operational

Conceptual Modeling Language (OCML)[59], and the Open Knowledge-Base Connectivity

(OKBC) [73]. Frame Logic (F-Logic) [44] is seen as the most prominent among them. It

integrates frame-based languages and first-order predicate calculus. It covers in a clean and

declarative manner most of the structural aspects of object-oriented and frame-based

languages, such as object identity, complex objects, inheritance, polymorphic types, query

methods and encapsulation. F-Logic has a model-theoretic semantics and a sound and

complete resolution-based proof theory [15]. Applications of F-Logic go from object-

oriented and deductive databases to ontologies, and it can be combined with other

specialized logics to improve the reasoning with information in the ontologies.

As Semantic Web concepts are developed and disseminated, Web-born knowledge

representation languages gather attention. W3C-endorsed languages such as XML, RDF

(Resource Description Framework) and RDFS (RDF Schema) have been used for

equipping Web content with meta-data information for machine recognition. RDF aims at

providing a mechanism for describing resources making no assumption about a particular

application domain nor the structure of the document being described. RDF Schema

(RDFS) is a declarative language used for the definition of RDF schemas. The RDFS data

model (which is based on frames) provides mechanisms for defining the relationships

between properties (attributes) and resources.

Web Ontology Language (OWL) [88] is a family of knowledge representation languages for

authoring ontologies – also endorsed by the W3C –, whose necessity arose from a review

of the DAML+OIL language [17]. OWL improves machine interpretability of Web content

compared to RDF and RDF Schema by providing additional vocabulary and formal

semantics, being usually serialized using RDF/XML syntax. OWL is considered one of the

fundamental technologies underpinning the Semantic Web, and has attracted both

academic and commercial interest. OWL allows developers to describe the relationships

between the system's classes and individuals via axioms, from which new relationships can

be inferred. This family of languages is comprised of three increasingly expressive

sublanguages: OWL Lite, OWL DL, and OWL Full. OWL DL and OWL Lite semantics

are based on Description Logics [37], which have attractive and well-understood

computational properties; OWL Full uses a novel semantic model intended to provide

compatibility with RDF Schema. Yet, OWL constraints are not powerful enough to govern

behavior of many different-class entities together.

13

The Semantic Web Rule Language (SWRL) [87] is a proposal for a Semantic Web rules

language, combining sublanguages of the OWL Web Ontology Language (OWL DL and

Lite) with those of the Rule Markup Language [82]. SWRL includes a high-level abstract

syntax for Horn-like [36] rules in both the OWL DL and OWL Lite sublanguages of OWL.

SWRL gives more power to the ontology developer once it permits to deal with more than

one class in a rule. That way SWRL rules can reach a broader range of actions and define

ontological constraints and complex behaviors more properly than pure OWL.

The OWL-S ontology [89] is an extension of OWL for describing Services. An OWL-S

description of a service comprises three parts: Service Profile, Process Model and

Grounding. The Service Profile provides a concise description of the service for the

purpose of service discovery by the developers. Besides basic information about the

service, like name and textual description, the Profile brings information relevant for its

usage by the clients: its inputs and output parameters along with the preconditions and

results (effects) of the service. The Process Model, on the other hand, provides an internal

view of the service by detailing how the clients should interact with it. It is comprised of

Atomic Processes descriptions, for simple, usually stateless request-response services, and

Composite Processes, used to describe multi-staged, stateful services. The former is akin to

current WSDL-described services, while the latter models services that interact with clients

in a sophisticated way, with support to choices, loops, parallelism, etc. Finally, the

Grounding part details how to access the service, complementing its WSDL description. It

provides the mapping between OWL-S processes and WSDL operations and the format of

the messages exchanged with the service.

2.3. AUTOMATED PLANNING

Automated Planning is the discipline of Artificial Intelligence concerned with the

elaboration of action plans for automated agents. Informally, a planning task is comprised

of problem and domain descriptions. The planning domain describes the elements that

comprise the domain – e.g., variables, constants and their relations – and the actions

applicable to the domain. Actions are described in terms of their observable behavior, i.e.,

the effects they have over the domain elements. Each action has a set of preconditions –

which must hold in order for it to be applicable at a given moment – and a series of effects

that change the state of the system. A planning problem defines the initial state the system

– i.e., what is assumed as being true before the plan executes – and the set of acceptable

14

states (goal states) the system must be after the execution of the plan. Plans are comprised

of actions, usually ordered, although a total order is not always required. Valid plans are

those where, for all actions in the plan, the preconditions hold if the order of execution of

the plan is followed. A plan is a solution for a planning problem if it is valid and accepts

the initial state of the problem (the plan's precondition holds in the initial state) and the

state brought by executing the plan is a valid goal state of the problem. The content of this

section was adapted from [25].

2.4. CLASSICAL PLANNING

In this Thesis, we used the more restricted but frequently used Classical Planning model,

along with some extensions. Classical Planning is often referred to as STRIPS planning

after the Stanford planning system and language that laid the ground for several planners

since its proposition [22]. Classical Planning can be seen as planning for a transition system

subject to a series of restrictions:

1. The system has a finite set of states;

2. The states of the system are fully observable, i.e., one has complete knowledge

about any given state;

3. The system is deterministic, i.e., for any given state, applying an action leads to one

and only one next state.

4. The system is static, i.e., it changes only by the application of some action; no other

external events change its current state.

5. The system supports only restricted goals, i.e., goals that describe the final state (or

set of final states) of the system – extended goals, on the other hand, would allow

the definition of intermediate states to be traversed by the plan;

6. The solutions for a planning problem is a linearly ordered sequence of actions;

7. The system has implicit time, meaning that actions have no durations associated to

them;

8. The planning process is performed offline, unaware of any dynamics that affects

the state of the system.

In the algorithms we developed, we relaxed restrictions 5 (restricted goals) and 6 (plans as

sequences of actions). The latter restriction was relaxed due to the option of working with

Planning Graph algorithms, which natively generate plans that consist of sequence of sets

of actions (actions in each set are independent and can be executed irrespective of order).

We relaxed the restriction 5 in the process of enhancing our algorithms to increase the

15

quality of the plans generated. These changes are explained in Chapter 5, where we

describe the algorithms in detail.

Formally, a planning domains and problems can be represented using a Set-theoretic

approach. Let 〈 〉 be a restricted transition system as described in the previous

section, where is the set of states the system can assume, is the set of actions, and

 is the state transition function. In the Set-theoretic approach, a state is given

by the set of proposition literals that are true at that state. This representation uses the

Closed World Assumption, i.e., propositions not present in the state are assumed to be

false. An action in this representation is comprised of three sets of literals: the set of

preconditions, , the action positive effects, , and its negative effects

 , with sets and disjoint. The action

 〈 () () ()〉, for example, is applicable to state

{ }, where , are the literals with truth-value in state , if and

only if () . The resulting state of applying to , i.e., () , is:

 (()) ()

A planning problem in the set-theoretic representation is a triple 〈 〉, where

is the restricted transition system, is the initial state and a set of propositions that

define the goal states. A solution to problem is a plan that takes the system from the

initial state to any state such that .

An alternative way of representing planning domains and problems, called Classical

Representation, uses predicates over domain variables instead of propositions. Assume for

example a domain where robots move around numbered locations. Instead of using

proposition literals such as – meaning that robot is at positions 1 –, a predicate

 () is defined, where stands for some robot and a location, and used for any

combination of robots and locations of the domain (e.g., ()). Action preconditions

and effects become first-order formulas over these predicates in the Classical

Representation. The truth-value of these predicates can change depending on the state –

robot moves to location and () evaluates to false now –, and therefore they

are often called fluents or flexible relations. Both classic and set-theoretic representations

have the same expressive power in the sense that a planning domain described using the

classical representation can also be equally represented using set-theoretic concepts. The

16

planning language PDDL [24], explained in Section 2.4.2, uses a notation compatible with

the Classical Representation.

2.4.1. Planning Techniques

Planning problems can be solved using a multitude of techniques, which can be grouped

according to the way they approach the planning problems. In this section, we provide a

glimpse of the existing approaches.

 State-space techniques address the planning problems in a straightforward way:

searching the state space from the initial state for a sequence of states that lead to

any of the acceptable goal states, keeping track meanwhile of the actions that

caused state changes. This direct approach is called Forward Search (since it starts

from the initial state) but Backward State-space search algorithms exist – such as

the original STRIPS algorithm – which starts from the goals and try to reach .

The sequence of actions found will comprise the resulting plan. Obviously, if the

state space is large the search can take a considerable time to be complete (but

under Classical Planning, it will eventually finish since the state space is finite). That

fact led to the development of heuristics for searching the states space more

efficiently but sacrificing completeness – STRIPS itself is an incomplete heuristic.

 Plan-space techniques approach the problem from a different perspective.

Instead of states, the search operates over a set of partial plans. It starts with an

initial plan and applies successive "fixes" – each fix results in a new partial plan in

the plan space – until a valid plan is found. Fixes include adding a new action so

that the precondition of another action already in the plan is provided, changing the

order of actions in order to prevent conflicts (e.g., the effect of one action negating

the precondition of another), etc. The solution found by a plan-space algorithm is

typically a partially ordered set of actions.

 Other techniques employ a structure called Planning Graph to model the planning

problems. The Planning Graph is a layered graph, each level comprised of

propositions and the actions whose preconditions hold at this level (i.e., the

preconditions are contained in the level propositions). The next level propositions

are given by the (positive) effects of the actions at the level above. The top-level

propositions are given by the problem's initial state, and the graph is expanded until

17

a level whose proposition set contain the goal state is reached. Once a "goal level"

is found, a backward search is performed in the graph in order to extract a plan,

which is given as a sequence of sets of actions. A more detailed description of this

procedure can be found in Chapter 5.

 Propositional Satisfiability Planning techniques try to take advantage of the

extensive research in algorithms for solving propositional satisfiability problems to

leverage automated planning. The general approach consists of encoding the

planning problem into a satisfiability problem – i.e., a Boolean expression with only

conjunctions and disjunctions of propositions – and submitting it to SAT solvers.

In case the solver finds a model – i.e., an assignment of truth values to proposition

that render the formulation true –, it is translated back to a plan.

Several other approaches for solving planning problems exist, for a complete reference see

[25]. In this Thesis, we are interested in Planning Graph-based techniques as well as State-

space search, which present interesting properties given the way we modeled the

composition problem (details in the Chapter 5).

2.4.2. Planning Domain Definition Language (PDDL)

PDDL [24] is a language for describing planning domain and problems that is widely

supported by planning tools, providing several features, depending on the degree of detail

of the domain being specified. PDDL was proposed and maintained in the context of the

International Planning Competition [40], with each new edition of IPC adding new features

to the language specification. In PDDL, the planning domain and its associated problems

are described in separated text files. The domain file contains the domain requirements (i.e.,

the features the planner must implement in order to work with that domain), the domain

objects, the predicates and the actions. Depending on the requirements, the description

may contain other elements, e.g., axiom descriptions. Examples of requirements frequently

found in domain descriptions are:

18

:strips Indicates a STRIPS-like domain;

:typing Support to object types;

:equality Support "=" as built-in predicate;

:disjunctive-preconditions Allow or in goal descriptions;

:existential-preconditions Allow exists in goal descriptions;

:universal-preconditions Allow forall in goal descriptions;

:conditional-effects Allow when in action effects;

:adl :strips + :typing + :equality +

:disjunctive-preconditions +

:quantified-preconditions +

:conditional-effects.

In Figure 2-4 we show an example of description in PDDL for the Logistics domain,

adapted from the test cases in the PDDL4J library [69]. This domain, as the name suggests,

describes a scenario where packages need to be delivered across cities and airports by using

either trucks or airplanes. Besides STRIPS support, this domain requires the use of typed

objects, as can be seen in the (:types...) statement. Following the domain types are the

predicates – (:predicates...) –, which in this example are used to determine whether a

package, truck or airplane is in some given location. The domain actions are described in

the sequence, with their parameters, preconditions and effects. Note the preconditions and

effects are logic formulations over the action parameters using the predicates described

earlier in the file. Action load-truck, for example, takes a package, a truck and a location

as parameters, and has as precondition that both the truck and package are in the location

specified. As its effect, the action load-truck takes the object from the location and puts

it in the truck.

An example of planning problem using the Logistics domain is showed in Figure 2-5. The

problem description brings the objects that exist in this problem instance in the

(:objects...) statement, declared with the types from the domain file (the mxf is an

object of type package, and airplane1 is an airplane). In the sequence, comes the

initial state description – (:init...) – which in this case puts airplanes and packages in

their initial positions (the mxf package, for example, is at par-airport airport). The goal

state defined in the (:goal...) part states the final positions of the packages, which for

the mxf package is the airport bos-airport.

19

Figure 2-4. Example of PDDL description for the Logistics domain.

(define (domain logistics)

 (:requirements :strips :typing)

 (:types

 package location vehicle - object

 truck airplane - vehicle

 city airport - location)

 (:predicates

 (at ?vehicle-or-package - (either vehicle package) ?location - location)

 (in ?package - package ?vehicle - vehicle)

 (in-city ?loc-or-truck - (either location truck) ?citys - city))

 (:action load-truck

 :parameters

(?obj - package ?truck - truck ?loc - location)

 :precondition

 (and (at ?truck ?loc) (at ?obj ?loc))

 :effect

 (and (not (at ?obj ?loc)) (in ?obj ?truck)))

 (:action load-airplane

 :parameters

(?obj - package ?airplane - airplane ?loc - airport)

 :precondition

 (and (at ?obj ?loc) (at ?airplane ?loc))

 :effect

 (and (not (at ?obj ?loc)) (in ?obj ?airplane)))

 (:action unload-truck

 :parameters

(?obj - package ?truck - truck ?loc - location)

 :precondition

 (and (at ?truck ?loc) (in ?obj ?truck))

 :effect

 (and (not (in ?obj ?truck)) (at ?obj ?loc)))

 (:action unload-airplane

 :parameters

 (?obj - package ?airplane - airplane ?loc - airport)

 :precondition

 (and (in ?obj ?airplane) (at ?airplane ?loc))

 :effect

 (and (not (in ?obj ?airplane)) (at ?obj ?loc)))

 (:action drive-truck

 :parameters

(?truck - truck ?loc-from - location ?loc-to - location ?city - city)

 :precondition

 (and (at ?truck ?loc-from) (in-city ?loc-from ?city)

(in-city ?loc-to ?city))

 :effect

 (and (not (at ?truck ?loc-from)) (at ?truck ?loc-to)))

 (:action fly-airplane

 :parameters

(?airplane - airplane ?loc-from - airport ?loc-to - airport)

 :precondition

 (at ?airplane ?loc-from)

 :effect

 (and (not (at ?airplane ?loc-from)) (at ?airplane ?loc-to)))

)

20

Figure 2-5. Example of problem description in PDDL for the Logistics domain.

2.5. SUMMARY AND DISCUSSION

In this Chapter, we introduced the fundamental concepts used in the development of this

Thesis: Service Oriented Computing – including Service Composition – and Automated

Planning. Semantic Web concepts were presented in order to educate the reader on the

subjects of ontologies and service descriptions, although descriptions of services using

standard ontology languages (such as OWL-S) were not used in this Thesis. The next

Chapter brings the State of the Art on Automated Service Composition techniques.

(define (problem pb1)

 (:domain logistics)

 (:objects mxf - package

 avrim - package

 alex - package

 jason - package

 pencil - package

 paper - package

 april - package

 michelle - package

 betty - package

 lisa - package

 airplane1 - airplane

 airplane2 - airplane

 lon-airport - airport

 par-airport - airport

 jfk-airport - airport

 bos-airport - airport)

 (:init (at airplane1 jfk-airport)

 (at airplane2 bos-airport)

 (at mxf par-airport)

 (at avrim par-airport)

 (at alex par-airport)

 (at jason jfk-airport)

 (at pencil lon-airport)

 (at paper lon-airport)

 (at michelle lon-airport)

 (at april lon-airport)

 (at betty lon-airport)

 (at lisa lon-airport)

)

 (:goal (and

 (at mxf bos-airport)

 (at avrim jfk-airport)

 (at pencil bos-airport)

 (at alex jfk-airport)

 (at april bos-airport)

 (at lisa par-airport)

 (at michelle jfk-airport)

 (at jason bos-airport)

 (at paper par-airport)

 (at betty jfk-airport)

)

)

)

21

Chapter 3 Automated Composition Techniques

In this Chapter, we present a compilation of the most relevant approaches in literature for

Automated Service Composition. These works where organized according to the

techniques they use to address the composition problem. In the end of the chapter, we

present a discussion on the works presented here.

3.1. PLANNING GRAPH

The work in [97] proposes a service composition technique based on matching the services

input and output parameters described in their interfaces. In that approach, services are

described using the early service ontology language DAML-S [4] (current OWL-S [89]).

The composition developer needs to provide the set of input and output parameters for

the composition and the algorithm try to find a sequence of service invocations that,

starting with the input parameters, provides the intended outcomes. The algorithm

performs a forward, looking for services that have the input parameters matching all or

some of the inputs initially provided. Then the outputs of the services found are added to

the set of available inputs and a new discovery step is performed. The process is repeated

until all original outputs are returned by discovered services or in case no progress is

achieved (no more services are found that match the available inputs). The result of these

steps is akin to a weighted Planning Graph , where the services found are connected

according to the dependence of input/output parameters. During the process of service

discovery, a similarity value is used to measure how compatible the available parameters

and those required by the services are (i.e., if the data types are identical there is an exact

match with value 0, higher values otherwise). The similarity is used to weight the links

between services. The next step consists of identifying the final composition in the

Planning Graph. The graph contains subparts that lead to no valid solution (i.e., none of

the outputs), but also several solutions may exist. The proposal in [97] uses the Bellman-

Ford algorithm to find a sequence of services in the graph for the simpler one-input/one-

output case. The algorithm tries to find the path with minimal total weight from the input

to the output parameters. For the more general case where several input and output

parameters are specified, the authors of [97] suggest applying the Bellman-Ford algorithm

to inputs and outputs pairwise, and then combining the paths found; no further details on

this procedure were presented. Values other than the similarity measure can be used as

22

weight, for example, QoS measures (response time, availability, etc.), as proposed in [97].

