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Resumo 

Na área da engenharia de reservatórios de petróleo, um dos grandes desafios 

enfrentados é a busca da melhor solução para a produção de óleo. Uma ferramenta 

disponível para previsão da produção e que fornece informações para o controle da 

mesma é a simulação computacional de reservatórios. Com base nessa ferramenta, a 

simulação do campo pode ser conduzido de forma automática através de procedimentos 

de otimização. 

Neste trabalho será abordada a otimização do gerenciamento da injeção de água, 

tendo como variáveis as vazões atribuídas a cada poço produtor e injetor sob diferentes 

condições operacionais. O valor presente líquido (VPL), a produção acumulada de óleo 

e a injeção acumulada de água são as funções objetivo utilizadas. 

Tais problemas, por envolverem repetidas simulações numéricas, na maioria das 

vezes são computacionalmente onerosos. Visando contornar este custo, modelos 

substitutos podem ser utilizados. O presente trabalho propõe apresentar uma ferramenta 

para a otimização de problemas de gerenciamento de reservatório uni e multiobjetivos 

utilizando um acoplamento das técnicas Soma Ponderada (Weighted Sum (WS)) e 

Intersecção Contorno-Normal (Normal Boundary Intersection (NBI)) à estratégia de 

otimização sequencial aproximada (Sequential Aproximation Optimization (SAO)), 

baseada em modelos substitutos. 

A técnica aqui utilizada para a construção de tais modelos é a baseada em ajuste 

de dados, utilizando a técnica de amostragem do hipercubo latino (Latin Hypercube 

Sampling (LHS)). Para tal, dois procedimentos são investigados, krigagem e funções de 

base radial (Radial Basis Function (RBF)).  

O ambiente computacional utilizado para o desenvolvimento da ferramenta 

proposta é o MATLAB. As simulações do reservatório são feitas com um simulador 

comercial black-oil, o IMEX. 

Palavras-chaves: Simulação de Reservatórios, Otimização Sequencial 

Aproximada, Modelos Substitutos, Otimização Multiobjetivo. 
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ABSTRACT 

In reservoir engineering, a challenge faced by managers is to obtain the best 

solution for oil production. A tool available for estimate the oil production and 

providing information for its control is the reservoir simulation.  

The net present value (NPV), cumulative oil production and cumulative water 

injection are the objective functions used. 

As these problems involve repeated numerical simulations, most often they are 

quite computationally expensive. In order to decrease this cost, surrogate models can be 

used. This work presents a tool for the reservoir management optimization for the 

waterflooding problem dealing with uni and multiobjectives problem, this is done 

coupling MO techniques such as Weighted Sum (WS) and Normal-Boundary 

Intersection (NBI) with the Sequential Approximate Optimization (SAO) strategy based 

on surrogate models. 

The technique used for building such models is based on the datafitting schemes 

considering the Latin Hypercube Sampling (LHS) technique. For that, two procedures 

are investigated, kriging and radial basis functions (RBF).  

The computing environment used to develop the proposed tool is MATLAB. 

The reservoir simulation is done by a commercial black-oil simulator, IMEX.  

Keywords: Reservoir Simulation, Sequential Approximate Optimization, 

Surrogate Models, Uni and Multiobjective Optimization. 
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Capítulo 1: Introdução 

Este trabalho está situado na área da engenharia de reservatórios, mais 

especificamente no desenvolvimento/utilização de ferramentas computacionais para 

otimização da produção de óleo. Neste contexto, a pesquisa desenvolvida tem ênfase no 

estudo da alocação dinâmica das vazões nos poços de produção e injeção. Este tipo de 

otimização proporciona uma forma de controle das vazões nos poços com objetivo de se 

atingir um lucro máximo. 

1.1 Motivação 

O projeto ótimo automatizado requer a formulação adequada de um modelo de 

otimização (variáveis de projeto, função objetivo e restrições), bem como a utilização de 

um conjunto de técnicas numéricas bastante sofisticadas envolvendo o uso sequencial 

de simuladores, combinados com algoritmos de otimização. A experiência tem 

mostrado que o projeto ótimo de problemas reais da Engenharia leva a problemas de 

otimização complexos, com um grande número de variáveis de projeto e restrições em 

combinação com procedimentos de análises sofisticados (Keane & Nair, 2005). 

Para tais problemas, porém, uma simples simulação pode demorar muitos 

minutos, horas ou mesmo dias para ser concluída. Como resultado, tarefas rotineiras, 

tais como otimização de projeto, exploração do espaço de projeto, análise da 

sensibilidade, quantificação de incerteza tornam-se altamente onerosas, uma vez que 

elas requerem muitas avaliações de função (simulações).  

Métodos aproximados objetivando a construção de metamodelos (ou modelos 

substitutos) (Keane & Nair, 2005; Giunta & Watson, 1998; Forrester, et al., 2008; 

Afonso, et al., 2008) estão sendo cada vez mais utilizados nos projetos de engenharia, 

para superar/minimizar tais inconvenientes. Estas estratégias têm sido utilizadas 

objetivando uma resposta computacional rápida e também para se obter um 

comportamento mais suave para uma dada resposta, livre de ruído numérico, que é um 

problema típico de funções avaliadas provenientes de simuladores numéricos. Este 

último inconveniente citado deve ser evitado uma vez que podem dificultar o processo 

de se determinar o ponto de ótimo. 
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No contexto da otimização de reservatórios de petróleo, alguns dados podem ser 

levantados, por exemplo, o petróleo e o gás ainda serão em 2030 as principais fontes 

energéticas mundiais, representando em torno de 60% (Figura 1.1) da matriz energética 

mundial (IEA, 2013). Estudos apresentados pela Agência Internacional de Energia 

(IEA, 2010) mostram que o consumo mundial de petróleo em 2030 deverá estar por 

volta de 100 milhões de barris/dia. Para se ter uma ideia, o Brasil atingiu em 2009 uma 

produção de 2,15 milhões de barris/dia, enquanto a produção mundial atingiu 86,15 

milhões de barris/dia (ANP, 2012). Neste contexto de necessidade energética é cada vez 

maior a necessidade de se otimizar a produção do petróleo, levando em consideração a 

dificuldade na obtenção de novas reservas e que o petróleo é uma fonte de energia não 

renovável. 

 

Figura 1.1. Consumo de energia primária por combustível, 1980-2040 (1e15 BTU) (IEA, 2013) 

Outro fator de motivação é a descoberta das reservas de óleo brasileiras na 

camada do pré-sal, localizada nas Bacias de Santos, Campos e Espírito Santo, a uma 

profundidade em torno de oito mil metros abaixo do nível do mar. Com esta descoberta, 

se as estimativas forem confirmadas, o Brasil poderá se transformar num dos maiores 

produtores e exportadores de petróleo do mundo. A extração de petróleo na camada do 

pré-sal exigirá um elevado investimento em pesquisa e no desenvolvimento de soluções 

inovadoras que permitirão a produção de óleo com viabilidade econômica e ambiental. 

1.2 Objetivos 

Este trabalho tem como objetivo o estudo e desenvolvimento de um sistema 

computacional visando fornecer respostas que auxiliem o processo de gerenciamento 

em reservatórios de petróleo, com foco na varredura dos fluidos in place. 
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No gerenciamento da produção, as variáveis de controle serão as alocações 

dinâmicas das vazões dos poços produtores e injetores. O controle destas vazões é 

realizado a fim de melhorar a eficiência da recuperação secundária de óleo. Neste 

âmbito, busca-se melhorar um objetivo que represente o ganho que o gerenciamento da 

produção pode oferecer. Para isto, será utilizada inicialmente a função Valor Presente 

Líquido (VPL) apresentada em Oliveira (2006). Além desta função, serão utilizadas a 

produção acumulada de óleo e a injeção acumulada de água, para os problemas de 

otimização multiobjetivo. Com este tipo de formulação os cálculos referentes às 

equações de fluxo em meio poroso do reservatório podem ser realizados por programas 

comerciais, que são considerados como “caixas pretas”.  

1.3 Metodologia 

A formulação matemática considerada para os problemas que envolvem 

simulação de reservatórios apresenta um alto nível de complexidade, proporcionando 

um alto custo computacional das simulações numéricas sendo assim indicado o uso de 

métodos que utilizem modelos substitutos. O processo de otimização será executado 

utilizando o método de otimização por aproximação sequencial (SAO - Sequential 

Approximate Optimization) (Giunta & Eldred, 2000), juntamente com modelos 

substitutos locais (Giunta, 2002; Forrester, et al., 2008; Afonso, et al., 2008; Gutmann, 

2001) e um algoritmo de otimização não linear, o algoritmo de programação quadrática 

sequencial (Sequential Quadratic Programming - SQP) (Nocedal & Wright, 2000). Tais 

processos de ajuste de dados necessitam da obtenção de planos de amostragem (Design 

of Experiments - DOE) (Silva, 2010). Dentre as técnicas de aproximação existentes, são 

abordadas as técnicas de krigagem (Valente, 1982) e função de base radial (Gutmann, 

2001). 

A técnica de krigagem (Valente, 1982) foi desenvolvida pelo matemático francês 

Georges Matheron a partir dos trabalhos de Daniel G. Krige. Muito utilizado em 

geoestatística, parte do princípio que os pontos em um dado espaço de projeto são 

correlacionados. As funções de base radial (Gutmann, 2001) (Radial Basis Function 

(RBF)) são funções mais básicas, cujos valores dependem apenas da distância dos 

pontos a partir da origem. 

Outra aplicação da otimização diz respeito a atender simultaneamente vários 

objetivos, em geral conflitantes. Otimizadores de propósito geral não resolvem tais 
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problemas. Uma classe de estratégias baseadas no denominado conceito de Pareto (Arora, 

et al., 2007), constitui a abordagem adequada quando problemas de otimização 

multiobjetivo (OM) devem ser resolvidos. Na indústria do petróleo, podem ser 

relacionados, por exemplo, a maximização do óleo produzido acumulado enquanto se 

espera minimizar a água injetada, ou de maneira mais generalizada, se deseja minimizar 

o investimento realizado no processo de explotação enquanto o retorno financeiro é 

maximizado. 

Os programas computacionais desenvolvidos serão todos implementados no 

ambiente MATLAB (Mathworks, 2012).  

1.4 Organização do texto 

O Capítulo 2 apresenta os conceitos básicos de otimização, programação 

matemática e programação quadrática sequencial (SQP). 

No Capítulo 3 é apresentado o conceito de otimização por aproximação 

sequencial (SAO), onde são abordados os conceitos de plano de amostragem (DOE) e 

modelos substitutos. Será mostrado o tipo de amostragem do hipercubo latino (LHS). 

As metodologias de krigagem e função de base radial (RBF) são apresentadas. 

O Capítulo 4 aborda a otimização multiobjetivo, onde são apresentados os 

conceitos de ótimo de Pareto e as metodologias soma ponderada (WS) e intersecção do 

contorno-normal (NBI). 

No Capítulo 5 será apresentada a formulação do problema de reservatório e em 

seguida serão apresentados os casos estudados e os resultados obtidos com o SAO, onde 

serão comparados os casos dos problemas uni-objetivo e multiobjetivos. 

O Capítulo 6 está reservado às conclusões do estudo e sugestões para a 

continuidade deste trabalho. As referências bibliográficas são listadas em seguida. 
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Capítulo 2: Otimização 

A todo o momento estamos trabalhando para otimizar nossa vida, pois queremos 

o melhor para nós mesmos. Podemos aperfeiçoar nosso trajeto de ida ao trabalho e volta 

para casa conseguindo desviar do trânsito, tentamos aprimorar nossas tarefas no 

trabalho para sermos mais produtivos. Então, ao se utilizar o verbo otimizar estamos nos 

referindo a algo que queremos melhorar (função objetivo), através da escolha adequada 

de parâmetros (variáveis de projeto) até o melhor ponto (ponto ótimo) permitido dentro 

dos próprios limites do objeto, situação e natureza (restrições). 

A otimização é, desta maneira, uma área de conhecimento que está sempre em 

demanda, uma vez que se encontra direta ou indiretamente relacionada com capital e é 

empregada em todos os campos de aplicações, como: engenharia de petróleo, civil, 

mecânica, automobilística, aérea, econômica, eletrônica, química, etc. 

2.1 Formulação Padrão do Problema de Otimização 

Para formular o problema de otimização são necessários alguns conceitos que o 

constituem. 

2.1.1 Variáveis de projeto 

Quando se deseja otimizar um projeto é necessário modificar um conjunto de 

parâmetros, estes são comumente chamados de variáveis de projeto e podem ser 

denotados por um vetor [ ]T

1 2, , , ,nx x x= …x , onde n  é o número total de variáveis de 

projeto de um dado problema. O conjunto de variáveis que fornecem o melhor valor do 

projeto avaliado é chamado de ponto ótimo e pode ser representado por um vetor 

T* * * *
1 2, , , ,nx x x =  …x  (Kirsch, 1993), que resulta no valor mínimo (ou máximo) da 

função objetivo, e ao mesmo tempo, atende às funções restrições do problema, quando 

estas existirem. 

2.1.2 Função Objetivo 

A função objetivo deve quantificar o que queremos otimizar e será função das 

variáveis de projeto escolhidas. A função objetivo deve ser usada como uma medida da 

qualidade do projeto.  
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O procedimento de otimização pode ser classificado em uni-objetivo, quando 

temos apenas um objetivo ou multiobjetivo (ou multicritério), quando queremos 

otimizar vários objetivos de uma só vez.  

O sucesso da otimização vai depender também da formulação da função 

objetivo. Assim, é importante se perder um tempo para encontrar uma expressão 

matemática (valor presente líquido, deslocamento, frequência de ressonância, rigidez, 

volume, etc.) adequada que quantifique corretamente a eficiência do projeto. 

É importante chamar atenção para algumas equivalências clássicas de função 

objetivo que podem tornar o problema matematicamente mais simples. Assim, 

maximizar f  é a mesma coisa que minimizar f−  ou 1 f  (a menos da singularidade 

em 0f = ), ou maximizar k f×  (onde k é uma constante) e maximizar | |x  pode ser 

substituído por maximizar 2x , o que evita singularidades na derivada da função 

objetivo. 

2.1.3 Funções Restrição 

Essencialmente, as restrições são as limitações impostas para se obter a solução 

otimizada. São classificadas em três tipos: laterais, igualdade e desigualdade (Silva, 

2010; Pinto, 2011). 

Considerando um conjunto de variáveis de projeto [ ]T

1 2, , , ,nx x x= …x , as 

restrições laterais, ou geométricas, são determinadas através de valores que impõem 

limites inferiores e/ou superiores e são restrições de desigualdade por natureza, são do 

tipo l ux x≤ ≤x . 

As restrições de comportamento são determinadas através de especificações de 

funções que dependem das variáveis de projeto, impondo a limitação das mesmas a um 

semi-espaço, através de funções de desigualdade (geralmente concebidas na forma 

( ) 0g ≤x ), ou em uma superfície, através de funções de igualdade (geralmente 

concebidas na forma ( ) 0h =x ). As restrições podem ser funções de uma, de algumas, 

ou de todas as variáveis de projeto (Silva, 2010). 

Outro ponto importante é a normalização das restrições. É muito comum termos 

restrições cujas ordens de grandeza dos valores são diferentes. Assim, enquanto o valor 

de uma restrição de tensão mecânica é da ordem de 106 em MPa, o valor de uma 

restrição de deslocamento é da ordem de 10-5 em metro. A presença de valores tão 
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distantes num algoritmo de otimização pode gerar problemas de estabilidade numérica 

prejudicando o resultado final da otimização. Assim, devemos normalizar as restrições 

como mostrado abaixo: 

max
max

( )
( ) 1 ( ) 1 0g

g
≤ ⇒ ≤ ⇒ − ≤g x

g x g x
 

(2.1) 

Com relação ao estado, a restrição é classificada em ativa e inativa. Uma 

restrição está ativa para um ponto x  quando ( ) 0ig =x  e inativa para o mesmo ponto se 

( ) 0ig <x  (Torres, 2001). Para um projeto na região inviável, existem duas 

possibilidades ao considerar um ponto x , ( ) 0ig >x  ou ( ) 0ih ≠x . 

É importante frisar que o número de funções restrição de igualdade deve ser 

menor ou igual ao número de variáveis (Silva, 2010; Nocedal & Wright, 2000). Caso 

isso não ocorra, tem-se um sistema de equações superdeterminado, onde há uma 

formulação inconsistente ou alguma restrição redundante (isto é, linearmente 

dependente de outra). No caso das restrições de desigualdade, não há limitação imposta 

ao número de restrições. 

No final da otimização espera-se que algumas das restrições estejam ativas, caso 

contrário, as que estão inativas não seriam, a princípio, necessárias no problema de 

otimização, pois não influenciam o problema. Por outro lado, existem restrições que se 

tornam ativas durante o processo de otimização e depois ficam inativas ao final, dessa 

forma é muito difícil saber, de antemão, quais as restrições que influenciam ou não o 

resultado da otimização e assim, todas devem ser consideradas. 

2.1.4 Formulação do Problema de Otimização 

Em termos gerais, a formulação do problema de otimização pode ser descrita 

matematicamente pela seguinte expressão: 

Minimize             ( )f f= x
 

(2.2) 1Sujeito à              ( ) 0,   1, 2, ...,ig i m≤ =x  

2                            ( ) 0,   1, 2, ...,ih i m= =x  

                          ,  1,2,...,l ux x k n≤ ≤ =x  
Onde f é a função objetivo, g são as restrições de desigualdade, h as restrições de 

igualdade, x é a variável de projeto, 
lx  e 

ux  são os limites inferior e superior da 

variável de projeto, 
1m  e 

2m  o número de restrições de desigualdade e de igualdade, 

respectivamente, e n é o número de variáveis de projeto. 
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2.2 Programação Matemática 

A programação matemática é um método desenvolvido para tratar problemas de 

otimização de forma iterativa e determinista, isto é, através de gradientes, funcionais, 

operações matriciais (Castro, 2001).  

Para resolver alguns tipos de problemas de otimização, e lidar com problemas 

restritos de várias variáveis é comum definir a função Lagrangeana ( ),λxLLLL  do 

problema original, como segue: 

( ) ( ) ( ) ( )
1 1

,
p q

j j p k k
j k

f g hλ λ +
= =

= + +∑ ∑λLLLL x x x x
 

(2.3) 

onde λ  é o vetor com os multiplicadores de Lagrange associadas às restrições g e h no 

ponto x. Pode ser demonstrado (Haftka & Gürdal, 1993; Vanderplaats, 1984) que a 

condição de mínimo local desta função na solução *x , satisfaz as condições necessárias 

de Karush, Kuhn e Tucker: 

a) Viabilidade: 

( )
( )

*

*

0,        1, ,

0,        1, ,

j

k

g j p

h k q

 ≤ = …


= = …

x

x  
(2.4) 

b) Estacionaridade: 

( ) ( ) ( )* * *

1 1

| 0
p q

p q
j j p k k

j k

f g hλ λ+
+

= =

∈ ∇ + ∇ + ∇ =∑ ∑λ x x xR

 
(2.5) 

c) Complementaridade: 

( )* 0,         1j jg j pλ = = …x
 

(2.6) 

d) Positividade: 

0, 1, ,j  j pλ ≥ = …
 

(2.7) 

Os algoritmos de Programação Matemática são iterativos, onde, através da 

especificação de um vetor inicial das variáveis x0, uma sequência de pontos é gerada e, 

se bem sucedida, converge para o ponto solução x*. A forma mais comum de 

atualização das variáveis, para este procedimento iterativo, é dada pela equação: 
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1 1k k kα+ += +x x d
 

(2.8) 

onde d é o vetor da direção de busca e α representa o tamanho do passo na direção de 

d(Nocedal & Wright, 2000; Vanderplaats, 1984). Na determinação do vetor da direção 

de busca, duas condições devem ser satisfeitas (Kirsch, 1993): 

a) A direção deve ser viável, ou seja, o novo ponto obtido através da direção d 

deve procurar satisfazer as restrições; 

b) A direção deve ser conveniente, isto é, o valor da função objetivo deve ser 

melhorado. 

Os métodos de programação matemática podem ser classificados em métodos de 

programação linear, programação não-linear e métodos baseados em teoria de 

aproximações como programação quadrática sequencial (Sequential Quadratic 

Programming SQP) (Silva, 2010).  

2.3 Programação Quadrática Sequencial 

Considerando uma expansão de segunda ordem em série de Taylor da função 

( )f x  em x , de acordo com:  

( ) ( ) ( ) ( )1

2

T Tf f f= + ∇ +d d H dx x x x
 

(2.9) 

onde = −d x x , ( )f∇ x  é o vetor gradiente de f em x , cujos elementos são definidos 

por: 

( )
i

f
f

x

∂∇ =
∂

x
 

(2.10) 

e ( )H x  é a matriz Hessiana em x , definida por: 

( )
2

ij
i j

f
H

x x

∂=
∂ ∂

x
 

(2.11) 

É assumido que o vetor gradiente e a matriz Hessiana, na Eq. (2.9) irão 

proporcionar uma boa aproximação da função verdadeira, especialmente se x  estiver 

próximo ao ponto ótimo (Silva, 2010). 

Num algoritmo SQP, uma sequência de subproblemas quadráticos é resolvida. 

As funções objetivo destes subproblemas são tais que os coeficientes dos termos 
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lineares são formados pelos gradientes das funções objetivo do problema principal 

enquanto para o termo quadrático, uma aproximação da Hessiana da função 

Lagrangeana (esquema BFGS – método Broyden-Fletcher-Goldfarb-Shanno) do 

problema principal é usada. Uma descrição detalhada deste algoritmo pode ser 

encontrada em (Nocedal & Wright, 2000) e (Vanderplaats, 1984). Em resumo, as 

principais etapas envolvidas no algoritmo SQP convencional (Silva, 2010) são: 

1. Estabelecer uma solução inicial x0; 

2. Construir uma aproximação inicial para a matriz Hessiana dos termos 

quadráticos da função objetivo; 

3. Enquanto o mínimo local não for encontrado, fazer: 

a. Resolver o subproblema para encontrar a direção de busca d; 

b. Realizar uma busca linear para determinar o tamanho do passo 

α  na direção d; 

c. Atualizar a solução, remetendo-a para a posição indicada; 

d. Atualizar a matriz Hessiana via o esquema BFGS.  
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Capítulo 3: Otimização por Aproximação Sequencial 

3.1 Modelo Substituto 

Na maioria dos problemas de otimização, podem ser encontradas dificuldades na 

obtenção da resposta do modelo matemático desenvolvido para representação do pro-

blema físico. Em outras palavras, dificuldades associadas às avaliações das funções ob-

jetivo, restrições e seus gradientes. Essas dificuldades podem ser representadas por um 

elevado custo computacional associado ou uma resposta que apresente ruído numérico. 

Uma forma apontada na literatura (Afonso, et al., 2008) de contornar estes 

inconvenientes é a utilização de estratégias de otimização baseadas em Modelos 

Substitutos.  

O grande desafio científico é a geração de um modelo substituto o mais preciso 

possível, utilizando-se o menor número de avaliações do modelo de alta fidelidade. 

Várias técnicas podem ser utilizadas para a construção de modelos substitutos. Elas 

estão agrupadas em duas categorias, funcional e física (fidelidade hierárquica). A 

técnica funcional engloba diferentes abordagens, tais como, métodos baseados em ajuste 

de dados, séries polinomiais e métodos de ordem reduzida. A categoria física envolve 

modelos baseados na física do problema estudado. No presente trabalho, será utilizada a 

categoria funcional com a abordagem de ajuste de dados, que por sua vez dispõe de 

diversos modelos de ajustamento, tais como superfície de resposta  (Afonso, et al., 

2008; Keane & Nair, 2005; Giunta & Watson, 1998), krigagem (Afonso, et al., 2008), 

redes neurais artificiais (Naidu, 2004; Kartam, et al., 1997) e funções de base radial 

(Gutmann, 2001; Forrester, et al., 2008), dos quais serão aqui utilizados krigagem e 

funções de base radial. Para a maioria dos problemas, a natureza da verdadeira função 

não é conhecida a priori, por isso não é claro qual modelo substituto será mais preciso.  

3.2 Plano de Amostragem 

O primeiro passo para a construção de um modelo substituto baseado no ajuste 

de dados é a geração de uma amostra de pontos. Estes são locais no espaço de projeto 

em que os valores da resposta dos modelos de alta fidelidade serão calculados para 

construir o modelo aproximado. A seleção da amostra é uma etapa muito importante, 

uma vez que para casos onde a avaliação da função envolve um alto custo 

computacional deve-se procurar um plano de amostragem eficaz, o que significa o 
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número mínimo de pontos que garantirão um modelo substituto com boa precisão. As 

técnicas de Projeto de Experimentos (DOE – Design of Experiments) baseiam-se neste 

conceito e entre as várias técnicas de plano de amostragem disponíveis na literatura 

tem-se: Monte Carlo, Quase Monte Carlo (QMC), Hipercubo Latino (Latin Hypercube 

Sampling - LHS) (Keane & Nair, 2005; Queipo, et al., 2005), vetor ortogonal (OA) 

(Forrester, et al., 2008; Giunta, 2002).  

Neste trabalho foi utilizada a amostragem do hipercubo latino, pois, utilizando-

se de certas restrições, a representação do espaço de projeto é realizada através de uma 

menor quantidade de amostras dado um número fixo de amostras, além de ser um 

método de fácil implementação computacional. A referência (Afonso, et al., 2008) fez 

um estudo comparativo da aplicação de várias técnicas DOE. 

3.2.1 Amostragem do Hipercubo Latino 

O planejamento experimental via LHS foi desenvolvido por (Mckay, et al., 

1979) como uma extensão n-dimensional da amostragem do quadrado Latino (Raj, 

1968). Seja um inteiro m positivo, um quadrado Latino (Sánchez, 2011; Mikheev, 2011) 

de ordem m é um arranjo de m caracteres latinos (caracteres do alfabeto latino ou 

romano) em um quadro de m linhas e m colunas, onde cada letra latina aparece uma só 

vez em cada linha e apenas uma vez em cada coluna. A Figura 3.1 mostra um arranjo de 

um quadrado latino de ordem m = 5. 

 

Figura 3.1. Quadrado latino de ordem cinco 

Para obter uma amostra LHS, o intervalo de cada dimensão do espaço de 

amostragem é dividido em m subintervalos, que não se sobrepõem, de igual 

probabilidade. Para um domínio de projeto com dimensão n, este particionamento 

resulta num total de mn subintervalos no domínio de projeto. Em seguida, m pontos são 

selecionados aleatoriamente no domínio de projeto obedecendo às seguintes restrições. 

3 5 2 4 1

2 1 3 5 4

4 3 5 1 2

1 2 4 3 5

5 4 1 2 3
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Cada ponto deve ser aleatoriamente alocado dentro de um subintervalo do domínio e 

para cada projeção unidimensional deste ponto só haverá um e apenas um ponto em 

cada subintervalo. 

Considerando dez amostras e um espaço de projeto de dimensão dois, 
1x  e 

2x , 

que é o caso do quadrado latino, ambas variáveis definidas em [0,1], a Figura 3.2 ilustra 

uma solução possível para o conjunto de amostras que satisfazem os critérios do 

método. Observa-se que em cada linha e coluna dos intervalos das variáveis é 

posicionado um e apenas um ponto e que em cada subintervalo o ponto está alocado 

aleatoriamente. 

 
Figura 3.2. Dez pontos LHS num espaço de projeto bidimensional 

A aleatoriedade inerente ao processo significa que existe mais de uma 

possibilidade do arranjo de amostragem atender aos critérios do LHS (Forrester, et al., 

2008; Queipo, et al., 2005). Como a amostragem LHS é de natureza estocástica, é 

aconselhável executar tal programa várias vezes e selecionar a melhor amostra para uso. 

Para selecionar a melhor amostra LHS, é determinado ∆  como (Keane & Nair, 2005): 

( ) ( )
1

2 2
1 1

1m m

i j i
j i j ix x y y

−

= = +

 
 ∆ =  
 − + −
 

∑ ∑
 

(3.1) 

onde m é o número total de pontos da amostra. A amostra LHS que dá o valor mínimo 

para ∆  é a amostra selecionada, ou seja, procura-se maximizar a distância entre os 

pontos amostrais. 

3.3 Técnicas utilizadas para a construção de Modelos Substitutos  

Nesta seção são apresentadas as técnicas de interpolação de dados utilizadas 

neste estudo, que são a krigagem e a função de base radial (RBF). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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3.3.1 Krigagem 

A Krigagem tem o nome de seu precursor, o engenheiro de minas sul-africano 

Daniel G. Krige, que nos anos 50 desenvolveu uma série de métodos estatísticos 

empíricos a fim de determinar a distribuição espacial de minerais a partir de um 

conjunto de perfurações (Gratton, 2002). No entanto, a teoria formal de krigagem, 

utilizando correlações entre poços para estimar a distribuição espacial, foi desenvolvida 

pelo matemático francês Georges Matheron (Matheron, 1963), que denominou o 

método como Krigagem (Valente, 1982; Gratton, 2002). Também foi Matheron quem 

primeiro utilizou o termo ‘geoestatística’ para designar a modelização estatística de 

dados espaciais.  

