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Resumo

Falhas em projetos é um fator de destaque na abordagem feita pela comunidade de en-
genharia de software e muito tem sido feito em prol do sucesso desses projetos, porém,
os riscos sempre existirão. O aumento das taxas de sucesso em projetos de software re-
presenta um desafio significativo para essa indústria, em que alguns riscos (por exemplo,
atrasos no cronograma, aumento de custos) podem levar os projetos ao fracasso. Nesse
contexto, a área de gerência de riscos tem uma importância significativa. No entanto,
a falta de um processo de gerenciamento de riscos, aliada a estimativas deficientes de
custo e de tempo, são algumas das principais causas das falhas dos projetos de desenvol-
vimento de software.

O gerenciamento de riscos contribui positivamente para a redução e controle dos ris-
cos do projeto de software, através de sua identificação e quantificação. Foram propostas
várias técnicas para avaliar os efeitos de tais problemas indesejáveis, mas estimativas de
probabilidade são geralmente negligenciadas, e isso afeta uma avaliação adequada dos
riscos. Por isso, o impacto de riscos no desempenho de um projeto de software é um
aspecto importante que não deve ser desprezado.

Este trabalho propõe uma metodologia e modelos de dependabilidade e performabili-
dade para avaliação probabilística de riscos de desenvolvimento em projetos de software.
Nesta metodologia, a avaliação de riscos é realizada utilizando diagramas de blocos de
confiabilidade e redes de Petri estocásticas. Dois estudos de caso demonstram a viabili-
dade da técnica proposta. Com a aplicação da metodologia e dos modelos propostos, é
possível verificar o impacto e avaliar a performabilidade dos riscos de desenvolvimento
em projetos de software. Além disso, essa metodologia possibilitará a avaliação de ou-
tros riscos de desenvolvimento, bem como a avaliação de performabilidade em outras
etapas do processo de desenvolvimento de software. Isso tudo pode ser utilizado pelos
gerentes de projetos de software para avaliar o impacto dos riscos em diferentes projetos.

Palavras-chave: Avaliação de Dependabilidade, Avaliação de Desempenho, Avalia-
ção de Performabilidade, Avaliação de Risco, Redes de Petri Estocástica, Diagramas de
Bloco de Confiabilidade.



Abstract

Failures in software projects are a prominent factor in the approach taken by the software
engineering community and much has been done for the success of such projects; howe-
ver, there will always be risks. Increasing rates of success in software projects represent
a significant challenge for the industry in which some risks (e.g., schedule delays, incre-
ased costs) may lead to failure in projects. In this context, the area of risk management
has a significant importance. However, the lack of a process in risk management combi-
ned with deficient estimates of cost and time are some of the major causes of failures in
software development projects.

The risk management contributes positively to the reduction and control of the risks
in the software project through its identification and quantification. Various techniques
were proposed to evaluate the effects of such undesirable problems, but probability esti-
mates are generally neglected, thus affecting the proper assessment of the risks. There-
fore, the impact of risk on the performance of a software project is an important aspect
that should not be overlooked.

This paper proposes a methodology and models of dependability and performability
for probabilistic assessment of development risks in software projects. In this methodo-
logy, the risk assessment is performed by using reliability block diagrams and stochastic
Petri nets. Two case studies demonstrate the feasibility of the proposed technique. With
the application of the methodology and proposed models, it is possible to verify the
impact and assess the performability of development risks in software projects. Further-
more, this methodology allows the assessment of other development risks, as well as
the performability evaluation in other stages of the software development process. All
this can be used by software project managers to assess the impact of risks on different
projects.

Keywords: Dependability Evaluation, Performance Evaluation, Performability Evalu-
ation, Risk Assessment, Reliability Block Diagrams, Stochastic Petri Nets.
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1
Introdução

A mente que se abre a uma nova ideia jamais voltará

ao seu tamanho original.

—ALBERT EINSTEIN

O mercado global de software cresce a cada ano, e espera-se um aumento no valor
de US$ 396,7 bilhões em 2016 (um aumento de 35,4% desde 2011) (Guide 2012), o que
exige decisões rápidas e melhoria constante dos processos de desenvolvimento. Com a
intensificação da concorrência, as empresas de desenvolvimento de software têm se es-
forçado para produzir software com menor time-to-market para ampliar sua participação
neste negócio bilionário. No entanto, ainda são comuns em empresas de desenvolvi-
mento de software, problemas relacionados com a entrega do produto/serviço de soft-

ware, em que orçamentos são extrapolados, levando à consequente falha dos projetos de
software. A comunidade da engenharia de software tem alertado as empresas do ramo
para alguns fatores que têm efetivamente ameaçado o sucesso dos projetos de software,
tais como: requisitos e equipe.

Gerenciar projetos de software de forma bem sucedida pode garantir que determina-
das empresas conquistem maior participação de mercado, particularmente considerando
a possibilidade de serem impostas a estas empresas variáveis como competição intensiva,
escassez de recursos, agilidade, menores custos e prazos.

Projetos de desenvolvimento de software possuem incertezas (riscos), dos quais o
controle é um fator determinante para o sucesso ou fracasso de um projeto. Estudos
recentes (Report 2010) indicam que apenas 32% dos projetos de software são entregues
no prazo e cronograma estipulado. Do restante, 44% sofrem de atrasos com custos
elevados e problemas de especificação de requisitos, 24% são cancelados.
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Uma notória dificuldade para a comunidade científica de software é a entrega de
produtos de software no prazo previsto e dentro do orçamento. A Causa principal para
essas falhas é o fato de que todos os projetos estão sujeitos a riscos, e saber como tratá-
los é um fator crucial para o seu sucesso.

Projetos de software falham devido a fatores de riscos (por exemplo, atrasos no cro-
nograma e aumento dos custos), os quais podem causar grandes perdas em relação ao
tempo, dinheiro e credibilidade no mercado. Assim, a indústria de software tem ado-
tado metodologias, técnicas e ferramentas para atingir os objetivos do projeto no prazo
e dentro do orçamento planejado. Muitos estudos enfatizam o gerenciamento de riscos
como a principal causa do sucesso ou fracasso de projetos de software. Neste contexto,
o gerenciamento de riscos contribui positivamente para o sucesso do projeto, mas esse
gerenciamento ainda enfrenta obstáculos para serem inseridos nas metodologias das em-
presas de desenvolvimento de software (Bakker et al. 2009).

Este é um cenário normalmente encontrado no mercado de desenvolvimento de soft-

ware e requer grande esforço por parte das empresas desse segmento. A partir deste
cenário, surgiu a necessidade de as empresas de software desevolverem metodologias
e técnicas para que seus projetos sejam mais previsíveis e que sejam entregues dentro
dos prazos e orçamentos estabelecidos. Em sequência, surge a necessidade de adotar
o gerenciamento de riscos no desenvolvimento de software, objetivando o sucesso dos
projetos.

Riscos em um projeto de software ameaçam a sua viabilidade. Em outras palavras,
sempre que os riscos se tornam reais, eles podem afetar consideravelmente a execução do
projeto, ou mesmo levar a seu cancelamento. A categoria de risco proeminente (Guide
2013) são riscos de projeto (que contemplam os riscos de desenvolvimento), uma vez
que pode afetar o cronograma do projeto ou os recursos necessários para o desenvolvi-
mento de software (por exemplo, rotatividade de desenvolvedor).

A disciplina de gerenciamento de riscos é uma das mais importantes no processo de
desenvolvimento de software, pois tem como finalidade identificar e mitigar os riscos de
projetos, continuamente, através do ciclo de vida de um projeto. O gerenciamento de
riscos permite aos gerentes de projetos de software alcançar seus objetivos no desenvol-
vimento de um projeto, contribuindo para um melhor tratamento das incertezas (riscos).
Com o objetivo de controlar os riscos, a gerência de riscos sugere ações preventivas que
promovam a mitigação, estimativas ou eliminação dos eventos de riscos identificados no
projeto de software.

Na atualidade, com as limitadas ferramentas disponíveis no mercado de software, as
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1.1. OBJETIVOS

técnicas para o gerenciamento de riscos não conseguiram entrar no cotidiano da grande
maioria das empresas de software. Dessa forma, tanto as ferramentas como as técnicas
estão sendo aprimoradas e criadas constamente, buscando sempre o sucesso dos projetos
de software.

Avaliação de riscos (Bakker et al. 2009) é geralmente realizada utilizando modelos
qualitativos. No entanto, os modelos quantitativos podem ajudar os gerentes de projeto
a estimar a ocorrência de riscos (por exemplo, estimativas de probabilidade) e, com isso,
os gerentes de projetos podem realizar um melhor planejamento para evitar os riscos
inerentes a projetos de software.

Avaliação de dependabilidade (Maciel et al. 2011) fornece várias técnicas baseadas
em modelos formais (por exemplo, redes de Petri estocásticas (Balbo 2001) para esti-
mar a ocorrência de falhas do sistema com base em estimativas de probabilidade. Em
relação a projetos de software, também podem ser adotadas tais técnicas, fornecendo
informações importantes para os gerentes sobre os riscos identificados no projeto.

Além disso, a avaliação de performabilidade (Araújo & et al. 2011) (ou seja, depen-
dabilidade e desempenho) lida com o efeito de eventos de falha e atividades de reparação
na degradação do desempenho do sistema. No contexto de projetos de software, a per-
formabilidade fornece técnicas e modelos importantes para avaliar o impacto dos riscos
na execução de processos de desenvolvimento.

1.1 Objetivos

O gerenciamento de risco é uma atividade fundamental na gestão de projetos, pois au-
menta consideravelmente a chance de um projeto ser concluído com sucesso.

Projetos de software de sucesso (por exemplo, entregues no prazo e atendendo as
restrições de custo) ainda são um desafio importante para a indústria. Neste contexto,
os riscos merecem uma atenção especial, uma vez que podem levar ao fracasso de um
projeto. Neste trabalho foram propostas várias técnicas para avaliar os efeitos de tais
problemas indesejáveis, porém, como as estimativas de probabilidade são geralmente
negligenciadas, isso afeta uma avaliação adequada dos riscos. Além disso, o impacto
desses riscos no desempenho de um projeto de software é um aspecto importante que
não deve ser desprezado.

Este trabalho propõe uma metodologia e modelos para avaliação de performabili-
dade de riscos de desenvolvimento em projetos de software. Esta metodologia apresenta
uma série de etapas, que evoluem desde o modo de funcionamento/falha do projeto de
software, definições de métricas e análise de dados até a geração do modelo e avali-
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ação dos cenários. Os modelos levam em conta diagramas de blocos de confiabilidade
(RBD) (Rausand & Høyland 2004, Kuo & Zuo 2003) e redes de Petri estocásticas (SPN)
(Balbo 2001), considerando-se uma técnica de modelagem híbrida para calcular métri-
cas de performabilidade. Este trabalho foca em riscos de desenvolvimento relacionados
à rotatividade de desenvolvedor e à implementação de requisitos, riscos estes importan-
tes e que afetam um projeto de software (Shahzad & S. 2010, Basit & Abdullah 2009,
Izquierdo-cortazar & et al. 2010, Tracy & David 2008).

Com a apliação da metodogia e modelos propostos, é possível conceber vários ce-
nários para avaliar o respectivo impacto sobre dependabilidade e performabilidade de
riscos de desenvolvimento em projeto de software. Além disso, essa metodologia pos-
sibilitará a avaliação de diferentes riscos de projeto de software, por exemplo, os riscos
relacionados à análise de requisitos.

Isso tudo pode ser utilizado pelos gerentes de projetos para estimar os riscos, ado-
tando os modelos propostos e fornecendo informações importantes sobre os riscos iden-
tificados. Dessa forma, tal metodologia auxilia os gestores na tomada de decisões, bem
como, na realizaão de um melhor planejamento para evitar e mitigar os riscos inerentes
ao projeto de software.

1.1.1 Objetivos Específicos

O gerenciamento de riscos é uma atividade que merece uma atenção especial em proje-
tos de software e, como consequência, vários modelos foram propostos para avaliar o
impacto dos riscos durante a vida do projeto. Em geral, esses modelos nos tornam ca-
pazes de raciocinar sobre os impactos dos riscos, mas estimativas de probabilidade são
geralmente negligenciadas, afetando uma avaliação adequada dos riscos. Neste contexto,
o presente trabalho propõe uma metodologia para auxiliar os gerentes de projetos de soft-

ware a avaliarem os riscos de desenvolvimento em projetos. Tal abordagem é baseada
em modelos de dependabilidade e performabilidade (por exemplo, redes de Petri esto-
cásticos e diagramas de bloco de confiabilidade) para avaliação probabilística dos riscos
de desenvolvimento, relacionados à rotatividade de desenvolvedor e à implementação de
requisitos. De forma mais específica, para se avaliar os riscos de desenvolvimento em
projeto de software, o presente trabalho se propõe a:

• Propor uma metodologia que auxilie os gerentes de projetos de software a realiza-
rem avaliação de performabilidade de riscos de desenvolvimento em projetos de
software;
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• Propor modelos de dependabilidade e performabilidade (SPN e RBD) para realizar
avaliação probabilística dos riscos de desenvolvimento em projetos de software;

• Definir métricas para estimar o impacto dos riscos de desenvolvimento em projetos
de software;

• Elaborar estudos de casos para avaliar e apresentar a adoção da metodologia e
modelos propostos.

1.2 Estrutura do Documento

No Capítulo 2 é apresentada a contextualização dos trabalhos relacionados a esta disser-
tação.

O Capítulo 3 apresenta a fundamentação teórica em relação ao gerenciamento de
riscos, avaliação de desempenho, avaliação de dependabilidade, avaliação de performa-
bilidade, censura, diagramas de bloco de confiabilidade e redes de Petri.

No Capítuo 4 são apresentados a metodologia e os modelos propostos em SPN e
RBD para estimar as métricas de dependabilidade e performabilidade. Posteriormente,
um exemplo motivacional é descrito.

No Capítuo 5 são apresentados dois estudos de caso, baseados na metodologia e
nos modelos propostos, para avaliação do impacto dos riscos de desenvolvimento em
projetos de software. O estudo de caso 1 trata sobre a rotatividade de desenvolvedor
como um risco potencial, já o estudo de caso 2 tem a implementação de requisitos como
risco relacionado.

O Capítulo 6 apresenta as conclusões desta dissertação, assim como as principais
contribuições e propostas para trabalhos futuros.
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2
Trabalhos Relacionados

É preferível saber poucas coisas muito

bem a saber muitas coisas muito mal.

— CID CERDAL

Este capítulo tem por finalidade apresentar alguns trabalhos representativos para esta
dissertação, destacando-se alguns trabalhos que realizam avaliação quantitativa de riscos
em projetos de software, relacionados ao contexto dessa dissertação, e também alguns
trabalhos na área de gerenciamento de riscos em projetos de software para avaliação de
desempenho.

2.1 Avaliação Quantitativa de Riscos

Atualmente, desenvolver software com menor time-to-market é uma necessidade do mer-
cado global. A adoção da disciplina de gerenciamento de riscos em projetos de software

vem crescendo e é uma atividade de destaque na gestão de projetos de software e, como
consequência, vários modelos foram propostos para avaliar o impacto dos riscos durante
a vida do projeto. Esses modelos são capazes de prever os impactos dos riscos, mas es-
timativas de probabilidade são geralmente negligenciadas e, consequentemente, afetam
uma avaliação adequada dos riscos.

Avaliação quantitativa (Bakker et al. 2009) de riscos em projetos de software não é
uma prática comum. No entanto, a comunidade de engenharia de software necessita de
técnicas de avaliação quantitativa, e algumas obras representativas foram desenvolvidos
ao longo dos anos.

Gupta e Sadiq (Gupta & Sadiq 2008) propõem modelo de Avaliação de Risco e Esti-
mativa (SRAEM) para avaliar os riscos em projetos de software, eles consideram alguns
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fatores de risco, tal como: modificação de requisitos (por exemplo, adição, exclusão).
Tal técnica adota pontos de função, erro de medição, erro de modelo e erro de suposição
para quantificar ocorrência de risco. Este modelo avalia o risco incremental para cada
fase do processo de desenvolvimento de software. O modelo é útil apenas se tivermos
as informações sobre os pontos de função do projeto de software.

Wattanapokasin e Rivepiboon (Wattanapokasin & Rivepiboon 2009) propõem um
modelo matemático para estimar os riscos relacionados às diferenças culturais em uma
equipe de desenvolvimento de software, tais como: a língua falada, estilo de comunica-
ção, método de desenvolvimento e fusos horários diferentes. A técnica assume dados
históricos ou dados fornecidos pelo gerente do projeto e um processo de Poisson para
estimar probabilidades de risco. O modelo é limitado aos riscos citados anteriormente,
mas poderiam incluir outros fatores de riscos culturais, tais como comunicação entre
stakeholders, dentre outros.

Falahah (Falahah 2011) descreve um método para quantificação de risco, com foco
em três elementos de risco: (i) risco técnico, (ii) risco de custo, e (iii) risco de programa-
ção. O método fornece estimativas de probabilidade através de um questionário como
dados de entrada. O método estima o risco em cada fase do projeto de software à medida
que progride de fase para fase. Este método não leva em conta as questões da comple-
xidade do software, que desempenham um papel importante na determinação do risco
para os projetos de software. O método proposto também não leva em conta as questões
relacionadas com os requisitos (por exemplo, alteração).

Em (Hu & et al. 2012), os autores propõem um modelo baseado em redes bayesianas
com restrições de causalidade (BNCC) para análise de risco de projetos de desenvolvi-
mento de software. O modelo leva em conta alguns fatores de risco relacionados (por
exemplo, requisito, equipe e usuários do sistema). O modelo se concentra em encontrar
a correlação entre fatores de risco e os resultados do projeto.

Em (Boness & et al. 2008), Boness et al. apresentam uma técnica para avaliar o
risco do projeto de software e perdas relacionadas durante a fase de análise de requisi-
tos. Essa técnica realiza a avaliação dos riscos por meio de métricas subjetivas de alto
nível, coletadas durante a análise de requisitos e utiliza gráficos meta para estimativas
de probabilidade.