An approach very similar to [97] is presented in Arpinar et al. in [5] while adopting an

incremental, semi-automated composition strategy, where the user is asked at each

discovery iteration which available input parameters should be used or discarded. The

authors of [97] also describe a distributed version of the composition algorithm using peer-

to-peer (P2P) technologies.

In the work in [95], Yan and Zheng argue that traditional approaches for automated service

composition do not scale well for problems of significant size. Based on this premise, they

employ a Planning Graph-based approach to take advantage of the polynomial complexity

of graph construction. The services in this work have OWL descriptions attached to them,

and the semantic information on the service's inputs and outputs is used for matching the

services during the expansion of graph. Instead of performing a backward search in the

Planning Graph once a level containing the goal outputs is found, the authors of [82] focus

on minimizing the number of unnecessary services added to the graph during its

expansion. For that end, they apply several strategies, for example, not adding a service at a

given level of the graph if its outputs were already provided by another service in the same

level or any level above. In the end, their algorithm renders a composition that fulfills the

goals but can still contain redundant services. Nonetheless, the use of only the services'

input and outputs, as described in [82], implies that no mutual exclusion relations between

services exist in the resulting Planning Graph. In such conditions, the standard backward

search can be performed quickly since it does not backtrack, diminishing the need for

strategies presented in related research used to limit the graph size.

3.2. LOGIC PROGRAMMING

In [57], McIlraith et al. proposed the use of Situation Calculus [72] and the logical

programming environment Golog for implementing service composition. Situation

Calculus is a logical formalism suitable for modeling composition problems since it

supports the idea of actions – with preconditions and effects – that once executed trigger

the change from one situation to another (situations are akin to states but formally

represent sequences of action invocations). In [57], the composition processes is based on a

set of manually written generic procedures and a set of user constraints on desirable states.

The procedures contain actions equipped with preconditions, i.e., state the system should

be before action execution. An order operator “ ” is introduced to state that one action

23

should precede another (e.g., “ ”), allowing other actions to be inserted in between

automatically as long as the actions’ preconditions hold (for example, “ ” becomes

“ ”). The operator is used by the modified Golog interpreter to interpolate

actions in the generic procedures in order to meet the specification of the composition

developer. An automated planning strategy using the A* algorithm is used to find the

intermediate actions. The composition produced by the algorithm may contain sensing

actions, which sense the current system state, for example, in case the value of some

variable is unknown. The sensing actions trigger the invocation of services in composition-

time, (the authors of [57] assume most Web services are information-providing services).

Sohrabi et al. [78] extended the approach in [57] with developer preferences on the

intermediate states the service composition could assume. For example, in a Travel

scenario, the developer can specify that the composition should not book the air ticket

before having a confirmation that the hotel room was reserved. These approaches,

however, required the developer to look at the pool of generic procedures available and

find the one the fits his/her needs, what hinder their usability.

3.3. HIERARCHICAL TASK NETWORKS

At the core of work in [92], Wu et al. used the SHOP2 planner [62] to automatically

compose service based on services’ inputs, preconditions and effects (modeled as del-

conditions and add-conditions, which tell the literals that will become false and true after

execution, respectively). The SHOP2 planner is a Hierarchical Task Network planning tool

that takes advantage of the inherent hierarchical structure of plans: high-level tasks can be

decomposed into a few smaller abstract tasks, which are further divided successively until

atomic tasks are found [62]. The authors used the Process Model in DAML-S descriptions

(currently OWL-S Process Model) of the services to derive abstract methods used by HTN

planner. The Process Model of a service tells how the clients and the service have to

interact, i.e., which steps the service follows and what it expects from the clients at each

step. Conditional branching and iteration, among other control constructs, are supported in

the Process Model. The authors of [92] separate tasks into informative (e.g., “consult ticket

price”) and world-altering services (e.g., “book ticket”). During planning, informative

services are invoked to allow the planner to make decisions on which execution path to

follow. The final plan, however, contains only world-altering services, which are not

executed in planning time.

24

Lin et al. present in [53] an approach similar to that in [92] – combining HTN with OWL-

S Process Models –, but adds support to user preferences. The preferences are specified

using PDDL3 [23], and allow the developer to prioritize certain system states, e.g., telling

which subgoals have to be achieved first. Their algorithm, called SCUP (Service

Composition with User Preferences), combines HTN with best-first search, and tries to

minimize the penalty of violating the preferences defined by the developer. Klusch et al.

[46] also present a HTN based approach where the WSC problem is translated to a PDDL

description and an HTN planner is used to solve the problem. All these approaches,

however, have the drawback of using the Process Model of OWL-S descriptions, which is

more complex and likely to be less frequently available than the Service Profile, which

describes the service observable behavior (i.e., inputs, outputs, preconditions and effects).

Also, while the use of the Process Model makes sense for services with complex

interactions – i.e., services that require the client to make several invocations to obtain the

end result –, it is less useful for more common request-response services.

3.4. CONTINGENCY PLANNING

Agarwal et al., propose Synthy [1], a two-stage composition approach. Synthy groups

services in types, in order to increase scalability. The first stage consists of finding a

composition based on service types, i.e., instead of connecting the services directly, abstract

types are used as placeholders. The authors use the Planner4J tool, for performing the

composition itself. Services are equipped with preconditions and effects described in

OWL-S. Preconditions and effects are defined as sets of literals that hold before and after

service execution, respectively. The service's preconditions and effects are used to group

services into types: a service belongs to a type if its preconditions are more generic than the

type’s preconditions and its effects are more specific than the type’s effects. The Planner4J

is planning framework supporting several planning strategies, including classical algorithms

and HTN. It can also compute several solutions to a single request, allowing for alternative

compositions in case of failure. In [1] a contingency planning strategy was used.

Contingency planning assumes that the system state may be unknown at certain points, in

opposition to the complete knowledge premise of classical planning. To handle the

uncertainty, the planning algorithm adds sensing actions and decision points in the plans it

generates. The sensing actions collect information from the environment in order to make

clear the current state of the system (for example, the value of some variable that is

unknown), what enables a decision of which plan path to follow next during plan

25

execution. The second stage of the composition process consists of selecting at runtime the

instances that are going to be executed based on the non-functional goals, for example,

response-time. This approach decouples functional and non-functional requirements of the

composition, also providing greater flexibility when executing the plans. According to the

authors, the overall complexity of the approach is (), where is the number of

alternative plans to be computed, is number of service types and the maximum number

of actions per plan.

A similar approach is presented by Akkiraju et al. [2]. The authors called it SEMAPLAN,

and it combines AI Planning with Information Retrieval techniques for improving planning

speed. A forward planning heuristic based on the A* algorithm is used. Services are

modeled with pre- and postconditions (effects) in the same manner as in [1] (sets of

literals), and similarly several plans are generated. Indexing techniques are applied to

services in order to speedup service discovery by the planner. Authors also gave extra

attention to multi-domain ontological compatibility, which differentiates them from the

work in [1].

3.5. PLANNING AS MODEL CHECKING

Traverso et al. [83] use the Process Model of OWL-S descriptions associated to services, as

in [92] and [53], in order to perform service composition. The Process Model of each

service is mapped into a nondeterministic (i.e., an action may have several outcomes),

partially observable (i.e., only part of the system state is visible externally) labeled transition

system. A Model Checking planning strategy is used to interleave the services transition

systems and achieve the goals specified by the user. The work in [83] also supports

complex goal descriptions, using a language created for that purpose called Eagle. Complex

goals allow the user to define, for example, the primary goal of the composition and a

secondary goal in case the primary goal fails. Executable BPEL code is generated as the

final result of the composition process. This approaches suffers with the same drawbacks

of [92] and [53] of depending on the Process Model of services for its composition

procedure.

3.6. SERVICE DEPENDENCY/CAUSAL MATRIX

The idea of preprocessing the service repository is explored by Lécué et al. in [50]. A so-

called Causal Link Matrix is built before any request for service composition. The CLM

26

opposes input (rows) and output (columns) parameters and has all available parameters at

each dimension. Each matrix cell relating two parameters contain a list of services that

connect them (i.e., one as input and the other as output of the service), each entry followed

by the semantic similarity of the actual service output to the cell output. Once built, the

CLM is used in the composition process, which traverses the matrix from inputs to outputs

to build the service composition. The complexity of building the CLM is (), where

 is the total number of parameters and the number of services in the system, plus the

cost of updating it every time a service is added or removed. Omer et al. [66] also

considered the use of a dependency matrix (DM) for computing the composition. In [66],

the DM is computed on demand based on the services that match the input and outputs

provided. The work in [66] takes for granted the task of finding theses services, not taking

the discovery complexity into account.

3.7. AUTOMATED THEOREM PROVING

More recently, McCandless et al. [55] proposed the use of automation to generate semantic

service descriptions prior composition, in contrast to previous proposals that assume a

manual description process. In [55], existing tools were used for extracting ontologies from

WSDL descriptions and aligning them in order to have common dictionaries among

services. The OWL-S ontology was used to describe the service's semantics. For the service

composition itself, the service creation query (input and output parameters) is translated

and fed into the automated proof tool Prover9 [71], which use the service descriptions as

axioms to find a proof that connects the inputs and to the outputs provided. The proof is

later translated into a BPEL script for deployment and execution.

3.8. GENETIC ALGORITHMS

A different approach for service composition is proposed Rodríguez-Mier et al. [75], where

the authors try to address the lack of control structures in the compositions found by other

approaches. The control structures supported by the algorithm in [75] are: choice

(nondeterministic), loops, sequences, splits (parallelism) and splitJoin’s (parallelism with

synchronization at the end). The authors of [75] estimated the complexity of finding such

complex composition as being (), where is the number of services, is the

number of control structures and is the maximum depth of the composition (longest

execution path). In order to tackle this complexity, they used an evolutionary approach

based on genetic algorithms. A context-free grammar containing the control structures was

27

used to model valid composition skeletons. These skeletons were generated randomly (with

limited depth) and formed the initial population of the genetic algorithm. Services from the

repository were attached to the skeletons so that individual control structures had their

input and output constraints filled in and complete the compositions. The fitness of each

individual of the population (i.e., composition skeleton with attached services) depended

on the functional adequacy – whether the services and control structures combined

provided the desired outcomes –, and also on the composition depth and number of

services. Several generations were necessary to obtain the final composition, with the best

individuals being selected pairwise to generate offspring (mixed compositions) subject to

random mutations (e.g., control structures replaced). At every round, the worst individuals

of the population were eliminated to keep the number of individuals constant. Experiments

with several scenarios – with queries requiring from simple sequences to complex

sequence-split-splitJoin combinations – were presented (the repositories OWL-S TC [67]

and from the Web Services Challenge (WSC) 2008 [90] were used). In the experiments,

with populations limited to 100 individuals and 100 generations, the most complex cases

took around 1min30s to complete in a quad core processor, 8GB machine. The

compositions found were correct in all cases. Although yielding good results, the scenarios

tested required only sequential and parallel execution that could be obtained by direct

algorithms (for example, combining execution path and letting non-dependent services be

executed in parallel). No concrete scenarios using choice (if-like constructions) or loops

were presented.

3.9. SUMMARY AND DISCUSSION

As seen in the previous sections, the most common approach to automated composition

employs AI-based planning tools (for example, [97], [1], [2], and [92]), in order to find

execution plans that, in the end, will make up the service composition. Most of the

approaches in this chapter work similarly, requiring the specification of initial and final

states in order to derive a path of services that meet these requirements. The services

should also provide some kind of semantic description its effect in the system state in order

for them to work.

Several works listed in the previous section compose services using only the services' input

and output parameters described with semantically enhanced types (see [97], [82], [50], [66]

and [55]). The new composition is described in terms of what it should receive as input and

28

what result it should render at the end. Services are connected together so that one service

output(s) can be used as input(s) to the next service (or any following service) and so on,

provided that parameter types match. In this kind of approaches, the more meaning the

parameters types carry, the more precise will be the composition found. For example, when

the composition procedure is looking for a service that accepts an and returns

the , the correct (hypothetical) service is likely to be

found. On the other hand, a composition process based only on primitive types can

combine completely unrelated services. For the previous example, assuming

 is a character string and is a double-precision Real,

services such as or even are possible

matching candidates. A shared library of semantically described data types is an important

puzzle piece in these approaches, and ontologies are the natural tool for the job. While the

Web Ontology Language (OWL) provides the means for describing concepts and relating

them together, its service extension OWL-S allows for binding service parameters to those

concepts. Further, a semantic-based discovery service is needed in order to find services

that individually meet the requested input and output types. The discovery procedure

compares the data types from the query (those being looked for) and the available services

looking for semantic similarities: exact matches (same concept in the ontology), sub- or

superclass matches, sibling matches (specialization of same superclass), etc. Partial matches

(non-exact) are useful to generate approximate compositions. Proposals for semantic

service discovery are presented in [31] and [45], among others.

Service composition using preconditions and effects – besides input and output parameters

–, is a very powerful approach that can, in theory, find correct-by-construction execution

plans that meet the developer’s requirements This approach, employed by [57], [78], [92],

[53], [46], [1], [2], [83] and [75], has a few practical obstacles in order to be put in

production scenarios. There is the need for complete formal descriptions of each service,

sometimes requiring a detailed description of service interactions as in [57] and [83], for

example. These descriptions must be as detailed and as correct as possible in order to

ensure that sound compositions are rendered. Finally, the ability to write descriptions using

logic formalisms is not a typical skill of service developers, more accustomed to object-

oriented languages and graphical IDEs.

Composition methods based on simple I/O (Input/Output) matching share some

drawbacks with the most complete IOPE (Input, Output, Precondition and Effects)

29

methods. I/O composition is not as powerful as IOPE approaches since only the type of

parameter is matched, not the parameter state. I/O matching, on the other hand, can be

mimicked by state-based approaches with relatively simple logic tweaks, for example, the

service’s precondition may require the availability of input parameters (e.g.,

 ()), while effects state that the service's outputs are

available after execution. In practical situations, however, I/O-based composition seems

more appealing to developers or even non-technical users given its simplicity and similarity

to a production chain. For this reason we opted to focus on automated composition

techniques based on input and output parameters; the need for more sophisticated, pre-

and postcondition-based composition is a subject for future work.

30

Chapter 4 Reverse Engineering Compositions

Semantic description of services is a key part of the automated composition process. The

semantics allow the algorithms to decide whether a service is appropriate for a specific task

or not. As discussed in Chapter 1, however, semantic descriptions are not commonly found

with services, which provide only syntactic descriptions of their interfaces. In order to

tackle this problem we present in this chapter a process for gathering semantic information

from existing services based on their usage patterns. Our process consists in analyzing a

repository of existing service compositions – the myExperiment project [26] –, from which

the relationships between services can be extracted to be later used for creating new

compositions. The semantics we are interested here are new knowledge about the services

and their relationships that can help reducing the search space and produce new

compositions more similar to the ones created by human developers.

This Chapter begins introducing the formal definitions of service and composition used in

the remaining of this Thesis. After that, the information extracted from the composition

repository is described in details. Then the reverse engineering process is applied to an

existing repository of scientific compositions (or "workflows"). This repository is the basis

for the evaluations and experiments presented in this Thesis. A summary of the chapter

and discussion follows after that.

4.1. COMPOSITION AND SERVICE MODELS

For the purpose of this Thesis, a service is defined as follows:

Definition 4-1 (Service) A service is a tuple 〈 〉 where:

 is an unique service identifier;

 { } is the set of input parameters;

 { } is the set of output parameters;

 () is a function that maps a parameters into a parameter type

from the set of types .

□

The service identification allows different services with the same number and types of

parameters to be used. The set of all services is identified by . A service can be invoked

more than once in the same composition and, therefore, we need to model individual

31

service invocations. A service invocation is an instantiation of a service and its parameters

and represents the act of calling the service.

Definition 4-2 (Service Invocation) An service invocation is defined as

 〈 〉, where:

 is an unique invocation identifier;

 is the service being invoked;

 (
) is the set of input parameter instances;

 (
) is the set of output parameter instances.

□

The construction () {() } provides instances of parameters in

the set associated with some invocation or to a composition . Parameter instances

are occurrences of a service parameter associated to a given invocation of that service. In

order to identify parameter instances uniquely we use an ordered pair containing the

invocation (or composition) identifier, , and the parameter itself.

The data flows between service invocations through parameter assignments. An assignment

connects an output parameter instance of a service invocation to an input parameter

instance of another invocation, meaning that the value returned by the first invocation will

be passed as an argument to the second. Invocations can be executed in parallel as long as

they do not depend on each other, that is, there is no assignment from one invocation’s

output to the input of the others.

Definition 4-3 (Parameter Assignment) A parameter assignment is an ordered pair

 (), where () and

() are parameter instances associated to two service invocations or the

composition itself, and .

□

Finally, a service composition (or simply "composition") is defined akin to a service

invocation (Definition 4-2):

32

Definition 4-4 (Service Composition) A service composition is defined by the tuple

 〈 〉, where:

 is the composition unique identifier;

 〈

〉 is the service associated with composition ;

 (
) is the input instances of ;

 (
) is the output instances of ;

 is the set of invocations that comprise ;

 is the set of parameter assignments that connect the invocations in .

□

Since a composition is also a service, it has a service associated with it that defines the

composition interface, i.e., its input and output parameters. As the invocation, a

composition also contains the associated parameter instances, and , which serve as

the data entry and exit points. The composition extends the invocation model by adding

information about its internals: the set of invocations it contains, ; and the

assignments connecting them, . Assignments also connect the input instances of

the composition to the input of an invocation, or the output instance of one invocation to

an output of the composition.

Definition 4-5 (Valid Composition) A composition is said to be a valid composition if

and only if all the following hold:

1. All parameter assignments involve only invocations within the composition, or

the composition itself:

 () () ()

Where:

 () and ();

 () [() ()].

2. All output parameters of are assigned:

 ()

3. All service input parameters are assigned for every invocation:

 ()

4. There are no multiple assignments for one given input parameter instance in the

same invocation:

 () ()

33

5. There are no self-assignments, i.e., no input and output instances of the same

service invocation are assigned to each other:

 ()

6. All assignments respect type compatibility (type compatibility is discussed in more

detail in the next section):

 () ()

 () ();

7. The composition is a Direct Acyclic Graph (DAG), containing no cycles

involving invocations, i.e., an invocation cannot precede itself. A formal definition

of precedence is given in Section 4.2.2.