Neste trabalho foi utilizado o pacote DACE (Design and Analysis of Computer 

Experiments) (Lophaven, et al., 2002), que é uma toolbox do MATLAB para trabalhos 

com aproximações via krigagem para modelos computacionais, que já possui 

aproximadamente 12 anos, sem atualizações. No capítulo de exemplos, esta toolbox será 

ligeiramente comparada com o pacote de krigagem do DAKOTA (Adams, et al., 2010), 

que conta com atualizações anuais, e utiliza processos mais sofisticados para a criação 

de modelos substitutos via processo gaussiano. 

Dado um conjunto de m  pontos amostrais { }1,...,
n

mS= ∈ℝx x  com n
i ∈ℝx  e 

respectivas respostas ( )1,..., mY y y=  com 
iy ∈ ℝ . É adotado um modelo ̂y  que 

expressa a resposta determinística ( )y ∈ℝx  para um n∈ℝx  como uma realização de 

um modelo de regressão F  e uma função aleatória z  (processo estocástico) 

responsável por criar um desvio "localizado" em relação ao modelo global (Sacks, et al., 

1989; Lophaven, et al., 2002): 

( ) ( )ˆ( ) ,y zβ= +x x xF

 
(3.2) 

O modelo de regressão é uma combinação linear de k  funções escolhidas, 

: n
jf ℝ ֏ℝ, 

( ) ( )
1

,
k

i i
i

fβ β
=

= ⋅∑x xF

 
(3.3) 

Os coeficientes { }iβ  são parâmetros de regressão. 

O processo aleatório z  é assumido ter média zero e covariância: 
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[ ] ( )2cov ( ), ( ) , ,z z σ θ= ⋅w x w xR

 
(3.4) 

entre ( )z w  e ( )z x , onde 2σ  é a variância e ( , , )θ w xR  é o modelo de correlação 

entre qualquer par dos m pontos de dados amostrados w  e x . Uma interpretação do 

modelo (3.2) é que os desvios do modelo de regressão, embora a resposta seja 

determinística, pode assemelhar-se a um caminho de uma amostra de um processo 

estocásticoz , convenientemente escolhido.  

Tendo em mente que o valor verdadeiro pode ser escrito como: 

( ) ( )( ) , ,y β α β= +Fx x x
 

(3.5) 

onde α  é o erro aproximado. A suposição é que, para uma escolha adequada de β  

esse erro se comporta como um "ruído branco" (sinal aleatório com uma densidade 

espectral de potência constante) na região de interesse (Lophaven, et al., 2002). 

3.3.1.1 Preditor da Krigagem 

Para o conjunto de m pontos amostrais, tem-se a matriz de projeto F de tamanho 

m k× , com ( )ij j iF f= x , 

( ) ( ) ( )1 1, ,
T

m

T

mF f f f= =      … …x x x x
 

(3.6) 

com ( )f x  definido em (3.3). Além disso, define-se R  como a matriz R  de 

correlações de processos estocásticos entre z ’s nos pontos amostrais (Lophaven, et al., 

2002), 

( ),, , , 1, ,i jijR i j mθ= = …R x x
 

(3.7) 

Em um ponto não amostral x  seja, 

( ) ( ) ( )1, ,, , m

T
r x θ θ=   ⋯R Rx x x x

 
(3.8) 

o vetor de correlações entre os z ’s nos pontos amostrais ex . 

Considerando o preditor linear, tem-se: 

( )ˆ Ty c Y= ⋅x
 

(3.9) 

com ( )c c= ∈ℝx . O erro é 
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( ) ( ) ( )
( ) ( )( )

( )( )

ˆ T

TT

TT T

y y c Y y

c F f z

c z F c f

β β

β

− = −

= + − +

= −

⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅+ −

x x

Z

x

x

x

Z
 

(3.10) 

onde [ ]1

T

mz z= …Z  são os erros nos pontos amostrais. Para manter o preditor sem viés, 

é exigido que ( ) 0TF c f− =x , ou 

( ) ( )TF fc⋅ =x x
 

(3.11) 

sob essa condição, o erro quadrado médio (MSE) do preditor (3.9) é, 

( ) ( ) ( )( )

( )

( )

2

2

2

2

ˆ

2

2 1

T

T T T

T T

E y y

E c z

E c c c z z

c R c c r

ϕ

σ

⋅

⋅

 = −
 

 = −  

 ⋅ ⋅ ⋅ ⋅

⋅ ⋅

= − + 

= +⋅ ⋅−

Z

Z Z Z

x x x

 
(3.12) 

A função Lagrangeana para o problema de minimização de ϕ  com respeito a c 

e sujeito a restrição (3.11) é 

( ) ( ) ( )2 1, 2T T T Tc R c cc F c fL rσ λλ − + −= ⋅ ⋅ ⋅ ⋅ ⋅ −⋅
 

(3.13) 

onde λ  é o vetor com os multiplicadores de Lagrange. O gradiente de (3.13) em relação 

a c é, 

( ) ( )2, 2cL R c r Fc σλ λ′ = ⋅ − −⋅ ⋅
 

(3.14) 

e das condições necessárias de primeira ordem para otimalidade, tem-se o seguinte 

sistema de equações  (Lophaven, et al., 2002): 

0
T

R F c r

fF λ
     

⋅ =     
     

ɶ
 

(3.15) 

onde é definido, 

22

λλ
σ

= −ɶ

 
A solução de (3.15) é, 
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( ) ( )
( )

11 1

1

T TF R F F R r f

c R r F

λ

λ

−− −

−

⋅ ⋅ ⋅ ⋅ ⋅

⋅

= −

= − ⋅

ɶ

ɶ  
(3.16) 

A matriz R  e portanto 1R−  é simétrica, e por meio de (3.9) encontra-se: 

( ) ( )
( ) ( ) 11 1 1 1

1ˆ

TT T T

T

T

y r F R Y

r R Y F R r f F R F F R Y

λ
−−

−

− − −

= − ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= − − ⋅

ɶx

 
(3.17) 

Para o problema de regressão (Lophaven et. al., 2002), 

F Yβ⋅ ≃
 

(3.18) 

A solução dos mínimos quadrados generalizada (em relação a R ) é: 

( ) 1* 1 1T TF R F F R Yβ
−− −= ⋅ ⋅ ⋅ ⋅ ⋅

 
(3.19) 

inserindo (3.19) em (3.17) encontra-se o preditor: 

( ) ( )
( )

( ) ( )

1 1 *

* 1 *

* *

ˆ
TT T

T T

T T

r R Y F R r f

f r R Y

y

F

f r

β

β β

β γ

− −

−

= ⋅ ⋅ ⋅ ⋅ ⋅

⋅

− −

= + −

= +

⋅ ⋅ ⋅

⋅ ⋅

x

x x
 

(3.20) 

O modelo de regressão pode ser um polinômio de ordem 0, 1 ou 2. Mais 

especificamente, com jx  representando o j �  componente de x , 

Constante, 1P =
 

 

( )1 1f =x
 

(3.21) 

Linear , 1P n= +   

( ) ( ) ( )1 2 1 11, , , n nf f x f x+= = =…x x x
 

(3.22) 

Quadrático, ( ) ( )1
1 2

2
P n n= + ⋅ +   

( ) ( ) ( )
( ) ( )
( ) ( )

( )

1 2 1 1

2
2 1 2 1 1

2
2 2 2 3 2

2

1, , ,

, ,

, ,

n n

n n n

n n n

P n

f f x f x

f x f x x

f x f x x

f x

+

+ +

+

= = =

= = ⋅

= = ⋅

=

…

…

…

… …

x x x

x x

x x

x
 

(3.23) 
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Nesta dissertação é empregado o modelo de regressão constante. 

A matriz correlação R  é definida por 

( )
1

( ) ,, ,
n

k k k
k

k w xθ
=

= −∏xwR Rθθθθ
 

(3.24) 

Para a construção de modelos substitutos via a técnica de krigagem foi aqui 

utilizado a biblioteca DACE (Design and Analysis of Computer Experiments) 

(Lophaven, et al., 2002) desenvolvida no ambiente MATLAB. Diferentes formas de 

função de correlação podem ser empregadas, como: exponencial, exponencial 

generalizada, Gaussiana, entre outros, como mostra a Tabela 3.1. 

 

Tabela 3.1 – Funções de correlação disponíveis. 

Tipo Termo ( ), kk k kw xθ −R  

Exponencial ( ) ( ) ( )( )exp k k kw xθ− −  

Exponencial 
generalizada ( ) ( ) ( )

1

1exp 0 2
n

nk k kw x
θ

θ θ+

+
 − − < ≤ 
 

 

Gaussiana ( ) ( ) ( )( )2

exp k k kw xθ − −
  

 

Linear ( ) ( ) ( ){ }max 0,1 k k kw xθ− −  

Esférica ( ) ( )( ) ( ) ( ) ( ){ }3

1 1.5 0.5 min 1,jk k k k kw xξ ξ ξ θ− + = −  

Cúbica ( )( ) ( )( ) ( ) ( ) ( ){ }2 3

1 3 2 min 1,jk k k k kw xξ ξ ξ θ− + = −  

Spline 

( )( ) ( )

( )( ) ( )

( )

( ) ( ) ( ) ( )

3
2

3

1 15 30 for 0 0.2

1.25 1 for 0.2 1 ,onde

0 for 1

j k k

k k k k k k

k

w x

ξ ξ ξ

ξ ξ ξ θ

ξ

 − + ≤ ≤

 − < < = −


≥


 

 

 Neste trabalho considerou-se uma função de correlação Gaussiana (Afonso, et 

al., 2008), onde n  é o número total de variáveis e 
kθ  são os parâmetros de correlação 

utilizados para ajustar o modelo.  
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3.3.2 Funções de Base Radial 

O problema de interpolação de dados é feito pela aproximação de uma função 

real ( )f x  por uma função substituta ( )ŷ x , através de m  diferentes dados 

( )1,..., mY y y=  avaliados em pontos distintos { }1,...,
n

mS= ∈ℝx x , onde m  e n  são 

quaisquer inteiros positivos. 

O método das funções de base radial (Radial Basis Function (RBF)) é um meio 

de aproximar funções multivariáveis em termos de funções mais básicas, de 

propriedades conhecidas e de mais fácil análise (Forrester, et al., 2008). As RBFs 

constituem, então, uma ferramenta eficiente para resolver problemas de interpolação de 

dados de múltiplas variáveis.  

A contribuição de Duchon (1979) iniciou o seu desenvolvimento e desde então 

as RBFs têm sido um campo de pesquisa ativa (Oeuvray & Bierlaire, 2005; Buhmann, 

2001).  A escolha da função de base radial depende principalmente da aplicação. Hardy 

(1990) propôs um método empregando funções radiais multiquadráticas para uma 

grande variedade de problemas, a maioria deles de dimensão um, dois ou três. Gutmann 

(2001) propôs um método de RBFs para otimização global. Aqui, o interesse é construir 

RBFs para interpolação de multivariáveis para a otimização de diversos problemas, o 

método empregado é baseado no trabalho de (Gutmann, 2001; Wild, et al., 2008). 

Seja ( )ŷ x  uma Função de Base Radial (RBF) da forma  (Gutmann, 2001): 

( ) ( ) ( )
1

ˆ ,
m

n
i i

i

y p λφ
=

= + − ∈∑ ℝx x x x x
 

(3.25) 

onde p  é um polinômio de grau no máximo g , pertencente ao espaço gΠ , tipicamente 

linear ou quadrático, λ  são os coeficientes de ponderação da RBF, i  é a norma 

Euclidiana, φ  é uma função básica, :φ + →ℝ ℝ  , e i−x x  é uma distância simples do 

ponto x ao ponto amostral xi. 

Uma RBF pode ser definida como uma soma ponderada de translações de uma 

função básica radialmente simétrica φ  aumentada por um termo polinomial de baixo 

graup . O termo polinomial é representado por ( ) ˆ

1
( )

g

i ii
p cπ

=
=∑x x , para ˆ dim n

gg = Π  

e ˆ1{ ( ), , ( )}gπ π…x x  uma base para n
gΠ (Wild, et al., 2008). 
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A função básica φ , nesse contexto, é uma função de um número r  real positivo, 

onde ir = −x x . Entre as possíveis escolhas de φ  são consideradas: 

3

2

( ) r (linear ou bi harmônica)

( ) (cúbica ou tri harmônica) 0,

( ) log (thin platespline(TPS))

r

r r r

r r r

φ
φ
φ

= − 
= − ≥
= 

 
(3.26) 

A matriz m m×Φ ∈ℝ , definida por 

 
( ) ( ): , , 1,..., .i jij

i j mφΦ = − =x x
 

(3.27) 

deve ser singular.  

O interpolador da RBF, ̂( )y x , é definido pelos coeficientes, ic , do polinômio p, 

e pelos coeficientes de ponderação, λ . Considerando os valores da interpolação 

y1,...,ym, o objetivo é encontrar os coeficientes de ponderação, iλ , tais que a RBF 

satisfaça: 

( )ˆ , 1,...,i iy y i m= =x
 

(3.28) 

Visto que essa equação dá um sistema subdeterminado, ou seja, há mais 

parâmetros do que dados, as condições de ortogonalidade ou condições laterais, dadas 

pela Eq. (3.29), são adicionalmente impostas aos coeficientes ( )1,...,
T

mλ λ λ= . 

( )
1

ˆ0, 1,...,
m

i j i
i

j gλπ
=

= =∑ x
 

(3.29) 

Seja ˆ1{ ( ), , ( )}gπ π…x x  a base para polinômios de grau no máximo ĝ  e seja 

( )ˆ1, , gc c c= …  os coeficientes que dão p em termos dessas bases. Então, as equações 

(3.28) e (3.29) podem ser escritas em forma de matriz, como (Wild, et al., 2008): 

0 0T

A P F

P c

λ    =    
      

(3.30) 

onde ( ), , , 1,...,i j i jA x x i j mφ= − = , ( ), ˆ, 1,..., , 1,...,i j j iP x i m j gπ= = = . Resolvendo o 

sistema linear (3.30), são determinados c e λλλλ , consequentemente ˆ( )y x  é determinado. 

Neste trabalho, foi empregado um polinômio de ordem 1 (linear), ˆ 1g n= + : 
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( ) ( ) ( )1 2 1 11, , , n nx xπ π π += = =…x x x
 

(3.31) 

Isto quer dizer que para um polinômio linear, P pode ser escrito da seguinte 

forma: 

1

2

1

1

1

1

T

T

T
n

x

x
P

x

 
 
 =
 
 
  

⋮ ⋮
  

Segue uma aplicação dos modelos RBF e da krigagem ordinária em uma função 

analítica, dada pela Eq. (3.32), no intervalo 10 10x− ≤ ≤ . 

( ) ( )5 2 32 9 7 90 senf x x x x x x= + − + −
 

(3.32) 

É criada uma amostra de 12 pontos. A Figura 3.3 mostra as curvas de cada 

modelo substituto comparadas ao modelo real. O modelo substituto é avaliado em 100 

pontos linearmente espaçados no intervalo da função. 

Observa-se, nesta figura, que os modelos substitutos mais próximos à função 

real são o modelo RBF cúbico e a krigagem e o mais distante é o RBF linear. 
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a) Krigagem b) RBF Linear 

  

c) RBF Cúbica d) RBF TPS 

 

e) Todos os modelos substitutos anteriores 

Figura 3.3. Comparação de diferentes modelos substitutos 

3.3.3 Método de Avaliação da Precisão 

O modelo de krigagem a técnica de funções de base radia (RBF) definidos 

anteriormente são criados baseados em uma amostra de tamanho m e posteriormente 

usados para prever o resultado em um número bem maior de pontos ( )m≫ . Devido a 

este fato, se faz necessário verificar a priori se o modelo substituto criado representa 

adequadamente a função real (cara computacionalmente). Tal medida da precisão 
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fornecerá também mais um parâmetro que auxiliará na escolha do melhor modelo 

substituto. 

A Equação (3.33) é a maneira mais simples de avaliar a precisão do modelo 

aproximado, porém apenas considera a diferença local, 

ˆ
i i if f f∆ = −

 
(3.33) 

onde 1, ,i np= … , e np é o número total de pontos onde as funções aproximada ˆ
nf  e 

real nf  são avaliadas. 

 Outra possibilidade seria calcular a média expressa pela Equação (3.34), porém 

o valor médio mascara o resultado, ou seja, se a diferença for grande em um local, mas 

pequena em outro. O resultado obtido será compensado e com isso sem muito 

significado. 

1

1 n

i
i

f f
n =

= ∆∑
 

(3.34) 

O desvio padrão é um parâmetro mais significativo, pois introduz uma 

ponderação em seu cálculo, isto é, um erro grande ao ser elevado ao quadrado será 

ainda maior e vice-versa, no entanto para a determinação do desvio padrão definido pela 

Equação (3.35), considera-se o valor médio e, portanto o mesmo não é aconselhável 

para a avaliação dos modelos substitutos. 

( )2

1

1

n

i i
i

f

f f

n
σ =

∆ −
=

−

∑

 

(3.35) 

Como consequência o método considerado é o RMSE (Root Mean Squared 

Error) que combina as melhores ideias dos métodos acima mencionados e será definido 

a seguir. 

3.3.3.1 RMSE 
O método de avaliação chamado RMSE (Root Mean Squared Error) (Anderson 

& Woessner, 1992) foi o escolhido, pois o mesmo é baseado no conceito da 

discrepância para avaliar o erro do modelo substituto. 

A discrepância ou a diferença, não deve ser confundida com a definição de erro 

residual. Este é o parâmetro que é elevado ao quadrado e posteriormente minimizado 

quando se considerar o método dos mínimos quadrados. Nesse caso, o erro residual é a 
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discrepância (diferença) entre o modelo aproximado e valores da função real, ambos 

calculados nos pontos da amostra. No caso do modelo de krigagem, a discrepância entre 

o modelo aproximado e os pontos da amostra é zero, pois este tem o valor previsto igual 

ao valor real nos pontos da amostra. Sendo assim, o tradicional método, chamado de 2R

, não é considerado um bom parâmetro de avaliação. O mesmo pode ter seu valor 

reduzido se a ordem do polinômio de regressão for aumentada. 

Apesar de ter uma equação semelhante à Equação (3.35), o RMSE, definido pela 

Equação (3.36), é apontado na literatura (Giunta & Watson, 1998) como um método 

não viciado se np m≫ , 

( )2

1

ˆ
np

i i
i

f f
RMSE

np
=

−
=
∑

 

(3.36) 

onde f̂  e f  são respectivamente, o valor do modelo substituto e da função real 

calculados em np pontos dentro de espaço de projeto. 

A Tabela 3.2 mostra o RMSE para a função do exemplo da seção 3.3.2. 

Tabela 3.2 – Precisão dos modelos substitutos 

Modelo Substituto RMSE (x104) 
Krigagem 1.2043 
RBF linear 1.7849 
RBF cúbica 1.0938 
RBF TPS 1.4627 

Nesta tabela, é confirmada a observação feita a respeito dos melhores modelos 

substitutos, na Figura 3.3, que são o modelo de RBF cúbica e em seguida o modelo de 

krigagem. 

3.4 Otimização por Aproximação Sequencial 

Na otimização por aproximação sequencial (SAO), o algoritmo de otimização 

vai operar sobre um modelo substituto, de baixo custo computacional, ao invés de se 

fazer uso das respostas obtidas da simulação numérica. A metodologia SAO decompõe 

o problema original de otimização em sequências de subproblemas de otimização, 

confinados dentro de uma sub-região do espaço de projeto inicial.  
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3.4.1 Formulação Matemática 

Um esquema de Região de Confiança (RC) é usado para atualizar as variáveis de 

projeto para cada subproblema (iteração do SAO). Matematicamente cada subproblema 

k  pode ser definido como: 

Minimize  ˆ ( )kf x  (3.37) 

Sujeito à: ˆ ( ) 0,   1,  ...,  k
ig i m≤ =x  

max,     1,  2,  ..., k k
l l u ux x x x k k≤ ≤ ≤ ≤ =x         

(3.38) 

Onde
 2

k
k k
l cx x

∆= −
                           2

k
k k
u cx x

∆= +
 

(3.39) 

Nas equações acima, ˆ ( )kf x  e ˆ ( )kg x  são respectivamente a função objetivo e a 

restrição baseadas no modelo substituto. Sendo k
cx  o ponto central da RC, k∆  é o 

tamanho da RC e ,  k k
l ux x  são respectivamente os limites inferiores e superiores da 

variável de projeto na iteração k do SAO (Giunta & Eldred, 2000). 

3.4.2 Algoritmo 

Na Tabela 3.3 são apresentados os passos do algoritmo SAO implementado 

(Horowitz, et al., 2013). 

Para a atualização do tamanho k∆ da RC para cada subproblema de otimização, 

foi considerado o termo de aceitação da função objetivo kρ  que controla o tamanho da 

RC (Giunta & Eldred, 2000). Este parâmetro demonstra a precisão da função substituta 

no ponto ótimo kx*  e pode ser calculado como: 

*

*

( ) ( )
ˆ ˆ( ) ( )

k k
k c

k k
c

f f

f f
ρ −=

−
x x

x x , 
(3.40) 

Para calcular o próximo tamanho da RC a atualização segue dessa forma: 

1 0.5 , se 0,

0.5 , se 0 0.25,

, se 0.25 0.75 ou 1.25,

2 , se 0.75 1.25.

k k k

k k

k k k

k k

ρ
ρ

ρ ρ
ρ

+∆ = ∆ ≤

= ∆ < ≤
= ∆ < < >
= ∆ ≤ ≤  

(3.41) 

O centro da região de confiança na próxima iteração 1k
c

+x  é obtido de acordo 

com 
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1
*  ,   se  0 ,

       ,   se  0 .

k k k
c

k k
c

ρ
ρ

+ = >

= ≤

x x

x  
(3.42) 

A Figura 3.4 ilustra o esquema de funcionamento da estratégia SAO. Os 

retângulos coloridos representam as regiões de confiança em cada iteração do SAO. As 

marcas em cruz são as amostras geradas através das técnicas DOE e o círculo representa 

o ponto central da região de confiança. 

 

Figura 3.4. Esquema da evolução das regiões de confiança da estratégia (Giunta, 2002). 

Tabela 3.3 – Algoritmo da estratégia SAO 

Etapas 
SAO 

Descrição 

1. Assumir o tamanho e ponto inicial da região de confiança RC; 

2. Gerar amostras no interior da região de confiança; 

3. Calcular as funções objetivo e restrições reais nas amostras; 

4. 
Construir o modelo substituto para as funções objetivo e restrições não 

lineares; 

5. 
Otimizar o problema dentro da RC usando as funções aproximadas sujeitas 

a restrições não lineares aproximadas e a restrições lineares originais; 

6. 
Recalcular as funções objetivo e restrições reais no ponto ótimo encontrado 

no passo 5; 

7. Checar os critérios de convergência 

8. 

Manter/reduzir/aumentar a nova sub-região de acordo com a acurácia do 

modelo aproximado comparado à função verdadeira e valores das 

restrições; 

9. Voltar para a Etapa 2. 

As seguintes observações detalham melhor o algoritmo: 



27 
 

1. Na Etapa 2 as amostras são obtidas usando a técnica DOE escolhida. A seção 

3.4.3 dá uma orientação sobre o número de amostras a ser utilizado; 

2. Como são construídos modelos substitutos, a função objetivo e as restrições 

não lineares mudam a cada iteração do SAO; 

3. Os critérios de convergência são baseados no número de iterações 

consecutivas com melhora na função objetivo de alta fidelidade menos a 

tolerância de convergência. Há também um limite no número total de 

iterações SAO e no tamanho mínimo da região de confiança (Horowitz, et 

al., 2013). 

 

3.4.3 Reuso de amostras 

No algoritmo original da metodologia SAO, em cada subproblema, é realizado o 

cálculo das funções do modelo de alta fidelidade em determinado número de pontos 

contidos na região de confiança. O tamanho da amostra neste trabalho é fixado em 

2 1m n= + , sendo n  o número de dimensões do problema. Essas amostras do modelo 

de alta fidelidade são utilizadas para construção do modelo substituto na correspondente 

sub-região do espaço de projeto. Para a iteração seguinte, outros pontos são 

selecionados para construção de outro modelo substituto (Filho, 2012). 

Neste trabalho, adota-se a alternativa proposta em (Filho, 2012) onde as 

amostras do modelo de alta fidelidade são armazenadas em um banco de dados durante 

o processo SAO, e em cada iteração, este banco é consultado a fim de verificar a 

possibilidade de reutilizá-las para o cálculo do novo modelo substituto. Com esta 

proposta, as informações obtidas no modelo de alta fidelidade podem ser reaproveitadas 

durante o processo SAO.  

A utilização de uma maior quantidade de pontos na construção de modelos 

substitutos implica em modelos de melhor acurácia quando confrontados com o modelo 

de alta fidelidade. Além deste benefício evidente, com a maior consistência entre os 

modelos, segundo as equações (3.40) a (3.42), a atualização da região de confiança 

tende a expandir seus limites e incorporar mais pontos de amostras das iterações 

anteriores. 

A Figura 3.5 ilustra a quarta e a quinta região de confiança do SAO na 

otimização de um problema com duas variáveis, na qual podemos observar o reuso das 

amostras de iterações anteriores (quadrados) na construção do modelo substituto do 
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correspondente subproblema. Os círculos preenchidos são as cinco novas amostras 

calculadas para aquela iteração do SAO. Observa-se que os quadrados preenchidos da 

iteração 5 correspondem às novas amostras da iteração 4. 

 

Figura 3.5. Região de Confiança do procedimento SAO  

 

Ao utilizar o aproveitamento das amostras, o segundo e quarto passos do 

algoritmo SAO são reescritos da seguinte forma (Filho, 2012):  

 

2. Gerar amostras no interior da região de confiança:  

a. Buscar e selecionar, no banco de dados, amostras das iterações anteriores 

que estejam contidas na RC atual; 

b. Através de técnica de Projeto de Experimentos (LHS), selecionar novos 

pontos contidos na região de confiança; 

c. Utilização das amostras novas e antigas no cálculo do parâmetro ∆, 

segundo Eq. (3.1); 

d. Na região de confiança, divide-se o intervalo das variáveis de projeto em 

p subintervalos, onde p é a soma da quantidade de amostras antigas mais 

as novas amostras; 

e. Se algum ponto da nova amostra estiver contido no mesmo subintervalo 

de uma amostra antiga, esse novo ponto será eliminado, objetivando uma 

redução no custo computacional; 

4. Processo de construção do modelo substituto das funções objetivo e 

restrições: 
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f. Cálculo das funções do modelo de alta fidelidade nos pontos novos 

remanescentes do passo 2 (e) e armazenar estas avaliações em um banco 

de dados; 

g. Com a amostra final, utilizar um método de aproximação para construção 

do Modelo Substituto. 
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Capítulo 4: Otimização Multiobjetivo 

A maior parte dos problemas reais encontrados na área de otimização envolve a 

obtenção de diversos objetivos que devem ser atingidos simultaneamente. Eles 

geralmente são conflitantes, ou seja, não existe uma solução única que otimize todos os 

objetivos ao mesmo tempo. Para tal classe de problemas devemos buscar um conjunto 

de soluções eficientes. Neste caso, o problema é chamado de problema de otimização 

multiobjetivo (ou problema de otimização com múltiplos critérios) (Collette & Siarry, 

2003). 

Distribuições eficientes de pontos de Pareto têm sido obtidas graças ao 

desenvolvimento de algoritmos eficientes tais como o NBI (Normal-Boundary 

Intersection)(Das & Dennis, 1998; Motta, 2009; Motta, et al., 2012), aqui utilizado. 

4.1 Formulação 

O problema de otimização multiobjetivo (POM) pode ser expresso como: 

1 2min ( ) ( ), ( ),..., ( ) , 2 (POM)nobjf f f nobj = ≥ F
x

x x x x
 

(4.1) 

Sujeito as seguintes condições: 

1

2

( ) 0 ,   1,2,...,

( ) 0,   1, 2,...,

,  1,2,...,

i i

j

l u

g i m

h j m

x x k n

≤ =
= =

≤ ≤ =

x

x

x  
(4.2) 

onde g  é a restrição de desigualdade, h  a restrição de igualdade, porém os objetivos 

agora formam um vetor de nobj funções objetivo, as quais precisam ser minimizadas. E

[ ]1 2, , , x
T

nx x …x =  é o vetor das variáveis de decisão. 

4.2 Dominância 

Quando resolvemos o problema de otimização multiobjetivo encontramos várias 

soluções. Uma pequena parcela dessas soluções será de interesse. Para uma solução ser 

de interesse, deve existir uma relação de dominância entre a solução considerada e as 

outras soluções (Collette & Siarry, 2003).  

É dito que o vetor 
1x  domina o vetor 

2x  se: 

1. 
1x  é ao menos tão bom quanto 

2x  para todos os objetivos e  
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2. 
1x  é estritamente melhor que  

2x  para pelo menos um objetivo. 

Soluções que dominam as outras, mas não dominam elas mesmas são chamadas 

soluções ótimas de acordo com o conceito de Pareto (ou soluções não dominadas) 

(Collette & Siarry, 2003). 

