‘Centro .
~delnformatlca

Pés-Graduacao em Ciéncia da Computacao

“Avaliacdo de Performabilidade de Riscos de
Desenvolvimento em Projetos de Software”

Por
Alexsandro Marques de Melo

Dissertacao de Mestrado

e

¢

B

Universidade Federal de Pernambuco

J[=3

5]

posgraduacao@cin.ufpe.br
www.cin.ufpe.br/~posgraduacao

RECIFE
2014



e~
| [~=4

&

Universidade Federal de Pernambuco

Centro de Informatica
Pés-graduacdo em Ciéncia da Computacao

s

Alexsandro Marques de Melo

‘““Avaliacao de Performabilidade de Riscos de
Desenvolvimento em Projetos de Software”

Trabalho apresentado ao Programa de Pos-graduacdo em
Ciéncia da Computacdo do Centro de Informdtica da Uni-
versidade Federal de Pernambuco como requisito parcial
para obtengdo do grau de Mestre em Ciéncia da Computa-

cdo.

Orientador: Prof. Dr. Eduardo Anténio Guimardes Tavares

RECIFE
2014



Catalogacao na fonte
Bibliotecaria Joana D’Arc L. Salvador, CRB 4-572

Melo, Alexsandro Marques de.

Avaliacéo de performabilidade de riscos de
desenvolvimento em projetos de software / Alexsandro
Marques de Melo. — Recife: O Autor, 2014.

100 f.: fig., tab.

Orientador: Eduardo Anténio Guimaraes Tavares.
Dissertacdo (Mestrado) - Universidade Federal de

Pernambuco. CIN. Ciéncia da Computacéo, 2014.
Inclui referéncias.

1. Engenharia de software. 2. Avaliac&o de riscos.
3. Petri, Redes de. 4. Diagrama de blocos. |.Tavares,
Eduardo Anténio Guimaraes (orientador). Il. Titulo.

005.1 (22. ed.) MEI 2014-89




Dissertacdo de Mestrado apresentada ptexsandro Marques de Melo a Pos-
Graduacédo em Ciéncia da Computacdo do Centro de Infornt&tithniversidade Federal
de Pernambuco, sob o tituloAvaliacdo de Performabilidade de Riscos de
Desenvolvimento em Projetos de Softwateorientada peloProf. Eduardo Antdnio

Guimaraes Tavarese aprovada pela Banca Examinadora formada pebbsgsores:

Prof. Palomero Martins Maciel
Centro déormatica / UFPE

Prof. Gabidves de Albuquerque Junior
DepartamedéoEstatistica e Informatica / UFRPE

Prof. Eduarintonio Guimaraes Tavares
Centro déoimatica / UFPE

Visto e permitida a impressao.
Recife, 27 de fevereiro de 2014.

Profa. Edna Natividade da Silva Barros
Coordenadora da P6s-Graduacéo em Ciéncia da Cogéputa
Centro de Informatica da Universidade FederaPe@ambuco.



A Deus, o que seria de mim sem a fé que eu tenho nele.



Agradecimentos

A Deus, por ter me iluminado durante esses dois anos de curso e por me dar forcas para
lutar em busca de meus objetivos.

Ao professor Eduardo Tavares, pelas valiosas orientacdes e pela motivacao para a
superacdo das dificuldades e limitacdes.

Aos Professores Paulo Maciel e Gabriel Alves, por terem aceitado o convite para
compor esta banca.

Aos demais professores do MoDCS, pelos ensinamentos transmitidos.

A minha esposa Wedillayne Marques, cujo apoio e compreensdo tornaram possivel
a realizacao deste trabalho.

A Marcelo Marinho, gerente de projetos do HPCIn e Sismica, amigo que me deu
grande apoio no desenvolvimento da minha pesquisa, agradeco pelo suporte e pelo for-
necimento dos dados necessdrios para a realizacao pratica deste trabalho.

Aos amigos Rosiberto, Anderson, Lubnnia, Danilo e Matheus pelos momentos de
estudo, descontracdo e por todo o apoio e ajuda.

Agradeco ainda a todos aqueles que de alguma forma contribuiram para a realizacao

deste trabalho, incentivando e apoiando.




"Cada sonho que vocé deixa pra trds, é um pedago do seu futuro que

deixa de existir''.

—STEVE JOBS



Resumo

Falhas em projetos é um fator de destaque na abordagem feita pela comunidade de en-
genharia de software e muito tem sido feito em prol do sucesso desses projetos, porém,
os riscos sempre existirdo. O aumento das taxas de sucesso em projetos de software re-
presenta um desafio significativo para essa industria, em que alguns riscos (por exemplo,
atrasos no cronograma, aumento de custos) podem levar os projetos ao fracasso. Nesse
contexto, a drea de geréncia de riscos tem uma importancia significativa. No entanto,
a falta de um processo de gerenciamento de riscos, aliada a estimativas deficientes de
custo e de tempo, sdo algumas das principais causas das falhas dos projetos de desenvol-
vimento de software.

O gerenciamento de riscos contribui positivamente para a reducdo e controle dos ris-
cos do projeto de software, através de sua identificagdo e quantificagdo. Foram propostas
vdrias técnicas para avaliar os efeitos de tais problemas indesejdveis, mas estimativas de
probabilidade sdo geralmente negligenciadas, e isso afeta uma avaliacdo adequada dos
riscos. Por isso, 0o impacto de riscos no desempenho de um projeto de software é um
aspecto importante que nao deve ser desprezado.

Este trabalho propde uma metodologia e modelos de dependabilidade e performabili-
dade para avaliacdo probabilistica de riscos de desenvolvimento em projetos de software.
Nesta metodologia, a avaliac@o de riscos € realizada utilizando diagramas de blocos de
confiabilidade e redes de Petri estocdsticas. Dois estudos de caso demonstram a viabili-
dade da técnica proposta. Com a aplicagdo da metodologia e dos modelos propostos, €
possivel verificar o impacto e avaliar a performabilidade dos riscos de desenvolvimento
em projetos de software. Além disso, essa metodologia possibilitard a avaliacdao de ou-
tros riscos de desenvolvimento, bem como a avalia¢do de performabilidade em outras
etapas do processo de desenvolvimento de software. Isso tudo pode ser utilizado pelos

gerentes de projetos de software para avaliar o impacto dos riscos em diferentes projetos.

Palavras-chave: Avaliacdo de Dependabilidade, Avaliacdo de Desempenho, Avalia-
cao de Performabilidade, Avaliacdo de Risco, Redes de Petri Estocéstica, Diagramas de
Bloco de Confiabilidade.




Abstract

Failures in software projects are a prominent factor in the approach taken by the software
engineering community and much has been done for the success of such projects; howe-
ver, there will always be risks. Increasing rates of success in software projects represent
a significant challenge for the industry in which some risks (e.g., schedule delays, incre-
ased costs) may lead to failure in projects. In this context, the area of risk management
has a significant importance. However, the lack of a process in risk management combi-
ned with deficient estimates of cost and time are some of the major causes of failures in
software development projects.

The risk management contributes positively to the reduction and control of the risks
in the software project through its identification and quantification. Various techniques
were proposed to evaluate the effects of such undesirable problems, but probability esti-
mates are generally neglected, thus affecting the proper assessment of the risks. There-
fore, the impact of risk on the performance of a software project is an important aspect
that should not be overlooked.

This paper proposes a methodology and models of dependability and performability
for probabilistic assessment of development risks in software projects. In this methodo-
logy, the risk assessment is performed by using reliability block diagrams and stochastic
Petri nets. Two case studies demonstrate the feasibility of the proposed technique. With
the application of the methodology and proposed models, it is possible to verify the
impact and assess the performability of development risks in software projects. Further-
more, this methodology allows the assessment of other development risks, as well as
the performability evaluation in other stages of the software development process. All
this can be used by software project managers to assess the impact of risks on different

projects.

Keywords: Dependability Evaluation, Performance Evaluation, Performability Evalu-

ation, Risk Assessment, Reliability Block Diagrams, Stochastic Petri Nets.




3.1
32
33
3.4
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3

Lista de Figuras

Atividades do Gerenciamento de Riscos Adaptados PMI (Guide 2013).. 29

Sistema de Filas Adaptado de (Bolch et al. 2006). . . . . . .. ... .. 31
Modelo em CTMC com dois estados e duas transi¢des. . . . . . . . . . 34
Arvore de dependabilidade Adaptado de Avizienis (2001). . . .. . .. 35
Estimador de Kaplan-Meier. . . . . .. ... ... ... ........ 44
Arranjoem SE€ries. . . . . . ... L. e 46
Arranjoem Paralelo. . . . ... ... ... ... o . 47
Arranjo K-out-of-n. . . . . . .. ... oo 47
Arranjo Série-Paralelo. . . . . .. ... ..o oo 47
Elementos de Redede Petri. . . . . ... ... ... ... ....... 48
Exemplode Redede Petri. . . . . .. ... ... ... ......... 48
Rede de Petri RepresentandooDia. . . . . . . ... ... ... .... 49
Exemplo de uma Rede de Petri com Peso nos Arcos. . . ... .. ... 49
Exemplode Redede Petri. . . . . .. ... ... ... ......... 51
Exemplo de Grafo de Alcangabilidade . . . . . ... ... .. ..... 51
Sequéncia . . . . ... L e e 52
Distribuicdo . . . . . . . . .. 52
Jungdo . . . L L 53
Escolha . . . . . . . . .. 53
Atribuicdo . . . . . L. e 53
Geracdo de Grafo de Alcangabilidade. . . . . . ... ... ... .... 57

Distribuicdes: (a) Erlang, (b) Hipoexponencial e (c) Hiperexponencial . 59

Atividades do Gerenciamento de Riscos Adaptado de (Somerville 2011). 62

Atividades do Método Proposto. . . . . . ... ..o oL 63
Modelo Componente Simples. . . . . . ... ... ... ........ 68
Modelo Cold Standby. . . . . . . . . .. ... . ... ... 69
Modelo Manuten¢do Preditiva/Reunido Periodica. . . . . . . . . . . .. 71
Modelo Performabilidade/Cascata . . . . . . . .. ... ... ..... 72
Composicao Hierdrquica . . . . . . . ... .. ... ... ....... 74
Modelo RBD sem Disting¢do de Desenvolvedor. . . . . . .. ... ... 77
Disponibilidade para Desenvolvedor sem Distin¢do em k-out-of-n. . . . 77

Confiabildade para Desenvolvedor sem Distin¢do em k-out-of-n. . . . . 78




5.4 ModeloRBD paraCendrio 1. . . . . ... ... ... ... ....... 79

5.5 Disponibilidade para Desenvolvedores Distintos em k-out-of-n. . . . . . 80
5.6 Modelo SPN cold standby. . . . . . .. ... ... ... ... .. 82
5.7 Modelo RBD hot standby. . . . . . . ... .. ... ... ....... 82
5.8 Disponibilidade para Cold/Hot Standby. . . . . . . . . ... ... ... 83
5.9 Disponibilidade para Implementacao de Requisitos em k-out-of-n. . . . 84
5.10 Confiabildade para Implementacao de Requisitos em k-out-of-n. . . . . 85
5.11 Reunides Periddicas. . . . . . . .. .. ... ... 86
5.12 Disponibilidade com Reunides Periédicas. . . . . . . . .. .. .. ... 87
5.13 Confiabilidade com Reunides Periddicas. . . . . .. . ... ... ... 87
5.14 Disponibilidade para Reunides Periddicas com Diferentes MTBPs. . . . 88
5.15 Confiabilidade para Reunides Periddicas com Diferentes MTBPs. . . . 88
5.16 Modelo Performabilidade . . . . . . .. ... ... ... ........ 89
5.17 Vazdo em k-out-of-n para Implemetacio de Requisitos em Ano~!. . .. 90

5.18 Vazio para Reunides Periédicas com Diferentes MTBPs em Ano~!. . . 90




3.1
32

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

Lista de Tabelas

Dados dos Tempos de Falhas. . . . . . ... ... ... ......... 43
Estimativas de Confiabilidade de Kaplan-Meier. . . . . . . .. ... .. 44
MTTFe MTTRem Meses. . . . . . . . . ... ... ... ...... 65
Resultados dos Cendrios. . . . . . .. .. .. ... ... .. ...... 66
Atribuidos Temporizados das Atividadesem Meses. . . . . . . ... .. 66
Resultados da Vazao dos Cendrios em Meses. . . . . . ... ... ... 67
Descricao dos Lugares do Componente Simples. . . . . . . . ... ... 68
Descri¢do das Transi¢des do Componente Simples. . . . . . . ... .. 68
Descricdo dos Lugares do Modelo Cold Standby. . . . . . . . ... .. 69
Descricao das Transi¢de do Modelo Cold Standby. . . . . . . . . . .. 70
Descri¢ao dos Lugares do Modelo Manutengao Preditiva. . . . . . . . . 71
Descricdo das Transi¢des do Modelo Manuten¢ao Preditiva. . . . . . . 71
Descricdo dos Lugares do Modelo de Performabilidade. . . . . . . . . . 72
Descri¢ao das Transi¢des do Modelo de Performabilidade. . . . . . . . 73
MTTF/MTTR em Meses sem Distin¢gdo de Desenvolvedor. . . . . . . . 77
Resultados da Disponibilidade para Cendrios em k-out-of-n. . . . . . . 78
Resultados da Confiabilidade para Cendrios em k-out-of-n. . . . . . . . 78
MTTF em Meses Distintos para Desenvolvedores. . . . . . . . ... .. 79
Numero Minimo de Desenvolvedores para Cada Cendrio. . . . . . . . . 79
Resultados para Desenvolvedores Distintos. . . . . . . ... ... ... 80
Penalidadesem USS$. . . . . . ... ... ... ... ... .. ... .. 80
Resultados para Cold/Hot standby. . . . . . . . ... ... ... .... 82
Métricas em Dias parao CendrioBase. . . . . .. ... ... ...... 84
Resultados de Cendrios k-out-of-n para Implementacdo de Requisitos. . 84
Resultados da Confiabilidade para Cendrios em k-out-of-n. . . . . . .. 85
Valores em Diasde PMeMTBP. . . . . . ... ... ... ....... 86
Resultados da Disponibilidade Assumindo Reunides Periédicas. . . . . 86
Resultados da Confiabilidade Assumindo Reunides Periddicas. . . . . . 87
Atributos das Transi¢cdo Temporizadaem Dias. . . . . . ... ... .. 89




BNCC

CMMI

CTMC

DE

FT

MTTR

JE

MTActivate

MTPB

MTTF

MTTR

PN

PM

PMI

PMBOK

RBD

RG

SFT

SRAEM

SRAEP

SPN

UML

Lista de Acronimos

Bayesian Networks with Causality Constraints
Capability Maturity Model Integration.
Continuous Time Markov Chains
Developer

Fault tree

Mean Time to Repair

Junior Develope

Mean Time to Activate
Mean Time Between Preventive Maintenances
Mean Time to Fail

Mean Time to Repair

Petri Nets

Preventive Maintenance

Project Management Institute

Project Management Body of Knowledge
Reliability Block Diagram

Reliability Graph

Software Fault Tree

Software Risk Assessment and Estimation Model
Software Risk Assessment and Evaluation Process
Stochastic Petri Nets

Unified Model Language




SE Senior Develop
SEI Software Engineering Institute
TR Trainee

XP Extreme Programming




Sumario

1 Introducio 16
I[.1 Objetivos . . . . . . . e 18
1.1.1  Objetivos Especificos . . . . . . ... ... ... ... ..... 19

1.2 Estruturado Documento . . . . .. .. ... ... ... . ..... 20
2 Trabalhos Relacionados 21
2.1 Avaliacdo Quantitativade Riscos . . . . . . . . ... ... ... ..., 21
2.2 Consideragdes Finais . . . . . ... ... ... ... .......... 25
3 Fundamentacao Tedrica 26
3.1 Gerenciamentode Riscos . . . . . ... .. ... .. ... .. 26
3.2 Avaliagiode Desempenho . . . . . . . ... ... ... ... ..., . 29
32.1 Modelos . .. ... .. 31
32.1.1 RedesdeFilas . . .. ... ... ........... 31

32.12 CadeiasdeMarkov . ... ... ... ........ 32

3.2.1.3 Redes de Petri Estocdsticas . . . . ... ....... 34

3.3 Avaliacdo de Dependabilidade . . . . . . ... ... ... .. 34
3.3.1 Técnicas Tolerantesa Falhas . . . . ... ... ......... 37

3.3.2 Técnicasde Modelagem . . . ... .. ... .......... 37

34 Sistemas Coerentes . . . . . . . . ... e e e 38
34.1 FungOes Estruturais . . . . . . .. ... ... ... ....... 39

342 Fungdes Légicas . . . .. ... ... ... .. ... . ..., 40

3.5 Avaliac¢do de Performabilidade . . . . . . ... ... ... ... .... 40
35.1 Modelos . .. ... ... 41

3.6 Censura . . ... ..l e e 42
3.6.1 Técnicade Kaplan-Meier. . . . . .. ... ... ........ 42

3.6.2 Teste Kolmogorov-Smirnov . . . . ... ... ......... 44

3.7 Diagramas de Blocos de Confiabilidade . . . ... ... ... ... .. 45
3.8 RedesdePetri . . . .. ... ... 48
3.8.1 RededePetriMarcada . . ... ................. 50

3.8.2 Grafo de Alcangabilidade . . . ... ... ... ........ 50

3.8.3 RedesElementares . . . ... ... ... ............ 50
383.1 Sequéncia . . ... ... ... ... 51

3.8.3.2 Distribui¢do . . . .. ... ... 51




3833 Juncdo . . . ...

3.8.3.4 Escolha Nao-Deterministica . . . . .. ... ... ..

3835 Atribuigdo . . ... ...

3.8.4 Propriedades das Redesde Petri . . . . . ... .........
3.8.4.1 Propriedades Comportamentais . . . . . .. ... ..

3.8.4.2 Propriedades Estruturais . . . . . ... ... .....

3.9 Redede Petri Estocéstica . . . . . ... ... ... ..........
3.10 Phase-Type Distributions . . . . . . . . . . . . . ...

3.11 Consideracoes Finais . . . . . . .. ... .. ... ... ........

4 Metodologia e Modelos

4.1 Meétodo Proposto . . . . . ..
4.2 Exemplo Motivacional . . . .. ... ... ... .. . ...
4.3 Modelos Propostos . . . . . . . ...
43.1 ModelosRBD . ... ... ... ... .
432 ModelosSPN . . . . . .. .
43.2.1 Componente Simples . . . ... ...........
43.2.2 Modelo Cold Standby . . . . . . ... ... .....

4.3.2.3  Modelo Manuteng¢ao Preditiva/Reunides Periddicas
4.3.3 Modelo de Performabilidade . . . . . . .. ... ... .. ...
434 Composicdo Hierdrquica . . . . . . .. ... ... ... ....

4.4 Consideragbes Finais . . . . . .. .. ... .. oo

S Estudos de Caso

5.1 Estimando MTTFe MTTR . . . . . ... ... ... ... .......
5.1.1 EstudodeCasol ... ......................
5.1.1.1  Cenarios sem Distincao Desenvolvedor . . . . . . . .
5.1.1.2  Cendrios com Desenvolvedores Distintos . . . . . . .

5.1.1.3  Programacgdo em Pares e Desenvolvedor de Backup
5.1.2 EstudodeCaso?2 . .. ... ... ... .. ... ... ...,
5.1.2.1 Minimo de k Desenvolvedores . . . ... ... ...
5.1.2.2 Reunides periddicas . . . . . . ... ... L
5.1.2.3  Avaliacdo de Performabilidade . . .. ... ... ..

5.2 Consideragdes Finais . . . . .. ... ... .. ... ..........




6 Conclusao
6.1 Contribuicdes . .
6.2 Trabalhos Futuros

Referéncias




Introducao

A mente que se abre a uma nova ideia jamais voltard

ao seu tamanho original.

—ALBERT EINSTEIN

O mercado global de software cresce a cada ano, e espera-se um aumento no valor
de US$ 396,7 bilhdes em 2016 (um aumento de 35,4% desde 2011) (Guide 2012), o que
exige decisdes rapidas e melhoria constante dos processos de desenvolvimento. Com a
intensificacdo da concorréncia, as empresas de desenvolvimento de software tém se es-
forcado para produzir software com menor time-to-market para ampliar sua participagao
neste negdcio biliondrio. No entanto, ainda sdo comuns em empresas de desenvolvi-
mento de software, problemas relacionados com a entrega do produto/servico de soft-
ware, em que orcamentos sao extrapolados, levando a consequente falha dos projetos de
software. A comunidade da engenharia de software tem alertado as empresas do ramo
para alguns fatores que tém efetivamente ameacado o sucesso dos projetos de software,
tais como: requisitos e equipe.

Gerenciar projetos de software de forma bem sucedida pode garantir que determina-
das empresas conquistem maior participacdo de mercado, particularmente considerando
a possibilidade de serem impostas a estas empresas varidveis como competi¢do intensiva,
escassez de recursos, agilidade, menores custos e prazos.

Projetos de desenvolvimento de software possuem incertezas (riscos), dos quais o
controle € um fator determinante para o sucesso ou fracasso de um projeto. Estudos
recentes (Report 2010) indicam que apenas 32% dos projetos de software sdo entregues
no prazo e cronograma estipulado. Do restante, 44% sofrem de atrasos com custos

elevados e problemas de especificacdo de requisitos, 24% sdo cancelados.

16



Uma notdria dificuldade para a comunidade cientifica de software é a entrega de
produtos de software no prazo previsto e dentro do orcamento. A Causa principal para
essas falhas € o fato de que todos os projetos estdo sujeitos a riscos, e saber como tratd-
los € um fator crucial para o seu sucesso.

Projetos de software falham devido a fatores de riscos (por exemplo, atrasos no cro-
nograma e aumento dos custos), os quais podem causar grandes perdas em relagdo ao
tempo, dinheiro e credibilidade no mercado. Assim, a indudstria de software tem ado-
tado metodologias, técnicas e ferramentas para atingir os objetivos do projeto no prazo
e dentro do or¢amento planejado. Muitos estudos enfatizam o gerenciamento de riscos
como a principal causa do sucesso ou fracasso de projetos de software. Neste contexto,
o gerenciamento de riscos contribui positivamente para o sucesso do projeto, mas esse
gerenciamento ainda enfrenta obstdculos para serem inseridos nas metodologias das em-
presas de desenvolvimento de software (Bakker et al. 2009).

Este € um cendrio normalmente encontrado no mercado de desenvolvimento de soft-
ware e requer grande esforco por parte das empresas desse segmento. A partir deste
cendrio, surgiu a necessidade de as empresas de software desevolverem metodologias
e técnicas para que seus projetos sejam mais previsiveis e que sejam entregues dentro
dos prazos e or¢amentos estabelecidos. Em sequéncia, surge a necessidade de adotar
o gerenciamento de riscos no desenvolvimento de soffware, objetivando o sucesso dos
projetos.