□

The concept of valid composition is useful for filtering out defective compositions present

in the composition repository during the reverse engineering process, which is described in

the next section.

4.2. EXTRACTING INFORMATION FROM COMPOSITIONS

4.2.1. Parameter Analysis

The goal of parameter analysis is to determine when a parameter – usually the output of a

service – can be passed as input to another service. Parameter compatibility is based on the

types involved, and in strongly typed languages such as Java and C/C++, it is solved easily

in compilation time based on the existing type hierarchy. However, when dealing with

services from different sources, it may be difficult to establish such compatibility. In our

case, we have a set of existing compositions and we want to build an approximate type

hierarchy from it. The type hierarchy, in its turn, can be used by developers as an

automated composition process to derive new compositions.

In typical Object Oriented languages, a parameter of a more specific type can be

passed as input parameter of a more generic type , i.e., provided that is a subtype

of (directly or inderectly), is compatible with . This relationship can be

seen as a set containment relationships where , that is, all parameters that

belong to set also belong to set .

In order to extract the relationships between parameter types from the compositions we

analyzed the assignments of service outputs into service inputs and added the

34

corresponding compatibility relationships to the type hierarchy. Figure 4-1 illustrates this

process for two sample compositions. The resulting type hierarchy, inferred from the

assignments between services, is shown in the right-hand side of Figure 4-1. In this figure,

Service 1 has one output parameter of type "E" which is passed to services 2 and 3 as

parameters of types "D" and "B" respectively; the other service connections follow suit.

Figure 4-1. Type hierarchy generated from 2 sample service compositions.

Formally, the type hierarchy can be defined by the predicate (), where

and are types, which is read " is a subtype of ". The predicate () is

defined using function , which provides de number of

occurrences of assignment from type to type in all compositions in the database. This

function is defined as:

 () {
 ()

 (4-1)

Where:

 () ∑ ()

 (4-2)

 ()

 |{() ()

 () }|

(4-3)

Equation (4-3) gives the number of assignments between the given types for a single

composition . The condition for types and to have a sub/super-type relantionship is

that the number of occurrences of assignments from to being greater than , an

integer constant defined by the developer. In our experiments equals zero, meaning that

a single assignment in only one composition implies that the types are related. A more

conservative developer could set to 1 or 2, for example, so that wrong assignments

Composition 1 Composition 2

Service 1

E

Service 2
D

B
Service 3

B

Service 4
A

Service 5

C

Service 6
A

Type A

Type CType B

Type D

Type E

Type Hierarchy

X

35

(assumed to be less frequent that correct ones) would not pollute the type hierarchy, but

with the expense of some correct assignments being left out. Another possibility – yet to

prevent mistaken type relations – would be considering only assignments that occur in

more than one composition (or, if the information is available, in compositions from

different users). These variations, however, were not investigated in this Thesis.

4.2.2. Service Analysis

The purpose of the service analysis is to extract meaningful relationships between services

based on their usage in the composition database. We are especially interested in

relationships that can be used and render improvements in the automated creation of new

composition.

The first relationship explored relates services used in the same compositions. Two services

are said to be "related" if they are present in one more compositions. Let be the set

containing all compositions in our repository, the predicate () is defined as

follows:

 () {

 (4-4)

Where:

 { } (4-5)

From this definition follows that () (). This relation defines

an undirected graph with the services as vertices. Each new composition that is analyzed

creates a clique in this graph, i.e., all services in the composition are connected to each

other.

Another interesting relationship is the one where services have direct dependencies within

compositions, i.e., services whose input and output parameters are directly connected. This

relationship is given by the predicate (), read " depends on ", which

applies to the whole set of compositions. The relation holds even if the dependency

happens in only one composition. () is formally described as:

 () {
 ()

 (4-6)

Where:

36

 () ⋃ ()

 (4-7)

 () {
 () } (4-8)

 () ⋃ ()

(4-9)

The function () in equation (4-6) provides the set of services that

depends on for all compositions; () does the same for a specific

composition while () gives the invocations instead of the services.

 is the set of invocations of service in composition . () lists the

invocations that invocation depends on in the composition.

A stricter version of this relationship, (), includes only the cases

where the dependency manisfets itself in all compositions. In this case, we have alternative

versions of () and
 () where the unions are replaced by intersections.

Another relationship explored is the precedence relation, () (" precedes

 "), that happens when service appears in the execution sequence of the composition

before service . Since the composition, as defined in Section 4.1, does not carry service

ordering explicitly, precedence is defined in terms of the dependency of input parameters.

In other words, precedes if, for any given composition, any input of depends on

an outputs of (i.e., () holds) or precedes any of the services

depends on. It can be described as:

 () {
 ()

 (4-10)

Where:

 ()

 {
 () (() ())

(4-11)

As for the () relationship, the precedence relation can be made more restrictive

if we consider that the relation holds only if the precedence happens on all compositions,

not being sufficient holding for only one composition as before. This new relation,

 (), is defined as:

 () {
 ()

 (4-12)

37

The relation in equation (4-12) can be very helpful in automated composition since it

establishes a precondition-like relationship between the services, which can be used to

prune the search space and produce more accurate solutions. A relaxed version of this

relation can be defined with the help of the () function,

 , defined in equation (4-13), which gives the percentage of compositions where

precedes (compared to the number of compositions that contain). Then, a service

can be said to be a prerequisite for if () passes a given threshold.

 ()
|{ ()}|

|{ }|
 (4-13)

4.3. CASE STUDY: THE MYEXPERIMENT REPOSITORY

In this section, we describe the application of the reverse engineering process described in

Section 4.2 in a real service composition repository: the myExperiment social network for

scientific workflows. In the myExperiment repository, service compositions are called

workflows, and therefore the terms "composition" and "workflow" are used

interchangeably throughout the remaining of this Thesis. We used the workflows from the

myExperiment repository to validate our algorithms and evaluate automated planners from

the literature.

4.3.1. The myExperiment Workflow Repository

The myExperiment project [26], [60] provides a social network of scientists that collaborate

and publish intensive data-processing workflows, especially in the biological sciences field.

The project aims at facilitating the creation and exchange of scientific workflows among

scientists for leveraging their research. More than 5000 members have joined the project

and published over 2000 workflows since 2007 [60]. myExperiment is part of a group of

partner projects that emerged from the myGrid initiative [61], which also includes

BioCatalogue [10] and Taverna [81], among others. These projects have complementary

roles in the scientific workflow production chain. The BioCatalogue project offers a

repository of services for biological sciences. These services can be tied together to form

new workflows using the Taverna workbench. The new workflows are published in the

myExperiment website, which connects researchers and promotes knowledge exchange.

The next section details the Taverna tool and its workflow format.

38

4.3.2. The Taverna Workbench and Workflow Format

The Taverna Workbench [39], [81] is a graphical IDE for developing scientific workflows.

It integrates with BioCatalogue and myExperiment, allowing service information retrieval

and publishing the workflows from within the development environment. The IDE uses its

own XML-based formats: Taverna 1 (T1, older) and Taverna 2 (T2, new format). This

Thesis only uses and refers to workflows in the T2 format. Figure 4-2 shows a screenshot

of the Taverna Workbench with a workflow being edited.

Figure 4-2. The Taverna Workbench.

Both Taverna formats are dataflow oriented, i.e., they focus on the data connections

between processing elements instead of the precise order of execution of the tasks, as in

most composition languages. Dataflow compositions (e.g., a T2 workflow), however, can

be easily translated into imperative representations (e.g., a BPEL script) as long as the input

and output dependencies between tasks are respected in the final task execution sequence.

A Taverna Workflow is comprised of one or more Dataflows; one main dataflow and other

auxiliary dataflows that can be called from within the main one. Dataflows, in their turn,

contain Processors and Datalinks. Processors are elements responsible for executing data

processing tasks, while a datalink represents the connection between processors through

their ports. The datalink Source is an output port of a processor and the datalink Sink is an

39

input port of another processor. Input and output ports are the data entrance and exit

points to and from the processor. Dataflows also contain ports, which are connected to

processor ports via datalinks. Inside a Processor, there exist one or several Activities.

Whenever two or more activities are present in a processor, this is for the purpose of

failure handling or parallelism. These cases, however, were not taken into account in the

analysis of the workflows.

Activities are the de facto atomic tasks of the Taverna workflow and encapsulate different

task types, one of them being Web Service invocation. Other types of activities include

script activities (java-based), querying biology databases, XML processing, among others.

Other activity types can be created by third-party developers. All activities have to map the

specific task inputs and outputs – being a Web Service, Script or other embedded activity –

to the input and output ports of the processor they are contained in. Data types are not

explicitly dealt with in Taverna, i.e., processor port and activities parameters have no type

assigned to them. Figure 4-3 below shows the structure of a Taverna dataflow.

Figure 4-3. Structure of a Taverna workflow.

Dataflow1

Processor1

P2

P3

Activity1 A2

Processor

Activity

Input
Parameter

Datalinks

Output
Parameter

Parameter/Port
mapping

Dataflow
Input Ports

Processor
Input
Ports

Processor
Output
Ports

Dataflow
Output Ports

40

4.3.3. Analysis of the myExperiment Repository

In this section, we detail the steps taken to analyze the myExperiment workflows. The

workflows are publicly available and can easily be obtained via Web Browser or automated

HTTP fetching tools. We analyzed the workflow following the steps described in Section

4.2 to obtain the semantic information about the services. Some decisions and

compromises where made in order to have a dataset that was comprehensible yet simple to

handle in practice:

 Only Taverna 2 workflows were used;

 Workflows containing features that do not contribute to the problem of service

composition – namely, workflows with nested dataflows and those with processors

containing more than one activity – were not used.

 Control structures inside the workflows were not taken into account (e.g., ordering

structures that define that a processor should be executed before another one, even

though they do not have an input-output relationship, were ignored).

 Malformed workflows were excluded from the dataset (i.e., workflows with syntax

errors or whose resulting composition is not valid according to Definition 4-5).

By using only Taverna 2, we end up with 570 workflows, from the initial 2000+ available in

the repository. The number of "good" workflows – those that meet the conditions listed

above – is 425. This final set of workflows was used in remaining of this Thesis.

Taverna workflows contain activities of various types – classes in Taverna terminology –,

not only Web Services invocations. In this work, we opted for using all kinds of activities

as if they are regular services, not only proper Web Services. Our goal was to be able to

build a complete composition out of the pieces in the repository, and for that end, it was

necessary to have these additional types of tasks available. In our experience dealing with

Taverna workflows, we noted that these accessory tasks represent in fact a great part of real

workflows, helping preprocessing and reformatting data to and from the Web Services

(examples of activity classes that perform such tasks are XMLInputSplitter and

XMLOutputSplitter). From the practical point of view of the semantic extraction process,

the extra effort needed was minimal. Some extra care was necessary in order to ensure that

one activity used in one workflow was the same (or not) used in another. The activity type,

input and output parameters and extra information (depending on the activity type, for

example, the WSDL URL for Web Services and database name for Biomart activities) were

used to generate unique identifiers. In the end, the total number of services gathered from

41

workflows was 1094, 211 of which were SOAP/WSDL Web Services (19%) and 22 were

RESTFul Web Services (2%).

Although for the myExperiment ecosystem there was the possibility of including

BioCatalogue services in the repository we opted to keep the set of services restricted to

those gathered from workflows in order to have a simpler – also more constrained –

scenario. The use of external service repositories to help the composition process is

planned for the continuation of this work.

Figure 4-4 presents the histogram of the number of service invocations per workflow. This

figure helps visualizing the size of the workflows in the database. The majority of

workflows make ten or less service invocations, with the frequency decreasing consistently

for higher number of invocations. Almost all workflows need less than 35 invocations to

accomplish their tasks – 424 workflows or 99.8%. Only in one extreme case, 56 service

invocations were used.

Figure 4-4. Histogram of the number of service invocations per workflows.

Looking at the Web Service usage histogram of Figure 4-5 it is possible to see the low reuse

of services: 80% of them were employed in a single workflow. This level of service reuse is

also observed in service repository as a whole, with only 23% of the services being used

more than once.

42

Figure 4-5. Histogram of the number of workflows that use each Web Service.

4.3.4. Reverse Engineering Results

4.3.4.1. Parameter Compatibility

The parameter analysis in the myExperiment repository has its own challenges due to the

need of including all activity classes. This happens because most activity classes in Taverna

have no proper parameter typing; only for Web Service activities, it is possible to obtain the

parameter type by analyzing the corresponding WSDL description. Therefore, it was not

possible to establish a hierarchy of types, as described in Section 4.2.1. One way to deal

with this problem would be to assign a generic type – "string", for example – to all

parameters with unknown type. This would allow any parameter interactions, i.e., outputs

of an activity could be used as input to any other activity. Instead of using this permissive

approach – which would make computation more expensive and solutions less reliable –

we opted to have each parameter, either input or output, belonging to its own type. The

parameter type, in this case, is determined by the parameter and the service identifiers, e.g.,

for service called " " whose first parameter is " ", the resulting

type is identified as " ". For the parameters associated with

Web Service invocations, the type used was that present in the WSDL description, however

no attempt was made to relate WSDL-described types to each other based on their internal

structures.

Using automatically generated parameter types, as described above, the relationships

between types have the form "input-type is compatible to output-type". Since input

43

parameters cannot be connected to other inputs, the same being true for outputs, relations

of the form "input-type is compatible to input-type" and "output-type is compatible to

output-type" did not exist. The resulting structure is better described as a Parameter

Compatibility Matrix (PCM) instead of a type hierarchy, which relates all services'

parameters and tells whether an output can be connected to an input. We extended this

matrix to contain not only the binary relation ("compatible or not") but also the number of

times the input and output parameters were connected in different workflows. This

number can be used, for example, to rank the output parameters that match certain input

based on how frequently the connection output-input was used by other developers,

although in our experiments we were interested only in the binary relation. An example of

PCM for a simple banking scenario (fictitious) is shown in Figure 4-6. In this example, the

parameter of type can be assigned to parameters of type

 since in two compositions; the output of service

 was connected to the input parameter of service .

The same reasoning follows for the remaining cases in the matrix; blank cells are used to

denote incompatible parameters, i.e., assignments that did not occur in the compositions.

Output Parameter Types In
p

u
t

P
ar

am
e

te
r

Ty
p

e
s

G
et

B
al

an
ce

_
A

cc
o

u
n

tN
u

m
b

er

Se
tB

al
an

ce
_A

cc
o

u
n

tN
u

m
b

er

Se
tB

al
an

ce
_N

ew
B

al
an

ce

G
et

A
cc

o
u

n
tN

u
m

b
er

_C
P

F

...

GetBalance_Balance 2

SetBalance_Status

GetAccountNumber_AccountNumber 1 3

GetCPFbyName_CPF 4

...

Figure 4-6. Parameter Compatibility Matrix for a simple banking scenario.

After analyzing the set of compositions, we extracted a total of 1568 input and 1422 output

parameters, what prevents us from presenting the complete compatibility matrix in a

readable way. The resulting compatibility matrix is very sparse, with only 0.06% of the

possible output-input assignments present (with 1404 unique assignments, i.e., disregarding

repeated assignments). An input parameter is assigned in average 1.6 times, with one case

44

counting 681 assignments (from 282 different services). Each output parameter is used 1.5

times on average, and 55 times in the extreme case (29 unique services).

4.3.4.2. Service Relationships

In order to allow the visualization of the service relationships we used a reduced set of 100

workflows (the first 100 from the dataset) to generate the graphs shown in this section.

Some graph statistics were computed for both the reduced and the complete set of

workflows using the graph visualization and analysis tool Gephi [7]. These statistics – e.g.,

node degree, graph diameter and average path – can reveal interesting facts about the

service relations. For a complete reference on these graph measures and their meanings

please refer to [51]. The first relationship analyzed was the service relation based on

workflow usage, where services are connected if used together in one or more workflows.

The graph for this relation (for 100 workflows) is shown in Figure 4-7.

Figure 4-7. Service relation based on workflows for the 100-workflows dataset.

It can be seen that the graph is not strongly connected (21 component graphs were found)

but contains a giant main component with 64% of the nodes. The same holds for the

complete workflow set, which contains 82 components with one of them holding 66% of

45

the graph. In Table 4-1 some graph metrics are shown for the 100- and 425-workflows

datasets. Interestingly, note that the diameter of both graphs remains the same despite the

difference in size, the same happens to the average path length. The low graph diameter

together with high average cluster coefficient point to a small world graph in both cases (of

course, since the graph is not connected the small world premise of low number of hops

between any pair of nodes does not apply entirely). In both cases, there is also a hub node

with very high degree – 137 and 610 for 100- and 425-workflows respectively – which in

this case consists of a utility activity used frequently to model string constants in the

Taverna workflows.

Table 4-1. Workflow-based Service Relation Metrics.

 100 workflows 425 workflows

Number of nodes 265 1052
Number of edges 810 4493
Average degree 6.1 8.5
Diameter 4 4
Average cluster coefficient 0,86 0,91
Giant component size 170 (64%) 705 (66%)
Number of components 21 82
Average path length 2.3 2.2

The resulting graph for the precedence relationship for 100 workflows is shown in Figure

4-8. In this graph, services are connected if one precedes the other one in any workflow

analyzed. The graph is directed and links span from preceded services to predecessors.

46

Figure 4-8. Service precedence relations for the 100-workflows base.

The graph in Figure 4-8 contains fewer nodes than the previous one since orphan nodes

were not included. The overall pattern of the workflow-based relation is present in this

graph, with a component carrying 65% of the nodes and several smaller components

present. Compared to the previous relation, service precedence presents a larger network

diameter and a slightly lower cluster coefficient. Other statistics are shown in Table 4-2

below.

Table 4-2. Service Precedence Relation Metrics

 100 workflows 425 workflows

Number of nodes 258 1035
Number of edges 625 3611
Average degree 3.4 5.4
Diameter 7 7
Average cluster coefficient 0.7 0.78
Giant component size 167 (65%) 670 (65%)
Number of components 20 78
Average path length 2.7 2.6

The service dependency relation (Figure 4-9) is the more restrictive one in terms of the

service connections present compared to the two previous cases. Please recall that in this

graph two services are connected only if one service uses the output of the other service in

47

any composition. This graph helps to illustrate how often services are directly connected.