Um vetor x  é (globalmente) ótimo no sentido de Pareto se não existir qualquer 

vetor 'x  tal que 'x  domine o vetor x . Uma interpretação gráfica desta definição usa o 

teorema do contato, que é definido da seguinte maneira: um vetor x é um ótimo de 

Pareto para um problema de otimização multiobjetivo se: 

( ) { }1C F− + ∩ =x x
 

(4.3) 

onde F  corresponde ao espaço viável e 1C−  é o cone negativo, no espaço k
ℝ , definido 

da seguinte maneira : 

( ) ( ){ }1 | e 0kC f f− = ∈ ≤ℝx x x
 

(4.4) 

A maneira de usar esse teorema é ilustrada na Figura 4.1. 

 

Figura 4.1. Teorema do Contato (Collette & Siarry, 2003) 
 

Quando é aplicada a definição de dominância, é possível definir quatro áreas e é 

possível associar um nível de preferência a cada área. Essas áreas estão representadas na 

Figura 4.2.  
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Figura 4.2. Nível de preferência e relação de dominação (Collette & Siarry, 2003) 

 

Por exemplo, se essa figura é centrada na solução A e compara-se essa solução 

com uma solução B, existem as seguintes possibilidades: 

• Se a solução B pertence à área 1, então a solução A é preferível à solução B; 

• Se a solução B pertence à área 3, então a solução A é dominada pela solução B; 

• Se a solução B pertence à área 2 ou 4, então não é possível dizer se é preferível a 

solução A em comparação com a solução B ou se é preferível a solução B 

comparada à solução A. 

4.3 Conceito de Pareto 

É raro o caso em que um único ponto otimize simultaneamente todas as funções 

objetivos em um problema de otimização multiobjetivo (Coello, 2005). Para lidar com 

esse tipo de problema, geralmente procura-se por compensações, ou “trade-offs”, que é 

uma forma de determinar um ponto x  que satisfaça em parte os problemas de 

otimização multiobjetivo (POM) (Equações (4.1) e (4.2)). Neste caso, a noção de 

otimalidade é diferente do caso uni-objetivo, e é utilizado o termo: Otimalidade de 

Pareto (Coello, 2005; Arora, et al., 2007). 

Pontos ótimos de Pareto são pontos Px  tais que não exista nenhum ponto x  tal 

que ( ) ( )P
k kf f≤x x  para todo 1, ,k n= …  e ( ) ( )P

k kf f<x x  para uma função objetivo 

ao menos. 

Essa definição diz que Px  é um ponto ótimo de Pareto se não existe nenhuma 

variável de decisão x  que diminuiria alguma função sem causar um aumento 

simultâneo em ao menos uma das outras funções. Esse conceito, quase sempre, não 
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fornece uma única solução, mas sim um conjunto de soluções chamado de conjunto 

ótimo de Pareto. 

A Figura 4.3 mostra esta situação, onde o ponto ótimo de Pareto é qualquer 

ponto no intervalo 1 2≤ ≤x x x . Devido às restrições, o ponto ótimo de Pareto pode estar 

localizado ao longo do contorno da região viável (Motta, 2009; Motta, et al., 2012). 

 

Figura 4.3. Problema de otimização com uma variável e duas funções objetivo.  

 

Em problemas de otimização multiobjetivo é muito importante formular o 

problema no espaço das funções objetivo. Isto pode ser feito usando-se um sistema de 

equações geradas pelas funções objetivo e conjuntos das restrições ativas. Para cada 

projeto viável, haverá correspondentes valores das funções objetivo que definirão o 

espaço viável das funções objetivo. Sobre seu contorno se localizam os pontos ótimos 

de Pareto. Na Figura 4.4, tem-se o exemplo de um problema com duas variáveis de 

projeto e duas funções objetivo. Em ambas as Figura 4.4 (a) e (b), a linha tracejada 

representa os pontos ótimos de Pareto. 

 
a)  b)  

Figura 4.4. Região viável e pontos de Pareto: a) no espaço das variáveis de projeto; b) no espaço 
das funções objetivo. 
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Uma propriedade que deve ser destacada é a forma da frente de Pareto, pois a 

mesma depende do tipo de problema considerado. A forma mais comum de frente de 

Pareto, quando se deseja minimizar todas as funções objetivo, é a mostrada na Figura 

4.4 (b). Estas formas são típicas de problemas multiobjetivos com um conjunto convexo 

de soluções (Collette & Siarry, 2003).  Outras diferentes formas da frente de Pareto 

aparecem quando a formulação do problema de otimização é alterada, por exemplo, 

quando se deseja minimizar a função objetivo 
1f  e maximizar a função objetivo 

2f , 

como mostra a Figura 4.5 (a). 

  
a) Maximização de f2 e minimização de f1 b) Maximização de f2 e maximização de f1 

 
c) Minimização de f2 e maximização de f1 

Figura 4.5. Formas da frente de Pareto de acordo com a formulação do problema de otimização 

 

4.3.1 Qualidade da distribuição da Frente de Pareto - Equitatividade 

Um conjunto de pontos é igualmente distribuído ao longo de uma região, se 

nenhuma parte da região está sobre ou sub-representada nesse conjunto de pontos, 

comparado com outras partes. Uma medida da equitatividade, ou homogeneidade, da 
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distribuição é descrita por (Messac & Mattson, 2004; Motta, et al., 2012), na qual, duas 

distâncias relacionadas com cada ponto do conjunto são calculadas, chamadas infd  e 

supd . O parâmetro infd  se refere à distância mínima de um ponto ix  a um outro ponto 

qualquer. O parâmetro supd indica o diâmetro máximo de uma esfera, que tangencia o 

ponto ix e que toca outro ponto qualquer do conjunto, tal que nenhum outro ponto 

esteja dentro da esfera. O parâmetro equitatividade é calculado segundo a Eq. (4.5): 

( )
( )eq

σ
µ= D

D
 

(4.5) 

Na qual D é um vetor coluna formado por infd e supd : 

;  inf supD = d d
 

(4.6) 

e σ  é o desvio padrão e µ  é a média aritmética de D.  

Um conjunto de pontos é exatamente bem distribuído quando 0eq= . A Figura 

4.6 ilustra a abordagem para a medida da equitatividade de uma distribuição de pontos 

(Messac & Mattson, 2004). 

 

Figura 4.6. Descrição gráfica das medidas para o cálculo da equitatividade 

4.4 Métodos para geração de pontos de Pareto 

Existem várias técnicas para se obter a frente de Pareto (Hernández, 1994; 

Srinivas & Deb, 1994; Das & Dennis, 1998; Macedo, 2002; Bates, 2003; Collette & 

Siarry, 2003; Motta, et al., 2012). Neste capítulo serão apresentadas as seguintes 

metodologias: Método da Soma Ponderada (Koski, 1985) e o Método da Intersecção 

Contorno-Normal (NBI) (Das & Dennis, 1998; Motta, et al., 2012). 
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4.4.1 Método da Soma Ponderada dos Objetivos 

Dentre os métodos desenvolvidos para otimização multiobjetivo, no qual se 

substitui as funções objetivo por uma única função, denominada de função substituta, o 

mais empregado e de uso mais simples é o método da soma ponderada (Weight Sum 

method – WS) (Koski, 1985; Afonso, 1997; Afonso, et al., 2002; Motta, 2009; Motta, et 

al., 2012). Sua técnica baseia-se em atribuir um vetor de coeficientes de ponderação jββββ  

às funções objetivo normalizadas, combinando-as linearmente, ou seja, transformando-

as em uma única função objetivo. Sua representação algébrica é dada da seguinte forma: 

, , ,
1 10 0

, 1, 0 1
nobj nobj

T k
j j k j k j k

k kk

f
F

f
β β β β

= =
= = = ≤ ≤∑ ∑

f
f  

(4.7) 

onde 
0 kf é a função objetiva k no projeto inicial 

0x . 

O algoritmo desse método pode ser representado pelos seguintes passos: 

1. Definir o número de subconjuntos β ;  

2. Normalizar as funções objetivo;  

3. Para cada jβ  faça:  

a. Obter a função objetivo substituta usando a Eq. (4.7);  

b. Otimizar a função substituta e encontrar o ponto*

jx ;  

c. Substituir o *

jx  nas funções objetivo e obter os seus valores;  

Problemas na obtenção de pontos de Pareto via WS poderão surgir quando o 

contorno da região viável no espaço das funções objetivos for não convexo, vide Figura 

4.7. Neste caso, não existirá nenhum jβ  capaz de fornecer uma solução que esteja na 

parte não convexa. Isto ocorre porque o método da soma ponderada consiste em gerar 

diferentes retas suportes, definidas pelos valores de jβ  e, geralmente, nem todos os 

pontos Pareto-ótimos admitem retas suporte (Motta, 2009). 
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a) Conjunto Convexo b) Conjunto não Convexo 

Figura 4.7. Exemplos de contornos convexo e não convexo. 

 

Em geral, quando se utiliza essa metodologia, ocorre que uma distribuição 

uniforme dos pesos β não fornece uma distribuição uniforme de pontos de Pareto. 

4.4.2 Método da Intersecção Contorno-Normal 

O método da Interseção Contorno-Normal ou Normal Boundary Intersection 

(NBI) (Das & Dennis, 1998) é uma técnica criada para encontrar pontos eficientes (ou 

pontos NBI) do contorno do espaço viável gerado pelos vetores objetivos alcançáveis, 

{F(x): x∈C}, que possibilitem a construção de uma curva suave, de forma que o 

projetista possa definir em qual daqueles pontos será considerada a solução 

compromisso para o problema multiobjetivo. Quando os pontos eficientes estiverem 

sobre uma parte do contorno suficientemente convexa daquele espaço viável, esses são 

definidos como pontos de Pareto. Isto acontece para a grande maioria dos casos 

estudados na engenharia. Porém, se aqueles pontos estiverem na parte côncava do 

contorno, não há a garantia de que eles sejam pontos de Pareto. Apesar disso, esses 

pontos contribuem para que a curva de Pareto seja definida.  

A ideia central do NBI é encontrar uma porção do contorno do denominado 

espaço das funções objetivo (Das & Dennis, 1998), o qual contém os pontos ótimos de 

Pareto. Tais pontos podem ser encontrados resolvendo-se um problema de otimização. 

No que se segue, apresentam-se, inicialmente, algumas terminologias específicas do 

método para em seguida a metodologia ser detalhada.  

Define-se *F  como sendo o vetor do mínimo local das funções objetivo, 

denominado de Ponto Utópico (Shadow Minima ou Utopia Point) (Das & Dennis, 

1998), representado por: 
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* * * *

1 2, ,...,
T

nobjf f f =  F
 

(4.8) 

onde cada *

if representa um mínimo local individual. Sendo o vetor *

ix a solução ótima 

de 
if , temos que ( )* *

i i if f= x . Define-se a envoltória convexa do mínimo individual 

(ECMI) como: 

{ }
1

: , 1, 0
p

p

i i
i

β β
=

∈ = ≥∑ℝφβ βφβ βφβ βφβ β
 

(4.9) 

onde p é o número de pontos de Pareto e 

( ) ( )* *, , 1,..., ; 1,...,i j i obj obji j f x f i n j nφ = − = =
 

(4.10) 

Assim, os pontos pertencentes à ECMI são definidos por um conjunto de pontos 

do objn
ℝ , que são definidos pelas combinações convexas de ( ){ }* *

i −F Fx armazenados 

sob a forma de matriz, Φ, denominada de "pay-off" (Das & Dennis, 1998). Um exemplo 

da representação gráfica da ECMI é ilustrada na Figura 4.8. Nesta figura é considerado 

que na origem esteja o ponto de utopia *F  e, dessa forma, todas as funções objetivas são 

não negativas, isto é, ( )F x é substituída por F que é definida da seguinte forma: 

( ) *( )= −F F Fx x .  

    

Figura 4.8. Representação gráfica da ECMI num espaço bidimensional  
 

Com esta redefinição, observa-se na Figura 4.8 que o ponto A é ( )*

1F x  e o ponto 

B é ( )*

2F x , 0 é a origem e ao mesmo tempo o ponto Utópico *F , o segmento tracejado é 

a ECMI, enquanto que o arco ACB é a fronteira de Pareto no espaço das funções 

objetivo. O ponto N também é um ponto característico, chamado ponto nadir, ou anti-
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ideal, onde suas coordenadas correspondem ao pior valor obtido de cada função 

objetivo (Collette & Siarry, 2003). 

A ideia geométrica associada ao método é que tais pontos de Pareto são 

encontrados a partir da interseção da reta quase-normal à ECMI, apontada para a 

origem, e o contorno f∂ , como ilustrado na Figura 4.9. Nesta, observa-se que a família 

dos vetores quase-normais, uniformemente espaçados, intercepta os pontos igualmente 

espaçados sobre o contorno. Estes pontos serão pontos de Pareto se estiverem em uma 

região convexa da superfície, caso contrário, o ponto pode ou não ser um ótimo de 

Pareto. Em todo caso, mesmo que estes pontos não sejam ótimos, o método permite 

descobrir pontos em uma região convexa ou não-convexa (como mostra a Figura 4.7 b). 

 

Figura 4.9. Imagem do conjunto viável sobre o mapeamento de ƒ no espaço das funções 
objetivo.  

Dados os parâmetros ββββ , φβφβφβφβ  representa pontos sobre a ECMI. Seja n̂ o vetor 

unitário quase-normal à ECMI, i.e., a direção que liga o ponto médio da ECMI e o 

ponto Utópico *F . Então, ˆt+ nφβφβφβφβ , com t ∈ℝ , representa o conjunto de pontos sobre n̂ , 

que formam uma reta quase-normal à ECMI. A interseção entre a reta quase-normal à 

ECMI, e o contorno que define o espaço ( ){ }| ∈F ℂx x , onde 

( ) ( ){ }: 0, 0, l uh g= = ≤ ≤ ≤ℂ x x x x x x , f∂ , mais próximo da origem é a solução do 

seguinte problema de programação não linear: 

Maximize t
x ,t  

(4.11) 

sujeito às restrições definidas na Eq. (4.2) e às restrições adicionais: 

f

f
2

1

ccccf

F (x )2*

F (x )1
*

ECMI

F *



40 
 

( )ˆt+ =n F xφβφβφβφβ
 

(4.12) 

sendo esta equação de restrição a garantia do mapeamento de x  por ( )F x  sobre a reta 

quase-normal, onde ( ) ( ) ∗= −F F Fx x . Para mais detalhes, ver referências (Das & 

Dennis, 1998; Motta, 2009; Macedo, 2002).  

O problema apresentado nas equações (4.11) e (4.12) e as restrições de (4.2) 

passam a ser definidos como um subproblema NBI, representado por NBIβ, 

considerando que β seja o parâmetro que caracteriza o subproblema. Resolvendo esse 

subproblema para um conjunto de parâmetros β, encontra-se um conjunto de pontos 

sobre f∂  que poderão fornecer uma curva suavizada. Esses pontos serão pontos de 

Pareto caso estejam numa região convexa de f∂ , caso contrário, eles poderão não ser 

pontos ótimos de Pareto, mas serão úteis na suavização da curva o que não ocorre no 

método descrito anteriormente. 

4.4.3 Solução NBI via SAO 

No SAO aplicado em múltiplos objetivos, a ideia principal é basicamente a 

mesma empregada no SAO tradicional, aplicado em um único objetivo, onde é feita a 

decomposição do problema de otimização em uma sequência de subproblemas menores, 

ou seja, para uso em conjunto com o NBI, cada subproblema NBI é decomposto em 

uma sucessão de subproblemas menores, e o algoritmo de otimização opera sobre o 

modelo substituto de uma pequena região do domínio de projeto, ao invés de usar as 

respostas obtidas da simulação. 

Para soluções multi-objetivo via NBI, o SAO foi adaptado da seguinte maneira. 

Inicialmente é preciso escolher o número de pontos de Pareto (p). Em seguida, o 

algoritmo SAO (Tabela 3.3) é utilizado em cada uma das funções objetivo, para a 

solução dos ótimos individuais, para obtenção do ponto utópico ∗F  e determinação da 

ECMI e do vetor n. Para os demais pontos pertencentes à ECMI (p – nobj), o SAO é 

aplicado em ( )F x  que pertence às restrições adicionais ( )ˆt+ =n F xφβφβφβφβ , a formulação 

matemática é descrita na Eq.(4.13). 
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Maximize  

ˆsujeito a:  ( ) 0,   ( 1,  2,  ...,  )

ˆ                ( ) 0,   ( 1,  2,  ...,  )

ˆ                ( )

,t

k
i

k
j

k

k k
l l u u

t

h i m

g j n

t

= =

≤ =

+ =

≤ ≤ ≤ ≤

Φ

x

x

x

n F x

                x x x x x

ββββ
 

(4.13) 

onde k
lx  e k

ux  são definidos da mesma forma que é apresentado na Eq. (3.39), e as 

funções, ˆ ( )k
ih x  e ˆ ( )k

jg x  são as funções substitutas das restrições de igualdade e de 

desigualdade, na k-ésima iteração do SAO, já a função substituta criada para a restrição 

imposta pelo método NBI é criada de forma diferente das funções para as demais 

restrições. 

A função substituta para restrição do NBI é composta por termos do modelo de 

alta fidelidade (a esquerda da desigualdade) e pelo termo do modelo substituto (a direita 

da desigualdade). Para definir ΦΦΦΦ e n, é necessária o conhecimento da ECMI e do ponto 

utópico, ∗F , que são obtidos na etapa inicial da otimização. Para definição função 

substituta normalizada, que é apresentada no segundo termo, é considerada equação: 

*ˆ ˆ( ) ( )k k= −F x F x F
 

(4.14) 

onde ˆ ( )F x  é a função substituta criada com o modelo de krigagem, na k-ésima iteração. 

Devido ao fato do NBI ser uma variação de um método de otimização que 

considera programação matemática para resolver problemas uni-objetivo, além das 

dificuldades encontradas inerentes ao método (sendo uma das principais, a presença de 

multimodalidade), outro problema é encontrado quando frente de Pareto apresenta 

descontinuidades. Estas descontinuidades podem direcionar o algoritmo a fornecer 

soluções dominadas como resultado da otimização (Oliveira, 2013). 
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Capítulo 5: Exemplos e Resultados 

5.1 Introdução 

As metodologias apresentadas nas seções anteriores serão neste capítulo 

aplicadas à solução de diversos problemas. Inicialmente, com o intuito de testar o 

algoritmo SAO acoplado à metodologia NBI, foram realizados testes em um problema 

analítico, pela maior rapidez nas respostas obtidas. Em seguida foram feitos estudos uni 

e multiobjetivo em três casos de reservatórios de características distintas. Inicialmente 

são apresentados os estudos realizados em um reservatório simples, e em seguida são 

apresentados os estudos realizados em dois reservatórios mais complexos, que 

apresentam características mais semelhantes às situações reais. 

As soluções encontradas via SAO serão confrontadas com as soluções do 

modelo de alta fidelidade (AF). Uma avaliação do modelo de alta fidelidade (AF) 

representa, no caso dos problemas de reservatórios, uma simulação do IMEX, dessa 

forma, a otimização do modelo AF consiste na utilização do otimizador SQP 

diretamente nas respostas provenientes da simulação do IMEX. Enquanto que a 

otimização via SAO, constrói um modelo substituto que é utilizado para avaliar as 

funções a serem enviadas ao mesmo otimizador SQP. 

5.2 Problema Analítico 

O problema MO1 é dado por: 

( )1 2( ), ( ) , onde:MinF f f
x

x x  

2 2
1 2

1 1

1 1
  e   ( 2) , 0 1, 1,...,

n n

i i i
i i

f x f x x i n
n n= =

= = − ≤ ≤ =∑ ∑
 

(5.1) 

Para este problema, a frente de Pareto a ser encontrada é convexa. O número de 

variáveis consideradas é n = 2. Os resultados obtidos utilizando diferentes estratégias 

estão apresentados na Figura 5.1. 

Observa-se na Figura 5.1(a) que o método da soma ponderada (WS) encontrou 

apenas metade dos pontos de Pareto esperados, apesar da frente convexa do problema 

analisado, apresentando pontos sobrepostos. 

A Figura 5.1(b) mostra a frente de Pareto encontrada pelo método NBI 

utilizando o modelo de alta fidelidade (AF) operando diretamente no SQP e através da 
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técnica SAO com as opções distintas de Krigagem e RBF para construção do modelo 

substituto. 

  
a) WS - AF, SAO via Krigagem e 

SAO via RBF 
b) NBI – AF, SAO via Krigagem e SAO 

via RBF 

Figura 5.1. Frentes de Pareto encontradas no problema MO1 via: a) Soma Ponderada e b) NBI 

As soluções MO via a técnica NBI utilizando modelos de diferente fidelidade, 

conseguiram encontrar as 20 soluções de Pareto especificadas. A Tabela 5.1 apresenta o 

número de avaliações de funções de cada técnica. 

Tabela 5.1 – Número de avaliações de função por cada metodologia considerada 

Metodologia Avaliações de Função Equitatividade 
NBI – AF (SQP) 324 0.408 

NBI – SAO via Krigagem 331 0.416 
NBI – SAO via RBF linear 331 0.407 
NBI – SAO via RBF cúbica 331 0.400 
NBI – SAO via RBF TPS 331 0.399 

WS – AF (SQP) 170 1.007 
WS – SAO via Krigagem 926 1.025 
WS – SAO via RBF linear  1036 1.013 
WS – SAO via RBF cúbica 958 1.008 
WS – SAO via RBF TPS 983 1.008 

 

Devido à simplicidade das funções consideradas, o modelo de alta fidelidade 

precisou de menos avaliações de função que os modelos substitutos, pois a aproximação 

destes pode ser mais complicada que a função real. Em compensação, a metodologia 

NBI-SAO via RBF encontrou uma distribuição um pouco mais homogênea que a NBI 

em alta fidelidade. 
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5.3 Problemas da Engenharia de Reservatórios 

O presente trabalho se encontra dentro do contexto de gerenciamento através da 

injeção de água para alocação das vazões de produção e injeção, dando continuidade aos 

estudos iniciados por (Oliveira, 2006), onde o autor fez uma revisão bibliográfica sobre 

o estudo de otimização de vazões de produção e injeção para casos determinísticos e 

aplica diferentes algoritmos na solução de problemas deste tipo. 

A injeção de água é o principal método de recuperação secundária de óleo, 

devido ao baixo custo associado ao uso da água, que é abundante, bem como à maior 

estabilidade do processo se comparado ao uso de gás. Esse mecanismo de produção se 

aplica com dois propósitos, na varredura ou deslocamento do óleo para os poços 

produtores e na manutenção de pressão do reservatório que energiza o sistema (também 

conhecido como voidage replacement). 

No que se refere ao deslocamento do óleo na direção dos produtores, a razão de 

mobilidade dos fluidos, as heterogeneidades e a segregação são os três fatores que 

governam a eficiência de recuperação do óleo. Quanto à manutenção da pressão, um 

primeiro ponto se refere à manutenção da energia do sistema, representada pela pressão 

do reservatório, que é mantida através da reposição dos volumes produzidos pelos 

volumes injetados, dado pela Eq. (5.2). 

w o w
w p o p w p

p I p P p P

B q B q B q
∈ ∈ ∈

= +∑ ∑ ∑
  

(5.2) 

onde Bα  e pqα  são, respectivamente, os fatores volume de formação e vazões nas fases 

α  (óleo (o) e água (w)) do poço p. P é o conjunto dos índices dos poços produtores e I é 

o conjunto dos índices dos poços injetores. 

Outro ponto diz respeito à manutenção do estado de sub-saturação do 

reservatório, evitando a liberação de gás associado e o aumento rápido da razão gás-óleo 

(RGO) dos produtores. 

5.3.1 Formulação do Problema 

As máximas vazões nos poços em diferentes tempos ao longo da simulação são 

as variáveis de controle idealizadas para o problema. Para isso, o controle da vazão dos 

poços a cada intervalo de tempo é feito através do rateio em relação à capacidade de 

produção do grupo onde os poços estão ligados. Logo, temos como variáveis: 
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, ,
, ,

max max
, ;  ,

. .P I

p t p t
p t p t

l inj

q q
x p P x p I

Q Q
= ∈ = ∈  (5.3) 

onde qp,t é a vazão máxima do poço p (produtor (P) ou injetor (I)) no intervalo de tempo 

t, max.lQ  é a vazão de produção total máxima de líquidos permitida para a plataforma, 

max.injQ é a vazão de injeção total máxima de água permitida para a plataforma.  

Neste trabalho, são admitidas duas condições de funcionamento em relação às 

linhas das plataformas de injeção e produção, são elas: “topado” e “não topado”. Na 

condição de funcionamento topado, é considerado que as linhas operam sempre nas suas 

capacidades máximas, enquanto que na condição de funcionamento não topado elas 

podem ou não operar na capacidade máxima. Para o caso topado, a condição de 

funcionamento só é válida quando a vazão ,p tq  especificada é mantida pelas condições 

do reservatório no intervalo de tempo t, caso contrário é utilizado apenas a condição de 

funcionamento não topado. 

Além disso, são considerados dois tipos de otimização, uni e multiobjetivo. No 

caso uni-objetivo, a função-objetivo ( objf ), consiste no indicador valor presente líquido 

(VPL), definido como o somatório dos valores das entradas e saídas do fluxo de caixa, 

descontados de uma taxa mínima de atratividade a uma determinada data, conforme Eq. 

(5.4). Já no caso multiobjetivo, a produção acumulada de óleo ( pN ) e a injeção 

acumulada de água (
iW ) são funções-objetivo conflitantes e foram tomadas como 

funções a terem a frente de Pareto determinada. Qualquer ponto nessa curva representa 

a ‘maior quantidade’ de óleo que pode ser produzido para uma correspondente 

quantidade de água injetada (Cardoso, 2009; Horowitz, et al., 2013). A função VPL 

pode ser vista como uma forma de soma ponderada das funções produção acumulada de 

óleo e injeção acumulada de água. 

1

1
VPL = ( ) [ ( )]

(1 )

t

t

n

t
t

f F
d τ

=

=
+∑q q

 
(5.4) 

onde 1 2 t

T
T T T

n
    ====     q q q q⋯ é o vetor das máximas vazões nos poços para todos os ciclos 

de controle; 1, ,w

T

t t n tq q    ====     q ⋯ é o vetor das máximas vazões nos poços no ciclo de 

controle t; d é a taxa de desconto e 
tτ  é o tempo no fim do t-ésimo ciclo de controle. O 

fluxo de caixa no ciclo de controle t, que representa a receita do petróleo menos o custo 

da injeção e da produção de água, é dado por: 
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, , ,( ) ( ) ( )o w
t t o p t w p t wi p t

p P p I

F r q c q c qq τ
∈ ∈

 
= ∆ ⋅ − ⋅ − ⋅ 

 
∑ ∑  (5.5) 

onde 
tτ∆  é o intervalo de tempo do t-ésimo ciclo de controle; P e I são os conjuntos de 

poços produtores e injetores, respectivamente; ,
o
p tq  e ,

w
p tq  são as taxas de produção de 

óleo e água no p-ésimo poço produtor no t-ésimo ciclo de controle; 
or  é o preço do óleo; 

wc  e 
wic  são os custos de produção e injeção de água. 

Os valores das funções-objetivo, VPL, produção acumulada de óleo e injeção 

acumulada de água, são calculados a partir de simulações numéricas utilizando o 

simulador IMEX da CMG (2006). 

Matematicamente, o problema de injeção de água pode ser formulado como: 

( )
, ,max

, ,max

, , ,

, , ,

Minimize/Maximize   

sujeito a:   , 1

                   , 1

                   , 1 , 1

                   

obj

p t l t
p P

p t inj t
p I

l u
p t p t p t w t

p t p t p t
p P p I p P

f

q Q t n

q Q t n

q q q p n t n

q q qδ

∈

∈

∈ ∈ ∈

=

≤ =

≤ =

≤ ≤ = =

≤ ≤ ⋅

∑

∑

∑ ∑

q

…

…

… …

f

, 1 tt n=∑ …

 (5.6) 

onde  objf  é a função objetivo, que, como mencionado acima, para o caso uni-objetivo  é 

o VPL, e no caso multiobjetivo é a função vetorial p iN W =  f  onde pN  é a produção 

acumulada de óleo e  iW  é a injeção acumulada de água; na Eq. (5.6) 
tn  é o número 

total de ciclos de controle, 
wn  é o número total de poços. ,maxlQ  é a máxima taxa de 

produção de líquido permitida e ,maxinjQ  é a máxima taxa de injeção permitida do 

campo.  

Os sobrescritos l e u representam os limites inferior e superior das variáveis de 

projeto, respectivamente. Os sobrescritos o e w denotam respectivamente as fases óleo e 

água.  A última restrição exige que, para todos os ciclos, a taxa total de injeção pertença 

a um intervalo que vai formar a taxa de produção total em δ  vezes esse valor, onde 

1δ ≥  é um parâmetro de sobre-injeção. Essa é a forma mais geral da chamada restrição 

de voidage replacement usada por muitos pesquisadores como uma medida para manter 

o reservatório propriamente pressurizado (Brouwer & Jansen, 2004; Naevdal, et al., 

2006; Van Essen, et al., 2009; Asadollahi, 2012; Horowitz, et al., 2013). 
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Uma abordagem comumente utilizada nesse problema é subdividir o período de 

concessão do reservatório em um número de ciclos de controle, 
tn , no qual o tempo de 

mudança é fixado, como mostra a Figura 5.2. 