Riscos em um projeto de software ameacam a sua viabilidade. Em outras palavras,
sempre que os riscos se tornam reais, eles podem afetar consideravelmente a execucio do
projeto, ou mesmo levar a seu cancelamento. A categoria de risco proeminente (Guide
2013) sao riscos de projeto (que contemplam os riscos de desenvolvimento), uma vez
que pode afetar o cronograma do projeto ou 0s recursos necessarios para o desenvolvi-
mento de software (por exemplo, rotatividade de desenvolvedor).

A disciplina de gerenciamento de riscos € uma das mais importantes no processo de
desenvolvimento de software, pois tem como finalidade identificar e mitigar os riscos de
projetos, continuamente, através do ciclo de vida de um projeto. O gerenciamento de
riscos permite aos gerentes de projetos de software alcancar seus objetivos no desenvol-
vimento de um projeto, contribuindo para um melhor tratamento das incertezas (riscos).
Com o objetivo de controlar os riscos, a geréncia de riscos sugere agoes preventivas que
promovam a mitigacao, estimativas ou eliminacdo dos eventos de riscos identificados no
projeto de software.

Na atualidade, com as limitadas ferramentas disponiveis no mercado de software, as

17



1.1. OBJETIVOS

técnicas para o gerenciamento de riscos ndo conseguiram entrar no cotidiano da grande
maioria das empresas de software. Dessa forma, tanto as ferramentas como as técnicas
estdo sendo aprimoradas e criadas constamente, buscando sempre o sucesso dos projetos
de software.

Avaliacdo de riscos (Bakker et al. 2009) é geralmente realizada utilizando modelos
qualitativos. No entanto, os modelos quantitativos podem ajudar os gerentes de projeto
a estimar a ocorréncia de riscos (por exemplo, estimativas de probabilidade) e, com isso,
os gerentes de projetos podem realizar um melhor planejamento para evitar os riscos
inerentes a projetos de software.

Avaliacdo de dependabilidade (Maciel et al. 2011) fornece vérias técnicas baseadas
em modelos formais (por exemplo, redes de Petri estocésticas (Balbo 2001) para esti-
mar a ocorréncia de falhas do sistema com base em estimativas de probabilidade. Em
relagdo a projetos de software, também podem ser adotadas tais técnicas, fornecendo
informacdes importantes para os gerentes sobre os riscos identificados no projeto.

Além disso, a avaliacdo de performabilidade (Aratjo & et al. 2011) (ou seja, depen-
dabilidade e desempenho) lida com o efeito de eventos de falha e atividades de reparacao
na degradacdo do desempenho do sistema. No contexto de projetos de software, a per-
formabilidade fornece técnicas e modelos importantes para avaliar o impacto dos riscos

na execuc¢do de processos de desenvolvimento.

1.1 Objetivos

O gerenciamento de risco € uma atividade fundamental na gestdo de projetos, pois au-
menta consideravelmente a chance de um projeto ser concluido com sucesso.

Projetos de software de sucesso (por exemplo, entregues no prazo e atendendo as
restri¢des de custo) ainda sao um desafio importante para a inddstria. Neste contexto,
0s riscos merecem uma atencao especial, uma vez que podem levar ao fracasso de um
projeto. Neste trabalho foram propostas vdrias técnicas para avaliar os efeitos de tais
problemas indesejaveis, porém, como as estimativas de probabilidade sdo geralmente
negligenciadas, isso afeta uma avaliacdao adequada dos riscos. Além disso, o impacto
desses riscos no desempenho de um projeto de software € um aspecto importante que
nao deve ser desprezado.

Este trabalho propde uma metodologia e modelos para avaliacdo de performabili-
dade de riscos de desenvolvimento em projetos de software. Esta metodologia apresenta
uma série de etapas, que evoluem desde o modo de funcionamento/falha do projeto de

software, definicdes de métricas e andlise de dados até a geracdo do modelo e avali-

18



1.1. OBJETIVOS

acdo dos cendrios. Os modelos levam em conta diagramas de blocos de confiabilidade
(RBD) (Rausand & Hgyland 2004, Kuo & Zuo 2003) e redes de Petri estocésticas (SPN)
(Balbo 2001), considerando-se uma técnica de modelagem hibrida para calcular métri-
cas de performabilidade. Este trabalho foca em riscos de desenvolvimento relacionados
a rotatividade de desenvolvedor e a implementacio de requisitos, riscos estes importan-
tes e que afetam um projeto de software (Shahzad & S. 2010, Basit & Abdullah 2009,
Izquierdo-cortazar & et al. 2010, Tracy & David 2008).

Com a apliacdo da metodogia e modelos propostos, € possivel conceber vérios ce-
ndrios para avaliar o respectivo impacto sobre dependabilidade e performabilidade de
riscos de desenvolvimento em projeto de software. Além disso, essa metodologia pos-
sibilitard a avaliacdo de diferentes riscos de projeto de software, por exemplo, 0s riscos
relacionados a andlise de requisitos.

Isso tudo pode ser utilizado pelos gerentes de projetos para estimar os riscos, ado-
tando os modelos propostos e fornecendo informagdes importantes sobre os riscos iden-
tificados. Dessa forma, tal metodologia auxilia os gestores na tomada de decisdes, bem
como, na realizado de um melhor planejamento para evitar e mitigar os riscos inerentes

ao projeto de software.

1.1.1 Objetivos Especificos

O gerenciamento de riscos € uma atividade que merece uma atengao especial em proje-
tos de software e, como consequéncia, varios modelos foram propostos para avaliar o
impacto dos riscos durante a vida do projeto. Em geral, esses modelos nos tornam ca-
pazes de raciocinar sobre os impactos dos riscos, mas estimativas de probabilidade sdo
geralmente negligenciadas, afetando uma avaliacdo adequada dos riscos. Neste contexto,
o presente trabalho propde uma metodologia para auxiliar os gerentes de projetos de soft-
ware a avaliarem os riscos de desenvolvimento em projetos. Tal abordagem é baseada
em modelos de dependabilidade e performabilidade (por exemplo, redes de Petri esto-
césticos e diagramas de bloco de confiabilidade) para avaliagdo probabilistica dos riscos
de desenvolvimento, relacionados a rotatividade de desenvolvedor e a implementagdo de
requisitos. De forma mais especifica, para se avaliar os riscos de desenvolvimento em

projeto de software, o presente trabalho se propoe a:

* Propor uma metodologia que auxilie os gerentes de projetos de software a realiza-
rem avaliacdo de performabilidade de riscos de desenvolvimento em projetos de
software;

19



1.2. ESTRUTURA DO DOCUMENTO

* Propor modelos de dependabilidade e performabilidade (SPN e RBD) para realizar

avaliacdo probabilistica dos riscos de desenvolvimento em projetos de software;

* Definir métricas para estimar o impacto dos riscos de desenvolvimento em projetos

de software;

* Elaborar estudos de casos para avaliar e apresentar a ado¢do da metodologia e

modelos propostos.

1.2 Estrutura do Documento

No Capitulo 2 € apresentada a contextualizacdo dos trabalhos relacionados a esta disser-
tacao.

O Capitulo 3 apresenta a fundamentacio tedrica em relacdo ao gerenciamento de
riscos, avaliacdo de desempenho, avaliacdo de dependabilidade, avaliacdo de performa-
bilidade, censura, diagramas de bloco de confiabilidade e redes de Petri.

No Capituo 4 sdao apresentados a metodologia e os modelos propostos em SPN e
RBD para estimar as métricas de dependabilidade e performabilidade. Posteriormente,
um exemplo motivacional € descrito.

No Capituo 5 sdo apresentados dois estudos de caso, baseados na metodologia e
nos modelos propostos, para avaliagdo do impacto dos riscos de desenvolvimento em
projetos de software. O estudo de caso 1 trata sobre a rotatividade de desenvolvedor
como um risco potencial, ja o estudo de caso 2 tem a implementacdo de requisitos como
risco relacionado.

O Capitulo 6 apresenta as conclusdes desta dissertagdo, assim como as principais

contribui¢des e propostas para trabalhos futuros.

20



Trabalhos Relacionados

E preferivel saber poucas coisas muito

bem a saber muitas coisas muito mal.

— CID CERDAL

Este capitulo tem por finalidade apresentar alguns trabalhos representativos para esta
dissertacdo, destacando-se alguns trabalhos que realizam avalia¢do quantitativa de riscos
em projetos de software, relacionados ao contexto dessa dissertacdo, e também alguns
trabalhos na area de gerenciamento de riscos em projetos de software para avaliacdo de

desempenho.

2.1 Avaliacao Quantitativa de Riscos

Atualmente, desenvolver software com menor time-to-market € uma necessidade do mer-
cado global. A adog¢do da disciplina de gerenciamento de riscos em projetos de software
vem crescendo e € uma atividade de destaque na gestdo de projetos de software e, como
consequéncia, varios modelos foram propostos para avaliar o impacto dos riscos durante
a vida do projeto. Esses modelos sdo capazes de prever os impactos dos riscos, mas es-
timativas de probabilidade sao geralmente negligenciadas e, consequentemente, afetam
uma avaliacdo adequada dos riscos.

Avaliacdo quantitativa (Bakker et al. 2009) de riscos em projetos de software nao €
uma pratica comum. No entanto, a comunidade de engenharia de software necessita de
técnicas de avaliacdo quantitativa, e algumas obras representativas foram desenvolvidos
ao longo dos anos.

Gupta e Sadiq (Gupta & Sadiq 2008) propdem modelo de Avaliacdo de Risco e Esti-
mativa (SRAEM) para avaliar os riscos em projetos de software, eles consideram alguns

21



2.1. AVALIACAO QUANTITATIVA DE RISCOS

fatores de risco, tal como: modificacdo de requisitos (por exemplo, adicdo, exclusdo).
Tal técnica adota pontos de funcao, erro de medicao, erro de modelo e erro de suposi¢dao
para quantificar ocorréncia de risco. Este modelo avalia o risco incremental para cada
fase do processo de desenvolvimento de software. O modelo € 1til apenas se tivermos
as informacdes sobre os pontos de funcao do projeto de software.

Wattanapokasin e Rivepiboon (Wattanapokasin & Rivepiboon 2009) propdem um
modelo matemético para estimar os riscos relacionados as diferencas culturais em uma
equipe de desenvolvimento de software, tais como: a lingua falada, estilo de comunica-
¢do, método de desenvolvimento e fusos hordrios diferentes. A técnica assume dados
histéricos ou dados fornecidos pelo gerente do projeto e um processo de Poisson para
estimar probabilidades de risco. O modelo € limitado aos riscos citados anteriormente,
mas poderiam incluir outros fatores de riscos culturais, tais como comunicacao entre
stakeholders, dentre outros.

Falahah (Falahah 2011) descreve um método para quantificagdo de risco, com foco
em trés elementos de risco: (i) risco técnico, (ii) risco de custo, e (iii) risco de programa-
¢do. O método fornece estimativas de probabilidade através de um questiondrio como
dados de entrada. O método estima o risco em cada fase do projeto de software a medida
que progride de fase para fase. Este método nao leva em conta as questdes da comple-
xidade do software, que desempenham um papel importante na determinagdo do risco
para os projetos de software. O método proposto também nao leva em conta as questoes
relacionadas com os requisitos (por exemplo, alteragcado).

Em (Hu & et al. 2012), os autores propdoem um modelo baseado em redes bayesianas
com restricdes de causalidade (BNCC) para anélise de risco de projetos de desenvolvi-
mento de software. O modelo leva em conta alguns fatores de risco relacionados (por
exemplo, requisito, equipe e usudrios do sistema). O modelo se concentra em encontrar
a correlacdo entre fatores de risco e os resultados do projeto.

Em (Boness & et al. 2008), Boness et al. apresentam uma técnica para avaliar o
risco do projeto de software e perdas relacionadas durante a fase de andlise de requisi-
tos. Essa técnica realiza a avaliacdo dos riscos por meio de métricas subjetivas de alto
nivel, coletadas durante a anélise de requisitos e utiliza graficos meta para estimativas
de probabilidade.

Rousan et al. (Al-Rousan 2009) apresentam uma ferramenta para avaliar probabilis-
ticamente os riscos em projetos de software web, através de redes bayesianas e, a partir
de dados de projetos anteriores, a ferramenta concentra-se nos fatores de riscos (por

exemplo, requisitos e stakeholders).

22



2.1. AVALIACAO QUANTITATIVA DE RISCOS

Em (qiu Liu et al. 2012) os autores propdem um método para a avaliacdo de risco
de projeto de software. O método leva em conta alguns fatores de riscos (por exemplo,
técnicos e custos). Esse método realiza avaliagdo dos riscos através de férmulas fechadas
e pesos sao atribuidos aos fatores de riscos.

Em (Amrit & Mark 2004) os autores apresentam uma ferramenta para avaliacio de
risco durante o desenvolvimento de software, tendo em conta seis fatores de risco: (i)
uso de uma metodologia inadequada, (ii) falta de envolvimento do cliente, (iii) falta de
praticas formais de gerenciamento de projetos, (iv) dissimilaridade de projetos anteri-
ores, (v) complexidade do projeto, e (vi) volatilidade de requisitos. O usudrio associa
pesos a cada risco especificado, de modo que a ferramenta fornece um valor de 10 (baixa
probabilidade) a 100 (alta probabilidade) para estimar a ocorréncia de risco.

Da mesma forma, Mustafa et al. (Mustafa & Jalil 2010) propdem uma ferramenta de
avaliagcdo de risco, concentrando-se sobre os riscos relacionados com os requisitos do
produto e processo de desenvolvimento. A partir de um conjunto de pesquisas, um valor
€ obtido entre 1 (baixo) e 3 (alto) para estimar a probabilidade de risco.

Sadig et al. (Sadiq 2010) apresenta a abordagem SRAEP que leva em conta SFT para
estimar e priorizar riscos em projetos de software. Essa abordagem identifica e analisa
os riscos do projeto de desenvolvimento de software. A abordagem contempla alguns
fatores de riscos (por exemplo, requisitos).

Tang e Wang (Tang & long Wang 2010) apresentam um modelo para avaliagdo de
riscos em projetos de software, no qual alguns fatores de riscos sdo abordados (por exem-
plo, tecnologia utilizada, complexidade do software que estd em desenvolvimento). O
modelo propde uma hipétese de que o risco do projeto de software é baseado na Teo-
ria dos Conjuntos Fuzzy. Eles também adotam a ldgica fuzzy para avaliar e calcular a
probabilidade dos riscos e seus respectivos impactos.

Em (Foo & Muruganantham 2000) os autores propdem o Modelo (SRAM) para ava-
liacdo de riscos em projetos de desenvolvimento de software, que abrange nove elemen-
tos criticos (i) complexidade do software, (i1) pessoal envolvido no projeto, (iii) confia-
bilidade alvo, (iv) requisitos do produto, (v) método de estimativa, (vi) método de mo-
nitoramento, (vii) processo de desenvolvimento adotado, (viii) usabilidade do software,
e (ix) ferramentas utilizadas para o desenvolvimento. Um questiondrio para avaliar a
probabilidade de um risco € especificado. Um conjunto de perguntas é cuidadosamente
escolhido para cada um desses elementos com trés alternativas de respostas cada. As
respostas estdo dispostas em ordem crescente de risco. Este modelo considera o método

de priorizacdo como uma unica etapa de avaliagdo de risco, mas nio especifica como a

23



2.1. AVALIACAO QUANTITATIVA DE RISCOS

priorizacdo seria feita.

Em (Solutions 2006) é apresentada uma ferramenta de gestdo de riscos para ambi-
entes de multiplos projetos de desenvolvimento de software, que utiliza componentes
de inteligéncia artificial e ontologia fundamentada na taxonomia de riscos do SEI. Tal
ferremanta € aderente ao modelo CMMI garantindo, desta forma, a qualidade do pro-
cesso de desenvolvimento. A ferramenta auxilia os gerentes de projeto na execucao das
atividades de identificacdo, monitoracdo e controle dos riscos.

Knob et al. (Knob & et al. 2006) propdem uma ferramenta que tem como objetivo
auxiliar equipes de projetos nas tarefas relacionadas a geréncia de riscos em projetos de
software. A ferramenta foi projetada para estar em comformidade com os objetivos e
praticas sugeridos pelo PMBOK e CMMI.

Ao longo dos ultimos anos tém sido propostos alguns trabalhos cientificos na area de
gerenciamento de riscos em projetos de software para avaliacdo de desempenho. Entre-
tanto, varios trabalhos representativos avaliam o desempenho dos projetos e processos
de software.

Em (Zowghi & Nurmuliani 2002), os autores apresentam um modelo para avaliar
o impacto da volatilidade dos requisitos no desempenho dos projetos de software. A
volatilidade dos requisitos € caracterizada pelas diferengas ou divergéncias e os conflitos
entre os usudrios/stakeholders sobre os requisitos. Os autores definem que a volatilidade
dos requisitos estd associada negativamente com o cronograma, custo e desempenho do
projeto de software. O modelo fornece estimativas de probabilidade usando andlise de
regressao e questionario como dados de entrada.

Em (Yan & Yu-feng 2011), os autores apresentam um modelo de previsao estatistica
para estimar o desempenho no processo de desenvolvimento de software, tendo em conta
equacdes de forma fechada com base em analise de regressdo. O modelo assume dados
historicos para estimar algumas métricas (por exemplo, média do nivel de habilidade da
equipe e cobertura de teste).

Duarte et al. (Duarte & Raza 2012) propdem uma ferramenta para analisar quantita-
tivamente o desempenho dos desenvolvedores de software com base em dados historicos
e formulas fechadas. As métricas de interesse incluem a produtividade e o tamanho da
equipe.

Chen et al. (Pei-Chi & C. 2012) propdem um modelo de regressao linear para avaliar
a relac@o entre as caracteristicas da equipe do projeto de software e desempenho da
equipe. O modelo define um conjunto de hipéteses (por exemplo, existe relacao negativa

entre a diversidade da equipe e desempenho do projeto, existe relagdo positiva entre a

24



2.2. CONSIDERACOES FINAIS

flexibilidade da equipe e o desempenho do projeto) para avaliar tais questoes.

Marinho et al. (Marinho & et al. 2010) propdem um método para avaliacdo de de-
sempenho de processos de testes de software. De Diagramas UML, um mapeamento é
definido, a fim de gerar modelos de redes de Petri estocdsticas. Utilizando o modelo, é
possivel avaliar o impacto das mudancas do processo de teste de software e simulagdes
sao adotados para obtencao de estimativas. Além disso, o método possibilita avaliar di-
ferentes alternativas de implementacdes, bem como a verificagdo de melhor composi¢ao
de recursos humanos para as atividades do processo de teste de software.

Em (A. Schmietendorf & Rautenstrauch 2000) os autores propdem um modelo para
avaliar o desempenho dos processos de softwares. O modelo se baseia no CMMI do SEI
e é baseado em um catdlogo de questiondrios para avaliar o desempenho dos processos
de softwares. Dessa forma, com esse modelo € possivel avaliar processos de softwares
com o termo de desempenho. O modelo proposto auxilia no estabelecimento de proces-
sos para prover um bom desempenho das atividades desse processo.

Diferente dos trabalhos anteriores, essa dissertacdo apresenta uma abordagem ba-
seada em modelos de dependabilidade e desempenho (performabilidade), para estimar
os riscos de desenvolvimento em relacdo a rotatividade de desenvolvedor e implemen-
tacdo de requisitos. Além disso, a abordagem proposta também considera técnicas de

tolerancia a falhas para mitigar o impacto dos riscos.

2.2 Consideracoes Finais

Este capitulo apresentou alguns trabalhos cientificos representativos para esta disserta-
cdo. Em tais trabalhos, é apresentada grande variedade de métodos e modelos que sdo
utilizados para avaliagdo quantitativa de riscos em projetos de software, bem como para

avaliacdo de desempenho em projetos de software.

25



Fundamentacao Teorica

Se ndo puder vencer pelo

talento, venca pelo esforco.

—MAX BEERBOHM

Este capitulo apresenta os conceitos sobre gerencimento de riscos, incluindo as cate-
gorias de riscos e as atividades do gerenciamento de riscos. Além disso, sdo abordados
conceitos sobre avaliacdo de desempenho, avaliagdo de dependabilidade, avaliacdo de
performabilidade e censura. Em seguida s@o apresentados os diagramas de bloco de con-
fiabilidade, tais como os arranjos adotados. Posteriormente, é descrita uma introdugao
sobre redes de Petri, assim como definicdes, conceitos bésicos e propriedades, as quais
podem ser divididas em duas categorias: propriedades comportamentais e propriedades
estruturais. Por fim, sd3o apresentadas as redes de Petri estocasticas (SPNs), que € a

extencdo de redes de Petri proeminentemente adotada neste trabalho.

3.1 Gerenciamento de Riscos

O desenvolvimento de software é uma atividade complexa, por causa de intimeros fatores
de riscos, como atrasos no cronograma, aumento dos custos, dentre outros. No entanto,
esta complexidade faz com que grande parte dos projetos de software extrapolem o prazo
e orcamento previstos. Um gerenciamento eficaz tem fundamental importancia para o
sucesso de projetos de software.

Um dos objetivos da geréncia de projetos € prever os riscos que podem afetar o bom
andamento do projeto e definir acOes a serem tomadas para conter sua ocorréncia ou,

quando nao for possivel evitar a ocorréncia, reduzir seus impactos.

26



3.1. GERENCIAMENTO DE RISCOS

Podemos pensar no risco como alguma circunstancia adversa. Eles podem ameacar
0 projeto, o software que esta sendo desenvolvido ou a organizagdo (Somerville 2011).
Gerencia-los, portanto, € uma questdo essencial para o sucesso dos projetos de software.

As empresas de desenvolvimento de software lidam com riscos e necessitam gerencid-
los constantemente, como forma de antecipar e minimizar o efeito de eventos indeseja-
veis que possam impactar negativamente nos projetos de software e, consequentemente,
levar a falha do projeto.

O gerenciamento de riscos € uma técnica empregada na engenharia de software, o
qual representa um grande instrumento para a geréncia desses projetos. O gerenciamento
de riscos, basicamente aumenta a probabilidade e o impacto de eventos positivos e di-
minui a probabilidade e o impacto dos eventos negativos do projeto de software (Guide
2013). Assim, seu grande objetivo € ajudar os gerentes de projeto de software a entender
e gerenciar incertezas durante o desenvolvimento do software. O seu uso, reune agoes
como identificagcdo de incertezas (riscos), cdlculo das probabilidade e dos impactos, de-
senvolvimento de respostas para eliminar, reduzir ou lidar com riscos. O controle sobre
tais incertezas € um forte fator de determinagdo do sucesso ou fracasso. A geréncia de
riscos, portanto, € crucial para um bom gerenciamento de projeto de software (Pressman
2006).