Rousan et al. (Al-Rousan 2009) apresentam uma ferramenta para avaliar probabilis-
ticamente os riscos em projetos de software web, através de redes bayesianas e, a partir
de dados de projetos anteriores, a ferramenta concentra-se nos fatores de riscos (por
exemplo, requisitos e stakeholders).
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Em (qiu Liu et al. 2012) os autores propõem um método para a avaliação de risco
de projeto de software. O método leva em conta alguns fatores de riscos (por exemplo,
técnicos e custos). Esse método realiza avaliação dos riscos através de fórmulas fechadas
e pesos são atribuídos aos fatores de riscos.

Em (Amrit & Mark 2004) os autores apresentam uma ferramenta para avaliação de
risco durante o desenvolvimento de software, tendo em conta seis fatores de risco: (i)
uso de uma metodologia inadequada, (ii) falta de envolvimento do cliente, (iii) falta de
práticas formais de gerenciamento de projetos, (iv) dissimilaridade de projetos anteri-
ores, (v) complexidade do projeto, e (vi) volatilidade de requisitos. O usuário associa
pesos a cada risco especificado, de modo que a ferramenta fornece um valor de 10 (baixa
probabilidade) a 100 (alta probabilidade) para estimar a ocorrência de risco.

Da mesma forma, Mustafa et al. (Mustafa & Jalil 2010) propõem uma ferramenta de
avaliação de risco, concentrando-se sobre os riscos relacionados com os requisitos do
produto e processo de desenvolvimento. A partir de um conjunto de pesquisas, um valor
é obtido entre 1 (baixo) e 3 (alto) para estimar a probabilidade de risco.

Sadig et al. (Sadiq 2010) apresenta a abordagem SRAEP que leva em conta SFT para
estimar e priorizar riscos em projetos de software. Essa abordagem identifica e analisa
os riscos do projeto de desenvolvimento de software. A abordagem contempla alguns
fatores de riscos (por exemplo, requisitos).

Tang e Wang (Tang & long Wang 2010) apresentam um modelo para avaliação de
riscos em projetos de software, no qual alguns fatores de riscos são abordados (por exem-
plo, tecnologia utilizada, complexidade do software que está em desenvolvimento). O
modelo propõe uma hipótese de que o risco do projeto de software é baseado na Teo-
ria dos Conjuntos Fuzzy. Eles também adotam a lógica fuzzy para avaliar e calcular a
probabilidade dos riscos e seus respectivos impactos.

Em (Foo & Muruganantham 2000) os autores propõem o Modelo (SRAM) para ava-
liação de riscos em projetos de desenvolvimento de software, que abrange nove elemen-
tos críticos (i) complexidade do software, (ii) pessoal envolvido no projeto, (iii) confia-
bilidade alvo, (iv) requisitos do produto, (v) método de estimativa, (vi) método de mo-
nitoramento, (vii) processo de desenvolvimento adotado, (viii) usabilidade do software,
e (ix) ferramentas utilizadas para o desenvolvimento. Um questionário para avaliar a
probabilidade de um risco é especificado. Um conjunto de perguntas é cuidadosamente
escolhido para cada um desses elementos com três alternativas de respostas cada. As
respostas estão dispostas em ordem crescente de risco. Este modelo considera o método
de priorização como uma única etapa de avaliação de risco, mas não especifica como a
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priorização seria feita.
Em (Solutions 2006) é apresentada uma ferramenta de gestão de riscos para ambi-

entes de múltiplos projetos de desenvolvimento de software, que utiliza componentes
de inteligência artificial e ontologia fundamentada na taxonomia de riscos do SEI. Tal
ferremanta é aderente ao modelo CMMI garantindo, desta forma, a qualidade do pro-
cesso de desenvolvimento. A ferramenta auxilia os gerentes de projeto na execução das
atividades de identificação, monitoração e controle dos riscos.

Knob et al. (Knob & et al. 2006) propõem uma ferramenta que tem como objetivo
auxiliar equipes de projetos nas tarefas relacionadas à gerência de riscos em projetos de
software. A ferramenta foi projetada para estar em comformidade com os objetivos e
práticas sugeridos pelo PMBOK e CMMI.

Ao longo dos últimos anos têm sido propostos alguns trabalhos científicos na área de
gerenciamento de riscos em projetos de software para avaliação de desempenho. Entre-
tanto, vários trabalhos representativos avaliam o desempenho dos projetos e processos
de software.

Em (Zowghi & Nurmuliani 2002), os autores apresentam um modelo para avaliar
o impacto da volatilidade dos requisitos no desempenho dos projetos de software. A
volatilidade dos requisitos é caracterizada pelas diferenças ou divergências e os conflitos
entre os usuários/stakeholders sobre os requisitos. Os autores definem que a volatilidade
dos requisitos está associada negativamente com o cronograma, custo e desempenho do
projeto de software. O modelo fornece estimativas de probabilidade usando análise de
regressão e questionário como dados de entrada.

Em (Yan & Yu-feng 2011), os autores apresentam um modelo de previsão estatística
para estimar o desempenho no processo de desenvolvimento de software, tendo em conta
equações de forma fechada com base em análise de regressão. O modelo assume dados
históricos para estimar algumas métricas (por exemplo, média do nível de habilidade da
equipe e cobertura de teste).

Duarte et al. (Duarte & Raza 2012) propõem uma ferramenta para analisar quantita-
tivamente o desempenho dos desenvolvedores de software com base em dados históricos
e fórmulas fechadas. As métricas de interesse incluem a produtividade e o tamanho da
equipe.

Chen et al. (Pei-Chi & C. 2012) propõem um modelo de regressão linear para avaliar
a relação entre as características da equipe do projeto de software e desempenho da
equipe. O modelo define um conjunto de hipóteses (por exemplo, existe relação negativa
entre a diversidade da equipe e desempenho do projeto, existe relação positiva entre a
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flexibilidade da equipe e o desempenho do projeto) para avaliar tais questões.
Marinho et al. (Marinho & et al. 2010) propõem um método para avaliação de de-

sempenho de processos de testes de software. De Diagramas UML, um mapeamento é
definido, a fim de gerar modelos de redes de Petri estocásticas. Utilizando o modelo, é
possível avaliar o impacto das mudanças do processo de teste de software e simulações
são adotados para obtenção de estimativas. Além disso, o método possibilita avaliar di-
ferentes alternativas de implementações, bem como a verificação de melhor composição
de recursos humanos para as atividades do processo de teste de software.

Em (A. Schmietendorf & Rautenstrauch 2000) os autores propõem um modelo para
avaliar o desempenho dos processos de softwares. O modelo se baseia no CMMI do SEI
e é baseado em um catálogo de questionários para avaliar o desempenho dos processos
de softwares. Dessa forma, com esse modelo é possível avaliar processos de softwares

com o termo de desempenho. O modelo proposto auxilia no estabelecimento de proces-
sos para prover um bom desempenho das atividades desse processo.

Diferente dos trabalhos anteriores, essa dissertação apresenta uma abordagem ba-
seada em modelos de dependabilidade e desempenho (performabilidade), para estimar
os riscos de desenvolvimento em relação à rotatividade de desenvolvedor e implemen-
tação de requisitos. Além disso, a abordagem proposta também considera técnicas de
tolerância a falhas para mitigar o impacto dos riscos.

2.2 Considerações Finais

Este capítulo apresentou alguns trabalhos científicos representativos para esta disserta-
ção. Em tais trabalhos, é apresentada grande variedade de métodos e modelos que são
utilizados para avaliação quantitativa de riscos em projetos de software, bem como para
avaliação de desempenho em projetos de software.
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3
Fundamentação Teórica

Se não puder vencer pelo

talento, vença pelo esforço.

—MAX BEERBOHM

Este capítulo apresenta os conceitos sobre gerencimento de riscos, incluindo as cate-
gorias de riscos e as atividades do gerenciamento de riscos. Além disso, são abordados
conceitos sobre avaliação de desempenho, avaliação de dependabilidade, avaliação de
performabilidade e censura. Em seguida são apresentados os diagramas de bloco de con-
fiabilidade, tais como os arranjos adotados. Posteriormente, é descrita uma introdução
sobre redes de Petri, assim como definições, conceitos básicos e propriedades, as quais
podem ser divididas em duas categorias: propriedades comportamentais e propriedades
estruturais. Por fim, são apresentadas as redes de Petri estocásticas (SPNs), que é a
extenção de redes de Petri proeminentemente adotada neste trabalho.

3.1 Gerenciamento de Riscos

O desenvolvimento de software é uma atividade complexa, por causa de inúmeros fatores
de riscos, como atrasos no cronograma, aumento dos custos, dentre outros. No entanto,
esta complexidade faz com que grande parte dos projetos de software extrapolem o prazo
e orçamento previstos. Um gerenciamento eficaz tem fundamental importância para o
sucesso de projetos de software.

Um dos objetivos da gerência de projetos é prever os riscos que podem afetar o bom
andamento do projeto e definir ações a serem tomadas para conter sua ocorrência ou,
quando não for possível evitar a ocorrência, reduzir seus impactos.
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Podemos pensar no risco como alguma circunstância adversa. Eles podem ameaçar
o projeto, o software que está sendo desenvolvido ou a organização (Somerville 2011).
Gerenciá-los, portanto, é uma questão essencial para o sucesso dos projetos de software.

As empresas de desenvolvimento de software lidam com riscos e necessitam gerenciá-
los constantemente, como forma de antecipar e minimizar o efeito de eventos indesejá-
veis que possam impactar negativamente nos projetos de software e, consequentemente,
levar à falha do projeto.

O gerenciamento de riscos é uma técnica empregada na engenharia de software, o
qual representa um grande instrumento para a gerência desses projetos. O gerenciamento
de riscos, basicamente aumenta a probabilidade e o impacto de eventos positivos e di-
minui a probabilidade e o impacto dos eventos negativos do projeto de software (Guide
2013). Assim, seu grande objetivo é ajudar os gerentes de projeto de software a entender
e gerenciar incertezas durante o desenvolvimento do software. O seu uso, reune ações
como identificação de incertezas (riscos), cálculo das probabilidade e dos impactos, de-
senvolvimento de respostas para eliminar, reduzir ou lidar com riscos. O controle sobre
tais incertezas é um forte fator de determinação do sucesso ou fracasso. A gerência de
riscos, portanto, é crucial para um bom gerenciamento de projeto de software (Pressman
2006).

São vários os tipos de riscos que podem afetar a execução de um projeto de software,
tais como, riscos de rotatividade de membros da equipe, em que pessoas fundamentais
do projeto deixam-no antes do término; riscos relacionados a mudanças de requisitos,
podendo afetar o prazo, cronograma e custos do projeto. Além destes, riscos de mudan-
ças de tecnologias, em que a tecnologia básica do sistema foi superada por uma nova
tecnologia. Assim, o gerenciamento de riscos é uma aréa de fundamental importância
na gestão de projetos de software, porque aumenta consideravelmente a chance de um
projeto obter sucesso.

Os riscos em projetos de software são divididos em 3 categorias (Pressman 2006):

• Riscos de projeto: são os riscos que afetam o cronograma ou os recursos dos
projetos. Se os riscos se tornarem reais, o tempo e o custo do projeto tendem a
aumentar. Os fatores relacionados a estes riscos são: pessoal, recursos, clientes e
requisitos. Dessa forma, podem atrasar o cronograma e aumentar os custos;

• Riscos de produto: são os riscos que afetam a qualidade ou o desempenho do
software que está em desenvolvimento. Se os riscos se tornarem reais, a imple-
mentação do projeto pode se tornar inviável. Tais riscos, envolvem problemas
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de linguagem de programação utilizadas, interface, design, manutenção, dentre
outros, consequentemente, podem ameaçar a qualidade do projeto;

• Riscos de negócio: são os riscos que afetam a organização que está desenvolvendo
ou adquirindo o software. Caso os ricos se tornem reais, o projeto pode tornar-
se inviavél e até cancelado. Os riscos de negócio são: substituição do gerente
do projeto, desenvolvimento de um software que não se adequa ao mercado e
desenvolvimento de um software sem demanda.

Gerenciamento dos riscos de um projeto inclui um processo que trata do planeja-
mento, identificação, análise, resposta, monitoramento e controle dos riscos em um pro-
jeto (Guide 2013), prevendo, assim, os riscos que podem afetar o sucesso do projeto de
software e, consequentemente, permitindo que se tomem as medidas necessárias para
evitar os riscos. O processo de gerenciamento de riscos é um processo iterativo, que
continua ao longo do projeto (Somerville 2011).

O processo de gerenciamento de riscos envolve várias atividades (Somerville 2011,
Guide 2013):

• Identificação de riscos: são identificados os possíveis riscos de projeto, produto/-
serviço e negócios;

• Análise de riscos: são avaliadas as possibilidades e as consequências da ocorrência
desses riscos.

• Planejamento de riscos: são traçados planos para enfrentar os riscos, seja evitando-
os, seja minimizando seus efeitos sobre o projeto;

• Monitoramento e controle de riscos: o risco é constantemente avaliado e os planos
para a sua diminuição são revisados, à medida que mais informações sobre eles se
tornem disponíveis.

Boa parte dos riscos de projetos de software pode ser minimizada com a definição
de um processo de gerenciamento de riscos que esteja de acordo com a realidade da
empresa de software onde se deseja implementar o gerenciamento de riscos.

Desta forma, os métodos e modelos, disponíveis na literatura de Engenharia de Soft-

ware, referentes ao processo de gerenciamento de riscos utilizam estas atividades.
O gerenciamento de riscos em projetos de software tornou-se uma atividade "chave"no

desenvolvimento de software, pois introduz respostas adequadas com rapidez, para in-
fluenciar positivamente no resultado do projeto.
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Gerenciamento de Riscos

          

Identificação de Riscos

Quantificação de Riscos

Qualificação de Riscos

      

  Resposta de Riscos

Planejamento de Riscos

 Controle de Riscos

Figura 3.1: Atividades do Gerenciamento de Riscos Adaptados PMI (Guide 2013).

O propósito do gerenciamento de riscos é identificar riscos assim que possível, esta-
belecer estratégia no desenvolvimento do software para mitigar e/ou eliminar estes ris-
cos, criar e executar um processo de gerenciamento como uma parte global do processo
de desenvolvimento de software.

3.2 Avaliação de Desempenho

O desempenho é geralmente definido como o grau em que o sistema realiza suas funções
designadas dentro de determinados limites (por exemplo, a velocidade) (Trivedi & et al.
2009). A avaliação de desempenho (Hermanns et al. 2002) tem sido de grande importân-
cia nas pesquisas de desenvolvimento e otimização de sistemas, ou seja, uma atividade
essencial para promover melhorias na qualidade dos mesmos.

A avaliação de desempenho é utilizada para a avaliação quantitativa de sistemas. A
avaliação se relaciona à descrição, à analise e à otimização do comportamento dinâmico
e dependente do tempo dos sistemas (Hermanns et al. 2002). Dessa forma, a avaliação
de desempenho nos possibilita lidar com problemas frequentemente encontrados em
sistemas computacionais (por exemplo, identificação de gargalos, carga de trabalho e
comparação de sistemas).

A avaliação de desempenho geralmente contempla algumas métricas, tais como:

• Vazão: é o número de operações que são executadas em um determinado período
de tempo;

• Utilização: representa a porcentagem de tempo que o sistema está ocupado reali-
zando uma atividade (ação). O recurso com a maior utilização pode ser conside-
rado o gargalo do sistema;
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• Tempo de resposta: compreende ao tempo entre a chegada de uma requisição e a
resposta do sistema.

A avaliação de desempenho de sistemas computacionais consiste de um conjunto
de critérios e técnicas classificadas como as baseadas em medição e modelagem. As
técnicas baseadas em modelagem podem ser classificadas como técnica analítica e simu-
lação (Lilja 2000).

A medição de desempenho consiste essencialmente na monitoração do sistema en-
quanto está sob a ação de uma carga de trabalho (Jain 1991). Para adquirir resultados
representativos, a carga de trabalho deve ser cuidadosamente selecionada pelos proje-
tistas e utilizada nos estudos de desempenho, podendo ser real ou sintética (Jain 1991,
Lilja 2000).

Verifica-se, porém, que a carga de trabalho real não é adequada para utilização devido
à impossibilidade de repetição. Isso acontece quando o tamanho da carga não é conside-
rável e também quando esses dados receberam muitas perturbações ou, até mesmo, por
questões de acessibilidade. Por esses motivos, uma carga sintética, cujas características
são semelhantes às da carga de trabalho real, pode ser aplicada repetidamente de uma
maneira controlada, desenvolvida e usada para estudos.

A essencial razão para a utilização de uma carga de trabalho sintética é que ela
é uma representação ou modelo da carga de trabalho real. A carga de trabalho pode
ser simplesmente modificada sem afetar a operação e pode ser facilmente portada para
sistemas diferentes, graças ao seu pequeno tamanho e ela pode ter embutida capacidades
de medição (Jain 1991).

A modelagem analítica utiliza um conjunto de equações e funções matemáticas para
descrever o comportamento de um sistema. Durante a construção dos modelos, deve-se
levar em consideração a complexidade e praticidade dos sistemas.

Os modelos analíticos permitem uma análise em relação aos efeitos causados pelos
parâmetros definidos nas equações sobre a aplicação. Ademais, também se pode es-
tabelecer possíveis relacionamentos entre cada um dos parâmetros considerados. Para
validar os resultados alcançados por meio dos modelos elaborados, a modelagem analí-
tica pode compará-los aos valores reais medidos em testes experimentais (Jain 1991).

A simulação é utilizada tanto em avaliação de desempenho, quanto na validação
de modelos analíticos. Ao contrário das medições analíticas, as simulações baseiam-se
em modelos abstratos do sistema, por isso não exigem que o sistema esteja totalmente
implantado para que sejam aplicadas. Desta forma, os modelos utilizados durante a si-
mulação são desenvolvidos através da abstração de características essenciais do sistema,
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sendo que a complexidade e o grau de abstração dele podem mudar de um sistema para
outro. Durante a simulação, controlam-se, com maior eficiência, os valores assumidos
por parâmetros do sistema. Assim sendo, fica mais fácil obter informações relevantes
para a avaliação de desempenho.