The average degree in this case is close to 1, i.e., in general, the output of a service is useful

to a single other service only. The statistics for this relationship are shown in Table 4-3.

Figure 4-9. Service dependency relation for the 100-workflows base.

Table 4-3. Service Dependency Relation Metrics

 100 workflows 425 workflows

Number of nodes 262 1044
Number of edges 289 1210
Average degree 1.1 1.2
Diameter 16 18
Average cluster coefficient 0.08 0.06
Giant component size 157 (60%) 680 (65%)
Number of components 27 89
Average path length 4.2 4.6

4.4. SUMMARY AND DISCUSSION

In this chapter, we presented a process for discovering semantic information from a set of

existing workflows with the purpose of feeding an automatic service composition

procedure. This application of this process is supported by the fact that formal semantic

descriptions are not available for most services, and therefore alternative ways of gathering

this information are necessary. We assume that a workflow database is available for that

48

purpose. A reverse engineering process is applied to this database in order to extract

meaningful relations between services and their inputs and outputs. In our case, we used

the myExperiment repository of publicly available scientific workflows. However, an

organization could apply these techniques to their private business process library without

major changes.

This chapter was inspired and has similarities with the work presented by Tan et al. in [80].

In that paper, service relationships were established based on the occurrence of services in

the workflow database. Their investigation focused on extracting these relationships and

analyzing them from the perspective of social networks, aiming at obtaining interesting

knowledge about the workflows. One of their findings – which we also identified in

Section 4.3.3 – is that service reuse is low in the myExperiment database, i.e., only few

utility services are used frequently while most data processing Web Services are used in

only one workflow. In their follow-up works, the authors used the service relation graphs

to provide to workflow developers GPS-like routing ("which services connect these two

other services?") [79], and service recommendations (e.g., "given the services the developer

has already used in the workflow, which one he/she is more liked to need?") [96].

For that latter purpose, workflow authorship and group membership, also gathered from

the myExperiment website, were used to help filtering the services to be recommended. In

this Thesis, however, we were interested in building relationships that could be used in

automated composition. We focused on the structure of service and parameter

relationships instead of looking at other external sources of information about the service

(like authorship) since they often are not available or reliable.

The work in [55] also used the idea of extracting semantic information – parameter type

information, specifically – from WSDL files for the purpose of automated service

composition. In that work, however, its authors did not have a repository of compositions

to extract additional information on the services relationships. In [92], [83] and [53], the

OWL-S descriptions of services were reverse-engineered and abstract "methods" telling

how to use the services derived in the process. These works use the service's Process

Model, which provides an abstract description of how clients have to interact with a multi-

step service (i.e., a service that can be partially invoked in several steps). Differently from

them, we adopt a single step, request-response service model (equivalent to Atomic

Processes in OWL-S and a WSDL operation), and extract information on how various

services interact with each other from concrete compositions.

49

The resulting structures of the analysis of the myExperiment workflows were stored in an

internal representation suitable to be used with composition algorithms. At this point no

semantic description of the services – using, e.g., OWL-S – was generated. The generation

of such descriptions is a subject of future work. In the next chapter, we describe the

automated composition algorithms developed in this Thesis and how it uses the

information gathered from a workflow repository to generate new workflows.

50

Chapter 5 Proposed Algorithms

The problem of composing services is very similar to the problem of finding a suitable plan

to execute a task: starting from some given initial state (the known inputs), find a sequence

of actions (services) that achieve the desired goal (provide the expected outputs). This

perfect match explains why automated AI planning is the preferred technique for

addressing the problem of automatically composing services, as seen in Chapter 3, and it

was the path chosen in this Thesis. In Section 5.1 we adjust the terminology and map the

concepts from classical planning (as seen in Section 2.3) to the ones in service composition.

Once the concepts are clarified, we describe the algorithms used and introduced in this

Thesis. We begin with the base algorithm taken from the AI planning literature, Graphplan,

and explain what makes it suitable for the task at hand. Then we propose improvements to

this base algorithm in order to obtain service compositions more similar to those created

by human developers. Another extension we present to the algorithm adds support to

incomplete initial specifications, a feature designed to help the developers in the task of

creating new services even if they do not have complete knowledge on their outline

beforehand. These new features have their cost in the algorithm performance, hence a

more sophisticated approach to find the compositions is necessary. An extended algorithm,

based on another well-known planner, is proposed to cope with this problem. The chapter

ends with a summary and discussion.

5.1. FROM PLANNING TO SERVICE COMPOSITION

In this Thesis we are working with Classical Planning (or STRIPS planning) with

extensions. As seen in Chapter 2 (Background), a planning task is comprised of problem

and domain descriptions. The planning problem defines the state the system should hold

before and after the execution of the resulting plan. The planning domain describes, among

other things, the actions available for solving the problems in terms of their observable

external behavior. Each action has a set of preconditions that must hold for it to be

applicable and a series of effects in the state of the systems. In Classical Planning, effects

and preconditions are seen as logical formulas over literals or propositions. Actions have

both positive effects (propositions that are made true) and negative effects (propositions

made false). Negative effects may cause actions to be incompatible (or be mutually

exclusive) in a given state, e.g., if the effect of one action removes the precondition of

51

another. Plans are comprised of actions, usually ordered, although a complete ordering is

not always required. Valid plans are those where, for all actions in the plan, the

preconditions hold if the order of execution of the plan is followed. A plan is a solution for

a planning problem if it is valid and accepts the initial state of the problem (the plan's

precondition holds in the initial state) and the state brought by executing the plan is a valid

final state of the problem.

In the SOA realm, compositions are formed by wiring services together. Services are

usually described with just enough information to allow them to be properly used, which

means that only their inputs and outputs parameters are described. Sometimes, extended

information in the form of formal semantics is present. Automatically composing services,

in this context, means finding a combination of services that can be connected together

while ensuring that each one is provided with the information it needs, i.e., all its input

parameters are correctly assigned.

As for services, actions can also accept parameters: objects associated with the problem

domain are passed as arguments. However, the set of propositions, not the availability of

objects, determines when an action is applicable or not. In service composition, as modeled

in this Thesis, services are applicable once the information they need is available, that is,

there are instances of parameters (that result from invoking a service) that match their

input parameters. The state of the system is determined by the parameter instances

available, and therefore the precondition of a service is based on its input parameters. The

service precondition takes into account the types of the input parameters, including

compatible types. For example, consider a service that has input parameters

 and . is compatible only with

parameters, while accepts both or values. The precondition for

service will be:

 () () (() ())

The predicate () states that an instance of type exists. Let us assume that

 returns a Boolean with the status of the operation. The effect of the service is

given by:

 () ()

The effect means that a boolean parameter is available to be used by other services.

Parameter types such as , and can be seen here as domain objects.

52

In this Thesis, we follow the natural path of mapping services to actions and compositions

to plans in order to use planning techniques for the purpose of automated composition.

Table 5-1 summarizes the mapping between planning and service composition concepts.

Table 5-1. Mapping between planning and service composition concepts.

Classic Planning Service Composition
Domain Description Service and Type Repository
Problem Description Composition Specification
Plan Composition
Action Service
Preconditions Input Parameters
Positive Effects Output Parameters
Negative Effects N/A
Proposition Parameter

An important difference from classical planning that arises from the mapping above is that

services cannot make existing instances disappear (at least this is not standard behavior in

BPEL and other composition languages, once a variable is instantiated it is available to all

subsequent service invocations). Therefore, there are no negative effects on invoking a

service, i.e., no parameter instance ceases to exist because of its invocation, only new

instances will be made available to other services. If no other constraints are associated

with the services (e.g., via semantic annotation) that restricts the way services are combined

then no mutual exclusion relations will exist, making the problem easier to solve. In our

case, additional constraints are added in order to improve the quality of the solutions, as

will be discussed in the following sections.

5.2. BASE ALGORITHM: GRAPHPLAN

As seen in Chapter 2, there are many ways for modeling the planning problem – e.g., state

space, planning space, propositional satisfiability – and for each one several algorithms

exist. We chose to work with an algorithm that is known as being fast and that fits well

with the properties of the Service Composition problem: Graphplan. In this section, we

describe the general Graphplan algorithm while in Section 5.3 we explain why it suits the

problem at hand. Graphplan, proposed by Blum and Furst [11], works by building a

planning graph of a relaxed version of the planning problem and then attempting to extract

a valid plan from the planning graph. If no valid plan is found, the planning graph is

expanded further and the process is repeated until a valid solution is found. The Graphplan

algorithm is shown in Algorithm 5-1:

53

Algorithm 5-1. Graphplan algorithm.

A planning graph is a layered graph with alternating layers of propositions and actions. The

top proposition layer contains the initial state of the system. The next layer is comprised of

actions whose preconditions are present in the top layer. The effects of these actions are

then added to the next proposition layer, which provide the preconditions for the next

action layer, and so forth. Formally, let 〈 〉 be a

planning graph, with being the problem's initial state. Each level of is comprised by

a layer of actions followed by a layer of propositions , with . The extracted

plan has the same layered structure of the planning graph:

 〈 〉; and , , are the action and proposition

layers of the plan respectively.

In our Service Composition analogy, the layers are comprised of service invocations and

the parameters instances associated to them. Figure 5-1 shows an example of a planning

graph, generated from a very small sample of our working database of composition. It is

possible to see the layers of service invocations (record-shaped nodes), the top part of each

service node being its input parameters and the bottom part the output parameters.

Parameter instances are represented implicitly by the assignments (arcs) from one service

invocation's output to the input of another service invocation. Grey nodes are special

NO-OP (no operation) invocations used to pass parameters from one layer to the next

one, making them available to the next layer of services. The box-shaped nodes at the top

and bottom of the graph are the input and output parameters, respectively, specified for

the composition.

54

Figure 5-1. Example of planning graph.

Graphplan relaxes (i.e., simplifies) the planning problem during graph expansion by

ignoring the negative effects of actions. Therefore, an action is applicable in a given layer

even if another action that denies its preconditions exists. The Graphplan algorithm,

however, keeps track of these conflicts, maintaining a pair-wise list of mutual exclusion

relations between actions and propositions. Two actions in the same level are mutually

exclusive if they have inconsistent effects – the effect of one action negates the effect of

the other –, if one negates the precondition of the other, or if they have conflicting

preconditions. Two propositions are mutually exclusive if one negates the other or there is

no mutex-free pair of actions that provide them. Actions with conflicting preconditions

(i.e., mutex in the previous layer) are not included in the graph during expansion. The

expansion algorithm is shown in Algorithm 5-2.

Algorithm 5-2. Graph expansion algorithm.

The graph is expanded until the bottom layer contains the goals of the planning problem.

At this point, the algorithm tries to extract a valid plan searching upwards for combinations

of actions that provide the end goals. The preconditions of the actions found become the

55

new goals, and the search continues with the layer above until the top layer, that contains

the initial state, is reached. The search can eventually fail at some layer : all combination

of actions are mutually exclusive, and therefore cannot be applied together. When this

happens, the algorithm backtracks to the last successful layer and tries another

combination, until a solution is found or no more combinations exist. In order to prune

the search space and speed up planning extraction a table of "bad" proposition

combinations per layer is kept – the () table. A proposition set that yields

failure is added to () and if the algorithm happens to find at level again it

prunes the search immediately. The Graphplan algorithm continues expanding and

searching the planning graph until a solution is found or no progress is made (no new

propositions or actions are added), at which point the algorithm fails completely. The plan

extraction algorithm is shown in Algorithm 5-3:

Algorithm 5-3. Plan extraction algorithm.

The expansion of the planning graph is polynomial both in time and in space with the size

of the planning problem (number of actions and propositions involved). The most

computationally demanding part of the algorithm is the plan extraction, which searches the

state space provided by the planning graph for a valid plan. The overall complexity of the

algorithm is the same for classic planning: PSPACE-complete [25][11]. The algorithm

terminates and is both sound (i.e., the plan returned, if any, is a solution of the problem)

and complete (if the problem has a solution, it will eventually find it) [25].

56

5.3. GRAPHPLAN FOR SERVICE COMPOSITION

The Graphplan algorithm suits well the Service Composition problem since the problem,

in its basic form, is already "relaxed": because services have no negative effects, no mutual

exclusion happens between them. One consequence is that the search algorithm will not

fail to build a plan once the expansion reached a layer where all intended outputs are

present. The relaxed version of Graphplan becomes polynomial to the total number of

actions, or services in our case [34]. We use this version of the algorithm in the

experiments, comparing it against state-of-the-art planners (Chapter 6). We also made some

improvements to the algorithm in order to obtain "better" solutions, as will be discussed in

the following sections. These changes, however, reclaim the original complexity of

Graphplan.

5.3.1. Enforcing Input Parameters

General-purpose planners try to find plans with minimum number of actions. Similarly, the

Graphplan algorithm finds plans with minimum execution depth, i.e., the solution found

should have the least layers possible. It is reasonable to assume that a minimum or faster

plan is preferred in the general case. However, sometimes this leads to plans that do not

make use of the all the information provided as initial state. Again, in classic planning this

is not a problem. However, once we map propositions to parameters, this means that

compositions that ignore some of the initial input parameters can be returned as solutions.

If we have in the service repository services that need no inputs (for example, services used

to model string constants), it is not uncommon for the planners to generate compositions

that use none or just a few of the inputs provided. Although not strictly incorrect, these

compositions may not be exactly what the developer intended.

In order to give more control to the developer, we propose an extra configuration option

to the composition specification: the maximum number of unused inputs, . This

number tells how many of the provided input parameters can be left unused by the

resulting composition. If the number is 0 (zero), then all inputs must be present in the final

solution; if it equals or is greater than the number of inputs then we have the original

behavior of the (relaxed) Graphplan algorithm.

We implemented this important feature by changing the search procedure of the

Graphplan algorithm to account for the number of used inputs. If the search procedure

57

reaches the top layer, it checks the used inputs and, if it meets the specified configuration,

it then returns with success, otherwise backtracks and another search round is made with

another set of services. The general behavior of the algorithm follows that of Graphplan

with mutual exclusion. In fact, we can model this feature as a type of mutual exclusion

involving several actions. For example, we can keep track during graph expansion of the

maximum number of composition inputs reachable from a given service invocation ,

 (). When searching for a solution, a set of services of a given layer will be

mutually exclusive if the sum of their maximum used inputs ∑ () is less than the

total number of inputs minus . The implementation of the algorithm, however, does

not keep track of the maximum number of used inputs since, in early tests, the time gained

by pruning the search space was consumed by the overhead of maintaining this counter for

all combinations of invocations, per level. The table of bad states, as proposed in

Graphplan, is still used to prune the search space, though. The modified search algorithm

is shown in Algorithm 5-4:

Algorithm 5-4. Plan extraction with unused inputs checking.

The difference from the original extraction procedure is in line 2, where we check if the

current goals differ in at least from the set of original goals once we reach level 0 of

58

the planning graph. In other words, we check if the plan uses enough input parameters

according to the setting.

5.3.2. Incomplete Input Specification

Another fundamental feature added to the base algorithm was the ability to deal with

incomplete information, specifically, the lack of some of the input parameters necessary to

find the solution. Automated service composition algorithms – all those reviewed in

Chapter 3 at least – fail to provide a solution if the specification is incomplete, leaving to

the developer the task of finding out which new parameters should be added in order to

obtain a valid composition. The present feature was designed to streamline the

composition development, helping the developer finding the composition it wants even if

it does not know all input parameters beforehand.

The developer can specify the number of missing or "extra" inputs – in addition to those it

knows – the algorithm is allowed to accept in the composition. It will try to find such a

solution that meets this constraint. This implies allowing services that have not all their

input parameters covered to be part of the planning graph during the expansion phase of

the Graphplan algorithm. Let say the is the maximum number of missing

parameters. During graph expansion, those services that match the available parameter

instances of the last layer of the graph are looked up to form the new layer. For any given

service, if all but at most of its input parameters match those available in the last layer

then it can be added to the next layer. Since the limit for extra parameters in the final plan

is , it will not be helpful to add services that have more than input parameters

not covered.

Simply imposing the limit of extra parameters during expansion does not guarantee that a

valid solution exists. The solution extraction phase must keep track of the number of extra

parameters in the current plan and prune the search if the number exceeds the limit .

Here we have a situation akin to the one found with Enforced Inputs, where sets of

invocations in a given layer are mutually exclusive if the number of unmatched parameters

they required is above . Once this occurs, the extraction algorithm backtracks and tries

another combination of invocations, until one combination is found – success – or all

combinations were explored – failure. The modified extraction algorithm is presented in

Algorithm 5-5.

59

Algorithm 5-5. Plan extraction with verification of unused and missing inputs.

Line 1 of the algorithm checks if the number of missing inputs, | |, exceeds the limit ,

in which case the search is aborted and another set of service invocations is tried. The

algorithm keeps track of missing inputs in line 13, where the new set of missing inputs

adds to the old set the service inputs not found in the level above.

The consequence of allowing services with partial input matches into the planning graph is

a potentially much larger search space for the solution extraction phase. When combined

with the Enforced Inputs feature, the time necessary to find a solution (or to return failure)

can be prohibitive. To work around this problem, we explored a heuristic solution to the

problem of finding a composition with both enforced and extra input parameters.

5.4. FAST FORWARD WITH ENFORCED AND MISSING INPUTS

While aiming at improving planning performance, we developed an alternative

implementation of the proposed features using another classic planning algorithm: The

Fast-Forward (FF) algorithm, proposed by Hoffman and Nebel [34]. The FF is a planning

heuristic that performs a state-space search using the relaxed Graphplan algorithm to

60

compute a heuristic value for each state. Each state in the FF algorithm is a sequence of

actions that yield the set of propositions that pertain to the state. Positive and negative

effects of the actions are taken into account when building the state. From the set of literals

of the current state a relaxed Graphplan execution is performed, resulting in a relaxed

solution for the planning problem (or a failure). The relaxed solution is used to measure

how close to the final goal is the current state. In this case, the value associated with the

state will be the number of actions present in the relaxed solution. This value is used to

guide the search across the state space.

Given a state, the set of next states is computed using the concept of helpful actions. The

helpful actions of a state are the set of actions from the first layer of the planning graph of

that state – i.e., the set of actions applicable from the propositions of that state – that

contribute to the next layer of the graph (i.e., add new information). The idea of helpful

actions is to prune the search space while keeping useful actions at hand. The FF algorithm

employs other strategies in order to speed up the search – for a complete reference see

[34].