 

Figura 5.2. Ciclos de controle com tempos de mudança fixo 

Serão investigadas as opções de operação apresentadas na Tabela 5.2. 

Tabela 5.2 – Problemas uni-objetivo estudados para o primeiro reservatório. 

Problema Descrição 
1 OCT-TF: Operação em capacidade topada, tempo fixo 
2 OCT-TV: Operação em capacidade topada, tempo variável 
3 OCNT-TF: Operação em capacidade não-topada, tempo fixo 
4 OCNT-TV: Operação em capacidade não-topada, tempo variável 

 

Utilizando as normalizações definidas na Eq. (5.3), a formulação do problema de 

otimização para a operação em capacidade topada (OCT) é dada por: 

( )
,

,

, , ,

Maximize   

sujeito a:   1, 1

                   1, 1

                   , 1 , 1

obj

p t t
p P

p t t
p I

l u
p t p t p t w t

f f

x t n

x t n

x x x p n t n

∈

∈

=

= =

= =

≤ ≤ = =

∑

∑

…

…

… …

x

 (5.7) 

onde: 1 2 t

T
T T T

n⋯x x x x    ====       é o vetor das vazões nos poços em escala para todos os 

ciclos; 1, ,wt t n tx x⋯x     ====       é o vetor das vazões nos poços em escala para o ciclo t. Note 

que o número de variáveis de projeto para ambos os poços produtores e injetores deve 

ser diminuído de um. O número total de variáveis de projeto é dado por: 

( 2)P I tn n n n= + − ⋅  (5.8) 

onde n = número de variáveis de projeto; 
Pn = número de poços produtores; 

In = 

número de poços injetores e 
tn = número de ciclos de controle. Utilizando ,maxinjQ  igual 

Tempo2013 2017 2025 2043

X1 X2 X3
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ou um pouco maior que ,maxlQ  é possível satisfazer a restrição de voidage replacement 

nesse caso. 

Para o problema de operação em capacidade não topada (OCNT), todas as 

vazões dos poços injetores e produtores variam, a fim de otimizar a função-objetivo, 

segundo a formulação: 

( )
,

,

, , ,

, , ,

Maximize   

sujeito a:   1, 1

                   1, 1

                   , 1 , 1

                   , 1

obj

p t t
p P

p t t
p I

l u
p t p t p t w t

p t p t p t t
p P p I p P

f f

x t n

x t n

x x x p n t n

x x x t nα δ

∈

∈

∈ ∈ ∈

=

≤ =

≤ =

≤ ≤ = =

≤ ≤ ⋅ =

∑

∑

∑ ∑ ∑

…

…

… …

…

x

 (5.9) 

onde ,max ,maxinj lQ Qα = . O número total de variáveis de projeto é dado por: 

( )P I tn n n n= + ⋅  (5.10) 

Outra opção estudada neste trabalho, para tornar a estratégia de produção mais 

flexível, foi a consideração do tempo dos ciclos de controle como variáveis. Mesmo que 

o número de variáveis de projeto aumente, o tempo dos ciclos de controle pode ser feito 

mais inteligentemente, marcando situações como o tempo ótimo do breakthrough, 

controle de pressão no reservatório e fechamento de poços ou do campo inteiro para 

operações de work over (Horowitz, et al., 2013; Souza, 2012). 

Como pode ser visto na Figura 5.3, o intervalo de tempo de cada ciclo de 

controle é uma variável de projeto, exceto o último, uma vez que este valor pode ser 

obtido diretamente através da subtração do somatório dos ciclos anteriores do tempo 

total de concessão T. Assim, as variáveis referentes ao tempo podem ser formuladas da 

seguinte forma: 

, , 1 1t t tx T t nτ τ∆ = ∆ = −…  (5.11) 

A formulação da versão da operação em capacidade topada com o tempo 

variando, OCT-TV, é dada por (Horowitz, et al., 2013): 
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x

 (5.12) 

O vetor das variáveis de projeto agora incluem também as variáveis de tempo. O 

número total de variáveis é dado por: 

( 2) 1P I t tn n n n n= + − ⋅ + −  (5.13) 

A formulação da versão da operação em capacidade não topada com o tempo 

variando, OCNT-TV, é dada por (Horowitz, et al., 2013): 
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1
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1

, , ,

, , , 1

,
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nP nI nP
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p P p I p P
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≤ ≤ =∑ ∑ ∑ …

 (5.14) 

O número total de variáveis é dado por: 

( ) 1P I t tn n n n n= + ⋅ + −  (5.15) 

  

Figura 5.3. Ciclos de controle com tempo variando 
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5.3.2 Reservatório 1: Caso Simples

O modelo utilizado foi baseado no 

indicado na Figura 5.4 e possui dois poços produtores e um poço injetor. Por apresentar 

características simples, o caso estudado

aspectos do problema de otimização, sendo possível destacar peculiaridades que não 

estariam evidentes em problemas de maior complexidade.

O valor da permeabilidade horizontal (k

1000mD, o kh próximo ao poço P

1500mD. O poço injetor tem vazão constante de 44m

vazões dos poços produtores é de 40m

estão presentes na Tabela 5

anos. Outras características do reservatório estão presentes na

Figura 5.

A vazão máxima de produção de cada poço será de 30m³/dia, logo, as variáveis 

de projeto, como indicadas na Eq

,0 0,75
Pp tx≤ ≤ , para os poços produtores e 

Tabela 5

Tipo
Vazão de água no poço (m³/d)

Vazão de água na plataforma (m³/d)
Vazão de líquidos no poço 

Vazão de líquidos na plataforma (m³/d)
Raio (m)

Razão Gás Óleo de Formação (RGO)
(m³/m³)
Geofac
Wfrac
Skin

Caso Simples  

O modelo utilizado foi baseado no Caso1 do trabalho de Oliveira (2006), 

possui dois poços produtores e um poço injetor. Por apresentar 

características simples, o caso estudado proporciona um melhor entendimento dos 

aspectos do problema de otimização, sendo possível destacar peculiaridades que não 

estariam evidentes em problemas de maior complexidade. 

O valor da permeabilidade horizontal (kh) próximo ao poço injetor I

próximo ao poço P-1 é 500mD enquanto que próximo a P

1500mD. O poço injetor tem vazão constante de 44m3/dia enquanto que a soma das 

vazões dos poços produtores é de 40m3/dia, outras condições operacionais dos poços 

5.3. O reservatório possui um tempo total de produção de 16 

Outras características do reservatório estão presentes na Tabela 5.4

 

.4. Regiões de permeabilidade do caso simples 

A vazão máxima de produção de cada poço será de 30m³/dia, logo, as variáveis 

o, como indicadas na Eq. (5.3), podem assumir valores no intervalo 

, para os poços produtores e 
 ,0 1

Ip tx≤ ≤ , para o poço injetor.

5.3 – Dados/Condições operacionais dos poços 

Tipo Produtor Injetor
Vazão de água no poço (m³/d) - Max 44

Vazão de água na plataforma (m³/d) - Max 44
Vazão de líquidos no poço (m³/d) Max 30 

Vazão de líquidos na plataforma (m³/d) Max 40 
Raio (m) 0,1 

Razão Gás Óleo de Formação (RGO) 
(m³/m³) 

Max 115,5 

Geofac 0,37 
Wfrac 1 
Skin 0 

50 

trabalho de Oliveira (2006), 

possui dois poços produtores e um poço injetor. Por apresentar 

proporciona um melhor entendimento dos 

aspectos do problema de otimização, sendo possível destacar peculiaridades que não 

) próximo ao poço injetor I-1 é 

1 é 500mD enquanto que próximo a P-2 é de 

/dia enquanto que a soma das 

condições operacionais dos poços 

. O reservatório possui um tempo total de produção de 16 

4. 

A vazão máxima de produção de cada poço será de 30m³/dia, logo, as variáveis 

podem assumir valores no intervalo 

para o poço injetor. 

Injetor 
Max 44 
Max 44 

- 
- 

0,1 
- 

0,37 
1 
0 
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Tabela 5.4 – Características do Reservatório Simples 

Malha de Simulação 51(510m)x51(510m)x1(4m) 
Porosidade 30% 
Permeabilidade horizontal (kh) 500 a 1500 mD 
Permeabilidade vertical (kv) 10% de kh 
Compressibilidade da Rocha a 200 kgf/cm² 5 · 10-5 (kgf/cm2)-1 
Pressão de Saturação (Psat) 273 kgf/cm2 
Viscosidade a Tres , Psat 0.97 cP 
Óleo in place 2.2595 x 105 
Tempo de concessão 16 anos 

Para este reservatório, foram feitos dois estudos, o primeiro trata da otimização 

uni-objetivo e o segundo trata da otimização multiobjetivo. Também foi feito um estudo 

sobre o desempenho dos modelos substitutos, apresentado a seguir. 

5.3.2.1 Desempenho dos modelos substitutos 

Para este estudo, é utilizada a operação em capacidade topada (OCT) com dois 

ciclos de controle durante o período de concessão. O primeiro ciclo de controle abrange 

os primeiros seis anos e o outro os dez anos remanescentes. O espaço de projeto é 

bidimensional com os seguintes limites, 1 0.25x ≥  e 2 0.75x ≤ .  

Na referência (Afonso, et al., 2008) um estudo é apresentado considerando 

quatro diferentes situações nas quais restrições no corte d’água (WC) e/ou na pressão de 

fundo de poço (BHP) nos poços são ou não ativadas a nível do simulador. Nove 

modelos aproximados são comparados: três planos de amostragem (QMC, LCVT, LHS) 

e três procedimentos de ajuste de superfície: krigagem ordinária (K0), krigagem com 

termos de regressão de segunda ordem (K2) e Multipoint Adaptive Regression Splines 

(MARS), estes estudos foram conduzidos usando a plataforma DAKOTA(Adams, et al., 

2010). Mantendo a técnica de amostragem fixa, a krigagem ordinária (K0) foi a melhor 

em 9 do total de 12 casos, seguido pela krigagem com termos de regressão de segunda 

ordem (K2). 

Nesta dissertação, serão comparados os modelos de krigagem ordinária (K0), 

krigagem com termos de regressão de primeira ordem (K1), krigagem com termos de 

regressão de segunda ordem (K2), do pacote DACE, funções de base radia (RBF) linear, 

RBF cúbica, RBF TPS, todos estes testes foram conduzidos no ambiente MATLAB. 

Além destes, foi utilizado o processo gaussiano (GP), na plataforma DAKOTA, que 

corresponde à krigagem. As Figuras 5.5 e 5.6 mostram, respectivamente, as superfícies 

e os contornos de cada modelo substituto citado. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figura 5.5 – Superfície de resposta para o VPL: (a) AF; (b) Krigagem K0; (c) Krigagem  
K1; (d) Krigagem K2; (e) RBF Linear; (f) RBF Cubica; (g) RBF TPS; (h) GP 



53 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figura 5.6 – Curvas de nível para o VPL: (a) AF; (b) Krigagem K0; (c) Krigagem K1; 
(d) Krigagem K2; (e) RBF Linear; (f) RBF Cubica; (g) RBF TPS; (h) GP 
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Este estudo foi conduzido para mostrar a performance do caso particular de um 

problema com duas variáveis. Neste estudo, foi avaliada a precisão de cada modelo 

substituto via a métrica RMSE, como mostra a Tabela 5.5. De acordo com esta métrica, 

o modelo substituto que mais se aproximou do modelo de alta fidelidade foi o modelo 

de krigagem com termo de regressão de ordem 2 e o pior modelo foi o RBF linear. 

Tabela 5.5 – Precisão dos modelos substitutos 

Modelo Substituto RMSE (x10²) 
Krigagem (K0) 2.497 
Krigagem (K1) 3.213 
Krigagem (K2) 2.451 

RBF linear 13.428 
RBF cúbica 3.575 
RBF TPS 6.617 

Processo Gaussiano 5.405 
 

5.3.2.2 Resultados obtidos nos estudos de problemas uni-objetivo para o 
reservatório 1  

Os estudos realizados para problemas de otimização uni-objetivo têm como 

formulação básica a Eq. (5.6). A formulação apresentada na mesma é modificada de 

acordo com o tipo de operação da unidade de produção presente no reservatório (OCT 

ou OCNT) e de acordo com o planejamento dos ciclos de controle (em períodos pré-

determinados ou definidos como variáveis do problema). A Tabela 5.2 apresenta as 

combinações investigadas nos problemas uni-objetivo para o primeiro reservatório. 

Algumas metodologias de otimização são empregadas com o intuito de avaliar o 

comportamento dos otimizadores nos problemas propostos. As estratégias utilizadas 

estão descritas na Tabela 5.6. 

Tabela 5.6 – Métodos considerados na otimização dos problemas de otimização uni-objetivo 
para o primeiro reservatório. 

Métodos Descrição 

AF (SQP) 
Algoritmo de programação sequencial quadrática (SQP) atuando 
no modelo de alta fidelidade (AF) 

SAO (Krigagem) 
Algoritmo de otimização sequencial aproximada com a utilização 
da krigagem ordinária 

SAO (RBF_Linear) 
Algoritmo de otimização sequencial aproximada com a utilização 
da RBF linear 

SAO (RBF_Cúbica) 
Algoritmo de otimização sequencial aproximada com a utilização 
da RBF cúbica 

SAO (RBF_TPS) 
Algoritmo de otimização sequencial aproximada com a utilização 
da RBF TPS 
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Problema 1 - Operação em capacidade topada com definição prévia dos tempos dos 

ciclos de controle para o primeiro reservatório 

Neste problema, a unidade de produção instalada no reservatório opera em 

capacidade máxima e a duração dos ciclos de controle é definida previamente. 

A vazão de líquido produzido é fixada em 40 m³/dia, e sendo a vazão máxima de 

líquido, para cada poço produtor, limitada a 30 m³/dia, é exigida uma vazão mínima de 

10 m³/dia para cada poço, para atender a operação em capacidade topada da unidade. 

Com base nessas definições, são consideradas como variáveis de controle o 

rateio de um dos poços produtores (o poço P-1), ao longo do período de concessão, 

alterados a cada ciclo de controle. As vazões do poço P-2 são obtidas de modo a 

complementar a capacidade de produção. 

Sendo a unidade de produção formada por apenas um poço injetor, a vazão do 

mesmo é determinada como sendo o valor máximo definido na descrição das 

características do modelo adotado para o primeiro reservatório, 44 m³/dia, para que a 

operação seja em capacidade topada. A formulação do problema é dada pela equação 

(5.7). 

Para analisar a influência da quantidade de ciclos de controle sobre o valor do 

resultado final da função objetivo, a otimização desse problema foi conduzida em três 

situações: a primeira avalia a produção ao longo do período de concessão em dois ciclos 

de controle (OCT-TF-2cc); a segunda avalia a produção em doze ciclos (OCT-TF-12cc) 

e a terceira avalia a produção em vinte e quatro ciclos de controle (OCT-TF-24cc). A 

Figura 5.7 indica o esquema dos ciclos de controle para cada situação estudada no 

problema 1. 

 

 

Figura 5.7. Definição dos ciclos de controle para o problema 1. 

Os resultados obtidos para a situação onde são considerados dois ciclos de 

controle são apresentados na Tabela 5.7.  

Nesta tabela também são apresentados os resultados da referência (Horowitz, et 

al., 2013), chamada doravante Ref1, descrita anteriormente. Nesta referência foram 

analisados, para o reservatório 1, todos os casos uni-objetivo tratados nesta dissertação. 

Tempo

2 ciclos

24 ciclos

12 ciclos

2006 2008 2010 2012 2014 2016 2018 2020 2022
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Para o reservatório 2, operando em capacidade topada com tempo fixo, foram 

considerados 1, 4 e 6 ciclos de controle, e operando em capacidade topada ou não 

topada com tempo variando foi utilizado apenas três ciclos de controle. O método de 

otimização desta referência foi o SAO via krigagem, utilizando a plataforma DAKOTA, 

onde o modelo de krigagem difere do modelo utilizado nesta dissertação que utiliza o 

ambiente MATLAB. 

Tabela 5.7 – Resultados obtidos no problema OCT-TF-2cc 

Metodologia f(x) (106 U$) Simulações 
Ref1 1,4925 55 

AF (SQP) 1,4921 114 
SAO (Krigagem) 1,4924 49 
SAO (RBF linear) 1,4924 58 
SAO (RBF cúbica) 1,4924 60 
SAO (RBF TPS) 1,4924 40 

 
De acordo com os resultados apresentados, observa-se a uniformidade nas 

soluções obtidas pelas diversas estratégias empregadas. A diferença entre o número de 

avaliações de função (simulações) consideradas poderia ser um critério para definir o 

algoritmo com melhor desempenho, marcado em negrito na Tabela 5.7. 

Os valores das variáveis de projeto que fornecem a solução destacada, que foi 

obtida pelo SAO utilizando o modelo substituto via a técnica RBF TPS, são exibidas na 

Tabela 5.8. Na Figura 5.8 são apresentadas as vazões nos poços obtidas pelas diferentes 

técnicas utilizadas. As curvas de produção acumulada destas soluções são apresentadas 

na Figura 5.9 (a) à (e). 

Tabela 5.8 – Valores do rateio das vazões obtidas pelo SAO via RBF TPS para o caso OCT-TF-
2cc 

Ciclo de 
controle 

P-1 P-2 I-1 

1 0,552 0,448 1 
2 0,625 0,375 1 

  
 
 
 



 

a) AF (SQP)

c) SAO (RBF cúbica

Figura 5.8. Vazões nos poços para as soluções
(SQP), b) SAO via Krigagem, 

 

 

) b) SAO (Krigagem

 

RBF cúbica) d) SAO (RBF linear

 

e) SAO (RBF TPS) 

Vazões nos poços para as soluções obtidas para o problema OCT
SAO via Krigagem, c) SAO via RBF cúbica, d) SAO via RBF linear e 

TPS  
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Krigagem) 

 

RBF linear) 

OCT-TF-2cc: a) AF 
linear e e) SAO via 



 

Figura 5.9. Curvas de produção acumulada 
(SQP), SAO via Krigagem, SAO via RBF cúbic

Os resultados obtidos para a situação onde são considerados doze ci

controle (OCT-TF-12) são apresentados n

Tabela 5.9 –

Metodologia 
Ref1 

AF (SQP) 
SAO (Krigagem)

SAO (RBF linear)
SAO (RBF cúbica)

SAO (RBF TPS

De acordo com os resultados, observa

valores das soluções apresentadas, onde são destacadas a RBF linear pelo menor 

número de simulações e a RBF cúbica pelo maior valor da função objetivo. Os valores 

do rateio das vazões das soluções destacadas 

nas Tabelas 5.10 e 5.11. N

pelas diferentes técnicas utilizadas

soluções da Tabela 5.9, são exibidos na

Verifica-se que as soluções encontradas, mostradas na 

diferentes, mas os resultados são praticamente iguais, isso se deve à simplicidade do 

reservatório. 

Curvas de produção acumulada para o problema OCT-TF-2cc obtidos 
, SAO via Krigagem, SAO via RBF cúbica, SAO via RBF linear e SAO via RBF TPS

Os resultados obtidos para a situação onde são considerados doze ci

2) são apresentados na Tabela 5.9. 

– Resultados obtidos no problema OCT-TF-12cc 

 f(x) (106 $) Simulações
1,4935 500 
1,4918 431 

SAO (Krigagem) 1,4928 391 
SAO (RBF linear) 1,4927 209 
SAO (RBF cúbica) 1,4933 235 

RBF TPS) 1,4929 261 
 

De acordo com os resultados, observa-se novamente uma consistência nos 

valores das soluções apresentadas, onde são destacadas a RBF linear pelo menor 

e a RBF cúbica pelo maior valor da função objetivo. Os valores 

as soluções destacadas apresentada na Tabela 5.

Na Figura 5.10 são apresentadas as vazões nos poços obtidas 

las diferentes técnicas utilizadas. Os históricos da produção do reservatório, 

, são exibidos na Figura 5.11. 

se que as soluções encontradas, mostradas na Figura 

diferentes, mas os resultados são praticamente iguais, isso se deve à simplicidade do 
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obtidos por: AF 
, SAO via RBF linear e SAO via RBF TPS. 

Os resultados obtidos para a situação onde são considerados doze ciclos de 

 

Simulações 

se novamente uma consistência nos 

valores das soluções apresentadas, onde são destacadas a RBF linear pelo menor 

e a RBF cúbica pelo maior valor da função objetivo. Os valores 

.9 são mostrados 

são apresentadas as vazões nos poços obtidas 

Os históricos da produção do reservatório, relativo 

Figura 5.10, são 

diferentes, mas os resultados são praticamente iguais, isso se deve à simplicidade do 



 

a) AF (SQP)

c) SAO (RBF cúbica

Figura 5.10. Vazões nos poços para as soluções

TF-12cc: a) AF (SQP), b) 

 

) b) SAO (Krigagem

 

RBF cúbica) d) SAO (RBF linear

 

e) SAO (RBF TPS) 

Vazões nos poços para as soluções obtidas para o problema

b) SAO via Krigagem, c) SAO via RBF cúbic

RBF linear e e) SAO via TPS 
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Krigagem) 

 

RBF linear) 

problema OCT-

RBF cúbica, d) SAO via 
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Tabela 5.10 – Valores do rateio das vazões obtidas pelo SAO via RBF linear para o caso OCT-TF-12cc 

Ciclo de controle 1 2 3 4 5 6 7 8 9 10 11 12 
P-1 0,547 0,403 0,547 0,597 0,547 0,647 0,647 0,576 0,547 0,547 0,547 0,597 
P-2 0,453 0,597 0,453 0,403 0,453 0,353 0,353 0,424 0,453 0,453 0,453 0,403 
I-1 1 1 1 1 1 1 1 1 1 1 1 1 

Tabela 5.11 – Valores do rateio das vazões obtidas pelo SAO via RBF cúbica para o caso OCT-TF-12cc 

Ciclo de controle 1 2 3 4 5 6 7 8 9 10 11 12 
P-1 0,503 0,319 0,463 0,461 0,656 0,525 0,744 0,590 0,444 0,750 0,743 0,544 
P-2 0,497 0,682 0,538 0,540 0,344 0,475 0,256 0,411 0,556 0,250 0,257 0,456 
I-1 1 1 1 1 1 1 1 1 1 1 1 1 

 



 

Figura 5.11. Curvas de produção acumulada com os resultados para o 
obtidos por: AF (SQP), SAO via 

Os resultados obtidos para a situação onde são considerados 

de controle (OCT-TF-24) são apresentados n

Tabela 5.12 

Metodologia
Ref1 

AF (SQP) 
SAO (Krigagem

SAO (RBF linear
SAO (RBF cúbica
SAO (RBF TPS

Da mesma forma que ocorre nos casos anteriores, com base nos resultados 

apresentados, há uma consistência nas soluções encontradas

menos da solução de alta fidelidade, que ficou aquém das outras soluções. 

soluções via a técnica SAO, a

número de avaliações de função

ciclos de controle, o VPL diminuiu um pouco em relação ao caso anterior, com 12 

ciclos e o número de simulações aumentou. 

Os históricos da produção do reservatório, 

exibidos na Figura 5.12. Já 

apresentados na Tabela 5.13

poços obtidas pelas diferentes técnicas utilizadas.

Curvas de produção acumulada com os resultados para o problema
, SAO via Krigagem, SAO via RBF cúbica, SAO via RBF linear e SAO 

via RBF TPS 

Os resultados obtidos para a situação onde são considerados vinte e quatro

) são apresentados na Tabela 5.12. 

 – Resultados obtidos no problema OCT-TF-24cc

Metodologia f(x) (106 $) Simulações 
1,4936 720 
1,4900 413 

Krigagem) 1,4924 652 
linear) 1,4931 452 

RBF cúbica) 1,4928 552 
RBF TPS) 1,4928 652 

Da mesma forma que ocorre nos casos anteriores, com base nos resultados 

apresentados, há uma consistência nas soluções encontradas em termos do VPL ótimo

menos da solução de alta fidelidade, que ficou aquém das outras soluções. 

soluções via a técnica SAO, a RBF linear obteve o melhor resultado, comparando o 

número de avaliações de função (simulações). Notar que com o aumento do número de 

s de controle, o VPL diminuiu um pouco em relação ao caso anterior, com 12 

ciclos e o número de simulações aumentou.  

Os históricos da produção do reservatório, para as soluções da Tabela 

. Já as variáveis de projeto da solução destacada

13 e na Figura 5.13 (a) à (e) são apresentadas as vazões nos 

poços obtidas pelas diferentes técnicas utilizadas. 
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problema OCT-TF-12cc 
, SAO via RBF linear e SAO 

vinte e quatro ciclos 

24cc 

 

Da mesma forma que ocorre nos casos anteriores, com base nos resultados 

em termos do VPL ótimo, a 

menos da solução de alta fidelidade, que ficou aquém das outras soluções. Dentre as 

RBF linear obteve o melhor resultado, comparando o 

Notar que com o aumento do número de 

s de controle, o VPL diminuiu um pouco em relação ao caso anterior, com 12 

Tabela 5.12, são 

da solução destacada são 

são apresentadas as vazões nos 



 

Tabela 5.13 – Valores do rateio 

Ciclo de controle 1 2 
P-1 0,4979 0,5081 
P-2 0,5021 0,4919 
I-1 1 1 

Ciclo de controle 13 14 
P-1 0,7500 0,7442 
P-2 0,2500 0,2558 
I-1 1 1 

Figura 5.12. Curvas de produção acumulada para o 

do rateio das vazões obtidas pelo SAO via RBF linear para o caso OCT-

3 4 5 6 7 8 9 10
0,4628 0,3792 0,5144 0,4365 0,4500 0,4634 0,4500 0,4500
0,5372 0,6208 0,4856 0,5635 0,5500 0,5366 0,5500 0,5500

1 1 1 1 1 1 1 1
15 16 17 18 19 20 21 22

0,5809 0,5003 0,4989 0,5983 0,5793 0,6500 0,5500 0,6500
0,4191 0,4997 0,5011 0,4017 0,4207 0,3500 0,4500 0,3500

1 1 1 1 1 1 1 1

 

Curvas de produção acumulada para o problema OCT-TF-24cc com os resultados obtidos por: AF (SQP), SAO via Krigagem, SAO via RBF 
cúbica, SAO via RBF linear e SAO via RBF TPS  
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-TF-24cc 

10 11 12 
0,4500 0,5488 0,7454 
0,5500 0,4512 0,2546 

1 1 1 
22 23 24 

0,6500 0,5500 0,6246 
0,3500 0,4500 0,3754 

1 1 1 

SAO via Krigagem, SAO via RBF 



 

a) AF (SQP)

c) SAO (RBF cúbica

Figura 5.13. Vazões nos poços 
(SQP), b) SAO via Krigagem, 

Problema 2 – Operação em capacidade 

ciclos de controle para o primeiro reservatório

A vazão de líquido da unidade de produção 

igual a 40 m³/dia, não sendo necessária uma vazão mínima para cada poço produtor,

apenas um limite inferior necessário para o algoritmo de otimização de 0,04 m³/dia

Como o reservatório em estudo possui

capacidade máxima não é mais exigida, a manutenção da pressão média do reservatório, 

 

) b) SAO (Krigagem

 

RBF cúbica) d) SAO (RBF linear

 

e) SAO (RBF TPS) 

Vazões nos poços para o problema OCT-TF-24cc.soluções obtid
SAO via Krigagem, c) SAO via RBF cúbico, d) SAO via RBF linear e 

TPS  

 
em capacidade não topada com definição prévia 

ciclos de controle para o primeiro reservatório 

A vazão de líquido da unidade de produção nesta situação pode ser menor ou 

não sendo necessária uma vazão mínima para cada poço produtor,

inferior necessário para o algoritmo de otimização de 0,04 m³/dia

o reservatório em estudo possui apenas um poço injetor, e a operação em 

capacidade máxima não é mais exigida, a manutenção da pressão média do reservatório, 
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Krigagem) 

 

RBF linear) 

obtidas por: a) AF 
linear e e) SAO via 

com definição prévia do tempo dos 

pode ser menor ou 

não sendo necessária uma vazão mínima para cada poço produtor, 

inferior necessário para o algoritmo de otimização de 0,04 m³/dia. 

apenas um poço injetor, e a operação em 

capacidade máxima não é mais exigida, a manutenção da pressão média do reservatório, 
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que era atendida automaticamente nas situações anteriores, passa a ser uma restrição 

imposta na formulação do problema de otimização. 

Com base nessas definições, são consideradas como variáveis de projeto os 

rateios de todos os poços, produtores e injetor, ao longo do período de concessão, 

alterados a cada ciclo de controle. A formulação do problema é dado pela Eq. (5.9). 

Nesse problema foi investigada apenas uma situação com três ciclos de controle 

que avalia a produção ao longo do período de concessão. A Figura 5.14 apresenta a 

distribuição dos três ciclos de controle considerada para esse problema. 

 

Figura 5.14. Definição dos ciclos de controle para o problema 3. 

 

Os resultados obtidos são apresentados na Tabela 5.14. 