3.2.1 Modelos

Existem diversos tipos de modelos para a avaliação de desempenho, tais como: Redes de
Filas (Cassandras & Lafortune 2008), Cadeias de Markov (Trivedi 2001, Murata 1989)
e Redes de Petri Estocásticas (Balbo 2001), que são modelos baseados em estados, ou
seja, podem ser também definidos como não combinatórias. Esses modelos têm sido
utilizados para estimativa de métricas de desempenho.

3.2.1.1 Redes de Filas

As Redes de Filas (Cassandras & Lafortune 2008) são uma das mais populares técnicas
de modelagem utilizadas para a análise de desempenho de sistemas computacionais. As
redes de fila descrevem processo de chegada de cliente/produto a um sistema de aten-
dimento (por exemplo, beneficiamento ou produção) para receber um ou mais serviços,
executados por determinada quantidade de servidores. Neste contexto, as formações de
filas ocorrem em razão de a procura pelo serviço prestado ser maior do que a capacidade
do sistema de atender a esta procura. A Figura 3.2 apresenta um sistema de filas.

 

Chegada

     de

 Cliente

Servidores 

 Saída 

    de

 Cliente
Fila 

1 

m

Figura 3.2: Sistema de Filas Adaptado de (Bolch et al. 2006).

A notação a seguir, conhecida como notação de Kendall (Bolch et al. 2006), é muito
utilizada para decrever sistemas de filas:

A/B/m/K
�
 �	3.1

na qual, A indica a distribuição da chegada de cliente, B denota a distribuição do
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tempo de serviço, e m indica o número de servidores (m 1) e K indica o tamanho máximo
da fila (capacidade). Os seguintes símbolos são normalmente utilizados para A e B:

• M: Distribuição exponencial (Memoryless);

• D: Distribuição determinística, ou seja, o tempo entre o serviço;

• Ek: Distribuição Erlang com k-fases;

• Hk: Distribuição Hiperexponencial com k-fases

Por exemplo, M/M/1/4 indica que o tempo entre chegadas e o tempo de serviço é
regido por distribuições exponenciais, há apenas 1 servidor e a capacidade da fila é de 4
clientes.

Para avaliar o comportamento de sistemas de filas, associam-se medidas de desem-
penho tais como: tempo médio de espera dos clientes na fila, tempo médio de chegada
de clientes, probabilidade de encontrar o sistema lotado, capacidade do sistema, entre
outras. Dessa maneira, a teoria das filas tenta, por meio de análises matemáticas detalha-
das, encontrar um ponto de equilíbrio que satisfaça o cliente ou linha de produção e seja
viável para o provedor do serviço.

3.2.1.2 Cadeias de Markov

As Cadeias de Markov (Trivedi 2001, Murata 1989) é um formalismo matemático uti-
lizado para a modelagem de sistemas. Assim, o formalismo permitem descrever o fun-
cionamento de um sistema utilizando um conjunto de estados e transições entre esses
estados. As transições entre os estados são modeladas por um processo estocástico de
tempo contínuo ou discreto definido por distribuições exponenciais.

Um modelo descrito pelo formalismo de Cadeias de Markov pode ser interpretado
como uma máquina de estados, onde os nodos da cadeia representam os estados e os
arcos representam as transições.

Um modelo descrito pelo formalismo de Cadeias de Markov (Bolch et al. 2006) pode
ser classifacado de acordo com a sua escala e tempo:

• Cadeias de Markov à escala de Tempo Contínua (CTMC - Continuos Time Mar-
kov Chains);

• Cadeias de Markov à escala de Tempo Discreta (DTMC - Discrete Time Markov
Chains);
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Os modelos em CTMC diferem dos modelos em DTMC basicamente por suas tran-
sições entre os estados poderem ocorrer em qualquer instante de tempo e não em pontos
discretos de tempo.

A seguir, apresenta-se as propriedades para a construção de um modelo descrito pelas
Cadeias de Markov (Stewart 1994).

Os estados do modelo são discretos e enumeráveis. Dessa forma, o formalismo
de Cadeias de Markov permite cadeias de infinitos estados. A escala de tempo para a
transição entre os estados do modelo pode ser de forma contínua (CTMC) ou discreta
(DTMC).

A transição entre os estados do modelo depende exclusivamente do estado atual do
modelo, sem importar quais foram os estados prévios ou serão os estados futuros do
modelo. A taxa (CTMC) ou probabilidade (DTMC) de transição de estados do modelo
dá-se obedecendo a uma lei exponencial ou geométrica, respectivamente.

A representação gráfica de um modelo em Cadeias de Markov é feita por autômatos,
à qual é associada para cada estado do autômato um estado do modelo e para cada
transição uma taxa (CTMC) ou uma probabilidade (DTMC). Um modelo em Cadeias
de Markov é representado, matematicamente, por uma matriz de transição de estados. A
probabilidade de cada estado em regime estacionário (solução de um modelo em Cadeias
de Markov) é a solução do sistema da equação linear 3.3:

Q =

(
qii qi j

q ji q j j

)
,

�
 �	3.2

πQ = 0
�
 �	3.3

na qual, Q é a matriz de transição de estados e π (vetor de probabilidade) é o autovetor
correspondente ao autovalor unitário da matriz de transição. É importante ressaltar que
a soma dos elementos do vetor de probabilidade π deve ser igual a 1, ou seja, ||π|| = 1
(Araújo 2009).

Para os modelos em CTMC, a matriz de transição de estados Q é denominada de
gerador infinitesimal, no qual, cada elemento não diagonal da linha i e coluna j da matriz
representa a taxa de transição do estado i para o estado j do modelo. Os elementos
diagonais de Q representam o ajuste necessário para que a soma dos elementos de cada
linha seja igual a zero (Araújo 2009) .

Para os modelos em DTMC, a matriz de transição de estados P é denominada de
matriz estocástica, na qual cada elemento não diagonal representa a probabilidade de
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transição entre os estados do modelo (Araújo 2009). Os elementos diagonais de P re-
presentam o ajuste necessário para que a soma dos elementos de cada linha seja igual a
um.

A Figura 3.3 apresenta um modelo em CTMC com dois estados e duas transições.
Cada transição entre um estado e outro possui associada uma taxa de ocorrência.

1 2

7

4

Figura 3.3: Modelo em CTMC com dois estados e duas transições.

3.2.1.3 Redes de Petri Estocásticas

Uma Rede de Petri Estocásticas (SPNs) (Balbo 2001) é uma abstração de um sistema.
Ela é um modelo formal do fluxo de dados e controle do sistema modelado em questão.
As propriedades, conceitos e técnicas para modelagem de uma Rede de Petri foram
desenvolvidas utilizando métodos simples para descrição e análise do fluxo de sistema.

O formalismo de redes de Petri é utilizado principalmente em sistemas que possam
apresentar atividades assíncronas, concorrentes e não-determinísticas. As SPNs permi-
tem a modelagem e análise probabilística de sistemas. As transições em SPNs podem
ser imediatas ou temporizadas. As transições temporizadas possuem um atraso expo-
nencialmente distribuídos. As SPNs têm sido amplamente utilizadas para avaliações de
desempenho de sistema. As Redes de Petri Estocásticas foram descritas na seção 3.9.

3.3 Avaliação de Dependabilidade

A avaliação de dependabilidade é uma atividade essencial que tem como objetivo forne-
cer meios para que seja possível promover melhoria da qualidade dos serviços prestados.
Com o aumento dos serviços oferecidos pela internet, a dependabilidade tornou-se um
atributo de grande importância no desenvolvimento de software e hardware, na implan-
tação e operação dos serviços oferecidos (Maciel et al. 2011).

Dependabilidade é a propriedade que define a capacidade de o sistema prestar um ser-
viço que pode justificadamente ser confiável (Kuo & Zuo 2003, Avizienis 2001). Dessa
forma, dependabilidade representa a capacidade de um sistema em oferecer um serviço
de forma confiável (Maciel et al. 2011). Um conceito importante é a falha do sistema,
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o que acontece quando o sistema para de fornecer as respectivas funcionalidades. Uma
falha refere-se a um defeito de um componente do sistema (ou subsistema), o que pode
causar outros defeitos ou falhas no sistema.

Em geral, os conceitos de dependabilidade são: atributos, meios e ameaças (Avizienis
2001). A Figura 3.4 apresenta a árvore de dependabilidade, na qual:

• Os atributos: possibilitam a obtenção de medidas quantitativas, em que muitas são
cruciais para a análise dos serviços prestados;

• Os meios: são os meios pelos quais a dependabilidade é atingida;

• As ameaças: compreendem as falhas, erros e defeitos. A falha do sistema é o
evento que ocorre quando a entrega do serviço não acontece de forma desejada.

Dependabilidade

Confiabilidade

Segurança

Confidencialidade

Integridade

Atributos

Disponibilidade

Manutenabilidade

Meios

Prevenção a Falhas

Tolerância a Falhas

Remoção a Falhas

Previsão a Falhas

Ameaças

Falhas

Erros

Defeitos

Figura 3.4: Árvore de dependabilidade Adaptado de Avizienis (2001).

A dependabilidade usualmente contempla as seguintes métricas/atributos: confiabi-
lidade, disponibilidade, manutenabilidade, segurança, confidencialidade e integridade.
Neste trabalho, os atributos de interesse são:

• Confiabilidade: probabilidade de um sistema fornecer suas funções pré-definidas,
sem falhas, por um período de tempo específico (Maciel et al. 2011): Matematica-
mente, é apresentada pela Equação 3.4.
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R(t) = P{T ≥ t}
�
 �	3.4

, em que T é a variável aleatória que representa o tempo de falha do sistema (ou um
único componente). De fato, R(t) = 1−F(t), tal que F(t) = P{T < t} é a função
de distribuição cumulativa, declarando que uma falha ocorre antes do tempo t;

• Disponibilidade: probabilidade de um sistema estar em uma condição de funcio-
namento. Ele considera a alternância de estados operacionais e não operacionais
(Maciel et al. 2011). A Disponibilidade estacionária (A) pode ser representada
palas seguintes equações 3.5 e 3.6:

A =
uptime

uptime+downtime

�
 �	3.5

em que o tempo de atividade (uptime) é o período de tempo em que o sistema
está operacional e o tempo de inatividade (downtime) corresponde ao período de
tempo em que o sistema não está operacional.

Ou ainda:
A =

MT T F
MT T F +MT T R

�
 �	3.6

no qual, o MTTF é o tempo médio de falha e MTTR é o tempo médio de reparo,
de tal modo que

MT T F =
∫ ∞

0
R(t)dt

�
 �	3.7

MT T R =
∫ ∞

0
(1−M(t))dt

�
 �	3.8

M(t) é a função de distribuição cumulativa que representa a probabilidade de que um
reparo ocorrerá dentro do tempo t. R(t) é a função de confiabilidade como anteriormente
apresentada.

Durante a execução do sistema, remoção de falhas poderão ser realizadas através de
políticas de manutenção, tais como manutenção corretiva e preditiva. Manutenção corre-
tiva restaura um componente/sistema após uma falha, enquanto a manutenção preditiva
tenta manter o sistema em um estado operacional, evitando que falhas ocorram.
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3.3.1 Técnicas Tolerantes a Falhas

Sempre que um sistema fornece as suas funcionalidades na presença de falhas, o sistema
é considerado tolerante a falhas.

A redundância é uma conjunto de técnicas importante para a implementação de
sistemas tolerantes a falhas com o objetivo de melhorar a disponibilidade e confiabili-
dade (Maciel et al. 2011). Em geral, tal técnica consiste em adicionar componentes exter-
nos para o sistema, de tal modo que, se um componente falha, o componente redundante
assumirá seu lugar. Redundância dinâmica é uma técnica representativa que leva em
conta os componentes de reposição para substituir o componente principal sempre que
é inoperante. Hot e cold standby são abordagens representativas (Eric Bauer & Eustace
2011).

Considerando cold standby, um componente de backup só é ativado quando o com-
ponente primário falhar. Por outro lado, o componente Hot standby fica em execução
simultaneamente com o componente primário. Sempre que o último falhar, o backup

imediatamente o substituirá.

3.3.2 Técnicas de Modelagem

Modelos para estimar atributos de dependabilidades são geralmente classificados como
modelos combinatórios ou modelos baseados em estado (Maciel et al. 2011). Modelos
combinatórios consideram as condições que tornam o sistema operacional ou com falhas,
a respeito da relação estrutural entre seus componentes. No entanto, esses modelos têm
limitações para representar interações complexas entre os componentes do sistema e as
políticas de manutenção elaboradas.

Por outro lado, os modelos baseados em estado representam o comportamento do
sistema, seus estados e ocorrências de eventos (Maciel et al. 2011). Estes modelos são
mais adequados para modelar interações complexas entre os componentes, tais como
mecanismos baseados em redundância dinâmica. No entanto, os modelos baseados em
estado sofrem com explosão de espaço de estado.

Diagramas de Blocos de Confiabilidade (RBD) (Kuo & Zuo 2003), Árvores de Fa-
lhas (FT) (Vesely & Roberts 1987) e Gráficos de Confiabilidade (RG) (Sahner & Puliafito
1996a) são modelos combinatórios representativos, Cadeias de Markov, bem como Re-
des de Petri Estocásticas (SPN) são modelos proeminentes baseados em estado. Estes
modelos também são muito apropriados para a estimativa de métricas de desempenho e
performabilidade.
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3.4 Sistemas Coerentes

Um componente C é irrelevante para o desempenho do sistema S, se o estado do sis-
tema não é afetado pelo estado deste componente (Kuo & Zuo 2003). Matematicamente,
um componente i(1 ≤ i ≤ n) é irrelevante para a função estrutural ϕ , se e somente se
ϕ(1i,x) = ϕ(0i,X) para qualquer estado do componente vetor x. Caso contrário, o com-
ponente é dito relevante.

Se um componente é relevante para um sistema, isso significa que existe pelo menos
um componente de vetor de estado x de tal modo que o estado do componente i determina
o estado do sistema. Dessa forma, quando outros componentes encontram-se em um
certo estado (operacional ou defeituoso), especificado por (x1,x2, ...,xi−1,xi+1, ...,xn),
o valor de ϕ(x1,x2, ...,xn) é igual a x1. A partir dessas condições, quando o componente
i funciona, o sistema funciona; quando o componente i falha, o sistema apresenta um
defeito (Kuo & Zuo 2003).

Uma particularidade relevate é que melhorar o desempenho de um componente, nor-
malmente não piora o desempenho do sistema (Kuo & Zuo 2003). Por conseguinte, a
troca de um componente falho em um sistema funcionando normalmente não faz o sis-
tema falhar. Se trocar um componente falho em um sistema falho não necessariamente
recupera o sistema pois, pode haver outros componentes falhos no sistema, que o impe-
çam de funcionar. Usualmente, presume-se que a função de estrutura de todo sistema é
uma função não decrescente do estato de todos os componentes (Kuo & Zuo 2003).

Assim, para um sistema coerente, dados dois vetores, cada um com n elementos, x e
y, pode-se escrever x < y se xi < yi para cada i e xi < yi para pelo menos um i(1 ≤ i ≤ n).
No entanto, pode-se dizer que o vetor x é menor que o vetor y (Kuo & Zuo 2003).

Fundamentado nesta definição, segundo (Kuo & Zuo 2003), um sistema coerente
satisfaz as seguintes condições:

1. ϕ(0) = 0, que dizer, o sistema é defeituoso quando todos os componentes são
falhos;

2. ϕ(1) = 1, que dizer, o sistema funciona quando todos os componentes funcionam;

3. se x < y, então ϕ(x) ≤ ϕ(y), que dizer, a melhoria de qualquer componente não
degrada o desempenho do sistema;

4. Para todos os componentes i, existe um vetor de estados de componentes em que
o estado do componente i dita o estado do sistema.
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3.4.1 Funções Estruturais

Funções estruturais são funções matemáticas discretas utilizadas para indicar o relacio-
namento entre o estado de funcionamento dos componentes de um sistema com o estado
de funcionamento do sistema (Kuo & Zuo 2003, Maciel et al. 2011).

Suponha num sistema S composto por um conjunto de componentes C = ci|1≤ i≤ n,
onde o estado do sistema S e seus componentes podem estar operacionais ou falhos e
n é o número de componentes do sistema. Ora, xi é uma variável aleatória discreta,
indicando o estado do componente i, assim:

xi =

{
0 se o componente i está falho
1 se o componente i está funcionando

�
 �	3.9

Eventualmente, um vetor x = (x1,x2, ...,xn), representa o estado de todos os compo-
nentes do sistema. O estado do sistema é determinado pelos estados dos componentes.
A função de estrutura, ϕ(x), mapeia o vetor do sistema x para 1 ou 0, como apresentado
abaixo:

ϕ(x) =

{
0 se o sistema está falho
1 se o sistema está funcionando

�
 �	3.10

Ademais, se o estado de todos os componentes do sistema é conhecido, então o
estado do sistema também é conhecido. Desta forma, o estado do sistema é uma função
determinística do estado de todos os componentes. Logo,

ϕ = ϕ(x) = ϕ(x1,x2, ...,xn)
�
 �	3.11

onde ϕ(x) é a função estrutural do sistema.
As regras de formação das funções estruturais, para componentes em série e em

paralelo são mostradas a seguir:
Componentes em série:
Sejam n componentes x1,x2, ...,xn em série, a função estrutural ϕ desses componen-

tes é representada a seguir:

ϕ(x) = 1−
n

∏
i=1

(xi) = min(x1,x2, ...,xn)
�
 �	3.12

Componentes em paralelo:
Sejam n componentes x1,x2, ...,xn em paralelo, a função estrutural ϕ desses compo-
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nentes é representada a seguir:

ϕ(x) = 1−
n

∏
i=1

(1− xi) = max(x1,x2, ...,xn)
�
 �	3.13

3.4.2 Funções Lógicas

Funções lógicas têm como objetivo indicar uma relação entre o estado dos componentes
e o estado do sistema. A função lógica de um sistema coerente pode ser adotada para
simplificar funções do sistema através de álgebra booleana. Todavia, em alguns casos,
não é fácil simplicar funções estruturais para uma forma minimizada (Kuo & Zuo 2003).