Our algorithm is inspired in the FF in the sense that it also uses Graphplan to guide the

search. However, while FF uses the relaxed solution only as a measure of the state value,

we use the relaxed solution as the final solution itself. In our case, a relaxed solution is one

that potentially violates the constraints imposed by the developer on the number of

enforced () and extra inputs (). Once it is determined that a relaxed solution does

not violate these constraints (what can be done quickly by traversing the resulting plan

once), there is no reason to discard it. In Figure 5-2 it is shown how simply reordering the

invocations in an expansion of the planning graph can provide a valid solution. In this

simple example, we are interested in outputs of type B, C and D, and provide a single input

of type A. The constraint imposed is that at most one missing parameter might exist in the

solution, . The solution found in (a) provides the target outputs but needs two

extra parameters to match inputs Y and X (Services 1 and 3 respectively). The solution in

(b) meets the constraint of one single missing input by postponing the invocation of

Service 1 so that the output of Service 2 can be assigned to input Y.

61

(a) (b)

Figure 5-2. Example of graph expansions: a) not meeting b) meeting .

(NO-OP invocations are not shown).

In our algorithm, each state can be seen as a different expansion of the planning graph.

From each expansion, a relaxed solution is computed, and if is valid (i.e., meets the

constraints) it is returned as the final solution. The solution is the first one found by the

search algorithm, which does not backtrack in this setup. If it is not a valid solution, the

heuristic value of the state, (), is calculated based on amount by which the solution

violates the constraints. In case no solution for the state exists at all then the state is

discarded (i.e., the search does not continue from it). The first state consists of the basic

relaxed expansion of the Graphplan algorithm from the global initial state (with the inputs

provided for the composition). A relaxed search is performed in the planning graph and if

the solution is valid, it is returned immediately. If no relaxed solution exists, then the

algorithm fails as a whole. The next states will be based on the services immediately

applicable from the initial state, similarly to the original FF. Each new state inherits the top

portion of planning graph from its parent state (the state was derived from), adds one of

the applicable services to the next level (and the NO-OPs necessary for propagating other

parameters), and continues the expansion from that point on. Assuming each state has a

depth (the state-wise distance from the initial state), a state and its parent share the same

planning graph from depth 0 to the depth of the parent, and diverge starting from the

depth of the state. Formally, a state can be defined as 〈 〉, where is the

parent state, and are the planning graph and plan associated to , respectively.

Service 1

Output D

Input Y

Service 2

Y B

Input A

Service 3

Output C

Input X

D B C

A? ?

Service 1

Output D

Input Y

Service 2

Y B

Input A

Service 3

Output C

Input X

D B C

A ?

62

From a given state, the set of candidate next states is given by the applicable services from

that state. The choice of this set determines both the accuracy and the length of the search.

If all applicable services are selected, we have a higher probability of finding a solution but

at the expense of a much longer computation time. Conversely, choosing too few services

will provide quick responses but more frequent false-negatives (i.e., the algorithm returns

failure when there is at least one valid solution). In our specific case, the number of

applicable services is potentially large since services with incomplete input matches can be

used. We chose to use in the algorithm as the set of applicable services, for a given state, all

the fully-matched services (all input parameters assigned) of the next level of the planning

graph for that state, along with the set of partially-matched services (some inputs missing)

from the state's solution at the same level. The goal is to avoid having too many candidate

services without pruning out all the partially matched services, which are expected as part

of the final solution. The helpful actions set of state , () is described formaly as:

 () (5-1)

Where:

 { ()
 () ()

 } (5-2)

 { ()
 ()

 ()
 }

(5-3)

The sets
 and

 refer to the actions (service invocations) at level of the planning

graph and plan solutions associated with the state ;
 and

 follow analogously for the

propositions (available parameters).

When the next state is created, it inherits the planning graph of its parent state up to

the depth of and adds up the corresponding invocation from (). Before

expanding the graph further, the number of missing inputs of the graph, (), is

computed. The expansion of the graph will take into account this number and allow

partially matched services with at most () missing inputs.

The heuristic value of a state, (), is used to measure how close to the goal is the state

being evaluated. The FF algorithm uses the number of actions in the state's relaxed plan as

its heuristic value. A value of 0 indicates that no actions are needed because the state is

already a goal state (i.e., contains the goal propositions). In our variation of the algorithm,

we are interested in the constraints that determine if a solution is acceptable or not:

and . If no plan could be computed to state , its value will be (or an arbitrarily

63

large number), and the state is discarded. If a plan exists, the value of depends on the

number of unused, (), and missing inputs, (), of the plan associated to . In order

to help reducing the search space, the number of helpful actions of a state (i.e., the number

of successor states that can be derived from it) is also taken into account: the smaller the

set, the better since it determines the branching factor of the search. The heuristic value of

valid states is given by equation (5-4):

 () (() ()) | ()| (5-4)

The original FF algorithm employs its own version of hill climbing, called Enforced Hill

Climbing, to search the state space. In the original hill climbing algorithm, the search

moves to a neighboring state if the state is better – according to the heuristic value –

than the current state , and proceeds until no better neighboring state is found. The

last current state will be the result of the search. The enforced version proposed in [34]

does a breadth-first search from the current state to find a strictly better (i.e., not

equal) state with () (). The breadth-first search can go several levels

deep – and several actions apart from the current state – until a better is found. Once

found, becomes the current state and the actions from the former to are

added definitely at the end of the plan (there is no backtrack as this point). The search

terminates with success when the current state is a goal state; it fails if no states strictly

better than the current one can be found.

We opted to use a modified best-first search used in [13] instead of the Enforced Hill

Climbing employed by the FF algorithm. In a best-first search (such as the classic A*

algorithm), all the next states of the current state are evaluated, their heuristic values

computed and put into a priority queue while the current state is taken out of the queue.

The next state will be the one with the best heuristic value at the top of the queue. The

modified version of the search traverses the state space by "jumping" immediately to a new

state if its heuristic value is better than the current state, while keeping the current state at

the queue if it was not completely explored. By doing this, the modified search attempts to

evaluate fewer states, what is an interesting feature for our algorithm since every state

evaluation implies a Graphplan execution comprised of expansion of the graph and the

extraction of a solution. The search algorithm is shown in Algorithm 5-6:

64

Algorithm 5-6. Modified Best-First search algorithm.

The function () (line 8) tells whether the state was already completely

explored or not; () returns the next non-explored state directly derived from

(based on the helpful services associated with the state). States are kept in the priority

queue according to their () value. Failed states are not put into the queue.

As the original FF algorithm, our implementation is both sound and incomplete [34].

Soundness is ensured since solutions are checked explicitly when determining whether the

current state is a goal state or not. As with FF, the set of helpful actions may not include

some actions (or service invocations) needed to find a valid solution, thus making the

algorithm incomplete. Completeness is also hindered in our algorithm by the fact that, even

if a state presents a "good" expansion (one that contains a valid solution), it is not

guaranteed that the extraction algorithm will find it. Since the relaxed Graphplan is

computed polynomially, the complexity of the algorithm will be determined by the search

procedure. The Modified Best-First search performs a complete search over the state space

in the worst case [13], being therefore PSPACE-complete with respect to classic planning

problems.

5.5. PREFERRED SERVICES WITH REVERSE GRAPHPLAN

In order to provide guidelines to our algorithms whenever they have to choose between

services we devised a process to find a set of Preferred Services. To compute this set, we

65

apply the relaxed Graphplan expansion algorithm both in the regular direction (from the

inputs to the outputs) and in the reverse direction (from outputs to inputs). The resulting

planning graph for each phase is "reduced", a process that removes unnecessary services.

The set of preferred services is given by the union of the services comprising both reduced

planning graphs, the direct and the reverse.

As explained earlier, the original Graphplan does not guarantee that all inputs provided will

pertain to the final solution, although the solution must provide all outputs. Conversely,

applying the Graphplan expansion in the inverse direction (swapping services

preconditions and effects) we have a planning graph where all inputs are reachable but not

necessarily all outputs are used. The intuition is that combining the services in these graphs

would provide the set of services likely to be part of the final solution. Before merging the

graphs' services, though, we remove from them the services that are not in the path

between an input and an output. This reduction algorithm simply removes the invocations

at the last level whose outputs (or inputs, in the reverse case) are not outputs of the

composition (inputs, respectively). It proceeds upwards, removing invocations whose

outputs are not used in the level below, until it reaches the top level. Note that, in general,

the reduced graph is not a valid solution: one input of an invocation may receive several

assignments from different outputs, what violates our definition of a valid composition (see

Section 4.1, item 4). The reduced graph, however, contains potentially various solutions. Its

algorithm is presented in Algorithm 5-7:

Algorithm 5-7. Planning graph reduction algorithm.

The set of preferred services is used in our Graphplan variant during the solution

extraction phase, which in hard cases is the more time-consuming phase of the algorithm

(also true for the original Graphplan). In this phase, the algorithm has to choose between

invocations at a given level that provide the same input to an invocation in the level below.

The algorithm then uses the set of preferred services to guide this choice, ranking the

candidate invocations depending on whether the associated service is preferred or not. In

66

our FF implementation, we use the preferred services both in its Graphplan phase and for

pruning the invocations that comprise the helpful actions set of each state. Since

computing the set of preferred services requires two Graphplan expansions and reductions,

plain versions of the algorithms were also evaluated.

5.6. SUMMARY AND DISCUSSION

In this chapter, we presented the Service Composition algorithms proposed and evaluated

in this Thesis. These algorithms are based on two notable automated planning algorithms:

Graphplan and Fast-Forward (FF). AI planning, as pointed out in Chapter 3, is a recurrent

approach for implementing Automated Service Composition. In fact, the Graphplan

algorithm was already employed in previous works, e.g., [97] and [95]. Nonetheless, none of

them, to our knowledge, addressed the problems we tried to solve using Graphplan,

namely, enforcing the use of the composition inputs specified by the developer and

allowing incomplete input specifications. The first feature aims at improving the adherence

of the solution found to the specification and find solutions closer to the ones a human

developer would build. It can be seen as a special case of Planning with Preferences [6] –

where the developer can define additional constraints the resulting plan should meet, e.g.,

optional goals (outputs) or specific intermediate states the plan should traverse preferably.

One kind of preference is in the trajectory of the plan, i.e., the states traversed from the

initial state (inputs) to the goal (outputs) by executing the plan (composition). Our

algorithms implement a hard constraint on the trajectory, forcing the solution to pass

through the initial state as specified by the developer (a soft constraint, on the other hand,

would just penalize with higher cost solutions that violate it). With the "missing inputs"

feature, on the other hand, we try to be more permissive with the developer, who will not

need to know all inputs in anticipation. Given its ability to handle an uncertain initial state

(a missing input implies that the initial state may not be that specified by the developer),

our algorithms can be seen as conformant planning algorithms [25], although strictly

adapted to service composition. A conformant planner tries to remove uncertainty by

forcing the system into a known state – in our case, by adding a new input parameter – and

then finding a solution to the problem. The performance of the algorithms presented in

this chapter, both in terms of computational time and quality of the solutions, is discussed

in the next chapter.

67

Chapter 6 Performance Evaluation

This chapter presents the experiments carried out to evaluate the performance of the

algorithms described in the previous chapter. In this evaluation, we investigate how state-

of-the-art planners perform when applied to the service composition problem with respect

to the quality of the solutions as well as the time required to obtain them. The planners'

performance is compared to the proposed algorithms' and the effects of the algorithm

features are discussed. First, an overall description of the experiments including metrics

and evaluated planners is show in Section 6.1; Section 6.2 brings the evaluation results and

their explanations; Section 6.3 wraps up this chapter with a review of the results and overall

discussion.

6.1. EVALUATION PRELIMINARIES

In our approach for Automated Service Composition, we are concerned with the practical

aspects that hinder the application of automated solutions in real life. We have discussed

the lack of semantic descriptions as one of this problems, which we addressed using a

reverse engineering approach. We see automated composition as an auxiliary tool for the

service developer – not a replacement. Therefore, it is expected that the developer will have

to deal with the output of such automated tools. The usefulness of these tools depends on

how much effort can be saved by applying them. In this evaluation, instead of directly

assessing the effort gain or loss, we approximate it by measuring how close to handwritten

compositions are the automated solutions found by the algorithms. Since we have the

original compositions from the myExperiment repository at hand, we are able to compare

the output of the algorithms with the original compositions for the same initial

specification. The more similar are the solutions to the original compositions, the less

effort the developer would have to spend adapting and fixing them. We identified the

factors that influence the quality of the solutions and improved our algorithms based on

them. In order to have a baseline for comparison, we selected various classical and state-of-

the-art planners from the AI planning literature, from which one was used in the

experiments as our baseline, as explained as follows.

68

6.1.1. Automated Planners

There are several planning tools described in the literature, some of them can be

downloaded freely. We collected a representative set of planning tools in order to make up

our evaluation baseline. Among the planners available, we tested the following tools: the

Fast-Downward planner [32], the original Fast-Forward [34], Satplan [42], POPF2 [14],

SGPlan [38], MIPS-XXL [19], and the Graphplan implementation present with the

PDDL4J library [69]. Other classical tools, often used as a reference in planning works –

the original Graphplan [11], Blackbox [41] and IPP [48] – have not been updated in the last

years and therefore were not included in the evaluation. All these tools accept as input the

de facto language for automated planning, PDDL. The selected tools were installed and

tested against PDDL descriptions of our service composition scenarios with varying sizes.

From all these tools, the only one capable of running with scenarios of significant size

(more than 100 workflows) was the Fast Downward planner; all other tools presented

some problem that prevented their use in representative scenarios (most frequently,

memory overflows or violations), although were capable of running with the smaller test

samples which accompanied them.

The Fast Downward (FD) planner was selected initially because of its performance in the

last International Planning Competition [40] (other selected planners that participated in

previous IPC editions were POPF2, SGPLAN and MIPS-XLL). The FD planner, which

has as contributor the author of the FF planner, is in fact a flexible platform that supports

various heuristics and search strategies. In the IPC 2011 competition it participated under

several names, for each heuristic (or set of heuristics) used, and obtained the first places in

the categories it participated in. As the FF planner, the Fast Downward is a forward

planner, i.e., it searches the state space from the initial state until a goal state is found.

Instead of using the planning graph as a heuristic as in FF, the FD planner adopts another

structure called "causal graph" as the base structure for computing heuristic values. The

causal graph is defined by causal dependency relationships between objects of the planning

domain: two objects have a causal dependency if the state of the first object is changed by

an operation whose precondition depends on the state of the second.

We used three FD heuristics (or variations) from the IPC2001 in our evaluation: FDSS1

[33], SelMax [18] and LAMA2011 [74]. The FDSS1 (Fast Downward Stone Soup 1) is in

fact a meta-heuristic that combines different heuristics and search strategies into a

sequential planning portfolio, and is based on the premise that "no single common search

69

strategy or heuristic dominates all classical planning problems" [33]. The FDSS combines

A* search (and variants) with existing FD heuristics for assigning weights to states,

including strategies employed by other participating planners, such as the idea of

"landmarks" used by the LAMA2011 heuristic. Landmarks are (partially) ordered sub-goals

that must hold at some point for every plan found, i.e., for some specific planning problem

there may be implicit "milestones" for the task to be accomplished, irrespective of the

solution the planner may eventually find. The other heuristic used, SelMax, is similar to

FDSS1 in the sense that it is a meta-heuristic: it tries to guess which heuristic is more

adequate for evaluating each space, while trying to avoid computing several heuristics. It

uses a learning process to create a rule for deciding which heuristic to apply at each search

step. It is important to note that all these heuristics assume that "costs" are associated to

actions (services), and that the total cost of the solution must be minimized. However, in

our scenarios no cost information exists, therefore the task of the heuristics comes down to

finding a plan that achieves the goal specified (i.e., provides the output parameters). The

use of costs for the services – e.g., based on QoS measurements – is a subject for future

work.

6.1.2. PDDL Generation

PDDL descriptions of our service composition scenarios had to be generated in order to

use the planning tools mentioned in the previous section. PDDL is a standard language

widely supported by planning tools that provides several features, depending on the degree

of detail of the planning domain being specified. The support of these features is, however,

very uneven among planners, and a more direct mapping from the concepts in the Service

Composition domain to structures in the PDDL language – e.g., using PDDL types to

model parameter types – could not be used (:typing, in PDDL terminology, is not

supported by all selected planners). A "common denominator" specification format had to

be found so that more tools could be tested. We avoided using different specification

formats for each planner to prevent the results from being biased by the formats. After

several preliminary tests, we found a pure STRIPS (:strips) PDDL specification – with

predicates representing parameter types and their compatibility relationships – that was

supported by the majority of the planners tested.

The mapping to PDDL resembles the example given in Section 5.1 of the Proposed

Algorithms chapter, but with some notable differences. In that example, a banking service

 accepts two parameters as input – a and either a or

70

value as the new balance – and returns a variable of type indicating if the

operation was successfully performed. The input parameters are mapped to preconditions

of the SetBalance action and the returned value becomes its effect. The predicate

 () is used to indicate that a variable of type is available. In the PDDL

generation, the (x) predicate – which becomes (available ?x) in PDDL

notation – is used with parameters of the PDDL action associated to the services. A

predicate is created for each existing type in the database – for example, (t_real x) to

indicate that a variable is – and these predicates are used in the action precondition

to ensure correct type matching. The generated PDDL code for the service is

shown in Figure 6-1. Due to limitations in PDDL support of the planners, disjunctive

preconditions could not be used and an alternative approach was employed. In the example

in Figure 6-1, we have a new type replacing the " or " construction of

the original example.

Figure 6-1. PDDL code for the SetBalance service.

The type compatibility information is generated in the effect of the actions, allowing output

variables to be used as input to various services by assuming different types. For example,

consider the service, which receives an as input and returns the

balance as a number. Let us assume that, according to the reverse engineered model,

the type is compatible with . The effect of the action must state

that the output variable is available and that it has type and also

(t_balance predicate). This way, a call to the service can be connected by the

planner to a call to via the variable. The code for is show

in Figure 6-2.

Figure 6-2. PDDL code for the GetBalance service.