Sao varios os tipos de riscos que podem afetar a execuc¢do de um projeto de software,
tais como, riscos de rotatividade de membros da equipe, em que pessoas fundamentais
do projeto deixam-no antes do término; riscos relacionados a mudangas de requisitos,
podendo afetar o prazo, cronograma e custos do projeto. Além destes, riscos de mudan-
cas de tecnologias, em que a tecnologia bésica do sistema foi superada por uma nova
tecnologia. Assim, o gerenciamento de riscos € uma aréa de fundamental importancia
na gestdo de projetos de software, porque aumenta consideravelmente a chance de um
projeto obter sucesso.

Os riscos em projetos de software sao divididos em 3 categorias (Pressman 2006):

* Riscos de projeto: s@o os riscos que afetam o cronograma ou os recursos dos
projetos. Se os riscos se tornarem reais, o tempo e o custo do projeto tendem a
aumentar. Os fatores relacionados a estes riscos sdo: pessoal, recursos, clientes e

requisitos. Dessa forma, podem atrasar o cronograma e aumentar os custos;

* Riscos de produto: sdo os riscos que afetam a qualidade ou o desempenho do
software que estd em desenvolvimento. Se os riscos se tornarem reais, a imple-

mentacdo do projeto pode se tornar invidvel. Tais riscos, envolvem problemas

27



3.1. GERENCIAMENTO DE RISCOS

de linguagem de programacdo utilizadas, interface, design, manutencdo, dentre

outros, consequentemente, podem ameacar a qualidade do projeto;

* Riscos de negdcio: sao os riscos que afetam a organizagao que estd desenvolvendo
ou adquirindo o software. Caso 0s ricos se tornem reais, o projeto pode tornar-
se inviavél e até cancelado. Os riscos de negdcio sdo: substituigdo do gerente
do projeto, desenvolvimento de um software que ndo se adequa ao mercado e

desenvolvimento de um software sem demanda.

Gerenciamento dos riscos de um projeto inclui um processo que trata do planeja-
mento, identificacdo, andlise, resposta, monitoramento e controle dos riscos em um pro-
jeto (Guide 2013), prevendo, assim, os riscos que podem afetar o sucesso do projeto de
software e, consequentemente, permitindo que se tomem as medidas necessdrias para
evitar os riscos. O processo de gerenciamento de riscos € um processo iterativo, que
continua ao longo do projeto (Somerville 2011).

O processo de gerenciamento de riscos envolve varias atividades (Somerville 2011,
Guide 2013):

* Identificacdo de riscos: sdo identificados os possiveis riscos de projeto, produto/-

servico e negocios;

* Andlise de riscos: sdo avaliadas as possibilidades e as consequéncias da ocorréncia

desses riscos.

* Planejamento de riscos: sdo tracados planos para enfrentar os riscos, seja evitando-

0s, seja minimizando seus efeitos sobre o projeto;

* Monitoramento e controle de riscos: o risco é constantemente avaliado e os planos
para a sua diminuicao sdo revisados, a medida que mais informacdes sobre eles se

tornem disponiveis.

Boa parte dos riscos de projetos de software pode ser minimizada com a definicao
de um processo de gerenciamento de riscos que esteja de acordo com a realidade da
empresa de software onde se deseja implementar o gerenciamento de riscos.

Desta forma, os métodos e modelos, disponiveis na literatura de Engenharia de Soft-
ware, referentes ao processo de gerenciamento de riscos utilizam estas atividades.

O gerenciamento de riscos em projetos de software tornou-se uma atividade "chave"no
desenvolvimento de software, pois introduz respostas adequadas com rapidez, para in-

fluenciar positivamente no resultado do projeto.

28



3.2. AVALIACAO DE DESEMPENHO

Gerenciamento de Riscos

Planejamento de Riscos Identificagdo de Riscos Qualificag3o de Riscos

Quantificagdo de Riscos Resposta de Riscos Controle de Riscos

Figura 3.1: Atividades do Gerenciamento de Riscos Adaptados PMI (Guide 2013).

O propésito do gerenciamento de riscos € identificar riscos assim que possivel, esta-
belecer estratégia no desenvolvimento do soffware para mitigar e/ou eliminar estes ris-
cos, criar e executar um processo de gerenciamento como uma parte global do processo

de desenvolvimento de software.

3.2 Avaliacao de Desempenho

O desempenho € geralmente definido como o grau em que o sistema realiza suas fun¢des
designadas dentro de determinados limites (por exemplo, a velocidade) (Trivedi & et al.
2009). A avaliagdo de desempenho (Hermanns et al. 2002) tem sido de grande importan-
cia nas pesquisas de desenvolvimento e otimizagdo de sistemas, ou seja, uma atividade
essencial para promover melhorias na qualidade dos mesmos.

A avaliacdo de desempenho € utilizada para a avaliagdo quantitativa de sistemas. A
avaliagdo se relaciona a descri¢do, a analise e a otimizagdo do comportamento dindmico
e dependente do tempo dos sistemas (Hermanns et al. 2002). Dessa forma, a avaliagdo
de desempenho nos possibilita lidar com problemas frequentemente encontrados em
sistemas computacionais (por exemplo, identificacdo de gargalos, carga de trabalho e
comparacao de sistemas).

A avaliacdo de desempenho geralmente contempla algumas métricas, tais como:

* Vazdo: € o nimero de operagdes que sdo executadas em um determinado periodo

de tempo;

 Utilizagdo: representa a porcentagem de tempo que o sistema estd ocupado reali-
zando uma atividade (a¢ao). O recurso com a maior utiliza¢do pode ser conside-

rado o gargalo do sistema;

29



3.2. AVALIACAO DE DESEMPENHO

* Tempo de resposta: compreende ao tempo entre a chegada de uma requisicdo e a

resposta do sistema.

A avaliacdo de desempenho de sistemas computacionais consiste de um conjunto
de critérios e técnicas classificadas como as baseadas em medi¢do e modelagem. As
técnicas baseadas em modelagem podem ser classificadas como técnica analitica e simu-
lacdo (Lilja 2000).

A medicio de desempenho consiste essencialmente na monitoracdo do sistema en-
quanto estd sob a a¢do de uma carga de trabalho (Jain 1991). Para adquirir resultados
representativos, a carga de trabalho deve ser cuidadosamente selecionada pelos proje-
tistas e utilizada nos estudos de desempenho, podendo ser real ou sintética (Jain 1991,
Lilja 2000).

Verifica-se, porém, que a carga de trabalho real ndo € adequada para utilizacdo devido
a impossibilidade de repeticao. Isso acontece quando o tamanho da carga ndo € conside-
ravel e também quando esses dados receberam muitas perturbacdes ou, até mesmo, por
questdes de acessibilidade. Por esses motivos, uma carga sintética, cujas caracteristicas
sao semelhantes as da carga de trabalho real, pode ser aplicada repetidamente de uma
maneira controlada, desenvolvida e usada para estudos.

A essencial razdo para a utilizacdo de uma carga de trabalho sintética é que ela
€ uma representacdo ou modelo da carga de trabalho real. A carga de trabalho pode
ser simplesmente modificada sem afetar a operacdo e pode ser facilmente portada para
sistemas diferentes, gracas ao seu pequeno tamanho e ela pode ter embutida capacidades
de medicdo (Jain 1991).

A modelagem analitica utiliza um conjunto de equacdes e fungdes matematicas para
descrever o comportamento de um sistema. Durante a constru¢cdo dos modelos, deve-se
levar em consideracio a complexidade e praticidade dos sistemas.

Os modelos analiticos permitem uma andlise em relacdo aos efeitos causados pelos
parametros definidos nas equacdes sobre a aplicacdo. Ademais, também se pode es-
tabelecer possiveis relacionamentos entre cada um dos parametros considerados. Para
validar os resultados alcangados por meio dos modelos elaborados, a modelagem anali-
tica pode compara-los aos valores reais medidos em testes experimentais (Jain 1991).

A simulagdo € utilizada tanto em avaliacdo de desempenho, quanto na validagcdo
de modelos analiticos. Ao contrario das medi¢des analiticas, as simulagdes baseiam-se
em modelos abstratos do sistema, por isso ndo exigem que o sistema esteja totalmente
implantado para que sejam aplicadas. Desta forma, os modelos utilizados durante a si-

mulacio sdo desenvolvidos através da abstracdo de caracteristicas essenciais do sistema,

30



3.2. AVALIACAO DE DESEMPENHO

sendo que a complexidade e o grau de abstracdo dele podem mudar de um sistema para
outro. Durante a simulacdo, controlam-se, com maior eficiéncia, os valores assumidos
por parametros do sistema. Assim sendo, fica mais facil obter informagdes relevantes

para a avaliacdo de desempenho.

3.2.1 Modelos

Existem diversos tipos de modelos para a avaliagao de desempenho, tais como: Redes de
Filas (Cassandras & Lafortune 2008), Cadeias de Markov (Trivedi 2001, Murata 1989)
e Redes de Petri Estocésticas (Balbo 2001), que sdo modelos baseados em estados, ou
seja, podem ser também definidos como ndo combinatdrias. Esses modelos tém sido

utilizados para estimativa de métricas de desempenho.

3.2.1.1 Redes de Filas

As Redes de Filas (Cassandras & Lafortune 2008) sdo uma das mais populares técnicas
de modelagem utilizadas para a andlise de desempenho de sistemas computacionais. As
redes de fila descrevem processo de chegada de cliente/produto a um sistema de aten-
dimento (por exemplo, beneficiamento ou produ¢io) para receber um ou mais servigos,
executados por determinada quantidade de servidores. Neste contexto, as formagdes de
filas ocorrem em razdo de a procura pelo servigo prestado ser maior do que a capacidade

do sistema de atender a esta procura. A Figura 3.2 apresenta um sistema de filas.

Chegada .
“—» sae
Cliente Cliente

Fila
Servidores

Figura 3.2: Sistema de Filas Adaptado de (Bolch et al. 2006).

A notacio a seguir, conhecida como notagdo de Kendall (Bolch et al. 2006), é muito

utilizada para decrever sistemas de filas:

A/B/m/K

na qual, A indica a distribui¢cdo da chegada de cliente, B denota a distribui¢ao do

31



3.2. AVALIACAO DE DESEMPENHO

tempo de servigo, e m indica o ndmero de servidores (m 1) e K indica o tamanho maximo

da fila (capacidade). Os seguintes simbolos sdo normalmente utilizados para A e B:

M: Distribuicao exponencial (Memoryless);

D: Distribuicdo deterministica, ou seja, 0 tempo entre o Servigo;

E}: Distribui¢cdo Erlang com k-fases;

Hj: Distribuicao Hiperexponencial com k-fases

Por exemplo, M/M/1/4 indica que o tempo entre chegadas e o tempo de servi¢o é
regido por distribuicdes exponenciais, hd apenas 1 servidor e a capacidade da fila € de 4
clientes.

Para avaliar o comportamento de sistemas de filas, associam-se medidas de desem-
penho tais como: tempo médio de espera dos clientes na fila, tempo médio de chegada
de clientes, probabilidade de encontrar o sistema lotado, capacidade do sistema, entre
outras. Dessa maneira, a teoria das filas tenta, por meio de anélises matemdticas detalha-
das, encontrar um ponto de equilibrio que satisfaca o cliente ou linha de producio e seja

vidvel para o provedor do servico.

3.2.1.2 Cadeias de Markov

As Cadeias de Markov (Trivedi 2001, Murata 1989) é um formalismo matematico uti-
lizado para a modelagem de sistemas. Assim, o formalismo permitem descrever o fun-
cionamento de um sistema utilizando um conjunto de estados e transicdes entre esses
estados. As transi¢Oes entre os estados sdo modeladas por um processo estocastico de
tempo continuo ou discreto definido por distribuicdes exponenciais.

Um modelo descrito pelo formalismo de Cadeias de Markov pode ser interpretado
como uma mdaquina de estados, onde os nodos da cadeia representam os estados e os
arcos representam as transigoes.

Um modelo descrito pelo formalismo de Cadeias de Markov (Bolch et al. 2006) pode

ser classifacado de acordo com a sua escala e tempo:

* Cadeias de Markov a escala de Tempo Continua (CTMC - Continuos Time Mar-
kov Chains);

* Cadeias de Markov a escala de Tempo Discreta (DTMC - Discrete Time Markov
Chains);

32



3.2. AVALIACAO DE DESEMPENHO

Os modelos em CTMC diferem dos modelos em DTMC basicamente por suas tran-
si¢des entre os estados poderem ocorrer em qualquer instante de tempo e ndo em pontos
discretos de tempo.

A seguir, apresenta-se as propriedades para a constru¢do de um modelo descrito pelas
Cadeias de Markov (Stewart 1994).

Os estados do modelo sao discretos € enumeraveis. Dessa forma, o formalismo
de Cadeias de Markov permite cadeias de infinitos estados. A escala de tempo para a
transicdo entre os estados do modelo pode ser de forma continua (CTMC) ou discreta
(DTMO).

A transi¢do entre os estados do modelo depende exclusivamente do estado atual do
modelo, sem importar quais foram os estados prévios ou serdo os estados futuros do
modelo. A taxa (CTMC) ou probabilidade (DTMC) de transi¢do de estados do modelo
da-se obedecendo a uma lei exponencial ou geométrica, respectivamente.

A representagdo grifica de um modelo em Cadeias de Markov é feita por automatos,
a qual € associada para cada estado do autdmato um estado do modelo e para cada
transi¢cao uma taxa (CTMC) ou uma probabilidade (DTMC). Um modelo em Cadeias
de Markov é representado, matematicamente, por uma matriz de transi¢do de estados. A
probabilidade de cada estado em regime estacionario (solu¢do de um modelo em Cadeias

de Markov) € a solucdo do sistema da equacao linear 3.3:

Q:(q” Clij)7

qdji 4djj

Q=0

na qual, Q é a matriz de transi¢do de estados e 7 (vetor de probabilidade) é o autovetor
correspondente ao autovalor unitdrio da matriz de transicdo. E importante ressaltar que
a soma dos elementos do vetor de probabilidade 7 deve ser igual a 1, ou seja, ||7|| =1
(Araujo 2009).

Para os modelos em CTMC, a matriz de transicao de estados Q é denominada de
gerador infinitesimal, no qual, cada elemento ndo diagonal da linha i e coluna j da matriz
representa a taxa de transi¢do do estado 1 para o estado j do modelo. Os elementos
diagonais de Q representam o ajuste necessdrio para que a soma dos elementos de cada
linha seja igual a zero (Aradjo 2009) .

Para os modelos em DTMC, a matriz de transi¢do de estados P € denominada de

matriz estocdstica, na qual cada elemento ndo diagonal representa a probabilidade de

33



3.3. AVALIACAO DE DEPENDABILIDADE

transicdo entre os estados do modelo (Aradjo 2009). Os elementos diagonais de P re-
presentam o ajuste necessdrio para que a soma dos elementos de cada linha seja igual a
um.

A Figura 3.3 apresenta um modelo em CTMC com dois estados e duas transigdes.

Cada transi¢do entre um estado e outro possui associada uma taxa de ocorréncia.

7

oo

4

Figura 3.3: Modelo em CTMC com dois estados e duas transigdes.

3.2.1.3 Redes de Petri Estocasticas

Uma Rede de Petri Estocasticas (SPNs) (Balbo 2001) é uma abstracao de um sistema.
Ela € um modelo formal do fluxo de dados e controle do sistema modelado em questio.
As propriedades, conceitos e técnicas para modelagem de uma Rede de Petri foram
desenvolvidas utilizando métodos simples para descri¢do e andlise do fluxo de sistema.
O formalismo de redes de Petri é utilizado principalmente em sistemas que possam
apresentar atividades assincronas, concorrentes e nao-deterministicas. As SPNs permi-
tem a modelagem e andlise probabilistica de sistemas. As transicoes em SPNs podem
ser imediatas ou temporizadas. As transi¢Oes temporizadas possuem um atraso expo-
nencialmente distribuidos. As SPNs t€m sido amplamente utilizadas para avalia¢des de

desempenho de sistema. As Redes de Petri Estocésticas foram descritas na se¢do 3.9.

3.3 Avaliacao de Dependabilidade

A avaliacdo de dependabilidade é uma atividade essencial que tem como objetivo forne-
cer meios para que seja possivel promover melhoria da qualidade dos servicos prestados.
Com o aumento dos servigos oferecidos pela internet, a dependabilidade tornou-se um
atributo de grande importancia no desenvolvimento de software e hardware, na implan-
tacdo e operacdo dos servigos oferecidos (Maciel et al. 2011).

Dependabilidade € a propriedade que define a capacidade de o sistema prestar um ser-
vico que pode justificadamente ser confidvel (Kuo & Zuo 2003, Avizienis 2001). Dessa
forma, dependabilidade representa a capacidade de um sistema em oferecer um servigo

de forma confidvel (Maciel et al. 2011). Um conceito importante € a falha do sistema,

34



3.3. AVALIACAO DE DEPENDABILIDADE

0 que acontece quando o sistema para de fornecer as respectivas funcionalidades. Uma
falha refere-se a um defeito de um componente do sistema (ou subsistema), o que pode
causar outros defeitos ou falhas no sistema.

Em geral, os conceitos de dependabilidade sdo: atributos, meios e ameacas (Avizienis
2001). A Figura 3.4 apresenta a arvore de dependabilidade, na qual:

* Os atributos: possibilitam a obten¢ao de medidas quantitativas, em que muitas sao

cruciais para a andlise dos servicos prestados;
* Os meios: sdo os meios pelos quais a dependabilidade € atingida;

* As ameacas: compreendem as falhas, erros e defeitos. A falha do sistema € o

evento que ocorre quando a entrega do servico ndo acontece de forma desejada.

—! Disponibilidade |

| Confiabilidade |
—| Seguranga |
—I Confidencialidade I

—I Integridade I

_l Manutenabilidade |

—l Atributos I—

Prevengdo a Falhasl

Tolerancia a Falhasl

 Dependabilidade |—_| Meios

Remocao a Falhas I

Previsao a Falhas |

Falhas I

—I Ameacas Erros I

Defeitos I

Figura 3.4: Arvore de dependabilidade Adaptado de Avizienis (2001).

A dependabilidade usualmente contempla as seguintes métricas/atributos: confiabi-
lidade, disponibilidade, manutenabilidade, seguranca, confidencialidade e integridade.

Neste trabalho, os atributos de interesse sdo:

* Confiabilidade: probabilidade de um sistema fornecer suas fungdes pré-definidas,
sem falhas, por um periodo de tempo especifico (Maciel et al. 2011): Matematica-

mente, é apresentada pela Equacdo 3.4.

35



3.3. AVALIACAO DE DEPENDABILIDADE

R(t) = P(T > 1}

,em que 7" € a varidvel aleatdria que representa o tempo de falha do sistema (ou um
tnico componente). De fato, R(1) = 1 — F(¢), tal que F () = P{T <t} é a fungéo
de distribuicao cumulativa, declarando que uma falha ocorre antes do tempo ¢;

* Disponibilidade: probabilidade de um sistema estar em uma condi¢do de funcio-
namento. Ele considera a alternancia de estados operacionais e ndo operacionais
(Maciel et al. 2011). A Disponibilidade estaciondria (A) pode ser representada

palas seguintes equagdes 3.5 e 3.6:

uptime
A= P
uptime + downtime
em que o tempo de atividade (uptime) é o periodo de tempo em que o sistema
estd operacional e o tempo de inatividade (downtime) corresponde ao periodo de

tempo em que o sistema ndo estd operacional.

Ou ainda:

MTTF
A= 3.6
MTTF +MTTR .

no qual, o MTTF é o tempo médio de falha e MTTR € o tempo médio de reparo,

de tal modo que

MTTF = / R(t)dt
0

MTTR = /Om(l —M(1))dt

M (1) é a funcdo de distribui¢do cumulativa que representa a probabilidade de que um
reparo ocorrera dentro do tempo 7. R(t) é a funcéo de confiabilidade como anteriormente
apresentada.

Durante a execugdo do sistema, remog¢ao de falhas poderdo ser realizadas através de
politicas de manutencdo, tais como manuten¢ao corretiva e preditiva. Manutengado corre-
tiva restaura um componente/sistema apds uma falha, enquanto a manutencao preditiva

tenta manter o sistema em um estado operacional, evitando que falhas ocorram.

36



3.3. AVALIACAO DE DEPENDABILIDADE

3.3.1 Técnicas Tolerantes a Falhas

Sempre que um sistema fornece as suas funcionalidades na presenca de falhas, o sistema
€ considerado tolerante a falhas.

A redundancia € uma conjunto de técnicas importante para a implementacao de
sistemas tolerantes a falhas com o objetivo de melhorar a disponibilidade e confiabili-
dade (Maciel et al. 2011). Em geral, tal técnica consiste em adicionar componentes exter-
nos para o sistema, de tal modo que, se um componente falha, o componente redundante
assumird seu lugar. Redundancia dinamica € uma técnica representativa que leva em
conta os componentes de reposi¢do para substituir o componente principal sempre que
€ inoperante. Hot e cold standby sdo abordagens representativas (Eric Bauer & Eustace
2011).

Considerando cold standby, um componente de backup s6 € ativado quando o com-
ponente primdrio falhar. Por outro lado, o componente Hot standby fica em execugao
simultaneamente com o componente primario. Sempre que o ultimo falhar, o backup

imediatamente o substituira.

3.3.2 Técnicas de Modelagem

Modelos para estimar atributos de dependabilidades sdao geralmente classificados como
modelos combinatérios ou modelos baseados em estado (Maciel et al. 2011). Modelos
combinatdrios consideram as condi¢des que tornam o sistema operacional ou com falhas,
a respeito da relacdo estrutural entre seus componentes. No entanto, esses modelos t€m
limitacdes para representar interacdes complexas entre os componentes do sistema e as
politicas de manutencao elaboradas.

Por outro lado, os modelos baseados em estado representam o comportamento do
sistema, seus estados e ocorréncias de eventos (Maciel et al. 2011). Estes modelos sdo
mais adequados para modelar interagdes complexas entre os componentes, tais como
mecanismos baseados em redundancia dinAmica. No entanto, os modelos baseados em
estado sofrem com explosao de espacgo de estado.

Diagramas de Blocos de Confiabilidade (RBD) (Kuo & Zuo 2003), Arvores de Fa-
lhas (FT) (Vesely & Roberts 1987) e Gréficos de Confiabilidade (RG) (Sahner & Puliafito
1996a) s@ao modelos combinatdrios representativos, Cadeias de Markov, bem como Re-
des de Petri Estocdsticas (SPN) sdo modelos proeminentes baseados em estado. Estes
modelos também sao muito apropriados para a estimativa de métricas de desempenho e

performabilidade.