Componentes em série:
Seja x = (x1,x2, ...,xn), o vetor que representa o estado de n componentes de um

sistema. A função lógica em série (Sserial) é definida pela equação:

Sserial(x) = (x1 ∧ x2 ∧ ...∧ xn)
�
 �	3.14

Componentes paralelos:
Seja x = (x1,x2, ...,xn), o vetor que representa o estado de n componentes de um

sistema. A função lógica paralela (Sparalelo) é definida pela equação:

Sparalelo(x) = (x1 ∨ x2 ∨ ...∨ xn)
�
 �	3.15

Para obter mais detalhes sobre funções lógicas e estruturais o leitor pode recorrer
a Kuo & Zuo (2003), Maciel et al. (2011).

3.5 Avaliação de Performabilidade

A modelagem de desempenho é uma abordagem estruturada para avaliar o desempenho
do sistema. No entanto, a modelagem de dependabilidade lida com a representação de
mudanças na estrutura do sistema devido a falhas, as quais podem afetar a disponibili-
dade do sistema (Jawad & Johnsen 1995).

Estes modelos são geralmente avaliados separadamente, mas uma questão surge
como o desempenho depende da dependabilidade. Assim, combinar aspectos de de-
sempenho e dependabilidade é importante para uma avaliação completa.

Avaliações separadas de desempenho e dependabilidade podem produzir uma avali-
ação parcial da qualidade do serviço (Meyer 1992). No entanto, há falhas estuturais que
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reduzem a qualidade do serviço, sem causar falhas no sistema, ou seja, o desempenho
do sistema é degradável.

A modelagem combinada de desempenho e dependabilidade é denominada perfor-
mabilidade (Araújo & et al. 2011), uma medida composta que descreve uma degradação
do desempenho do sistema, devido à ocorrência de eventos de falha, mesmo em de-
corrência delas, o sistema continuará funcionando, mas com degradações no nível de
desempenho. Para realizar a avaliação de performabilidade, é comum a adoção de mo-
delagem hierárquica para a combinação de um modelo de dependabilidade de alto nível
e um modelo de desempenho de baixo nível.

A avaliação de performabilidade surgiu a partir da necessidade de se determinar a
qualidade global do sistema, relacionando aspectos de desempenho e dependabilidade,
como resultado de uma única avaliação.

A modelagem hierárquica tem como finalidade evitar os problemas de largeness e
stiffness (Sousa & et al. 2012). O largeness é consequência do tamanho do espaço de es-
tados do modelo e o stiffness é consequência das diferentes ordens de magnitude entre os
tempos das atividades de reparo. O stiffness pode provocar sérios problemas durante a so-
lução analítica do modelo, mesmo que o modelo não tenha um grande espaço de estados
por causa dos diferentes tempos associados as transições temporizadas (Sousa & et al.
2012).

A avaliação de performabilidade pode ser considerada como uma das mais adequa-
das abordagens para entender o significado da eficácia e desempenho geral de um sis-
tema.

3.5.1 Modelos

Existem vários tipos de modelos que podem ser utilizados para a modelagem e avalia-
ção de performabilidade. Por exemplo, Diagramas de Bloco de Confiabilidade, Cadeias
de Markov e Redes de Petri Estocásticas. Consequentemente, esses modelos têm sido
utilizados para modelagem hierárquica que combina os resultados de modelos de depen-
dabilidade e desempenho (Araújo & et al. 2011).

Para uma avaliação de performabilidade utilizando modelagem hierárquica, pode-
se combinar um modelo de dependabilidade de alto nível (por exemplo, Diagramas de
Bloco de Confiabilidade) que representam um sistema, e modelos de desempenho de
baixo nível (por exemplo, Cadeias de Markov), que representam alguns subsistemas do
modelo de dependabilidade.
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3.6 Censura

Análise de sobrevivência é definida como uma técnica estatística para o estudo de dados
de tempos de vida de um indivíduo, item ou componente. Dessa forma, a análise de
sobrevivência permite estudar tempos de vida, também designados por tempos de sobre-
vivência (falhas). A característica fundamental é a presença de observações incompletas
do tempo de sobrevivência chamado de censura. Para alguns indivíduos pode não ser
possível observar o acontecimento de interesse durante o período em que estiverem em
observação.

Um problema comum na geração de dados de confiabilidade é a censura. A cen-
sura (Ebeling 2005) ocorre quando não é possível observar o tempo de vida de um
indivíduo, item ou componente, durante um período de tempo. A censura é aplicada
por diversos motivos, por exemplo, quando a falha de um componente ocorre fora do
período de tempo em estudo.

A censura pode ser classificada da seguinte forma (Ebeling 2005):

1. Censura à esquerda: ocorre se o evento de interesse já aconteceu quando o indiví-
duo foi observado.

2. Censura à direita: ocorre quando o tempo de falha é superior ao tempo observado.
A seguir são descritos os tipos da censura à direita:
i. Censura do tipo 1: o estudo terminará após um período pré estabelecido de
tempo, por exemplo, suponha que um sistema é composto por 8 componentes, e
que os componentes podem falhar. Foram observados os tempos de falhas dos
componentes, sendo que o estudo terminou após 3 meses;
ii. Censura do tipo 2: o estudo terminará após ter ocorrido o evento de interesse
em um número pré estabelecido de indivíduos, por exemplo, o estudo é terminado
depois de um número fixo de falha dos componentes.

3.6.1 Técnica de Kaplan-Meier

Problemas com dados censurados surgem com bastante frequência em estudos de confia-
bilidade. Estimativa da função de confiabilidade geralmente é motivo de preocupação. O
estimador de função de Confiabilidade Kaplan-Meier é frequentemente utilizado quando
se lida com dados censurados.

A técnica de Kaplan-Meier (Ebeling 2005, Goel et al. 2010), também conhecida
como o estimador de limite-produto, pode ser utilizada para calcular os valores de confi-
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abilidade não-paramétrico para conjuntos de dados com várias falhas. A técnica é muito
popular para derivar uma função de confiabilidade empírica.

Assumindo que não há laços em tempos de falha e que os tempos de censura não
coincidem com tempos de falha, o estimador de limite de produto Kaplan-Meier é apre-
sentado pela Equação 3.16 a seguir:

R̂ = ∏
{ j:t j≤t}

(1−
d j

n j
)

�
 �	3.16

Onde t j é o tempo do estudo no ponto j, d j é o número de falhas até o ponto j e n j

é o número de indivíduos em risco antes de t j. R̂ é baseado na probabilidade de que um
indivíduo sobrevive no final de um intervalo de tempo, com a condição de que o indiví-
duo estava presente no início do intervalo de tempo. R̂ é o produto dessas probabilidades
condicionais.

Como exemplo, considere os dados tempos de falha (em meses) de alguns compo-
nentes, contidos na Tabela 3.1, onde o estudo terminou quando 7 componentes haviam
falhado. Como pode ser observado o número 1 indica que o componente falhou e o
número 0 indica censura. As observações censuradas são marcadas por 0.

Tabela 3.1: Dados dos Tempos de Falhas.

Tempo Status

55 1
61 0
74 1
81 1
93 0
122 0
138 1
151 1
168 1
202 0
220 0
238 1

A partir dos dados disponíveis, as estimativas de confiabilidade de Kaplan-Meier,
são obtidas. A Tabela 3.2 apresenta as estimativas.

Com base nas estimativas de confiabilidade, o gráfico de Estimador de Kaplan-Meier
é construído, no qual, R(t) em função de t, em forma de escada. A Figura 3.5 mostra o
gráfico de Estimador de Kaplan-Meier.

43



3.6. CENSURA

Tabela 3.2: Estimativas de Confiabilidade de Kaplan-Meier.

Tempo Número de Risco Número de Falhas Probabilidade de Sobrevivência R̂(t)

55 12 1 0.916667
74 10 1 0.825000
81 9 1 0.733333
138 6 1 0.611111
151 5 1 0.488889
168 4 1 0.366667
238 1 1 0.000000

Figura 3.5: Estimador de Kaplan-Meier.

3.6.2 Teste Kolmogorov-Smirnov

O teste de Kolmogorov-Smirnov (teste K-S) (Ebeling 2005) é um teste não paramétrico
para a igualdade de distribuição de probabilidade contínua, de uma dimensão que pode
ser usado para comparar a amostra (valores observados) com uma distribuição de proba-
bilidade de referência (uma amostra de teste K-S), ou para comparar duas amostras (duas
amostras de teste K-S). A estatística de K-S, quantifica uma distância entre a função de
distribuição empírica da amostra e a função de distribuição cumulativa da distribuição
de referência, ou entre as funções de distribuição empírica de duas amostras.

Dada uma variável aleatória X, o teste K-S tem por base a análise da proximidade
ou do ajustamento entre a função de distribuição empírica ou da amostra, S(x), e a
função de distribuição populacional, F(x), que é admitida em H0. Para uma amostra
de tamanho n, a função S(x) representa a soma das frequências relativas dos dados com
valores menores ou iguais a x, um valor qualquer x da variável X .

Seja (X1,X2, ...,Xn) uma amostra aleatória de uma população contínua X e X1,X2, ...Xn

a respectiva amostra ordenada, e define a função distribuição empírica S(x) como se-
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gue (Esteves & Sousa 2007):

S(x)


0, x < x1

k/n, xk ≤ x < xk +1(k= 1,2,...,n-1)
1, x ≥ xn

A função de distribuição empírica S(x) é uma função em degrau que cresce 1/n nos
pontos de salto (estatísticas ordinais da amostra).

A estatística de teste, que se denota por Dn (que é uma variável aleatória), corres-
ponde ao supremo (ou máximo) da diferença, em valor absoluto, entre S(x) e F(x),
quando são considerados todos os valores possíveis de X . como segue:

Dn = max
x

|F(x)−S(x)|
�
 �	3.17

É possível demonstrar que, se a amostra é aleatória e provém de uma distribuição
contínua conhecida, a estatística Dn só depende da dimensão da amostra, n, sendo irrele-
vante a forma da função distribuição da população, F(x).

O teste K-S pode ser modificado para servir como um teste de goodness-of-fit (Ebeling
2005). No caso especial de testes para a normalidade de distribuição, as amostras são
normalizadas e comparadas com uma distribuição normal padrão. Assim, é equivalente à
configuração da média e da variância da distribuição de referência iguais para as estima-
tivas da amostra, sabe-se que a utilização destes para definir a distribuição de referência
específica altera a distribuição nula da estatística de teste.

3.7 Diagramas de Blocos de Confiabilidade

Diagrama de Blocos de Confiabilidade (RBD) (Rausand & Høyland 2004, Kuo & Zuo
2003) é uma técnica combinatorial utilizada para calcular a confiabilidade de um sistema.
Normalmente, os RBDs proporcionam uma representação gráfica dos componentes do
sistema e conectores, que podem ser adotados para determinar o estado geral do sistema,
dado o estado de seus componentes.

Um diagrama de blocos de confiabilidade representa a relação lógica entre o funcio-
namento do sistema e do funcionamento dos seus componentes (Kuo & Zuo 2003). Os
modelos RBDs são representados por conjuntos de blocos (denotados como retângulos)
que indicam os componentes em que os arcos definem a relação lógica.

O diagrama de blocos de confiabilidade é utilizado, particularmente, em sistemas
modulares que consistem de muitos módulos independentes, onde cada um pode ser
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representado por um bloco de confiabilidade.
Embora o RBD tenha sido inicialmente um modelo proposto para calcular a confiabi-

lidade de sistemas, pode ser utilizado para calcular outras métricas de dependabilidade,
tais como: disponibilidade e manutenabilidade.

Em RBD, é possível representar um componente físico no modo operacional por
um bloco, estimar a confiabilidade de cada bloco individualmente. Portanto, para re-
presentar uma falha de um componente, é necessário remover o bloco correspondente
ao componente do modelo. Se existir pelo menos um caminho que faça a ligação en-
tre os blocos, o sistema continua funcionando corretamente. Assim, se removida uma
quantidade suficiente de blocos para interromper a conexão entre os blocos, o sistema
falha (Kuo & Zuo 2003). No entanto, modelos RBD são impróprios para modelagem
de dependências de falhas e reparação que são frequentemente encontrados na represen-
tação de políticas de manutenção e mecanismos redundantes, particularmente aquelas
baseadas em métodos de redundância dinâmica.

Os modelos RBDs têm sido usados para representar arranjo em série, arranjo em
paralelo, arranjo K-out-of-n e arranjo bridge.

Os parágrafos seguintes descrevem os arranjos adotados neste trabalho.
Arranjo em Série. A Figura 3.6 representa o modelo RBD, em que sempre que um
componente falhar, então todo o sistema também falha. Supondo um sistema com n

componentes, disponibilidade/confiabilidade (Ps) é estimada da seguinte forma

Ps =
n

∏
i=1

pi
�
 �	3.18

em que pi refere-se ao componente i disponibilidade/confiabilidade.

c1 c2 cn

Figura 3.6: Arranjo em Séries.

Arranjo em Paralelo. A Figura 3.7 representa o modelo RBD. Um sistema está em
estado de falha somente quando todos os componentes falharem. Levando-se em conta
n componentes, disponibilidade/confiabilidade é calculada utilizando

Ps = 1−
n

∏
i=1

(1− pi)
�
 �	3.19

46



3.7. DIAGRAMAS DE BLOCOS DE CONFIABILIDADE

em que pi refere-se ao componente i disponibilidade/confiabilidade.

c1

cn

Figura 3.7: Arranjo em Paralelo.

Arranjo K-out-of-n. A Figura 3.8 representa o modelo RBD, em que é necessário
um número mínimo de componentes (k) a fim de manter o sistema operacional. Su-
pondo um sistema com n componentes idênticos, a disponibilidade/confiabilidade (Ps) é
estimada utilizando

Ps =
n

∑
i=k

(
n

i

)
pi(1− p)n−i

�
 �	3.20

em que p refere-se ao componente disponibilidade/confiabilidade.

k/n

c1   

Figura 3.8: Arranjo K-out-of-n.

Um modelo RBD pode adotar vários componentes com arranjos diferentes, Figura 3.9.
Em tal caso, a redução e a soma dos produtos disjuntos (Maciel et al. 2011) são aborda-
gens representativas para estimar a disponibilidade ou a confiabilidade do sistema.

c1

c2

c4

c5

c3

Figura 3.9: Arranjo Série-Paralelo.
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3.8 Redes de Petri

O conceito de redes de Petri foi introduzido por Carl Adam Petri, no ano de 1962, com a
apresentação da sua tese de doutorado “Kommunikation mit Automaten” (comunicação
com autômatos) (Murata 1989, Maciel et al. 1996) na faculdade de Matemática e Física
da Universidade Darmstadf na Alemanha. Redes de Petri (PN) (Balbo 2001) são uma
família de formalismos muito bem adequada para a modelagem de diversos tipos de
sistemas, desda concorrência, sincronização, mecanismos de comunicação, bem como
os atrasos são naturalmente representados.

Rede de Petri é um grafo bipartido direcionado, em que lugares (representados por
círculos) denotam estados locais e transições (representados como retângulos) represen-
tam ações. Arcos (arestas direcionado) conectam lugares para transições e vice-versa.
Tokens (pequenos círculos preenchidos) que denotam o estado (ou seja, a marcação) de
uma PN. Um arco inibidor é um tipo de arco especial que mostra um pequeno círculo
branco em uma borda, em vez de uma seta, e eles representam a indisponibilidade dos
Tokens nos lugares. A Figura 3.10 apresenta os elementos de rede de Petri, e, a Figura
3.11 mostra um exemplo de rede de Petri.

Lugar Transição TokenArco
(a) (b) (c) (d)

Figura 3.10: Elementos de Rede de Petri.

t1

t2

p1 p2

Figura 3.11: Exemplo de Rede de Petri.

A Figura 3.12 (Alves 2007) apresenta os períodos do dia. Os lugares representam
os períodos dos dias (dia e noite), enquanto as transições representam os eventos que
alteram o período do dia (amanhecer ou anoitecer). Neste exemplo, o arco dirigido do
lugar dia para a transição anoitecer indica que, para anoitecer, é necessário que haja um
token no lugar dia. De maneira análoga, o arco dirigido do lugar noite para a transição
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amanhecer indica que, para amanhecer, é necessário que haja um token no lugar noite. A
localização do token na rede indicará, portanto, se é dia (Figura 3.12(a)) ou noite (Figura
3.12(b)).

Dia

Noite

Amanhecer Anoitecer

Dia

Noite

Amanhecer Anoitecer

(a) Dia (b) Noite

Figura 3.12: Rede de Petri Representando o Dia.

Na representação gráfica, um lugar pode ser conectado a uma transição por meio
de múltiplos arcos (arcos multivalorados) que podem ser compactados em um único
arco rotulado. Dessa forma, estes arcos podem ser substituídos por um único arco com
um peso associado. À medida que uma transição é disparada, ela consome os tokens dos
lugares de entrada, colocando outros tokens nos lugares de saída. A quantidade de tokens

consumidos e colocados nos lugares de saída é dada pelo peso do arco que conecta os
lugares a esta transição. A Figura 3.13 mostra um exemplo.

t0
2

p0

p1

p2

p3

3
4

t0
2

p0

p1

p2

p3

3
4

4

(a) Antes do disparo da transição (b) Depois do disparo da transição

Figura 3.13: Exemplo de uma Rede de Petri com Peso nos Arcos.

A representação formal de um modelo PN é a quíntupla PN = (P,T,F,W,M0), onde:

• P é o conjunto finito de lugares;

• T é o conjunto finito de transições, P ∩ T =/0;

• F ⊆ (P × T ) ∪ (T × P) é o conjunto de arcos;

• W : F → IR+∪{0} é a função de atribuição de peso aos arcos;

• M0 : P → IN é a função de marcação inicial.

49



3.8. REDES DE PETRI

3.8.1 Rede de Petri Marcada

Uma marca (token) é um conceito primitivo em PN, da qual lugar e transição. Os to-

ken são informações atribuídas aos lugares. Uma marcação associa um k (inteiro não-
negativo) a cada lugar da rede. A seguir são apresentadas as seguintes definições formais:
marcação, vetor de marcação e rede de Petri marcada.

• Marcação: Seja P o conjunto de lugares de uma PN. Define-se formalmente mar-
cação como uma função que mapeia o conjunto de lugares P a inteiros não negati-
vos M : P → N.