(:action GetBalance

 :parameters (?x)

 :precondition (and (t_accountId ?x) (available ?x))

 :effect (and (available Balance)

(t_real Balance)

(t_balance Balance))

)

(:action SetBalance

 :parameters (?x ?y)

 :precondition (and (available ?x) (t_accountId ?x)

 (available ?y) (t_balance ?y))

 :effect (and (available Boolean) (t_boolean Boolean))

)

71

The set of actions generated from the services, the type predicates and variables used as

outputs of the actions comprise the PDDL domain specification, a single text file

submitted to the planner with the problem specification, one per composition problem to

be solved. A PDDL problem specification states the initial and goal states for plan

computation. In our translation to PDDL, initial states take a form similar to action effects:

the composition inputs become the variables initially available declared with all compatible

types. On the other hand, the goal state resembles an action precondition, with the

exception that action variables such as "?x" are not allowed in the goal state. The PDDL

specification for a composition problem where an is given as input and a

 expected as output is shown in Figure 6-3.

Figure 6-3. Problem specification in PDDL.

In case of success, the planner outputs a plan (or set of plans) that fulfills the problem

specification. The plan is a list of actions invocations with the parameters used as inputs to

the action; no information on the output is provided. In our experiments, we translated the

PDDL plans generated by the planners to our internal representation where quality metrics

were computed. Figure 6-4 shows the plan rendered by the baseline planner for the domain

and problem specifications described in this section.

Figure 6-4. PDDL plan generated for the example.

6.1.3. Evaluation Methodology

The main evaluation scenario (Main scenario) consists of rebuilding each original

composition from the myExperiment repository by submitting its interface description, i.e.,

input and output parameters, to the planners and algorithms and measuring the quality of

the solution found. Given the limitations imposed by the baseline planner (FD), we had to

reduce the set of compositions from 425 to 300 elements (no planner was able to run with

400 or more compositions within our resources). We used the 300 compositions with

lowest Id number from the initial set of 425 compositions to create the repository of

(GETBALANCE ACCOUNTID)

(SETBALANCE ACCOUNTID BALANCE)

(define (problem prob1)

 (:domain banking)

 (:objects AccountId Balance Real Integer Boolean)

 (:init (available AccountId) (t_accountId AccountId))

 (:goal (and (available Boolean) (t_boolean Boolean)))

)

72

services, types and parameters, as described in Chapter 4. However, not all compositions

from the 300-set are present in the results. Some cases were excluded to create a more

realistic scenario to the algorithms and prevent distortions in the results: compositions with

no output parameters (not suitable for the planners or algorithms); compositions

containing one single service; "isolated" compositions, whose all services are not used by

any other composition in the repository (the term "isolated" refers to the small disconnect

sub-graphs visible in Figure 4-7).

The algorithms were also evaluated against a set of 100 randomly generated composition

specifications (Random dataset). Each specification defines a composition interface with 0

to 3 input and 1 to 3 output parameters randomly selected from the set of parameters in

the repository. The objective of this scenario is to test the algorithms with problems that

the service repository is not "familiar" with, i.e., cases that were not used to generate the

semantic information in the repository in the first place.

The experiments were conducted in a pool of four machines distributed between

GPRT/UFPE and UFABC. Each machine has a quad core Intel Xeon processor and 12

GB RAM memory. Each individual experiment was allowed to use up to 8GB of memory

and run for 30 minutes (time limit used in IPC competitions). The algorithms presented in

Chapter 5 were implemented in Java and executed with the same time and memory

constraints. The basic Graphplan algorithm from the literature adapted for service

composition is identified in the evaluation as . The variant proposed in this Thesis

that supports enforced and missing inputs is identified by () (in fact, the

original is equivalent to (), i.e., no limit to the number of

unused inputs, , and no missing parameters allowed,). We use the

shortcut () to refer to the use of enforced inputs, and

 () to indicate the support for missing inputs (in our

experiments, only one missing parameter was allowed and the remaining inputs enforced).

Our Fast Forward (FF) variations follow the same notation. The superscript indicates

the use of Preferred Services with the algorithms, for example,

 denotes the

Graphplan algorithm with enforced inputs and preferred services.

6.1.4. Quality Metrics

The quality of a composition can be a very subjective matter. In our evaluation, the quality

of a composition generated automatically is a measure of how similar to a handwritten

73

composition it is for the same initial specification. We compared the solutions provided by

the baseline planner and our algorithms to the corresponding composition in the repository

to determine their similarity degree. The similarity between compositions itself can be

measured with different levels of detail. Instead of a very precise similarity measure – e.g.,

considering individual connections between services and the order of services inside of the

compositions –, we opted for a high-level similarity metric that uses only the list of services

present in both compositions, irrespective of the order or number of occurrences of these

services within the compositions.

One reason for using only the list of services is that finding the correct services for a given

composition represents a fundamental part of the process of creating a new service

composition manually. If an automated composition process could generate compositions

with the correct services, even if not connected in the way the developer would expect, this

could save him/her a considerable amount of time. Another reason is to ensure a fair

comparison between the planners and our algorithms. While a PDDL plan – given as

solution to a composition problem – contains an ordered list of services that fulfill the

composition specification, it lacks the information on how the services are connected

exactly (and whether they can be executed in parallel or not, for example). Our translation

algorithm guesses these connections (from outputs to inputs) in order to generate a valid

composition in accordance with the plan. Therefore, taking into consideration these

"guessed" connections in the similarity metric could distort the results.

The similarity metric we adopted considers the percentage of services correctly found by

the composition process with respect to the total services on both compositions, automatic

and manual. Formally, the similarity between two compositions and is given by

formula (6-1):

 ()
|

 |

|
 |

 (6-1)

This metric ranges between zero and one, where () means

that the automatic () and manual () compositions do not share any services,

while () means that both compositions contain the exact set

of services. A closely related metric we employed is the "hit rate", equation (6-2), which

reflects the number of correct services ("hits") found.

 ()
|

 |

| |
 (6-2)

74

Conversely, the "error rate" measures the number of "false positives", i.e., services that the

composition algorithms found useful but the developer will likely remove from the final

composition (eq. (6-3)).

 ()
|

 |

| |
 (6-3)

Other simpler metrics were collected during the experiments – average number of services

per composition, depth of the composition, etc. – as well as performance indicators: time

to compute each solution, number of successful and failed problem instances, and cases

that extrapolated the time limit.

6.2. EVALUATION RESULTS

6.2.1. Basic Evaluation

The first scenario we evaluated aims at measuring the performance of standard planning

tools with respect to both quality and speed. We compared the FD variants – ,

 and – to our standard Graphplan implementation (referred to as),

using the 300-compositions dataset. Table 6-1 summarizes the results for these first

experiments, showing the number of cases where each planner succeeded, failed or was

terminated due to timeout, along with the average time per experiment (plus/minus the

standard deviation).

Table 6-1. Evaluation summary for the Main scenario.

Success 199 122 194 212

Failed 3 1 4 0

Timeout 10 89 14 0

Time (avg±sd) 519±282s 383±59s 516±243s 30±65ms

In this scenario, we are trying to rebuild the compositions using the information that was

extracted from them in the first place; therefore, we should expect the tools being able to

find solutions to all experiments. The first notable observation is that only the

algorithm was capable of that; the -based heuristics failed for some compositions due to

timeout or were not able to find a solution at all (before timeout). Among the

heuristics, the had the worst success rate, failing in more than 40% of the cases

(including timeout cases); its companion heuristcs had failure rates below 10%.

75

Another important observation is the time required by the planners to compute the

solutions. Note that, in Table 6-1, while the times for planners are shown in seconds

(highlighted for easy differentiation), the algorithm computed solutions in tens of

milliseconds in average. This significant difference, however, needs to be analyzed carefully.

General-purpose planners, such as the , provide several features, for various planning

domains, which are not supported by our version. In addition, they are optimized for

solution quality (minimum cost) since the IPC competition uses quality as its most

important metric. Other details contribute to the excessive time, for example, the parsing

of PDDL descriptions, the generation of large intermediate files, and the use of interpreted

languages such as Python in some stages. Nonetheless, this result suggests that a specialized

implementation can be several orders of magnitude faster than a general-purpose planner

can, and therefore preferred for use in production scenarios.

Completing this evaluation, Table 6-2 shows the planners performance in the Random

scenario (and only), which helps estimating the time the developer would wait,

in average, for failed cases. In general, time figures are similar to the Main scenario for the

 heuristic, while the algorithm needed 50% more time in average, yet much faster

than the planner.

Table 6-2. Evaluation summary for the Random scenario.

Success 17 25

Failed 75 75

Timeout 8 0

Time (avg±sd) 465±142s 45±56ms

The quality of the solutions, measured by the similarity metrics described in Section 6.1.4,

is presented in Table 6-3. Overall, the quality of the solutions generated by the

heuristics and the algorithm are around 75%, with the exception of the

heuristic, which needs further explanation for its 0.88 quality. It must be noted that this

heuristic has the worst performance in terms of success rate, being able to solve only 60%

of the cases tested. In order to provide a fair comparison between planners, Table 6-4

shows the similarity of the solutions for the cases where both the heuristic and the

had succeeded, for the three heuristics evaluated. In the case of versus , both

offered the same similarity of 88% for the cases both found a solution. In general, the

performed slightly worse than the heuristics given its tendency to add more services

than necessary, as shown by the average number of services of its solutions: 4.74. This

76

happens since the Graphplan algorithm tries to produce plans with fewer levels (each level

containing potentially many services), irrespective of how many services the plan will end

up with.

Table 6-3. Composition metrics for the Main scenario.

Similarity 0.77 0.88 0.75 0.73

Hit rate 0.79 0.90 0.77 0.78

Error rate 0.08 0.04 0.10 0.14

Services (avg) 4.14 4.18 4.07 4.74

Depth (avg) 3.24 3.27 3.25 3.33

Table 6-4. Similarity: FD heuristics vs. GP

for the cases where both succeeded.

–

 0.77 0.74

 0.88 0.88

 0.75 0.74

Overall, the quality of the solutions can be considered acceptable – around or superior to

70% – for the planners with good success rate. Figure 6-5 shows the histogram for the

similarity metric, where it is shown that the algorithm concetrates 50% of its

solutions in the 1.0 extreme of the similarity spectrum; the algorithm presents a similar

behavior, concentrating slightly more solutions in the middle of the range than .

(a) (b)

Figure 6-5. Similarity histogram for FDSS1 (a) and GP (b).

77

It can be noted that for a percentage of the cases the average quality degrades to as low as

45%. 35 of these cases (around 16% of the total) have as a common characteristic the fact

that not all input parameters provided by the developer in the composition specification

were used to build the final solution. In fact, the difference between the number of inputs

provided in the specification and the number of inputs actually used has a linear correlation

of -0.46 with the quality of the solutions, suggesting that decreasing this difference would

provide more accurate compositions. As mentioned before, general-purpose planners focus

in finding the shortest plan (in number of services or time steps); using all the inputs

provided is not a priority. To illustrate this fact we present in Figure 6-6 an example of

workflow from the myExperiment repository and, in Figure 6-7, the respective solution

found by both the and planners.

The workflow in Figure 6-6 uses three data Web Services (marked in the figure with

"wsdl:" prefix) and internal Taverna activities for processing their input and output

parameters; for the purpose of this Thesis, both Web Services and internal activities are

handled as "services". The processing activities in this case – and

 – concatenate and separate individual parameters into and from XML

code, respectively. Alghouth the Web Services in this example require XML-encoded

parameters, this is not required for the Web Services in the myExperiment repository. The

solution for this case, shown in Figure 6-7, does not use all the original input parameters –

 is leaft unused. As a result, it lacks one of the Web Services of the original

solutions – – and the solution quality is 0.67.

78

Figure 6-6. Example of workflow from the myExperiment repository.

79

Figure 6-7. Resulting workflow using FDSS1 or GP for the previous example.

6.2.2. Enforcing Inputs to Improve Quality

We addressed this problem with extensions that enforce the use of the inputs provided by

the developer, as described in the Chapter 5. We tested these algorithms in the Main

scenario, comparing it with the heuristic. In Table 6-5, we present the results for the

enforced and our variants, with and without the use of Preferred Services; the

results for and basic are shown for easy reference. With respect to the

algorithm, we opted to show only the results using the modified A* search strategy, which

performed slightly better than the standard A* in our tests; using the Enforced Hill

Climbing (EHC) search routine from the original algorithm led to a high failure rate.

(The original implementation already accounted for that and used a secondary search

strategy to deal with failed cases [11].)

80

Table 6-5. Composition metrics enforcing the use of input parameters.

Similarity 0.77 0.73 0.78 0.77 0.79 0.78

Hit rate 0.79 0.78 0.83 0.83 0.84 0.83

Error rate 0.08 0.14 0.12 0.12 0.11 0.12

Services (avg) 4.14 4.74 4.92 5.01 4.96 4.94

Depth (avg) 3.24 3.33 3.44 3.49 3.46 3.42

Examining only at the quality obtained by the algorithms, the improvement seems

unimpressive. The modified algorithms matched the quality provided by the planner,

being also able to improve the hit rate – i.e., number of correct services found – from 0.79

to 0.84, as can be seen in the histograms in Figure 6-8.

(a) (b)

Figure 6-8. Hit rate histograms for and

 (b).

Table 6-6 gives a more complete panorama of the algorithms´ performance. The

algorithms showed capable of solving most of the problems (97%) with slightly better

quality – especially hit rate – than the heuristic; the use of preferred services allowed

2 cases that timed out with to be completed successfully, but also increased

considerably the average time to compute the solutions due to the initial step of computing

the set of preferred services. Both of our variants, and

 had success rates

compatible with but with little gain in solution quality.

81

Table 6-6. Success and time metrics when enforcing the use of input parameters.

Success 199 212 206 208 195 199

Failed 3 0 3 3 15 12

Timeout 10 0 3 1 2 1

Time (avg±sd) 519±282s 29±65ms 31±63ms 2±19s 104±307ms 134±432ms

The real value of the proposed algorithms surfaces when we look only at the cases where

they made a difference: instances where traditional planning algorithms did not use all the

information provided by the developer in the solution. The average quality for these cases

rose from 0.45, using the heuristic, to 0.71 using the enforced algorithm with

preferred services (

), as can be seen in Table 6-7. The hit rate also increased

considerably: while the FD planner found around half the services the developer wanted,

our algorithm was able to find as many as 80% of them.

Table 6-7. Composition quality when enforcing the use

of input parameters; only cases affected by the algorithms.

Similarity 0.45 0.71

Hit rate 0.54 0.82

Error rate 0.31 0.18

Services (avg) 3.77 5.20

Depth (avg) 3.03 3.91

Resuming the example of the previous section, Figure 6-9 shows the resulting composition

when enforcing the use of all input parameters. The solution contains all the services of the

original workflow (Figure 6-6), and only them, what gives it a quality measure of 1.0.

However, it must be noted that the order and number of service invocations differs from

the original, what is not reflected by our similarity (quality) metric. Although a solution still

requires the intervention of the developer in order to take its final form, the task of finding

the services was performed correctly by the composition algorithm.

82

Figure 6-9. Resulting workflow enforcing the use of all inputs.

83

6.2.3. Missing Inputs

Another feature explored in the proposed algorithms is the tolerance of incomplete

specifications, which in our case means that some input parameters needed by the

composition may be missing in the description provided by the developer. Both our

adapted and algorithms have been changed to handle such cases. In order to test

this feature, we modified the Main scenario so that the specifications used to (re)build the

compositions contained one input parameter less than originally (cases with no inputs

where not included in this experiment). The planner and basic algorithm were

applied to this scenario for generating a reference solution. Table 6-8 compiles the results

of this battery of experiments;

Table 6-8. Composition metrics for the scenario with one missing input parameter.

Similarity 0.58 0.55 0.69 0.68 0.54 0.55

Hit rate 0.65 0.64 0.76 0.76 0.58 0.58

Error rate 0.20 0.25 0.15 0.15 0.10 0.11

Services (avg) 4.53 5.32 5.53 5.53 3.89 3.88

Depth (avg) 3.55 3.71 3.63 3.63 2.48 2.48

While the quality of the solutions suffers with the removal of one input parameter, the

drop was less pronounced than expected. The average similarity fell from the initial 0.73

with basic (in the Main scenario) to values bordering 0.7 using both and

.

The variants performed slightly worse than in this scenario, spreading the

solutions all over the similarity spectrum as shown in Figure 6-10(b).

84

(a) (b)

Figure 6-10. Histogram of similarity for

(a) and

(b).

However, the goal of the proposed algorithms is to provide approximate solutions to the

developer in cases where traditional approaches would fail straightway, as seen by the

results of the and planners in Table 6-9. The success rate of these planners was

limited to 66% (63 successful cases out of 95 for). Meanwhile, our -based algorithms

had up to 81% success rate and both and

 solved 90% of the cases.

Table 6-9. Success and time metrics with one missing input.

Success 58 63 86 86 73 77

Failed 33 32 7 7 22 18

Timeout 4 0 2 2 0 0

Time (avg±sd) 435±74s 42±80ms 58±95ms 163±398ms 0.4±2.3s 199±361ms

6.2.4. Service Precedence

To finalize our evaluation, we experimented with the information gathered from the

compositions in the reverse engineering phase. In particular, we are interested in measuring

the influence of using the service precedence information in the composition process. The

service precedence relation, as described in Section 4.2.2, can be used to determine if a

service is a prerequisite for service , even if they are not directly connected. Intuitively,

if we observe that service precedes service in all compositions were service is used

then one can assume that is needed in order to invoke , i.e., is an implicit

precondition of . An example of this kind of relationship is the case of a service that

closes a database connection. It must clearly be preceded by an invocation to the service

85

that opens the respective connection at some point of the composition. For this evaluation,

we made the precedence relation an explicit precondition of the services in our repository.

No modifications were made to the algorithms since they are able to handle preconditions

natively. We evaluated the Main scenario with precedence information using the

planner and the basic algorithm, the results shown in Table 6-10 (along with the results

without precedence).

Table 6-10. Composition metrics with and without the use of service precedence.

Without service precedence With service precedence

Similarity 0.77 0.73 0.81 0.77

Hit rate 0.79 0.78 0.83 0.86

Error rate 0.08 0.14 0.09 0.14

Services (avg) 4.14 4.74 4.13 5.76

Depth (avg) 3.24 3.33 3.35 3.53

The use of the additional information had an impact on the quality of the solutions,

breaking the 80% barrier with . It also generated more solutions close to 1.0 than

the algorithm, as seen in Figure 6-11. Graphplan outperformed with respect to

the hit rate metric (0.86 against 0.83) but suffered from the large number of services in its

solutions, which reduced its overall similarity.