37



3.4. SISTEMAS COERENTES

3.4 Sistemas Coerentes

Um componente C € irrelevante para o desempenho do sistema S, se o estado do sis-
tema nao € afetado pelo estado deste componente (Kuo & Zuo 2003). Matematicamente,
um componente i(1 < i < n) é irrelevante para a funcgdo estrutural ¢, se e somente se
o(1;,x) = ¢(0;,X) para qualquer estado do componente vetor x. Caso contrdrio, o com-
ponente € dito relevante.

Se um componente € relevante para um sistema, isso significa que existe pelo menos
um componente de vetor de estado x de tal modo que o estado do componente i determina
o estado do sistema. Dessa forma, quando outros componentes encontram-se em um
certo estado (operacional ou defeituoso), especificado por (x1,x2,...,x; — 1,x;+ 1,...,x,),
o valor de ¢ (x,xp,...,x,) é igual a x;. A partir dessas condi¢des, quando o componente
i funciona, o sistema funciona; quando o componente i falha, o sistema apresenta um
defeito (Kuo & Zuo 2003).

Uma particularidade relevate € que melhorar o desempenho de um componente, nor-
malmente nao piora o desempenho do sistema (Kuo & Zuo 2003). Por conseguinte, a
troca de um componente falho em um sistema funcionando normalmente ndo faz o sis-
tema falhar. Se trocar um componente falho em um sistema falho ndo necessariamente
recupera o sistema pois, pode haver outros componentes falhos no sistema, que o impe-
cam de funcionar. Usualmente, presume-se que a func¢io de estrutura de todo sistema é
uma fun¢do ndo decrescente do estato de todos os componentes (Kuo & Zuo 2003).

Assim, para um sistema coerente, dados dois vetores, cada um com n elementos, X €
y, pode-se escrever X <y se x; < y; para cada i e x; < y; para pelo menos um i(1 <i <n).
No entanto, pode-se dizer que o vetor x € menor que o vetor y (Kuo & Zuo 2003).

Fundamentado nesta definicao, segundo (Kuo & Zuo 2003), um sistema coerente

satisfaz as seguintes condicoes:

1. ¢(0) = 0, que dizer, o sistema é defeituoso quando todos os componentes sdao
falhos;

2. ¢(1) = 1, que dizer, o sistema funciona quando todos os componentes funcionam;

3. se x <y, entdo ¢(x) < ¢(y), que dizer, a melhoria de qualquer componente néo

degrada o desempenho do sistema;

4. Para todos os componentes i, existe um vetor de estados de componentes em que

o estado do componente i dita o estado do sistema.

38



3.4. SISTEMAS COERENTES

3.4.1 Funcoes Estruturais

Funcdes estruturais sdo fungdes matemadticas discretas utilizadas para indicar o relacio-
namento entre o estado de funcionamento dos componentes de um sistema com o estado
de funcionamento do sistema (Kuo & Zuo 2003, Maciel et al. 2011).

Suponha num sistema S composto por um conjunto de componentes C = ¢;|1 <i <n,
onde o estado do sistema S e seus componentes podem estar operacionais ou falhos e
n € o nimero de componentes do sistema. Ora, x; € uma varidvel aleatéria discreta,

indicando o estado do componente i, assim:

0 se o componente i estd falho

=9

se o componente I estd funcionando

Eventualmente, um vetor X = (x1,x2, ..., X,), representa o estado de todos os compo-
nentes do sistema. O estado do sistema € determinado pelos estados dos componentes.
A funcdo de estrutura, ¢ (x), mapeia o vetor do sistema x para 1 ou 0, como apresentado

abaixo:

0 se o sistema esta falho
¢(x) = . o 3.10
1 se o sistema esta funcionando

Ademais, se o estado de todos os componentes do sistema € conhecido, entdo o
estado do sistema também € conhecido. Desta forma, o estado do sistema é uma fungdo

deterministica do estado de todos os componentes. L.ogo,

O=0¢0(x)=0(x1,x2,...,x) 3.11

onde ¢ (x) é a funcdo estrutural do sistema.

As regras de formacdo das fungdes estruturais, para componentes em série € em
paralelo sdo mostradas a seguir:

Componentes em série:

Sejam n componentes x1,x2, ..., X, em série, a funcdo estrutural ¢ desses componen-

tes € representada a seguir:

0(x) = 1 [ [(x) = minxr, v, . x0)

i=1
Componentes em paralelo:

Sejam n componentes x1, X2, ...,X, em paralelo, a fun¢do estrutural ¢ desses compo-

39



3.5. AVALIACAO DE PERFORMABILIDADE

nentes € representada a seguir:

n

o(x) = I—H(l—xi):max(x1,x2,...,xn) 3.13
i=1

3.4.2 Funcoes Logicas

Funcdes légicas t€m como objetivo indicar uma relagdo entre o estado dos componentes
e o estado do sistema. A funcdo logica de um sistema coerente pode ser adotada para
simplificar fun¢des do sistema através de dlgebra booleana. Todavia, em alguns casos,
ndo é facil simplicar fun¢des estruturais para uma forma minimizada (Kuo & Zuo 2003).
Componentes em série:
Seja x = (x1,x2,...,X,), 0 vetor que representa o estado de n componentes de um

sistema. A funcéo logica em série (Sserial) é definida pela equag@o:
Sserial(x) = (x] Axa A ... Axp) 3.14

Componentes paralelos:
Seja x = (x1,x2,...,X,), O vetor que representa o estado de n componentes de um

sistema. A funcdo l6gica paralela (Sparalelo) é definida pela equagdo:
Sparalelo(x) = (x; Vxa V... Vxp)

Para obter mais detalhes sobre funcdes l6gicas e estruturais o leitor pode recorrer
a Kuo & Zuo (2003), Maciel et al. (2011).

3.5 Avaliacao de Performabilidade

A modelagem de desempenho é uma abordagem estruturada para avaliar o desempenho
do sistema. No entanto, a modelagem de dependabilidade lida com a representacdo de
mudancas na estrutura do sistema devido a falhas, as quais podem afetar a disponibili-
dade do sistema (Jawad & Johnsen 1995).

Estes modelos sdo geralmente avaliados separadamente, mas uma questdo surge
como o desempenho depende da dependabilidade. Assim, combinar aspectos de de-
sempenho e dependabilidade é importante para uma avaliacdo completa.

Avaliacdes separadas de desempenho e dependabilidade podem produzir uma avali-

acdo parcial da qualidade do servico (Meyer 1992). No entanto, hd falhas estuturais que

40



3.5. AVALIACAO DE PERFORMABILIDADE

reduzem a qualidade do servico, sem causar falhas no sistema, ou seja, o desempenho
do sistema € degradével.

A modelagem combinada de desempenho e dependabilidade é denominada perfor-
mabilidade (Aradjo & et al. 2011), uma medida composta que descreve uma degradacao
do desempenho do sistema, devido a ocorréncia de eventos de falha, mesmo em de-
corréncia delas, o sistema continuard funcionando, mas com degrada¢des no nivel de
desempenho. Para realizar a avaliagao de performabilidade, € comum a ado¢cdo de mo-
delagem hierdrquica para a combina¢do de um modelo de dependabilidade de alto nivel
e um modelo de desempenho de baixo nivel.

A avaliacdo de performabilidade surgiu a partir da necessidade de se determinar a
qualidade global do sistema, relacionando aspectos de desempenho e dependabilidade,
como resultado de uma tnica avaliacdo.

A modelagem hierarquica tem como finalidade evitar os problemas de largeness e
stiffness (Sousa & et al. 2012). O largeness é consequéncia do tamanho do espago de es-
tados do modelo e o stiffness € consequéncia das diferentes ordens de magnitude entre os
tempos das atividades de reparo. O stiffness pode provocar sé€rios problemas durante a so-
lucao analitica do modelo, mesmo que o modelo nao tenha um grande espaco de estados
por causa dos diferentes tempos associados as transi¢does temporizadas (Sousa & et al.
2012).

A avaliagdo de performabilidade pode ser considerada como uma das mais adequa-
das abordagens para entender o significado da eficicia e desempenho geral de um sis-

tema.

3.5.1 Modelos

Existem vérios tipos de modelos que podem ser utilizados para a modelagem e avalia-
¢do de performabilidade. Por exemplo, Diagramas de Bloco de Confiabilidade, Cadeias
de Markov e Redes de Petri Estocdsticas. Consequentemente, esses modelos t€ém sido
utilizados para modelagem hierdrquica que combina os resultados de modelos de depen-
dabilidade e desempenho (Aratjo & et al. 2011).

Para uma avaliagdo de performabilidade utilizando modelagem hierarquica, pode-
se combinar um modelo de dependabilidade de alto nivel (por exemplo, Diagramas de
Bloco de Confiabilidade) que representam um sistema, e modelos de desempenho de
baixo nivel (por exemplo, Cadeias de Markov), que representam alguns subsistemas do

modelo de dependabilidade.

41



3.6. CENSURA

3.6 Censura

Andlise de sobrevivéncia € definida como uma técnica estatistica para o estudo de dados
de tempos de vida de um individuo, item ou componente. Dessa forma, a andlise de
sobrevivéncia permite estudar tempos de vida, também designados por tempos de sobre-
vivéncia (falhas). A caracteristica fundamental € a presenca de observagdes incompletas
do tempo de sobrevivéncia chamado de censura. Para alguns individuos pode ndo ser
possivel observar o acontecimento de interesse durante o periodo em que estiverem em
observacao.

Um problema comum na gera¢do de dados de confiabilidade € a censura. A cen-
sura (Ebeling 2005) ocorre quando ndo € possivel observar o tempo de vida de um
individuo, item ou componente, durante um periodo de tempo. A censura € aplicada
por diversos motivos, por exemplo, quando a falha de um componente ocorre fora do
periodo de tempo em estudo.

A censura pode ser classificada da seguinte forma (Ebeling 2005):

1. Censura a esquerda: ocorre se o evento de interesse ja aconteceu quando o indivi-

duo foi observado.

2. Censura a direita: ocorre quando o tempo de falha € superior ao tempo observado.
A seguir sdo descritos os tipos da censura a direita:
i. Censura do tipo 1: o estudo terminard apés um periodo pré estabelecido de
tempo, por exemplo, suponha que um sistema é composto por 8 componentes, €
que os componentes podem falhar. Foram observados os tempos de falhas dos
componentes, sendo que o estudo terminou apds 3 meses;
ii. Censura do tipo 2: o estudo terminard apds ter ocorrido o evento de interesse
em um numero pré estabelecido de individuos, por exemplo, o estudo é terminado

depois de um nimero fixo de falha dos componentes.

3.6.1 Técnica de Kaplan-Meier

Problemas com dados censurados surgem com bastante frequéncia em estudos de confia-
bilidade. Estimativa da fun¢do de confiabilidade geralmente € motivo de preocupagao. O
estimador de fun¢do de Confiabilidade Kaplan-Meier € frequentemente utilizado quando
se lida com dados censurados.

A técnica de Kaplan-Meier (Ebeling 2005, Goel et al. 2010), também conhecida

como o estimador de limite-produto, pode ser utilizada para calcular os valores de confi-

42



3.6. CENSURA

abilidade ndo-paramétrico para conjuntos de dados com varias falhas. A técnica € muito
popular para derivar uma fun¢do de confiabilidade empirica.

Assumindo que ndo ha lacos em tempos de falha e que os tempos de censura nao
coincidem com tempos de falha, o estimador de limite de produto Kaplan-Meier é apre-

sentado pela Equagdo 3.16 a seguir:

R= T (- ﬁ) 3.16

Gzey T

Onde ¢; € o tempo do estudo no ponto j, d; € o nimero de falhas até o ponto j e n;

¢ o nimero de individuos em risco antes de #;. R é baseado na probabilidade de que um

individuo sobrevive no final de um intervalo de tempo, com a condicao de que o indivi-

duo estava presente no inicio do intervalo de tempo. R é o produto dessas probabilidades
condicionais.

Como exemplo, considere os dados tempos de falha (em meses) de alguns compo-

nentes, contidos na Tabela 3.1, onde o estudo terminou quando 7 componentes haviam

falhado. Como pode ser observado o nimero 1 indica que o componente falhou e o

nimero 0 indica censura. As observagdes censuradas sdo marcadas por 0.

Tabela 3.1: Dados dos Tempos de Falhas.

Tempo Status

55
61
74
81
93
122
138
151
168
202
220
238

[ < S SO S S

A partir dos dados disponiveis, as estimativas de confiabilidade de Kaplan-Meier,
sdo obtidas. A Tabela 3.2 apresenta as estimativas.

Com base nas estimativas de confiabilidade, o gréfico de Estimador de Kaplan-Meier
¢ construido, no qual, R(#) em funcéo de ¢, em forma de escada. A Figura 3.5 mostra o

gréfico de Estimador de Kaplan-Meier.

43



3.6. CENSURA

Tabela 3.2: Estimativas de Confiabilidade de Kaplan-Meier.

Tempo Numero de Risco Numero de Falhas Probabilidade de Sobrevivéncia R(t)
55 12 1 0.916667
74 10 1 0.825000
81 9 1 0.733333
138 6 1 0.611111
151 5 1 0.488889
168 4 1 0.366667
238 1 1 0.000000
Kaplan-Meier
100
80 4
60 4
I3
40
20 4
0 T T T T T
0 50 100 150 200 250
Tempo

Figura 3.5: Estimador de Kaplan-Meier.

3.6.2 Teste Kolmogorov-Smirnov

O teste de Kolmogorov-Smirnov (teste K-S) (Ebeling 2005) é um teste nao paramétrico
para a igualdade de distribuic@o de probabilidade continua, de uma dimensdo que pode
ser usado para comparar a amostra (valores observados) com uma distribui¢ao de proba-
bilidade de referéncia (uma amostra de teste K-S), ou para comparar duas amostras (duas
amostras de teste K-S). A estatistica de K-S, quantifica uma distancia entre a funcao de
distribui¢do empirica da amostra e a fun¢do de distribuicao cumulativa da distribui¢do
de referéncia, ou entre as funcdes de distribui¢cdo empirica de duas amostras.

Dada uma varidvel aleatéria X, o teste K-S tem por base a andlise da proximidade
ou do ajustamento entre a fungdo de distribuicdo empirica ou da amostra, S(x), e a
fungdo de distribuicdo populacional, F(x), que é admitida em Hp. Para uma amostra
de tamanho n, a fung¢@o S(x) representa a soma das frequéncias relativas dos dados com
valores menores ou iguais a x, um valor qualquer x da varidvel X.

Seja (X1,X>, ..., X,;) uma amostra aleatéria de uma populacao continua X e X1, X3, ...X),

a respectiva amostra ordenada, e define a fun¢fo distribui¢do empirica S(x) como se-

44



3.7. DIAGRAMAS DE BLOCOS DE CONFIABILIDADE

gue (Esteves & Sousa 2007):

0, x <x1
Sx)q k/n, xp <x<x+1(k=12,..n-1)
1, x> X,

A fungdo de distribui¢do empirica S(x) é uma fungdo em degrau que cresce 1/n nos
pontos de salto (estatisticas ordinais da amostra).

A estatistica de teste, que se denota por D, (que é uma varidvel aleatdria), corres-
ponde ao supremo (ou méaximo) da diferenca, em valor absoluto, entre S(x) e F(x),

quando sdo considerados todos os valores possiveis de X. como segue:

D, = max|F(x) — S(x)
X

E possivel demonstrar que, se a amostra é aleatéria e provém de uma distribuicio
continua conhecida, a estatistica D,, s6 depende da dimensao da amostra, n, sendo irrele-
vante a forma da func@o distribuicéo da populagdo, F(x).

O teste K-S pode ser modificado para servir como um teste de goodness-of-fit (Ebeling
2005). No caso especial de testes para a normalidade de distribui¢do, as amostras sdo
normalizadas e comparadas com uma distribui¢do normal padrdo. Assim, € equivalente a
configuracdo da média e da variancia da distribui¢do de referéncia iguais para as estima-
tivas da amostra, sabe-se que a utilizacdo destes para definir a distribuicdo de referéncia

especifica altera a distribui¢do nula da estatistica de teste.

3.7 Diagramas de Blocos de Confiabilidade

Diagrama de Blocos de Confiabilidade (RBD) (Rausand & Hgyland 2004, Kuo & Zuo
2003) é uma técnica combinatorial utilizada para calcular a confiabilidade de um sistema.
Normalmente, os RBDs proporcionam uma representacio grafica dos componentes do
sistema e conectores, que podem ser adotados para determinar o estado geral do sistema,
dado o estado de seus componentes.

Um diagrama de blocos de confiabilidade representa a relagdo l6gica entre o funcio-
namento do sistema e do funcionamento dos seus componentes (Kuo & Zuo 2003). Os
modelos RBDs sdo representados por conjuntos de blocos (denotados como retangulos)
que indicam os componentes em que os arcos definem a relacio légica.

O diagrama de blocos de confiabilidade € utilizado, particularmente, em sistemas

modulares que consistem de muitos médulos independentes, onde cada um pode ser

45



3.7. DIAGRAMAS DE BLOCOS DE CONFIABILIDADE

representado por um bloco de confiabilidade.

Embora o RBD tenha sido inicialmente um modelo proposto para calcular a confiabi-
lidade de sistemas, pode ser utilizado para calcular outras métricas de dependabilidade,
tais como: disponibilidade e manutenabilidade.

Em RBD, ¢€ possivel representar um componente fisico no modo operacional por
um bloco, estimar a confiabilidade de cada bloco individualmente. Portanto, para re-
presentar uma falha de um componente, é necessario remover o bloco correspondente
ao componente do modelo. Se existir pelo menos um caminho que faca a ligagdo en-
tre os blocos, o sistema continua funcionando corretamente. Assim, se removida uma
quantidade suficiente de blocos para interromper a conexao entre os blocos, o sistema
falha (Kuo & Zuo 2003). No entanto, modelos RBD sdo impréprios para modelagem
de dependéncias de falhas e reparacdo que sdo frequentemente encontrados na represen-
tacdo de politicas de manuten¢do e mecanismos redundantes, particularmente aquelas
baseadas em métodos de redundancia dindmica.

Os modelos RBDs t€ém sido usados para representar arranjo em série, arranjo em
paralelo, arranjo K-out-of-n e arranjo bridge.

Os paragrafos seguintes descrevem os arranjos adotados neste trabalho.

Arranjo em Série. A Figura 3.6 representa o0 modelo RBD, em que sempre que um
componente falhar, entdo todo o sistema também falha. Supondo um sistema com n

componentes, disponibilidade/confiabilidade (Py) € estimada da seguinte forma
n
P =]]pi 3.18
i=1

em que p; refere-se ao componente i disponibilidade/confiabilidade.

- —] - — —e

ct c2 cn

Figura 3.6: Arranjo em Séries.

Arranjo em Paralelo. A Figura 3.7 representa o modelo RBD. Um sistema estd em
estado de falha somente quando todos os componentes falharem. Levando-se em conta

n componentes, disponibilidade/confiabilidade € calculada utilizando

n

P=1-T]01-p:)

i=1

46



3.7. DIAGRAMAS DE BLOCOS DE CONFIABILIDADE

em que p; refere-se ao componente i disponibilidade/confiabilidade.

cn

Figura 3.7: Arranjo em Paralelo.

Arranjo K-out-of-n. A Figura 3.8 representa o0 modelo RBD, em que € necessario
um ndmero minimo de componentes (k) a fim de manter o sistema operacional. Su-
pondo um sistema com n componentes 1dénticos, a disponibilidade/confiabilidade (Fy) é

estimada utilizando
ﬂzZ(’?)p"(l—p)”" 3.20
i=k \ !

em que p refere-se ao componente disponibilidade/confiabilidade.

& kin |e@

cl
Figura 3.8: Arranjo K-out-of-n.

Um modelo RBD pode adotar varios componentes com arranjos diferentes, Figura 3.9.
Em tal caso, a reducdo e a soma dos produtos disjuntos (Maciel et al. 2011) s@o aborda-

gens representativas para estimar a disponibilidade ou a confiabilidade do sistema.

. cl - — c4 = )

c3

c2 ch5

Figura 3.9: Arranjo Série-Paralelo.

47



3.8. REDES DE PETRI

3.8 Redes de Petri

O conceito de redes de Petri foi introduzido por Carl Adam Petri, no ano de 1962, com a
apresentacdo da sua tese de doutorado “Kommunikation mit Automaten” (comunicagao
com autdomatos) (Murata 1989, Maciel et al. 1996) na faculdade de Matematica e Fisica
da Universidade Darmstadf na Alemanha. Redes de Petri (PN) (Balbo 2001) sdo uma
familia de formalismos muito bem adequada para a modelagem de diversos tipos de
sistemas, desda concorréncia, sincronizacdo, mecanismos de comunica¢do, bem como
os atrasos sdo naturalmente representados.

Rede de Petri é um grafo bipartido direcionado, em que lugares (representados por
circulos) denotam estados locais e transi¢des (representados como retangulos) represen-
tam acdes. Arcos (arestas direcionado) conectam lugares para transi¢des e vice-versa.
Tokens (pequenos circulos preenchidos) que denotam o estado (ou seja, a marcacao) de
uma PN. Um arco inibidor € um tipo de arco especial que mostra um pequeno circulo
branco em uma borda, em vez de uma seta, e eles representam a indisponibilidade dos
Tokens nos lugares. A Figura 3.10 apresenta os elementos de rede de Petri, e, a Figura

3.11 mostra um exemplo de rede de Petri.

1 7 .

Lugar Transigdo Arco  Token

(a) (b) (c) (d)
Figura 3.10: Elementos de Rede de Petri.

t1

k.

p1 p2

t2
Figura 3.11: Exemplo de Rede de Petri.

A Figura 3.12 (Alves 2007) apresenta os periodos do dia. Os lugares representam
os periodos dos dias (dia e noite), enquanto as transi¢des representam os eventos que
alteram o periodo do dia (amanhecer ou anoitecer). Neste exemplo, o arco dirigido do
lugar dia para a transicdo anoitecer indica que, para anoitecer, € necessdrio que haja um

token no lugar dia. De maneira andloga, o arco dirigido do lugar noite para a transi¢ao

48



3.8. REDES DE PETRI

amanhecer indica que, para amanhecer, € necessario que haja um token no lugar noite. A
localiza¢@o do token na rede indicard, portanto, se é dia (Figura 3.12(a)) ou noite (Figura
3.12(b)).

Dia Dia
Amanhecer Anoitecer Amanhecer Anoitecer
Noite Noite
(a) Dia (b) Noite

Figura 3.12: Rede de Petri Representando o Dia.

Na representacdo grafica, um lugar pode ser conectado a uma transi¢ao por meio
de multiplos arcos (arcos multivalorados) que podem ser compactados em um Unico
arco rotulado. Dessa forma, estes arcos podem ser substituidos por um tnico arco com
um peso associado. A medida que uma transigo é disparada, ela consome os fokens dos
lugares de entrada, colocando outros tokens nos lugares de saida. A quantidade de tokens
consumidos e colocados nos lugares de saida é dada pelo peso do arco que conecta os

lugares a esta transi¢ao. A Figura 3.13 mostra um exemplo.