Tabela 5.14 – Resultados obtidos no problema OCNT-TF-3cc 

Metodologia f(x) (106 $) Simulações 
Ref1 1,7246 - 

AF (SQP) 1,7092 181 
SAO (Krigagem) 1,7246 481 
SAO (RBF linear) 1,7233 1001 
SAO (RBF cúbica) 1,7244 1001 
SAO (RBF TPS) 1,7235 901 

 
Os resultados obtidos mostram que a metodologia SAO foi consistente no uso 

dos diferentes modelos substitutos utilizados. 

Os valores do rateio das vazões da melhor solução são apresentados na Tabela 

5.15 e na Figura 5.15 (a) à (e) são apresentadas as vazões nos poços obtidas pelas 

diferentes técnicas utilizadas. Nota-se, a partir destes resultados, que as melhores 

soluções dadas foram conseguidas com o fechamento de todos os poços em 2016, 

situação que não seria possível no caso topado. Os históricos da produção do 

reservatório, para as soluções da Tabela 5.14, são exibidos na Figura 5.16. 

 

 

3 ciclos

Tempo2006 2012 2016 2022

X1 X2 X3



 

Tabela 5.15 – Valores do rateio 

Ciclo de 
controle 

1 
2 
3 

 

a) AF (SQP)

c) SAO (RBF cúbica

Figura 5.15. Vazões nos poços 
SAO via Krigagem, c) SAO via 

 

do rateio das vazões obtidas pelo SAO via krigagem para o caso 
TF-3cc 

P-1 P-2 I-1 

0,401 0,599 0,922 
0,349 0,053 0,365 
0,001 0,003 0,003 

 

) b) SAO (Krigagem

 

RBF cúbica) d) SAO (RBF linear

 

e) SAO (RBF TPS) 

Vazões nos poços para o problema OCNT-TF-3cc obtidas por: a) 
SAO via RBF cúbico, d) SAO via RBF linear e e) SAO via 
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para o caso OCNT-

 

Krigagem) 

 

RBF linear) 

or: a) AF (SQP), b) 
SAO via TPS  



 

Figura 5.16. Curvas de produção acumulada 
(SQP), SAO via Krigagem, 

 
Problema 3 – Operação em capacidade topada com 

controle como variável para o primeiro reservatório

Neste problema, a unidade de produção opera em sua capacidade máxima, como 

no problema 1, e a duração do ciclo de controle agora é consi

projeto.  

Com base nessas definições, são consideradas como variáveis 

controle das vazões, o rateio de apenas um dos poços produtores ao longo do período de 

concessão, alterados a cada ciclo de controle

dos ciclos de controle podem ser mais bem interpretadas visualizando a

formulação do problema é dad

 Nesse problema foi investigada apenas uma situação que avalia a produção ao 

longo do período de concessão em 

esta situação são mostrados na 

Tabela 5.16

Metodologia
Ref1 

AF (SQP
SAO (Krigagem)
SAO (RBF linear)

SAO (RBF cúbica)
SAO (RBF TPS

Curvas de produção acumulada para o problema OCNT-TF-3cc 
, SAO via Krigagem, SAO via RBF cúbico, SAO via linear e SAO via 

em capacidade topada com o tempo de mudança

para o primeiro reservatório 

Neste problema, a unidade de produção opera em sua capacidade máxima, como 

e a duração do ciclo de controle agora é considerada como variável de 

Com base nessas definições, são consideradas como variáveis 

controle das vazões, o rateio de apenas um dos poços produtores ao longo do período de 

concessão, alterados a cada ciclo de controle.  As variáveis relacionadas com a duração 

dos ciclos de controle podem ser mais bem interpretadas visualizando a

formulação do problema é dada pela Eq. (5.12). 

Nesse problema foi investigada apenas uma situação que avalia a produção ao 

longo do período de concessão em cinco ciclos de controle. Os resultados obtidos para 

esta situação são mostrados na Tabela 5.16. 

16 – Resultados obtidos no problema OCT-TV-5cc

Metodologia f(x) (106 $) Simulações 
 1,4932 - 

SQP) 1,4910 210 
SAO (Krigagem) 1,4930 261 
SAO (RBF linear) 1,4923 241 

SAO (RBF cúbica) 1,4929 181 
RBF TPS) 1,4925 181 
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 obtidos por: AF 
SAO via TPS  

o tempo de mudança dos ciclos de 

Neste problema, a unidade de produção opera em sua capacidade máxima, como 

derada como variável de 

Com base nessas definições, são consideradas como variáveis referentes ao 

controle das vazões, o rateio de apenas um dos poços produtores ao longo do período de 

relacionadas com a duração 

dos ciclos de controle podem ser mais bem interpretadas visualizando a Figura 5.3. A 

Nesse problema foi investigada apenas uma situação que avalia a produção ao 

Os resultados obtidos para 

5cc 
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Assim como no caso anterior, os resultados obtidos mostram que a metodologia 

SAO foi consistente no uso dos diferentes modelos substitutos utilizados e apenas a 

solução utilizando o SQP operando no modelo de alta fidelidade apresentou um 

desempenho inferior. 

Os valores do rateio das vazões da solução destacada são apresentados na Tabela 

5.17 e na Figura 5.17 (a) à (e) são apresentadas as vazões nos poços obtidas pelas 

diferentes técnicas utilizadas. Os históricos da produção do reservatório, para as 

soluções da Tabela 5.16, são exibidos na Figura 5.18. 

Tabela 5.17 – Valores do rateio das vazões obtidas pelo SAO via RBF cúbica para o caso OCT-
TV-5cc 

Ciclo de 
controle 

P-1 P-2 I-1 Duração 

1 0,307 0,693 1 0,189 
2 0,529 0,471 1 0,162 
3 0,672 0,328 1 0,124 
4 0,525 0,475 1 0,104 
5 0,586 0,414 1 0,422 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

a) AF (SQP)

c) SAO (RBF cúbica

Figura 5.17. Vazões nos poços 
AF (SQP), b) SAO via Krigagem, 

 

) b) SAO (Krigagem

 

RBF cúbica) d) SAO (RBF linear

 

e) SAO (RBF TPS) 

Vazões nos poços para o problema OCT-TV-5cc para as soluções
SAO via Krigagem, c) SAO via RBF cúbica, d) SAO via RBF linear e 

TPS  
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Krigagem) 

 

RBF linear) 

para as soluções obtidas por: a) 
linear e e) SAO via 



 

Problema 4 – Operação em capacidade 

ciclos de controle como variável 

O quarto problema é o caso mais flexível tratado considerando a função 

objetivo, a unidade de produção não precisa operar necessariamente em capacidade 

máxima, como no problema 2, desta forma 

variáveis de projeto e a duração dos ciclos de controle não é definida de forma prévia, 

acrescentando o tempo de mudança do ciclo de controle como variável de projeto, como 

foi feito no problema 3 e esquematizado na 

dada pela Eq. (5.14). 

Nesse problema foi investigada apenas uma situação que avalia a produção ao 

longo do período de concessão em 

esta situação são mostrados na 

Tabela 5.18 –

Metodologia
Ref1 

AF (SQP) 
SAO (Krigagem)
SAO (RBF linear)
SAO (RBF cúbica
SAO (RBF TPS)

 

Figura 5.18. Curvas de produção acumulada
obtidos por: AF (SQP), SAO via Krigag

em capacidade não topada com o tempo de mudança

como variável para o primeiro reservatório 

O quarto problema é o caso mais flexível tratado considerando a função 

, a unidade de produção não precisa operar necessariamente em capacidade 

máxima, como no problema 2, desta forma a vazão de todos os poços entram como 

a duração dos ciclos de controle não é definida de forma prévia, 

acrescentando o tempo de mudança do ciclo de controle como variável de projeto, como 

foi feito no problema 3 e esquematizado na Figura 5.3. A formulação do problema é 

Nesse problema foi investigada apenas uma situação que avalia a produção ao 

longo do período de concessão em três ciclos de controle. Os resultados obtidos para 

esta situação são mostrados na Tabela 5.18. 

– Resultados obtidos no problema OCNT-TV-3cc

Metodologia f(x) (106 $) Simulações 
1,7364 - 
1,6042 193 

SAO (Krigagem) 1,6955 938 
linear) 1,7291 1129 

RBF cúbica) 1,7283 961 
SAO (RBF TPS) 1,7306 721 

Curvas de produção acumulada para o problema OCT-TV-5cc com os resultados 
, SAO via Krigagem, SAO via RBF cúbico, SAO via linear e SAO via 

TPS  
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o tempo de mudança dos 

O quarto problema é o caso mais flexível tratado considerando a função uni-

, a unidade de produção não precisa operar necessariamente em capacidade 

todos os poços entram como 

a duração dos ciclos de controle não é definida de forma prévia, 

acrescentando o tempo de mudança do ciclo de controle como variável de projeto, como 

A formulação do problema é 

Nesse problema foi investigada apenas uma situação que avalia a produção ao 

Os resultados obtidos para 

3cc 

 

 

com os resultados 
em, SAO via RBF cúbico, SAO via linear e SAO via 
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Como este problema é o mais geral deste reservatório, considerando o problema 

uni-objetivo, e também o mais complexo, os algoritmos tiveram um pouco mais de 

dificuldade para encontrar o ponto ótimo.  Os resultados em termos de VPL foram 

consistentes e apenas a solução AF (SQP) obteve um resultado aquém do esperado, que 

é um valor próximo a $1,7x106. 

Os valores do rateio das vazões dos resultados destacados são mostrados nas 

Tabelas 5.19 e 5.20 e na Figura 5.19 (a) à (e) são apresentadas as vazões nos poços 

obtidas pelas diferentes técnicas utilizadas. Os históricos da produção do reservatório, 

para as soluções da Tabela 5.18, são exibidos na Figura 5.20. 

Tabela 5.19 – Valores do rateio das vazões obtidas pelo SAO via RBF linear para o caso 
OCNT-TV-3cc 

Ciclo de 
controle 

P-1 P-2 I-1 Duração 

1 0,595 0,405 0,923 0,266 
2 0,543 0,458 0,909 0,179 
3 0,06 0,001 0,055 0,556 

 

Tabela 5.20 – Valores do rateio das vazões obtidas pelo SAO via RBF TPS para o caso OCNT-
TV-3cc 

Ciclo de 
controle 

P-1 P-2 I-1 Duração 

1 0,601 0,399 0,909 0,099 
2 0,557 0,443 0,950 0,345 
3 0,079 0,001 0,072 0,556 

 

 

 

 

 

 

 

 

 



 

a) AF (SQP)

c) SAO (RBF cúbica

Figura 5.19. Vazões nos poços 

obtidas por: a) AF (SQP), 

 

) b) SAO (Krigagem

 

RBF cúbica) d) SAO (RBF linear

 

e) SAO (RBF TPS) 

Vazões nos poços para o problema OCNT-TV-3cc para as soluções

, b) SAO via Krigagem, c) SAO via RBF cúbic

RBF linear e e) SAO via TPS 
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Krigagem) 

 

RBF linear) 

para as soluções 

RBF cúbica, d) SAO via 



 

Figura 5.20. Curvas de produção acumulada 
obtidos por: AF (SQP), SAO via Krigagem, 

As soluções encontradas pelo modelo de alta fidelidade 

krigagem foram diminuir as vazões de produção nos tempos 2009 e 2011, 

respectivamente, por isso a diferença na produção acumulada de óleo destas duas curvas 

em relação aquelas encontradas pelo SAO via RBF.

A Tabela 5.21 traz um re

destacando a melhor metodologia para cada problema em termos do VPL ótimo

ser observado, nesta tabela, que o VPL para

os casos OCT. Essa diferença se deve à menor injeção de água, permitida para o caso 

OCNT, que implica em uma menor produção de água, como pode ser visto 

comparando, por exemplo, as Figuras 5.1

Tabela 5

Problema 
OCT-TF-2cc 
OCT-TF-12cc 
OCT-TF-24cc 
OCNT-TF-3cc 
OCT-TV-5cc 

OCNT-TV-3cc 
 

Foi visto que para os problemas testados, as soluções de cada metodologia foram 

diferentes, mas os resultados foram 

reservatório opera em capacidade topada

Curvas de produção acumulada para o problema OCNT-TV-3cc com os resultados 
, SAO via Krigagem, SAO via RBF cúbico, SAO via linear e 

TPS  

As soluções encontradas pelo modelo de alta fidelidade e pelo SAO via 

krigagem foram diminuir as vazões de produção nos tempos 2009 e 2011, 

respectivamente, por isso a diferença na produção acumulada de óleo destas duas curvas 

em relação aquelas encontradas pelo SAO via RBF. 

traz um resumo dos resultados alcançados para o reservatório 1, 

destacando a melhor metodologia para cada problema em termos do VPL ótimo

ser observado, nesta tabela, que o VPL para os casos OCNT é 15,5% maior do que 

Essa diferença se deve à menor injeção de água, permitida para o caso 

OCNT, que implica em uma menor produção de água, como pode ser visto 

comparando, por exemplo, as Figuras 5.18 (OCT) e 5.20 (OCNT). 

5.21 – Resumo dos resultados das otimizações 

Metodologia VPL (x106 $) Simulações
SAO (RBF TPS) 1,4924 40

SAO (RBF cúbica) 1,4933 235
SAO (RBF linear) 1,4931 452
SAO (Krigagem) 1,7245 401

SAO (RBF cúbica) 1,4929 181
SAO (RBF linear) 1,7291 1129

Foi visto que para os problemas testados, as soluções de cada metodologia foram 

diferentes, mas os resultados foram praticamente iguais. Além disso, quando o 

reservatório opera em capacidade topada (OCT), foi verificado que os resultados do 
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com os resultados 
linear e SAO via 

e pelo SAO via 

krigagem foram diminuir as vazões de produção nos tempos 2009 e 2011, 

respectivamente, por isso a diferença na produção acumulada de óleo destas duas curvas 

sumo dos resultados alcançados para o reservatório 1, 

destacando a melhor metodologia para cada problema em termos do VPL ótimo. Pode 

15,5% maior do que para 

Essa diferença se deve à menor injeção de água, permitida para o caso 

OCNT, que implica em uma menor produção de água, como pode ser visto 

Simulações 
40 
235 
452 
401 
181 
1129 

Foi visto que para os problemas testados, as soluções de cada metodologia foram 

praticamente iguais. Além disso, quando o 

foi verificado que os resultados do 
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VPL também foram praticamente iguais, independente do número de ciclos de controle 

ou se o tempo de mudança dos ciclos foi utilizado como variável de controle. O mesmo 

ocorreu para o caso OCNT.  

5.3.2.3 Soluções multiobjetivo para o reservatório 1 

Como mencionado no início deste capítulo, no caso da otimização multiobjetivo, 

as funções objetivas consideradas são a produção acumulada de óleo (pN ) e a injeção 

acumulada de água (
iW ).  

A otimização de múltiplos objetivos simultaneamente têm como formulação 

básica as Eqs. (4.1) e (4.2). É utilizada, neste estudo multiobjetivo, a operação em 

capacidade não topada com tempo fixo, cuja formulação é dada pela Eq. (5.9). 

Com relação ao planejamento dos ciclos de controle, para os testes apresentados 

nesta seção, é considerado apenas o estudo da explotação em três ciclos ao longo do 

período de concessão. As variáveis consideradas são as mesmas do caso uni-objetivo, 

que são os rateios de todos os poços, produtores e injetores. 

Os modelos empregados na otimização também são os mesmos dos problemas 

uni-objetivo (apresentados na Tabela 5.6). As estratégias da otimização multiobjetivo 

do reservatório 1 estão descritas na Tabela 5.22. 

Tabela 5.22 – Estratégias consideradas na otimização dos problemas de otimização 
multiobjetivo para o primeiro reservatório. 

Estratégia Descrição 

AF (SQP_MO) 
Algoritmo de programação sequencial quadrática 
atuando no modelo de alta fidelidade para problemas 
multiobjetivo 

SAO (Krigagem_MO) 
Algoritmo de otimização sequencial aproximada com a 
utilização da técnica de aproximação por krigagem 
ordinária para problemas multiobjetivo 

SAO (RBF_Linear_MO) 
Algoritmo de otimização sequencial aproximada com a 
utilização da técnica de aproximação por RBF linear 
para problemas multiobjetivo 

SAO (RBF_Cúbica_MO) 
Algoritmo de otimização sequencial aproximada com a 
utilização da técnica de aproximação por RBF cúbica 
para problemas multiobjetivo 

SAO (RBF_TPS_MO) 
Algoritmo de otimização sequencial aproximada com a 
utilização da técnica de aproximação por RBF TPS 
para problemas multiobjetivo 

 
Em cada estratégia da Tabela 5.22 foram utilizadas as técnicas de soma 

ponderada dos objetivos (WS) e intersecção do contorno normal (NBI). 
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As soluções obtidas em problemas com vários objetivos são representadas 

através de um conjunto de pontos de Pareto, e em problemas com duas funções a serem 

otimizadas é comum a representação desse conjunto de forma gráfica, através da frente 

de Pareto, como mostrado no Capítulo 4. Foram utilizados 20 pontos de Pareto em 

todos os casos MO deste reservatório. 

Como a quantidade de pontos obtidos é idêntica, para cada uma das estratégias 

indicadas na Tabela 5.22, o desempenho pode ser avaliado de acordo com a “forma” da 

frente de Pareto apresentada, através do parâmetro equitatividade, e/ou de acordo com a 

quantidade de simulações necessárias para obtenção da mesma. 

Para obter respostas mais rapidamente, foi utilizado paralelismo para as soluções 

multiobjetivo. 

Solução MO via soma ponderada - WS 

As Figuras 5.21 à 5.24 apresentam a distribuição dos pontos de Pareto para o 

método soma ponderada (WS), nestas observa-se regiões com vazios, isso ocorre devido 

ao fato de que o método da Soma Ponderada não é capaz de fornecer soluções que 

estejam na parte não-convexa da frente de Pareto. Na Tabela 5.23 se percebe que o 

número de avaliações de função usando a técnica WS utilizando o modelo de alta 

fidelidade utilizou muito menos avaliações de função comparado às soluções usando a 

estratégia SAO, em compensação, a metodologia SAO via krigagem, embora tenha sido 

a mais custosa computacionalmente, foi a metodologia que encontrou a melhor 

distribuição da frente de Pareto, apresentando o menor parâmetro de equitatividade. Os 

pontos que representam o resultado destacado indicado na Tabela 5.23 estão exibidos na 

Tabela 5.24. 

Tabela 5.23 – Número de avaliações de função obtido com a técnica WS 

Metodologia Simulações Equitatividade 
WS – AF (SQP) 3117 1,5098 

WS – SAO krigagem 6100 0,8657 
WS – SAO RBF_linear 5660 1,4457 
WS – SAO RBF_cúbica 5660 1,5230 
WS – SAO RBF_TPS 5720 1,5318 

 

O método AF (SQP) não convergiu para a maioria dos pontos de Pareto, parando 

prematuramente, economizando assim várias simulações computacionais. 
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Figura 5.21. Frente de Pareto via Soma Ponderada utilizando as técnicas AF (SQP) e SAO via 
krigagem 

 

Figura 5.22. Frente de Pareto via Soma Ponderada utilizando as técnicas AF (SQP) e SAO via 
RBF linear 

 

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Injeção acumulada de água x1e5

P
ro

du
çã

o 
ac

um
ul

ad
a 

de
 ó

le
o 

x1
e5

 

 

SQP 3117av

SAO Krigagem 6100av

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Injeção acumulada de água x1e5

P
ro

du
çã

o 
ac

um
ul

ad
a 

de
 ó

le
o 

x1
e5

 

 

SQP 3117av

SAO RBF linear 5660av



76 
 

 

Figura 5.23. Frente de Pareto via Soma Ponderada utilizando as técnicas AF (SQP) e SAO via 
RBF cúbica 

 

Figura 5.24. Frente de Pareto via Soma Ponderada utilizando as técnicas AF (SQP) e SAO via 
RBF TPS 
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Tabela 5.24 – Resultados obtidos pelo SAO via krigagem para o problema multiobjetivo via WS do reservatório 1 

Ciclo de Controle 1 2 3 Óleoprod 
(105 m³) 

Águainj 
(105 m³) Ponto de Pareto P-1 P-2 I-1 P-1 P-2 I-1 P-1 P-2 I-1 

1 0,009 0,001 0,009 0,001 0,001 0,002 0,001 0,001 0,002 0,0118 0,0118 
2 0,001 0,001 0,002 0,001 0,001 0,002 0,001 0,001 0,002 0,0047 0,0047 
3 0,071 0,015 0,078 0,004 0,001 0,005 0,016 0,001 0,015 0,0927 0,0927 
4 0,062 0,021 0,075 0,005 0,002 0,006 0,022 0,001 0,021 0,0960 0,0960 
5 0,049 0,066 0,105 0,009 0,003 0,010 0,037 0,004 0,037 0,1426 0,1426 
6 0,130 0,115 0,222 0,006 0,002 0,007 0,023 0,003 0,024 0,2418 0,2418 
7 0,001 0,001 0,002 0,009 0,001 0,009 0,001 0,001 0,002 0,0091 0,0091 
8 0,083 0,163 0,224 0,110 0,018 0,116 0,023 0,003 0,023 0,3131 0,3131 
9 0,122 0,218 0,309 0,137 0,001 0,126 0,151 0,001 0,138 0,5098 0,5098 
10 0,329 0,004 0,302 0,680 0,001 0,619 0,039 0,041 0,073 0,7584 0,7584 
11 0,281 0,028 0,281 0,720 0,037 0,688 0,124 0,141 0,241 0,9413 0,9415 
12 0,240 0,055 0,268 0,732 0,125 0,779 0,124 0,091 0,195 0,9400 0,9441 
13 0,287 0,237 0,477 0,351 0,041 0,357 0,201 0,098 0,272 0,9457 0,9482 
14 0,250 0,288 0,489 0,383 0,162 0,495 0,266 0,108 0,340 1,0303 1,1130 
15 0,156 0,354 0,464 0,285 0,035 0,291 0,369 0,163 0,483 1,0252 1,0942 
16 0,145 0,382 0,478 0,274 0,015 0,264 0,326 0,198 0,476 1,0253 1,0834 
17 0,185 0,354 0,490 0,173 0,183 0,330 0,373 0,143 0,469 1,0365 1,1308 
18 0,278 0,453 0,696 0,247 0,325 0,572 0,284 0,303 0,534 1,0752 1,5467 
19 0,358 0,475 0,822 0,350 0,383 0,733 0,462 0,377 0,763 1,0956 1,9889 
20 0,406 0,544 0,951 0,410 0,353 0,763 0,447 0,499 0,860 1,1024 2,2254 
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Solução MO via Intersecção do Contorno-Normal - NBI 

As Figuras 5.25 à 5.28 mostram a distribuição de pontos de Pareto obtida 

quando utiliza-se a técnica NBI na solução do problema MO. Comparando-se os 

métodos MO, percebe-se, confrontando-se as Tabelas 5.23 e 5.25, à exceção do caso AF 

(SQP), que o número de simulações utilizando o NBI foi muito menor que utilizando o 

método WS. 

Comparando os resultados obtidos através das estratégias SAO ao AF (SQP) 

utilizando o método NBI, através das Figuras 5.25 à 5.28, percebe-se que as soluções 

via o SAO foram melhores que o modelo AF (SQP) em dois aspectos, se verificou uma 

redução do número de avaliações da função real de 69%, como pode ser verificada na 

Tabela 5.25 e o parâmetro de equitatividade encontrado pelo SAO via RBF TPS foi 

menor que o modelo AF (SQP). Considerando que a simulação numérica da função real 

consume em torno de 10s em tempo de processamento, obteve-se uma redução de 

aproximadamente 9 horas em tempo de processamento. Os pontos que representam o 

resultado destacado estão exibidos na Tabela 5.26. 

Quanto aos modelos SAO, o RBF além de ter conseguido uma frente de Pareto 

melhor distribuída, como mostram as Figuras 5.25 à 5.28 e os parâmetro de 

equitatividade da Tabela 5.25, realizou até 22% menos avaliações, que é o caso SAO 

via TPS, comparado com o modelo de krigagem, como mostra a Tabela 5.25. 

Tabela 5.25 – Resultado multiobjetivo via a estratégia NBI 

Metodologia Simulações Equitatividade 
NBI – AF (SQP) 5001 0,4342 

NBI – SAO krigagem 1979 0,8104 
NBI – SAO RBF_linear 1699 0,5805 
NBI – SAO RBF_cúbica 1759 0,5593 
NBI – SAO RBF_TPS 1539 0,4067 
 

Embora o número de simulações das metodologias que utilizam o SAO tenha 

sido bem menor que a metodologia de alta fidelidade, ainda é necessária muita 

avaliação de função. Para problemas realistas a otimização MO pode se tornar inviável, 

pois estes problemas irão requerer muito mais avaliações para o mesmo número de 

pontos de Pareto. A construção de uma frente com menos pontos e a partir destes fazer 

uma interpolação de outros pontos e, em seguida, verificar estes pontos pode diminuir o 

número de simulações. 
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Figura 5.25. Frente de Pareto via NBI utilizando as técnicas AF (SQP) e SAO via Krigagem  

 

Figura 5.26. Frente de Pareto via NBI utilizando as técnicas AF (SQP) e SAO via RBF linear  
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Figura 5.27. Frente de Pareto via NBI utilizando as técnicas AF (SQP) e SAO via RBF cúbica  

 

 

Figura 5.28. Frente de Pareto via NBI utilizando as técnicas AF (SQP) e SAO via RBF TPS  
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apresenta uma inflexão, possivelmente está localizada a “melhor” solução de Pareto 

(Oliveira, 2013). Um exemplo desta situação está indicado na Figura 5.29, obtida pelo 

AF (SQP), onde é destacada a região onde está localizada a possível melhor solução de 

Pareto. No problema de reservatório, essa região corresponde à diminuição da taxa de 

produção de óleo, pois será preciso injetar muito mais água para produzir a mesma 

quantidade de óleo produzida antes desta região. 

 

Figura 5.29. Representação da localização da possível melhor solução de Pareto do reservatório 
1
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Tabela 5.26 – Resultados obtidos pelo SAO via RBF TPS para o problema multiobjetivo via NBI do reservatório 1 

Ciclo de Controle 1 2 3 Óleoprod 
(105 m³) 

Águainj 
(105 m³) Ponto de Pareto P-1 P-2 I-1 P-1 P-2 I-1 P-1 P-2 I-1 

1 0,001 0,001 0,002 0,001 0,001 0,002 0,001 0,001 0,002 0,0047 0,0047 
2 0,041 0,001 0,038 0,001 0,030 0,028 0,028 0,001 0,026 0,0803 0,0803 
3 0,041 0,026 0,061 0,042 0,042 0,077 0,035 0,020 0,051 0,1560 0,1560 
4 0,001 0,092 0,085 0,078 0,110 0,171 0,046 0,001 0,042 0,2316 0,2316 
5 0,113 0,012 0,114 0,081 0,001 0,075 0,067 0,088 0,141 0,2914 0,2914 
6 0,001 0,001 0,002 0,255 0,001 0,233 0,001 0,233 0,212 0,3532 0,3532 
7 0,007 0,021 0,026 0,310 0,020 0,300 0,089 0,190 0,253 0,4586 0,4586 
8 0,098 0,040 0,126 0,296 0,038 0,304 0,050 0,202 0,229 0,5342 0,5342 
9 0,189 0,082 0,247 0,227 0,110 0,306 0,013 0,190 0,184 0,6099 0,6099 
10 0,250 0,213 0,421 0,149 0,159 0,280 0,001 0,114 0,104 0,6855 0,6855 
11 0,312 0,344 0,596 0,117 0,143 0,237 0,001 0,034 0,032 0,7574 0,7574 
12 0,309 0,411 0,655 0,184 0,053 0,215 0,060 0,018 0,071 0,8369 0,8369 
13 0,362 0,523 0,804 0,141 0,038 0,163 0,032 0,001 0,030 0,9086 0,9086 
14 0,319 0,534 0,776 0,131 0,001 0,120 0,098 0,054 0,139 0,9571 0,9571 
15 0,258 0,629 0,806 0,211 0,076 0,261 0,174 0,008 0,165 1,0340 1,1017 
16 0,217 0,593 0,809 0,305 0,037 0,342 0,237 0,082 0,290 1,0467 1,2761 
17 0,260 0,724 0,984 0,368 0,001 0,336 0,287 0,069 0,324 1,0663 1,4728 
18 0,250 0,750 1,000 0,414 0,116 0,482 0,418 0,067 0,441 1,0800 1,6930 
19 0,250 0,750 1,000 0,461 0,221 0,634 0,549 0,048 0,553 1,0882 1,8968 
20 0,365 0,481 0,837 0,509 0,266 0,775 0,537 0,380 0,834 1,0991 2,0985 
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5.3.3 Reservatório 2: Brush Canyon Outcrop 

O segundo reservatório investigado possui características mais semelhantes às 

situações reais, pois utiliza, para criação de seu modelo, técnicas de geoestatística e 

dados de afloramento. O modelo gerado reproduz um sistema deposicional turbidítico, 

típico de formações em águas profundas, que são características comumente 

encontradas nas bacias sedimentares da costa brasileira. O modelo numérico é 

constituído de uma malha de 43x55x6 blocos. Esse caso foi apresentado em (Oliveira, 

2006). O reservatório possui 12 poços, sendo 7 produtores e 5 injetores, como mostrado 

na Figura 5.30. A vazão individual de cada poço produtor não pode exceder o valor de 

900 m³/dia, e o somatório das mesmas não pode ultrapassar os 5000 m³/dia. Para os 

poços injetores, a máxima vazão individual é limitada ao valor de 1500 m³/dia, e o 

somatório das mesmas não pode ultrapassar o valor de 5750 m³/dia, como mostra a 

Tabela 5.27. O tempo de concessão foi de 24 anos, com início de produção em janeiro 

de 2006. A Tabela 5.28 apresenta um resumo das características gerais deste modelo.  