(a) (b)

Figure 6-11. Histogram of similarity for FDSS1 (a) and GP (b) with Service Precedence.

This gain in quality comes with a price: it takes 150% longer to compute the solutions with

 , and more than 10 times with Graphplan (Table 6-11). also fails more

86

frequently due to timeout once the average time of 22 minutes approaches the hard limit

set for our experiments: 30 min.

Table 6-11. Success and time metrics with and without service precedence.

Without service precedence With service precedence

Success 199 212 185 212

Failed 3 0 1 0

Timeout 10 0 26 0

Time (avg±sd) 519±282s 29±65ms 1332±62s 388±1006ms

In our experiments, we used service precedence as a "hard" precondition: a service is only

added to a solution if all services it requires appear before in the solution its invocation. In

the future, we plan to use the precedence information in a "softer" way, deferring instead

of pruning away the services that have not all of their required services fulfilled. We find

this soft version more interesting in general, since the precedence information gathered via

reverse engineering can be too tied to the specific compositions used in the process, and

therefore too restrictive in a general sense.

6.3. SUMMARY AND DISCUSSION

This chapter presented the performance evaluation intended at measuring the quality of the

compositions provided by a standard planner and by our proposed algorithms. We

compared the solutions found by those tools with the original, handwritten compositions

of the myExperiment repository in order to estimate how helpful these tools would be to

composition developers. The results showed that the overall quality of compositions

obtained by both standard planning tools and our algorithms is acceptable (around or

above 75%), but there is still room for improvement for specific cases. We identified that

the cases where not all input information was used in the solutions had lower average

quality, and that by applying an algorithm designed to address this problem the quality was

increased from 45% to 71%. The tolerance of our algorithms for missing inputs was also

evaluated. We were able to raise the success rate of the automated service composition

from 66% to 90%, compared to classical planning, while keeping the quality of the

solutions bordering the 70% level. The results also showed that a tailored implementation

can perform orders of magnitude faster than a more general one while providing similar

quality, although this finding comes with some reservations. Another interesting result was

that using more information associated to the services (i.e., service precedence) can

87

improve the solutions at the expense of significantly increasing the time required to

compute them.

The decision of what composition tool to use – a generic planner or our tailored algorithms

– vary according to the requirements of the composition developer. If the developer has

little or no constraint on the time required to compute the solutions, using a generic

planner such as the Fast Downward along with precedence information (as in Section

6.2.4) is a good option since is generates compositions with best quality in average (but

takes several minutes doing so). However, if response time is an issue, as in an iterative

development approach, the results point that our algorithms, in especial the Graphplan

with Enforced Inputs and Preferred Services (

), provide the best balance between

composition quality and computation time. For even faster responses, our Fast Forward

variant

 is the best choice, although the developer must be aware of its high failure

rate. Both

 and

 improve quality by enforcing the use of all input parameters

by the compositions they generate. If, on the other hand, tolarence to missing inputs is

important,

 showed to be the most effective option – with high success rate and

near 0.7 average quality – while keeping the computation time below one second.

In the previous Chapter we pointed out that there are other planning strategies that could

be used to mimic the features implemented in our algorithms, namely, planning with

preferences (enforced inputs) and conformant planning (missing inputs). For the evaluation

in this Thesis, however, we were able to compare our algorithms to Classical Planning tools

only, and even then, the evaluation encountered several obstacles due to the inability of the

tools for handling large domains, as reported in Section 6.1.1. In fact, two of the planners

we tested support soft preferences – SGPlan and MIPS-XXL –, but they either crashed

(MIPS-XXL) or we could not reproduce the same behavior of our algorithms (SGPlan).

However, as a thorough comparison could not be carried out on time for this Thesis, we

cannot rule them out right away. This comparison is a subject to future work.

88

Chapter 7 Final Remarks

Automated Service Composition (ASC) has been studied for various years already and

several proposals emerged during these years, with varied levels of maturity. Nonetheless,

the use of automated composition techniques by service developers has not taken off yet,

despite the efforts of the Web Services Community. In our opinion, this is due, in part, to

the fact the some complex approaches seek to reduce the role of the developer in the

(automated) composition process, while even trying to replace him/her altogether; other

simpler approaches, conversely, may be too dependent on the developer, requiring

constant feedback in order to find solutions. We think that automated composition can be

an important item in the developer’s utility belt – akin to code completion and refactoring

in modern IDE's –, but for that to happen it must be simple to use, non-intrusive,

relatively fast and more tolerant to human failures. Moreover, the developer should be able

rely on the solutions provided by the algorithms, or at least have some expectation of how

reliable (or not) the compositions generated automatically are.

In this Thesis, we have worked on some of the problems that hinder the applicability of

automated composition in practical scenarios. We chose to work with simple

Input/output-based composition specifications, which limit the amount of information

that the developer needs to provide initially. We investigated the use of AI planning, the

most recurring technique for automated composition, and measured its effectiveness. To

circumvent the lack of semantic information that is common for real-life services, we opted

for using a publicly available repository of scientific workflows, from which we extracted

the information necessary to the planning algorithms. From the experience of using

planners to solve the composition problems, we identified some major improvement

points. To demonstrate the ideas, we enhanced two classic planning algorithms in order to

increase the quality of their solutions, measured as the accuracy of the automated

compositions compared to ones written manually. After performing experiments intended

to validate our contributions, we have come to the following conclusions.

89

7.1. CONCLUSIONS

The conclusions of this Thesis are the following:

1. Quality of the Solutions: Automated composition using standard planning

algorithms can indeed provide solutions with acceptable quality. It is possible,

however, to increase the quality by applying planning algorithms specially crafted to

the service composition task. In special, ensuring the adherence of the solution to

the initial specification by enforcing the use of all input parameters showed capable

of raising significantly the quality of the solutions.

2. Incomplete Specifications: The lack of complete knowledge of the developer

regarding the composition specification can be tackled with adequate algorithms,

hence improving the developer’s productivity by offering approximate solutions in

early phases of the development, when not all details are known. Our algorithms

can handle the case when the specification lacks some input parameters, providing

an approximate solution that uses the inputs provided and adds a configurable

number of extra inputs necessary for the composition. Without such

improvements, the developer would have to deal with "no solution found"

responses from the planning algorithm until he/she finds out which input

parameters are missing.

3. Composition Time: Using classical planning tools can be too time-consuming for

agile development scenarios. Our experiments showed that a simplified, more

focused implementation can be orders of magnitude faster than a generic planner,

which suggests that expressive power may need to be scarified in favor of usability.

Irrespective of the tool used, some problem instances will still require more time

than the developer may be willing to wait, as timed-out cases happened to most

algorithms (especially when trying to improve the solution quality). Our opinion

based on the experience with planning algorithms – and shared by other authors

[33] – is that they either find a solution "quickly" or hang indefinitely looking for it.

4. Semantic Descriptions: It is possible to employ automated composition

techniques without manually written semantic annotations attached to services, as

long as a composition repository of significant size is available. By applying a

simple reverse engineering procedure to the repository, it is possible to obtain

acceptable quality compositions automatically. Although the repository we used

contains service compositions for scientific data processing instead of the more

90

common business-oriented domain, we believe that our process can be applied with

minor changes to any repository of compositions, be it public or private.

7.2. CONTRIBUTIONS

The contributions of this Thesis are the following:

1. Algorithms for improving the quality of the compositions. The algorithms try

to ensure that the solutions adhere to the specification given by the developer by

making the compositions found use all the inputs parameters provided.

2. Algorithms that tolerate the lack of information in the initial specification.

These algorithms increase the probability of finding a solution even if not all

necessary input parameters are known beforehand while preserving the quality of

the solutions at the same time;

3. An evaluation of the proposed algorithms along with a state-of-the-art

planning system. The evaluation measured the quality of the solutions (accuracy)

and overall performance of the tools. A real life composition repository was used in

the evaluation, generating a planning domain large enough to break several state-of-

the-art planners. In this evaluation, we measured not only the time taken for

generating the solutions but also their quality. By measuring the quality of the

solutions, we could identify problematic cases and adapt algorithms of the literature

to handle them.

4. A process for extracting semantic information from a database of service

compositions. The semantic data, comprised of compatibility information on the

input and output parameters and also the precedence relation between services,

enabled the use of automated composition techniques;

7.3. FUTURE WORK

In this Thesis, we focused on simpler, dataflow-oriented compositions where the main

elements are services and the connections between them. Current composition languages,

such as BPEL, allow for more elaborated compositions, resembling traditional

programming languages. Control structures such as if's and for loops along with

mechanisms to coordinate the parallel execution of services in the composition are

available in these languages. In our opinion, however, these control structures would

require much richer composition specifications than the basic input/output approach we

used in order to make clear to the composition algorithms that such structures would be

91

necessary at some point. The richer the specification, the more complex will be to the

developer's job of describing the composition in the first place (not to mention that the

underlying services would likely need more detailed descriptions as well), to the point that

specifying the composition could eventually take the same effort as writing the

composition itself. With that in mind, and for the purpose of having automated

composition assisting – not replacing – the developer, having full-blown control-structures

into solutions might be overkill. We want to investigate this subject further and verify to

what extent these insights are valid or not.

The Input/output approach we adopted, however, can be too restrictive. Sometimes, for

example, the developer is not sure about the outcome of the composition but knows some

of the services that might be part of the final solution. We have already contemplated with

this idea by proposing a graphical user interface where the developer can specify some

services and leave the others for the composition algorithm to solve (SERVICES 2011

paper). We plan to elaborate on this idea so that the specification of the composition can

be made as simple and flexible as possible.

The algorithms we developed can be subject to several improvements. Among them, we

plan to add support to non-functional requirements, such as Quality of Service, which will

give more control over the services used. We plan to improve the quality of the solutions,

especially our FF variant, by reducing the error rate, i.e., number of wrong services

included in the solutions (the number of correct services found – or hit rate – is already at a

good level of 80%). Memory footprint of our FF variant is also an issue for further work

since some instances failed due to lack of memory.

In the reverse engineering front, we plan to use ideas from theory of Social and Complex

Networks [51] to mitigate the problem of low service reuse, which reduces the richness of

information gathered from compositions and, consequently, the effectiveness of our

automated composition approach. The overall approach would be to create new service

relationships based on the existing ones, using for example, the link prediction techniques

shown in [52]. The use of social aspects of the compositions – such as their authors and

the services they use most frequently – can also contribute to enrich the service

descriptions. Finally, we want to evaluate our reverse engineering process with other

composition repositories.

92

Another interesting direction would be to measure effectively the time saved by applying

automated composition. For that purpose, we would need to ask volunteers to implement

some compositions manually and then fix the automatically generated compositions for the

same specifications, measuring the time taken to perform both activities. In order to have a

more meaningful quality measure, we could also ask the volunteers to rate the solutions

found automatically – similar to Mean Opinion Score – and them find a formulation to

map the composition attributes into the score given by the volunteers.

7.4. PUBLICATIONS

7.4.1. On Service Composition or Related Subjects

 In the following paper we show early results of our Graphplan-based approach for

service composition and a proposal of Graphical User Interface that allowed both

manual and automated composition:

DANTAS, R., AZEVEDO, E., DIAS, C., LIMA, T., SADOK, D., KAMIENSKI, C. A.,

OHLMAN, B., "Facilitating Service Creation via Partial Specification and Automated

Composition", In: Composition Workshop at the 2011 IEEE World Congress on Services

(SERVICES), Washington, DC, 2011.

 We explore the combination of services and policies using a semi-automated

service creation process called Service Refinement Cycle in the paper:

KAMIENSKI, C. A., DANTAS, R., AZEVEDO, E., DIAS, C., SADOK, D.,

OHLMAN, B., "Unleashing the power of policies for service-oriented computing", In: 7th

International Conference on Network and Service Management (CNSM), Paris, 2011.

 This Book Chapter describes a proposal for combining P2P technologies and

Policies in order to manage distributed services:

KAMIENSKI, C. A., DANTAS, R., SADOK, D., OHLMAN, B., "Managing the Future

Internet: Services, Policies and Peers. In: Handbook of Research on P2P and Grid Systems

for Service-Oriented Computing: Models, Methodologies and Applications. 1.", IGI

Global, Hershey, EUA, 2010. (Book Chapter)

93

 In this Application Patent we present some of the ideas on the execution of policy-

equipped services:

KAMIENSKI, C., DANTAS, R., OHLMAN, B., SADOK, D., "Method and Apparatus

for the Execution of Adaptable Composed Computer-Implemented Services with

Integrated Policies", U.S. Patent Application No. 12/969331, Unpublished (filing

date December 5, 2010) (Patent Application)

 The paper that proposes the Service Refinement Cycle, a semi-automated

framework for service creation:

KAMIENSKI, C. A., DANTAS, R., FIDALGO, J., SADOK, D., OHLMAN, B., "Service

Creation and Execution with the Service Refinement Cycle", In: IEEE/IFIP Network

Operations and Management Symposium (NOMS 2010), 2010, Osaka, 2010.

 An early work on the use of goals for the automatic creation of autonomic services:

CHONG, M.-Y., BJURLING, B., DANTAS, R., KAMIENSKI, C. A., OHLMAN, B.,

"GOAL-BASED Service Creation Using Autonomic Entities", In: Lecture Notes in

Computer Science: Modelling Autonomic Communications Environments, Springer,

Heidelberg, 2009.

7.4.2. Other Publications during the PhD

 DANTAS, R., BERG, M., CEDERHOLM, D., GONCALVES, G., SIQUEIRA, R.,

RABELO, R., SADOK, D., "Method and arrangement in a communication system",

WO Patent Application No. PCT/SE2010/000088, Unpublished (filing date April 1st,

2010) (Patent Application)

 GONCALVES, G., DANTAS, R., PALHARES, A., KELNER, J., FIDALGO, J.,

SADOK, D., ALMEIDA, H., BERG, M., CEDERHOLM, D., "Estimating Video Quality

over ADSL2+ under Impulsive Line Disturbance", In: Lecture Notes of the Institute for

Computer Sciences, Social Informatics and Telecommunications Engineering: AccessNets.

Springer, Heidelberg, 2009.

 FIDALGO, J., KAMIENSKI, C. A., DANTAS, R., SADOK, D., OHLMAN, B., "Policy

Processing: Don't Take it for Granted", In: IEEE International Symposium on Policies for

Distributed Systems and Networks, 2009, London. Proceedings of the International

94

Symposium on Policies for Distributed Systems and Networks. Los Alamitos, CA : IEEE

Computer Society, 2009.

 GONCALVES, G., DANTAS, R., PALHARES, A., KELNER, J., FIDALGO, J.,

SADOK, D.; ALMEIDA, H. ; BERG, M. ; CEDERHOLM, D., "Estimating Video

Quality over ADSL2+ under Impulsive Line Disturbance", In: Third International

Conference on Access Networks (AccessNets 2008), Las Vegas, 2008.

 DANTAS, R., FIDALGO, J., SADOK, D., KAMIENSKI, C. A., OHLMAN, B.,

"Policies for the Management of Ambient Networks: From Theory to Practice", In: IEEE

Workshop on Policies for Distributed Systems and Networks, New York, 2008.

 BERGLUND, A., BJURLING, B., DANTAS, R., ENGBERG, S., GIAMBIAGI, P.,

OHLMAN, B., "Toward Goal-Based Autonomic Networking", In: IEEE Workshop on

Distributed Autonomous Network Management Systems (DANMS'08), New Orleans,

2008.

 DANTAS, R.; FIDALGO, J. ; LIMA, J. S. M. ; SADOK, D. ; KAMIENSKI, C. A. ;

OHLMAN, B., Effective Implementation of Network Composition for Ambient

Networks. In: IEEE/IFIP Network Operations and Management Symposium (NOMS),

Salvador-BA, 2008. (Short paper)

 KAMIENSKI, C. A.; FIDALGO, J.; DANTAS, R.; SADOK, D.; OHLMAN, B.; Design

and Implementation of a Policy-based Management Framework for Ambient Networks:

Choices and Lessons Learned. In: IEEE/IFIP Network Operations and Management

Symposium (NOMS), Salvador-BA, 2008. (Short paper)

95

References

[1] AGARWAL, V., CHAFLE, G., DASGUPTA, K., KARNIK, N., KUMAR, A.,
MITTAL, S., SRIVASTAVA, B., “Synthy: A system for end to end composition of web
services,” Web Semantics vol. 3, issue 4, pp. 311-339, Elsevier, December 2005.

[2] AKKIRAJU, R., SRIVASTAVA, B., IVAN, A., GOODWIN, R., SYEDA-
MAHMOOD, T., "SEMAPLAN: Combining planning with semantic matching to
achieve web service composition," IEEE International Conference on Web Services, pp.
37-44, 2006.

[3] Amazon Simple Workflow Service, http://aws.amazon.com/swf/

[4] ANKOLEKAR, A., BURSTEIN, M., HOBBS, J. R., LASSILA, O., MARTIN, D. L.,
MCDERMOTT, D., MCILRAITH, S. A., NARAYANAN, S., PAOLUCCI, M.,
PAYNE, T. R. AND SYCARA, K., “DAML-S: Web Service Description for the
Semantic Web,” International Semantic Web Conference (ISWC), Sardinia, Italy, June
2002.

[5] ARPINAR, I. B., ALEMAN-MEZA, B., ZHANG, R., MADUKO, A., “Ontology-
driven web services composition platform,” IEEE International Conference on E-
Commerce Technology, pp. 146-152, 2004.

[6] BAIER, J. A., MCILRAITH, S. A., "Planning with Preferences", AI Magazine, Vol 29,
No 4, 2009.

[7] BASTIAN, M., HEYMANN, S., JACOMY, M., "Gephi: An Open Source Software for
Exploring and Manipulating Networks", International AAAI Conference on Weblogs
and Social Media, 2009.

[8] BERARDI, D., CALVANESE, D., DE GIACOMO, G., LENZERINI, M.,
MECELLA, M., “Automatic Composition of e- Services,” 1st Int. Conf. on Service
Oriented Computing (ICSOC 2003), Lecture Notes in Computer Science, vol. 2910,
Springer, pp. 43-58, 2003.