@l 0 @9

{0
pO > )p2 ® P r2
4
p3

4
(Dp3

p0
(a) Antes do disparo da transicao (b) Depois do disparo da transigéo
Figura 3.13: Exemplo de uma Rede de Petri com Peso nos Arcos.
A representacgdo formal de um modelo PN é a quintupla PN = (P,T,F,W, M), onde:
* P ¢ o conjunto finito de lugares;

* T € o conjunto finito de transi¢des, P N T =0;

F C (P xT)U(T x P)é o conjunto de arcos;

W : F — IRTU{0} é a fungdo de atribuig@o de peso aos arcos;

My : P — IN € a func¢do de marcacao inicial.

49



3.8. REDES DE PETRI

3.8.1 Rede de Petri Marcada

Uma marca (foken) € um conceito primitivo em PN, da qual lugar e transi¢do. Os to-
ken sdo informacdes atribuidas aos lugares. Uma marcacao associa um k (inteiro nio-
negativo) a cada lugar darede. A seguir sdo apresentadas as seguintes definicdes formais:

marcacdo, vetor de marcagdo e rede de Petri marcada.

* Marcacao: Seja P o conjunto de lugares de uma PN. Define-se formalmente mar-
cacdo como uma fun¢do que mapeia o conjunto de lugares P a inteiros ndo negati-
vos M : P — N.

* Vetor Marcacao: Seja P o conjunto de lugares de uma PN. A marcacdo pode ser
definida formalmente como um vetor M = (M(py),...,M(py))) , no qual n = |P|,
para todo p; € P, tal que M(p;) € N.

* Rede Marcada: Define-se uma rede de Petri marcada pela dupla RM(R; M), no

qual R € a estrutura da rede e M, é a marcacdo inicial.

3.8.2 Grafo de Alcancabilidade

Usualmente, um grafo rotulado e direcionado é adotado para mostrar todas as possiveis
marcacdes que a Rede de Petri pode alcancar. Este grafo € usualmente chamado de grafo
de alcancgabilidade.

Podemos definir um grafo de alcancabilidade como sendo uma tupla (V,E), onde
V representa o conjunto de vértices representados pelas marcagdes possiveis, e E € o
conjunto de arestas rotuladas.

Exemplificando, considere M = {m0 = |1,0,0|,m1 ={0,1,0|,m2 = (0,0, 1|} sendo
o conjunto das marcacdes alcancédveis da rede de Petri representada na Figura 3.14. O

respectivo grafo de alcancabilidade € representado na Figura 3.15.

3.8.3 Redes Elementares

As redes elementares sdo blocos bésicos que permitem a modelagem de sistemas mais
complexos. A seguir serdo mostradas algumas das redes elementares, tais como: sequén-

cia, distribui¢ao, juncdo, escolha ndo-deterministica, atribug¢do e confusao.

50



3.8. REDES DE PETRI

T T
po TO P1 P2 po To P1 P2
T2 T2
N\
T T
po TO P1 P2 po TO P1 P2
T2 T2

N\

Figura 3.14: Exemplo de Rede de Petri

t0
t2 ‘ t1

Figura 3.15: Exemplo de Grafo de Alcancabilidade

3.8.3.1 Sequéncia

A sequéncia é uma rede que permite a representacido de acOes consecutivas, desde que
uma dada condicao seja satisfeita (Maciel et al. 1996). Ou seja, ap6s a execugao de cada
acdo, uma nova condicdo poderd ser disparada, permitindo, assim, a execu¢do de uma
nova acdo. A Figura 3.16 mostra um exemplo dessa rede, onde um foken no lugar PO ha-
bilita a transicao TO, e com o disparo dessa transi¢do uma nova condi¢ao € estabelecida
(P1 € marcado). Assim, com um foken no lugar P1 habilita a transicao T1, consequente-
mente, com o disparo dessa transicdo P2 € marcada. Essa nova condi¢do pode permitir

o disparo de uma nova condi¢do associada ao lugar P2.

3.8.3.2 Distribuicao

Esta rede permite a criagdo de processos paralelos a partir de um processo hierarqui-

camente superior (Maciel et al. 1996). Como mostrado na Figura 3.17, o disparo da

51



3.8. REDES DE PETRI

QD

TO
T

et

Figura 3.16: Sequéncia

transi¢do TO adiciona um token no lugar P1 e outro no lugar P2. Essas novas condigdes

(P1 e P2) permitem a execucado de novos processos paralelos.

QD

T0

DR

Figura 3.17: Distribui¢ao

3.8.3.3 Juncao

Estarede permite a modelagem da sincronizacao de processos paralelos (ver Figura 3.18).
Ela combina duas ou mais redes, deixando que outro processo continue sua execugao so-
mente apds o término de todos os processos paralelos que o antecedem (Maciel et al.
1996). Como apresentado na Figura 3.18, a transicdo TO estara habilitada, se ambas as
pré-condi¢des contiverem tokens (PO e P1). Se essa condigdo for satisfeita, entdo a tran-
sicdo TO poderda ser disparada, retirando um foken dos lugares PO e P1 e colocando em
P2.

3.8.3.4 Escolha Nao-Deterministica

A seguir, € apresentada uma rede elementar que pode ser denominada de conflito, es-
colha ou decisdo, dependendo da aplicacao (Maciel et al. 1996). A Figura 3.19 mostra
a escolha nao deterministica, onde o disparo de uma transi¢ao desabilita o disparo de
uma outra transicdo. Existindo um foken em PO, TO e T1 torna-se conflitante, isto é, o

disparo de uma transicao elimina a possibilidade da outra.

52



3.8. REDES DE PETRI

OND

TO

©

Figura 3.18: Juncao

6

¢ €2

Figura 3.19: Escolha

3.8.3.5 Atribuicao

Atribui¢do € uma rede elementar que permite que dois ou mais processos habilitem um
terceiro processo (Maciel et al. 1996). Na Figura 3.20, tanto a transi¢do TO quanto a
transi¢do T1 sdo independentes, porém ambas t€ém um lugar de saida em comum. Desse
modo, apds o disparo de qualquer uma dessas transi¢cdes, cria-se uma condi¢do (P2 é

marcado) que possibilita o disparo de uma outra transi¢ao.

Fo) ¢
TO T
(°2)
Figura 3.20: Atribui¢do

3.8.4 Propriedades das Redes de Petri

O estudo das propriedades de redes de Petri permite a andlise do sistema modelado.

Os tipos de propriedades podem ser divididos em duas categorias: as propriedades de-

53



3.8. REDES DE PETRI

pendentes de marcacdo inicial, conhecidas como propriedades comportamentais, € as
propriedades ndo dependentes de marcacdo, conhecidas como propriedades estruturais
(Murata 1989).

3.8.4.1 Propriedades Comportamentais

As propriedades comportamentais sdo aquelas que dependem apenas da marcagdo
inicial da rede de Petri. As propriedades abordadas sdo: alcangabilidade, limitacdo, se-

guranga, vivacidade e cobertura (Maciel et al. 1996).

* Alcancabilidade: indica a possibilidade de uma determinada marcagdo ser atin-
gida pelo disparo de um numero finito de transicdes a partir de uma marcagao
inicial. Uma marcac@o M, € dita alcancavel 1 a partir de M’, se existir uma sequén-
cia de disparo que transforme My em M’. A sequéncia de disparo é descrita pelo
conjunto S =11,12,..tn. Nesse caso, M’ é alcangavel a partir de M por S. No qual

S é formalmente descrito por My[S > M’.

* Limitacdo: o limite k é o nimero maximo de marcas que um lugar pode acu-
mular. Uma rede de Petri marcada RM = (R; M) é k-limitada se o nimero de
marcas de cada lugar de RM nao exceder k em qualquer marcacdo acessivel de
RM (max(M(p)) = k,Vp € P).

* Seguranca: ¢ uma especializacdo da propriedade de limitacdo. O conceito de
limitagdo descreve que um lugar p; é k-limitado se o nimero de marcas que esse
lugar pode acumular estiver limitado ao nimero k. Um lugar que € 1-limitado

pode ser simplesmente chamado de seguro.

* Vivacidade: estd definida em fun¢do das possibilidades de disparo das transigdes.
Uma rede € considerada live se, independentemente das marcacdes que sejam al-
cancaveis a partir de My, for sempre possivel disparar qualquer transi¢do da rede
através de uma sequéncia de transi¢des L(My). A auséncia de bloqueio (deadlock)
em sistemas estd fortemente ligada ao conceito de vivacidade, pois deadlock em
uma rede de Petri € a impossibilidade do disparo de qualquer transicao da rede. O
fato de um sistema ser livre de deadlock ndo significa que seja live, entretanto um

sistema /ive implica um sistema livre de deadlocks.

54



3.9. REDE DE PETRI ESTOCASTICA

* Cobertura: A propriedade de cobertura estd conectada ao conceito de alcancabili-
dade e liveness. Quando se deseja saber se alguma marcagdo M’ pode ser obtida a
partir de uma marcac¢do. Uma marcacdo M’ é dita coberta se existe uma marcagao
M" tal que M" > M.

3.8.4.2 Propriedades Estruturais

As propriedades estruturais sdo aquelas que dependem apenas da estrutura da rede
de Petri. Essas propriedades refletem caracteristicas independentes de marcacdo. As
propriedades analisadas neste trabalho sdo: limitacdo estrutural, conservacao, repetitivi-

dade e consisténcia (Maciel et al. 1996).

* Limitacido Estrutural: uma rede de Petri PN = (P, T,F,W,M;) é classificada

como estruturalmente limitada se for limitada para qualquer marcacao inicial.

* Conservacao: a conservacdo ¢ uma considerdvel propriedade das PN, pois per-

mite a verificagdo da ndo destruicdo de recursos através da conservacdo de fokens.

* Repetitividade: uma rede € classificada repetitiva se existe uma marcac¢ao € uma
sequéncia de transi¢Oes dispardveis, em que as transi¢oes dessa rede sdo dispara-

das sempre.

* Consisténcia: uma rede ¢ dita consistente se dada uma sequéncia de transi¢des
dispardveis a partir de uma marcagdo inicial MO retorna a M0, contudo todas as

transi¢Oes da rede sdo disparadas pelo menos uma vez.

3.9 Rede de Petri Estocastica

Rede de Petri estocdstica (SPN) € uma das extensdes proeminentes de rede de Petri (PN)
(Balbo 2001) utilizada para a modelagem de desempenho e dependabilidade de sistemas.
Uma rede de Petri estocdstica adiciona tempo ao formalismo de redes de Petri, com a
diferenca de que os tempos associados as transi¢cdes temporizadas sdo distribuidos expo-
nencialmente, enquanto o tempo associado as transicoes imediatas € zero. As transi¢oes
temporizadas modelam atividades através dos tempos associados, de modo que o pe-

riodo de habilitacdo da transicdo temporizada corresponde ao periodo de execugdo da

55



3.9. REDE DE PETRI ESTOCASTICA

atividade, e o disparo da transi¢@o temporizada corresponde ao término da atividade. Ni-
veis diferentes de prioridade podem ser atribuidos as transi¢des. A prioridade de disparo
das transi¢des imediatas € superior a das transi¢des temporizadas. As prioridades podem
solucionar situacdes de confusdo (Marsan et al. 1998). As probabilidades de disparo as-
sociadas as transicdes imediatas podem solucionar situacdes de conflito (Balbo 2001,
Marsan et al. 1998).

Formalmente, uma rede de Petri estocdstica (SPN) € um grafo direto bipartido repre-
sentado por uma tupla SPN = (P,T,x,1,0,H,My,W,G), em que (Balbo 2001):

* P € o conjunto de lugares;

T = Tipm U Tiimea € 0 conjunto de transi¢oes imediata (7, ) € temporizada (7i,04)
, de tal modo que TNP = 0;

7 : T — N € a funclo de prioridade, de tal modo que
> 1, if (1 € Timm)
07 if(t € Ttimed)

n(t) =

* I,0,H : T — Bag(P) sdo as fungdes de entrada, de saida e de inibi¢ao, respectiva-

mente, em que Bag(P) é o multiconjunto em P (Bag(P) : P — N);
* My : P— N ¢ afuncdo de marcagdo inicial;

e W:T — R é a fungdo peso, que mapeia uma transicao imediata para um peso e

uma transi¢ao temporizado na respectiva taxa A,:
wy >0, if<t € Tlmm)
At >0, if(t S 721‘med)

W(t) =

* Ge(N Pl {true, false})mmm‘ ¢ um vetor que atribui uma condic¢do de guarda

relacionada a marcacdo do lugar a cada transi¢do imediata.

Os modelos SPN apresentam dois tipos de estados (marcacdes), os estados tangiveis
(tangible) e os estados volateis (vanish) (Balbo 2001). Os estados volateis sdo criados
em decorréncia da marcagdo dos lugares que sdo pré-condi¢cdes de habilitacdo de uma
ou mais transi¢ao imediata. O termo vanish € utilizado porque as marcagdes chegam
a esses lugares e sdo imediatamente consumidas. O tempo de permanéncia das marca-
coOes nesses lugares € zero. Os estados tangiveis sdo criados em consequéncia da mar-
cacdo dos lugares que sdo pré-condi¢oes de habilitacdo de uma transi¢do temporizada
(Marsan et al. 1998).

56



3.9. REDE DE PETRI ESTOCASTICA

As transi¢des temporizadas sdo caracterizadas por diferentes semanticas de disparo
denominadas como single server, multiple server e infinite server (Marsan et al. 1998).
Neste trabalho € utilizada a semantica single server.

Na semantica single server, as marcacdes sdo processadas serialmente. Depois do
primeiro disparo da transi¢do temporizada, o temporizador € reiniciado como se a tran-
sicdo temporizada tivesse sido habilitada novamente. Esse tipo de semantica é usada
nos modelos de disponibilidade, considerando-se que haja unicamente uma equipe de
manutencdo, quando diversos componentes do sistema entram numa condi¢do de falha.

Modelos SPN possibilitam a geragdo de grafos de alcancabilidade a partir dos quais
cadeias de Markov de tempo continuo (CTMC) sao diretamente oriundas (Marinho
2010). A Figura 3.21 mostra um exemplo de geracdo do grafo de alcancabilidade a
partir de um modelo SPN. No modelo SPN mostrado na Figura 3.21 (a), existe um con-
flito entre duas transi¢cdes imediatas (7’1 e 72). A Figura 3.21 (b) apresenta o grafo de
alcancabilidade com a indicagcdo de que o estado P1 € volatil. O disparo da transi¢do
temporizada 70 torna o lugar P1 marcado, habilitando as duas transi¢des imediatas, 7'1

e T2, gerando o estado P1. H4 uma mudanga imediata (tempo zero) para o estado P2 ou
o B
otp v atp’
respectivamente (Marinho 2010). A Figura 3.21 (c) apresenta o grafo de alcancabilidade

P3, através do disparo da transi¢do imediata 71 ou 72, com probabilidades e

tangivel apos a eliminagdo do estado volatil P1.

T3 a T4

T1 T2

A - .
(a) Modelo SPN (b) Grafo de Alcangabilidade (c) Grafo de Alcangabilidade Tangivel

Figura 3.21: Geragao de Grafo de Alcancabilidade.

A taxa na qual o sistema se move do estado PO para P2 ou P3 é obtida pelo produto
da taxa A da transicéo do estado PO para o estado volatil P1, com a probabilidade de ir
do estado P1 para o estado P2 ou P3.

Redes de Petri estocésticas marcadas, com um ndmero finito de lugares e transi¢des,

57



3.10. PHASE-TYPE DISTRIBUTIONS

sdo isomorficas as cadeias de Markov (Murata 1989). O isomorfismo de um modelo
SPN com uma cadeia de Markov € obtido a partir do grafo de alcangabilidade reduzido,
que € dado através da eliminagao dos estados voléteis e rétulo dos arcos com as taxas das
transicdes temporizadas e pesos das transi¢des imediatas. As medicdes de desempenho
e dependabilidade sdo obtidas através de simulacdes e andlises em estado estaciondrio e
transiente, baseadas na cadeia de Markov, embutida no modelo SPN (Bolch et al. 2006).

Os modelos SPN sdo utilizados para avaliacdo de dependablidade, desempenho e
performabilidade de sistemas, visto que permitem a descri¢do das atividades de sistemas
através de grafos de alcancabilidade. Esses grafos podem ser convertidos em modelos
Markovianos, que sdo utilizados para avaliagdo quantitativa do sistema avaliado.

De agora em diante #p denota o niimero de tokens no lugar p; e P{exp} estima a

probabilidade da expressdo exp.

3.10 Phase-Type Distributions

Embora SPN assuma a distribuicao exponencial para transi¢cdes temporizadas, as ativi-
dades nao-exponenciais podem ser representadas utilizando as phase-Type distributions.
Basicamente, sdo adotadas diferentes combinacdes de lugares, transi¢cdes imediatas e
temporizadas para representar diferentes atrasos de distribui¢des.

A técnica de aproximacao por fases (Watson & A. 1991) tem sido normalmente uti-
lizada para representar o comportamento de distribui¢cdes desconhecidas, que, a partir
da média de atraso (i) e desvio padrio (0;), uma aproximagdo por fase € levada em
conta, por exemplo, Erlang, Hipoexponencial e Hiperexponencial. E importante men-
cionar que essa técnica tem sido utilizada com sucesso na modelagem de atividades

nao-exponenciais. O seguinte algoritmo € considerado (Callou & et al. 2012):

* Se 1y = G4, apenas uma tnica transicdo temporizada é adotada;

* Assumindo u /04 € Ne uy/04 # 1, a aproximagdo por fase considera uma sub-
rede Erlang (Figure 3.22 (a)), de tal modo que y = (ﬁ—j)z and A = y/Uq;

* Considerando que Uy > o4, uma sub-rede hipoexponencial € adotada (Figure 3.22

(b)) e

Ha o Ha»
—)—-1< - 21
(Btp-1cy<(b) 3
1 Y
=t aar =¥
1 2

58



3.11. CONSIDERAGCOES FINAIS

p2

t2 t3

(@)

(b)

t1

(c) 3

Figura 3.22: Distribuicdes: (a) Erlang, (b) Hipoexponencial e (c) Hiperexponencial

1y = Lot/ Y(Y+1)042 — 14>

3.23
y+1
1 2 _ 2
1y — THaF VY + D)o~ 1 94
y+1
* Se Uy < 04, a aproximacgdo assume uma sub-rede hiperexponencial (Figure 3.22
(c)), em que
) 2
ry = % 3.25
(Ha* +04°)
rp = 1— r1 3.26
2
(Ha*+04%)

3.11 Consideracoes Finais

Este capitulo apresentou os principais conceitos que envolvem essa dissertacdo. Primei-
ramente, foram descritos conceitos sobre gerencimento de riscos, incluindo as categorias
de riscos e as atividades do gerenciamento de riscos. Posteriormente, foram abordados

conceitos sobre avaliacdo de desempenho, avaliagdo de dependabilidade, avaliacdo de

59



3.11. CONSIDERAGCOES FINAIS

performabilidade e censura. Posteriormente, foi apresentado os diagramas de bloco de
confiabilidade, tais como os arranjos adotadas e uma introdugdo sobre redes de Petri,
assim como defini¢des, conceitos basicos e propriedades, as quais podem ser divididas
em duas categorias: propriedades comportamentais e propriedades estruturais. Por fim,
foram apresentadas as redes de Petri estocasticas (SPNs), que € a extencdo de redes de

Petri proeminentemente adotada neste trabalho.

60



Metodologia e Modelos

Seu trabalho ird tomar uma grande parte da sua vida
e o unico meio de ficar satisfeito é fazer o que vocé

acredita ser um grande trabalho.

—STEVE JOBS

Neste capitulo € apresentada a metodologia adotada para avaliacdo de performabili-
dade de riscos de desenvolvimento em projetos de software além de um exemplo moti-
vacional. Em seguida sdo apresentados os modelos adotados com base em diagramas
de blocos de confiabilidade e redes de Petri estocdsticos para estimar as métricas de
dependabilidade e performabilidade.

4.1 Método Proposto

A industria de software lida com varios tipos de riscos que fazem com que os projetos
de desenvolvimento de software sejam desviados de seu planejamento original, crono-
grama, prazo de entrega e, consequentemente, sua qualidade. Dessa forma, é necessario
gerenciar os riscos do projeto.

O gerenciamento de riscos € de grande importancia para projetos de software, de-
vido a inerentes incertezas relacionadas as suas execugdes. Os riscos sdo classificados
de acordo com diferentes categorias, que podem incluir os riscos do projeto, riscos de
negocios e os riscos do produto. As premissas desta dissertacdo direcionam especial
atencdo aos riscos do projeto que, por exemplo, podem afetar o cronograma e recursos
do projeto Guide (2013).

Geralmente, o gerenciamento de riscos considera os seguintes atividade (Somerville

2011) (Figura 4.1): (1) identificagdo, (i1) andlise, (iii) planejamento e (iv) monitoramento.

61



4.1. METODO PROPOSTO

O processo € iterativo (Somerville 2011), comeca no planejamento do projeto e continua
durante toda a vida do projeto. A avaliagdo de risco € adotada na atividade de andlise, a

fim de estimar o impacto quantitativo/qualitativo dos riscos identificados.

[Identificagéo }—’[ Andlise }

[Monitoramento}«[Planejamento}

Figura 4.1: Atividades do Gerenciamento de Riscos Adaptado de (Somerville 2011).

Utilizando os conceitos de dependabilidade, os riscos no processo de desenvolvi-
mento de software podem ser estimados probabilisticamente e as técnicas (por exemplo,
redundancia dinamica) podem ser utilizadas para evitar ou reduzir a ocorréncia de tais

problemas. Por exemplo, podem ser adotados os seguintes conceitos e técnicas:

 Falha: a ocorréncia de um risco (por exemplo, alguns desenvolvedores deixaram o
projeto, afetando a quantidade minima de desenvolvedores necessdrios para man-

ter o projeto de software operacional);

* MTTF: o tempo médio para um desenvolvedor deixar o projeto ou tempo médio
para um desenvolvedor falhar na implementag¢do de um requisito/funcionalidade.
Aumentando o MTTF, pode-se baixar a probabilidade de falha dos projetos de
software;

* MTTR: o tempo médio para a substitui¢cdo de um desenvolvedor ou recuperacio do
desenvolvedor para implementar outros requisitos. Com a diminui¢do do MTTR,

sao grandes as chances dos projetos de software obter sucesso;

* Cold standby: um desenvolvedor de backup esta a trabalhar para um outro projeto,

mas ele pode substituir um membro da equipe sempre que necessario;
* Hot standby: programacao em pares;

* Manuteng¢ao Preditiva: reunides periddicas com os stakeholders (partes interessa-

das) a fim de evitar falhas durante a implementagdo do requisito.