• Vetor Marcação: Seja P o conjunto de lugares de uma PN. A marcação pode ser
definida formalmente como um vetor M = (M(p1), ...,M(pn))) , no qual n = |P|,
para todo pi ∈ P, tal que M(pi) ∈ N.

• Rede Marcada: Define-se uma rede de Petri marcada pela dupla RM(R;M0), no
qual R é a estrutura da rede e M0 é a marcação inicial.

3.8.2 Grafo de Alcançabilidade

Usualmente, um grafo rotulado e direcionado é adotado para mostrar todas as possíveis
marcações que a Rede de Petri pode alcançar. Este grafo é usualmente chamado de grafo
de alcançabilidade.

Podemos definir um grafo de alcançabilidade como sendo uma tupla (V,E), onde
V representa o conjunto de vértices representados pelas marcações possíveis, e E é o
conjunto de arestas rotuladas.

Exemplificando, considere M = {m0 = |1,0,0|,m1 = |0,1,0|,m2 = |0,0,1|} sendo
o conjunto das marcações alcançáveis da rede de Petri representada na Figura 3.14. O
respectivo grafo de alcançabilidade é representado na Figura 3.15.

3.8.3 Redes Elementares

As redes elementares são blocos básicos que permitem a modelagem de sistemas mais
complexos. A seguir serão mostradas algumas das redes elementares, tais como: sequên-
cia, distribuição, junção, escolha não-determinística, atribução e confusão.
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P0 P1

T1

T2

P2T0 P0 P1

T1

T2

P2T0

P0 P1

T1

T2

P2T0 P0 P1

T1

T2

P2T0

Figura 3.14: Exemplo de Rede de Petri

m0

m1

m2

t2 t1

t0

Figura 3.15: Exemplo de Grafo de Alcançabilidade

3.8.3.1 Sequência

A sequência é uma rede que permite a representação de ações consecutivas, desde que
uma dada condição seja satisfeita (Maciel et al. 1996). Ou seja, após a execução de cada
ação, uma nova condição poderá ser disparada, permitindo, assim, a execução de uma
nova ação. A Figura 3.16 mostra um exemplo dessa rede, onde um token no lugar P0 ha-
bilita a transição T0, e com o disparo dessa transição uma nova condição é estabelecida
(P1 é marcado). Assim, com um token no lugar P1 habilita a transição T1, consequente-
mente, com o disparo dessa transição P2 é marcada. Essa nova condição pode permitir
o disparo de uma nova condição associada ao lugar P2.

3.8.3.2 Distribuição

Esta rede permite a criação de processos paralelos a partir de um processo hierarqui-
camente superior (Maciel et al. 1996). Como mostrado na Figura 3.17, o disparo da
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P0

P1

T0

P2

T1

Figura 3.16: Sequência

transição T0 adiciona um token no lugar P1 e outro no lugar P2. Essas novas condições
(P1 e P2) permitem a execução de novos processos paralelos.

P0

P1

T0

P2

Figura 3.17: Distribuição

3.8.3.3 Junção

Esta rede permite a modelagem da sincronização de processos paralelos (ver Figura 3.18).
Ela combina duas ou mais redes, deixando que outro processo continue sua execução so-
mente após o término de todos os processos paralelos que o antecedem (Maciel et al.
1996). Como apresentado na Figura 3.18, a transição T0 estará habilitada, se ambas as
pré-condições contiverem tokens (P0 e P1). Se essa condição for satisfeita, então a tran-
sição T0 poderá ser disparada, retirando um token dos lugares P0 e P1 e colocando em
P2.

3.8.3.4 Escolha Não-Determinística

A seguir, é apresentada uma rede elementar que pode ser denominada de conflito, es-
colha ou decisão, dependendo da aplicação (Maciel et al. 1996). A Figura 3.19 mostra
a escolha não determinística, onde o disparo de uma transição desabilita o disparo de
uma outra transição. Existindo um token em P0 , T0 e T1 torna-se conflitante, isto é, o
disparo de uma transição elimina a possibilidade da outra.
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P0 P1

T0

P2

Figura 3.18: Junção

P0

P1

T0

P2

T1

Figura 3.19: Escolha

3.8.3.5 Atribuição

Atribuição é uma rede elementar que permite que dois ou mais processos habilitem um
terceiro processo (Maciel et al. 1996). Na Figura 3.20, tanto a transição T0 quanto a
transição T1 são independentes, porém ambas têm um lugar de saída em comum. Desse
modo, após o disparo de qualquer uma dessas transições, cria-se uma condição (P2 é
marcado) que possibilita o disparo de uma outra transição.

P0 P1

T0

P2

T1

Figura 3.20: Atribuição

3.8.4 Propriedades das Redes de Petri

O estudo das propriedades de redes de Petri permite a análise do sistema modelado.
Os tipos de propriedades podem ser divididos em duas categorias: as propriedades de-
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pendentes de marcação inicial, conhecidas como propriedades comportamentais, e as
propriedades não dependentes de marcação, conhecidas como propriedades estruturais
(Murata 1989).

3.8.4.1 Propriedades Comportamentais

As propriedades comportamentais são aquelas que dependem apenas da marcação
inicial da rede de Petri. As propriedades abordadas são: alcançabilidade, limitação, se-
gurança, vivacidade e cobertura (Maciel et al. 1996).

• Alcançabilidade: indica a possibilidade de uma determinada marcação ser atin-
gida pelo disparo de um número finito de transições a partir de uma marcação
inicial. Uma marcação M0 é dita alcançavel l a partir de M′, se existir uma sequên-
cia de disparo que transforme M0 em M′. A sequência de disparo é descrita pelo
conjunto S = t1, t2, ..tn. Nesse caso, M′ é alcançavel a partir de M0 por S. No qual
S é formalmente descrito por M0[S > M′.

• Limitação: o limite k é o número máximo de marcas que um lugar pode acu-
mular. Uma rede de Petri marcada RM = (R;M0) é k-limitada se o número de
marcas de cada lugar de RM não exceder k em qualquer marcação acessível de
RM(max(M(p)) = k,∀p ∈ P).

• Segurança: é uma especialização da propriedade de limitação. O conceito de
limitação descreve que um lugar pi é k-limitado se o número de marcas que esse
lugar pode acumular estiver limitado ao número k. Um lugar que é 1-limitado
pode ser simplesmente chamado de seguro.

• Vivacidade: está definida em função das possibilidades de disparo das transições.
Uma rede é considerada live se, independentemente das marcações que sejam al-
cançáveis a partir de M0, for sempre possível disparar qualquer transição da rede
através de uma sequência de transições L(M0). A ausência de bloqueio (deadlock)
em sistemas está fortemente ligada ao conceito de vivacidade, pois deadlock em
uma rede de Petri é a impossibilidade do disparo de qualquer transição da rede. O
fato de um sistema ser livre de deadlock não significa que seja live, entretanto um
sistema live implica um sistema livre de deadlocks.
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• Cobertura: A propriedade de cobertura está conectada ao conceito de alcançabili-
dade e liveness. Quando se deseja saber se alguma marcação M′ pode ser obtida a
partir de uma marcação. Uma marcação M′ é dita coberta se existe uma marcação
M′′ tal que M′′ > M′.

3.8.4.2 Propriedades Estruturais

As propriedades estruturais são aquelas que dependem apenas da estrutura da rede
de Petri. Essas propriedades refletem características independentes de marcação. As
propriedades analisadas neste trabalho são: limitação estrutural, conservação, repetitivi-
dade e consistência (Maciel et al. 1996).

• Limitação Estrutural: uma rede de Petri PN = (P,T,F,W,M0) é classificada
como estruturalmente limitada se for limitada para qualquer marcação inicial.

• Conservação: a conservação é uma considerável propriedade das PN, pois per-
mite a verificação da não destruição de recursos através da conservação de tokens.

• Repetitividade: uma rede é classificada repetitiva se existe uma marcação e uma
sequência de transições disparáveis, em que as transições dessa rede são dispara-
das sempre.

• Consistência: uma rede é dita consistente se dada uma sequência de transições
disparáveis a partir de uma marcação inicial M0 retorna a M0, contudo todas as
transições da rede são disparadas pelo menos uma vez.

3.9 Rede de Petri Estocástica

Rede de Petri estocástica (SPN) é uma das extensões proeminentes de rede de Petri (PN)
(Balbo 2001) utilizada para a modelagem de desempenho e dependabilidade de sistemas.
Uma rede de Petri estocástica adiciona tempo ao formalismo de redes de Petri, com a
diferença de que os tempos associados às transições temporizadas são distribuídos expo-
nencialmente, enquanto o tempo associado às transições imediatas é zero. As transições
temporizadas modelam atividades através dos tempos associados, de modo que o pe-
ríodo de habilitação da transição temporizada corresponde ao período de execução da
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atividade, e o disparo da transição temporizada corresponde ao término da atividade. Ní-
veis diferentes de prioridade podem ser atribuídos às transições. A prioridade de disparo
das transições imediatas é superior à das transições temporizadas. As prioridades podem
solucionar situações de confusão (Marsan et al. 1998). As probabilidades de disparo as-
sociadas às transições imediatas podem solucionar situações de conflito (Balbo 2001,
Marsan et al. 1998).

Formalmente, uma rede de Petri estocástica (SPN) é um grafo direto bipartido repre-
sentado por uma tupla SPN = (P,T,π, I,O,H,M0,W,G), em que (Balbo 2001):

• P é o conjunto de lugares;

• T = Timm∪Ttimed é o conjunto de transições imediata (Timm) e temporizada (Ttimed)
, de tal modo que T ∩P = /0;

• π : T → N é a função de prioridade, de tal modo que

π(t) =

≥ 1, i f (t ∈ Timm)

0, i f (t ∈ Ttimed)

• I,O,H : T → Bag(P) são as funções de entrada, de saída e de inibição, respectiva-
mente, em que Bag(P) é o multiconjunto em P (Bag(P) : P → N);

• M0 : P → N é a função de marcação inicial;

• W : T → R é a função peso, que mapeia uma transição imediata para um peso e
uma transição temporizado na respectiva taxa λ t :

W (t) =

wt ≥ 0, i f (t ∈ Timm)

λ t > 0, i f (t ∈ Ttimed)

• G ∈ (N|P| → {true, f alse})|Timm| é um vetor que atribui uma condição de guarda
relacionada à marcação do lugar a cada transição imediata.

Os modelos SPN apresentam dois tipos de estados (marcações), os estados tangíveis
(tangible) e os estados voláteis (vanish) (Balbo 2001). Os estados voláteis são criados
em decorrência da marcação dos lugares que são pré-condições de habilitação de uma
ou mais transição imediata. O termo vanish é utilizado porque as marcações chegam
a esses lugares e são imediatamente consumidas. O tempo de permanência das marca-
ções nesses lugares é zero. Os estados tangíveis são criados em consequência da mar-
cação dos lugares que são pré-condições de habilitação de uma transição temporizada
(Marsan et al. 1998).
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As transições temporizadas são caracterizadas por diferentes semânticas de disparo
denominadas como single server, multiple server e infinite server (Marsan et al. 1998).
Neste trabalho é utilizada a semântica single server.

Na semântica single server, as marcações são processadas serialmente. Depois do
primeiro disparo da transição temporizada, o temporizador é reiniciado como se a tran-
sição temporizada tivesse sido habilitada novamente. Esse tipo de semântica é usada
nos modelos de disponibilidade, considerando-se que haja unicamente uma equipe de
manutenção, quando diversos componentes do sistema entram numa condição de falha.

Modelos SPN possibilitam a geração de grafos de alcançabilidade a partir dos quais
cadeias de Markov de tempo contínuo (CTMC) são diretamente oriundas (Marinho
2010). A Figura 3.21 mostra um exemplo de geração do grafo de alcançabilidade a
partir de um modelo SPN. No modelo SPN mostrado na Figura 3.21 (a), existe um con-
flito entre duas transições imediatas (T 1 e T 2). A Figura 3.21 (b) apresenta o grafo de
alcançabilidade com a indicação de que o estado P1 é volátil. O disparo da transição
temporizada T 0 torna o lugar P1 marcado, habilitando as duas transições imediatas, T 1
e T 2, gerando o estado P1. Há uma mudança imediata (tempo zero) para o estado P2 ou
P3, através do disparo da transição imediata T 1 ou T 2, com probabilidades α

α+β e β
α+β ,

respectivamente (Marinho 2010). A Figura 3.21 (c) apresenta o grafo de alcançabilidade
tangível após a eliminação do estado volátil P1.

β

(a) Modelo SPN

T0

λ2

P1

T1 T2
α

T3 T4

λ1
(b) Grafo de Alcançabilidade (c) Grafo de Alcançabilidade Tangível

P2 P3

P0

T0

λ2P1

T1 T2

T3 λ1

P2 P3

T4

P0

P1

T1

P2 P3

Figura 3.21: Geração de Grafo de Alcançabilidade.

A taxa na qual o sistema se move do estado P0 para P2 ou P3 é obtida pelo produto
da taxa λ da transição do estado P0 para o estado volátil P1, com a probabilidade de ir
do estado P1 para o estado P2 ou P3.

Redes de Petri estocásticas marcadas, com um número finito de lugares e transições,
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são isomórficas às cadeias de Markov (Murata 1989). O isomorfismo de um modelo
SPN com uma cadeia de Markov é obtido a partir do grafo de alcançabilidade reduzido,
que é dado através da eliminação dos estados voláteis e rótulo dos arcos com as taxas das
transições temporizadas e pesos das transições imediatas. As medições de desempenho
e dependabilidade são obtidas através de simulações e análises em estado estacionário e
transiente, baseadas na cadeia de Markov, embutida no modelo SPN (Bolch et al. 2006).

Os modelos SPN são utilizados para avaliação de dependablidade, desempenho e
performabilidade de sistemas, visto que permitem a descrição das atividades de sistemas
através de grafos de alcançabilidade. Esses grafos podem ser convertidos em modelos
Markovianos, que são utilizados para avaliação quantitativa do sistema avaliado.

De agora em diante #p denota o número de tokens no lugar p; e P{exp} estima a
probabilidade da expressão exp.

3.10 Phase-Type Distributions

Embora SPN assuma a distribuição exponencial para transições temporizadas, as ativi-
dades não-exponenciais podem ser representadas utilizando as phase-Type distributions.
Basicamente, são adotadas diferentes combinações de lugares, transições imediatas e
temporizadas para representar diferentes atrasos de distribuições.

A técnica de aproximação por fases (Watson & A. 1991) tem sido normalmente uti-
lizada para representar o comportamento de distribuições desconhecidas, que, a partir
da média de atraso (µd) e desvio padrão (σd), uma aproximação por fase é levada em
conta, por exemplo, Erlang, Hipoexponencial e Hiperexponencial. É importante men-
cionar que essa técnica tem sido utilizada com sucesso na modelagem de atividades
não-exponenciais. O seguinte algoritmo é considerado (Callou & et al. 2012):

• Se µd = σd , apenas uma única transição temporizada é adotada;

• Assumindo µd/σd ∈ N e µd/σd ̸= 1, a aproximação por fase considera uma sub-
rede Erlang (Figure 3.22 (a)), de tal modo que γ = (µd

σd
)2 and λ = γ/µd;

• Considerando que µd > σd , uma sub-rede hipoexponencial é adotada (Figure 3.22
(b)) e

(
µd

σd
)2 −1 ≤ γ < (

µd

σd
)2

�
 �	3.21

λ1 =
1
µ1

and λ2 =
γ
µ2

�
 �	3.22
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p1

p2

1 2

r2= 1- r1

r1

p1

p2

(a)

(b)

(c)

t1 t2 t3

t1 t2 t3

t1 t3

t2

p1 p2

Figura 3.22: Distribuições: (a) Erlang, (b) Hipoexponencial e (c) Hiperexponencial

µ1 =
µd ±

√
γ(γ +1)σd

2 − γµd
2

γ +1

�
 �	3.23

µ2 =
γµd ∓

√
γ(γ +1)σd

2 − γµd
2

γ +1

�
 �	3.24

• Se µd < σd , à aproximação assume uma sub-rede hiperexponencial (Figure 3.22
(c)), em que

r1 =
2µd

2

(µd
2 +σd

2)

�
 �	3.25

r2 = 1− r1
�
 �	3.26

λ =
2µd

(µd
2 +σd

2)

�
 �	3.27

3.11 Considerações Finais

Este capítulo apresentou os principais conceitos que envolvem essa dissertação. Primei-
ramente, foram descritos conceitos sobre gerencimento de riscos, incluindo as categorias
de riscos e as atividades do gerenciamento de riscos. Posteriormente, foram abordados
conceitos sobre avaliação de desempenho, avaliação de dependabilidade, avaliação de
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performabilidade e censura. Posteriormente, foi apresentado os diagramas de bloco de
confiabilidade, tais como os arranjos adotadas e uma introdução sobre redes de Petri,
assim como definições, conceitos básicos e propriedades, as quais podem ser divididas
em duas categorias: propriedades comportamentais e propriedades estruturais. Por fim,
foram apresentadas as redes de Petri estocásticas (SPNs), que é a extenção de redes de
Petri proeminentemente adotada neste trabalho.
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4
Metodologia e Modelos

Seu trabalho irá tomar uma grande parte da sua vida
e o único meio de ficar satisfeito é fazer o que você

acredita ser um grande trabalho.

—STEVE JOBS

Neste capítulo é apresentada a metodologia adotada para avaliação de performabili-
dade de riscos de desenvolvimento em projetos de software além de um exemplo moti-
vacional. Em seguida são apresentados os modelos adotados com base em diagramas
de blocos de confiabilidade e redes de Petri estocásticos para estimar as métricas de
dependabilidade e performabilidade.

4.1 Método Proposto

A indústria de software lida com vários tipos de riscos que fazem com que os projetos
de desenvolvimento de software sejam desviados de seu planejamento original, crono-
grama, prazo de entrega e, consequentemente, sua qualidade. Dessa forma, é necessário
gerenciar os riscos do projeto.