As variáveis de projeto ligadas aos poços produtores podem assumir valores no 

intervalo ,0,001 0,18
Pp tx≤ ≤  e os poços injetores podem assumir valores no intervalo

 

,0,001 0,2609
Ip tx≤ ≤ . 

Tabela 5.27 – Dados/Condições operacionais dos poços 

Tipo Produtor Injetor 
Vazão de água no poço (m³/d) - Max 1500 

Vazão de água na plataforma (m³/d) - Max 5750 
Vazão de líquidos no poço (m³/d) Max 900 - 

Vazão de líquidos na plataforma (m³/d) Max 5000 - 
Raio (m) 0,080 0,080 

Razão Gás Óleo de Formação (RGO) (m3/m3std) Max 78,1 - 
Geofac 0,37 0,37 
Wfrac 1 1 
Skin 0 0 
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Tabela 5.28 – Características do Reservatório Brush Canyon Outcrop 

Malha de Simulação 43 (4300 m) x 55 (5500 m) x 6 (var) 
Porosidade 16% a 28% 
Permeabilidade horizontal (kh) 157 a 2592 mD 
Permeabilidade vertical (kv) 30% de kh 
Compressibilidade da Rocha a 1019 kgf/cm² 2 x 10‒7 (kgf/cm²)‒1 
Pressão de Saturação (Psat) 101.97 kgf/cm² 
Viscosidade a Tres , Psat 0.77 cP 
Óleo in place 8,1881 x 107 
Tempo de concessão 24 anos 

 

  

Figura 5.30. Reservatório 2: Campo de permeabilidade e locação dos poços 

5.3.3.1 Resultados obtidos nos estudos de problemas uni-objetivo para o 
reservatório 2 

Os estudos realizados para problemas de otimização uni-objetivo deste 

reservatório seguem as mesmas considerações do primeiro reservatório, que têm como 

formulação básica a Eq. (5.6). A formulação apresentada na mesma é modificada de 

acordo com o tipo de operação da unidade de produção presente no reservatório (OCT 

ou OCNT) e de acordo com o planejamento dos ciclos de controle (em períodos pré-

determinados ou definidos como variáveis do problema). A Tabela 5.29 apresenta as 

combinações investigadas nos problemas para o segundo reservatório. 
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Tabela 5.29 – Problemas uni-objetivo estudados para o segundo reservatório. 

Problema Descrição 
1 OCT-TF: Operação em capacidade topada, tempo fixo 
2 OCNT-TF: Operação em capacidade não topada, tempo fixo 
3 OCNT-TV: Operação em capacidade não topada, tempo variável 

 

As estratégias utilizadas são as mesmas do reservatório 1, descritas na Tabela 

5.6. 

Problema 1 – Operação em capacidade topada com definição prévia dos ciclos de 

controle para o segundo reservatório 

Neste problema, a unidade de produção instalada no reservatório opera em 

capacidade máxima e a duração dos ciclos de controle é definida previamente. 

A vazão de líquido produzido é de no máximo 5000 m³/dia, e sendo a vazão 

máxima de líquido, para cada poço produtor, limitada a um valor máximo de 900 

m³/dia, não é exigida uma vazão mínima para cada poço, pois a vazão de produção total 

diária pode ser atendida sem a contribuição de todos os poços produtores. 

Com base nessas definições, são consideradas como variáveis de controle o 

rateio de seis dos poços produtores (os poços P-3, P-4, P-5, P-6, P-8 e P-10, Figura 

5.30) e o rateio de quatro dos poços injetores (os poços I-1, I-2, I-7 e I-9, Figura 5.30), 

ao longo do período de concessão, alterados a cada ciclo de controle. As vazões dos 

poços P-12 e I-11 são obtidas de modo a complementar, respectivamente, a capacidade 

de produção e de injeção. Para se evitar a definição de valores negativos para as vazões 

dos poços P-12 e I-11 são impostas restrições na formulação matemática que garantem a 

positividade das mesmas (Oliveira, 2013). Em termos dos rateios das vazões, a 

formulação do problema é dado pela equação (5.7). 

A otimização desse problema foi conduzida em duas situações: a primeira avalia 

a produção ao longo do período de concessão em um ciclo de controle (OCT-TF-1cc) e 

a segunda avalia a produção em três ciclos (OCT-TF-3cc), como mostra a Figura 5.31. 

 

Figura 5.31. Definição dos ciclos de controle para o problema 1 do segundo reservatório 

Tempo

3 ciclos

1 ciclo

2006 2010 2014 2018 2022 2026 2030
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Os resultados obtidos para a situação OCT-TF-1cc são apresentados na Tabela 

5.30. O melhor resultado da referência (Horowitz, et al., 2013) para o caso OCT-TF foi 

$322,78x106.  

Tabela 5.30 – Resultados obtidos no problema OCT-TF-1cc 

Metodologia f(x) (106 $) Simulações 
AF (SQP) 304,4966 126 

SAO (Krigagem) 303,4187 815 
SAO (RBF linear) 304,8037 551 

SAO (RBF cúbica) 316,9114 243 
SAO (RBF TPS) 304,7824 331 

 
De acordo com os resultados apresentados, observa-se que a metodologia RBF 

cúbica obteve, em termos de VPL ótimo, um resultado muito melhor que as outras 

metodologias. 

Os valores das variáveis de projeto que fornecem o melhor VPL da Tabela 5.30 

são exibidos na Tabela 5.31 e na Figura 5.32, onde é mostrada apenas a metodologia 

SAO via RBF cúbica, pois, como há apenas um ciclo de controle, os valores das vazões 

são constantes em todos os casos. As curvas de produção acumulada destas soluções são 

apresentadas na Figura 5.33. 

Tabela 5.31 – Valores do rateio das vazões obtidas pelo SAO via RBF cúbica para o caso OCT-
TF-1cc 

Ciclo de controle 1 
PROD-3 0,001 
PROD -4 0,099 
PROD -5 0,180 
PROD -6 0,180 
PROD -8 0,180 
PROD -10 0,180 
PROD -12 0,180 

INJ-1 0,261 
INJ-2 0,075 
INJ-7 0,142 
INJ-9 0,261 
INJ-11 0,261 

 



 

Figura 5.32. Vazões nos poços 

Figura 5.33. Curvas de produção acumulada 
(SQP), SAO via Krigagem, 

Os resultados obtidos para a situação onde são considerados 

controle (OCT-TF-3cc) são apresentados na

Tabela 5.32

Metodologia
AF (SQP) 

SAO (Krigagem)
SAO (RBF linear)
SAO (RBF cúbica
SAO (RBF TPS)

De acordo com os resu

TPS obteve o melhor resultado

VPL ao utilizar três ciclos de controle comparado a um ciclo.

 

SAO (RBF cúbica) 

Vazões nos poços para o problema OCT-TF-1cc obtidas por

Curvas de produção acumulada para o problema OCT-TF-1cc obtida
, SAO via Krigagem, SAO via RBF cúbico, SAO via RBF linear e SAO via RBF 

 
Os resultados obtidos para a situação onde são considerados 

) são apresentados na Tabela 5.32. 

32 – Resultados obtidos no problema OCT-TF-3cc 

Metodologia f(x) (106 $) Simulações
313,1849 332 

SAO (Krigagem) 293,4905 1303 
SAO (RBF linear) 321,6816 1241 

RBF cúbica) 321,9974 869 
SAO (RBF TPS) 322,2308 1117 

De acordo com os resultados apresentados, observa-se que a metodologia RBF 

TPS obteve o melhor resultado em termos de VPL ótimo. É notado um aumento no 

VPL ao utilizar três ciclos de controle comparado a um ciclo. 
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or AF (SQP) 

 

obtidas por: AF 
SAO via RBF TPS 

Os resultados obtidos para a situação onde são considerados três ciclos de 

 

Simulações 

se que a metodologia RBF 

É notado um aumento no 



 

As curvas de produção acumulada destas soluções são apresentadas na 

5.34. Os valores das variáveis de projeto 

exibidos na Tabela 5.33 e na

obtidas pelas diferentes técnicas utilizadas

Tabela 5.33 – Valores do rateio 

Ciclo de controle

Figura 5.34. Curvas de produção acumulada para o problema 
(SQP), SAO via Krigagem, SAO via RBF cúbico, SAO via RBF linear e SAO via RBF TPS

As curvas de produção acumulada destas soluções são apresentadas na 

Os valores das variáveis de projeto para o caso destacado da Tabela 

e na Figura 5.35 (a) à (e) são apresentadas as vazões nos poços 

s diferentes técnicas utilizadas.  

do rateio das vazões obtidas pelo SAO via RBF TPS para o caso OCT
TF-3cc 

Ciclo de controle 1 2 3 
PROD-3 0,003 0,001 0,001 
PROD-4 0,101 0,099 0,101 
PROD-5 0,178 0,180 0,180 
PROD-6 0,180 0,180 0,180 
PROD-8 0,180 0,180 0,178 
PROD-10 0,178 0,180 0,180 
PROD-12 0,180 0,180 0,180 

INJ-1 0,261 0,261 0,259 
INJ-2 0,011 0,206 0,092 
INJ-7 0,206 0,011 0,130 
INJ-9 0,261 0,261 0,259 
INJ-11 0,261 0,261 0,261 

 

Curvas de produção acumulada para o problema OCT-TF-3cc obtida
, SAO via Krigagem, SAO via RBF cúbico, SAO via RBF linear e SAO via RBF TPS
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As curvas de produção acumulada destas soluções são apresentadas na Figura 

Tabela 5.32, são 

são apresentadas as vazões nos poços 

para o caso OCT-

 

obtidas por: AF 
, SAO via Krigagem, SAO via RBF cúbico, SAO via RBF linear e SAO via RBF TPS 



 

a) AF (SQP)

c) SAO (RBF cúbica

Figura 5.35. Vazões nos poços 
AF (SQP), b) SAO via Krigagem, 

Problema 2 – Operação em capacidade 

controle para o reservatório

No segundo problema, a unidade de produção não precisa operar 

necessariamente em capacidade máxima e a duração dos ciclos de controle é definida de 

forma prévia. A manutenção da pressão média do reservatório, que 

automaticamente na situação anterior

do problema de otimização.

 

) b) SAO (Krigagem

 

RBF cúbica) d) SAO (RBF linear

 

e) SAO ( RBF TPS) 

Vazões nos poços para o problema OCT-TF-3cc para as soluções
SAO via Krigagem, c) SAO via RBF cúbico, d) SAO via RBF linear e 

RBF TPS. 

 
em capacidade não topada com definição prévia dos ciclos de 

controle para o reservatório 2 

No segundo problema, a unidade de produção não precisa operar 

em capacidade máxima e a duração dos ciclos de controle é definida de 

manutenção da pressão média do reservatório, que 

ão anterior, passa a ser uma restrição imposta na formulação 

ção. 
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Krigagem) 

 

RBF linear) 

as soluções obtidas por: a) 
linear e e) SAO via 

definição prévia dos ciclos de 

No segundo problema, a unidade de produção não precisa operar 

em capacidade máxima e a duração dos ciclos de controle é definida de 

manutenção da pressão média do reservatório, que era atendida 

, passa a ser uma restrição imposta na formulação 
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Com base nessas definições, são consideradas como variáveis os rateios de todos 

os poços, produtores e injetores, ao longo do período de concessão, alterados a cada 

ciclo de controle. A formulação do problema é dado pela Eq. (5.9). 

Nesse problema foram investigadas duas situações que avaliam a produção ao 

longo do período de concessão em um ciclo de controle (OCNT-TF-1cc) e em três 

ciclos de controle (OCNT-TF-3cc). A Figura 5.31 apresenta a distribuição dos ciclos de 

controle considerada para esse problema. 

Os resultados obtidos para a situação onde é considerado um ciclo de controle 

(OCNT-TF-1cc) são apresentados na Tabela 5.34. A título de comparação do modelo de 

krigagem utilizado nesta dissertação, que é feito através do pacote DACE, e o modelo 

de krigagem da plataforma DAKOTA, chamado processo gaussiano, as respostas 

encontrada por ambos são apresentados na Tabela 5.34. 

Tabela 5.34 – Resultados obtidos no problema OCNT-TF-1cc 
Metodologia f(x) (106 $) Simulações 
AF (SQP) 369,4240 280 

SAO (Krigagem (DACE)) 350,2022 339 
SAO (Krigagem (DAKOTA)) 342,6562 625 

SAO (RBF linear) 371,0576 287 
SAO (RBF cúbica) 377,1097 287 
SAO (RBF TPS) 382,7551 287 

 
De acordo com os resultados, a metodologia SAO via RBF foi consistente nos 

diferentes tipos de função de base radial utilizados, tendo o RBF TPS apresentado o 

melhor resultado dentre os obtidos usando a metodologia SAO. A metodologia SAO 

utilizando a krigagem obteve um resultado aquém do esperado, principalmente quando 

foi utilizada a plataforma DAKOTA, que não significa que possui um mal desempenho, 

visto que só foi realizado uma otimização com esta plataforma. Os valores das variáveis 

de projeto que fornecem a solução destacada na Tabela 5.34 são exibidos na Tabela 5.35 

e na Figura 5.36 (a) à (f) são apresentadas as vazões nos poços obtidas pelas diferentes 

técnicas utilizadas.  
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Tabela 5.35 – Valores do rateio das vazões obtidas pelo SAO via RBF TPS para o caso 
OCNT-TF-1cc 

Ciclo de controle 1 
PROD-3 0,146 
PROD -4 0,054 
PROD -5 0,113 
PROD -6 0,175 
PROD -8 0,180 
PROD -10 0,175 
PROD -12 0,157 

INJ-1 0,115 
INJ-2 0,139 
INJ-7 0,113 
INJ-9 0,254 
INJ-11 0,250 

 
Pode ser verificado, na Figura 5.36, que as vazões fornecidas ao simulador não 

são constantes durante todo o ciclo de controle, até o fim do período de concessão do 

reservatório, mas podem variar até a vazão máxima especificada e tem como limitantes 

a pressão no reservatório e a pressão no fundo dos poços. A Figura 5.37 apresenta a 

relação entre vazão de líquidos (linha tracejada) e a pressão de fundo de poço (linha 

contínua). A variação da vazão, nos poços produtores, ocorre quando a pressão de fundo 

de poço (BHP) máxima é atingida. O PROD6 é um exemplo desta variação na vazão, 

onde pode ser visto, na Figura 5.37, que no momento em que a BHP atinge o valor 

mínimo (linha contínua), a vazão de líquidos do poço começa a diminuir. Como não foi 

utilizada nenhuma restrição de BHP para este reservatório, a curva de BHP pôde atingir 

o valor zero. Os históricos da produção do reservatório são exibidos na Figura 5.38. 

 

 

 

 

 

 

 



 

a) AF (SQP

c) SAO (RBF cúbica)

e) SAO (RBF TPS)

Figura 5.36. Vazões nos poços 
AF (SQP), b) SAO via Krigagem

SAO via 

 
SQP) b) SAO (Krigagem

 
c) SAO (RBF cúbica) d) SAO (RBF linear)

 
e) SAO (RBF TPS) f) SAO (Krigagem DAKOTA)

Vazões nos poços para o problema OCNT-TF-1cc para as soluções
SAO via Krigagem (DACE), c) SAO via RBF cúbico, d) SAO via 

SAO via RBF TPS e f) SAO via Krigagem (DAKOTA) 
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Krigagem DACE) 

 
d) SAO (RBF linear) 

 
f) SAO (Krigagem DAKOTA) 

para as soluções obtidas por: a) 
SAO via RBF linear, e) 



 

Figura 5.37. Relação vazãox
reservatório 2 na operação OCNT

 

Figura 5.38. Curvas de produção
(SQP), SAO via Krigagem,

Os resultados obtidos para a situação onde 

controle (OCNT-TF-3cc) são 

 

 

 

 

xBHP no poço PROD6 para as soluções obtida via AF (SQP)
reservatório 2 na operação OCNT-TF 

produção acumulada para o problema OCNT-TF-1cc 
 SAO via RBF cúbico, SAO via RBF linear e SAO via 

Os resultados obtidos para a situação onde são considerados

) são apresentados na Tabela 5.36. 
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a via AF (SQP), do 

 

 obtidas por: AF 
SAO via RBF TPS  

s três ciclos de 



 

Tabela 5.36 – 
Metodologia
AF (SQP) 

SAO (Krigagem)
SAO (RBF linear)

SAO (RBF cúbica)
SAO (RBF TPS)

 

De acordo com os resu

via RBF obteve um resultado muit

AF (SQP) em termos de VPL máximo

piores que a situação anterior, com um ciclo de controle, isso porque a dimensão do 

problema, dada pelo número de variáveis de pr

dificuldade dos métodos baseados em 

soluções ótimas. A Figura 

acumulada da metodologia SAO via RBF TPS para as situações 

um e três ciclo de controle, onde fica evidente a melhor soluç

de controle. 

Os valores das variáveis de projeto 

Tabela 5.36 são exibidos na

apresentadas as vazões nos poços 

de produção acumulada destas soluções são apresentadas na 

Figura 5.39. Curvas de produção acumulada 
3cc, resultados obtidos pelo 

 

 Resultados obtidos no problema OCNT-TF-3
Metodologia f(x) (106 $) Simulações 

274,4131 167 
SAO (Krigagem) 329,5629 1185 
SAO (RBF linear) 350,7993 445 

SAO (RBF cúbica) 353,7846 667 
SAO (RBF TPS) 352,6560 445 

De acordo com os resultados apresentados, observa-se que a metodologia

RBF obteve um resultado muito melhor que a metodologia SAO via 

em termos de VPL máximo, embora tenha apresentado todos os resultados 

piores que a situação anterior, com um ciclo de controle, isso porque a dimensão do 

dada pelo número de variáveis de projeto, foi triplicada, aumentando muito a 

dificuldade dos métodos baseados em gradiente e em amostragem em encontrar as 

Figura 5.39 mostra a comparação entre as curvas de produção 

acumulada da metodologia SAO via RBF TPS para as situações onde são considerados

, onde fica evidente a melhor solução para o caso de

Os valores das variáveis de projeto que fornecem as soluções

são exibidos nas Tabelas 5.37 e 5.38 e na Figura 5.40

apresentadas as vazões nos poços obtidas pelas diferentes técnicas utilizadas

de produção acumulada destas soluções são apresentadas na Figura 5.41

Curvas de produção acumulada para os problemas OCNT-TV-1
resultados obtidos pelo SAO via RBF TPS 
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se que a metodologia SAO 

metodologia SAO via krigagem e o 

, embora tenha apresentado todos os resultados 

piores que a situação anterior, com um ciclo de controle, isso porque a dimensão do 

foi triplicada, aumentando muito a 

em encontrar as 

mostra a comparação entre as curvas de produção 

são considerados 

para o caso de um ciclo 

ões destacadas na 

40 (a) à (e) são 

obtidas pelas diferentes técnicas utilizadas. As curvas 

41. 

 

cc e OCNT-TV-
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Tabela 5.37 – Valores do rateio das vazões obtidas pelo SAO via RBF cúbica para o caso 
OCNT-TF-3cc 

Ciclo de controle 1 2 3 
PROD-3 0,118 0,123 0,139 
PROD -4 0,113 0,113 0,129 
PROD -5 0,122 0,119 0,130 
PROD -6 0,150 0,128 0,156 
PROD -8 0,173 0,171 0,156 
PROD -10 0,170 0,166 0,118 
PROD -12 0,153 0,179 0,169 

INJ-1 0,163 0,160 0,225 
INJ-2 0,157 0,170 0,218 
INJ-7 0,170 0,161 0,159 
INJ-9 0,201 0,193 0,179 
INJ-11 0,179 0,185 0,157 

 
 

Tabela 5.38 – Valores do rateio das vazões obtidas pelo SAO via RBF TPS para o caso OCNT-
TF-3cc 

Ciclo de controle 1 2 3 
PROD-3 0,121 0,121 0,122 
PROD -4 0,123 0,121 0,139 
PROD -5 0,123 0,139 0,123 
PROD -6 0,157 0,123 0,157 
PROD -8 0,157 0,157 0,157 
PROD -10 0,157 0,159 0,123 
PROD -12 0,159 0,179 0,179 

INJ-1 0,172 0,176 0,228 
INJ-2 0,176 0,174 0,228 
INJ-7 0,172 0,172 0,172 
INJ-9 0,173 0,176 0,198 
INJ-11 0,172 0,172 0,172 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

a) AF (SQP)

c) SAO (RBF cúbica

Figura 5.40. Vazões nos poços 
(SQP), b) SAO via Krigagem, 

 

) b) SAO (Krigagem

 

RBF cúbica) d) SAO (RBF linear

 

e) SAO (RBF TPS) 

Vazões nos poços para o problema OCNT-TF-3cc, soluções obtid
SAO via Krigagem, c) SAO via RBF cúbico, d) SAO via RBF linear e 

RBF TPS  
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Krigagem) 

 

RBF linear) 

obtidas por: a) AF 
linear e e) SAO via 



 

Figura 5.41. Curvas de produção acumulada 
por: AF (SQP), SAO via Krigagem,

 
Problema 3 – Operação 

controle considerada como variáveis do problema

No terceiro problema

operar necessariamente em capacidade máxima e a duração dos ciclos de 

definida de forma prévia. A ideia dos estudos realizados neste problema é

maior flexibilidade para o gerenciamento da produção 

com condições mais próximas da realidade.

variáveis de projeto e a duração dos ciclos de controle não 

acrescentando o tempo de mudança do ciclo de controle como variável de projeto, como 

esquematizado na Figura 5.

Nesse problema foram

longo do período de concessão em 

de controle.  

Os resultados obtidos para a situação onde 

controle (OCNT-TV-2cc) são 

encontrado por (Horowitz, et al., 2013)

 

 

Curvas de produção acumulada para o problema OCNT-TF-3cc, resultados obtidos 
via Krigagem, SAO via RBF cúbico, SAO via RBF linear

TPS 

 em capacidade não topada com duração dos ciclos de 

rada como variáveis do problema para o reservatório 2

problema do reservatório 2, a unidade de produção não precisa 

operar necessariamente em capacidade máxima e a duração dos ciclos de 

definida de forma prévia. A ideia dos estudos realizados neste problema é

maior flexibilidade para o gerenciamento da produção em um modelo de reservatório 

com condições mais próximas da realidade. Desta forma todos os poços ent

variáveis de projeto e a duração dos ciclos de controle não é definida de forma prévia, 

acrescentando o tempo de mudança do ciclo de controle como variável de projeto, como 

.3. A formulação do problema é dada pela Eq. 

ram investigadas duas situações que avaliam

longo do período de concessão em dois (OCNT-TV-2cc) e três (OCNT

Os resultados obtidos para a situação onde são considerados

) são apresentados na Tabela 5.39. O melhor resultado 

(Horowitz, et al., 2013) foi $361x106. 
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resultados obtidos 
linear e SAO via RBF 

com duração dos ciclos de 

2 

, a unidade de produção não precisa 

operar necessariamente em capacidade máxima e a duração dos ciclos de controle não é 

definida de forma prévia. A ideia dos estudos realizados neste problema é permitir uma 

em um modelo de reservatório 

Desta forma todos os poços entram como 

definida de forma prévia, 

acrescentando o tempo de mudança do ciclo de controle como variável de projeto, como 

A formulação do problema é dada pela Eq. (5.14). 

m a produção ao 

(OCNT-TV-3cc) ciclos 

são considerados dois ciclos de 

O melhor resultado 



 

Tabela 5.39 –

Metodologia
AF (SQP) 

SAO (Krigagem)
SAO (RBF linear)
SAO (RBF cúbica
SAO (RBF TPS

 
De acordo com os resu

utilizam modelos substitutos obtiveram um resultado abaixo do esperado, pois o AF 

(SQP) foi melhor tanto no resultado obtido no valor da função objetivo quanto no 

número de avaliações utilizadas para 

As curvas de produção acumulada destas soluções são apresentadas na 

5.42. Os valores das variáveis de projeto 

Tabela 5.39 são exibidos na

vazões nos poços obtidas pelas diferentes técnicas utilizadas

 

Figura 5.42. Curvas de produção acumulada para o problema 
por: AF (SQP), SAO via Krigagem,

 
 
 
 
 
 
 

– Resultados obtidos no problema OCNT-TV-2cc

Metodologia f(x) (106 $) Simulações 
 360,2514 175 

SAO (Krigagem) 332,1522 365 
SAO (RBF linear) 340,5216 417 

RBF cúbica) 348,6601 572 
RBF TPS) 348,6601 521 

De acordo com os resultados apresentados, observa-se que as metodologias que 

utilizam modelos substitutos obtiveram um resultado abaixo do esperado, pois o AF 

(SQP) foi melhor tanto no resultado obtido no valor da função objetivo quanto no 

número de avaliações utilizadas para encontrar este valor.  

As curvas de produção acumulada destas soluções são apresentadas na 

Os valores das variáveis de projeto correspondente à melhor soluç

são exibidos na Tabela 5.40 e na Figura 5.43 (a) à (e) são apresentadas as 

vazões nos poços obtidas pelas diferentes técnicas utilizadas.  

Curvas de produção acumulada para o problema OCNT-TV-2cc, resultados obtidos 
via Krigagem, SAO via RBF cúbico, SAO via RBF linear

TPS  
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se que as metodologias que 

utilizam modelos substitutos obtiveram um resultado abaixo do esperado, pois o AF 

(SQP) foi melhor tanto no resultado obtido no valor da função objetivo quanto no 

As curvas de produção acumulada destas soluções são apresentadas na Figura 

solução indicada na 

são apresentadas as 

 

resultados obtidos 
linear e SAO via RBF 
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Tabela 5.40 – Valores do rateio das vazões obtidas pelo AF (SQP) para o caso OCNT-TV-2cc 

Ciclo de controle 1 2 
PROD-3 0,180 0,170 
PROD-4 0,093 0,001 
PROD-5 0,180 0,093 
PROD-6 0,002 0,180 
PROD-8 0,180 0,180 
PROD-10 0,180 0,180 
PROD-12 0,170 0,180 

INJ-1 0,261 0,016 
INJ-2 0,081 0,246 
INJ-7 0,001 0,085 
INJ-9 0,261 0,261 
INJ-11 0,252 0,248 

Duração 0,200 0,800 
 

Pode ser verificado, novamente, pela Figura 5.43, que as vazões obtidas pelo 

simulador não são constantes durante todo o ciclo de controle, ficando abaixo do valor 

máximo especificado pelo otimizador quando a mínima BHP é atingida, como mostra 

com mais detalhes a Figura 5.44. 

 

 

 

 

 

 

 

 

 

 

 

 



 

a) AF (SQP)

c) SAO (RBF cúbica

Figura 5.43. Vazões nos poços 
(SQP), b) SAO via Krigagem, 

 

) b) SAO (Krigagem

 

RBF cúbica) d) SAO (RBF linear

 

e) SAO (RBF TPS) 

Vazões nos poços para o problema OCNT-TV-2cc, soluções obtid
SAO via Krigagem, c) SAO via RBF cúbico, d) SAO via RBF linear e 

RBF TPS 
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Krigagem) 

 

RBF linear) 

obtidas por: a) AF 
linear e e) SAO via 



 

Figura 5.44. Relação vazão x

Os resultados obtidos para a situação onde 

controle (OCNT-TV-3cc) são 

Tabela 5.41 –

Metodologia
AF (SQP) 

SAO (Krigagem)
SAO (RBF linear)
SAO (RBF cúbica
SAO (RBF TPS)

 
De acordo com os resu

via RBF obtiveram resultados satisfatórios, embora com um alto custo computacional 

devido à dimensão do problema, enquanto que o SAO via krigagem 

inicial. 

As curvas de produção acumul

5.45. Os valores das variáveis de projeto 

5.41 são exibidos na Tabela 

nos poços obtidas pelas diferentes técnicas utilizadas

o declínio da vazão do poço 

(e). 

 

 

 

x BHP no poço PROD6 para o problema OCNT-
obtida via AF (SQP)  

Os resultados obtidos para a situação onde são considerados

) são apresentados na Tabela 5.41. 