A Figura 4.2 apresenta o método proposto para avaliagdo probabilistica de risco em
projetos de desenvolvimento de software, que € realizada durante a atividade de ané-

lise (ou seja, apds a identificacdo do risco). Nossa énfase € na avaliacdo quantitativa

62



4.1. METODO PROPOSTO

do risco, que € uma sub-parte da andlise de risco. O método assume dados histéricos
como entrada e dados probabilisticos como saida. Esse método é importante para ava-
liar probabilisticamente os riscos de desenvolvimento em projetos de software. Gerentes
de projetos de software podem aplicar esse método, para evitar ou mitigar os riscos de
desenvolvimento.

A seguir, as atividades da metodologia sdo detalhadas.

®

"[Modo de Falha/Funcionamento e definigcoes de métricas}

|

¥

[ Analise de Dados J
[ Geragao de Modelo j

| Validagdo do Modelo

[ Avaliagio de cenarios J

Figura 4.2: Atividades do Método Proposto.

Modo de Falha/Funcionamento e defini¢oes de métricas. Nesta atividade, os modos
de falha/funcionamento de um projeto de software sao definidos, bem como as métricas
desejadas considerando cada risco identificado. Por exemplo, assumindo rotatividade de
desenvolvedor, o modo de falha/funcionamento considera um minimo de 4 desenvolve-
dores para manter o processo de software em execugdo, e as métricas de interesse que
incluem disponibilidade e confiabilidade. O gerente de projeto seria o responsavel por
essa atividade, o qual, a partir de dados histdricos do projeto de software, pode definir as
métricas que serdo tratadas, para cada risco identificado e consequentemente seu modo
de falha/funcionamento.

Andlise de Dados. Os valores médios, como MTTF e MTTR, sdo comumente neces-
srios para estimar as métricas/atributos de dependabilidade. Em tal caso, um individuo
(por exemplo, gerente do projeto) pode tomar dados histéricos (a partir de projetos cor-
rentes ou outros projetos) para estimar esses valores sempre que disponiveis. Apesar
dos projetos de software serem distintos, projetos anteriores podem fornecer dados im-

portantes para estimar muitas métricas, dando percepgdes interessantes para os gerentes

63



4.1. METODO PROPOSTO

de projeto em relacao aos riscos identificados.

No que diz respeito as estimativas de MTTE, a censura (Secdo 3) pode ocorrer no sen-
tido de que os dados sdo incompletos, uma vez que nem todos os componentes falharam
durante um periodo de observagdo (Ebeling 2005) (por exemplo, um desenvolvedor ndo
deixou o projeto). Em tal situacdo, um método ndo paramétrico, de Kaplan-Meier (Se-
¢do 3), fornece uma estimativa inicial para uma distribui¢do empirica e, em seguida, para
um encaixe de distribui¢@o tedrica € realizada e avaliada utilizando o teste estatistico (ou
seja, teste K-S) (Secdo 3), para avaliar o goodness-of-fit (Ebeling 2005). Neste trabalho,
Phase-Type Distributions sao consideradas (Sec¢do 3), uma vez que proporcionam aproxi-
macao para distribuicdes gerais de probabilidade e podem ser adotadas na avaliacao das
CTMC e modelos SPN. Assumindo dados completo, a técnica moment-matching € apli-
cada diretamente (Watson & A. 1991). Se ndo ha dados historicos disponiveis, MTTF e
MTTR podem ser definidos com base em uma expectativa e experiéncia do gerente do
projeto.

Geragdo de Modelo. Esta atividade corresponde a geracdo de modelos de dependa-
bilidade e performabilidade, de acordo com a definicao dos modos de falha e estimados
os MTTFs/MTTRs. Neste trabalho, os modelos sdo construidos utilizando um modelo
hibrido, que adota resultados de diferentes modelos (Secdo 4.3). A abordagem con-
sidera as caracteristicas do modo de funcionamento/falha, bem como a complexidade
para obter uma métrica definida. Apds estimar as métricas de dependabilidade, o mo-
delo performabilidade € construido.

Validag¢do do Modelo. Uma vez que o modelo de sistema € criado, a validagdo €
importante para avaliar a métrica/atributo estimados pelo modelo. No entanto, essa ati-
vidade pode ser opcional, como o modelo pode representar um projeto que ainda nao foi
iniciado. A mesma situagdo pode ocorrer sempre que MTTF/MTTR sao definidos pela
experiéncia.

Por outro lado, supondo que um projeto em andamento, um individuo possa coletar
dados e realizar uma comparacdo. Dependendo dos dados disponiveis e sua complexi-
dade, o erro relativo (err) ou um teste estatistico pode validar o modelo (por exemplo,
teste emparelhado). err = (|v_model — v_data| x 100)/|v_datal|, em que v_model é a
métrica estimada pelo modelo, e v_data é a métrica obtida por anélise dos dados coleta-
dos.

Avaliacdo de Cendrios. Uma vez que o modelo base é construido, o gestor pode
conceber varios cendrios para avaliar o respectivo impacto sobre a dependabilidade, mo-

dificando a estrutura e os valores no modelo atual. Apés a avaliagcdo do modelo, sempre

64



4.2. EXEMPLO MOTIVACIONAL

que as métricas estimadas ndo fornecem os valores esperados, as atividades anteriores
podem ser executadas de forma iterativa.

O método proposto pode ser automatizado por ferramentas, no sentido em que, a
partir de um modelo de alto nivel (por exemplo, diagramas da UML), os modelos de
dependabilidade podem ser gerados automaticamente considerando o modo de falha ou
de funcionamento especificado. Da mesma forma, tal ferramenta poderia considerar
uma funcionalidade integrada para estimar MTTF/MTTR a partir de um banco de dados
com dados histdricos. No entanto, tal ferramenta (semi-) automadtica estd fora do escopo
deste trabalho. A utilizac@o dessa ferramenta pelos gerentes de projetos, seria vidvel por

conta da sua familiaridade com diagramas da UML.

4.2 Exemplo Motivacional

Vamos considerar um projeto de software com 3 desenvolvedores e rotatividade de de-
senvolvedor como um risco proeminente. A Tabela 4.1 descreve o MTTF (tempo médio
para um desenvolvedor deixar o projeto) e MTTR (tempo médio para a substituicdo de
um desenvolvedor) estimados para os desenvolvedores assumindo um més como a uni-
dade de tempo. A partir desses valores médios, a disponibilidade pode ser calculada
para um unico componente/desenvolvedor (Capitulo 3) e, a partir dos componentes, a

disponibilidade do sistema € estimada (Secdo 4.3).

Tabela 4.1: MTTF e MTTR em Meses.

MTTF MTTR
18,0 3,0

Um gerente pode requerer a disponibilidade do projeto considerando trés condi¢des
de trabalho: (1) todos os desenvolvedores trabalhando; (2) 2 de 3; e (3) pelo menos
um desenvolvedor. Tais suposicdes podem impactar a ordem de implementacao de re-
quisito/funcionalidade, o que pode afetar ainda mais a execucdo do projeto, quando um
desenvolvedor o deixa. Usando os modelos descritos na Secdo 4.3, a Tabela 4.2 apre-
senta os valores estimados, através da Equacgdo 3.20 descrita no Capitulo 3 (Se¢do 3.7).

O cendrio 1 tem a pior disponibilidade, o que indica que, em um més, o projeto
estd operacional 62,99% (0,6299 x 30, aproximadamente 18,89 dias). No entanto, o
cendrio 3 indica uma melhor disponibilidade (0,9970 ou 99,70%), apesar de um possivel

impacto no desempenho.

65



4.3. MODELOS PROPOSTOS

Tabela 4.2: Resultados dos Cenarios.

Cendrio Disponibilidade

1 0,6299
2 0,9446
3 0,9970

Com base nos valores estimados, um gerente de projeto deve planejar as acdes apro-
priadas para mitigar o risco, bem como os custos associados devido a indisponibilidade
(UA =1—A) para o cendrio adotado. Como exemplo, dependendo da criticidade do pro-
jeto, o gerente pode tomar medidas para aumentar o MTTF, como bdnus ou melhores
saldrios. De modo semelhante, pode ser reduzido MTTR, assumindo um programador
remanescente para continuar temporariamente a implementacdo. Outra alternativa € a
consideracdo de mais desenvolvedores do projeto de software.

Falha de desenvolvedor pode causar degrada¢do no desempenho. A modelagem de
performabilidade pode avaliar, por exemplo, a vazao de entrega (funcionalidades entre-
gues por unidade de tempo).

Vamos supor um processo em cascata, com as seguintes atividades: andlise de re-
quisito; projeto; implementagdo; teste e implantagdo. A Tabela 4.3 apresenta os valores
considerados para cada atividade. A partir de um modelo performabilidade (Secdo 4.3),
a métrica € estimada para os cendrios concebidos (ver Tabela 4.4). Em tal situagdo, o ce-
ndrio 3 tem uma melhor vazao de entrega, o que reflete a disponibilidade anteriormente
calculada. Sempre que o valor ndo € satisfatério, o gerente poderia, entdo, avaliar as
acoes para melhorar a métrica, considerando, por exemplo, as alternativas descritas nos

paragrafos anteriores.

Tabela 4.3: Atribuidos Temporizados das Atividades em Meses.

Atividade Valor
Andlise de Requisitos 2,0
Projeto 1,0
Implementagdo 6,0
Teste 2,0
Implantacdo 1,0

4.3 Modelos Propostos

Esta secdo apresenta os modelos adotados com base em RBD e SPN para estimar as

métricas de dependabilidade e performabilidade. Como se segue, os modelos e bloco de

66



4.3. MODELOS PROPOSTOS

Tabela 4.4: Resultados da Vazdo dos Cendrios em Meses.

Cenario Vazao
1 0,8003296
2 0,9692717
3 0,9985114

construgdo sdo apresentados.

4.3.1 Modelos RBD

Este trabalho adota modelos RBDs, por serem um modelo combinatorial, € possivel
calcular as métricas de disponibilidade e confiabilidade por meio de férmulas fechadas.
Portanto, uma das vantagens de utilizar o RBD € a facilidade de avaliar a confiabilidade
e disponibilidade dos sistemas.

Os modelos RBDs mais simples e comuns dao suporte a arranjos em séries e paralelo.
Para que um sistema esteja em funcionamento € necessario que todos 0os componentes
estejam operacionais (funcionando) os blocos destes modelos serdo conectados em série.
No entanto, uma conexao em série representa uma dependéncia direta entre 0os compo-
nentes. Consequentemente, um sistema pode funcionar com apenas um componente
operacional, dessa forma os blocos estdo conectados em paralelo. Assim, uma conexao
em paralelo € utilizada para representar redundancia.

Os arranjos K-out-of-n descrevem estruturas em que o sistema pode funcionar se k
ou mais componentes estdo no estado operacional (Kuo & Zuo 2003). Por conseguinte,
uma estrutura formada por quatro componentes e necessita de dois funcionamento para
prover o servico esperado, assim temos uma estrutura 2-out-of-4 (ou 2 de 4). Os arranjos
em série e paralelo sdo casos especiais do arranjo K-out-of-n, ou seja, um arranjo em
série € uma n-out-of-n e um arranjo em paralelo é uma 1-out-of-n (Kuo & Zuo 2003).

Os arranjos em RBD adotados nesta dissertagdao foram descritos no Capitulo 3, tais

como arranjos em Série, Paralelo e K-out-of-n.

4.3.2 Modelos SPN

Este trabalho adota Redes de Petri Estocastica (SPN) (Balbo 2001), que permite a as-
sociacdo de distribuicdo exponencial para transicdes temporizadas (representadas por
retangulos brancos), ou zero atraso nas transicdoes imediatas (descrito como retangulos

pretos finos). O espaco de estados de modelos SPN pode ser traduzido em tempo con-

67



4.3. MODELOS PROPOSTOS

tinuo de cadeias de Markov (CTMC) (Balbo 2001), bem como técnicas de simulagdo
podem ser adotadas para estimar as métricas de dependabilidade e performabilidade,

como uma alternativa para a gerac¢do da cadeia de Markov.

4.3.2.1 Componente Simples

O componente simples é um bloco de construcio representativo (Silva & et al. 2013).
Ele € caracterizado pela auséncia de redundancia, no sentido de que o componente pode
estar em dois estados: ativo ou inativo. A Figura 4.3 mostra o respectivo componente. A
Tabela 4.5 descreve o significidado dos lugares e a Tabela 4.6 descreve o significado das
transi¢des do modelo de componente simples.

O componente simples possui dois parametros (ndo mostrados na figura), ou seja,
X_MTTF e X_MTTR, os quais representam os tempos associados as transi¢des X _Failure
e X_Repair, respectivamente. Lugares X_ON e X_OFF representam estados ativos e
inativos.

Se X_MTTF e X_MTTR sao exponencialmente distribuidos, serdo os tinicos para-
mentos necessarios para o cdlculo da disponibilidade.

X_ON

X_Repair X_Failure
X_OFF

Figura 4.3: Modelo Componente Simples.

Tabela 4.5: Descrigao dos Lugares do Componente Simples.

Lugar Descricao
X_ON Componente ativo ou desenvolvedor disponivel
X_OFF Componente inativo ou desenvolvedor indisponivel

Tabela 4.6: Descricao das Transi¢des do Componente Simples.

Transicdo Descri¢do
X_Failure Representa a falha do componente/desenvolvedor
X_Repair Representa o reparo do componente/desenvolvedor

Sempre que #X_ON > 0, o componente esta operacional, por conseguinte, P{#X_ON >
0} indica a respectiva disponibilidade. Um modelo componente simples pode represen-

tar um Unico desenvolvedor em relacdo a rotatividade ou implementagao de requisitos.

68



4.3. MODELOS PROPOSTOS

Foi analisado e verificado um conjunto de propriedades estruturais e comportamen-
tais associadas ao modelo. As seguintes propriedades de interesse foram satisfeitas:

limitada, segura e auséncia de deadlocks.

4.3.2.2 Modelo Cold Standby

A Figura 4.4 representa o modelo cold standby (Silva & et al. 2013, Guimardes & et al.
2013), no qual um componente de reposicao ndo ativo s6 € ativado quando o compo-
nente principal falha (X_OFF). Em tal caso, a transi¢do Activate_Spare_X representa
o médulo de reposi¢do para comecar a operagdo. A ativacdo leva um certo periodo de
tempo, o qual € representado pelo tempo médio de ativacdo (MTActivate). Depois de
corrigir o componente principal (#X_ON > 0), a reposi¢ao esta desativada (disparo da
transicao Deactivate_Spare_X). A Tabela 4.7 descreve o significado dos lugares e a
Tabela 4.8 descreve o significado das transi¢des do modelo.

Representar a redundancia cold standby utilizando RBD nao € facil, devido a estru-
tura do sistema ser dindmica, isto €, ela muda ao longo do tempo, e o tempo para ativar o
mecanismo de reposi¢@o deve ser representado. Dessa forma, o modelo de cold standby

¢ apresentado em SPN.

$_Repair_X[__]

| Componente de Reposigdo __f-_OFF-X

[ A,

Figura 4.4: Modelo Cold Standby.

Tabela 4.7: Descricdo dos Lugares do Modelo Cold Standby.

Lugar Descri¢do

X_ON Componente ativo ou desenvolvedor disponivel do mddulo principal
X_OFF Componente inativo ou desenvolvedor indisponivel do médulo principal
S_ON_X Componente ativo ou desenvolvedor disponivel do médulo de reposicao
S_OFF_X Componente inativo ou desenvolvedor indisponivel do médulo de reposi¢do
Wait_Spare_X Representa a espera para ativar o médulo de reposicao

69



4.3. MODELOS PROPOSTOS

Tabela 4.8: Descricao das Transi¢de do Modelo Cold Standby.

Transicao Descricao

X_Failure Representa a falha do componente/desenvolvedor do médulo principal
X_Repair Representa o reparo do componente/desenvolvedor do médulo principal
S_Failure_X Representa a falha do componente/desenvolvedor do médulo de reposig¢ao
S_Repair_X Representa o reparo do componente/desenvolvedor do médulo de reposicido
Activate_Spare_X Representa a ativagdo do médulo de reposicao

Deactivate_Spare_X Representa a desativacdo do médulo de reposicdo

Semelhante ao modelo de componente simples, X_Repair e S_Repair_X representa
as atividades de manutencao, bem como X_Failure e Failure_S_X denotam os atrasos
de falha. Além disso, a expressdo P{(#X_ON +#S_ON_X) > 0} indica o modo de fun-
cionamento do componente, assim, P{#(X_ON +#S_ON_X > 0)} indica a respectiva
disponibilidade.

Esse modelo pode ser adotado para representar um desenvolvedor de backup, a fim
de diminuir o impacto em relagdo a rotatividade de desenvolvedor.

Foi analisado e verificado um conjunto de propriedades estruturais e comportamen-
tais associadas ao modelo. As seguintes propriedades estruturais € comportamentais as-
sociadas ao modelo Cold Standby foram satisfeitas: alcancabilidade, segura e auséncia
de deadlocks.

4.3.2.3 Modelo Manutenc¢ao Preditiva/Reunides Periddicas

Os modelos apresentados até entdo consideraram manutencao corretiva. Nesta secao, um
modelo de manutencgdo preditiva € mostrado, que leva em conta as agdes periddicas para
manter o componente no estado operacional. No contexto deste trabalho, manutengao
preditiva assume reunides periddicas com os stakeholders para ajudar os desenvolvedo-
res a evitar falhas relativas a implementacao de requisitos, € uma abordagem semelhante
pode ser adotada para rotatividade de desenvolvedor (ou anélise de requisitos).

A Figua 4.5 descreve o modelo em que um componente simples estd conectado a um
bloco preditivo.

A transicdo MTBP representa o tempo médio entre manutengdes preditivas (por
exemplo, reunides), e a transicdo PM considera a execu¢do da manutencao preditiva (a
reunido em si). A Tabela 4.9 descreve o significado dos lugares e a Tabela 4.12 descreve
o significado das transicdes do modelo.

O lugar Recurso indica que o recurso estd disponivel para tal manutencao, por exem-
plo, um stakeholder, no qual as linhas tracejadas indicam que o recurso é compartilhado

com outros componentes simples.

70



4.3. MODELOS PROPOSTOS

1] o~

T4 pm

Figura 4.5: Modelo Manutencao Preditiva/Reunido Periddica.

Tabela 4.9: Descricao dos Lugares do Modelo Manutencao Preditiva.

Lugar Descricdo

X_ON Componente ativo ou desenvolvedor disponivel
X_OFF Componente inativo ou desenvolvedor indisponivel
P2eP3 Representa as fases da Erlang

Recurso Representa Stakeholder

PO Recurso néo disponivel

Tabela 4.10: Descri¢do das Transi¢cdes do Modelo Manutengao Preditiva.

Transicio Descricao

Ph_lePh_2 Representa momentos em que o desenvolvedor estar implementado um requisito, podendo ocorrer a falha
T1,T2e T3 Representa o reset da contagem do tempo

MTBP Representa tempo médio entre manutenc¢des preditivas

PM Tempo da manuteng@o/reuniio

Repair Representa o reparo do componente/desenvolvedor

Como a distribui¢do exponencial tem a propriedade sem memdria, a manuten¢ao
preditiva ndo tem como impacta sobre o decorrer do tempo de falha. No entanto, tempos
de falha baseadas em phase-type distributions sdo afetados. Assim, como um exemplo
proeminente, a Figura 4.5 retrata o MTTF assumindo uma Erlang com duas fases. Dessa
forma, um token é mantido armazenado no lugar X_ON durante o disparo de todas as
fases Erlang, e, seguidamente, € retirado quando a transi¢ao 74 dispara, concluindo toda
a fase de disparo e completando a execucdo da transi¢do Erlang. Para cada lugar que
representa uma fase, uma transi¢do imediata € adotada como transi¢ao de saida com a
expressédo de guarda (#P0 > 0). Assim, sempre que uma manutengio preditiva estd em
execugdo (por exemplo, uma reunido periddica), o decorrer do tempo de falha é resetado,
melhorando a métrica de dependabilidade. Da mesma forma, #X_ON > 0 avalia se o

componente estd operacional.

71



4.3. MODELOS PROPOSTOS

4.3.3 Modelo de Performabilidade

O modelo de performabilidade é baseado em uma abordagem de modelagem hierarquica

que também considera os resultados dos modelos de dependabilidade. Neste trabalho, o

modelo de performabilidade representa um processo em cascata, em que as atividades

de desenvolvimento de software estdo em sequéncia.

A Figura 4.6 representa o modelo de performabilidade, em que um componente sim-

ples representa o grupo de desenvolvedores alocados para a atividade de implementacao

(transicdo Impl). A transicdo Impl é habilitada quando tem um token no lugar ON.

Outros componentes simples poderiam ser alocados para outras transi¢des, mas, neste

trabalho, estamos preocupados com o impacto das falhas de desenvolvedores durante a

implementacao.

e —————— - ——

\Desenvolvedores
! ON

Repair Failure

P3

P4 P5

Des Impl Tes P

[}
[}
:
|
' Req
|
|

Figura 4.6: Modelo Performabilidade/Cascata

A Tabela 4.11 descreve o significado dos lugares e a Tabela 4.12 descreve o signifi-

cado das transi¢des do modelo. A vazao de entrega € a métrica de interesse, e € calculada

utilizando P{#P5 > 0} x W(Dep). Em outras palavras, a métrica assume o nimero de

funcionalidades entregues por unidade de tempo.

Tabela 4.11: Descri¢do dos Lugares do Modelo de Performabilidade.

Lugar

Descri¢ao

ON
OFF
P1
P2
P3
P4
P5

Grupo de desenvolvedor ativo

Grupo de desenvolvedor inativo

Inicio da atividade de andlise de requisitos
Inicio da atividade de projeto

Inicio da atividade de implementacdo
Inicio da atividade de teste

Inicio da atividade de implantagdo

72



4.3. MODELOS PROPOSTOS

Tabela 4.12: Descri¢ao das Transi¢des do Modelo de Performabilidade.

Transicao Descri¢do

Failure Representa a falha do grupo de desenvolvedores
Repair Representa o reparo do grupo de desenvolvedores
Req Representa a atividade de andlise de requisitos
Des Representa a atividade de projeto

Impl Representa a atividade de implementacdo

Tes Representa a atividade de testes

Dep Representa a atividade de implantacdo

Foi analisado e verificado um conjunto de propriedades estruturais € comportamen-
tais associadas a tal modelo. As seguintes propriedades de interesse foram satisfeitas:

alcancabilidade, limitada, segura e auséncia de deadlocks.