O gerenciamento de riscos é de grande importância para projetos de software, de-
vido à inerentes incertezas relacionadas às suas execuções. Os riscos são classificados
de acordo com diferentes categorias, que podem incluir os riscos do projeto, riscos de
negócios e os riscos do produto. As premissas desta dissertação direcionam especial
atenção aos riscos do projeto que, por exemplo, podem afetar o cronograma e recursos
do projeto Guide (2013).

Geralmente, o gerenciamento de riscos considera os seguintes atividade (Somerville
2011) (Figura 4.1): (i) identificação, (ii) análise, (iii) planejamento e (iv) monitoramento.
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O processo é iterativo (Somerville 2011), começa no planejamento do projeto e continua
durante toda a vida do projeto. A avaliação de risco é adotada na atividade de análise, a
fim de estimar o impacto quantitativo/qualitativo dos riscos identificados.

Identificação Análise

PlanejamentoMonitoramento

Figura 4.1: Atividades do Gerenciamento de Riscos Adaptado de (Somerville 2011).

Utilizando os conceitos de dependabilidade, os riscos no processo de desenvolvi-
mento de software podem ser estimados probabilisticamente e as técnicas (por exemplo,
redundância dinâmica) podem ser utilizadas para evitar ou reduzir a ocorrência de tais
problemas. Por exemplo, podem ser adotados os seguintes conceitos e técnicas:

• Falha: a ocorrência de um risco (por exemplo, alguns desenvolvedores deixaram o
projeto, afetando a quantidade mínima de desenvolvedores necessários para man-
ter o projeto de software operacional);

• MTTF: o tempo médio para um desenvolvedor deixar o projeto ou tempo médio
para um desenvolvedor falhar na implementação de um requisito/funcionalidade.
Aumentando o MTTF, pode-se baixar a probabilidade de falha dos projetos de
software;

• MTTR: o tempo médio para a substituição de um desenvolvedor ou recuperação do
desenvolvedor para implementar outros requisitos. Com a diminuição do MTTR,
são grandes as chances dos projetos de software obter sucesso;

• Cold standby: um desenvolvedor de backup está a trabalhar para um outro projeto,
mas ele pode substituir um membro da equipe sempre que necessário;

• Hot standby: programação em pares;

• Manutenção Preditiva: reuniões periódicas com os stakeholders (partes interessa-
das) a fim de evitar falhas durante a implementação do requisito.

A Figura 4.2 apresenta o método proposto para avaliação probabilística de risco em
projetos de desenvolvimento de software, que é realizada durante a atividade de aná-
lise (ou seja, após a identificação do risco). Nossa ênfase é na avaliação quantitativa
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do risco, que é uma sub-parte da análise de risco. O método assume dados históricos
como entrada e dados probabilisticos como saída. Esse método é importante para ava-
liar probabilisticamente os riscos de desenvolvimento em projetos de software. Gerentes
de projetos de software podem aplicar esse método, para evitar ou mitigar os riscos de
desenvolvimento.

A seguir, as atividades da metodologia são detalhadas.

Modo de Falha/Funcionamento e definições de métricas

Análise de Dados

Geração de Modelo

Avaliação de cenários

  

Validação do Modelo

Figura 4.2: Atividades do Método Proposto.

Modo de Falha/Funcionamento e definições de métricas. Nesta atividade, os modos
de falha/funcionamento de um projeto de software são definidos, bem como as métricas
desejadas considerando cada risco identificado. Por exemplo, assumindo rotatividade de
desenvolvedor, o modo de falha/funcionamento considera um mínimo de 4 desenvolve-
dores para manter o processo de software em execução, e as métricas de interesse que
incluem disponibilidade e confiabilidade. O gerente de projeto seria o responsável por
essa atividade, o qual, a partir de dados históricos do projeto de software, pode definir as
métricas que serão tratadas, para cada risco identificado e consequentemente seu modo
de falha/funcionamento.

Análise de Dados. Os valores médios, como MTTF e MTTR, são comumente neces-
sários para estimar as métricas/atributos de dependabilidade. Em tal caso, um indivíduo
(por exemplo, gerente do projeto) pode tomar dados históricos (a partir de projetos cor-
rentes ou outros projetos) para estimar esses valores sempre que disponíveis. Apesar
dos projetos de software serem distintos, projetos anteriores podem fornecer dados im-
portantes para estimar muitas métricas, dando percepções interessantes para os gerentes
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de projeto em relação aos riscos identificados.
No que diz respeito às estimativas de MTTF, a censura (Seção 3) pode ocorrer no sen-

tido de que os dados são incompletos, uma vez que nem todos os componentes falharam
durante um período de observação (Ebeling 2005) (por exemplo, um desenvolvedor não
deixou o projeto). Em tal situação, um método não paramétrico, de Kaplan-Meier (Se-
ção 3), fornece uma estimativa inicial para uma distribuição empírica e, em seguida, para
um encaixe de distribuição teórica é realizada e avaliada utilizando o teste estatístico (ou
seja, teste K-S) (Seção 3), para avaliar o goodness-of-fit (Ebeling 2005). Neste trabalho,
Phase-Type Distributions são consideradas (Seção 3), uma vez que proporcionam aproxi-
mação para distribuições gerais de probabilidade e podem ser adotadas na avaliação das
CTMC e modelos SPN. Assumindo dados completo, a técnica moment-matching é apli-
cada diretamente (Watson & A. 1991). Se não há dados históricos disponíveis, MTTF e
MTTR podem ser definidos com base em uma expectativa e experiência do gerente do
projeto.

Geração de Modelo. Esta atividade corresponde à geração de modelos de dependa-
bilidade e performabilidade, de acordo com a definição dos modos de falha e estimados
os MTTFs/MTTRs. Neste trabalho, os modelos são construídos utilizando um modelo
híbrido, que adota resultados de diferentes modelos (Seção 4.3). A abordagem con-
sidera as características do modo de funcionamento/falha, bem como a complexidade
para obter uma métrica definida. Após estimar as métricas de dependabilidade, o mo-
delo performabilidade é construído.

Validação do Modelo. Uma vez que o modelo de sistema é criado, a validação é
importante para avaliar a métrica/atributo estimados pelo modelo. No entanto, essa ati-
vidade pode ser opcional, como o modelo pode representar um projeto que ainda não foi
iniciado. A mesma situação pode ocorrer sempre que MTTF/MTTR são definidos pela
experiência.

Por outro lado, supondo que um projeto em andamento, um indivíduo possa coletar
dados e realizar uma comparação. Dependendo dos dados disponíveis e sua complexi-
dade, o erro relativo (err) ou um teste estatístico pode validar o modelo (por exemplo,
teste emparelhado). err = (|v_model − v_data| × 100)/|v_data|, em que v_model é a
métrica estimada pelo modelo, e v_data é a métrica obtida por análise dos dados coleta-
dos.

Avaliação de Cenários. Uma vez que o modelo base é construído, o gestor pode
conceber vários cenários para avaliar o respectivo impacto sobre a dependabilidade, mo-
dificando a estrutura e os valores no modelo atual. Após a avaliação do modelo, sempre
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que as métricas estimadas não fornecem os valores esperados, as atividades anteriores
podem ser executadas de forma iterativa.

O método proposto pode ser automatizado por ferramentas, no sentido em que, a
partir de um modelo de alto nível (por exemplo, diagramas da UML), os modelos de
dependabilidade podem ser gerados automaticamente considerando o modo de falha ou
de funcionamento especificado. Da mesma forma, tal ferramenta poderia considerar
uma funcionalidade integrada para estimar MTTF/MTTR a partir de um banco de dados
com dados históricos. No entanto, tal ferramenta (semi-) automática está fora do escopo
deste trabalho. A utilização dessa ferramenta pelos gerentes de projetos, seria viável por
conta da sua familiaridade com diagramas da UML.

4.2 Exemplo Motivacional

Vamos considerar um projeto de software com 3 desenvolvedores e rotatividade de de-
senvolvedor como um risco proeminente. A Tabela 4.1 descreve o MTTF (tempo médio
para um desenvolvedor deixar o projeto) e MTTR (tempo médio para a substituição de
um desenvolvedor) estimados para os desenvolvedores assumindo um mês como a uni-
dade de tempo. A partir desses valores médios, a disponibilidade pode ser calculada
para um único componente/desenvolvedor (Capítulo 3) e, a partir dos componentes, a
disponibilidade do sistema é estimada (Seção 4.3).

Tabela 4.1: MTTF e MTTR em Meses.

MTTF MTTR

18,0 3,0

Um gerente pode requerer a disponibilidade do projeto considerando três condições
de trabalho: (1) todos os desenvolvedores trabalhando; (2) 2 de 3; e (3) pelo menos
um desenvolvedor. Tais suposições podem impactar a ordem de implementação de re-
quisito/funcionalidade, o que pode afetar ainda mais a execução do projeto, quando um
desenvolvedor o deixa. Usando os modelos descritos na Seção 4.3, a Tabela 4.2 apre-
senta os valores estimados, através da Equação 3.20 descrita no Capítulo 3 (Seção 3.7).

O cenário 1 tem a pior disponibilidade, o que indica que, em um mês, o projeto
está operacional 62,99% (0,6299× 30, aproximadamente 18,89 dias). No entanto, o
cenário 3 indica uma melhor disponibilidade (0,9970 ou 99,70%), apesar de um possível
impacto no desempenho.
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Tabela 4.2: Resultados dos Cenários.

Cenário Disponibilidade

1 0,6299
2 0,9446
3 0,9970

Com base nos valores estimados, um gerente de projeto deve planejar as ações apro-
priadas para mitigar o risco, bem como os custos associados devido à indisponibilidade
(UA = 1−A) para o cenário adotado. Como exemplo, dependendo da criticidade do pro-
jeto, o gerente pode tomar medidas para aumentar o MTTF, como bônus ou melhores
salários. De modo semelhante, pode ser reduzido MTTR, assumindo um programador
remanescente para continuar temporariamente a implementação. Outra alternativa é a
consideração de mais desenvolvedores do projeto de software.

Falha de desenvolvedor pode causar degradação no desempenho. A modelagem de
performabilidade pode avaliar, por exemplo, a vazão de entrega (funcionalidades entre-
gues por unidade de tempo).

Vamos supor um processo em cascata, com as seguintes atividades: análise de re-
quisito; projeto; implementação; teste e implantação. A Tabela 4.3 apresenta os valores
considerados para cada atividade. A partir de um modelo performabilidade (Seção 4.3),
a métrica é estimada para os cenários concebidos (ver Tabela 4.4). Em tal situação, o ce-
nário 3 tem uma melhor vazão de entrega, o que reflete a disponibilidade anteriormente
calculada. Sempre que o valor não é satisfatório, o gerente poderia, então, avaliar as
ações para melhorar a métrica, considerando, por exemplo, as alternativas descritas nos
parágrafos anteriores.

Tabela 4.3: Atribuídos Temporizados das Atividades em Meses.

Atividade Valor

Análise de Requisitos 2,0
Projeto 1,0
Implementação 6,0
Teste 2,0
Implantação 1,0

4.3 Modelos Propostos

Esta seção apresenta os modelos adotados com base em RBD e SPN para estimar as
métricas de dependabilidade e performabilidade. Como se segue, os modelos e bloco de
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Tabela 4.4: Resultados da Vazão dos Cenários em Meses.

Cenário Vazão

1 0,8003296
2 0,9692717
3 0,9985114

construção são apresentados.

4.3.1 Modelos RBD

Este trabalho adota modelos RBDs, por serem um modelo combinatorial, é possível
calcular as métricas de disponibilidade e confiabilidade por meio de fórmulas fechadas.
Portanto, uma das vantagens de utilizar o RBD é a facilidade de avaliar a confiabilidade
e disponibilidade dos sistemas.

Os modelos RBDs mais simples e comuns dão suporte a arranjos em séries e paralelo.
Para que um sistema esteja em funcionamento é necessário que todos os componentes
estejam operacionais (funcionando) os blocos destes modelos serão conectados em série.
No entanto, uma conexão em série representa uma dependência direta entre os compo-
nentes. Consequentemente, um sistema pode funcionar com apenas um componente
operacional, dessa forma os blocos estão conectados em paralelo. Assim, uma conexão
em paralelo é utilizada para representar redundância.

Os arranjos K-out-of-n descrevem estruturas em que o sistema pode funcionar se k

ou mais componentes estão no estado operacional (Kuo & Zuo 2003). Por conseguinte,
uma estrutura formada por quatro componentes e necessita de dois funcionamento para
prover o serviço esperado, assim temos uma estrutura 2-out-of-4 (ou 2 de 4). Os arranjos
em série e paralelo são casos especiais do arranjo K-out-of-n, ou seja, um arranjo em
série é uma n-out-of-n e um arranjo em paralelo é uma 1-out-of-n (Kuo & Zuo 2003).

Os arranjos em RBD adotados nesta dissertação foram descritos no Capítulo 3, tais
como arranjos em Série, Paralelo e K-out-of-n.

4.3.2 Modelos SPN

Este trabalho adota Redes de Petri Estocástica (SPN) (Balbo 2001), que permite a as-
sociação de distribuição exponencial para transições temporizadas (representadas por
retângulos brancos), ou zero atraso nas transições imediatas (descrito como retângulos
pretos finos). O espaço de estados de modelos SPN pode ser traduzido em tempo con-
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tínuo de cadeias de Markov (CTMC) (Balbo 2001), bem como técnicas de simulação
podem ser adotadas para estimar as métricas de dependabilidade e performabilidade,
como uma alternativa para a geração da cadeia de Markov.

4.3.2.1 Componente Simples

O componente simples é um bloco de construção representativo (Silva & et al. 2013).
Ele é caracterizado pela ausência de redundância, no sentido de que o componente pode
estar em dois estados: ativo ou inativo. A Figura 4.3 mostra o respectivo componente. A
Tabela 4.5 descreve o significidado dos lugares e a Tabela 4.6 descreve o significado das
transições do modelo de componente simples.

O componente simples possui dois parâmetros (não mostrados na figura), ou seja,
X_MT T F e X_MT T R, os quais representam os tempos associados às transições X_Failure

e X_Repair, respectivamente. Lugares X_ON e X_OFF representam estados ativos e
inativos.

Se X_MT T F e X_MT T R são exponencialmente distribuídos, serão os únicos parâ-
mentos necessários para o cálculo da disponibilidade.

X_ON

X_Failure

X_OFF

X_Repair

Figura 4.3: Modelo Componente Simples.

Tabela 4.5: Descrição dos Lugares do Componente Simples.

Lugar Descrição

X_ON Componente ativo ou desenvolvedor disponível
X_OFF Componente inativo ou desenvolvedor indisponível

Tabela 4.6: Descrição das Transições do Componente Simples.

Transição Descrição

X_Failure Representa a falha do componente/desenvolvedor
X_Repair Representa o reparo do componente/desenvolvedor

Sempre que #X_ON > 0, o componente está operacional, por conseguinte, P{#X_ON >

0} indica a respectiva disponibilidade. Um modelo componente simples pode represen-
tar um único desenvolvedor em relação à rotatividade ou implementação de requisitos.
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Foi analisado e verificado um conjunto de propriedades estruturais e comportamen-
tais associadas ao modelo. As seguintes propriedades de interesse foram satisfeitas:
limitada, segura e ausência de deadlocks.

4.3.2.2 Modelo Cold Standby

A Figura 4.4 representa o modelo cold standby (Silva & et al. 2013, Guimarães & et al.
2013), no qual um componente de reposição não ativo só é ativado quando o compo-
nente principal falha (X_OFF). Em tal caso, a transição Activate_Spare_X representa
o módulo de reposição para começar a operação. A ativação leva um certo período de
tempo, o qual é representado pelo tempo médio de ativação (MTActivate). Depois de
corrigir o componente principal (#X_ON > 0), a reposição está desativada (disparo da
transição Deactivate_Spare_X). A Tabela 4.7 descreve o significado dos lugares e a
Tabela 4.8 descreve o significado das transições do modelo.

Representar a redundância cold standby utilizando RBD não é fácil, devido à estru-
tura do sistema ser dinâmica, isto é, ela muda ao longo do tempo, e o tempo para ativar o
mecanismo de reposição deve ser representado. Dessa forma, o modelo de cold standby

é apresentado em SPN.

Componente Principal

X_OFF

Figura 4.4: Modelo Cold Standby.

Tabela 4.7: Descrição dos Lugares do Modelo Cold Standby.

Lugar Descrição

X_ON Componente ativo ou desenvolvedor disponível do módulo principal
X_OFF Componente inativo ou desenvolvedor indisponível do módulo principal
S_ON_X Componente ativo ou desenvolvedor disponível do módulo de reposição
S_OFF_X Componente inativo ou desenvolvedor indisponível do módulo de reposição
Wait_Spare_X Representa a espera para ativar o módulo de reposição
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Tabela 4.8: Descrição das Transiçõe do Modelo Cold Standby.

Transição Descrição

X_Failure Representa a falha do componente/desenvolvedor do módulo principal
X_Repair Representa o reparo do componente/desenvolvedor do módulo principal
S_Failure_X Representa a falha do componente/desenvolvedor do módulo de reposição
S_Repair_X Representa o reparo do componente/desenvolvedor do módulo de reposição
Activate_Spare_X Representa a ativação do módulo de reposição
Deactivate_Spare_X Representa a desativação do módulo de reposição

Semelhante ao modelo de componente simples, X_Repair e S_Repair_X representa
as atividades de manutenção, bem como X_Failure e Failure_S_X denotam os atrasos
de falha. Além disso, a expressão P{(#X_ON +#S_ON_X)> 0} indica o modo de fun-
cionamento do componente, assim, P{#(X_ON + #S_ON_X > 0)} indica a respectiva
disponibilidade.

Esse modelo pode ser adotado para representar um desenvolvedor de backup, a fim
de diminuir o impacto em relação à rotatividade de desenvolvedor.

Foi analisado e verificado um conjunto de propriedades estruturais e comportamen-
tais associadas ao modelo. As seguintes propriedades estruturais e comportamentais as-
sociadas ao modelo Cold Standby foram satisfeitas: alcançabilidade, segura e ausência
de deadlocks.