– Resultados obtidos no problema OCNT-TV-3cc

Metodologia f(x) (106 $) Simulações 
288,684 629 

SAO (Krigagem) 263,836 469 
SAO (RBF linear) 336,789 1093 

RBF cúbica) 352,977 1015 
SAO (RBF TPS) 356,072 1093 

De acordo com os resultados apresentados, observa-se que as metodologias SAO 

via RBF obtiveram resultados satisfatórios, embora com um alto custo computacional 

dimensão do problema, enquanto que o SAO via krigagem não sai

As curvas de produção acumulada destas soluções são apresentadas na 

Os valores das variáveis de projeto correspondentes à solução destacada

Tabela 5.42 e na Figura 5.46 (a) à (e) são apresentadas as vazões 

nos poços obtidas pelas diferentes técnicas utilizadas. Mais uma vez, é possível perceber 

o declínio da vazão do poço PROD6 devido à queda da BHP, na Figura 
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-TV-2cc, solução 

são considerados três ciclos de 

cc 

 

se que as metodologias SAO 

via RBF obtiveram resultados satisfatórios, embora com um alto custo computacional 

não sai do ponto 

ada destas soluções são apresentadas na Figura 

destacada na Tabela 

são apresentadas as vazões 

Mais uma vez, é possível perceber 

Figura 5.46 (c), (d) e 



 

Tabela 5.42 – Valores do rateio 

Ciclo de 

Figura 5.45. Curvas de produção acumulada para o problema 
por: AF (SQP), SAO via Krigagem,

do rateio das vazões obtidas pelo SAO via RBF TPS para o caso OCNT
TV-3cc 

Ciclo de controle 1 2 3 
PROD-3 0,141 0,164 0,088 
PROD -4 0,156 0,089 0,094 
PROD -5 0,101 0,135 0,110 
PROD -6 0,161 0,180 0,179 
PROD -8 0,150 0,180 0,172 
PROD -10 0,152 0,124 0,177 
PROD -12 0,139 0,126 0,179 

INJ-1 0,105 0,146 0,105 
INJ-2 0,126 0,156 0,124 
INJ-7 0,194 0,199 0,257 
INJ-9 0,221 0,212 0,220 
INJ-11 0,224 0,155 0,176 

Duração 0,204 0,176 0,619 
 

Curvas de produção acumulada para o problema OCNT-TV-3cc, resultados obtidos 
via Krigagem, SAO via RBF cúbico, SAO via RBF linear

TPS 
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, resultados obtidos 
SAO via RBF linear e SAO via RBF 



 

a) AF (SQP)

c) SAO (RBF cúbica

Figura 5.46. Vazões nos poços 
(SQP), b) SAO via Krigagem, 

 
A Tabela 5.43 traz um re

destacando a melhor metodologia para cada problema em termos do VPL ótimo. Pode 

ser observado, nesta tabela, que o VPL para os

do que o VPL dos casos OCT.

 

 

 

) b) SAO (Krigagem

 

RBF cúbica) d) SAO (RBF linear

 

e) SAO (RBF TPS) 

Vazões nos poços para o problema OCNT-TV-3cc, soluções obtid
SAO via Krigagem, c) SAO via RBF cúbico, d) SAO via RBF linear e 

RBF TPS  

traz um resumo dos resultados alcançados para o reservatório 

destacando a melhor metodologia para cada problema em termos do VPL ótimo. Pode 

nesta tabela, que o VPL para os casos OCNT é pelo menos 

os casos OCT. 
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obtidas por: a) AF 
linear e e) SAO via 

sumo dos resultados alcançados para o reservatório 2, 

destacando a melhor metodologia para cada problema em termos do VPL ótimo. Pode 

pelo menos 10% maior 
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Tabela 5.43 – Resumo dos resultados das otimizações do reservatório 2 

Problema Metodologia VPL (x106 $) Simulações 
OCT-TF-1cc SAO (RBF cúbica) 316,9114 243 
OCT-TF-3cc SAO (RBF TPS) 322,2308 1117 

OCNT-TF-1cc SAO (RBF TPS) 382,7551 287 
OCNT-TF-3cc SAO (RBF cúbica) 353,7846 667 
OCNT-TV-2cc AF (SQP) 360,2514 175 
OCNT-TV-3cc SAO (RBF TPS) 356,0720 1093 

 

5.3.3.2 Resultados obtidos nos estudos de problemas multiobjetivo para o 
reservatório 2 

Assim como foi feito no primeiro reservatório, as funções-objetivo consideradas 

foram a produção acumulada de óleo (pN ) e a injeção acumulada de água (
iW ).  

A otimização de múltiplos objetivos têm como formulação básica as Eqs. (4.1) e 

(4.2). Aqui é considerada a operação em capacidade não topada com tempo fixo, cuja 

formulação é dada pela Eq. (5.9). 

Com relação ao planejamento dos ciclos de controle, é considerado apenas o 

estudo da explotação em um ciclo ao longo do período de concessão. As variáveis 

consideradas são os rateios de todos os poços, produtores e injetores. 

Foram empregadas apenas duas estratégias de otimização, mostradas na  Tabela 

5.44, escolhidas de acordo com os melhores resultados encontrados no primeiro 

reservatório. Foram utilizados 20 pontos de Pareto em todos os casos MO deste 

reservatório. As simulações foram executadas em paralelo com a utilização de 6 

núcleos. 

Tabela 5.44 – Estratégias consideradas na otimização dos problemas de otimização 
multiobjetivo para o segundo reservatório. 

Estratégia Descrição 

SAO (Krigagem_MO) 
Algoritmo de otimização sequencial aproximada com a 
utilização da krigagem para problemas multiobjetivo 

SAO (RBF_Cúbica_MO) 
Algoritmo de otimização sequencial aproximada com a 
utilização da técnica de aproximação por RBF cúbica para 
problemas multiobjetivo 

 

Solução Multiobjetivo via Soma ponderada - WS 

Para este método MO foi utilizada apenas a metodologia SAO via krigagem. A 

Figura 5.47 apresenta a distribuição dos pontos de Pareto, nesta observa-se algumas 

regiões sem pontos e outras regiões com pontos dominados. O número de simulações é 
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5617 e os pontos que representam os resultados indicados estão exibidos na Tabela 

5.45. 

 

 

Figura 5.47. Reservatório otimizado via Soma Ponderada utilizando a técnica SAO via 
krigagem 
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Tabela 5.45 – Resultados obtidos pelo SAO (Krigagem) para o problema multiobjetivo via WS do segundo reservatório 

Ciclo de Controle    1 Óleoprod 
(105 m³) 

Águainj 
(105 m³) Ponto de Pareto P-3 P-4 P-5 P-6 P-8 P-10 P-12 I-1 I-2 I-7 I-9 I-11 

1 0,069 0,019 0,032 0,006 0,001 0,005 0,002 0,002 0,011 0,011 0,089 0,003 58,262 58,607 
2 0,130 0,007 0,090 0,077 0,100 0,019 0,102 0,036 0,148 0,208 0,047 0,018 195,076 229,647 
3 0,179 0,038 0,091 0,092 0,126 0,073 0,024 0,044 0,123 0,207 0,087 0,081 231,522 272,822 
4 0,086 0,064 0,086 0,008 0,005 0,007 0,010 0,022 0,072 0,046 0,021 0,070 95,374 116,634 
5 0,146 0,121 0,125 0,120 0,107 0,082 0,058 0,148 0,109 0,119 0,080 0,204 273,234 332,219 
6 0,177 0,094 0,124 0,104 0,102 0,078 0,054 0,140 0,159 0,127 0,120 0,091 257,799 320,876 
7 0,152 0,090 0,134 0,155 0,154 0,133 0,137 0,130 0,192 0,196 0,124 0,188 344,284 418,345 
8 0,180 0,041 0,115 0,087 0,147 0,047 0,075 0,100 0,129 0,119 0,188 0,065 263,637 303,096 
9 0,147 0,067 0,130 0,135 0,133 0,101 0,035 0,098 0,198 0,165 0,135 0,055 266,477 328,082 
10 0,159 0,103 0,148 0,127 0,108 0,144 0,155 0,156 0,139 0,187 0,180 0,160 344,442 414,078 
11 0,164 0,087 0,142 0,159 0,145 0,139 0,137 0,130 0,186 0,211 0,132 0,187 344,702 426,186 
12 0,150 0,105 0,139 0,147 0,147 0,135 0,142 0,165 0,180 0,189 0,128 0,178 345,877 423,697 
13 0,168 0,109 0,155 0,147 0,110 0,157 0,129 0,175 0,143 0,198 0,175 0,158 343,329 427,226 
14 0,149 0,104 0,137 0,148 0,152 0,146 0,136 0,159 0,177 0,197 0,126 0,188 352,823 426,788 
15 0,156 0,129 0,137 0,139 0,126 0,167 0,135 0,151 0,190 0,226 0,148 0,145 342,823 433,798 
16 0,162 0,115 0,137 0,145 0,130 0,155 0,153 0,158 0,189 0,204 0,158 0,171 346,527 443,358 
17 0,163 0,102 0,174 0,160 0,140 0,130 0,131 0,132 0,187 0,185 0,229 0,137 356,004 438,261 
18 0,168 0,093 0,155 0,124 0,123 0,169 0,160 0,121 0,177 0,214 0,154 0,197 352,919 435,526 
19 0,171 0,125 0,128 0,147 0,144 0,142 0,142 0,134 0,184 0,190 0,165 0,197 355,539 438,375 
20 0,171 0,109 0,139 0,149 0,147 0,145 0,141 0,159 0,178 0,189 0,177 0,169 354,256 439,162 
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Solução MO via a técnica Intersecção do Contorno-Normal - NBI 

Comparando os resultados obtidos através das estratégias SAO via krigagem e 

SAO via RBF cúbica percebe-se as soluções obtidas são bastante distintas, tal como 

ilustrado respectivamente nas Figuras 5.48 e 5.49. Neste caso, não é possível comparar 

o número de avaliações de funções destas estratégias, ver Tabela 5.46, pois apenas a 

metodologia SAO via RBF cúbica apresenta um resultado consistente.  

Vale observar que a Figura 5.48 está com a escala reduzida, então, a nuvem de 

pontos mostrada está ainda mais concentrada do que parece. Isto ocorreu devido ao 

modelo SAO via krigagem não ter conseguido encontrar os pontos âncora necessários 

para uma boa frente de Pareto via NBI. 

O valor dos pontos correspondentes a este caso é mostrado na Tabela 5.47.  

Tabela 5.46 – Resultados da otimização multiobjetivo via a estratégia NBI 

Metodologia Simulações Equitatividade 
NBI – SAO krigagem 2145 0,9868 

NBI – SAO RBF_cúbica 4083 0,3673 

 

 

Figura 5.48. Frente de Pareto do segundo reservatório otimizado via NBI utilizando a técnica 
SAO via krigagem  
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Figura 5.49. Frente de Pareto do segundo reservatório otimizado via NBI utilizando a técnica 
SAO via RBF cúbica  
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Tabela 5.47 – Resultados obtidos pelo SAO (RBF cúbica) para o problema multiobjetivo via NBI do segundo reservatório 

Ciclo de Controle    1 Óleoprod 
(105 m³) 

Águainj 
(105 m³) Ponto de Pareto P-3 P-4 P-5 P-6 P-8 P-10 P-12 I-1 I-2 I-7 I-9 I-11 

1 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,001 0,001 0,001 3,068 3,068 
2 0,001 0,001 0,025 0,014 0,006 0,005 0,001 0,001 0,001 0,020 0,017 0,007 23,643 23,653 
3 0,001 0,001 0,029 0,001 0,001 0,035 0,032 0,009 0,001 0,001 0,023 0,053 44,236 44,236 
4 0,001 0,001 0,001 0,043 0,018 0,053 0,028 0,040 0,001 0,001 0,083 0,001 63,675 63,675 
5 0,001 0,001 0,032 0,012 0,022 0,068 0,059 0,032 0,001 0,001 0,090 0,046 85,735 85,784 
6 0,032 0,001 0,037 0,001 0,027 0,091 0,055 0,041 0,001 0,001 0,116 0,053 106,244 106,578 
7 0,028 0,001 0,068 0,005 0,031 0,090 0,067 0,011 0,020 0,001 0,161 0,059 127,138 127,526 
8 0,032 0,014 0,084 0,001 0,021 0,122 0,064 0,024 0,001 0,007 0,188 0,075 147,730 148,091 
9 0,047 0,014 0,088 0,001 0,022 0,142 0,071 0,047 0,001 0,006 0,201 0,081 168,275 169,024 
10 0,102 0,001 0,053 0,001 0,066 0,147 0,063 0,001 0,001 0,040 0,222 0,112 186,467 189,332 
11 0,131 0,025 0,092 0,014 0,008 0,143 0,067 0,029 0,020 0,008 0,241 0,118 208,120 210,275 
12 0,116 0,056 0,109 0,001 0,001 0,174 0,072 0,035 0,001 0,001 0,259 0,164 229,816 231,685 
13 0,079 0,007 0,180 0,033 0,001 0,171 0,103 0,069 0,001 0,001 0,261 0,167 246,999 251,815 
14 0,097 0,079 0,157 0,007 0,001 0,180 0,092 0,093 0,001 0,001 0,222 0,217 262,610 269,005 
15 0,102 0,081 0,180 0,082 0,001 0,180 0,043 0,103 0,001 0,001 0,261 0,215 285,626 293,099 
16 0,176 0,108 0,180 0,032 0,001 0,180 0,045 0,105 0,001 0,001 0,261 0,261 309,914 316,719 
17 0,133 0,180 0,139 0,050 0,001 0,180 0,059 0,156 0,005 0,001 0,222 0,261 312,226 325,304 
18 0,137 0,180 0,170 0,065 0,012 0,180 0,091 0,178 0,026 0,001 0,261 0,261 343,007 366,355 
19 0,142 0,178 0,167 0,096 0,023 0,180 0,115 0,220 0,033 0,008 0,261 0,261 360,409 394,445 
20 0,139 0,086 0,153 0,139 0,180 0,176 0,125 0,129 0,181 0,129 0,211 0,219 364,691 437,836 
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5.3.4 Reservatório 3: UNISIM-I-Mod 

O modelo de simulação, mostrado na Figura 5.50, foi construído a partir do 

modelo denominado UNISIM-I_AD (Gaspar, et al., 2013). O reservatório possui 

inicialmente quatro poços verticais (NA1A, RJS19, NA3D e NA2, identificados na 

Figura 5.50), o início da produção é na data 31/05/2013 podendo ser explorado até 

01/06/2043 (30 anos). As condições operacionais para os poços são apresentadas na 

Tabela 5.48. Outras características do reservatório são apresentadas na Tabela 5.49. 

Tabela 5.48 – Reservatório 3: Dados/Condições operacionais de poços 

Tipo Produtor Injetor 
BHP (kgf/cm²) Min 36 Max 350 

Raio (m) 0,156 0,156 
Razão Gás Óleo de Formação (RGO) 

(m³/m³) 
Max 200 - 

Geofac 0,37 0,37 
Wfrac 1 1 
Skin 0 0 

 

 

Figura 5.50. Reservatório 3: Mapa de Permeabilidade (vista 3D e camada 1) e locação dos 
poços. 
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Tabela 5.49 – Características do Reservatório 3 

Malha de Simulação 81x58x20 
Blocos Ativos 36403 
Porosidade 0% a 30% 
Permeabilidade horizontal (kh) 1 a 1190 mD 
Permeabilidade vertical (kv) 2 a 1785 mD 
Compressibilidade da Rocha a 200 kgf/cm² 5,3 x 10‒6 (kgf/cm²)‒1 
Pressão de Saturação (Psat) 210.03 kgf/cm² 
Viscosidade a Tres , Psat 0.97 cP  
Óleo in place 1,3029 x 108 m³ 
Tempo de concessão 30 anos 
 
Foi feito um estudo, não automatizado, sobre as melhores locações e quantidade 

de poços produtores e injetores a serem utilizados, que levou em conta a produção 

acumulada de óleo (NP) e produção acumulada de água (WP), o VPL e o fator de 

recuperação de óleo (FR), os principais resultados são mostrados na Tabela 5.50 e na 

Figura 5.51.  

Tabela 5.50 – Reservatório 3: Configuração de Locação e Número de Poços 

Configuração FR de óleo (%) NP (x106 m³) 
C1 – 4 Produtores 5,10 6,655 
C2 – 3 Prod e 1 Inj 15,47 20,167 
C3 – 2 Prod e 2 Inj 12,45 16,230 
C4 – 3 Prod e 2 Inj 21,42 27,930 
C5 – 4 Prod e 1 Inj 19,09 24,885 
C6 – 4 Prod e 2 Inj 24,18 31,526 
C7 – 5 Prod e 2 Inj 28,18 36,740 
C8 – 6 Prod e 3 Inj 37,49 48,874 
C9 – 7 Prod e 4 Inj 38,80 50,591 
C10 – 6 Prod e 5 Inj 36,04 46,956 
C11 – 7 Prod e 5 Inj 37,06 48,281 
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Figura 5.51. Reservatório 3: Curvas de produção Acumulada de Óleo (NP) do estudo de locação 
de poços. 

A configuração adotada para otimização foi a C8 com 6 poços produtores e 3 

poços injetores, como mostrado na Figura 5.52, pois o FR de 37,5% foi considerado 

bom quando comparado com a configuração C9 que obteve o maior FR (38,8%), com a 

vantagem de trabalhar com um poço injetor e um poço produtor a menos. Além disso, o 

foco do trabalho é a otimização do gerenciamento da produção e injeção de líquidos e 

não a otimização da locação de poços. As curvas de produção das configurações C10 e 

C11, da Figura 5.51, diferem das demais porque nestas os poços injetores e produtores 

são abertos desde o início da produção. Nas demais, os poços injetores são abertos em 

tempos distintos, dentro dos quatro primeiros anos. Os nomes dos quatro primeiros 

poços foram alterados de (NA1A, RJS19, NA3D e NA2) para (PROD1, PROD2, 
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PROD3 e PROD4) para facilitar a nomenclatura dos outros poços produtores (PROD_) 

e injetores (INJ_). 

 

   

Figura 5.52. Reservatório 3: Mapa de Permeabilidade (camada 1 e 3D) contendo a localização 
adotada dos poços. 

 
Os quatro primeiros poços produtores e todos os poços injetores foram abertos a 

partir da data inicial (31/05/2013) com intervalo de abertura de 30 dias, iniciando pelos 

poços produtores. Os poços PROD5 e PROD6 foram igualmente abertos após os quatro 

primeiros anos de produção.  

A Tabela 5.51 apresenta os problemas investigados para o terceiro reservatório. 

Tabela 5.51 – Problemas uni-objetivo estudados para o Reservatório 3 

Caso U-1 topado com BHP 190 kgf/cm² 
Caso U-2 topado com BHP 36 kgf/cm² 
Caso U-3 não topado  
Caso U-4 não topado sem restrições de voidage replacement 
Caso U-5 não topado apenas restrição de limites 
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Caso U-1 

Inicialmente foi adotada a vazão máxima de líquido nos poços produtores de 

3000 m³/dia e nos poços injetores de 5000 m³/dia, o campo dos poços produtores teve a 

vazão de líquidos limitada em 10000 m³/dia e o campo dos poços injetores em 11000 

m³/dia, a mínima pressão de fundo de poço (BHP) dos poços produtores é de 190 

kgf/cm² e a máxima BHP dos poços injetores é 350 kgf/cm². Desta forma, as variáveis 

de projeto ligadas aos poços produtores assumem valores no intervalo 

,0,001 0,30p tx≤ ≤  e as ligadas aos poços injetores assumem valores no intervalo 

,0,001 0,454p tx≤ ≤ . Como esta situação é de capacidade topada, com apenas um ciclo 

de controle, o número de variáveis deste caso, dado pela Eq. (5.8), é sete. 

A Tabela 5.52 apresenta resultados deste caso.  O ponto inicial para otimização é 

x0, e para encontrar a solução ótima, foi utilizada a metodologia SAO com dois 

diferentes modelos substitutos, a krigagem e a RBF cúbica, os valores do rateio das 

vazões são mostrados na Tabela 5.53. A Figura 5.53 mostra a produção acumulada de 

óleo e água para o caso U-1. 

Tabela 5.52 – Resultados obtidos no problema U-1 

Metodologia f(x) (106 $) Avaliação de função 
Ponto Inicial 381,607 - 

SAO (Krigagem) 395,623 223 
SAO (RBF cúbica) 395,609 432 

Observa-se uma consistência nos valores das soluções apresentadas, os valores 

da função objetivo obtida pelos dois métodos foram iguais. É destacada a solução SAO 

via krigagem pelo menor número de simulações. 

Tabela 5.53 – Valores do rateio das vazões no ponto inicial e nos pontos ótimos obtidos pelo 
SAO via krigagem e SAO via RBF cúbica para o caso U-1 

Ciclo de controle 1 

Ponto  Inicial (x0) 
SAO 

(Krigagem) 
SAO (RBF 

cúbica) 
PROD-1 0,15 0,219 0,223 
PROD-2 0,15 0,232 0,236 
PROD-3 0,15 0,086 0,069 
PROD-4 0,15 0,120 0,128 
PROD-5 0,15 0,163 0,163 
PROD-6 0,25 0,180 0,181 
INJ-1 0,25 0,351 0,348 
INJ-2 0,25 0,236 0,209 
INJ-3 0,50 0,413 0,443 



 

Figura 5.53. Produção acumulada de óleo e águ
otimizados por SAO via krigagem e SAO via RBF cúbica

Foi verificado que as vazões fornecidas 

durante todo o ciclo de controle, até o fim do perí

podem variar até a vazão máxima especificada

tem como limitantes a pressão no res

Comparando-se estas figuras, percebe

pequena diferença no poço PROD3, por isto a pequena diferença no valor da função 

objetivo. 

Figura 5.54. Vazão de líquidos dos poços otimizados via SAO (krigagem) 

Produção acumulada de óleo e água para o Caso U-1 para o ponto inical
otimizados por SAO via krigagem e SAO via RBF cúbica. 

oi verificado que as vazões fornecidas pelo simulador não são 

durante todo o ciclo de controle, até o fim do período de concessão do reservatório, mas 

podem variar até a vazão máxima especificada, como mostram as Figuras 5.5

limitantes a pressão no reservatório e a pressão no fundo dos

se estas figuras, percebe-se que elas são praticamente iguais, com uma 

pequena diferença no poço PROD3, por isto a pequena diferença no valor da função 

. Vazão de líquidos dos poços otimizados via SAO (krigagem) 
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1 para o ponto inical (x0) e 
 

simulador não são constantes 

odo de concessão do reservatório, mas 

Figuras 5.54 e 5.55, e 

fundo dos poços. 

praticamente iguais, com uma 

pequena diferença no poço PROD3, por isto a pequena diferença no valor da função 

 

. Vazão de líquidos dos poços otimizados via SAO (krigagem) do Caso U-1  



 

Figura 5.55. Vazão de líquidos dos poços otimizados via SAO (

Como foi visto no reservatório 2, 

quando a pressão de fundo de poço (BHP) é 

variação da vazão ocorre em todos os poços, exceto no poço injetor INJ1.

A Figura 5.56 apresenta a relação entre

pressão de fundo de poço (linhas tracejadas)

estes poços pertencerem à área isolada por uma falha do reservatório.

No caso dos poços injetores 

atingido o valor máximo da BHP

INJ2 (linha azul escuro tracejada

no caso dos poços produtores a variação da vazão 

BHP é atingida, neste caso 190 

Figura 5.56, também alcançada desde o início da operação do poço

Isto significa que, para qualquer valor de vazão fornecida ao simulador acima 

das curvas de vazões mostradas não será considerada pelo mesmo, visto que, para estas 

vazões fornecidas, os limites estabelecidos da pressão de fundo de poço são 

ultrapassados. Isto implica no mau funcionamento dos otimizadores, 

encontradas soluções subótimas devido à diferença das vazões fornecidas ao simulador 

e às efetivamente utilizadas pelo mesmo.

. Vazão de líquidos dos poços otimizados via SAO (RBF cúbica

Como foi visto no reservatório 2, a variação da vazão especificada 

quando a pressão de fundo de poço (BHP) é atingida. Nas Figuras 5.5

variação da vazão ocorre em todos os poços, exceto no poço injetor INJ1.

apresenta a relação entre a vazão de líquido (linhas contínuas) e

pressão de fundo de poço (linhas tracejadas) para os poços INJ2 e PROD6, devido a 

estes poços pertencerem à área isolada por uma falha do reservatório.  

No caso dos poços injetores a variação da vazão especificada ocorre quando é 

atingido o valor máximo da BHP, como mostrado na Figura 5.56, a BHP máxima do 

linha azul escuro tracejada) é atingida desde o início da operação deste poço

no caso dos poços produtores a variação da vazão especificada ocorre quando a mínima 

BHP é atingida, neste caso 190 kgf/cm², como mostra o PROD6 (linhas ciano)

, também alcançada desde o início da operação do poço.  

Isto significa que, para qualquer valor de vazão fornecida ao simulador acima 

das curvas de vazões mostradas não será considerada pelo mesmo, visto que, para estas 

vazões fornecidas, os limites estabelecidos da pressão de fundo de poço são 

sto implica no mau funcionamento dos otimizadores, 

encontradas soluções subótimas devido à diferença das vazões fornecidas ao simulador 

e às efetivamente utilizadas pelo mesmo. 
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RBF cúbica) do Caso U-1  

variação da vazão especificada ocorre 

Figuras 5.54 e 5.55 essa 

variação da vazão ocorre em todos os poços, exceto no poço injetor INJ1. 

(linhas contínuas) e a 

para os poços INJ2 e PROD6, devido a 

ocorre quando é 

, a BHP máxima do 

da operação deste poço. Já 

ocorre quando a mínima 

(linhas ciano) na 

Isto significa que, para qualquer valor de vazão fornecida ao simulador acima 

das curvas de vazões mostradas não será considerada pelo mesmo, visto que, para estas 

vazões fornecidas, os limites estabelecidos da pressão de fundo de poço são 

sto implica no mau funcionamento dos otimizadores, pois serão 

encontradas soluções subótimas devido à diferença das vazões fornecidas ao simulador 



 

Figura 5.56. Relação entre a vazão
INJ2 e 

A Figura 5.57 mostra a rela

INJ1, neste caso, a vazão 

concessão e a BHP (linha tracejada)

Figura 5.57. Relação entre a vazão

Caso U-2 

Para tentar evitar ou pelo menos diminuir essa falta de controle da vazão, foram 

alterados os limites de vazão e BHP dos poço

pressão média do reservatório

é de 1500 m³/dia e nos poços injetores de 5000 m³/dia, o campo dos poços produtores 

teve a vazão de líquidos limitada em 6000 m³/

a vazão de líquidos e a pressão de fundo de poço (BHP)
e PROD6 do Caso U-1 via SAO (krigagem) 

mostra a relação vazão versus pressão de fundo de poço do poço 

INJ1, neste caso, a vazão (linha contínua) é mantida constante durante o período de 

(linha tracejada) se mantém abaixo da pressão máxima

a vazão de líquidos e a pressão de fundo de poço do poço
Caso U-1 

Para tentar evitar ou pelo menos diminuir essa falta de controle da vazão, foram 

alterados os limites de vazão e BHP dos poços produtores, com o intuito de aumentar a 

pressão média do reservatório.  A vazão máxima de líquido nos poços produtores agora 

é de 1500 m³/dia e nos poços injetores de 5000 m³/dia, o campo dos poços produtores 

teve a vazão de líquidos limitada em 6000 m³/dia e o campo dos poços injetores em 
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pressão de fundo de poço (BHP) dos poços 

ção vazão versus pressão de fundo de poço do poço 

é mantida constante durante o período de 

máxima estipulada.  

 

do poço INJ1 do 

Para tentar evitar ou pelo menos diminuir essa falta de controle da vazão, foram 

, com o intuito de aumentar a 

A vazão máxima de líquido nos poços produtores agora 

é de 1500 m³/dia e nos poços injetores de 5000 m³/dia, o campo dos poços produtores 

dia e o campo dos poços injetores em 
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9000 m³/dia, o BHP dos poços produtores diminuiu para 36 kgf/cm². Com essa 

configuração, os limites das variáveis são alterados, para os poços produtores as 

variáveis assumem valores no intervalo ,0,001 0,25p tx≤ ≤  e as variáveis ligadas aos 

poços injetores assumem valores no intervalo ,0,001 0,555p tx≤ ≤ . O número de 

variáveis de projeto não foi alterado, são sete variáveis. A Tabela 5.54 apresenta os 

resultados encontrados com esta nova configuração dos dados, nesta nota-se que o 

resultado da otimização se destacou em comparação ao ponto inicial, foi 12% maior que 

o mesmo e a metodologia SAO via krigagem em termos de avaliação de função obteve 

um resultdo melhor que o SAO via RBF, apresentando uma diferença muito pequena 

em termos de VPL ótimo. A Figura 5.58 mostra a produção acumulada de óleo e água, 

percebe-se que a diferença da produção de água entre o ponto inicial (x0) e o ponto 

ótimo (x*) é menor quando comparado às mesmas curvas da Figura 5.53, do caso U-1, 

mas a produção de óleo do Caso U-2 foi menor que a do Caso U-1, devido à restrição de 

limites das vazões máximas terem sido diminuídas.  A Tabela 5.55 mostra os valores do 

rateio das vazões para este caso. 