4.3.4 Composicao Hierarquica

Como foi referido anteriormente, RBD e SPN sdo técnicas de modelagem importantes
para avaliar a dependabilidade do sistema, mas ambos t€m limitacdes. Assim, podemos
adotar um mecanismo de modelagem hibrida, que é muito adequado para a representagao
de sistemas grandes e complexos. Além disso, a composi¢do hierdrquica também ¢é
levada em conta (Maciel et al. 2011).

Em geral, o sistema é decomposto em subsistemas, que consideram apenas 0s com-
ponentes que estdo relacionados sobre a ativacdo, falha ou reparo. De fato, tal decom-
posi¢ao pode considerar subsistemas com apenas um componente, no sentido de que a
ativacdo, a falha e reparo ndo dependem de qualquer outro componente do sistema. Mo-
delos menores (RBD ou SPN) sdo, entdo, criados para cada subsistema; as respectivas
métricas sao estimadas; e o modelo do sistema final (RBD ou SPN) € criado utilizando
tais métricas para avaliar a dependabiliddade do sistema.

A Figura 4.7 representa um exemplo, no qual 4 desenvolvedores (DE) sdo consi-
derados. Trés pessoas sdo necessarias para manter o sistema (projeto de software) em
funcionamento e um arranjo série € adotado. Dois desenvolvedores (DE_1 e DE_2) sao
representados por blocos separados, pois eles ndo sdo dependentes de outros compo-
nentes, considerando as questdes de confiabilidade. Por outro lado, duas pessoas estdo
relacionadas por programacao em par baseada em cold standby (DEP), e um SPN ¢ ado-
tado no presente caso. Assim, o modelo SPN ¢ avaliado, inicialmente e, em seguida, a
estimativa da métrica (por exemplo, a disponibilidade) € considerada no modelo de RBD.
Como alternativa, um inico modelo SPN, ndo-hierdarquico poderia ser adotado para todo

o0 sistema, ao custo de gerar um espaco de estado maior ou tempo de simulacgao.

73



4.4. CONSIDERACOES FINAIS

DE_ON

DE_Repair

DE 1 DE 2 DEP Activate_Spare_DE

Deactivate_Spare_DE Wait_Spare_DE

| Repair_DE S_Failure_DE

S_OFF_DE

Figura 4.7: Composicao Hierdrquica

Adicionalmente, a modelagem hierdrquica € importante para avaliar métricas de per-
formabilidade. A partir do modelo de dependabilidade final, o MTTF e MTTR podem
ser estimados, e estes valores podem ser considerados em um modelo de performabi-
lidade, ao invés de adotar um modelo baseado no estado geral. Os estudos de caso

concebidos adotam essa abordagem.

4.4 Consideracoes Finais

Este capitulo apresentou a metodologia proposta para avaliacdo de performabilidade de
riscos de desenvolvimento em projetos de software € um exemplo motivacional. Em
seguida, foram apresentados os modelos adotados com base em diagramas de blocos de
confiabilidade e redes de Petri estocdsticos para estimar as métricas de dependabilidade
e performabilidade. Para cada modelo SPN, foram apresentadas expressdes para calculo

de algumas métrica de dependabilidade e performabilidade.

74



Estudos de Caso

A tinica maneira de fazer um excelente

trabalho é amar o que vocé faz.

—STEVE JOBS

Neste capitulo serdo apresentados dois estudos de casos para mostrar aplicabilidade
da metodologia e dos modelos propostos. Em seguida, vérios cendrios serdo apresen-
tados com o objetivo de avaliar o impacto da performabilidade de riscos de desenvol-
vimento em projetos de software. Assim, todas as atividades da metodologia foram
utilizadas para auxiliar na avaliacdo desses estudos.

Os estudos de caso propostos levam em conta dois projetos de software do mundo
real para demonstrar a abordagem concebida para avaliar os riscos, a fim de auxiliar
na tomada de decis@o para gerentes de projeto. O estudo de caso 1 trata apenas de
dependabilidade, e o estudo de caso 2 leva em conta a performabilidade.

Para uma melhor visualizacdo, este trabalho adota number of nines (nimero de no-
ves) (Maciel et al. 2011) para apresentar alguns resultados, utilizando a seguinte equa-
¢do: —logio(1 —X) (onde X refere-se a disponibilidade ou confiabibilidade). Por exem-
plo, 0,99521 pode ser apresentado como —logio(1 —0,99521) = 2,319664487.

Inicialmente, os pardgrafos seguintes descrevem sobre MTTF e MTTR estimados.

Em seguida, um estudo de caso € apresentado considerando rotatividade de desenvolve-

75



5.1. ESTIMANDO MTTF E MTTR

dor e estudo de caso 2 assume os riscos relacionados com a implementagdo de requisitos.

5.1 Estimando MTTF e MTTR

Considerando-se as atividades do método proposto, os estudos de caso adotar dados
histéricos para estimar MTTF e MTTR.

Em relacdo ao MTTF, a censura esta presente, e os dados sdo classificados como
tipo I, isoladamente censurado a direita (Secdo 3): a observagdo terminou apds um de-
terminado periodo de tempo, todos os desenvolvedores tiveram o mesmo periodo de
observacao, e alguns individuos niao deixaram o projeto durante a observacdo. Neste
caso, a Capitulo 4 explica a abordagem adotada. Por outro lado, MTTRs sdo estimados

com base em dados completos (sem censura).

5.1.1 Estudo de Caso1

Este estudo de caso assume rotatividade de desenvolvedor como um risco potencial. O
projeto contempla 10 desenvolvedores, que podem ser trainee (TR), desenvolvedor ju-
nior (JE) ou desenvolvedor senior (SE). Mais especificamente, um desenvolvedor sénior
tem mais experiéncia do que as outras categorias, ¢ um desenvolvedor jinior é mais
experiente do que os trainees.

E necessdrio um minimo de 7 desenvolvedores (sem discernir categorias anteriores)
para manter o projeto operacional e, com base nos dados coletados, a disponibilidade
estimada € de 0,999214286.

Nas proximas se¢des, diferentes cendrios sdo avaliados, incluindo a ado¢ao de redun-

dancia.

5.1.1.1 Cenirios sem Distin¢ao Desenvolvedor

Estes cendrios adotam a abordagem k-out-of-n a fim de avaliar a disponibilidade e confi-
abilidade, assumindo um nimero minimo de desenvolvedores (k) para ndo interromper
o projeto de software. MTTF representa o tempo médio para um desenvolvedor deixar
o projeto e MTTR considera o tempo médio para a substituicdo de um desenvolvedor.
Nesta se¢do, os valores médios sio calculados levando-se em conta todas as categorias.
A Tabela 5.1 representa os valores e as distribui¢des de probabilidade escolhidas.
Ambos modelos combinatdrios sao baseados em estado e sdo representacdes ade-

quadas. A Figura 5.1 representa o modelo RBD adotado (como uma equagdo de forma

76



5.1. ESTIMANDO MTTF E MTTR

fechada estd disponivel).

| 710 |®

DE
Figura 5.1: Modelo RBD sem Distin¢do de Desenvolvedor.

Tabela 5.1: MTTF/MTTR em Meses sem Distincdo de Desenvolvedor.

Métrica Valor Desvio padrao Distribuigao
MTTF 23,3385 12,3405 Hipoexponencial
MTTR 2,0 1,0 Erlang

A Tabela 5.2 apresenta os resultados da disponibilidade e a Figura 5.2 mostra uma
comparacdo em relacdo a ndmero de noves. O modelo base € 7-out-of-10, em que a
disponibilidade é 0,994472645. O erro relativo € 0,47% comparando com a disponibili-
dade estimada para o projeto de software real.

120
100

80

60

40

2 II

% Hm
1 2 3 4 5 6 7 8 9

10

Disponibilidade (N. de 9's)
o

Numero minimo de desenvolvedores

Figura 5.2: Disponibilidade para Desenvolvedor sem Distin¢cdo em k-out-o f-n.

Como esperado, quando o nimero minimo de desenvolvedores necessarios aumenta,
a disponibilidade diminui. Particularmente, a partir do minimo de 4 desenvolvedores, a
disponibilidade fica abaixo de um minimo aceitdvel (podendo levar a falha do projeto).
Assim, o gerente do projeto pode evitar cendrios com baixa disponibilidade, buscando
alternativas para aumentar o MTTF, atrdves de incentivos aos profissionais (por exemplo,
aumento de saldrios e gratificagdes adicionais por producao).

A Tabela 5.3 apresenta resultados de confiabilidade ao longo de um periodo de 12

meses e a Figura 5.3 mostra uma comparagdo em relacdo a nimero de noves. Seme-

77



5.1. ESTIMANDO MTTF E MTTR

Tabela 5.2: Resultados da Disponibilidade para Cendrios em k-out-o f-n.

k-out-of-10 Disponibilidade Disponibilidade (N. de 9’s)
1 0,999999999990613 11,0274710217
2 0,999999998895311 8,95675996780
3 0,999999941000000 7,22914798840
4 0,999998152000000 5,73329803310
5 0,999961600000000 4,41566877560
6 0,999449776000000 3,25946047020
7 0,994472645000000 2,25748264150
8 0,961284687000000 1,41211722530
9 0,816056393000000 0,73531530160
10 0,439458250000000 0,25139203500

lhante a disponibilidade, a confiabilidade diminui quando k é aumentado. Para k > 9, a

confiabilidade € muito baixa (isto €, alta probabilidade de falha).

8,0
70
6,0
50

40

30

20

10 I.

o -
1 2 3 4 5 6 7 8 9

10

Confiabilidade (N. de 9's)

Numero minimo de desenvolvedores

Figura 5.3: Confiabildade para Desenvolvedor sem Distingdo em k-out-o f-n.

Tabela 5.3: Resultados da Confiabilidade para Cenarios em k-out-of-n.

k-out-of-10 Confiabilidade Confiabilidade (N. de 9’s)
1 0,999999984715372 7,8157451297
2 0,999999213226689 6,1041503807
3 0,999981689891544 4,7373090832
4 0,999745826687782 3,5948700516
5 0,997662425363553 2,6312345136
6 0,985043311014274 1,8251645371
7 0,931964360959178 1,1672635316
8 0,778870079508063 0,6553524902
9 0,489092400007291 0,2916576369
10 0,164059658900933 0,0778247159

78



5.1. ESTIMANDO MTTF E MTTR

5.1.1.2 Cenarios com Desenvolvedores Distintos

Este experimento considera o impacto de categorias de desenvolvedores em dependabi-
lidade. A Tabela 5.4 representa os MTTFs estimados e as distribui¢des de probabilidade
para cada categoria. Além disso, assumimos o mesmo MTTR para todos os tipos de
especializacdo (Tabela 5.1), e a equipe contempla trés trainees (TR), 2 desenvolvedores

junior (JE) e cinco desenvolvedores senior (SE).

Tabela 5.4: MTTF em Meses Distintos para Desenvolvedores.

Especializagiao MTTF Desvio padrao Distribuigao

TR 20,5676 10,5147 Hipoexponencial
JE 23,1059 22,1457 Hipoexponencial
SE 31,8521 17,2144 Hipoexponencial

A Tabela 5.5 apresenta alguns cendrios concebidos, requerendo um minimo de 7 de-
senvolvedores, mas com diferentes restricoes para cada categoria. Todos os cenarios
tém 10 desenvolvedores, mas, por exemplo, o cendrio 1 requer pelo menos um trainee,
um desenvolvedor junior e 5 desenvolvedores senior para estar operacional. Ambos 0s
modelos combinatdrios e baseados em estado sdo abordagens vidveis para modelar os ce-
ndrios e a Figura 5.4 representa o modelo RBD para o cendrio 1. Outros cendrios adotam

modelos semelhantes, mas com um diferente valor k para cada tipo de especializagao.

o— 1/3 112 55 e

TR JE SE
Figura 5.4: Modelo RBD para Cenério 1.

Tabela 5.5: Numero Minimo de Desenvolvedores para Cada Cenario.

Cendrio TR JE SE
1

1 5
1 3
2 3
2 2

W N W=

2
3
4

A Tabela 5.6 apresenta os resultados, e a Figura 5.5 retrata resultado da disponibili-
dade considerando nimero de noves. O Cendrio 3 tem o melhor valor de disponibilidade,
mas a disponibilidade (A) € menor do que os valores apresentados na Tabela 5.2.

A partir da indisponibilidade (UA = 1 —A), onde A € a disponibilidade, um individuo

pode estimar possiveis custos relacionados com a paralisacdo do projeto. Por exemplo,

79



5.1. ESTIMANDO MTTF E MTTR

08
07

06
05
04
03
02
01
00
1 2 3 4

Cenario

Disponibilidade (N. de 9's)

Figura 5.5: Disponibilidade para Desenvolvedores Distintos em k-out-of-n.

Tabela 5.6: Resultados para Desenvolvedores Distintos.

Cenario Disponibilidade Disponibilidade (N. de 9’s)

1 0,732310089 0,572367997
2 0,750777023 0,603411921
3 0,826682487 0,761157551
4 0,641155997 0,445094307

supondo que uma multa mensal (MF) de US$ 50.000,00 € aplicada, devido a paralisagéo,
o respectivo custo (C) pode ser calculado utilizando C = MF x UA x P,em que P é o
periodo. A Tabela 5.7 mostra as penalidades para cada cendrio tendo em conta periodos

diferentes.

Tabela 5.7: Penalidades em US$.

Cendrio 1 Més 2 Més 3 Més

1 13.384,50 26.768,99 40.153,49
2 12.461,15 24.922,30 37.383,45
3 8.665,88 17.331,75 25.997,63
4 17.942,20 35.884,40 53.826,60

5.1.1.3 Programacao em Pares e Desenvolvedor de Backup

E um dos aspectos mais comentados da metodologia (XP) (Pressman 2006). A imple-
mentagao ¢é feita em dupla, ou seja, dois desenvolvedores trabalham em um tnico com-
putador. Eles irdo trabalhar em conjunto para apresentar uma melhor solugdo para a
implementagdo de uma funcionalidade do software em desenvolvimento. Na pratica,

cada desenvolvedor assume papel ligeiramente diferente, no qual, sio comumente cha-

80



5.1. ESTIMANDO MTTF E MTTR

mados de piloto e copiloto (Pressman 2006). Por exemplo, um desenvolvedor poderia
ser responsdvel por comandar o computador, digitar o c6digo, enquanto o outro serd au-
xiliar e revisard o cédigo, garantindo que as normas de codificacdo estao sendo seguidas.
Consequentemente, os papéis serdo trocados durante o desenvolvimento do software.

O projeto de software poderia adotar a programacdo em pares € desenvolvedor de
backup para os desenvolvedores senior (SE), como eles t€ém mais experiéncia, sao nor-
malmente associados com as atividades mais importantes na construcao de software. De
fato, quando os desenvolvedores experientes abandonam um projeto de software, eles
criam uma lacuna de conhecimento que tem de ser controlada (Izquierdo-cortazar & et al.
2010). Duas abordagens sdo assumidas: cold e hot. Este ultimo assume que um desen-
volvedor adicional estd ativo, e o anterior considera um atraso para ativar o individuo de
reposicao.

Modelos combinatdrios ndo sao muito adequados para representar o comportamento
dindmico de redundancia cold standby, mas os modelos baseados em estado sdo via-
veis. Para reduzir o tamanho do espaco de estado, cada SE com cold standby é repre-
sentado por um modelo SPN (Capitulo 4) e o modelo final é um RBD. A Figura 5.6
representa 0 modelo, no qual as distribui¢des do tipo fase (Erlang e Hipoexponencial)
sdo explicitamente representadas por falha e reparo (Watson & A. 1991). O tempo mé-
dio para ativar € um dia. A partir do modelo cold standby, a disponibilidade é estimada
(P{(#X_ON +#S_ON_X) > 0}) para 1 SE, e o respectivo valor é adotado no modelo
RBD (por exemplo, Figura 5.4.) para estimar a disponibilidade de um cenario. No que
diz respeito ao hot standby, dois desenvolvedores senior estdo em arranjo paralelo. A
respectiva disponibilidade € estimada e adotada na Figura 5.7 (em vez de considerar a
disponibilidade do cold standby).

A Tabela 5.8 apresenta os resultados e a Figura 5.8 os descreve, indicando que o ce-
nario 1 € melhorado consideravelmente, uma vez que requer um minimo de 5 SEs para
manter o projeto operacional. Os outros cendrios nao sdo significativamente afetados,
uma vez que requer menos SEs, e TRs, bem como JEs ndo tem reposicdo de desenvol-
vedores. No entanto, a técnica hot standby proporciona maior disponibilidade do que a
contrapartida da cold para um cendrio.

Com os experimentos propostos, foi possivel avaliar o risco proeminente em diferen-
tes configuragdes. Ademais, as técnicas baseadas em redundancia dinamica sdo aborda-

gens possiveis para melhorar as métricas de dependabilidade.

81



5.1. ESTIMANDO MTTF E MTTR

S_SE_TOt >EmSSET
Componente de Repgsicao S_SE OFF

Figura 5.6: Modelo SPN cold standby.

SE_1

SE_2
Figura 5.7: Modelo RBD hot standby.

Tabela 5.8: Resultados para Cold/Hot standby.

Cendrio Dis. Cold Dis. (N. de 9’s) Cold Dis. Hot Dis. (N. de 9’s) Hot
1 0,922313764 1,109655920 0,992962256 2,1525665348
2 0,752170840 0,605847595 0,752193670 0,6058876041
3 0,828217221 0,765020376 0,828242359 0,7650839333
4 0,641193065 0,445139172 0,641193211 0,4451393482

82



5.1. ESTIMANDO MTTF E MTTR

25
— 20
»
<
3
> 15
E B Sem Redundancia
g 10 O Cold Standby
g [ Hot Standby
[~]
o
g ) I I

00

1 2 3 4
Cénario

Figura 5.8: Disponibilidade para Cold/Hot Standby.

5.1.2 Estudo de Caso 2

Nesta se¢do, adota-se o método proposto para quantificar a disponibilidade e confiabili-
dade de um projeto de software sobre os riscos relacionados com a implementacdo de
requisitos. O projeto contempla 4 desenvolvedores, e uma falha € assumida sempre que
2 desenvolvedores falham simultaneamente para implementar um requisito/funcionali-
dade.

A partir de dados histdricos, a disponibilidade € avaliada como 0,999994419, consi-
derando o tempo de uptime e downtime, o que indica um erro relativo igual a 0,005%.
Consequentemente, a disponibilidade em ntimeros de nove € 5,2532923928.

As secdes a seguir apresentam os cendrios avaliados neste estudo de caso.

5.1.2.1 Minimo de k Desenvolvedores

Um nimero minimo de desenvolvedores (k) € necessario para nao interromper a execu-

¢do do projeto. RBD € adotada devido as equagdes de forma fechada.

83



5.1. ESTIMANDO MTTF E MTTR

Tabela 5.9: Métricas em Dias para o Cenario Base.

Métrica Valor Distribuigdo
MTTF 29,6298 Exponencial
MTTR 1,6923 Exponencial

A Tabela 5.10 apresenta os resultados e a Figura 5.9 mostra uma compara¢do em

relagdo ao numero de noves.

Tabela 5.10: Resultados de Cendrios k-out-of-n para Implementacdo de Requisitos.

k Disponibilidade Disponibilidade (N. de 9’s)
1 0,999991479 5,0695094347
2 0,999394687 3,2180199989
3 0,983721279 1,7883797201
4 0,800775849 0,7006580153
6,0
7
>
S 40
2
s 30
<
=
3 20
c
o
& 10 I
" B
0,0
1 2 3 4
Ndmero minimo de desenvolvedores

Figura 5.9: Disponibilidade para Implementacdo de Requisitos em k-out-of-n.

A Tabela 5.11 mostra os resultados da confiabilidade ao longo de um periodo de 30
dias e a Figura 5.10 apresenta uma comparacdo em relacdo a nimero de noves. Como se
percebe, a confiabilidade do projeto em 1 més € muito baixa e para k > 3 existe grande
risco da falha do projeto. Ademais, semelhante a disponibilidade, a confiabilidade de-

cresce quando k € acrescido num periodo de 1 més.

5.1.2.2 Reunioes periddicas

Sao reunides feitas com a equipe de desenvolvimento e stakeholders em um tempo pré-
estabelecidos, visando a identificacdo e correcdo de quaisquer problemas e/ou impe-

dimentos no processo de desenvolvimento de software (Schwaber & Beedle 2002). As

84



5.1. ESTIMANDO MTTF E MTTR

Tabela 5.11: Resultados da Confiabilidade para Cenarios em k-out-of-n.

k-out-of-4 Confiabilidade Confiabilidade (N. de 9’s)

1 0,835673533 0,7842924819
2 0,460596911 0,2680865708
3 0,139553514 0,0652761347
4 0,017422780 0,0076333089
1,0
= 08
D
-4
=}
z 06
4]
S
T 04
=
=
- I
(&}
% . —
1 2 3 4
N(mero minimo de desenvolvedores

Figura 5.10: Confiabildade para Implementacdo de Requisitos em k-out-o f-n.

reunides periddicas permitem acompanhar o dia a dia de trabalho da equipe e perceber as
dificuldades existentes para a realizag¢do das atividades planejadas (por exemplo, imple-
mentacdo de requisito/funcionalidade). O envolvimento dos stakeholders é importante
durante as reunides, pois sua opinido € valiosa, ou seja, entendem do negdcio (software
em constru¢do). Dessa forma, as reunides periddicas buscam levantar impedimentos
(por exemplo, riscos) e, consequentemente, minimiza-los, com o objetivo de garantir o
prazo e o custos definidos para o projeto de software.

A Figura. 5.11 representa o modelo adotado para reunides periddicas utilizando SPN
(Capitulo 4) como modelos combinatdrios ndo sdo muito adequados para este contexto.
Este modelo contempla quatro desenvolvedores que compartilham as partes interessa-
das, e a Tabela 5.12 representa os valores de PM, bem como MTBP em dias. MTTF e
MTTR os mesmos valores anteriormente adotados, mas assumindo uma Erlang com 2
fases. Os cendrios pressupdem um minimo de k desenvolvedores, e, considerando k-out-
of-4, a disponibilidade é definida como P{(#DE_ON_1+#DE_ON_2+#DE_ON_3+
#DE_ON_4) > k}.

A Tabela 5.13 apresenta os resultados da disponibilidade, considerando um e dois
stakeholders (#Stakeholder = 2), e a Figura 5.12 descreve a comparagdo em relacdo ao

numero de noves. A disponibilidade em numero de noves é o dobro em comparagao

85



5.1. ESTIMANDO MTTF E MTTR

Repair_1
Desenvolvedor_1 mp -
|«

Figura 5.11: Reunides Periddicas.

Tabela 5.12: Valores em Dias de PM e MTBP.

Transiciao Valor
PM 0,0416
MTBP 1,0

com o experimento anterior, mas uma das partes interessadas adicional ndo melhora

consideravelmente os resultados. O nimero de noves € duplicado em comparagdo com

0 experimento anterior, mas um stakeholder adicional ndo melhorar consideravelmente

os resultados.