4.3.2.3 Modelo Manutenção Preditiva/Reuniões Periódicas

Os modelos apresentados até então consideraram manutenção corretiva. Nesta seção, um
modelo de manutenção preditiva é mostrado, que leva em conta as ações periódicas para
manter o componente no estado operacional. No contexto deste trabalho, manutenção
preditiva assume reuniões periódicas com os stakeholders para ajudar os desenvolvedo-
res a evitar falhas relativas à implementação de requisitos, e uma abordagem semelhante
pode ser adotada para rotatividade de desenvolvedor (ou análise de requisitos).

A Figua 4.5 descreve o modelo em que um componente simples está conectado a um
bloco preditivo.

A transição MTBP representa o tempo médio entre manutenções preditivas (por
exemplo, reuniões), e a transição PM considera a execução da manutenção preditiva (a
reunião em si). A Tabela 4.9 descreve o significado dos lugares e a Tabela 4.12 descreve
o significado das transições do modelo.

O lugar Recurso indica que o recurso está disponível para tal manutenção, por exem-
plo, um stakeholder, no qual as linhas tracejadas indicam que o recurso é compartilhado
com outros componentes simples.
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Repair

X_ON

X_OFF

PM MTBP

Recurso

Ph_1

T1

Ph_2P2

T3

P3
T4

Componente Simples

Figura 4.5: Modelo Manutenção Preditiva/Reunião Periódica.

Tabela 4.9: Descrição dos Lugares do Modelo Manutenção Preditiva.

Lugar Descrição

X_ON Componente ativo ou desenvolvedor disponível
X_OFF Componente inativo ou desenvolvedor indisponível
P2 e P3 Representa as fases da Erlang
Recurso Representa Stakeholder
P0 Recurso não disponível

Tabela 4.10: Descrição das Transições do Modelo Manutenção Preditiva.

Transição Descrição

Ph_1 e Ph_2 Representa momentos em que o desenvolvedor estar implementado um requisito, podendo ocorrer a falha
T1, T2 e T3 Representa o reset da contagem do tempo
MTBP Representa tempo médio entre manutenções preditivas
PM Tempo da manutenção/reunião
Repair Representa o reparo do componente/desenvolvedor

Como a distribuição exponencial tem a propriedade sem memória, a manutenção
preditiva não tem como impacta sobre o decorrer do tempo de falha. No entanto, tempos
de falha baseadas em phase-type distributions são afetados. Assim, como um exemplo
proeminente, a Figura 4.5 retrata o MTTF assumindo uma Erlang com duas fases. Dessa
forma, um token é mantido armazenado no lugar X_ON durante o disparo de todas as
fases Erlang, e, seguidamente, é retirado quando a transição T 4 dispara, concluindo toda
a fase de disparo e completando a execução da transição Erlang. Para cada lugar que
representa uma fase, uma transição imediata é adotada como transição de saída com a
expressão de guarda (#P0 > 0). Assim, sempre que uma manutenção preditiva está em
execução (por exemplo, uma reunião periódica), o decorrer do tempo de falha é resetado,
melhorando a métrica de dependabilidade. Da mesma forma, #X_ON > 0 avalia se o
componente está operacional.
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4.3.3 Modelo de Performabilidade

O modelo de performabilidade é baseado em uma abordagem de modelagem hierárquica
que também considera os resultados dos modelos de dependabilidade. Neste trabalho, o
modelo de performabilidade representa um processo em cascata, em que as atividades
de desenvolvimento de software estão em sequência.

A Figura 4.6 representa o modelo de performabilidade, em que um componente sim-
ples representa o grupo de desenvolvedores alocados para a atividade de implementação
(transição Impl). A transição Impl é habilitada quando tem um token no lugar ON.
Outros componentes simples poderiam ser alocados para outras transições, mas, neste
trabalho, estamos preocupados com o impacto das falhas de desenvolvedores durante a
implementação.

Dep

Repair Failure

ON

Req Des

P2

Impl Tes

Modelo cascata

Figura 4.6: Modelo Performabilidade/Cascata

A Tabela 4.11 descreve o significado dos lugares e a Tabela 4.12 descreve o signifi-
cado das transições do modelo. A vazão de entrega é a métrica de interesse, e é calculada
utilizando P{#P5 > 0}×W (Dep). Em outras palavras, a métrica assume o número de
funcionalidades entregues por unidade de tempo.

Tabela 4.11: Descrição dos Lugares do Modelo de Performabilidade.

Lugar Descrição

ON Grupo de desenvolvedor ativo
OFF Grupo de desenvolvedor inativo
P1 Início da atividade de análise de requisitos
P2 Início da atividade de projeto
P3 Início da atividade de implementação
P4 Início da atividade de teste
P5 Início da atividade de implantação

72



4.3. MODELOS PROPOSTOS

Tabela 4.12: Descrição das Transições do Modelo de Performabilidade.

Transição Descrição

Failure Representa a falha do grupo de desenvolvedores
Repair Representa o reparo do grupo de desenvolvedores
Req Representa a atividade de análise de requisitos
Des Representa a atividade de projeto
Impl Representa a atividade de implementação
Tes Representa a atividade de testes
Dep Representa a atividade de implantação

Foi analisado e verificado um conjunto de propriedades estruturais e comportamen-
tais associadas a tal modelo. As seguintes propriedades de interesse foram satisfeitas:
alcançabilidade, limitada, segura e ausência de deadlocks.

4.3.4 Composição Hierárquica

Como foi referido anteriormente, RBD e SPN são técnicas de modelagem importantes
para avaliar a dependabilidade do sistema, mas ambos têm limitações. Assim, podemos
adotar um mecanismo de modelagem híbrida, que é muito adequado para a representação
de sistemas grandes e complexos. Além disso, a composição hierárquica também é
levada em conta (Maciel et al. 2011).

Em geral, o sistema é decomposto em subsistemas, que consideram apenas os com-
ponentes que estão relacionados sobre a ativação, falha ou reparo. De fato, tal decom-
posição pode considerar subsistemas com apenas um componente, no sentido de que a
ativação, a falha e reparo não dependem de qualquer outro componente do sistema. Mo-
delos menores (RBD ou SPN) são, então, criados para cada subsistema; as respectivas
métricas são estimadas; e o modelo do sistema final (RBD ou SPN) é criado utilizando
tais métricas para avaliar a dependabiliddade do sistema.

A Figura 4.7 representa um exemplo, no qual 4 desenvolvedores (DE) são consi-
derados. Três pessoas são necessárias para manter o sistema (projeto de software) em
funcionamento e um arranjo série é adotado. Dois desenvolvedores (DE_1 e DE_2) são
representados por blocos separados, pois eles não são dependentes de outros compo-
nentes, considerando as questões de confiabilidade. Por outro lado, duas pessoas estão
relacionadas por programação em par baseada em cold standby (DEP), e um SPN é ado-
tado no presente caso. Assim, o modelo SPN é avaliado, inicialmente e, em seguida, a
estimativa da métrica (por exemplo, a disponibilidade) é considerada no modelo de RBD.
Como alternativa, um único modelo SPN, não-hierárquico poderia ser adotado para todo
o sistema, ao custo de gerar um espaço de estado maior ou tempo de simulação.
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Deactivate_Spare_DE

DE_Repair DE_Failure

DE_ON

DE_OFF

S_ON_DE

S_Failure_DE

S_OFF_DE

S_Repair_DE

Wait_Spare_DE

Activate_Spare_DEDE_1 DE_2 DEP

Figura 4.7: Composição Hierárquica

Adicionalmente, a modelagem hierárquica é importante para avaliar métricas de per-
formabilidade. A partir do modelo de dependabilidade final, o MTTF e MTTR podem
ser estimados, e estes valores podem ser considerados em um modelo de performabi-
lidade, ao invés de adotar um modelo baseado no estado geral. Os estudos de caso
concebidos adotam essa abordagem.

4.4 Considerações Finais

Este capítulo apresentou a metodologia proposta para avaliação de performabilidade de
riscos de desenvolvimento em projetos de software e um exemplo motivacional. Em
seguida, foram apresentados os modelos adotados com base em diagramas de blocos de
confiabilidade e redes de Petri estocásticos para estimar as métricas de dependabilidade
e performabilidade. Para cada modelo SPN, foram apresentadas expressões para cálculo
de algumas métrica de dependabilidade e performabilidade.
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5
Estudos de Caso

A única maneira de fazer um excelente

trabalho é amar o que você faz.

—STEVE JOBS

Neste capítulo serão apresentados dois estudos de casos para mostrar aplicabilidade
da metodologia e dos modelos propostos. Em seguida, vários cenários serão apresen-
tados com o objetivo de avaliar o impacto da performabilidade de riscos de desenvol-
vimento em projetos de software. Assim, todas as atividades da metodologia foram
utilizadas para auxiliar na avaliação desses estudos.

Os estudos de caso propostos levam em conta dois projetos de software do mundo
real para demonstrar a abordagem concebida para avaliar os riscos, a fim de auxiliar
na tomada de decisão para gerentes de projeto. O estudo de caso 1 trata apenas de
dependabilidade, e o estudo de caso 2 leva em conta a performabilidade.

Para uma melhor visualização, este trabalho adota number of nines (número de no-
ves) (Maciel et al. 2011) para apresentar alguns resultados, utilizando a seguinte equa-
ção: −log10(1−X) (onde X refere-se à disponibilidade ou confiabibilidade). Por exem-
plo, 0,99521 pode ser apresentado como −log10(1−0,99521) = 2,319664487.

Inicialmente, os parágrafos seguintes descrevem sobre MTTF e MTTR estimados.
Em seguida, um estudo de caso é apresentado considerando rotatividade de desenvolve-
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dor e estudo de caso 2 assume os riscos relacionados com a implementação de requisitos.

5.1 Estimando MTTF e MTTR

Considerando-se as atividades do método proposto, os estudos de caso adotar dados
históricos para estimar MTTF e MTTR.

Em relação ao MTTF, a censura está presente, e os dados são classificados como
tipo I, isoladamente censurado à direita (Seção 3): a observação terminou após um de-
terminado período de tempo, todos os desenvolvedores tiveram o mesmo período de
observação, e alguns indivíduos não deixaram o projeto durante a observação. Neste
caso, a Capítulo 4 explica a abordagem adotada. Por outro lado, MTTRs são estimados
com base em dados completos (sem censura).

5.1.1 Estudo de Caso 1

Este estudo de caso assume rotatividade de desenvolvedor como um risco potencial. O
projeto contempla 10 desenvolvedores, que podem ser trainee (TR), desenvolvedor ju-

nior (JE) ou desenvolvedor senior (SE). Mais especificamente, um desenvolvedor sênior
tem mais experiência do que as outras categorias, e um desenvolvedor júnior é mais
experiente do que os trainees.

É necessário um mínimo de 7 desenvolvedores (sem discernir categorias anteriores)
para manter o projeto operacional e, com base nos dados coletados, a disponibilidade
estimada é de 0,999214286.

Nas próximas seções, diferentes cenários são avaliados, incluindo a adoção de redun-
dância.

5.1.1.1 Cenários sem Distinção Desenvolvedor

Estes cenários adotam a abordagem k-out-of-n a fim de avaliar a disponibilidade e confi-
abilidade, assumindo um número mínimo de desenvolvedores (k) para não interromper
o projeto de software. MTTF representa o tempo médio para um desenvolvedor deixar
o projeto e MTTR considera o tempo médio para a substituição de um desenvolvedor.
Nesta seção, os valores médios são calculados levando-se em conta todas as categorias.
A Tabela 5.1 representa os valores e as distribuições de probabilidade escolhidas.

Ambos modelos combinatórios são baseados em estado e são representações ade-
quadas. A Figura 5.1 representa o modelo RBD adotado (como uma equação de forma
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fechada está disponível).

7/10

DE

Figura 5.1: Modelo RBD sem Distinção de Desenvolvedor.

Tabela 5.1: MTTF/MTTR em Meses sem Distinção de Desenvolvedor.

Métrica Valor Desvio padrão Distribuição

MTTF 23,3385 12,3405 Hipoexponencial
MTTR 2,0 1,0 Erlang

A Tabela 5.2 apresenta os resultados da disponibilidade e a Figura 5.2 mostra uma
comparação em relação a número de noves. O modelo base é 7-out-o f -10, em que a
disponibilidade é 0,994472645. O erro relativo é 0,47% comparando com a disponibili-
dade estimada para o projeto de software real.

Figura 5.2: Disponibilidade para Desenvolvedor sem Distinção em k-out-o f -n.

Como esperado, quando o número mínimo de desenvolvedores necessários aumenta,
a disponibilidade diminui. Particularmente, a partir do mínimo de 4 desenvolvedores, a
disponibilidade fica abaixo de um mínimo aceitável (podendo levar a falha do projeto).
Assim, o gerente do projeto pode evitar cenários com baixa disponibilidade, buscando
alternativas para aumentar o MTTF, atráves de incentivos aos profissionais (por exemplo,
aumento de salários e gratificações adicionais por produção).

A Tabela 5.3 apresenta resultados de confiabilidade ao longo de um período de 12
meses e a Figura 5.3 mostra uma comparação em relação a número de noves. Seme-
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Tabela 5.2: Resultados da Disponibilidade para Cenários em k-out-o f -n.

k-out-o f -10 Disponibilidade Disponibilidade (N. de 9’s)

1 0,999999999990613 11,0274710217
2 0,999999998895311 8,95675996780
3 0,999999941000000 7,22914798840
4 0,999998152000000 5,73329803310
5 0,999961600000000 4,41566877560
6 0,999449776000000 3,25946047020
7 0,994472645000000 2,25748264150
8 0,961284687000000 1,41211722530
9 0,816056393000000 0,73531530160
10 0,439458250000000 0,25139203500

lhante à disponibilidade, a confiabilidade diminui quando k é aumentado. Para k > 9, a
confiabilidade é muito baixa (isto é, alta probabilidade de falha).

Figura 5.3: Confiabildade para Desenvolvedor sem Distinção em k-out-o f -n.

Tabela 5.3: Resultados da Confiabilidade para Cenários em k-out-of-n.

k-out-o f -10 Confiabilidade Confiabilidade (N. de 9’s)

1 0,999999984715372 7,8157451297
2 0,999999213226689 6,1041503807
3 0,999981689891544 4,7373090832
4 0,999745826687782 3,5948700516
5 0,997662425363553 2,6312345136
6 0,985043311014274 1,8251645371
7 0,931964360959178 1,1672635316
8 0,778870079508063 0,6553524902
9 0,489092400007291 0,2916576369
10 0,164059658900933 0,0778247159
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5.1.1.2 Cenários com Desenvolvedores Distintos

Este experimento considera o impacto de categorias de desenvolvedores em dependabi-
lidade. A Tabela 5.4 representa os MTTFs estimados e as distribuições de probabilidade
para cada categoria. Além disso, assumimos o mesmo MTTR para todos os tipos de
especialização (Tabela 5.1), e a equipe contempla três trainees (TR), 2 desenvolvedores
junior (JE) e cinco desenvolvedores senior (SE).

Tabela 5.4: MTTF em Meses Distintos para Desenvolvedores.

Especialização MTTF Desvio padrão Distribuição

TR 20,5676 10,5147 Hipoexponencial
JE 23,1059 22,1457 Hipoexponencial
SE 31,8521 17,2144 Hipoexponencial

A Tabela 5.5 apresenta alguns cenários concebidos, requerendo um mínimo de 7 de-
senvolvedores, mas com diferentes restrições para cada categoria. Todos os cenários
têm 10 desenvolvedores, mas, por exemplo, o cenário 1 requer pelo menos um trainee,
um desenvolvedor junior e 5 desenvolvedores senior para estar operacional. Ambos os
modelos combinatórios e baseados em estado são abordagens viáveis para modelar os ce-
nários e a Figura 5.4 representa o modelo RBD para o cenário 1. Outros cenários adotam
modelos semelhantes, mas com um diferente valor k para cada tipo de especialização.

1/3 1/2 5/5

TR JE SE

Figura 5.4: Modelo RBD para Cenário 1.

Tabela 5.5: Número Mínimo de Desenvolvedores para Cada Cenário.

Cenário TR JE SE

1 1 1 5
2 3 1 3
3 2 2 3
4 3 2 2

A Tabela 5.6 apresenta os resultados, e a Figura 5.5 retrata resultado da disponibili-
dade considerando número de noves. O Cenário 3 tem o melhor valor de disponibilidade,
mas a disponibilidade (A) é menor do que os valores apresentados na Tabela 5.2.

A partir da indisponibilidade (UA = 1−A), onde A é a disponibilidade, um indivíduo
pode estimar possíveis custos relacionados com a paralisação do projeto. Por exemplo,
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Figura 5.5: Disponibilidade para Desenvolvedores Distintos em k-out-of-n.

Tabela 5.6: Resultados para Desenvolvedores Distintos.

Cenário Disponibilidade Disponibilidade (N. de 9’s)

1 0,732310089 0,572367997
2 0,750777023 0,603411921
3 0,826682487 0,761157551
4 0,641155997 0,445094307

supondo que uma multa mensal (MF) de US$ 50.000,00 é aplicada, devido à paralisação,
o respectivo custo (C) pode ser calculado utilizando C = MF × UA × P, em que P é o
período. A Tabela 5.7 mostra as penalidades para cada cenário tendo em conta períodos
diferentes.

Tabela 5.7: Penalidades em US$.

Cenário 1 Mês 2 Mês 3 Mês
1 13.384,50 26.768,99 40.153,49
2 12.461,15 24.922,30 37.383,45
3 8.665,88 17.331,75 25.997,63
4 17.942,20 35.884,40 53.826,60

5.1.1.3 Programação em Pares e Desenvolvedor de Backup

É um dos aspectos mais comentados da metodologia (XP) (Pressman 2006). A imple-
mentação é feita em dupla, ou seja, dois desenvolvedores trabalham em um único com-
putador. Eles irão trabalhar em conjunto para apresentar uma melhor solução para a
implementação de uma funcionalidade do software em desenvolvimento. Na prática,
cada desenvolvedor assume papel ligeiramente diferente, no qual, são comumente cha-
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mados de piloto e copiloto (Pressman 2006). Por exemplo, um desenvolvedor poderia
ser responsável por comandar o computador, digitar o código, enquanto o outro será au-
xiliar e revisará o código, garantindo que as normas de codificação estão sendo seguidas.
Consequentemente, os papéis serão trocados durante o desenvolvimento do software.