Tabela 5.54 – Resultados obtidos no problema U-2 

Metodologia f(x) (106 $) Simulações 
Ponto Inicial 334,406 - 

SAO (Krigagem) 375,637 213 
SAO (RBF cúbica) 375,737 480 

 
Tabela 5.55 – Valores do rateio das vazões obtidas pelo SAO via krigagem para o caso U-2 

Ciclo de controle 1 

Ponto  
Inicial (x0) SAO 

(krigagem) 
SAO (RBF 

cúbica) 
PROD-1 0,15 0,214 0,228 
PROD-2 0,15 0,250 0,250 
PROD-3 0,15 0,075 0,071 
PROD-4 0,15 0,221 0,220 
PROD-5 0,15 0,085 0,080 
PROD-6 0,25 0,155 0,151 

INJ-1 0,25 0,135 0,133 
INJ-2 0,25 0,435 0,435 
INJ-3 0,50 0,430 0,432 

 



 

Figura 5.58. Produção acumulada de óleo e água para o 

 

No ponto ótimo (Tabela 

poços produtores e injetores foram mais consistentes que as vazões do caso U

embora alguns poços ainda possuam as vazões abaixo das vazões 

pelo otimizador, que é o caso dos poços

5.61 mostra a relação da vazão com a

utilizados apenas os poços INJ2 e PROD4, que foram os que apresentaram a maior 

variação nas vazões. Este é, portanto

otimização, utilizando as formulações apresentadas neste capítulo

Figura 5.59. Vazão de líquido

Produção acumulada de óleo e água para o caso U-2 para os pontos 

Tabela 5.55 e Figuras 5.59 e 5.60), a vazão especificada

s produtores e injetores foram mais consistentes que as vazões do caso U

embora alguns poços ainda possuam as vazões abaixo das vazões máximas atribuídas 

pelo otimizador, que é o caso dos poços INJ2, INJ3 e PROD4, principalmente

da vazão com a pressão de fundo de poço deste caso, foram 

utilizados apenas os poços INJ2 e PROD4, que foram os que apresentaram a maior 

variação nas vazões. Este é, portanto, um caso mais viável que o 

, utilizando as formulações apresentadas neste capítulo. 

de líquido dos poços produtores do caso U-2 (SAO (krigagem))
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2 para os pontos x0, x* e base. 

especificada dos 

s produtores e injetores foram mais consistentes que as vazões do caso U-1, 

máximas atribuídas 

PROD4, principalmente. A Figura 

pressão de fundo de poço deste caso, foram 

utilizados apenas os poços INJ2 e PROD4, que foram os que apresentaram a maior 

que o caso U-1, para 

 

(SAO (krigagem)) 



 

 

Figura 5.60. Vazão de líquido dos poços produtores do caso U

 

Figura 5.61. Relação entre a vazão
INJ2 

Caso U-3 

Mesmo o caso U-2 sendo mais viável para otimização

formulações, o fato dele trabalhar em uma situação de capacidade topada já não faz 

muito sentido, pois a situação topada 

constante e igual à máxima vazão da plataforma, seja dos poços produtores ou dos 

poços injetores. Logo, o caso U

(OCNT). E, como foi visto na

de líquido dos poços produtores do caso U-2 (SAO (RBF cúbica))

a vazão de líquidos e a pressão de fundo de poço (BHP) do
 e PROD4 do Caso U-2 (SAO (Krigagem)) 

2 sendo mais viável para otimização considerando as novas 

, o fato dele trabalhar em uma situação de capacidade topada já não faz 

muito sentido, pois a situação topada parte da premissa de que a soma das vazões é 

constante e igual à máxima vazão da plataforma, seja dos poços produtores ou dos 

poços injetores. Logo, o caso U-3 vai operar na situação de capacidade não topada

. E, como foi visto na Figura 5.61, que a vazão do PROD4 cai bruscamente, 
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(SAO (RBF cúbica)) 

 

pressão de fundo de poço (BHP) dos poços 

considerando as novas 

, o fato dele trabalhar em uma situação de capacidade topada já não faz 

parte da premissa de que a soma das vazões é 

constante e igual à máxima vazão da plataforma, seja dos poços produtores ou dos 

3 vai operar na situação de capacidade não topada 

, que a vazão do PROD4 cai bruscamente, 
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serão considerados dois ciclos de controle, com mudança nas variáveis no ano 2025, 

conforme a Figura 5.62. Como os limites das vazões dos poços e da plataforma não 

foram alterados, as variáveis de projeto continuam com os mesmos limites do caso U-2, 

que são para os poços produtores ,0,001 0,25p tx≤ ≤  e para os poços injetores 

,0,001 0,555p tx≤ ≤ . 

 

Figura 5.62. Ciclos de controle para o caso U-3 

 
Como pode ser visto na Tabela 5.56, houve uma melhoria do VPL do ponto 

ótimo do caso U-3 comparado com o do caso U-2 (Tabela 5.54), além disso, percebe-se 

que a metodologia SAO vai RBF cúbica obteve um resultado melhor que o SAO via 

krigagem. A Tabela 5.57 mostra os valores do rateio das vazões do caso U-3. 

Tabela 5.56 – Resultados obtidos no problema U-3 

Metodologia f(x) (106 $) Simulações 
Ponto Inicial 375,6886 - 

SAO (Krigagem) 391,6747 646 
SAO (RBF cúbica) 402,1074 837 

 

Tabela 5.57 – Valores do rateio das vazões obtidas pelo SAO via krigagem para o caso U-3 

Ciclo de 
controle 

1 2 

Ponto  x0 
SAO 

(krigagem) 
SAO (RBF 

cúbica) 
x0 

SAO 
(krigagem) 

SAO (RBF 
cúbica) 

PROD-1 0,240 0,250 0,250 0,166 0,138 0,092 
PROD-2 0,244 0,245 0,250 0,166 0,241 0,250 
PROD-3 0,091 0,092 0,114 0,166 0,145 0,063 
PROD-4 0,226 0,248 0,250 0,166 0,106 0,103 
PROD-5 0,079 0,039 0,001 0,166 0,204 0,247 
PROD-6 0,121 0,127 0,135 0,166 0,167 0,244 

INJ-1 0,145 0,093 0,109 0,333 0,159 0,163 
INJ-2 0,125 0,034 0,002 0,333 0,403 0,234 
INJ-3 0,480 0,548 0,555 0,333 0,255 0,269 

 

O histórico de produção é mostrado na Figura 5.63. A vazão de líquidos deste 

caso ainda não é mantida constante durante os ciclos de controle, como mostram as 

Tempo2013 2025 2043

X1 X2

2 ciclos



 

Figuras 5.64 e 5.65, que significa que a pressão no reservatório pode não estar se

adequadamente mantida. 

Figura 5.63. Produção acumulada de óleo e água para o 

 

Figura 5.64. Vazão de líquido dos poços produtores do caso U

 

, que significa que a pressão no reservatório pode não estar se

Produção acumulada de óleo e água para o caso U

Vazão de líquido dos poços produtores do caso U-3 utilizando a metodologia SAO 
via krigagem 
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, que significa que a pressão no reservatório pode não estar sendo 

 

aso U-3  

 

utilizando a metodologia SAO 



 

Figura 5.65. Vazão de líquido dos poços produtores do caso U

Caso U-4 

As restrições de voidage replacement

otimizador (fmincon) podem não ser atendidas

variáveis de projeto são as vazões máximas que pode

são válidas para quando, no simulador, essas vazões são mantidas constantes (no seu 

valor máximo) durante o ciclo de controle.

conduzida sem as restrições de 

das variáveis, que continuam 

,0,001 0,25p tx≤ ≤  e para os poços injetores 

mostra os resultados encontrados com esta nova configuração.

Tabela 

Metodologia
Ponto Inicial

SAO (Krigagem)
SAO (RBF cúbica)

 

Observando os resultados, percebe

apresenta um melhor resultado

krigagem. Através desta tabela,

relação ao caso U-3, mostrado na 

Vazão de líquido dos poços produtores do caso U-3 utilizando a metodologia SAO 
via RBF cúbica 

voidage replacement, dadas pela Eq. (5.9), que atuam no 

podem não ser atendidas pelo simulador (IMEX)

variáveis de projeto são as vazões máximas que podem atuar nos poços e as restrições 

são válidas para quando, no simulador, essas vazões são mantidas constantes (no seu 

valor máximo) durante o ciclo de controle. Então, neste caso U-4 a otimização foi 

conduzida sem as restrições de voidage replacement, apenas com as restrições de limite 

das variáveis, que continuam as mesmas do caso U-3, que são para os poços produtores 

e para os poços injetores ,0,001 0,555p tx≤ ≤ . 

mostra os resultados encontrados com esta nova configuração. 

Tabela 5.58 – Resultados obtidos no problema U-4 

Metodologia f(x) (106 $) Simulações 
Ponto Inicial 375,6886 - 

SAO (Krigagem) 411,2490 646 
SAO (RBF cúbica) 418,0253 912 

Observando os resultados, percebe-se que a metodologia SAO via RBF cúbica 

apresenta um melhor resultado em termos de VPL máximo, comparado ao SAO via 

. Através desta tabela, pode ser notada também a melhora do valor do VPL em 

3, mostrado na Tabela 5.56.  
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, que atuam no 

(IMEX), já que as 

m atuar nos poços e as restrições 

são válidas para quando, no simulador, essas vazões são mantidas constantes (no seu 

4 a otimização foi 

as com as restrições de limite 

, que são para os poços produtores 

 A Tabela 5.58 

 

se que a metodologia SAO via RBF cúbica 

comparado ao SAO via 

a melhora do valor do VPL em 



 

A Tabela 5.59 mostra os valores do rateio 

mostram a vazão de líquidos do caso U

possível ver na Figura 5.68

uma produção maior de óleo em relação ao SAO via RBF, ele  apresenta um menor 

resultado em termos de VPL ótimo, mostrado na 

Tabela 5.59. Valores do rateio 

Ciclo de 
controle 

Ponto  x0 (krigagem)
PROD-1 0,240 
PROD-2 0,244 
PROD-3 0,091 
PROD-4 0,226 
PROD-5 0,079 
PROD-6 0,121 

INJ-1 0,145 
INJ-2 0,125 
INJ-3 0,480 

 

Figura 5.66. Vazão de líquido dos poços produtores do caso U

mostra os valores do rateio das vazões e as Figuras 5.6

mostram a vazão de líquidos do caso U-4. Em termos de produção de óleo e água, é 

68, que embora o resultado do SAO via krigagem apresente 

maior de óleo em relação ao SAO via RBF, ele  apresenta um menor 

resultado em termos de VPL ótimo, mostrado na Tabela 5.58.  

do rateio das vazões obtidas pelo SAO via krigagem para o caso

1 2 

SAO 
(krigagem) 

SAO (RBF 
cúbica) 

x0 
SAO 

(krigagem)
0,250 0,250 0,166 0,116
0,249 0,250 0,166 0,243
0,190 0,250 0,166 0,194
0,250 0,250 0,166 0,162
0,105 0,139 0,166 0,221
0,218 0,250 0,166 0,246
0,074 0,021 0,333 0,209
0,002 0,004 0,333 0,421
0,468 0,556 0,333 0,252

Vazão de líquido dos poços produtores do caso U-4 utilizando a metodologia SAO 
via krigagem 
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Figuras 5.66 e 5.67 

Em termos de produção de óleo e água, é 

, que embora o resultado do SAO via krigagem apresente 

maior de óleo em relação ao SAO via RBF, ele  apresenta um menor 

vazões obtidas pelo SAO via krigagem para o caso U-4 

 

(krigagem) 
SAO (RBF 

cúbica) 
0,116 0,237 
0,243 0,250 
0,194 0,179 
0,162 0,127 
0,221 0,244 
0,246 0,250 
0,209 0,265 
0,421 0,229 
0,252 0,008 
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 Figura 5.67. Vazão de líquido dos poços produtores do caso U

Figura 5.68. Produção acumulada de óleo e água para o 

Caso U-5 

Nesta abordagem, há apenas restrição de limite

outra restrição atuando no reservatório.

A vazão máxima de líquido nos poços produtores ainda é de 1500 m³/dia e nos 

poços injetores de 5000 m³/dia, o campo dos poços produtores teve a vazão de líquidos 

limitada em 9000 m³/dia, q

Vazão de líquido dos poços produtores do caso U-4 utilizando a 
SAO via RBF cúbica 

 

Produção acumulada de óleo e água para o caso U

Nesta abordagem, há apenas restrição de limites das variáveis e mais nenhuma 

outra restrição atuando no reservatório.  

A vazão máxima de líquido nos poços produtores ainda é de 1500 m³/dia e nos 

poços injetores de 5000 m³/dia, o campo dos poços produtores teve a vazão de líquidos 

limitada em 9000 m³/dia, que corresponde ao número de poços produtores vezes a 
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aso U-4 

variáveis e mais nenhuma 

A vazão máxima de líquido nos poços produtores ainda é de 1500 m³/dia e nos 

poços injetores de 5000 m³/dia, o campo dos poços produtores teve a vazão de líquidos 

ue corresponde ao número de poços produtores vezes a 
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vazão máxima de líquidos de cada poço produtor; e o campo dos poços injetores em 

13500 m³/dia que corresponde a 1,5 vezes a vazão de líquidos do campo dos poços 

produtores. Com essa configuração, os limites das variáveis são alterados, para os poços 

produtores as variáveis assumem valores no intervalo ,0,001 0,167p tx≤ ≤  e as 

variáveis ligadas aos poços injetores assumem valores no intervalo ,0,001 0,37p tx≤ ≤ .  

O valor do VPL e o número de avaliações da função para as técnicas utilizadas 

são apresentados na Tabela 5.60, o rateio das vazões é apresentado na Tabela 5.61 e as 

vazões correspondentes podem ser vistas nas Figuras 5.67 e 5.68. A Figura 5.71 mostra 

o histórico de produção do reservatório. 

Tabela 5.60 – Resultados obtidos no problema U-5 

Metodologia f(x) (106 $) Simulações 
Ponto Inicial 396,3563 - 

SAO (Krigagem) 413,1611 800 
SAO (RBF cúbica) 449,1672 781 

 

Observando os resultados, percebe-se mais uma vez que a metodologia SAO via 

RBF cúbica apresenta um melhor resultado comparado ao SAO via krigagem. 

Comparando esta tabela e a Tabela 5.58, percebe-se um aumento na função objetivo do 

caso U-5. 

Tabela 5.61 – Valores do rateio das vazões obtidas pelo SAO via krigagem e SAO via RBF 
cúbica  para o caso U-5 

Ciclo de 
controle 

1 2 

Ponto  x0 
SAO 

(krigagem) 
SAO (RBF 

cúbica) 
x0 

SAO 
(krigagem) 

SAO (RBF 
cúbica) 

PROD-1 0,166  0,162 0,167 0,166  0,159 0,166 

PROD-2 0,166 0,159 0,167 0,166 0,166 0,167 

PROD-3 0,166 0,151 0,167 0,166 0,155 0,066 

PROD-4 0,166 0,165 0,167 0,166 0,165 0,132 

PROD-5 0,166 0,157 0,167 0,166 0,156 0,167 

PROD-6 0,166 0,161 0,167 0,166 0,155 0,167 

INJ-1 0,37 0,259 0,152 0,370 0,324 0,001 

INJ-2 0,37 0,315 0,205 0,370 0,349 0,302 

INJ-3 0,37 0,317 0,370 0,370 0,341 0,001 

 



 

Figura 5.69. Vazão de líquido dos poços produtores do caso U

Figura 5.70. Vazão de líquido dos poços 

 

Vazão de líquido dos poços produtores do caso U-5 utilizando a metodologia SAO 
via krigagem 

 

Vazão de líquido dos poços produtores do caso U-5 utilizando a metodologia SAO 
via RBF cúbica 
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5 utilizando a metodologia SAO 



 

 

Figura 5.71. Produção acumulada de óleo e água para o 

5.3.4.1 Resultados obtidos nos estudos de problemas 
reservatório 3 

As funções objetivas consideradas foram as mesmas do primeiro e segundo 

reservatórios, que foram a produção acumulada de óleo (

água (Wi). 

A formulação da otimização multiobjetivo é mostrada n

Aqui é considerada a operação em capacidade não topada

ciclos de controle, cuja formulação é dada

A configuração de vazões máxima 

para os poços produtores de 1500 m³/dia e nos poços injetores de 5000 m³/dia, o campo 

dos poços produtores teve a vaz

poços injetores em 13500 m³/dia que corresponde a 1,5 vezes a vazão de líquidos do 

campo dos poços produtores. Com essa configuração

assumem valores no intervalo 

injetores assumem valores no intervalo 

No caso multiobjetivo deste reservatório foi utilizada apenas a técnica NBI 

utilizando o SAO via RBF cúbica.

Pareto deste caso, foram necessárias 10544 

encontrado foi de 1,1995. Nota

que para problemas mais realistas a otimização multiobjetivo é praticamente inviável. 

Foi necessária uma semana para a finalização deste resultado, utilizando seis 

Produção acumulada de óleo e água para o caso U

Resultados obtidos nos estudos de problemas multiobjetivo para o 

As funções objetivas consideradas foram as mesmas do primeiro e segundo 

reservatórios, que foram a produção acumulada de óleo (Np) e a injeção acumulada de 

A formulação da otimização multiobjetivo é mostrada nas Eqs. 

considerada a operação em capacidade não topada com tempo fixo em dois 

ciclos de controle, cuja formulação é dada pela (5.9). 

A configuração de vazões máxima adotada foi a mesma do caso U

os poços produtores de 1500 m³/dia e nos poços injetores de 5000 m³/dia, o campo 

dos poços produtores teve a vazão de líquidos limitada em 9000 m³/dia 

poços injetores em 13500 m³/dia que corresponde a 1,5 vezes a vazão de líquidos do 

campo dos poços produtores. Com essa configuração as variáveis dos poços produtores 

assumem valores no intervalo ,0,001 0,167p tx≤ ≤  e as variáveis ligadas aos poços 

injetores assumem valores no intervalo ,0,001 0,37p tx≤ ≤ . 

No caso multiobjetivo deste reservatório foi utilizada apenas a técnica NBI 

utilizando o SAO via RBF cúbica. A Figura 5.72 mostra a distribuição de pontos de 

, foram necessárias 10544 simulações, e o parâmetro de equitatividade 

Nota-se o grande número de avaliações de função, que mostra 

que para problemas mais realistas a otimização multiobjetivo é praticamente inviável. 

Foi necessária uma semana para a finalização deste resultado, utilizando seis 
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aso U-5 

multiobjetivo para o 

As funções objetivas consideradas foram as mesmas do primeiro e segundo 

) e a injeção acumulada de 

as Eqs. (4.1) e (4.2). 

com tempo fixo em dois 

adotada foi a mesma do caso U-5, que foi 

os poços produtores de 1500 m³/dia e nos poços injetores de 5000 m³/dia, o campo 

quidos limitada em 9000 m³/dia e o campo dos 

poços injetores em 13500 m³/dia que corresponde a 1,5 vezes a vazão de líquidos do 

dos poços produtores 

e as variáveis ligadas aos poços 

No caso multiobjetivo deste reservatório foi utilizada apenas a técnica NBI 

mostra a distribuição de pontos de 

, e o parâmetro de equitatividade 

iações de função, que mostra 

que para problemas mais realistas a otimização multiobjetivo é praticamente inviável. 

Foi necessária uma semana para a finalização deste resultado, utilizando seis núcleos 
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em paralelo, pois se utilizasse apenas um processador o resultado seria encontrado em 

aproximadamente quarenta dias.  

Apesar de alguns pontos não serem ótimos de Pareto (pontos dominados) e de 

haver lacunas entre os pontos encontrados, devido à não linearidade do problema, a 

frente de Pareto encontrada tem a geometria parecida com a dos outros reservatórios 

estudados. Os valores dos pontos correspondentes aos resultados da Figura 5.72 são 

mostrados na Tabela 5.62. 

 

 

Figura 5.72. Frente de Pareto do terceiro reservatório otimizado via NBI utilizando a técnica 
SAO via RBF cúbica 
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Tabela 5.62 – Resultados obtidos pelo SAO (RBF cúbica) para o problema multiobjetivo via NBI do reservatório UNISIM-I-Mod 

Ciclo de 
Controle 

  
1 2  

Óleoprod 
(105 m³) 

Águainj 
(105 
m³) 

Ponto 
de 

Pareto 
I-1 I-2 I-3 P-1 P-2 P-3 P-4 P-5 P-6 I-1 I-2 I-3 P-1 P-2 P-3 P-4 P-5 P-6 

1 0,002 0,022 0,003 0,011 0,022 0,113 0,001 0,001 0,001 0,009 0,011 0,001 0,011 0,025 0,001 0,001 0,001 0,005 
0,001 
0,001 
0,001 
0,001 
0,001 
0,001 
0,001 
0,001 
0,140 
0,119 
0,022 
0,031 
0,107 
0,195 
0,290 
0,332 
0,370 
0,370 
0,370 

0,793 0,083 
2 0,001 0,001 0,001 0,001 0,001 0,066 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,214 0,044 
3 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,056 0,044 
4 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,056 0,044 
5 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,056 0,044 
6 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,056 0,044 
7 0,001 0,001 0,067 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,278 0,044 
8 0,001 0,084 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,080 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,776 0,044 
9 0,001 0,067 0,001 0,001 0,001 0,001 0,001 0,001 0,048 0,028 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,417 0,297 
10 0,063 0,001 0,001 0,038 0,001 0,001 0,088 0,001 0,149 0,016 0,001 0,004 0,001 0,001 0,001 0,001 0,001 0,529 0,808 
11 0,001 0,001 0,001 0,001 0,001 0,088 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,030 0,001 0,001 0,444 0,179 
12 0,001 0,001 0,001 0,001 0,001 0,099 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,294 0,178 
13 0,030 0,001 0,030 0,001 0,030 0,070 0,001 0,001 0,010 0,030 0,005 0,005 0,019 0,030 0,001 0,001 0,001 1,014 0,365 
14 0,069 0,003 0,048 0,040 0,032 0,072 0,006 0,006 0,098 0,069 0,044 0,044 0,058 0,032 0,003 0,006 0,006 2,224 1,655 
15 0,109 0,042 0,087 0,080 0,071 0,074 0,010 0,071 0,186 0,109 0,084 0,084 0,098 0,071 0,005 0,010 0,010 3,206 3,195 
16 0,151 0,076 0,127 0,115 0,114 0,117 0,003 0,166 0,260 0,151 0,118 0,077 0,140 0,114 0,048 0,088 0,106 4,003 5,575 
17 0,156 0,088 0,145 0,118 0,133 0,135 0,014 0,208 0,286 0,167 0,112 0,064 0,159 0,133 0,067 0,063 0,147 4,148 6,104 
18 0,167 0,132 0,167 0,155 0,167 0,167 0,071 0,306 0,328 0,167 0,109 0,038 0,167 0,167 0,111 0,029 0,245 4,475 7,048 
19 0,167 0,143 0,167 0,142 0,167 0,167 0,074 0,335 0,320 0,167 0,116 0,041 0,167 0,167 0,123 0,033 0,274 4,521 7,145 
20 0,167 0,167 0,167 0,167 0,167 0,164 0,370 0,370 0,370 0,167 0,167 0,167 0,167 0,167 0,164 0,370 0,370 4,833 10,963 
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Capítulo 6: Conclusões 

O presente trabalho teve como objetivo apresentar diversas estratégias de 

modelos substitutos as quais podem ser utilizadas no procedimento de otimização uni e 

multiobjetivo no gerenciamento das vazões do problema da injeção de água. Os tópicos 

tratados nesta dissertação foram investigados com o intuito de desenvolver uma 

ferramenta confiável e de fácil adaptação a diferentes problemas de otimização. Foi 

investigado o problema do gerenciamento da alocação das vazões de produção e injeção 

de reservatórios, obtendo-se resultados satisfatórios, como descritos a seguir. 

A ferramenta desenvolvida para a otimização do gerenciamento de reservatórios 

foi aplicada em três problemas distintos. O primeiro reservatório, de configuração 

bastante simples, foi escolhido para estudar os aspectos mais básicos do problema de 

otimização de alocação dinâmica das vazões dos poços de produção e injeção, tanto no 

caso uni-objetivo quanto no caso multiobjetivo. O segundo e terceiro reservatórios, com 

características mais complexas e realistas, foram estudados com o intuito de testar a 

eficiência das estratégias em problemas reais.  

Referente aos estudos conduzidos e resultados obtidos podem ser destacadas as 

seguintes observações: 

• No reservatório 1 foram encontrados os mesmos valores de VPL para diferentes 

valores de vazão. Mas foram encontrados diferentes valores do VPL quando 

foram aplicadas diferentes restrições de operação dos poços. Isto ocorreu devido 

à simplicidade deste reservatório, que por possuir apenas um poço injetor, este, 

ao operar em sua capacidade máxima, injeta mais água do que necessita, por 

consequência produz mais água e diminui o valor do VPL, quando comparado à 

situação em que o poço pode operar em capacidade não topada. 

• Os reservatórios Brush Canyon e UNISIM-I-Mod, por possuírem características 

mais próximas de reservatórios reais, possuem um alto grau de não-linearidade 

na formulação das funções envolvidas e um elevado custo computacional na 

simulação dos mesmos, destacando-se desta forma a justificativa para o uso de 

modelos substitutos no processo de otimização. 

• Em alguns casos, foi verificado que, dentro de um mesmo ciclo de controle, as 

vazões de injeção ou de produção nos ciclos de controle podem variar até a 
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vazão máxima especificada. Tal comportamento é evidenciado devido à violação 

de valores permitidos para a pressão de fundo dos poços. Isto implica no mal 

funcionamento dos otimizadores, pois serão encontradas soluções subótimas 

devido à diferença das vazões fornecidas ao simulador e às efetivamente 

utilizadas pelo mesmo, que são menores que as esperadas. 

• A operação dos poços em capacidade não topada (OCNT) apresenta o valor do 

VPL pelo menos 10% maior que a operação em capacidade topada (OCT). 

Com relação às metodologias podem ser destacadas as seguintes observações: 

• A metodologia SAO obteve bons resultados nos problemas propostos, 

alcançando o objetivo da utilização de modelos substitutos, que era a redução do 

custo computacional quando comparado à metodologia sem uso do modelo 

substituto (AF (SQP)). 

• As dificuldades encontradas pela metodologia SAO foram em relação à 

dimensão do problema. Isto é, quando a dimensão aumenta muito as funções 

apresentam uma grande multimodalidade, dificultando assim a convergência do 

método, além do número de amostras adotado se tornar pequeno em relação à 

dimensão do problema. 

• O emprego do modelo substituto via RBF, utilizando sub-rotinas do pacote 

Modularized Surrogate Model Toolbox (Müller, 2012) se mostrou promissor 

apresentando, em geral, melhores resultados que o modelo substituto via 

krigagem, utilizando sub-rotinas do pacote DACE (Lophaven, et al., 2002). 

No caso multiobjetivo, as principais conclusões extraídas, através dos resultados 

dos exemplos analisados, foram:  

• A produção acumulada de óleo (pN ) e a injeção acumulada de água (
iW ) foram 

tomadas como funções objetivo por serem conflitantes e por serem diretamente 

relacionadas ao VPL. Qualquer ponto na curva de Pareto obtida através desses 

objetivos representa a maior quantidade de óleo que pode ser produzido para 

uma correspondente quantidade de água injetada. 

• O método soma ponderada (WS), apresenta regiões com vazios, pois o mesmo 

não é capaz de fornecer soluções que estejam na parte não-convexa da frente de 

Pareto.  

• O acoplamento do método WS com a metodologia SAO via krigagem encontrou 

as melhores distribuições da frente de Pareto, baseado no parâmetro de 
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equitatividade, em relação ao método WS operando em alta fidelidade ou 

quando acoplado à metodologia SAO via RBF. 

• A técnica NBI é muito mais eficiente que a WS, pois, para quase todos os casos 

estudados, encontrou pontos ótimos nas regiões onde a WS não encontrou. 

• O acoplamento da metodologia SAO com a técnica NBI foi bastante vantajoso, 

encontrando a frente de Pareto com muito menos aval iações da função de alta 

fidelidade quando comparada com a técnica NBI sem o uso de modelos 

substitutos. Além disso, a criação do modelo substituto via RBF foi mais 

eficiente que a criação do modelo via krigagem. 

• Apenas no último exemplo, o reservatório 3, a frente de Pareto encontrada via 

NBI apresentou vazios, devido à não linearidade deste reservatório. 

6.1 Sugestões para trabalhos futuros 

Baseado nos estudos e resultados obtidos, seguem algumas sugestões de 

continuidade do presente trabalho: 

• Comparar a krigagem do pacote de otimização DACE com a krigagem da 

plataforma DAKOTA, o Gaussian Process. 

• Utilização de outras funções na otimização multiobjetivo. Entre elas a produção 

acumulada à curto prazo e a produção acumulada à longo prazo; 

• Aplicação das técnicas desenvolvidas nesta dissertação no problema de ajuste ao 

histórico; 

• Como existem incertezas geológicas, econômicas, entre outras, seria interessante 

o estudo da otimização sob incerteza; 

• Aplicação da metodologia para solução de outros casos da engenharia prática; 

• Para encontrar a “melhor” região de Pareto, utilizar um critério de utilidade, 

através de uma curva de isoutilidade. 

• Utilizar menos pontos para a criação da frente de Pareto, nos problemas MO, 

interpolar mais pontos e utilizá-los como pontos iniciais para a solução do 

problema MO; 

• A locação dos poços do problema UNISIM-I-Mod foi feita à mão, o que 

demandou muito tempo e a configuração escolhida provavelmente não foi uma 

solução ótima, logo a otimização da locação dos poços é uma boa sugestão de 

trabalho futuro.  
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