Tabela 5.13: Resultados da Disponibilidade Assumindo Reunides Periddicas.

Cendrio Dis. 1 stakeh. Dis. (N. de 9°s) 1 stakeh. Dis. 2 stakeh. Dis. (N. de 9’s) 2 stakeh.
1 0,9999999999886 10,9430954511 0,9999999999909 11,04096132700
2 0,9999999736853 7,57980157720 0,999999979064 1 7,679108364500
3 0,9999781391957 4,66033386360 0,9999818724534 4,741660969800
4 0,9922359189711 2,10990994080 0,9930417736000 2,157501444100

Para o célculo da confiabilidade, € necessario adicionar uma expressao para 0 peso
do arco IF((#DE_ON_1 +#DE_ON_2+#DE_ON_3+#DE_ON_4) =4): 1 ELSE 2
no arco entre as transicdes Repair e DE_OFF em todos os desenvolvedores. Dessa forma,

a transi¢ao Repair serd inibida quando a condicao de falha acontecer.

A Tabela 5.14 mostra os resultados da confiabilidade num periodo de 30 dias (1

més) considerando um e dois stakeholders, e a Figura 5.13 apresenta a compara¢ao em

relacdo ao nimero de noves. Um stakeholder adicional ndo melhora consideravelmente

os resultados da confiabilidade. No entanto, para k > 3, a confiabilidade é muito baixa,

ou seja, probabilidade de falha do projeto.

86



5.1. ESTIMANDO MTTF E MTTR

120
10,0

80

60 1 Stakeholder

02 Stakeholder
40

; i
0,0

1 2 3 4

Disponibilidade (N. de 9's)

Cendrio
Figura 5.12: Disponibilidade com Reunides Periddicas.

Tabela 5.14: Resultados da Confiabilidade Assumindo Reunides Periddicas.

Cendrio Con. 1 stakeh. Con. (N. de 9’s) 1 stakeh. Con. 2 stakeh. Con. (N. de 9’s) 2 stakeh.

1 0,999999073 6,032920265 0,999999251 6,125518182
2 0,999876215 3,907331979 0,999899970 3,999869731
3 0,994021152 2,223382487 0,994976632 2,299005005
4 0,874888764 0,902703685 0,886824530 0,946247693
70
60
w
[=;]
o 20
=}
2 40
S m1 Stakeholder
g 30
bl 02 Stakeholder
T 20
=
s
0,0
1 2 3 a4
Cenario

Figura 5.13: Confiabilidade com Reunides Periddicas.

Considerando um stakeholder, a Figura 5.14 descreve os resultados da disponibili-
dade variando o tempo médio entre reunides periddicas (de 1 a 30 dias). A disponibili-
dade do projeto € impactada, mas reunides periddicas com os stakeholders proporcionam
melhores resultados do que a abordagem sem as reunioes.

Da mesma forma que foi feito para a disponibilidade, a confiabilidade foi calculada

para 1 més, considerando um stakeholder e variando o tempo médio entre reunides pe-

87



5.1. ESTIMANDO MTTF E MTTR

12,0
11,0
10,0
9,0
8,0
7,0 —
6,0 EMTEP =1
OMTEP =15
OMTEP =30

50
4,0
3,0

20
y -
0,0

1 2 3 4

Disponibilidade (N. de 9's)

NUmero minimo de desenvolvedores

Figura 5.14: Disponibilidade para Reunides Periddicas com Diferentes MTBPs.

riddicas (de 1 a 30 dias). A Figura 5.15 apresenta os resultados.

70
6,0
50
40

EMTBP =1
30 OMIBP =15
OMTBP =30
20 I
1,0
0’0 l:l:l
1 2 3 4

N(mero minimo de desenvolvedores

Confiabilidade (N. de 9's)

Figura 5.15: Confiabilidade para Reunides Periddicas com Diferentes MTBPs.

5.1.2.3 Avaliacio de Performabilidade

O estudo de caso assume um processo em cascata, e a métrica adotada € vazao da entrega
de funcionalidades. Particularmente, esta secdo assume o risco que sO afeta a atividade
de implementac¢do e o modelo descrito na Figura 5.16 € adotado. A Tabela 5.15 apresenta
os valores para cada transi¢cdo temporizada (dias), assumindo a distribui¢cao exponencial.
Em relac@o aos valores das transicdes de falha e de reparo, a funcdo de confiabilidade
¢ estimada para cada cendrio. O MTTF € entdo calculado, e MTTR € obtida por meio

da equacdo da disponibilidade estaciondria. A Figura 5.17 mostra resultados da vazao

88



5.1. ESTIMANDO MTTF E MTTR

(ano~!), sem o uso de reunides periédicas. Nota-se que, para um minimo de 4 desenvol-
vedores, a vazao cai consideravelmente.

! ON

= o = o | e — — —— — —————— — ———

Des

©

Figura 5.16: Modelo Performabilidade

Tabela 5.15: Atributos das Transi¢do Temporizada em Dias.

Transicdo Valor
Req 0,4068843001
Des 2,7281774725
Impl 9,2811921332
Tes 5,0189547346
Dep 0,5487583333

Da mesma forma, a vazdo de entrega foi estimada para os cendrios que adotam reu-
nides periddicas, e a Figura 5.18 apresenta os resultados (no ano em prol da legibilidade).
Em tal situagcdo, o aumento do tempo médio entre as reunides periddicas (MTBP) ndo
impacta a vazdo do cendrio 1 para o cendrio 3, embora as reunides periddicas melhorem
a métrica de desempenho. Assim, o stakeholder pode ter mais flexibilidade na defini-
cdo da agenda das reunides. No entanto, para o cendrio 4, o stakeholder tem um papel
de destaque na mitigacdo dos riscos. As reunides periddicas melhoram a entrega de
funcionalidades, e reduzindo o MTBP o desempenho é impactado significativamente.

Os experimentos propostos neste estudo de caso demonstram que os gerentes de pro-
jetos tém uma ferramenta importante para avaliar os riscos e diferentes configuracoes
para evitar ou mitigar esses problemas indesejaveis. Dependendo do projeto de soft-
ware e os recursos disponiveis, técnicas baseadas na politica de manuten¢do preditiva
sdo abordagens possiveis para melhorar as métricas de dependabilidade, e consequente-
mente, pode-se realizar avaliacdo de performablidade do projeto de desenvolvimento de
software.

89



5.2. CONSIDERACOES FINAIS

20

200
180
16,0
- 140
2120
“ 100
80
60
40
20
00

1 2 3 4

N{mero minimo de desenvadvedores

Figura 5.17: Vazdo em k-out-of-n para Implemetacdo de Requisitos em Ano~'.

20
200
18,0
16,0
- 14,0
: 120 H Sem pm
10,0 B MTBP =1
&0 OMIBP =15
60 OMTEP =30

40
20
00

1 2 3 4
Nimero minimo de desenvadvedores

Figura 5.18: Vazdo para Reunides Periédicas com Diferentes MTBPs em Ano~!.

5.2 Consideracoes Finais

Este capitulo apresentou os resultados obtidos na realizacao dos estudos de casos. Atra-
vés dos estudos aqui apresentados, foi possivel validar os modelos adotados como tam-
bém validar a metodologia proposta. Com os resultados dos experimentos, foi possivel
também avaliar os projetos de software em termos de performabilidade.

O primeiro estudo de caso concebe a rotatividade de desenvolvedor como um risco
potencial. No entanto, o projeto é composto por 10 desenvolvedores, os quais podem ser
um trainee (TR), desenvolvedor junior (JE) ou um desenvolvedor senior (SE). A partir
dessa formacgdo da equipe, foi obtido o impacto do risco potencial sobre o projeto de

desenvolvimento de software e, consequentemente, foram estimados os custos relacio-

90



5.2. CONSIDERACOES FINAIS

nados com a indisponibilidade do projeto. Assim, foi possivel mostrar os resultados das
métricas de dependabilidade (disponibilidade e confiabilidade) e tais métricas também
foram avaliadas utilizando técnicas de redundancia dindmicas (Hot/Cold Stadby).

O segundo estudo de caso descreve a implementacdo de requisitos como um risco
potencial. Assim, o projeto é contemplado com 4 desenvolvedores. Para tal estudo, foi
estimado o impacto do risco potencial sobre o projeto de desenvolvimento de software e,
por conseguinte, foram estimadas as métricas de dependabilidade e politicas de manuten-
¢do foram adotadas para calcular tais métricas. Por fim, a métrica de performabilidade

vazdo de entrega foi estimada.

91



Conclusao

Vocé nunca sabe que resultados virdo da sua acdo.

Mas se vocé ndo fizer nada, ndo existirdo resultados.

—MAHATMA GANDHI

O gerenciamento de riscos € uma parte essencial no projeto de desenvolvimento de
software, e que desempenha um papel significativo na obten¢do de um bom negécio e
resultado do projeto.

O gerenciamento de riscos em projetos de desenvolvimento de soffware conta com
uma atividade muito importante que € a avaliacdo quantitativa de riscos, pois esta en-
volve a definicdo de quais riscos sdo prioritarios, permitindo medir as probabilidades e
também estimar seus impactos para o projeto.

Muitas falhas associadas com o desenvolvimento de software ocorrem devido ao ndo
tratamento dos riscos envolvidos e a fraca gestdo dos mesmos. Assim, a gestdo de risco
eficaz tornou-se um fator essencial para assegurar o sucesso dos projetos de software.

Ainda hoje, poucas empresas de soffware ndo lidam eficientemente com riscos em
seus projetos. Entretanto, gradativamente este cendrio comega a ser modificado ja que
esse gerenciamento € apontado como a primeira dentre as atividades da geréncia de
projetos de software. A adog¢ao de metodologias e técnicas para avaliar os riscos nesses
tipos de projetos € um requisito essencial para a geréncia de tais projetos. O sucesso,

portanto, depende da forma com que os riscos sdo gerenciados durante todo o processo.

92



6.1. CONTRIBUICOES

Outra notdvel premissa a ser considerada é que se devem estimar probabilisticamente
os riscos durante a atividade de andlise do processo de gerenciamento. No entanto,
muitas vezes, por ser antes da execucdo do projeto, as estimativas podem ser realizadas
através de dados histéricos de projetos passados ou por experiéncias dos gestores € isSO
¢ um diferencial no exigente mercado competitivo, j4 que uma avaliacdo adequada dos
risco € uma atribui¢do bem pouco empregada pelas empresas de software.

Este trabalho apresentou uma abordagem baseada em modelos de dependabilidade
e performabilidade para avaliar os riscos de desenvolvimento de projetos de software.
Estudos de caso do mundo real demonstraram a viabilidade da abordagem proposta,
em que varios cendrios foram avaliados, incluindo a ado¢ao de redundancia dindmica
e politicas de manuten¢@o para melhorar a dependabilidade e performabilidade. Assim,
este trabalho mostrou a aplicacdo dessas técnicas para a rotatividade de membros da

equipe e implementacdo de requisitos, e que outros tipos de riscos podem ser avaliados.

6.1 Contribuicoes
As contribuicdes deste trabalho sdo as seguintes:

* Proposicao de modelos SPNs e RBDs para avaliagdo probabilistica de risco em
projetos de desenvolvimento de soffware, durante a atividade de anélise de risco.
Através desses modelos, foi possivel aferir métricas de performabilidade tais como,
disponibilidade, confiabilidade e vazao em projetos de desenvolvimento de soft-

ware;

* Desenvolvimento de uma metodologia para auxiliar os gerentes de projetos de soft-
ware a realizarem avaliacdo de performabilidade dos riscos de desenvolvimento.
Essa metodologia é composta por uma série de atividades, desde o modo de falha/-

funcionamento e definicdes de métricas até a avaliacdo de cendrios.

Além da contribui¢do mencionada, um artigo que apresenta alguns resultados desta

dissertacdo foi produzido:

1. A. Melo, E. Tavares, M. Marinho, E. Sousa, B. Nogueira and P. Maciel "Develop-
ment Risk Assessment in Software Projects using Dependability Models ,"in The

2013 Thirteenth IEEE International Conference on Computer and Information Te-
chnology (CIT 2013), Sydney, Australia, 2013.

93



6.2. TRABALHOS FUTUROS

6.2 Trabalhos Futuros

Outros estudos podem ser produzidos através dos modelos propostos e da metodologia

de avaliacdo propostas: Em seguida, alguns deles sdo apresentados:

* Realizar novos experimentos, considerando outros tipos de riscos de desenvolvi-

mento em projetos de software;
* Analisar outras politicas de manutencao preditiva;

* Realizar avaliacdo de outras métricas de desempenho (por exemplo, utilizacio e

tempo de servigo);

* Criar novos modelos em SPN para avaliacdo de performabilidade em outras etapas

do processo de desenvolvimento de software (por exemplo, andlise de requisitos).

94



Referéncias

A. Schmietendorf, A. S. & Rautenstrauch, C. (2000), ‘Evaluating the performance en-
gineering process’, Proceedings of the 2nd international workshop on Software and

performance pp. 89 — 95.

Al-Rousan, T. ; Sulaiman, S. . S. R. (2009), ‘Project management using risk identifi-
cation architecture pattern (riap) model: A case study on a web-based application’,
Asia-Pacific Software Engineering Conference (APSEC) .

Alves, G. (2007), ‘Avaliagdo de desempenho de cadeias de suprimentos utilizando com-

ponentes gspn’.

Amrit, T. & Mark, K. (2004), ‘The one-minute risk assessment tool’, Communications
of the ACM - Bioinformatics 47 Issue 11, 73 — 77.

Araujo, C. (2009), ‘Avaliacdo e modelagem de desempenho para planejamento de capa-

cidade do sistema de transferéncia eletronica de fundos utilizando trafego em rajada’.

Aratjo, C. & et al. (2011), ‘Performability modeling of electronic funds transfer sys-

tems’, Springer-Verlag .

Avizienis, A., L. J. R. B. e. a. (2001), Fundamental concepts of dependability, Technical
Report Series-University Of Newcastle Upon Tyne Computing Science.

Bakker, K., Boonstra, A. & Wortmann, H. (2009), ‘Does risk management contribute to
it project success? a meta-analysis of empirical evidence’, International Journal of

Project Management pp. 493 — 503.

Balbo, G. (2001), Introduction to stochastic petri nets. Lectures on Formal Methods and

Performance Analysis.

Basit, S. & Abdullah, S. (2009), ‘Risk identification, mitigation and avoidance model for
handling software risk’, Hawaii International Conference on System Sciences pp. 1 —
10.

Bolch, G., Greiner, S., de Meer, H. & Trivedi, K. S. (2006), Queueing Networks and
Markov Chains: Modeling and Performance Evaluation with Computer Science Ap-

plications, John Wiley & Sons.

95



REFERENCIAS

Boness, K. & et al. (2008), ‘A lightweight technique for assessing risks in requirements
analysis’, Software, IET 2.

Callou, G. & et al. (2012), ‘A petri net-basead approach to the quantification of data

center dependability’, Computer and Information Science .

Cassandras, C. G. & Lafortune, S. (2008), Introduction to Discrete Event Systems, Sprin-
ger Science + Business Media, LLC.

Duarte, C.B. ; Faria, J. & Raza, M. (2012), ‘Psp pair: Automated personal software
process performance analysis and improvement recommendation’, Quality of Infor-

mation and Communications Technology (QUATIC) .

Ebeling, C. E. (2005), An Introduction to Reliability and Maintainability Engineering,
Waveland Press, Inc.

Eric Bauer, R. A. & Eustace, D. (2011), Beyond Redundancy: How Geographic Redun-
dancy Can Improve Service Availability and Reliability of Computer-Based Systems,
Wiley-IEEE Press.

Esteves, C. & Sousa, C. (2007), Apontamentos de ADPE.
Falahah (2011), ‘Risk management assessment using serim method’, /ICEEE .

Foo, S.-W. & Muruganantham, A. (2000), ‘A software risk assessment model’, Manage-
ment of Innovation and Technology (ICMIT) .

Goel, M. K., Khanna, P. & Kishore, J. (2010), ‘Understanding survival analysis: Kaplan-

meier estimate’, International Journal of Ayurveda Research 1 (4).

Guide, P. (2013), A Guide to the Project Management Body of Knowledge - PMBOK
Guide, Fifth Edition.

Guide, S. G. L. (2012), Software: Global industry guide, Technical report.

Guimaraes, A. & et al. (2013), ‘An analytical modeling framework to evaluate conver-

ged networks through business-oriented metrics’, Reliability Engineering and System
Safety .

Gupta, D. & Sadig, M. (2008), ‘Software risk assessment and estimation model’, ICCSIT
pp- 963 — 967.

96



REFERENCIAS

Hermanns, H., Herzog, U. & Katoen, J. (2002), ‘Process algebra for performance evalu-

ation’, Theoretical Computer Science pp. 43 — 87.

Hu, Y. & et al. (2012), ‘Software project risk analysis using bayesian networks with

causality constraints’, Decision Support Systems .

Izquierdo-cortazar, D. & et al. (2010), ‘Using software archaeology to measure kno-
wledge loss in software projects due to developer turnover *’, Second International
Conference on Computational Intelligence, Communication Systems and Networks
(CICSyN) pp. 1 — 196.

Jain, R. (1991), The art of computer systems performance analysis, John Wiley Sons
New York.

Jawad, F. A. & Johnsen, E. (1995), ‘Performability: the vital evaluation method for
degradable systems and its most commonly used modelling method, markov reward

modelling’, Essential Evaluation Etiquette .

Knob, F. & et al. (2006), ‘Riskfree - uma ferramenta de gerenciamento de riscos baseada
no pmbok e aderente ao cmmi’, V Simposio Brasileiro de Qualidade de Software
(SBQOS) .

Kuo, W. & Zuo, M. J. (2003), Optimal Reliability Modeling - Principles and Applicati-
ons, Wiley.

Lilja, D. J. (2000), Measuring Computer Performance: A Practitioner’s Guide, Cam-
bridge University Press.

Maciel, P., Lins, R. & Cunha, P. (1996), ‘Introduction of the petri net and applied’, X
Escola de Computag¢do, Campinas, SP .

Maciel, P., Trivedi, K. S., Matias, R. & Kim, D. S. (2011), Dependability Modeling
In: Performance and Dependability in Service Computing: Concepts, Techniques and
Research Directions, Ed. Hershey: IGI Global, Pennsylvania, USA.

Marinho, M. (2010), ‘Avaliacao de desempenho de processos de testes de software’.

Marinho, M. & et al. (2010), ‘Performance evaluation of test process based on stochastic
models’, DEVS Integrative M&S Symposium (DEVS) .

97



REFERENCIAS

Marsan, M., Balbo, G., Conte, G., Donatelli, S. & Franceschinis, G. (1998), ‘Modelling
with generalized stochastic petri nets’, ACM SIGMETRICS Performance Evaluation
Review, 26(2) .

Meyer, J. F. (1992), ‘Performability: a retrospective and some pointers to the future *’,
Elsevier Science Publishers B.V. pp. 139 — 156.

Murata, T. (1989), ‘Petri nets: Properties, analysis and applications’, Proceedings of the
IEEE pp. 541 — 580.

Mustafa, N., S. N. & Jalil, I. (2010), ‘Software risk assessment visualization tool design

using probabilistic inference models’, Information Technology (ITSim) .

Pei-Chi, C. ; Ching-Chin, C. & C., C.-Y. (2012), ‘Software project team characteris-
tics and team performance: Team motivation as a moderator’, Software Engineering
Conference (APSEC) .

Pressman, R. S. (2006), Engenharia de Software, 6 edn, McGrawHill.

qiu Liu, Y., Zhou, C. & Zhang, Y. (2012), ‘Coordinate preference dea method of software
project risk assessment’, Inernational Conference on Communication Systems and
Network Technologies (CSNT) pp. 675 — 678.

Rausand, M. & Hgyland, A. (2004), System reliability theory: models, statistical
methods, and applications, Wiley-1EEE.

Report, T. (2010), The standish group international, inc. chaos summary, Technical re-

port.

Sadiqg, M. ; Rahmani, M. . A. M. . S. J. (2010), ‘Software risk assessment and evalu-
ation process(sraep) using model based approach’, Proceedings of the International
Conference on Networking and Information Technology (ICNIT) pp. 171 — 177.

Sahner, R., T. K. & Puliafito, A. (1996a), Performance and reliability analysis of com-
puter systems: an example-based approach using the SHARPE software package,

Kluwer Academic Pub.

Schwaber, K. & Beedle, M. (2002), ‘Agile software development with scrum’, NJ: Pren-
tence Hall .

98



REFERENCIAS

Shahzad, B. & S., A. (2010), ‘Risk identification, mitigation and avoidance model for
handling software risk’, CICSyN pp. 1 — 196.

Silva, B. & et al. (2013), ‘Astro: An integrated environment for dependability and sus-

tainability evaluation’, Sustainable Computing: Informatics and Systems pp. 1 — 17.

Solutions, S. (2006), ‘mprime: solucdo integrada de gestdo de riscos’.

www.cin.ufpe.br/ suppera/mprime.php.
Somerville, I. (2011), Engenharia de Software, 9 edn, Addison-Wesley.

Sousa, E. & et al. (2012), ‘Maintenance policy and its impact on the performability
evaluation of eft systems’, International Journal of Computer Science, Engineering
and Applications (IJCSEA) .

Stewart, W. (1994), Introduction to the numerical solution of Markov chains.

Tang, A.-G. & long Wang, R. (2010), ‘Software project risk assessment model based
on fuzzy theory’, Computer and Communication Technologies in Agriculture Engine-
ering (CCTAE) .

Tracy, H., S. B. J. V. & David, W. (2008), ‘The impact of staff turnover on software
projects: The importance of understanding what makes software practitioners tick’,
Proceedings of ACM SIGMIS CPR .

Trivedi, K. S. (2001), Probability and Statistics with Reliability, Queuing, and Computer
Science Applications, 2 edn, John Wiley and Sons.

Trivedi, K. & et al. (2009), ‘Dependability and security models’, Design of Reliable
Communication Networks (DRCN) .

Vesely, W. & Roberts, N. (1987), Fault tree handbook, Nuclear Regulatory Commission.

Watson, J. F. & A., A. (1991), ‘Applying generalized stochastic petri nets to manufactu-

ring systems containing nonexponential transition functions’, In SMC 21.

Wattanapokasin, W. & Rivepiboon, W. (2009), ‘Cross-cultural risk assessment model’,
ICSPS .

Yan, H. & Yu-feng, Z. (2011), ‘Statistical prediction modeling for software development

process performance’, Communication Software and Networks (ICCSN) .

99



REFERENCIAS

Zowghi, D. & Nurmuliani, N. (2002), ‘A study of the impact of requirements volatility

on software project performance’, Software Engineering Conference .

100