O projeto de software poderia adotar a programação em pares e desenvolvedor de
backup para os desenvolvedores senior (SE), como eles têm mais experiência, são nor-
malmente associados com as atividades mais importantes na construção de software. De
fato, quando os desenvolvedores experientes abandonam um projeto de software, eles
criam uma lacuna de conhecimento que tem de ser controlada (Izquierdo-cortazar & et al.
2010). Duas abordagens são assumidas: cold e hot. Este último assume que um desen-
volvedor adicional está ativo, e o anterior considera um atraso para ativar o indivíduo de
reposição.

Modelos combinatórios não são muito adequados para representar o comportamento
dinâmico de redundância cold standby, mas os modelos baseados em estado são viá-
veis. Para reduzir o tamanho do espaço de estado, cada SE com cold standby é repre-
sentado por um modelo SPN (Capítulo 4) e o modelo final é um RBD. A Figura 5.6
representa o modelo, no qual as distribuições do tipo fase (Erlang e Hipoexponencial)
são explicitamente representadas por falha e reparo (Watson & A. 1991). O tempo mé-
dio para ativar é um dia. A partir do modelo cold standby, a disponibilidade é estimada
(P{(#X_ON + #S_ON_X) > 0}) para 1 SE, e o respectivo valor é adotado no modelo
RBD (por exemplo, Figura 5.4.) para estimar a disponibilidade de um cenário. No que
diz respeito ao hot standby, dois desenvolvedores senior estão em arranjo paralelo. A
respectiva disponibilidade é estimada e adotada na Figura 5.7 (em vez de considerar a
disponibilidade do cold standby).

A Tabela 5.8 apresenta os resultados e a Figura 5.8 os descreve, indicando que o ce-
nário 1 é melhorado consideravelmente, uma vez que requer um mínimo de 5 SEs para
manter o projeto operacional. Os outros cenários não são significativamente afetados,
uma vez que requer menos SEs, e TRs, bem como JEs não tem reposição de desenvol-
vedores. No entanto, a técnica hot standby proporciona maior disponibilidade do que a
contrapartida da cold para um cenário.

Com os experimentos propostos, foi possível avaliar o risco proeminente em diferen-
tes configurações. Ademais, as técnicas baseadas em redundância dinâmica são aborda-
gens possíveis para melhorar as métricas de dependabilidade.
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Componente Primário

Figura 5.6: Modelo SPN cold standby.

SE_2

SE_1

Figura 5.7: Modelo RBD hot standby.

Tabela 5.8: Resultados para Cold/Hot standby.

Cenário Dis. Cold Dis. (N. de 9’s) Cold Dis. Hot Dis. (N. de 9’s) Hot

1 0,922313764 1,109655920 0,992962256 2,1525665348
2 0,752170840 0,605847595 0,752193670 0,6058876041
3 0,828217221 0,765020376 0,828242359 0,7650839333
4 0,641193065 0,445139172 0,641193211 0,4451393482
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Figura 5.8: Disponibilidade para Cold/Hot Standby.

5.1.2 Estudo de Caso 2

Nesta seção, adota-se o método proposto para quantificar a disponibilidade e confiabili-
dade de um projeto de software sobre os riscos relacionados com a implementação de
requisitos. O projeto contempla 4 desenvolvedores, e uma falha é assumida sempre que
2 desenvolvedores falham simultaneamente para implementar um requisito/funcionali-
dade.

A partir de dados históricos, a disponibilidade é avaliada como 0,999994419, consi-
derando o tempo de uptime e downtime, o que indica um erro relativo igual a 0,005%.
Consequentemente, a disponibilidade em números de nove é 5,2532923928.

As seções a seguir apresentam os cenários avaliados neste estudo de caso.

5.1.2.1 Mínimo de k Desenvolvedores

Um número mínimo de desenvolvedores (k) é necessário para não interromper a execu-
ção do projeto. RBD é adotada devido as equações de forma fechada.
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Tabela 5.9: Métricas em Dias para o Cenário Base.

Métrica Valor Distribuição

MTTF 29,6298 Exponencial
MTTR 1,6923 Exponencial

A Tabela 5.10 apresenta os resultados e a Figura 5.9 mostra uma comparação em
relação ao número de noves.

Tabela 5.10: Resultados de Cenários k-out-of-n para Implementação de Requisitos.

k Disponibilidade Disponibilidade (N. de 9’s)

1 0,999991479 5,0695094347
2 0,999394687 3,2180199989
3 0,983721279 1,7883797201
4 0,800775849 0,7006580153

Figura 5.9: Disponibilidade para Implementação de Requisitos em k-out-of-n.

A Tabela 5.11 mostra os resultados da confiabilidade ao longo de um período de 30
dias e a Figura 5.10 apresenta uma comparação em relação a número de noves. Como se
percebe, a confiabilidade do projeto em 1 mês é muito baixa e para k > 3 existe grande
risco da falha do projeto. Ademais, semelhante à disponibilidade, a confiabilidade de-
cresce quando k é acrescido num período de 1 mês.

5.1.2.2 Reuniões periódicas

São reuniões feitas com a equipe de desenvolvimento e stakeholders em um tempo pré-
estabelecidos, visando à identificação e correção de quaisquer problemas e/ou impe-
dimentos no processo de desenvolvimento de software (Schwaber & Beedle 2002). As
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Tabela 5.11: Resultados da Confiabilidade para Cenários em k-out-of-n.

k-out-o f -4 Confiabilidade Confiabilidade (N. de 9’s)

1 0,835673533 0,7842924819
2 0,460596911 0,2680865708
3 0,139553514 0,0652761347
4 0,017422780 0,0076333089

Figura 5.10: Confiabildade para Implementação de Requisitos em k-out-o f -n.

reuniões periódicas permitem acompanhar o dia a dia de trabalho da equipe e perceber as
dificuldades existentes para a realização das atividades planejadas (por exemplo, imple-
mentação de requisito/funcionalidade). O envolvimento dos stakeholders é importante
durante as reuniões, pois sua opinião é valiosa, ou seja, entendem do negócio (software

em construção). Dessa forma, as reuniões periódicas buscam levantar impedimentos
(por exemplo, riscos) e, consequentemente, minimizá-los, com o objetivo de garantir o
prazo e o custos definidos para o projeto de software.

A Figura. 5.11 representa o modelo adotado para reuniões periódicas utilizando SPN
(Capítulo 4) como modelos combinatórios não são muito adequados para este contexto.
Este modelo contempla quatro desenvolvedores que compartilham as partes interessa-
das, e a Tabela 5.12 representa os valores de PM, bem como MTBP em dias. MTTF e
MTTR os mesmos valores anteriormente adotados, mas assumindo uma Erlang com 2
fases. Os cenários pressupõem um mínimo de k desenvolvedores, e, considerando k-out-
o f -4, a disponibilidade é definida como P{(#DE_ON_1+#DE_ON_2+#DE_ON_3+
#DE_ON_4)≥ k}.

A Tabela 5.13 apresenta os resultados da disponibilidade, considerando um e dois
stakeholders (#Stakeholder = 2), e a Figura 5.12 descreve a comparação em relação ao
número de noves. A disponibilidade em número de noves é o dobro em comparação
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Figura 5.11: Reuniões Periódicas.

Tabela 5.12: Valores em Dias de PM e MTBP.

Transição Valor

PM 0,0416
MTBP 1,0

com o experimento anterior, mas uma das partes interessadas adicional não melhora
consideravelmente os resultados. O número de noves é duplicado em comparação com
o experimento anterior, mas um stakeholder adicional não melhorar consideravelmente
os resultados.

Tabela 5.13: Resultados da Disponibilidade Assumindo Reuniões Periódicas.

Cenário Dis. 1 stakeh. Dis. (N. de 9’s) 1 stakeh. Dis. 2 stakeh. Dis. (N. de 9’s) 2 stakeh.

1 0,9999999999886 10,9430954511 0,9999999999909 11,04096132700
2 0,9999999736853 7,57980157720 0,9999999790641 7,679108364500
3 0,9999781391957 4,66033386360 0,9999818724534 4,741660969800
4 0,9922359189711 2,10990994080 0,9930417736000 2,157501444100

Para o cálculo da confiabilidade, é necessário adicionar uma expressão para o peso
do arco IF((#DE_ON_1+ #DE_ON_2+ #DE_ON_3+ #DE_ON_4) = 4): 1 ELSE 2
no arco entre as transições Repair e DE_OFF em todos os desenvolvedores. Dessa forma,
a transição Repair será inibida quando a condição de falha acontecer.

A Tabela 5.14 mostra os resultados da confiabilidade num período de 30 dias (1
mês) considerando um e dois stakeholders, e a Figura 5.13 apresenta a comparação em
relação ao número de noves. Um stakeholder adicional não melhora consideravelmente
os resultados da confiabilidade. No entanto, para k > 3, a confiabilidade é muito baixa,
ou seja, probabilidade de falha do projeto.
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Figura 5.12: Disponibilidade com Reuniões Periódicas.

Tabela 5.14: Resultados da Confiabilidade Assumindo Reuniões Periódicas.

Cenário Con. 1 stakeh. Con. (N. de 9’s) 1 stakeh. Con. 2 stakeh. Con. (N. de 9’s) 2 stakeh.

1 0,999999073 6,032920265 0,999999251 6,125518182
2 0,999876215 3,907331979 0,999899970 3,999869731
3 0,994021152 2,223382487 0,994976632 2,299005005
4 0,874888764 0,902703685 0,886824530 0,946247693

Figura 5.13: Confiabilidade com Reuniões Periódicas.

Considerando um stakeholder, a Figura 5.14 descreve os resultados da disponibili-
dade variando o tempo médio entre reuniões periódicas (de 1 a 30 dias). A disponibili-
dade do projeto é impactada, mas reuniões periódicas com os stakeholders proporcionam
melhores resultados do que a abordagem sem as reuniões.

Da mesma forma que foi feito para a disponibilidade, a confiabilidade foi calculada
para 1 mês, considerando um stakeholder e variando o tempo médio entre reuniões pe-
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Figura 5.14: Disponibilidade para Reuniões Periódicas com Diferentes MTBPs.

riódicas (de 1 a 30 dias). A Figura 5.15 apresenta os resultados.

Figura 5.15: Confiabilidade para Reuniões Periódicas com Diferentes MTBPs.

5.1.2.3 Avaliação de Performabilidade

O estudo de caso assume um processo em cascata, e a métrica adotada é vazão da entrega
de funcionalidades. Particularmente, esta seção assume o risco que só afeta a atividade
de implementação e o modelo descrito na Figura 5.16 é adotado. A Tabela 5.15 apresenta
os valores para cada transição temporizada (dias), assumindo a distribuição exponencial.
Em relação aos valores das transições de falha e de reparo, a função de confiabilidade
é estimada para cada cenário. O MTTF é então calculado, e MTTR é obtida por meio
da equação da disponibilidade estacionária. A Figura 5.17 mostra resultados da vazão
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(ano−1), sem o uso de reuniões periódicas. Nota-se que, para um mínimo de 4 desenvol-
vedores, a vazão cai consideravelmente.

Dep

Repair Failure

ON

Req Des

P2

Impl Tes

Modelo cascata

Figura 5.16: Modelo Performabilidade

Tabela 5.15: Atributos das Transição Temporizada em Dias.

Transição Valor

Req 0,4068843001
Des 2,7281774725
Impl 9,2811921332
Tes 5,0189547346
Dep 0,5487583333

Da mesma forma, a vazão de entrega foi estimada para os cenários que adotam reu-
niões periódicas, e a Figura 5.18 apresenta os resultados (no ano em prol da legibilidade).
Em tal situação, o aumento do tempo médio entre as reuniões periódicas (MTBP) não
impacta a vazão do cenário 1 para o cenário 3, embora as reuniões periódicas melhorem
a métrica de desempenho. Assim, o stakeholder pode ter mais flexibilidade na defini-
ção da agenda das reuniões. No entanto, para o cenário 4, o stakeholder tem um papel
de destaque na mitigação dos riscos. As reuniões periódicas melhoram a entrega de
funcionalidades, e reduzindo o MTBP o desempenho é impactado significativamente.

Os experimentos propostos neste estudo de caso demonstram que os gerentes de pro-
jetos têm uma ferramenta importante para avaliar os riscos e diferentes configurações
para evitar ou mitigar esses problemas indesejáveis. Dependendo do projeto de soft-

ware e os recursos disponíveis, técnicas baseadas na política de manutenção preditiva
são abordagens possíveis para melhorar as métricas de dependabilidade, e consequente-
mente, pode-se realizar avaliação de performablidade do projeto de desenvolvimento de
software.
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Figura 5.17: Vazão em k-out-of-n para Implemetação de Requisitos em Ano−1.

Figura 5.18: Vazão para Reuniões Periódicas com Diferentes MTBPs em Ano−1.

5.2 Considerações Finais

Este capítulo apresentou os resultados obtidos na realização dos estudos de casos. Atra-
vés dos estudos aqui apresentados, foi possível validar os modelos adotados como tam-
bém validar a metodologia proposta. Com os resultados dos experimentos, foi possível
também avaliar os projetos de software em termos de performabilidade.

O primeiro estudo de caso concebe a rotatividade de desenvolvedor como um risco
potencial. No entanto, o projeto é composto por 10 desenvolvedores, os quais podem ser
um trainee (TR), desenvolvedor junior (JE) ou um desenvolvedor senior (SE). A partir
dessa formação da equipe, foi obtido o impacto do risco potencial sobre o projeto de
desenvolvimento de software e, consequentemente, foram estimados os custos relacio-
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nados com a indisponibilidade do projeto. Assim, foi possível mostrar os resultados das
métricas de dependabilidade (disponibilidade e confiabilidade) e tais métricas também
foram avaliadas utilizando técnicas de redundância dinâmicas (Hot/Cold Stadby).

O segundo estudo de caso descreve a implementação de requisitos como um risco
potencial. Assim, o projeto é contemplado com 4 desenvolvedores. Para tal estudo, foi
estimado o impacto do risco potencial sobre o projeto de desenvolvimento de software e,
por conseguinte, foram estimadas as métricas de dependabilidade e políticas de manuten-
ção foram adotadas para calcular tais métricas. Por fim, a métrica de performabilidade
vazão de entrega foi estimada.
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6
Conclusão

Você nunca sabe que resultados virão da sua ação.

Mas se você não fizer nada, não existirão resultados.

—MAHATMA GANDHI

O gerenciamento de riscos é uma parte essencial no projeto de desenvolvimento de
software, e que desempenha um papel significativo na obtenção de um bom negócio e
resultado do projeto.

O gerenciamento de riscos em projetos de desenvolvimento de software conta com
uma atividade muito importante que é a avaliação quantitativa de riscos, pois esta en-
volve a definição de quais riscos são prioritários, permitindo medir as probabilidades e
também estimar seus impactos para o projeto.

Muitas falhas associadas com o desenvolvimento de software ocorrem devido ao não
tratamento dos riscos envolvidos e à fraca gestão dos mesmos. Assim, a gestão de risco
eficaz tornou-se um fator essencial para assegurar o sucesso dos projetos de software.

Ainda hoje, poucas empresas de software não lidam eficientemente com riscos em
seus projetos. Entretanto, gradativamente este cenário começa a ser modificado já que
esse gerenciamento é apontado como a primeira dentre as atividades da gerência de
projetos de software. A adoção de metodologias e técnicas para avaliar os riscos nesses
tipos de projetos é um requisito essencial para a gerência de tais projetos. O sucesso,
portanto, depende da forma com que os riscos são gerenciados durante todo o processo.
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Outra notável premissa a ser considerada é que se devem estimar probabilisticamente
os riscos durante a atividade de análise do processo de gerenciamento. No entanto,
muitas vezes, por ser antes da execução do projeto, as estimativas podem ser realizadas
através de dados históricos de projetos passados ou por experiências dos gestores e isso
é um diferencial no exigente mercado competitivo, já que uma avaliação adequada dos
risco é uma atribuição bem pouco empregada pelas empresas de software.

Este trabalho apresentou uma abordagem baseada em modelos de dependabilidade
e performabilidade para avaliar os riscos de desenvolvimento de projetos de software.
Estudos de caso do mundo real demonstraram a viabilidade da abordagem proposta,
em que vários cenários foram avaliados, incluindo a adoção de redundância dinâmica
e políticas de manutenção para melhorar a dependabilidade e performabilidade. Assim,
este trabalho mostrou a aplicação dessas técnicas para a rotatividade de membros da
equipe e implementação de requisitos, e que outros tipos de riscos podem ser avaliados.

6.1 Contribuições

As contribuições deste trabalho são as seguintes:

• Proposição de modelos SPNs e RBDs para avaliação probabilística de risco em
projetos de desenvolvimento de software, durante a atividade de análise de risco.
Através desses modelos, foi possível aferir métricas de performabilidade tais como,
disponibilidade, confiabilidade e vazão em projetos de desenvolvimento de soft-

ware;

• Desenvolvimento de uma metodologia para auxiliar os gerentes de projetos de soft-

ware a realizarem avaliação de performabilidade dos riscos de desenvolvimento.
Essa metodologia é composta por uma série de atividades, desde o modo de falha/-
funcionamento e definições de métricas até a avaliação de cenários.

Além da contribuição mencionada, um artigo que apresenta alguns resultados desta
dissertação foi produzido:

1. A. Melo, E. Tavares, M. Marinho, E. Sousa, B. Nogueira and P. Maciel "Develop-

ment Risk Assessment in Software Projects using Dependability Models ,"in The

2013 Thirteenth IEEE International Conference on Computer and Information Te-

chnology (CIT 2013), Sydney, Australia, 2013.
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6.2 Trabalhos Futuros

Outros estudos podem ser produzidos através dos modelos propostos e da metodologia
de avaliação propostas: Em seguida, alguns deles são apresentados:

• Realizar novos experimentos, considerando outros tipos de riscos de desenvolvi-
mento em projetos de software;

• Analisar outras políticas de manutenção preditiva;

• Realizar avaliação de outras métricas de desempenho (por exemplo, utilização e
tempo de serviço);

• Criar novos modelos em SPN para avaliação de performabilidade em outras etapas
do processo de desenvolvimento de software (por exemplo, análise de requisitos).
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