[9] BERNERS-LEE, T., HENDLER, J., LASSILA, O., “The Semantic Web,” Scientific
American 284, May 2001.

[10] Biocatalogue: http://www.biocatalogue.org/. Last accessed in December 2011.

[11] BLUM, A., FURST, M., "Fast Planning Through Planning Graph Analysis", Artificial
Intelligence, 90:281--300, 1997.

[12] BOLIE, J., CARDELLA, M., BLANVALET, S., JURIC, M., CAREY, S., CHANDRAN,
P., COENE, Y., GEMINIUC, K., “BPEL Cookbook: Best Practices for SOA-based
Integration and Composite Applications Development”, Packt Publishing, 2006, ISBN:
1-904-81133-7.

[13] COLES A., SMITH, A., "Marvin: a heuristic search planner with online macro-action
learning". J. Artif. Int. Res. 28, 1 (February 2007), 119-156, 2007.

[14] COLES, A. J., COLES, A. I., CLARK, A., GILMORE, S. T.,"Cost-Sensitive Concurrent
Planning under Duration Uncertainty for Service Level Agreements", International
Conference on Automated Planning and Scheduling (ICAPS-11), June, 2011.

[15] CORCHO, O., GÓMEZ-PÉREZ, A., “A Roadmap to Ontology Specification
Languages”. Polytechnic University of Madrid, 2000.

http://eprints.ecs.soton.ac.uk/7342/
http://eprints.ecs.soton.ac.uk/7342/
http://www.biocatalogue.org/

96

[16] CURBERA, F., DUFTLER, M., KHALAF, R., NAGY, W., MUKHI, N.,
WEERAWARANA, S., “Unraveling the Web Services Web: An Introduction to SOAP,
WSDL, and UDDI”, IEEE Internet Computing, March/April 2002.

[17] DAML Project, http://www.daml.org/. Accessed in Nov. 2008.

[18] DOMSHLAK, C., HELMERT, M., KARPAS, E., MARKOVITCH, S., "The SelMax
Planner: Online Learning for Speeding up Optimal Planning" (planner abstract). In
Seventh International Planning Competition (IPC 2011), Deterministic Part, pp. 108-112.
2011.

[19] EDELKAMP, S., JABBAR, S., "MIPS-XXL: Featuring External Shortest Path Search
for Sequential Optimal Plans and External Branch-And-Bound for Optimal Net
Benefit", In 6th International Planning Competition Booklet, Sydney, Australia, Sept.
2008.

[20] ERL, T., “SOA Principles of Service Design”, Prentice Hall PTR, 2007, ISBN: 0-132-
34482-3.

[21] FARQUHAR, A., FIKES, R., RICE, J., "The Ontolingua Server: A Tool for
Collaborative Ontology Construction". Proceedings of KAW96. Banff, Canada, 1996.

[22] FIKES, R.E., NILSSON N.J., "Strips: A new approach to the application of theorem
proving to problem solving", Artificial Intelligence, 2 (3-4), pp. 189-208, 1971.

[23] GEREVINI, A., LONG, D., "Plan constraints and preferences in PDDL3", The
International Conference on Automated Planning & Scheduling (ICAPS), 2006.

[24] GHALLAB M. ET AL., "PDDL: The Planning Domain Definition Language, Version
1.2", Technical Report CVC TR–98–003/DCS TR–1165, Yale Center for Computational
Vision and Control, Yale Univ., New Haven, Conn., 1998

[25] GHALLAB, M., NAU, D., TRAVERSO, P., "Automated Planning: Theory & Practice",
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[26] GOBLE, C.A., BHAGAT, J., ALEKSEJEVS, S., CRUICKSHANK, D.,
MICHAELIDES, D., NEWMAN, D., BORKUM, M., BECHHOFER, S., ROOS, M.,
LI, P., DE ROURE, D.: "myExperiment: a repository and social network for the sharing
of bioinformatics workflows", Nucl. Acids Res., 2010.

[27] GORTMAKER, J., JANSSEN, M., & WAGENAAR, R. W., “The Advantages of Web
Service Orchestration in Perspective”. 6th International Conference of Electronic
Commerce, ICEC 2004.

[28] GRUBER, T. R., “A Translation Approach to Portable Ontology Specifications,”
Knowledge Acquisition, vol. 5, issue 2, June 1993.

[29] GUERRERO, A, VERGARA, J. E. L. DE, SÁNCHEZ-MACIÁN, A. & BERROCAL,
J., “Ontology-based Policy Refinement Using SWRL Rules for Management Information
Definitions in OWL”, 17th IFIP/IEEE International Workshop on Distributed Systems:
Operations and Management (DSOM 2006), October 2006.

[30] GUIZZARDI, G., WAGNER, G., “Some Applications of a Unified Foundational
Ontology ins Business Modeling,” Idea Group, 2005.

[31] HALLER, A., CIMPIAN, E., MOCAN, A., OREN, E., BUSSLER, C., "WSMX - A
semantic service-oriented architecture," IEEE International Conference on Web
Services, pp. 321-328, 2005.

[32] HELMERT, M., "The Fast Downward Planning System", Journal of Artificial
Intelligence Research 26, 2006.

[33] HELMERT, M., RÖGER, G., SEIPP, J., KARPAS, E., HOFFMANN, J., KEYDER,
E., NISSIM, R., RICHTER, S., WESTPHAL, M., "Fast Downward Stone Soup"

http://www.daml.org/

97

(planner abstract). In Seventh International Planning Competition (IPC 2011),
Deterministic Part, pp. 38-45. 2011.

[34] HOFFMANN, J., NEBEL, B., "The FF Planning System: Fast Plan Generation
Through Heuristic Search", Journal of Artificial Intelligence Research, Volume 14, pages
253 - 302, 2001.

[35] HOFFMANN, J., BERTOLI, P., PISTORE, M., “Web Service Composition as
Planning, Revisited: In Between Background Theories and Initial State Uncertainty,”
22nd National Conference of the American Association for Artificial Intelligence
(AAAI'07), Vancouver, Canada, July 2007.

[36] Horn Rule Semantics Wiki,
http://www.w3.org/2005/rules/wg/wiki/Horn_Rules_Semantics, Accessed in Nov.
2008.

[37] HORROCKS, I., PATEL-SCHNEIDER, P., “Reducing OWL Entailment to
Description Logic Satisfiability,” Journal of Web Semantics, 2004.

[38] HSU, C. W. , WAH, B. W., HUANG, R., CHEN, Y. X., "Handling Soft Constraints and
Preferences in SGPlan", International Conference on Automated Planning and
Scheduling, June 2006.

[39] HULL, D., WOLSTENCROFT, K., STEVENS, R., GOBLE, C., POCOCK, M., LI, P.,
OINN, T., “Taverna: a tool for building and running workflows of services.,” Nucleic
Acids Research, vol. 34, iss. Web Server issue, pp. 729-732, 2006.

[40] International Planning Competition, http://ipc.icaps-conference.org/.

[41] KAUTZ, H., SELMAN, B., "BLACKBOX: A New Approach to the Application of
Theorem Proving to Problem Solving", Working notes of the Workshop on Planning as
Combinatorial Search, held in conjunction with AIPS-98, Pittsburgh, PA, 1998.

[42] KAUTZ, H., SELMAN, B., HOFFMANN, J., "SatPlan: Planning as Satisfiability",
Abstracts of the 5th International Planning Competition, 2006.

[43] KHOSHAFIAN, S., “Service Oriented Enterprises,” Auerbach, 2006.

[44] KIFER, M., LAUSEN, G., WU, J., "Logical Foundations of Object-Oriented and
Frame-Based Languages," Journal of the ACM. 1995.

[45] KLUSCH, M., FRIES, B., SYCARA, K., “Automated semantic web service discovery
with OWLS-MX,” International Joint conference on Autonomous Agents and
Multiagent Systems (AAMAS '06), pp. 915-922, 2006.

[46] KLUSCH, M., GERBER, A., "Semantic web service composition planning with OWLS-
XPlan", 1st Int. AAAI Fall Symposium on Agents and the Semantic Web, Arlington VA,
2005.

[47] Knowledge Interchange Format draft proposed American National Standard:
http://logic.stanford.edu/kif/dpans.html. Accessed in Nov. 2008.

[48] KOEHLER, J., "IPP - A Planning System for ADL and Resource-Constrained Planning
Problems", Habiliation Thesis, University of Freiburg, 1999.

[49] LAUSEN, H., DE BRUIJN, J., POLLERES, A., FENSEL, D., “WSML - a Language
Framework for Semantic Web Services,” W3C Workshop on Rule Languages for
Interoperability, Washington DC, USA, 2005.

[50] LÉCUÉ, F., LEGER, A., “Semantic web service composition through a matchmaking of
domain,”. European Conference on Web Services, pp. 171-180, 2006.

[51] LEWIS, T. G., "Network Science: Theory and Applications", John Wiley and Sons, Mar
2009.

http://sra.itc.it/people/bertoli/
http://www.dit.unitn.it/~pistore/
http://www.w3.org/2005/rules/wg/wiki/Horn_Rules_Semantics
http://ipc.icaps-conference.org/
http://logic.stanford.edu/kif/dpans.html
http://www.w3.org/2004/12/rules-ws/paper/128/
http://www.w3.org/2004/12/rules-ws/paper/128/

98

[52] LIBEN-NOWELL, D., KLEINBERG, J., "The link prediction problem for social
networks". In Proceedings of the twelfth international conference on Information and
knowledge management (CIKM '03). ACM, New York, NY, USA, 2003.

[53] LIN, N., KUTER, U., SIRIN, E., "Web service composition with user preferences", 5th
European Semantic Web Conference (ESWC'08), Springer-Verlag, Berlin, Heidelberg,
pp. 629-643, 2008.

[54] MACGREGOR, R., "Inside the LOOM clasifier". SIGART bulletin. #2(3):70-76. June,
1991.

[55] MCCANDLESS, D., OBRST, L., HAWTHORNE, S., "Dynamic web service assembly
using owl and a theorem prover," International Conference on Semantic Computing, pp.
336-341, 2009 IEEE International Conference on Semantic Computing, 2009.

[56] MCILRAITH, S. A., SON, T. C., ZENG, H., "Semantic Web services," IEEE Intelligent
Systems, vol. 16, no. 2, pp. 46- 53, Mar-Apr 2001.

[57] MCILRAITH, S., SON, T., “Adapting Golog for Composition of Semantic Web
Services,” International Conference on Knowledge Representation and Reasoning
(KR2002), pp. 482-493, Toulouse, France, April 2002.

[58] MINSKY, M., “A framework for representing knowledge,” The Psychology of
Computer Vision. New York, McGraw-Hill, 1975.

[59] MOTTA, E., "Reusable Components for Knowledge Modelling". IOS Press.
Amsterdam. 1999.

[60] myExperiment: http://www.myexperiment.org/. Last accessed in December 2011.

[61] myGrid, http://www.mygrid.org.uk/. Last accessed in December 2011.

[62] NAU, D., AU, T-C., ILGHAMI, O., KUTER, U., MURDOCK, J. W., WU, D.,
YAMAN, F., “SHOP2: an HTN planning system,” Journal of Artificial Intelligence
Research, vol. 20, issue 1, pp. 379-404, December 2003.

[63] OASIS, “Reference Model for Service Oriented Architecture 1.0”, August 2006.

[64] OASIS, “Web Services Distributed Management: Management Using Web Service
(MUWS 1.0) Part 1.” Available at http://docs.oasis-open.org/wsdm/2004/12/wsdm-
muws-part1-1.0.pdf. Accessed in Nov. 2008.

[65] OASIS, “WS-BPEL 2.0”, http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html. Accessed in Nov. 2008.

[66] OMER, A. M., SCHILL, A., “Web service composition using input/output dependency
matrix,” 3rd Workshop on Agent-Oriented Software Engineering Challenges for
Ubiquitous and Pervasive Computing, ACM, pp. 21-26, London, United Kingdom, 2009.

[67] OWLS-TC – OWL-S test collection, http://www.semwebcentral.org/projects/owls-tc/.

[68] Parlay X, http://www.parlayx.com/.

[69] PDDL4J Library, http://sourceforge.net/projects/pdd4j/

[70] PELTZ, C., “Web Services Orchestration and Choreography”, Computer Magazine
IEEE, 2003.

[71] Prover9 and Mace4, http://www.cs.unm.edu/~mccune/prover9/.

[72] REITER, R., “Knowledge In Action: Logical Foundations For Specifying And
Implementing Dynamical Systems”, The MIT Press, 2001.

[73] RIBIÈRE, M, CHARLTON, P., “Ontology Overviews”. Motolora Labs, France.

http://data.bibbase.org/author/s-mcilraith
http://data.bibbase.org/author/t-son
http://www.myexperiment.org/
http://www.mygrid.org.uk/
http://docs.oasis-open.org/wsdm/2004/12/wsdm-muws-part1-1.0.pdf.%20Accessed%20in%20Nov%202008
http://docs.oasis-open.org/wsdm/2004/12/wsdm-muws-part1-1.0.pdf.%20Accessed%20in%20Nov%202008
http://www.semwebcentral.org/projects/owls-tc/
http://www.parlayx.com/
http://www.cs.unm.edu/~mccune/prover9/

99

[74] RICHTER, S., WESTPHAL, M., HELMER, M., "LAMA 2008 and 2011" (planner
abstract). In Seventh International Planning Competition (IPC 2011), Deterministic Part,
pp. 50-54. 2011.

[75] RODRÍGUEZ-MIER, P., MUCIENTES, M., LAMA, M., COUTO, M., “Composition
of web services through genetic programming,” Evolutionary Intelligence, Springer, pp.
171-186, 2010.

[76] SCHITTKO, C., “Web Service Orchestration with BPEL”, XML Conference and
Exposition, December 2003.

[77] SINGH, M. P., HUHNS, M. N., “Service-Oriented Computing – Semantics, Process,
Agents”, John Wiley & Sons, 2005, ISBN 0-470-09148-7.

[78] SOHRABI, S., PROKOSHYNA, N., MCILRAITH, S. A., "Web Service Composition
via Generic Procedures and Customizing User Preferences", 5th International Semantic
Web Conference, Athens GA, 2006.

[79] TAN, W., ZHANG, J., MADDURI, R., FOSTER, I., DE ROURE, D., GOBLE, C.,
"ServiceMap: Providing Map and GPS Assistance to Service Composition in
Bioinformatics", 2011 IEEE International Conference on Services Computing (SCC);
Washington, DC, 4-9 July 2011.

[80] TAN, W., ZHANG, J., FOSTER, I., "Network Analysis of Scientific Workflows: A
Gateway to Reuse", IEEE Computer; Volume: 43 Issue:9; Sept. 2010.

[81] Taverna Workbench: http://www.taverna.org.uk/. Last accessed in December 2011.

[82] The Rule Markup Language Initiative, http://www.ruleml.org/. Accessed in Nov. 2008.

[83] TRAVERSO, P., PISTORE, M., "Automated Composition of Semantic Web Services
into Executable Processes", International Semantic Web Conference (ISWC), Hiroshima,
2004.

[84] VAQUERO, L. M., RODERO-MERINO, L., CACERES, J., LINDNER, M., “A break
in the clouds: towards a cloud definition,” SIGCOMM Computer Communications
Review, vol. 39, issue 1, pp. 50-55, December 2008.

[85] VERGARA, J. E. L. DE, VILLAGRÁ, V. A. & BERROCAL, J., “Benefits of Using
Ontologies in the Management of High Speed Networks”, Lecture Notes in Computer
Science, Springer – 2004.

[86] W3C Consortium, “Web Services Choreography Description Language Version 1.0”,
http://www.w3.org/TR/ws-cdl-10/. Accessed in Nov. 2008.

[87] W3C Section - SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
http://www.w3.org/Submission/SWRL. Accessed in Nov. 2008.

[88] W3C Web Ontology Language Overview. http://www.w3.org/TR/owl-features.
Accessed in Nov. 2008.

[89] W3C, “OWL-S: Semantic Markup for Web Services,”
http://www.w3.org/Submission/OWL-S/. Accessed in Nov. 2008.

[90] Web Services Challenge 2008, http://cec2008.cs.georgetown.edu/wsc08/index.html.

[91] WONG, A. K. Y., RAY, P., PARAMESWARAN, N. & STRASSNER, J., “Ontology
Mapping for the Interoperability Problem in Network Management”, IEEE Journal on
Selected Areas in Communications, vol 23, no. 10, October 2005.

[92] WU, D., PARSIA, B., SIRIN, E., HENDLER, J., NAU, D., “Automating DAML-S web
services composition using SHOP2,” Lecture Notes in Computer Science, Springer
Berlin, pp. 195-210, vol. 2870, 2003.

http://www.taverna.org.uk/
http://www.ruleml.org/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/Submission/SWRL
http://www.w3.org/TR/owl-features
http://www.w3.org/Submission/OWL-S/
http://cec2008.cs.georgetown.edu/wsc08/index.html

100

[93] XIAO, D. & XU, H., “An Integration of Ontology-based and Policy-based Network
Management for Automation”, IEEE International Conference on Computational
Intelligence for Modelling Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06).

[94] YAHIA, I. G. B., BERTIN, E. & CRESPI, N., “Ontology-based Management Systems
for the Next Generation Services: State-of-the-Art”, Third International Conference on
Networking and Services(ICNS'07).

[95] YAN, Y., ZHENG, X., "A Planning Graph Based Algorithm for Semantic Web Service
Composition", 10th IEEE Conference on E-Commerce Technology and the Fifth IEEE
Conference on Enterprise Computing, E-Commerce and E-Services (CECANDEEE
'08), IEEE Computer Society, Washington, DC, 2008.

[96] ZHANG, J., TAN, W., ALEXANDER, J., FOSTER, I., MADDURI,
R., "Recommend-As-You-Go: A Novel Approach Supporting Services-Oriented
Scientific Workflow Reuse", 2011 IEEE International Conference on Services
Computing (SCC), Washington, DC, 4-9 July 2011.

[97] ZHANG, R., ARPINAR, I. B., ALEMAN-MEZA, B., “Automatic composition of
semantic web services,”, International Conference on Web Services, pp. 38-41, Las
Vegas, 2003.

